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ABSTRACT 
The nuclear Giant Dipole Resonance (GDR) is discussed using a macro-

scopic model with two new features. The motion is treated as a combina­

tion.of the usual Goldhaber-Teller (GT) displacement mode and Steinwedel-

... , 

Jensen (SJ) acoustic mode, and the restoring forces are all calculated using 

the Droplet Model. The A-dependence of the resonance energies is well 

reproduced without any adjustable parameters, and the actual magnitude 

* of the energies serves to fix the value of the effective mass m used in 

the.theory. The GDR is found to contain a large component of the GT type 

of motion, with the SJ mode becoming comparable for heavy nuclei. The 

width r of the GDR is estimated on the basis of an expression for one-

body damping. 

* Work supported in part by the U.S. Energy Research and Development 
Administration. 
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I. INTRODUCTION 

The giant electric dipole resonance (GDR) is a beautiful example, 

among the vast variety of possible nuclear excitations, of a manifestly 

collective mode that can be understood, to a large extent, in terms of 

a macroscopic approach. It corresponds to the absorption of electric 

dipole radiation by the vibration of the neutrons against the protons 

and the subsequent damping of this motion into intrinsic excitation. 

The GDR can be observed in every nucleus throughout the periodic 

table and very little structure is to be seen in the energy dependence 

of the absorption cross-section, except for the lightest nuclei. 1 

The absorption cross-section for most nuclei follows a Lorentz curve 
/ 

whose mean energy Em (see Fig. 2) varies smoothly with mass number in a 

manner that shows little or no dependence on nuclear shell effects. 2 

On the basis of a few early experiments Goldhaber and Teller3 dis-

cussed three possible macroscopic explanations for the A-dependence of 

the resonance energy. The first postulated an elastic binding of the 

neutrons to the protons that would result in a resonance energy in-

dependent of A. The second proposal, later elaborated by Steinwedel 

and Jensen4 (the SJ mode), was that the resonance might consist of 

density vibrations of the neutron and proton fluids against each other 

with the surfaces fixed. This kind of motion, which corresponds to 

the lowest acoustic mode in a spherical cavity, would result in a 

resonance energy proportional to A-113. Their third suggestion, one 

that they chose to discuss in some detail (the GT mode), was that 

the neutrons and protons might behave like two separate rigid but 

inter-penetrating density distributions. The resulting resonance, 
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consisting of the harmonic displacement of these distributions with 

respect to each other, would be expected to have an energy dependence 

proportional to A-l/6. 

Because of the crude nature of the model and the severity of the 

assumptions needed to justify it, the GT mode has received relatively 

little attention over the years. On the other hand, the SJ mode, which 

also imposes a harsh and unrealistic constraint on the motion (that the 

vibration takes place in a rigid fixed spherical cavity) has served as 

the basis for a vast literature dealing with the GDR. The SJ mode has 

been widely applied and has been extended to deformed nuclei ,5 to in­

clude compressibility,6 to include the coupling to surface vibrations7•8 

and other surface effects. 9•10 

Our interest in the GDR was revived when we realized that the 

development of the Droplet Model ll-l 3 (which explicitly identifies the 

energy associated with displacing the surface of the neutron distribu­

tion from that of the proton distribution) would permit a more realistic 

calculation of the restoring force for the GT mode than the ad hoc pro-

cedure that was used in the original work. We also came to realize 

that a much more satisfactory macroscopic description of the resonance 

results if it is considered to be a superposition of GT and SJ modes. 

(see, also, Ref. 14). A moment's reflection should serve to convince 

the reader that in an SJ type density vibration the inertia associated 

with the flow of neutrons and protons would tend to carry them beyond 

the location of the original surface when they pile up first on one 

side of the nucleus and then the other. This tendency of the neutron 

and proton boundaries to undergo a harmonic displacement from ·each other 
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~s just the GT mode. The participation of this mode cannot be avoided 

except by the unrealistic assumption of an infinitely stiff restoring 

force resisting such displacements. 

The work that is to be described here contains these two new 

features. First, all the restoring forces are calculated in terms of 

the Droplet Model. Second, the motion is considered to be a super­

position of GT and SJ modes with the relative magnitudes of the two 

modes determined by the coupling between them and the associated forces 

and inertias. We find that the GDR is mainly a .GT mode, but with an 

essential admixture of the SJ mode which increases for heavier nuclei. 

We also find an A-dependence for the resonance energy that is .inter­

mediate between that of the GT and SJ modes, in excellent agreement 

with the measured trends. 
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II. DEGREES OF FREEDOM 

To describe the motion we choose a spherical {polar) coordinate 

system with the z-axis, which is a symmetry axis, aligned along the 

direction of the electric field. The equation of motion will be solved 

subject to the constraint that the solution can be represented by a 
vector, 

(2.1) 

times a harmonic time dependence, where the vector components a1 and a2 

represent the amount~ of the GT and SJ modes. 

A. GT Mode 

The GT mode, 3 illustrated on the left side of Fig. 1, consists of 

a rigid displacement of the neutrons from the protons by an amount 

where R is the mean radius of the nucleus. The protons and neutrons 

are displaced from the origin by the amounts, 

N d =- d 
z A and z 

dn = - Ad 

which leaves the center of mass fixed. 

The dipole moment is given by 

NZ 
D1 = Zedz = a1 1\ eR 

where e is the unit of electronic charge. 

The flow fields for the protons and neutrons in the GT-mode are 

given by the velocity vectors v1 (r,e) and v1 {r,e), where 
~ n ~ z 

(2.3) 

(2.4) 
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N Z 
~lz = A ~1 and ~ln = - A ~1 (2.5) 

with 

(2.6) 

where er ' ~e are unit vectors in the r and e directions. 

B. SJ Mode 

In the SJ mode, 4 illustrated on the right side of Fig. 1, the protons 

and neutrons vibrate against each other in a fixed spherical cavity in 

such a way that their density variations are given by 

op = RA pzon and op = - I p on z n A n (2. 7) 

where 

(2.8) 

where 

kR = a = 2.081576 (2.9) 

and 

c = 2a/j 0(a) = 9.93 (2.10) 

The expressions j 0 and jl are spherical Bessel functions. Equation (2.9) 

fo 11 ows from the boundary condition of zero norma 1 ve 1 oc,i ty across the 

spherical boundary, which requires that the derivative of jl at kR, i.e., 

jl •(a), be zero. The normalizing coefficient C in Eq. (2.8) for the 

amplitude on has been chosen so that the expression for the dipole moment 
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in the SJ mode is 

(2.11) 

in analogy with Eq. (2.4). This normalization is important since it 

establishes a scale against which the relative contributions of GT- and 

SJ-modes to the GDR can be measured. With our choice of normalization a 

GT-mode specified by a 1 and an SJ-mode specified by a 2 have the same 

dipole moments if a 1 = a 2 . 

The velocity fields for the protons and neutrons in the SJ-mode are 

given by 

v = R v and ~2n = - _Az y2 -2Z A -2 --
(2.12) 

where 

(2.13) 
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III. EQUATION OF MOTION 

The homogeneous equation of motion for harmonic vibrations of the 

system is 

2 (w 8 - C) a = 0 
~ ~ ...... 

( 3. 1 ) 

where ~ and ~ are the inertia and stiffness matrices defined in terms - -
of the kinetic energy T and the potential energy V by the expressions, 

. 
• a and • a 

A. The Inertia Matrix, 8 

The total kinetic energy of the system can be written 

·'· 

where the p's are particle number densities and m is the nucleon 

mass. If one substitutes from Eqs. (2.5) and (2.12), performs the 

indicated integrals and then compares the resulting expression with 

Eq. (3.2), the components of~ are found to be 

8
11 

= 8 

812 = 821 = 8 

where, if the quantity NZ/A2 is set equal to 1/4, we find that 

8 1 2 = --mAR 
4 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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In the last expression we assumed that R = R
0 

= r
0
A113, where r

0 
is the 

nuclear radius constant of standard nuclear matter, for which we shall 

use the value 1.18 fm. 13 

Note that the quantity 

2 
a -2 - 1.166 -2--

is fairly close to unity. 

B. The Stiffness Matrix, ~ 

(3.6) 

In analogy with the determination of§ in the previous section, the 

values of the components of the stiffness matrix ~ can be determined by 

calculating the Droplet Model potential energy as a function ora.1 and a.2 
and matching the coefficients of the quadratic terms to the corresponding 

terms in Eq. (3.2). 

The Droplet Model expression for the dependence of the potential 

energy on~ is contained in the following equation! 2 

v = canst + 4 
1 

3 f Jo2 + + J (H-r 2 + 2P-ro - Go 2) . 
;_ Tir val 4Tir

0 
surf s s 

3 0 
(3. 7) 

The quantity -r is the distance from the equivalent sharp surface of the 

proton distribution to that of the neutron distribution (i.e., the neutron 

skin thickness t), in units of r
0

. The nuclear asymmetry o (the relative 

local neutron excess) is defined by 

(3.8) . 

and os is the value of o at the surface. The coefficient J is the nuclear 
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symmetry energy coefficient and H,P,G are Droplet Model coefficients 

serving to describe the response of the surface energy to variations of 

T and o. 

As we shall see,the special structure of the static Droplet Model 

scheme leaves its imprint also on the theory of the dynamics of the Giant 

Dipole oscillation, and it is necessary to review briefly the relevant 

features of the Droplet Model before proceeding with the solution of the 

problem at hand. 

First we note that, as shown on page 200 of Ref. 12, there is a 

relation between the coefficients J,H,P,G, which may be written as 

~ = (P2 + GH)/P 2 (3.9) 

It also turns out that in all stati~ applications of the Droplet Model 

the equilibrium distributions of the neutrons and protons are such that 

the local neutron skin thickness t is related to the local surface neutron 

excess os by (Eq. 46, p. 198, Ref. 12): 

t G - =- r 
os P o 

(3.10) 

(3.11) 

where 

Q = ~ ~p (3.12) 

2 p = H/(1- J J) in virtue of Eq. (3.9). 
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The above combination of coefficients has special significance in 

the Droplet Model. This can be appreciated by inserting Eq. {3.11) in 

the surface-energy integral in Eq. (3.7) which then reduces to 

1 f Q t2 4nr 4 
0 surf 

(3.13) 

T~us Q has the significance of a stiffness coefficient against the 

formation of a neutron skin t, when this skin is accompanied, at e~ch 

point on the surface, by a local neutron excess os related to t by 

Eq. (3.11). Note the distinction between this stiffness Q and the 

stiffness against the formation of a neutron skin at constant os, which 

is given by H. The relation between t and 6s, given by Eq. (3.11), is 

predicted to hold in the Droplet Model theory for the equilibrium density 

distributions of semi-infinite or finite systems, with or without Coulomb 

energy, and for spherical or non-spherical shapes. We shall refer to it 

as the "Droplet Rule" and we shall see later the relevance of this static 

rule for the dynamics of the Giant Dipole oscillation. 

In such an oscillation the amplitude of the neutron skin thickness 

vibrations at a point specified by e is given by 

(3.14) 

and the amplitude of the neutron excess vibrations at a point r, e is 

given by 

8 = - 2a2 (;)cj1 (kr) case (3.l5) 

.. 
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Which reduces to 

(3. 16) 

for a point on the surface (we again replaced NZ/A2 by 1/4). 

The integrals in Eq. (3.7) can be performed after substituting in 

Eqs. (3.14 - 16). The resulting expression in a 1 and a 2 can be 

compared with Eq. (3.2) in order to establish that the components of C 

are, 

(3.17) 
1 2 2 1 42 2 c22 = 4 JAa (a -2)- 6 Ga R /r

0 

Note that c11 , which is the coefficient describing the restoring 

force in the GT ~ode, is proportional to the Droplet Model coefficient 

H rather than to J (the volume symmetry energy coefficient) as was 

assumed in Ref. 3. The coefficient H describes the resistance against 

the formation of a neutron skin. Another point to note is that the co­

efficient c22 , corresponding to the SJ mode, consists not only of the 

usual volume term proportional to J, but also of a surface term pro-

portional to the Droplet Model coefficient G. 

The off-diagonal terms c12 and c21 provide the potential energy 

coupling between GT and SJ modes because of the joint dependence of 
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the surface energy on land os. In addition the two modes are inertially 

coupled through the terms 812 and 821 in the inertia matrix. 
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IV. THE SOLUTIONS 

Equation (3.1) has solutions only when the determinant of the 

coefficient vanishes, 

(4.1) 

which leads to the expression 

~D ± 
(4.2) 

where 

(4.3) 

The resulting quantized eigen-energies of the harmonic vibrations of the 

system are 

E = hw (4.4) ± ± 

The energy E is the dipole vibration to be compared with the mean 

energy Em of the GDR. The energy E+ corresponds to a higher-lying 

oscillation for which the GT and SJ modes are nearly out of phase and 

whose dipole moment nearly vanishes (see later). 

The nature of the eigenvibrations as regards the relative amounts 

of the SJ and GT modes is given by the ratios (a2;a1)± associated with 

thew± solutions. They follow from the expression 

2 (w B - C) a = 0 ± ::::: ::::: ~ 
(4.5) 

which leads to 

(4.6) 
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Figure 2 shows a comparison of the calculated energy hw_ with 

experiment. The middle curve is for a set of nuclear parameters given 

by a recent'oroplet Model fit to nuclear masses, fission barriers and 

radii (Ref. 13), viz. J = 36.8 MeV, Q = 17 MeV, r
0 

= 1.18 fm. 

An illustrative value of H = 14 MeV was assumed. The values of P = 9.74 MeV 

and G = 31.63 MeV then follow from Eqs. (3.9) and (3.12). (This is case (b) 

in Table I). The upper and lower curves are for Q = 20 MeV and Q = 14 MeV, 

with J adjusted to 32.11 MeV and 46.52 MeV, respectively. This adjust-

ment tends to minimize the damage done to the fit to nuclear masses by 

the departure from the optimum values of J and Q. The ratio of H/Q for 

all three curves was maintained at 14:17. 

Even though Eqs. (4.1 and 4.5) are explicit solutions in closed form 

of the coupled equations of motion, their dependence on the nuclear 

parameters J,Q,H,P,G is not transparent. Fortunately two excellent 

approximations to the exact solution are available, which display this 

dependence in a simple and illuminating manner. 

A. The Super-Simple Solution 

This solution makes use of the fact that the determinant of the 

inertia matrix is nearly equal to zero. Thus if the quantity~ were 
\ 

exactly 2 (instead of 2.08), making (a2-2)/2 exactly 1, the determinant 

would vanish and it is readily verified that the resulting equations 

of motion would have the following simple solution for the dipole mode 
I 

of oscillation: 
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2 2 
1 - mr o 2/3 3mr o Al /3 

-2-SJ A + 8Q 
w 

( 4. 7) 

mR 2 

= s3 (1 + u) (4.8) 

. 1/3 
where u stands for (3J/Q)A- . 

The associated ratio of the GT to the SJ mode is 

(4.9) 

In this Super-Simple approximation the solution depends only on 

J and Q. 

B. The Droplet"Mode Solution 

We note that the relation for a2/a1 given by Eq. (4.9) is equivalent 

to the statement that, for the oscillation in question, the ratio of the 

local skin thickness t to the local neutron excess os is given by 

3 J =--r 2 Q 0 
(4.10) 

independently of position on the surface. We recognize this as the 

universal relation predicted by the static Droplet Model for the equilib-

rium ratio of the neutron skin thickness to the neutron excess at the 

surface. 11 •12 {The Droplet Rule- see above). 

Taking this as a hint we may construct an approximate solution of 

the coupled equations by imposing the restriction t/os = (3J/2Q) r
0

, i.e., 
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but without making the approximation a = 2. With the above restriction 

the problem is now an oscillation in one degree of freedom, with the 

single solution. 

mR 
2 

( ) -2 _ o l+u _ l+£+3u 
W - "8J l+£+U £ (4.12) 

(4.13) 

where £ is a small quantity, defined by 

(4.14) 
= 0.0768 

This solution still depends only on J and Q~ 

In a typical case (A = 125) the Super-Simple solution (4.8) gives 

an energy hw which is accurate to 0.42 MeV, or 3.2%. The Droplet Mode 

solution (4.12) gives hw accurate to 0.04 MeV, or 0.3 %. The latter 

solution in particular may be used as an essentially exact expression 

for hw, agreeing with the plot in Fig.2 to within the width of the line 

in most cases of interest. 

The values of a 2;a.1 predicted by the exact solution and the above 

two approximations are compared in Fig. 3. We see that the GT mode 
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tends to dominate for light nuclei and that it contributes more than the 

SJ mode for all mass numbers in the periodic table. The amount of the 

SJ mode increases with A and almost reaches parity for the heaviest 

nuclei. 

In order to illustrate the nature of the actual density oscillations 

we show in Fig. 4 the appearance of the density distributions at the 

instant of maximum displacement (the classical turning point of the 

quantized oscillation) for 208Pb. The centers of the neutron and proton 

spheres are seen displaced by about 0.27 fm, and there is a considerable 

difference in the values of the local neutron excess at the left and 

right hand tips of the nucleus. 
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V. COMPARISON WITH EXPERIMENT 

The most noticeable feature of Fig. 2 is the discrepancy of about 

15% between the absolute values of the calculated curves and experiment. 

As pointed out above the calculations depend for all intents and purposes 

only on J and Q, and no reasonable changes in these coefficients, con-

sistent with fits to nuclear masses, can bring the curves into agreement 

with experiment. 

Using Eqs. (4.8) or (4.12) we may readily determine the values of 

J and Q that would be demanded by the GDR data. Thus from· Eq. (4.8) 

it follows that if the quantity 8/{mR~ w2) is plotted against A-113 

a straight line should result, with J-l as the intercept on the ordinate 

axis and 3Q-l as the slope. If the more accurate Eq. (4.12) is used 

such a plot should also conform closely to a straight line, but with 

intercept equal to about 0.88 J-l and slope about 0.97 (3Q- 1). (See 

Appendix C). Figure 5 shows this type of plot. We see that the 

data for A~ 50 define reasonably well a linear trend. (For A~ 50 

the~e is more scatter in the experimental points). This confirms 

roughly the correctness of the functional form of the A- dependence 

predicted by the model of coupled GT and SJ oscillations, but the 

values of the coefficients J and Q associated with the intercept and 

slope of the line in Fig. 5 are (0.7)-l times bigger than the values 

J = 36.8 MeV, Q = 17 MeV determined from the fit to masses. This 

apparent discrepancy could be an indication that the effective inertia 

involved in the oscillations of the neutrons against the protons was 

somewhat smaller than the inertia of the bodily motions of the neutron 

masses against the proton masses. The reason might be that part of the 
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time the neutrons and protons exchange character (in virtue of the 

exchange component of the nucleon-nucleon force) without actually under~ 

going the associated displacements in space. · An effective mass could 

also serve to absorb any velocity dependence in the nucleon-nucleon 

interactions that would make the stiffnesses J and Q, relevant for the 

dynamical oscillations, different from their static values. Evidence 

* for an effective mass m somewhat less than m is contained in the 

integrated cross-sections for the Giant Dipole resonance, 17 -19 which 

appear to exceed the dipole sum rule by something of the order of 

20%. 2 

* Figure 6 shows that once an effective mass m equal to 0.7 m is 

assumed there is perfect agreement with the Droplet Model prediction for 

the trend of hw, based on the standard coefficients J = 36.8 MeV, 

Q = 17 MeV. 

By contrast it is clear, especially from Fig. 5, that the trend 

with A in the observed energies is inconsistent with either a pure 

Goldhaber-Teller or a pure Steinwedel-Jensen Model. In the former case 

the data points in Fig. 5 should lie along a line through the origin, 

in the latter they should form a horizontal line. The same fact had 

been brought out by the extensive analysis in Ref. 2, which demonstrated 

empirically a transition from a proportionality of hw to A-116 for 

small A to a proportionality to A-l/3 for large A. The essential 

agreement with theory in this respect may be exhibited by re-writing 

Eq. (4.8) in the form 
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-1 = - r;;}o
2 

l/3 J ( l/3 
w ~~ A ~ 1+ A0 /A) (5.1) 

where 

A . ~ (3J/Q) 3 ~ 274 (5.2) 
0 

(A similar relation follows approximately from Eq. (4.12)). Thus, as 

noted in Ref. 2, the mass number characterizing the transition region 

where neither the GT nor the SJ behavior is appropriate lies near the 

end of the periodic table. We also realize now that one third of the 

cube root of this characteristic mass number is a measure of the ratio 

of the symmetry energy J to the effective neutron skin stiffness Q. 

The GDR energies thus provide an independent estimate of this ratio, 

which agrees with the value determined from nuclear masses. 

We may also note that if the GDR frequency w is calculated under 

the restriction of a pure SJ mode the result has to exceed the value 

of w obtained without this restriction. This may be the reason 

why in past analyses of the GDR, restricted artificially to a pure 

SJ mode, the need for an effective mass less than m was not apparent, 20 

the inaccuracy of the restricted solution accidentally tending to 

produce agreement with the experimental resonance energies. 
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VI. DISCUSSION 

The situation emerging from the above analysis is something like 

this: In 1948 Goldhaber and Teller pointed the way towards an inter­

pretation of the Giant Dipole Resonance in terms of a simple oscillation 

of rigid neutron and proton spheres. This was largely replaced in 

1950 by the more sophisticated Steinwedel-Jensen model of an acoustical 

resonance. Due to the accumulation of excellent experimental data, 

especially by the Livermore and Saclay groups, it eventually became 

clear that neither the GT nor the SJ idealization was quantitatively 

satisfactory. The theory presented here, according to which the 

oscillating system is allowed to decide for itself the relative amounts 

of the GT and SJ modes, leads indeed to a situation where neither 

mode is expected to be dominant-and certainly not the SJ mode, which 

would not begin to dominate until A» 274 . (See Ref. 21 for a micro­

scopic treatment leading to similar conclusions). On the contrary, 

the mixture appears to be close to a special combination, the Droplet 

r~ode which, for any value of A, is just such as to make the local 

neutron excess at any point on the surface and at any instant follow 

the local neutron skin thickness according to the Droplet Rule. The 

result is that even for lighter nuclei, with A<< 274, when the 

A-dependence of the resonance energy tends towards the Goldhaber - Teller 

A-116 law, the actual value of the frequency is predicted to be 

governed by the effective neutron skin stiffness Q and not by the 

stiffness H, which would be appropriate for a pure GT mode. (See 

Eq. (4.8)) Thus nowhere in the periodic table is one justified in 

relying on an idealization of a pure GT or a pure SJ model. 
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. 
What is the physical significance of the choice by the oscillating 

system of the Droplet Mode? Mathematically this is the result of the 

near-vanishing of the determinant of the inertia matrix §. As is readily 

verified the kinematic meaning of this near-vanishing is the similarity 

of the flow patterns in the GT and SJ modes of oscillation. In 

general, if two modes of motion have essentially the same flow patterns 

(and are regarded as separate modes only because the potential energy 

is different for them) then the off-diagonal (cross) term in the kinetic 

energy, involving the product of the time derivatives of the two modes, 

is no different (apart from normalization) from the diagonal terms 

which involve the squares of the time derivatives of each mode separately. 

The inertia matrix can then be brought to the form (~ ~) for 

which the determinant is clearly zero. It is apparently because the GT 

and SJ flow patterns are (somewhat surprisingly) quite similar, at 
' least in an integral sense, that it is left largely for the potential 

energy to decide on the optimum mixture of the tw-o modes, with the 

result that the mixture conforms closely to the static Droplet Rule. 

One aspect of the similarity of the GT and SJ flow patterns is that 

they are by and large not too far from parallelism, i.e.,that also in the 

SJ mode the oscillation is largely a to-and-fro motion of the nucleons 

parallel to the direction of the electric field. The recognition of 

this feature may be relevant for the microscopic interpretations of the 

GDR. Insofar as the gross motions induced by the electric field are 

parallel displacements, one might expect the nodal structure of the 

individual-particle wave-functions not to change very much. Consequently, 
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the inertia of the oscillations, as calculated microscopically for the 

quantized nucleons, might be expected to be much closer to the hydro­

dynamical value than if drastic re-arrangements of the nodal structures 

were involved. (Ref. 22). This feature would be even more in evidence 

for nuclear potentials (such as a harmonic oscillator well) for which 

the motion along the axis of the field is separable from the transverse 

directions:. This should help to explain why the macroscopic hydro­

dynamic model appears to work reasonably well even as regards absolute 

values of the resonance frequency, in particular why there is no evidence 

at all in the data for inertias exceeding the hydrodynamical values. 

Altogether if one remembers that throughout the periodic table the major 

part of the oscillation is in the form of rigid displacements of the 

GT type, and that the remainder is also, in an integral sense, not too 

different from such a simple motion, one realizes that the proper role 

of a microscopic treatment of the GDR is to discuss the finer details 

of the motions, the overall behavior being quite well reproduced, for 

a ~ood reason, in a macroscopic approach. After all, in describing 

center-of-mass displacements of a system, little is to be gained by 

starting with a microscopic many-body wave-function of the A interact­

ing particles constituting the system in question. 

Concerning the subject of microscopic treatments of the GDR we 

should add one remark. Such treatments are more fundamental and con-

tain, in principle, all the physics of a macroscopic treatment and, in 

addition, all the subtleties, refinements and peculiarities associated 

with the retention of the particle degrees of freedom. However, if a 

microscopic treatment is to be relevant in its quantitative predictions 
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it must, in practice, contain the physical features that are associated 

with the two principal restoring forces of the GDR, namely the symmetry 

energy J and the effective neutron skin stiffness Q. This .implies that 

the effective nuclear interaction used in a microscopic treatment must 

be chosen so that it could reproduce the experimental values of J and 

Q. Also the techniques employed in the solution (e.g. the parametriza-
I 

tion of the potential well and the amount of configuration mixing allowed) 

should be adequate to describe accurately bodily displacements of the 

neutrons and protons. Only then can one usefully relate the difference 

between the results of microscopic and macroscopic treatments to the 

refinements associated with the retention of the particle degrees of 

freedom. 
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VII. ESTIMATE OF WIDTH 

We shall present a tentative estimate of the width of the GDR 

based on the recently formulated one-body damping expression. The rate 
. 

of energy dissipation E is written as 

. - f ·2 d E = pv n a ( 7. 1) 

surf 

-where p is now the mass density and v the average particle speed of a 

long-mean free-path gas in a container whose wall elements do are 

moving with normal speeds n with respect to the bulk of the gas (i.e. 

with respect to its center of mass). In our case there are two gases, 

the neutrons and the protons, and the average particle speed is ~-of the 

Ferini velocity vF. The container is the potential well felt by the 

neutrons or protons. We shall assume that the surface of this well 

remains stationary because it is determined principally by the total 

density, whose boundary does not move very much as the neutrons and pro­

tons oscillate against each other. The relevant relative velocity com-

ponent nz for the protons, say, is then just minus the velocity of the 

center of mass of the protons, projected onto the normal of a surface 

element do. Since the dipole moments o1, o2, given by Eqs.(2.4) and (2.11) 

are simply related to the center-of-mass locations of the protons and 

neutrons we readily find 

nz 
N . 

= -A ( al + a2) R case 

(7.2) 

'\ 
z (a, + a2) R case -A 
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The rate of energy dissipation follows as: 

• • 2 
E = Da (7.3) 

where (7 .4) 

and (7.5) 

In the Super-Simple approximation the kinetic energy may be written 

as 

where 

T _ 1 B .2 
- 2 a 

B = mAR2 (NZ/A2) 

(7.6) 

(7. 7) 

In the same approximation the potential energy (not needed for an estimate 

of the width) is 

where C ~ ~ QA4/ 3 U/(l+u) 
3 

The equation of motion for a is then 

Ba + Da + Ca = 0 . 

{7.8) 

(7.9) 

(7.10) 

The predicted width of the resonance is given by the delightfully simple 

expression, 

r = h _g_ = h{v) 
B R (7 .ll) 
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The widths given by Eq. (7.11) are predicted to vary as A-113. 

The calculation is compared with experiment in Fig. 7 and there is no 

order-of-magnitude disagreement between the experimental values and the 

theory. Note that the theory has no adjustable parameters since the one­

body dissipation formula has no adjustable viscosity coefficient. (This 

may be contrasted with ordinary hydrodynamic treatments of nuclear 

dynamics, or with theories that postulate frictional forces between 

interpenetrating density distributions in relative motion27 •28 .) Also 

* the effective mass m which, to a certain extent, was a parameter in 

the fit to the resonance energies, cancels out in the expression for 

the width. It will be interesting to continue testing the macroscopic 

nuclear dynamics predicted by the one-body dissipation theory in a 

variety of situations, such as the GDR, where microscopic features appear 

to play a secondary role. 
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VI I I. SUMMARY 

The principal results of this study are as follows: 

1. The application of the Droplet Model to the GDR 

leads to a simple algebraic theory. 

2. The relative amounts of the Goldhaber-Teller and 

Steinwedel-Jensen modes of oscillation are found to 

be such that in general neither dominates. The mixture 

conforms closely to the static Droplet Model Rule. 

3. This is the result of the (unexpected) finding that 

the flow pattern for the SJ mode of oscillation is 

very similar, in an integral sense, to the GT motion 

(a to-and-fro oscillation parallel to the electric 

field). 

4. A comparison of the resonance energies with experiment 

shows a firm discrepancy of 15% in absolute magnitudes, 

which may be evidence that the effective inertial mass 

in the dipole vibration is less than the inertial mass 

associated with bodily displacements of the neutrons and 

protons. 

* 5. With an effective mass m = 0.7 m inserted in the theory the 

agreement with the experimental A-dependence of the 

GDR energy is excellent. 

6. The observed transition from a proportionality of hw 

to A-l/6 to a proportionality to A-l/J is correctly 

reproduced, and the GDR data may be used to give 
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an independent estimate of the ratio of the effective 

neutron skin stiffness coefficient Q to the symmetry 

energy coefficient J. The result is in agreement 

with the value deduced from a Droplet Model fit to 

masses. 

7. An estimate of the width of the GDR, based on the one­

body dissipation formula of Refs. 23-26, is in 

qualitative agreement with the data. 
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APPENDIX A 

DEPENDENCE OF SOLUTIONS ON H 

The exact solution of the coupled equations depends on the four 

coefficients J, H, P, G, but since there is one relation between them 

(Eq. (3.9)) there are only three independent parameters, which may be 

taken as J, Q and H. As discussed above, the main dependence of the 

dipole frequency is on J and Q. The dependence on H is related to the 

finiteness of £, since if£ were zero the resulting solution for the 

dipole frequency, Eq. (4.8), would be strictly independent of H. How-

ever, even in the limit of£+ 0, the nature of the solutions as regards 

their stability, is directly related to H. This may be seen by exam­

ining the determinant of the stiffness matrix f· We find that in the 

limit £=0 this determinant is proportional to HA113_ 2P which, in 

virtue of Eq. (3.12),may be written as 

det C oc H(A1/ 3 - 3J(l/H - 1/Q)] 
::::::; 

(Al) 

Thu~,for a given (positive) value of ~det Cis positive (and the system 
::::::; 

is stable) if A is large enough. The determinant changes sign, however, 

and the system acquires one degree of instability, if A decreases below 

A where crit' 

A 1/3 = 
crit (A2) 

Thus if H > Q all (positive) values of A correspond to stable systems, 
. 

but if H were less than Q then light nuclei with A<Acrit would be unstab~e 

and any solutions of the associated equations of motion would involve 

at least one unstable mode. \. 
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In the case J = 46.52 MeV, Q = 14 MeV, H = 11.53 MeV, used as an 

illustration for the lower curve in Fig. 2, Eq. (A2) gives Acrit = 9.74 

This is an estimate of the point where the lower curve in Fig. 2 abruptly 

dives down to zero, the estimate being based on the approximation where 

£ is assumed to vanish. It may be shown that in this approximation the 

dive to zero is exactly vertical, the smooth increase of w as A decreases 

towards Acrit being reversed, without warning, in a sharp cusp at Acrit" 

This upward-pointing cusp is in fact the bottom part of a pair of 

intersecting curves, one of which is the smoothly rising curve con-

tinued into the region below Acrit' and the other a vertical line coming 

down from infinity. The effect of a finite £ is to break this level 

crossing (a pathological type of level crossing, where one 11 level" 

is a vertical line!). This leads to two somewhat rounded cusps, the 

lower one corresponding to the solution w_ illustrated in Fig. 2. The 

upper cusp corresponds to w+' a higher-frequency mode whose properties 

will be sketched out in the next Appendix. 
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APPENDIX B 

THE 11 ANTI-DIPOLE 11 RESONANCE 

The frequency w+ in the previous section, when plotted against A, 

has the appearance of a slightly rounded, downward pointing cusp. The 

ri~ht hand part of the cusp rises abruptly to· very high values (tending 

to infinity as s tends to zero). Its left hand part rapidly acquires 

the characteristics of the monotonic increase typical of the main part 

of the curves in Fig. 2. This part is associated with an oscillation of 

a system that has lost stability and is therefore of little physical 

interest. The right-hand part is a higher-frequency mode with practically 

zero dipole moment, where the GT and SJ modes are out of phase. It is, 

in principle, an interesting mode of oscillation. Its properties may 

be studied by solving Eq. (4.2) and (4.6) using the positive sign of the 

square root. A particularly simple way to illustrate the general nature 

of the solution is to consider the case when H = Q (and therefore 

P = G = 0). The two frequencies are then readily found to be given by 

2 - 2J 
w±- ~ 

mR ~:. 
0 

1 
s{l-s) ~ (l+u) + su - s2 

± 

where u = (3J/Q)A-l/J as before. 

( B 1 ) 

For values of s sufficiently small so that the square root may be expanded 

this reduces to 
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2 
mRO U 
~ l+u s + higher powers of s 

mR 2 

sS (l+u) + higher powers of s 

The formula for w2 is the same to this order ins as Eq. (4.8), and 

the ratio of w+ to w is 

1 + u 
w 

..J2u s 

For a value of A equal to 125, when u = 1.299, this would give 

( B2) 

( B3) 

(B4) 

w+/w_ = 5.15. Since hw is about 15 MeV, the higher-frequency mode 

would in this case be about 77 MeV. The actual predicted energy would 

vary with H (which, it will be recalled, was in the present example 

taken to be equal to Q) and it might also be more sensitive to the 

details of the theory than the dipole mode hw_. It would be of interest 

to pursue the question of the existence, width and possible ways of ex-

citing this 11 Anti-Dipole 11 Resonance which, formally at least, seems 

to follow from the well-established GDR by a reversal of the relative 

phases of the GT and SJ components. 
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APPENDIX C I 

GRAPHICAL DETERtHNATION OF J AND Q 

Even though Eq. (4.12) for w- 2, unlike Eq. (4.8), is no longer 

linear in u (i.e. in A- 113 ) it is almost linear, since E is small. 

By expanding the function of u appearing in Eq. (4.12) about u
0

, a 

point-corresponding approximately to A= 125, the function may be 

linearized in the interval of A-values of interest and the plot in Fig. 4 

may still be used to extract the values of J and Q. Thus for u
0 

we 

take (3J/Q)(l25)-l/3 which, with the nominal valuks of J = 36.8 MeV 

and Q = 17 MeV, leads to u
0 

= 1.2988. The Droplet Mode expression 

for l/w2 th~n becomes, to a good approximation, 

2 
·l mR0 - 2 ~ ~(0.8772 + 0.9707u) 
w 

( Cl) 

+small terms of order (u-1.2988) 2 and higher. * If an effective mass m 

is assumed we may write 

8 ~ 0.8772 (m*/J) + 0.9707 (3m*/Q)·A-l/3 
R 2 2 

0 w 
(C2) 

In Fig. 5 the quantity plotted against A-l/ 3 is actually c2/8 times the 

above, in order to make the ordinate dimensionless. The straight line 
. * through ~he points corresponds to a choice J =36.8 MeV, J = 17 MeV, m /m = 0.7. 

We have also tried a slight modification of the plot in Fig. 5 which 

takes into account approximately the slight deviations of nuclear radii 

from the simple law R = 1.18 A113 fm. (The light nuclei have radii a few 

percent smaller than this. 13 ) The net result on a plot of the type of 
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Fig. 5 is to move the upper points, corresponding to small values 

of A, a little to the right, without affecting appreciably any of the 

conclusions arrived at when this effect is neglected. 
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Table I. Different sets of Droplet Model 
coefficients (in MeV) corresponding to 

. the curves shown in Fig. 2 .. 

Curve Q J H p G -· 
(a) upper 20 32.11 16.47 8.50 20.47 

(b) middle 17 36.8 14 9.74 31.63 

(c) lower 14 46.52 11.53 12.31 61.36 
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FIGURE CAPTIONS 

Schematic drawings that serve to illustrate the general 

features of the Goldhaber-Teller3 (GT) and Steinwedel-Jensen4 

(SJ) dipole modes. For ~ach case, one-half cycle of the 

vibration is shown as a function of time. In the GT mode 

a uniform proton distribution (the smaller sphere whose motion 

is indicated by the solid arrow) vibrates against the neutron 

distribution. In the SJ mode the neutrons tend to pile up 

first on one side of the nucleus and then the other (density 

excess is indicated by plus signs and density reduction by 

minus signs). The protons (not shown) move in the opposite 

direction so the total density remains uniform. 

Fig. 2. The measured values. of the mean energy Em of the GDR are 

plotted against the mass number A.. The dots are from the 

Lorentz curve fits of Ref. 2 (slightly improved values are 

now available) 16 and the triangles are from Refs. 1 and 15. 

The solid ~urve corresponds to the predictions of Eq. (4.4) 

Fig. 3 

for a set of Droplet Model coefficients derived from a fit 

to nuclear masses [case (b) in Table I]. The upper and lower 

curves correspond to cases (a) and (c) in Table I. These 

were chosen to illustrate the effect of making substantial 

variations in the coefficients (while minimizing the impact 

on the fit to masses). 

The ratio (a2;a1) of the SJ component to GT component in the 

GDR is plotted against mass number A for three different 

cases of interest. Curve (2) corresponds to the Super-Simple 

case, Eq. (4.9); curve (b) to the Droplet Mode, Eq. (4.13); 

I 



Fig. 4 

Fig. 5 

Fig. 6 

-40-

and curve (c) to the exact solution given by Eq. (4.6). In all 

these cases the Droplet Model coefficients given in row (b) of 

Table I were used. 

The neutron and proton density profiles along the GDR symmetry 

axis are plotted against distance from the center of mass for the 

case of 208Pb. The centers of the effective sharp spherical bound­

aries of the two density distributions (GT ·mode} are shown dis­

placed from each by the maximum .distance that is expected to 

occur during the vibration (0.268 fm). The corresponding com­

pressional pile up (SJ mode) of neutrons on one side and protons 

on the other is also indicated. 

The quantity (hc/EmR
0

) 2 is plotted against A-l/ 3 for nuclei 

with A>50. These points are expected to lie approximately on 

a straight line given by m*c2 (0.8772 J-1+ 0.9707. 3Q-l A-l/ 3), ·-a-
see Appendix C. For the values of the Droplet Model coefficients 

J = 36.8 MeV and Q = 17 MeV determined from nuclear masses 

(case (b) in Table I) 13 we find that agreement can only be 

* obtained by assuming an effective mass m less than m. A 

* value of m ~ 0.69 m gives the best agreement with the 

experimental data but we have chosen to round this off to 0.7 m 

for simplicity. The straight line in the figure corresponds 

* to this choice for m . 

The measured values of the resonance energy Em are plotted 

against mass number A, as {n Fig. 2. The curve passing through 

the points corresponds to the predictions of Eq. (4.12) with 
* J = 36.8 MeV, Q = 17 MeV and an effective mass m = 0.7 m. 
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The measured width r of the GOR (obtained from the Lorentz 

curve fits of Ref. 2) is plotted against the mass number A. 

The dots correspond to single Lorentz curve fits to (presumably) 

spherical nuclei, while the triangles correspond to mean values 

for deformed nuclei calculated from the expression 

r = 
3J r 1 r~ , where r1 and r 2 are the measured widths of the 

two components of the resonance. The solid curve corresponds 

to the predictions of Eq. (6.11) which is based on the concept 

of one-body damping. 23 
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