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ABSTRACT OF THE DISSERTATION

Contributions to Scientific Computing

and Mathematical Modelling:

Stochastic Simulation, Constrained Optimization, and Infectious Disease

by

Alfonso Landeros

Doctor of Philosophy in Biomathematics

University of California, Los Angeles, 2021

Professor Kenneth L. Lange, Chair

The advent of large scale data, particularly from the biological sciences, has accelerated

interest in developing computational methods for analysis and prediction. Implementing

such methods often requires software to either automate computational tasks or to carry out

calculations that elude analytic techniques. This work focuses on the latter while paying

respect to useful and elegant abstractions from mathematical theory.

The diverse set of topics in this dissertation span applied probability, mathematical op-

timization, and epidemiological modelling. First, we investigate simulation techniques for

stochastic processes. Second, we elaborate on the proximal distance technique of constrained

optimization as a computational framework with examples in orthogonal projection, clus-

tering, regression, and imaging. Third, we use deterministic equation modelling to evaluate

school reopening strategies under pandemic conditions. Finally, we conclude with prelimi-

nary work on an application of the proximal distance method to hierarchical linear models.
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INTRODUCTION

The growing size and complexity of biological data sets defy ordinary human understanding.

Computational tools are increasingly employed in order to identify novel patterns in data and

make salient predictions. The marriage of mathematical rigor with algorithmic thinking is

necessary in implementing software to aid scientific inquiry. Guided by unbridled curiosity,

this dissertation investigates a broad and diverse set of topics at the intersection of the

life sciences, stochastic and deterministic modelling, and mathematical optimization. The

subsequent paragraphs outline the journey undertaken.

In Chapter 1 we present an abbreviated overview of simulation techniques for Markov

jump processes. The broad class of algorithms include the celebrated Gillespie algorithm,

also known as the direct method, the family of first reaction methods, τ -leaping, and sev-

eral variants. We also discuss extensions to spatial-stochastic models based on interacting

particle systems. The chapter culminates in a brief introduction to a software package,

BioSimulator.jl, that was developed as a suite of stochastic simulation algorithms in the

Julia programming language. Software is available at https://github.com/alanderos91/

BioSimulator.jl. The majority of this chapter is an abridgment of an article published

in Computer Methods and Programs in Biomedicine. The extension to interacting particle

systems is a collaborative project led by Timothy Stutz and is included for completeness.

Chapter 2 studies the problem of minimizing a loss model f(x) subject to constraints

of the form Dx ∈ S, where S is a closed set, convex or not, and D is a fusion matrix.

To tackle this generic class of problems, we combine the Beltrami-Courant penalty method

of optimization with the proximal distance principle. These ingredients are used to derive

iterative descent methods that illustrate the utility of the general framework. We adapt the

alternating direction method of multipliers and compare performance metrics on extensive

numerical tests including problems in metric projection, convex regression, convex clustering,

total variation image denoising, and matrix condition numbers. We provide code in the
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Julia language to replicate all of our experiments at https://github.com/alanderos91/

ProximalDistanceAlgorithms.jl. This work is under review.

Chapter 3 is a study of an important public health issue that emerged as the result of the

SARS-CoV-2 pandemic in the year 2020. Using simulation studies based on compartmental

models of infectious disease, we examine reopening strategies for schools during a pandemic

with goals of cataloging qualitative behavior under various scenarios, identifying important

transmission modalities, and evaluating policies. This work is under review.

Finally, Chapter 4 presents preliminary results on an application that grew out of the

material in Chapter 2. Here we motivate the use of sparsity sets as a data-driven approach

to regularization in regression modelling with hierarchical data.

2
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CHAPTER 1

Simulation of Markov jump processes

1.1 Background and Significance

Differential equations are fundamental modelling tools in applied mathematics and systems

biology. For example, compartmental models describe the spread of a disease in a population,

rate equations summarize reactions in biochemical networks, and master equations enumer-

ate probabilistic flows that contribute to stochastic phenomena. The complex overlapping

feedback and feed-forward loops of biological systems often subvert elegant theorems and so

one must be content to make progress with approximations and numerical simulations. A

class of probabilistic models based on Markov jump processes naturally give rise to systems

of differential equations, the Kolmogorov forward and backward equations [Lan10a, Nor98].

The former is sometimes referred to as the master equation governing the stochastic behavior

of a dynamical system.

A probabilistic description of a biological system is helpful in cases where (a) rare events,

such as extinction or mutation, occur naturally and influence system dynamics, (b) popula-

tion compartments, such as numbers of biochemical molecules, are present in small numbers,

and (c) population cycles arise from demographic stochasticity [Lan10a, ELS02, Wil06]. Ex-

amples of stochastic models include gene expression networks [MW11], cancer dynamics

[SZS11], and demographic and ecological systems [CS12]. However, exact closed-form solu-

tions are available in all but the simplest of models.

This difficulty can be overcome by starting with simpler models. Yet many interesting
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systems produce a master equation involving either a large number or infinitely-many coupled

differential equations. Generating functions allow one to make progress provided the state

space of the Markovian system is not too complicated. Functional transformations, namely

the Laplace transform, can sometimes reduce the problem to simpler recurrence relations. A

third approach involves truncating the state space itself, which simplifies the problem to lin-

ear algebra and the matrix exponential [MK06, CSL16]. The error due to truncation must be

carefully captured and the truncation scheme itself is not obvious. A fourth approach is simu-

lation of statistically exact realizations of a stochastic process [Gil77]. Simulation algorithms

leverage the theory of continuous-time Markov chains to generate accurate time-evolution

trajectories, test the sensitivity of models to key parameters, and quantify frequencies of

rare events. Computational power, time, and the availability of quality, reliable software

packages are the only limiting factors. Indeed, these types of simulations are embarrassingly

parallel. Yet stochastic simulation is not a panacea. Models with a high degree of variability

require more realizations than can be realized on finite computing machines in a reasonable

amount of time. Model inference questions can exceed the computational power of the entire

observable universe [KM08, RGP10].

The chapter is organized as follows. Section 2 provides a brief overview of theory and

culminates in the issue of intractable master equations. In Section 3 we review various

simulation algorithms in the literature which are applied to well-mixed stochastic processes.

We then extend the general simulation principle to a special class of spatial systems called

interacting particle systems in Section 4. Next, Section 5 briefly discusses of BioSimulator.jl,

a software implementation of various simulation algorithms. Section 6 illustrates our software

with an example from prokaryotic gene regulation. Finally, Section 7 concludes with an

overview of potential improvements to our software.

4



1.2 Markov Jump Processes

Before we discuss simulation specifics, we describe the time evolution of a Markov jump

process from the perspective of Markov chains [Nor98, Lan10a]. The underlying Markov

chain follows a column vector Xt whose i-th component Xti is the number of particles of

type i at time t ≥ 0. The components of Xt track species counts and are necessarily non-

negative integers. The system starts at time t = 0 and evolves via a succession of random

reactions. Let c denote the number of possible jumps, hereafter referred to as reaction

channels, and d the number of particle types. Channel j is characterized by a propensity

function rj(x) depending on the current vector of counts x. In a small time interval of length

s, we expect rj(x)s+ o(s) reactions of type j to occur. Reaction j changes the count vector

by a fixed integer vector vj. Some components vjk of vj may be positive, some 0, and some

negative.

The chain waits an exponential length of time in between jumps. If the chain is currently

in state x ≡ Xt, then the intensity of the waiting time until the next reaction is given by

r0(x) =
∑c

j=1 rj(x). Once the decision to jump is made, the chain jumps to the neighboring

state x + vj with probability rj(x)/r0(x). Table 1.1 lists typical reactions, their propensities

r(x), and increment vectors v. In the table, Si denotes a single particle of type i. Only the

nonzero increments vi are shown. The reaction propensities invoke the law of mass action

and depend on rate constants ai [Hig08]. The vocabulary used to describe particular types

of reactions varies across disciplines.

Often one is interested in the finite-time transition probabilities of a Markov chain. Let

px,y(t) denote the probability that a Markov chain starting at state x transitions to state y

by time t. The master equation reads

px,y(t+ dt) = px,y(t)

[
1−

c∑
j=1

rj(y)dt

]
+

c∑
j=1

px,y−vj(t) rj(y − vj)dt+ o(dt),
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Name Reaction r(x) v

Immigration 0→ S1 a1 v1 = 1

Decay S1 → 0 a2x1 v1 = −1

Dimerization S1 + S1 → S2 a3
(
x1
2

)
v1 = −2, v2 = 1

Isomerization S1 → S2 a4x1 v1 = −1, v2 = 1

Dissociation S2 → S1 + S1 a5x2 v1 = 2, v2 = −1

Budding S1 → S1 + S2 a6x1 v2 = 1

Replacement S1 + S2 → S2 + S2 a7x1x2 v1 = −1, v2 = 1

Complex Reaction S1 + S2 → S3 + S4 a8x1x2 v1 = v2 = −1, v3 = v4 = 1

Table 1.1: Propensities r(x) and increment vectors v for some typical reactions.

Here, Si denotes a single particle of type i, and ai denotes the reaction rate constant.

or equivalently, in differential form

d

dt
px,y(t) =

c∑
j=1

[
px,y−vj(t) rj(y − vj)− px,y(t) rj(y)

]
.

Here positive terms correspond to probabilistic paths along the state space that contribute to

the target state y whereas negative flux represents paths away from this destination. Solving

the master equation is an enormous endeavor except in the simplest of models because

it is often an infinite system of coupled differential equations. Alternatively, simulating

multiple realizations of the process yields data that can then be used to estimate transition

probabilities and summary statistics.

1.3 Kinetic Monte Carlo Methods

This section provides a review of various simulation techniques. The list is not exhaus-

tive. We provide descriptions to develop an intuition for the general simulation approach,

the mathematics involved, and interesting algorithmic considerations. A recent textbook
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provides a comprehensive review of different methods [MPT17].

1.3.1 The Family of Direct Methods

The original direct method is a statistically exact algorithm that operates on the wait and

jump mechanism for simulating a continuous-time Markov chain [Gil76]. At each step, the

algorithm evaluates the propensities rj(x) of each reaction channel and generates two random

deviates. One of these is an exponential deviate indicating the time to the next reaction

based on r0(x). The second is a uniform random number U(0, 1) determining which reaction

fires next based on the ratios rj(x)/r0(x). This general notion of simulating a Markov jump

process is quite similar to solving a differential equation via Euler’s method. In contrast to

the deterministic setting, a Markov jump process has random jump times (step size) and a

random, discrete jumps (instantaneous rate of change). Indeed, the two main computational

steps in the direct method are:

1. Generate a random deviate W representing the time to the next event by sampling

from an exponential distribution with rate r0(x). This provides the update t 7→ t+W .

2. Generate a random index J denoting the reaction that occurred by sampling from a set

of categories with probabilities rj(x)/r0(x) for each reaction indexed by j = 1, 2, . . . , c.

This provides the update x 7→ x + vJ .

There are various techniques to simulate these random numbers [MT00]. However, some

propensities rj(x) change after each event, so the distributions underlying each step will

necessarily change. An interesting feature of the direct method and its variants is that the two

steps are coupled only by the propensities rj and the cumulative intensity r0. Thus, the family

of direct methods emphasize (i) minimizing the number of times propensities are evaluated

and (ii) searching efficiently on the reaction rates to sample the index J . Dependency graphs

are key data structures that address (i) by describing how the firing of reaction j affects

the propensity of all other reactions k [MPT17, GB00, TZP15]. Search methods address
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(ii) by bisection techniques and iteratively sorting reaction channels according to their firing

frequency [MPC06].

1.3.2 The First Reaction Method and its Derivatives

Gillespie proposed the first reaction method as an alternative to the direct method [Gil77].

The main difference is the time to the next reaction

W = min
1≤j≤c

{W1, . . . ,Wc}

defined by independent exponentially distributed waiting times W1, . . . ,Wc each with rates

r1, . . . , rc, respectively. Here c again denotes the total number of reaction channels. The

premise of the algorithm is to compute the minimum of c exponential random variables

explicitly. This approach must generate c exponential deviates per iteration compared to

the 2 random numbers required for the direct method. However, it provides an alternative

way of thinking about simulation by closely coupling the random time to the next reaction

and the reaction channel itself.

The next reaction method, also known as the Gibson-Bruck method, improves on the poor

efficiency of the first reaction approach [GB00]. At time t = 0, the algorithm seeds each

reaction channel j a firing time τj and stores them inside a priority queue. In this context,

a priority queue is a data structure that sorts pairs (j,Wj) according to the value of Wj in

increasing order. That is, if WJ is the minimum time, then the pair (J,WJ) appears at the

top of the queue. Thus, the next reaction is J and its firing time is τJ ; all other reactions

fire at some future time. After reaction J fires, the next reaction method updates the state

vector x→ x + vJ . The next firing time WJ is also updated by an appropriate exponential

deviate:

WJ,new = WJ,old + Exponential(rJ,new(x)),

where rJ,new(x) is the new propensity value. The remaining firing times change according to

8



the recipe

Wj,new = t+
rj,old
rj,new

(Wj,old − t), j 6= J,

based on the lack of memory property of the exponential distribution. The next reaction

method relies on dependency graphs to evaluate reaction propensities that are then used to

update firing times. Indeed, the technique is an example of an algorithm that is sensitive

to data structures given how poorly its performance is characterized relative to theoretical

guarantees [CLP04]. Recent work has brought this issue to light and shown that one can

achieve a constant-time complexity by using appropriate implementations of data structures

[SO15].

1.3.3 τ-leaping Methods

Algorithms that simulate every reaction ultimately succumb to the high computational

expense of large models. The τ -leaping framework attempts to accelerate simulation by

lumping reaction events together within a time leap τ , selected to be as large as possible

[Gil01, GP03, CGP06]. The basic τ -leaping formula is

Xt+τ = Xt +
c∑
j=1

vjYj.

where Yj is a Poisson random variable with rate rj(Xt)τ . The main challenge in τ -leaping

is selecting the step size as large as possible while satisfying a leap condition that provides

some guarantee that reaction propensity functions do not change significantly over the leap

interval. A commonly used heuristic is

|rj(Xt+τ )− rj(Xt)| ≤ ε, j = 1, 2, . . . , c,

which states that the propensity for each reaction j is approximately constant over a leap

of size τ . Here, ε ∈ (0, 1] is a prescribed acceptable change in propensities that controls the

accuracy of sample paths generated by a τ -leaping algorithm. A larger ε allows for larger

leaps, while a smaller ε restricts leap size.
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As with differential equations, a stochastic system is said to be stiff if the dynamics

force a simulation procedure to take “small” steps. Stiffness arises for a variety of reasons

such as the presence of separate time scales that split the system between “fast” and “slow”

reactions, with the former occurring in a nearly deterministic fashion. In any case, this

issue causes the number of simulated events to increase in exact methods. Stiffness poses

a second threat to τ -leaping methods: in addition to decreasing the leap size, it causes

the leaping procedure to generate an excess of events due to the unbounded nature of the

Poisson distribution. There are precautionary measures to protect against aberrant behavior

in selecting τ [CGP05, SAL09].

As with exact simulation methods, there are a variety of tau-leaping techniques. The

Step Anticipation τ -Leaping (SAL) algorithm subsumes the original Poisson-based τ -leaping

procedure [SAL09]. In the SAL algorithm, one approximates each propensity by a first-order

Taylor polynomial around t with starting value rj(x). The number of reactions of type j is

then sampled from a Poisson distribution with mean

ωj(t, t+ τ) =

∫ t

0

[
rj(x) +

d

dt
rj(x)s

]
ds = rj(X)τ +

d

dt
rj(x)

1

2
τ 2.

One can use a higher-order approximation at the cost of having to contend with time deriva-

tives of a stochastic process.

1.4 Interacting Particle Systems

The methods of the previous section were developed for spatially homogeneous stochastic

processes and emphasized state spaces involving population counts. Many interesting biolog-

ical phenomena involve interactions between subsystems separated by distance and barriers,

such as pattern formation during embryonic development and island diversification. The the-

ory of Markov chains can be applied to more abstract state spaces to model such phenomena.

In particular, interacting particle systems (IPS) consider a stochastic process on a configu-

ration space Ω determined by a local state space S and a site space typically represented by
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a countable graph G [Lig05]. The local state space describes attributes of interacting parti-

cles or agents that take up space in G. For example, in the voter model one considers the

range of voter attitudes S on a topic, say liberal or conservative fiscal policy, which may be

continuous or discrete [Lig99]. Each voter’s home lies at some site of the site space, G = Z2,

a two-dimensional discrete grid. Each voter randomly reconsiders his or her views due to

the influence of lively debates with neighbors. In this model both the spatial distribution

of voters communities and their local, internal dynamics play a role in emergent properties.

The configuration space is therefore Ω = SZ2
as it describes all possible ways of arranging

voters on grid G while accounting for each possible view enumerated in S. There is a sizeable

literature describing the dynamics and mathematical properties of different IPSs, but it is

clear that configuration spaces quickly become unwieldy if the local state space considers

many attributes.

The most straightforward method of simulating IPSs assigns a reaction set to each site

on the lattice. At each step of the algorithm, one evaluates reaction propensities at each

site which are then used to determine the next event and its firing time in similar fashion

as the Direct method. This approach is prohibitively expensive as system size increases

because the sampling steps scales with the number of sites. If we limit our attention to

pairwise interactions based on discrete nearest-neighbor interactions, then we can improve

simulation by defining equivalence classes on configurations. For example, Von Neumann

neighborhoods on a 2-D grid involve only interactions with neighbors east, west, north, or

south of a site and have a neighborhood capacity C = 4. In general, the neighborhood

capacity will depend on the dimension of the lattice d and its topology. If an IPS has L

types of particles and a neighborhood capacity C, then one can simply count the number of

particles of each type within a given neighborhood to form an equivalence class. Including

open sites as phantom particles, the total space of configurations reduces to equivalence

classes of the form (n1, n2 . . . , nL+1) with
∑L+1

k=1 nk = C. The exponents of each term in

the multinomial (x1 + . . . xL+1)
C encode all possible neighborhood classes. The sum of their
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coefficients count the total number of neighborhood classes:

K =
∑

n1+...+nL+1=C

(
C

n1, . . . , nL+1

)
.

Evaluating the propensity function of each reaction channel requires us to track the number

of particles of each type that fall within a specific neighborhood class. This makes possible

defining reaction channels on the neighborhood class rather than specific sites, effectively

reducing the number of reaction channels. This approach is sometimes referred to as the n-

fold method for Kinetic Monte Carlo simulations [BKL75], and is analogous to network-free

simulation techniques [SFE11, GM18, SML19]. The approach depicted in Figure 1.1 based

on the model in Table 1.2 further reduces the number of virtual reaction channels organizing

particles into sample classes determined by neighborhood configurations and interacting

particle types.

Name Diagram Type

Predation F +R→ F + F Pairwise

Reproduction R + ∅ → R +R Pairwise

Migration F + ∅ → ∅+ F Pairwise

R + ∅ → ∅+R Pairwise

Death F → ∅ On-site

R→ ∅ On-site

Table 1.2: A predator-prey model as an IPS. Foxes (F ) and rabbits (R) interact on a

2-D hexagonal lattice with open sites (∅). Reactions are either on-site, if involving a single

animal interacting only with itself, or pairwise, if involving an animal interacting with an

adjacent site.
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Figure 1.1: Schematic of neighborhood updates. Each animal is assigned a unique

neighborhood index k (bottom number) based on neighborhoods of the form (O,F,R) count-

ing the number of adjacent open sites, foxes, and rabbits, respectively. The set of possible

interactions (Table 1.2) and the neighborhood index determine sampling classes s (top num-

bers). Once a simulation algorithm samples a particular reaction channel operating on

particular sampling class s, it is easy to sample the appropriate “center” particle which

is guaranteed to have the correct interacting neighboring particle. The number of sample

classes reflects the number of possible interactions that an animal can participate in. In this

example a fox eats a nearby rabbit. It can no longer hunt after this event and therefore loses

a sample class.
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1.5 Software Implementation

BioSimulator.jl is a user-friendly stochastic simulation tools that implements the methods

described in Section 1.3 [LSK18]. It is written in Julia, a programming language targeted

at scientific computing. The software package is open-source and available at https://www.

github.com/alanderos91/BioSimulator.jl.git.

In the interest of space, we omit a detailed description of the software and present per-

formance benchmarks against three software packages: StochPy, StochKit2, and Gillespie.jl

(Table 1.3). Each software package is selected for its similarity to BioSimulator.jl. Specif-

ically, these tools are domain-independent, general purpose simulation engines for Markov

jump processes involving population counts. Descriptions of the benchmark methodology,

the models used, and software packages is available in our published manuscript [LSK18].

14

https://www.github.com/alanderos91/BioSimulator.jl.git
https://www.github.com/alanderos91/BioSimulator.jl.git


S
of

tw
ar

e
S
to

ch
P

y
S
to

ch
K

it
2

G
il
le

sp
ie

.j
l

B
io

S
im

u
la

to
r.

jl

M
et

h
o
d

D
ir

ec
t

D
ir

ec
t

(d
ep

.
gr

ap
h
)

D
ir

ec
t

D
ir

ec
t

M
o
d
e

S
er

ia
l

P
ar

al
le

l
S
er

ia
l

S
er

ia
l

P
ar

al
le

l

K
en

d
al

l’
s

p
ro

ce
ss

17
4.

31
(1

73
.8

1
−

17
4.

95
)

1.
04

(1
.0

3
−

1.
05

)
0.

56
(0
.4

8
−

0.
66

)

25
7

(2
23
−

29
6)

12
85

(1
28

0
−

12
93

)
1.

38
(1
.3

7
−

1.
40

)
0.

79
(0
.6

8
−

0.
93

)

M
ic

h
ae

li
s-

M
en

te
n

21
0.

42
(2

09
.8

9
−

21
1.

14
)

0.
78

3
(0
.7

88
−

0.
80

8)
0.

45
(0
.4

4
−

0.
46

)

21
4

(2
13
−

21
6)

1.
15

(1
.1

2
−

1.
21

)
0.

91
8

(0
.9

09
−

0.
93

6)
0.

47
(0
.4

6
−

0.
48

)

A
u
to

-r
eg

u
la

ti
on

43
2

(4
25
−

44
5)

42
6

(4
24
−

43
2)

13
5

(1
24
−

14
9)

8.
23

(7
.8

7
−

8.
75

);
×

10
4

82
4

(7
62
−

83
4)

18
09

(1
73

4
−

18
60

)
21

1
(1

93
−

24
0)

D
im

er
-d

ec
ay

21
6.

98
(2

16
.5

2
−

21
7.

68
)

1.
76

(1
.7

5
−

1.
79

)
0.

81
(0
.8

0
−

0.
82

)

48
3

(4
80
−

48
8)

2.
68

(2
.6

6
−

2.
84

)
2.

39
(2
.3

7
−

2.
42

)
1.

03
(1
.0

2
−

1.
05

)

Y
ea

st
26

0
(2

54
−

26
7)

2.
56

(2
.5

3
−

2.
63

)
1.

38
(1
.1

0
−

1.
42

)

46
9

(4
65
−

47
4)

2.
25

(2
.2

1
−

2.
63

)
2.

92
(2
.8

9
−

2.
99

)
1.

24
(1
.2

0
−

1.
27

)

T
ab

le
1.

3:
M

e
d
ia

n
ru

n
ti

m
e
s

a
n
d

in
te

rq
u
a
rt

il
e

ra
n
g
e
s

fo
r

S
to

ch
P

y,
S
to

ch
K

it
2
,

G
il

le
sp

ie
.j

l,
a
n

d
B

io
S

im
u

la
-

to
r.

jl
.

H
er

e
ea

ch
m

o
d
el

is
si

m
u
la

te
d

10
00

ti
m

es
an

d
ti

m
in

gs
ar

e
re

p
or

te
d

in
m

il
li
se

co
n
d
s

(m
s)

.
E

ac
h

sa
m

p
le

m
ea

su
re

d

th
e

ti
m

e
to

ge
n
er

at
e

10
re

al
iz

at
io

n
s

of
a

gi
ve

n
st

o
ch

as
ti

c
p
ro

ce
ss

.
R

es
u
lt

s
u
si

n
g

fi
x
ed

-i
n
te

rv
al

an
d

fi
x
ed

ou
tp

u
t

op
ti

on
s

ar
e

re
co

rd
ed

in
th

e
fi
rs

t
an

d
se

co
n
d

ro
w

s
of

ea
ch

ce
ll
,

re
sp

ec
ti

ve
ly

.
E

ac
h

si
m

u
la

ti
on

to
ol

is
u
se

d
w

it
h

it
s

d
ef

au
lt

se
tt

in
gs

.

F
or

ex
am

p
le

,
S
to

ch
K

it
2

au
to

m
at

ic
al

ly
p
ar

al
le

li
ze

s
si

m
u
la

ti
on

ta
sk

s
in

vo
lv

in
g

m
u
lt

ip
le

re
al

iz
at

io
n
s

an
d

u
se

s
a

d
ep

en
-

d
en

cy
gr

ap
h

b
y

d
ef

au
lt

.
W

e
n
ot

e
th

at
b

ot
h

S
to

ch
K

it
2

an
d

B
io

S
im

u
la

to
r.

jl
u
se

d
8

th
re

ad
s

fo
r

th
e

p
ar

al
le

l
si

m
u
la

ti
on

b
en

ch
m

ar
k
s.

D
ir

ec
t

co
m

p
ar

is
on

s
b
as

ed
on

th
es

e
re

su
lt

s
ar

e
n
ot

p
os

si
b
le

,
in

th
e

se
n
se

th
at

sl
ow

er
p

er
fo

rm
an

ce
d
o
es

n
ot

n
ec

es
sa

ri
ly

in
d
ic

at
e

a
p
ar

ti
cu

la
r

to
ol

is
p

o
or

ly
im

p
le

m
en

te
d
.

R
at

h
er

,
ou

r
re

su
lt

s
re

fl
ec

t
n
at

u
ra

l
tr

ad
e-

off
s

in
op

ti
m

iz
in

g

so
ft

w
ar

e
fo

r
p
ar

ti
cu

la
r

go
al

s.
N

o
te

:
T

h
e

S
to

ch
P

y
b

en
ch

m
ar

k
on

th
e

au
to

-r
eg

u
la

ti
on

m
o
d
el

is
b
as

ed
on

on
ly

10
0

sa
m

p
le

s.

15



1.6 Example: An Auto-Regulatory System

The influence of noise at the cellular level is difficult to capture in deterministic models.

Stochastic simulation is appropriate for the study of regulatory mechanisms in genetics,

where key species may be present in low numbers.

There are eight possible reactions: (1) gene transcription into RNA, (2) translation of

the protein, (3) dimerization of the protein with itself, (4) dissociation of the protein dimer,

(5) binding to the gene, (6) unbinding from the gene, (7) RNA degradation, and (8) protein

degradation. There are five species to track — the free copies of the gene, transcribed RNA,

protein molecules, dimer molecules, and blocked copies of the gene. The model is easily

implemented in BioSimulator.jl:

using BioSimulator

# Initialization.

model <= Network("negative auto -regulation")

# Add species to model.

model <= Species("gene", 10) # assume 10 copies of the gene are present

model <= Species("RNA", 0) # transcribed from the underlying gene

model <= Species("P", 0) # protein

model <= Species("P2", 0) # protein dimer

model <= Species("P2_gene") # gene repression

# Add reactions to model.

model <= Reaction("transcription", 0.01, "gene --> gene + RNA")

model <= Reaction("translation", 10.0, "RNA --> RNA + P")

model <= Reaction("dimerization", 1.0, "P + P --> P2")

model <= Reaction("dissociation", 1.0, "P2 --> P + P")

model <= Reaction("repression binding", 1.0, "gene + P2 --> P2_gene")

model <= Reaction("reverse repression binding", 10.0, "P2_gene --> gene + P2")

model <= Reaction("RNA degradation", 0.1, "RNA --> 0")

model <= Reaction("protein degradation", 0.01, "P --> 0")

# Run the simulation.

result = simulate(model , StepAnticipation (), Val(:full), time = 500.0, trials = 100)
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RNA typically has a limited lifetime. Thus, the per particle reaction rates governing protein

production are balanced to favor translation events following transcription. Moreover, the

reaction rates for dimerization and dissociation reflect an assumption that the protein favors

neither the monomer nor the dimer configuration. Figure 1.2 illustrates this point.

1.7 Future Directions

The work presented here suggests a unified framework for simulating Markovian processes

taking values in countable state spaces. By defining the rules of a system on equivalence

classes we separate the logic of sampling jumps from the bookkeeping details of updating the

system state. This makes it possible to re-use algorithms developed for well-mixed processes

in simulating interacting particle systems. The basic Direct and First Reaction methods in

BioSimulator.jl already support IPS simulations. An important goal of this proposal is to

extend the notion of a reaction dependency graph to IPSs. This will allow us to simulate

spatial stochastic processes with relatively efficient algorithms such as the sorting direct

method [MPC06] and rejection stochastic simulation algorithm [TZP15]. To our knowledge,

no software package provides this level of generality. More importantly, the performance

implications on spatial simulations is not characterized in the literature.

Our emphasis on generic algorithms and code modularity should attract methods develop-

ers. These two features will be in important in exploring techniques to accelerate simulation

in the context of inference problems. For example, importance sampling is often used in

statistics to decrease the variance of estimators at the cost of biasing estimates. When the

bias is known, one can adjust estimates while simultaneously reducing the number of samples

needed for convergence. This technique has been applied to kinetic Monte Carlo simulations,

but it is not fully appreciated in the systems biology community [KM08, RGP10].
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Figure 1.2: Sample output from BioSimulator.jl. (a) Mean trajectories for the protein

and dimer in a simple auto-regulatory gene network. The bars represent 1 standard deviation

away from the mean. (b) Full sample paths for the protein (top) and RNA (bottom).

Note that the RNA sample path is sensitive to the number of epochs if one were using the

fixed-interval option. Using a large window may fail to capture peaks in the output even

though the process is simulated exactly. This subtlety is important for qualitative model

assessment.
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CHAPTER 2

Extensions of the Proximal Distance Method

2.1 Introduction

The generic problem of minimizing a continuous function f(x) over a closed set S of Rp

can be attacked by a combination of the penalty method and distance majorization. The

classical penalty method seeks the solution of a penalized version hρ(x) = f(x) + ρq(x) of

f(x), where the penalty q(x) is nonnegative and 0 precisely when x ∈ S. If one follows the

solution vector xρ as ρ tends to ∞, then in the limit one recovers the constrained solution

[Bel70, Cou43]. The function

q(x) =
1

2
dist(x, S)2 =

1

2
min
y∈S
‖x− y‖2

is one of the most fruitful penalties in this setting. Our previous research for solving this pe-

nalized minimization problem has focused on an MM (majorization-minimization) algorithm

based on distance majorization [CZL14, KZL19]. In distance majorization one constructs

the surrogate function

gρ(x | xn) = f(x) +
ρ

2
‖x− P(xn)‖2

using the Euclidean projection P(xn) of the current iterate xn onto S. The minimum of the

surrogate occurs at the proximal point

xn+1 = proxρ−1f [P(xn)].

According to the MM principle, this choice of xn+1 decreases gρ(x | xn) and hence the

objective hρ(x) as well.
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We have named this iterative scheme the proximal distance algorithm [KZL19, Lan16].

It enjoys several virtues. First, it allows one to exploit the extensive body of results on

proximal maps and projections. Second, it does not demand that the constraint set S be

convex. If S is merely closed, then the map P(x) may be multivalued, and one must choose

a representative element from the projection P(xn). Third, the algorithm does not require

the objective function f(x) to be differentiable. Fourth, the algorithm dispenses with the

chore of choosing a step length. Fifth, if sparsity is desirable, then the sparsity level can be

directly specified rather than implicitly determined by the tuning parameter of the lasso or

other penalty.

Traditional penalty methods have been criticized for their numerical instability. This

hazard is mitigated in the proximal distance algorithm by its reliance on proximal maps,

which usually are highly accurate. The major defect of the proximal distance algorithm is

slow convergence. This can be ameliorated by Nesterov acceleration [Nes13]. There is also

the question of how fast one should send ρ to ∞. Although no optimal schedule is known,

simple numerical experiments usually yield a good choice. Finally, soft constraints can be

achieved by stopping the steady increase of ρ at a finite value.

2.2 Extensions

This simple version of distance majorization can be generalized in various ways. For instance,

it can be expanded to multiple constraint sets. In practice, at most two constraint sets usually

suffice. Another generalization is to replace the constraint x ∈ S by the constraint Dx ∈ S,

where D is a compatible matrix. Again, the original case D = I is allowed. By analogy

with the fused lasso of [TSR05a], we will call the matrix D a fusion matrix. This paper

is devoted to the study of the general problem of minimizing a differentiable function f(x)

subject to r fused constraints Dix ∈ Si. We will approach this problem by extending the

proximal distance method. For a fixed penalty constant ρ, the objective function and its
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MM surrogate now become

hρ(x) = f(x) +
ρ

2

r∑
i=1

dist(Dix, Si)
2

gρ(x | xn) = f(x) +
ρ

2

r∑
i=1

‖Dix− Pi(Dixn)‖2,

where Pi(y) denotes the projection of y onto Si. Any or all of the fusion matrices Di can

be the identity I.

Fortunately, we can simplify the problem by defining S to be the Cartesian product∏r
i=1 Si and D to be the stacked matrix

D =


D1

...

Dr

 .

Our objective and surrogate then revert to the less complicated forms

hρ(x) = f(x) +
ρ

2
dist(Dx, S)2 (2.1)

gρ(x | xn) = f(x) +
ρ

2
‖Dx− P(Dxn)‖2, (2.2)

where P(x) is the Cartesian product of the projections Pi(x). Note that all closed sets Si

with simple projections, including sparsity sets, are fair game.

2.2.1 Newton’s Method and Least Squares

Unfortunately, the proximal operator proxρ−1f (y) is no longer relevant in calculating the MM

update xn+1. When f(x) is smooth, Newton’s method applied to the surrogate gρ(x | xn)

gives the update

xn+1 = xn −
[
Hn + ρDtD

]−1{
∇f(xn) + ρDt[Dxn − P(Dxn)]

}
,

where Hn = d2f(xn) or is an approximation to it. To enforce the descent property, it is

often prudent to substitute a positive definite approximation Hn for d2f(xn). In statistical
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applications, the expected information matrix is a natural substitute. It is also crucial to

retain as much curvature information on f(x) as possible. Newton’s method has two draw-

backs. First, it is necessary to compute and store d2f(xn). This is mitigated in statistical

applications by the substitution just mentioned. Second, there is the necessity of solving a

large linear system. Fortunately, the matrix Hn + ρDtD is often well-conditioned, for ex-

ample, when D has full column rank. The method of conjugate gradients can be employed

to solve the linear system under ideal conditions.

To reduce the condition number of the matrix Hn + ρDtD even further, one can some-

times rephrase the Newton step as iteratively reweighted least squares. For instance, in a

generalized linear model, the gradient∇f(x) and the expected informationH can be written

as

∇f(x) = −ZtW 1/2r and H = ZtWZ,

where r is a vector of standardized residuals, Z is a design matrix, and W is a diagonal

matrix of case weights [Lan10b, NW72]. The Newton step is now equivalent to minimizing

the least squares criterion

1

2
x∗Jx−∇f(x)∗x = ‖W 1/2Zx−W−1/2∇f(x)‖2

=

∥∥∥∥∥∥
W 1/2

n Z
√
ρD

x−
W 1/2

n Zxn + rn
√
ρP(Dxn)

∥∥∥∥∥∥
2

.

In this context a version of the conjugate gradient algorithm adapted to least squares is

attractive [PS82]. The algorithm LSQR [PS82] and its sibling LSMR perform well when ill

conditioning is an issue [FS11].

2.2.2 Proximal Distance by Steepest Descent

In high-dimensional optimization problems, gradient descent is typically employed to avoid

matrix inversion. Determination of an appropriate step length is now a primary concern. In
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the presence of fusion constraints Dx ∈ S and a convex quadratic loss f(x) = 1
2
xtAx+btx,

the gradient of the proximal distance objective at xn amounts to

vn = Anx+ b+ ρDt[Dxn − P(Dxn)].

For the steepest descent update xn+1 = xn−tnvn, one can show that the optimal step length

is

tn =
‖vn‖2

vtnAvn + ρ‖Dvn‖2
.

This update obeys the descent property and avoids matrix inversion. Once again one can

substitute a local convex quadratic approximation around xn for f(x). If the approximation

majorizes f(x), then the descent property is preserved. In the failure of majorization, the

safeguard of step halving is trivial to implement.

In addition to Nesterov acceleration, gradient descent can be accelerated by the subspace

MM technique [CIM10]. Let Gn be the matrix with k columns determined by the k most

current gradients of the objective hρ(x), including ∇hρ(xn). Generalizing our previous

assumption, suppose f(x) has a quadratic surrogate with constant HessianHn at xn. Overall

we get the quadratic surrogate

qρ(x | xn) = gρ(xn | xn) +∇gρ(xn | xn)t(x− xn)

+
1

2
(x− xn)t(Hn + ρDtD)(x− xn)

of gρ(x | xn). We now seek the best linear perturbation xn + Gnβ of xn by minimizing

qρ(xn +Gnβ | xn) with respect to the coefficient vector β. To achieve this end, we solve the

stationarity equation

0 = Gt
n∇gρ(xn | xn) +Gt

n(Hn + ρDtD)Gnβ

and find β = −[Gt
n(Hn + ρDtD)Gn]−1Gt

n∇gρ(xn | xn), where the gradient is

∇gρ(xn | xn) = ∇hρ(xn) = ∇f(xn) + ρDt[Dxn − P(Dxn)].

The indicated matrix inverse is just k × k.
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2.2.3 ADMM

Alternating Direction Method of Multipliers (ADMM) is a potential competitor to the prox-

imal distance algorithms just described [HLR16]. ADMM is designed to minimize functions

of the form f(x)+g(Dx) subject to x ∈ C, where C is closed and convex. Splitting variables

leads to the revised objective f(x) + g(y) subject to x ∈ C and y = Dx. ADMM invokes

the augmented Lagrangian

Aµ(x,y,λ) = f(x) + g(y) + λt(Dx− y) +
µ

2
‖Dx− y‖2

with Lagrange multiplier λ and step length µ > 0. At iteration n+1 of ADMM one calculates

successively

xn+1 = argminx∈C

[
f(x) +

µ

2
‖Dx− yn + λn‖2

]
(2.3)

yn+1 = argminy

[
g(y) +

µ

2
‖Dxn+1 − y + λn‖2

]
(2.4)

λn+1 = λn + µ(Dxn+1 − yn+1). (2.5)

Update (2.3) succumbs to Newton’s method when f(x) is smooth and C = Rp, and update

(2.4) succumbs to a proximal map of g(y). Update (2.5) of the Lagrange multiplier λ

amounts to steepest ascent on the dual function. A standard extension to the scheme in

(2.3) through (2.5) is to vary the step length µ by considering the magnitude of residuals

[BPC11]. For example, letting rn = Dx − y and sn = µDt(yn−1 − yn) denote primal and

dual residuals at iteration n, we make use of the heuristic

µn+1 =


2 µn, if ‖rn‖/‖sn‖ > 10

µn/2, if ‖rn‖/‖sn‖ < 10

µn, otherwise

which (a) keeps the primal and dual residuals within an order of magnitude of each other,

(b) makes ADMM less sensitive to the choice of step length, and (c) improves convergence.
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Our problem conforms to the ADMM paradigm when S is equal to the Cartesian product∏r
i=1 Si and g(y) = ρ

2
dist(y, S)2. Fortunately, the y update (2.4) reduces to a simple formula

[BC17]. To derive this formula, note that the proximal map y = proxαg(z) satisfies the

stationarity condition

0 = y − z + α[y − P(y)]

for any z, including z = Dxn+1 + λn, and any α, including α = ρ/µ. Since the projection

map P(y) has the constant value P(z) on the line segment [z,P(z)], the value

proxαg(z) =
α

1 + α
P(z) +

1

1 + α
z

satisfies the stationarity condition. Because the explicit update (2.4) for y decreases the

Lagrangian even when S is nonconvex, we will employ it generally.

The x update (2.3) is given by the proximal map proxµ−1f (λn − yn) when S = Rp and

D = I. Otherwise, the update of x is more problematic. Assuming f(x) is smooth and

S = Rp, Newton’s method gives the approximate update

xn+1 = xn −
[
d2f(xn) + µDtD

]−1[
∇f(xn) + µDt(Dxn − yn + λn)

]
.

Our earlier suggestion of replacing d2f(xn) by a positive definite approximation also applies

in this context. Let us emphasize that ADMM eliminates the need for distance majorization.

Although distance majorization is convenient, it is not necessarily a tight majorization. Thus,

one can hope to see gains in rates of convergence. Balanced against this positive is the fact

that ADMM is often slow to converge to high accuracy.

2.3 Convergence Analysis

Let us commence by establishing the existence of a minimum point. Further constraints on

x beyond those imposed in the distance penalties are ignored or rolled into the essential

domain of f(x) when f(x) is convex. As noted earlier, we can assume a single fusion matrix

D and a single closed convex constraint set S. In such setting we have the following result.
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Proposition 2.3.1 Suppose the convex function f(x) on Rp possesses a unique minimum

point y on the closed convex set T = D−1(S). Then for all sufficiently large ρ, the objective

function hρ(x) = f(x) + ρ
2

dist(Dx, S)2 is coercive and therefore attains its minimum value.

Next we show that the majorization surrogate defined in (2.2) attains its minimum value

for large enough ρ.

Proposition 2.3.2 Under the conditions of Proposition 2.3.1, for sufficiently large ρ, every

surrogate gρ(x | xn) = f(x) + ρ
2
‖Dx − P(Dxn)‖2 is coercive and therefore attains its

minimum value. If

f(x) ≥ f(xn) + vtn(x− xn) +
1

2
(x− xn)tA(x− xn)

for all x and some positive semidefinite matrix A and subgradient vn at xn, and if the

inequality utAu > 0 holds whenever ‖Du‖ = 0 and u 6= 0, then for ρ sufficiently large,

gρ(x | xn) is strongly convex and hence coercive.

We continue to assume that f(x) and S are convex and that a minimum point

xn+1 ∈ argmin
x∈S

gρ(x | xn) (2.6)

of the surrogate gρ(x | xn) is available. Uniqueness of xn+1 holds when gρ(x | xn) is

strictly convex. The constraint set S is implicitly captured by the essential domain of f(x).

Our earlier research shows that moving some constraints to the essential domain of f(x) is

sometimes helpful [KZL19, Lan16]. In any event, in our ideal convex setting we have a first

convergence result for fixed ρ.

Proposition 2.3.3 Supposes a) that S is closed and convex, b) that the loss f(x) is convex

and differentiable, and c) that the constrained problem possesses a unique minimum point.

For ρ sufficiently large, let zρ denote a minimal point of the objective hρ(x) defined by

equation (2.1). Then the MM iterates (2.6) satisfy

0 ≤ hρ(xn)− hρ(zρ) ≤ ρ
2(n+1)

‖D(zρ − x0)‖2.
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Furthermore, the iterates hρ(xn) systematically decrease.

In even more restricted circumstances, one can prove linear convergence of function values

in the framework of [KNS16].

Proposition 2.3.4 Suppose that S is a closed and convex set and that the loss f(x) is L-

smooth and µ-strongly convex. Then the objective function hρ(x) = f(x) + ρ
2

dist(Dx, S)2

possesses a unique minimum point zρ, and the proximal distance iterates xn satisfy

0 ≤ hρ(xn)− hρ(zρ) ≤
[
1− µ2

2(L+ ρ‖D‖2)2
]n

[hρ(x0)− hρ(zρ)].

The convergence properties of ADMM have been well studied in the optimization litera-

ture [Bec17]. To avail ourselves of the known results, we define three functions

Hρ(x,y) = f(x) +
ρ

2
dist(y, S)2

Lρ(x,y,λ) = Hρ(x,y) + λt(Dx− y)

q(λ) = min
x,y
Lρ(x,y,λ),

the second and third being the Lagrangian and dual function. This notation leads to following

result; see [Bec17] for an accessible proof.

Proposition 2.3.5 Suppose that S is closed and convex and that the loss f(x) is proper,

closed, and convex with domain whose relative interior is nonempty. Also assume the dual

function q(λ) achieves its maximum value. If the objective f(x) + ρ
2
‖Dx‖2 + atx achieves

its minimum value for all a 6= 0, then the ADMM running averages

x̄n =
1

n

n∑
k=1

xk and ȳn =
1

n

n∑
k=1

yk

satisfy

|Hρ(x̄n, ȳn)− hρ(xρ)| = O
(ρ
n

)
‖Dx̄n − yn‖ = O

( 1

n

)
.
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Note that Proposition 2.3.2 furnishes a sufficient condition under which the functions

f(x) + ρ
2
‖Dx‖2 + atx achieve their minima. Linear convergence holds under stronger as-

sumptions.

Proposition 2.3.6 Suppose that S is closed and convex, that the loss f(x) is L-smooth and

µ-strongly convex, and that the map determined by D is onto. Then the ADMM iterates

converge at a linear rate.

[GB16] proved Proposition 2.3.6 by operator methods. A range of convergence rates is

specified there.

2.4 Numerical Examples

This section considers five concrete examples of constrained optimization amenable to dis-

tance majorization with fusion constraints. In each case, the loss function is both strongly

convex and differentiable. The specific examples that we consider are the metric projection

problem, convex regression, convex clustering, image denoising with total variation, and pro-

jection of a matrix to one with a better condition number. Each example is notable for the

large number of fusion constraints. Except for convex clustering, they also involve convex

constraint sets. In convex clustering we encounter a sparse constraint set. Our previous pub-

lications feature many nonconvex problems [KZL19, XCL17]. In describing each problem,

we reserve the symbol D for the m× p fusion matrix.

Our numerical experiments compare proximal distance algorithms to ADMM. We con-

sider two variants of proximal distance algorithms. The first directly minimizes the majoriz-

ing surrogate (MM), while the second performs steepest descent (SD) on it. Steepest descent

increases the number of iterations until convergence but avoids solving large linear systems.

Moreover, steepest descent avoids explicitly allocating memory for large fusion matrices;

these can be computed on the fly as needed. In addition to the aforementioned methods,
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we tried the subspace MM algorithm described in Section 2.2.2. Unfortunately, this method

was outperformed in both time and accuracy comparisons by Nesterov accelerated MM; the

MM subspace results are therefore omitted. We also omit comparisons on the choice of al-

gorithm to solve linear systems; we found that the method of conjugate gradients sacrificed

little accuracy and largely outperformed LSQR. More details of the comparisons and their

implementations appear in the appendices.

2.4.1 Mathematical Descriptions

Next we provide the mathematical details for each example.

2.4.1.1 Metric Projection

Solutions to the metric projection problem restore transitivity to noisy distance data for

the n nodes of a graph [BDS08, STD05]. The data are encoded in an n × n dissimilarity

matrix Y = (yij) with nonnegative weights in the matrix W = (wij). The metric projection

problem requires finding the symmetric semi-metric X = (xij) minimizing

f(X) =
∑
i>j

wij(xij − yij)2

subject to all
(
n
2

)
nonnegativity constraints xij ≥ 0 and all 3

(
n
3

)
triangle inequality constraints

xij −xik−xkj ≤ 0. The diagonal entries of Y , W , and X are zero by definition. The fusion

matrix D has m =
(
n
2

)
+ 3
(
n
3

)
rows, and the projected value of DX must fall in the set S

of symmetric matrices satisfying all pertinent constraints.

One can simplify the required projection by stacking the nonredundant entries along

each successive column of X to create a vector x with
(
n
2

)
entries. This captures the lower

triangle of X. The sparse matrix D is correspondingly redefined to be m ×
(
n
2

)
. These

maneuvers simplify constraints to Dx ≤ 0, and projection involves sending each entry u

of Dx to min{0, u}. The linear system (I + ρDtD)x = b appears in both the MM and
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ADMM updates for xn. Application of the Woodbury and Sherman-Morrison formulas yield

an exact solution to the linear system and allow one to forgo iterative methods.

2.4.1.2 Convex Regression

Convex regression is a nonparametric method for estimating a regression function under

shape constraints. Given n responses yi and corresponding predictors xi ∈ Rd, the goal is to

find the convex function ψ(x) minimizing the sum of squares 1
2

∑n
i=1[yi−ψ(xi)]

2. Asymptotic

and finite sample properties of this convex estimator have been described in detail by [SS11].

The convex regression program can be restated as the finite dimensional problem of finding

the value θi and subgradient ξi ∈ Rd of ψ(x) at each sample point (yi,xi). Convexity imposes

the supporting hyperplane constraint θj + ξtj(xi − xj) ≤ θi for each pair i 6= j. Thus, the

problem becomes one of minimizing 1
2
‖y − θ‖2 subject to these m = n(n − 1) inequality

constraints. In the proximal distance framework, we must minimize

hρ(θ,Ξ) =
1

2
‖y − θ‖2 +

ρ

2
dist(Aθ +BΞ,Rm

− )2,

where D = [A B] encodes the required fusion matrix.

2.4.1.3 Convex Clustering

Convex clustering of n samples based on d features can be formulated in terms of the regu-

larized objective

Fγ(U) =
1

2
‖U −X‖2F + γ

∑
i>j

wij‖ui − uj‖,

where X ∈ Rd×n encodes the data, and the columns ui of U ∈ Rd×n represent centroids

assigned to each sample. The predetermined weights wij have a graphical interpretation

under which similar samples have positive edge weights wij and distant samples have 0 edge

weights. The edge weights are chosen by the user to guide the clustering process. In general,

minimization of Fγ(U) separates over the connected components of the graph. To allow
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all sample points to coalesce into a single cluster, we assume that the underlying graph is

connected. The regularization parameter γ > 0 tunes the number of clusters in a nonlinear

fashion and potentially captures hierarchical information. Previous work establishes that

the solution path U(γ) varies continuously with respect to γ [CL15]. Unfortunately, there

is no explicit way to determine the number of clusters entailed by a particular value of γ.

Alternatively, we can attack the problem using sparsity and distance majorization. Con-

sider the penalized objective

hρ(U) =
1

2
‖U −X‖2F +

ρ

2
dist(UD, Sν)

2.

The fusion matrixD has m =
(
n
2

)
columns wij(ei−ej) and serves to map the centroid matrix

U to a d × m matrix V encoding the weighted differences wij(ui − uj). The members of

the sparsity set Sν are d ×m matrices with at most ν non-zero columns. Projection of V

onto the closed set Sν is straightforward to implement by sorting the Euclidean lengths of

the columns of V and sending to 0 all but the ν most dominant columns. Ties are broken

arbitrarily. Our sparsity-based method trades the continuous penalty parameter γ > 0 in

the previous formulation for an integer sparsity index ν ∈ {0, 1, 2, . . . ,
(
n
2

)
}. For example

with ν = 0, all differences ui−uj equal 0, and all sample points cluster together. The other

extreme ν =
(
n
2

)
assigns each point to its own cluster. The size of the matrices D and V

can be reduced by discarding column pairs corresponding to 0 weights.

2.4.1.4 Total Variation Image Denoising

To approximate an imageU from a noisy inputW matrix, [ROF92] regularize a loss function

f(U) by a total variation (TV) penalty. After discretizing the problem, the least squares

loss leads to the objective

Fγ(U) =
∑
i,j

(Ui,j −Wi,j)
2 + γ

∑
i,j

√
(Ui+1,j − Ui,j)2 + (Ui,j+1 − Ui,j)2,
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where U ,W ∈ Rn×p are rectangular monochromatic images and γ controls the strength of

regularization. The anisotropic norm

TV1(U) =
∑
i,j

|Ui+1,j − Ui,j|+ |Ui,j+1 − Ui,j| = ‖DnU‖1 + ‖UDt
p‖1

is often preferred because it induces sparsity in the differences. Here Dp is the forward

difference operator on p data points. Stacking the columns of U into a vector u = vec(U)

allows one to identify a fusion matrix D and write TV1(U ) more compactly as TV1(u) =

‖Du‖1. In this context we reformulate the denoising problem as minimizing f(U) subject

to the set constraint ‖Du‖1 ≤ γ. This revised formulation directly quantifies the quality of

a solution and brings into play fast pivot-based algorithms for projecting onto multiples of

the `1 unit ball [Con16].

2.4.1.5 Projection of a Matrix to a Good Condition Number

Consider an m×p matrixM with m ≥ p and full singular value decompositionM = UΣV t.

The condition number of M is the ratio σmax/σmin of the largest to the smallest singular

value of M . We denote the diagonal of Σ as σ. Owing to the von Neumann-Fan inequality,

the closest matrix N to M in the Frobenius norm has singular value decomposition N =

UXV t, where the diagonal x of X satisfies inequalities pertinent to a decent condition

number [BL10]. Suppose c ≥ 1 is the maximum condition number. Then every pair (xi, xj)

satisfies xi−cxj ≤ 0. Note that xi−cxi > 0 if and only if xi < 0. Thus, nonnegativity of the

entries of x is enforced. The proximal distance approach to the condition number projection

problem invokes the objective and majorization

hρ(x) =
1

2
‖σ − x‖2 +

ρ

2

∑
(i,j)

dist(xi − cxj,R−)2

=
1

2
‖σ − x‖2 +

ρ

2

∑
(i,j)

(xi − cxj)2+

≤ 1

2
‖σ − x‖2 +

ρ

2

∑
(i,j)

(xi − cxj − qnij)2
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at iteration n, where qnij = min{xni−cxnj, 0}. We can write the majorization more concisely

as

hρ(x) ≤ 1

2
‖Aρx− rn‖2, Aρ =

 Ip
√
ρD

 , rn =

 σ
√
ρ vecQn

 ,

where vecQn stacks the columns of Qn = (qnij) and the p2 × p fusion matrix D satisfies

(Dx)k = xi − cxj for each component k. The minimum of the surrogate occurs at xn+1 =

(At
ρAρ)

−1At
ρrn. This linear system can be solved exactly.

2.4.2 Numerical Results

We now explain example by example the implementation details behind our efforts to bench-

mark the three methods (MM, SD, and ADMM). The two proximal distance algorithm are

subjected to Nesterov acceleration. Each method is initialized at the solution of the corre-

sponding unconstrained problem. Performance is assessed in terms of speed in seconds or

milliseconds, number of iterations until convergence, the converged value of the loss f(x),

and the converged distance to the constraint set dist(Dx, S). For some problems, other

performance metrics are highlighted.

In each example, our program is allotted an iteration budget to achieve convergence as

defined both by the relative change in the loss

|f(xn+1)− f(xn)| ≤ ε1[f(xn) + 1],

and the magnitude dist(Dx, S) ≤ ε2 of the distance to the constraint set. We select annealing

schedules from the family of geometric progressions ρ(n) = arbn/bc with initial value a = 1,

multiplier r, and modulus b. Specific choices for these parameters are described in each

example.
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Time (s) Loss ×10−3 Distance ×103 Iterations

n MM SD ADMM MM SD ADMM MM SD ADMM MM SD ADMM

32 0.1732 0.1182 0.2985 0.5732 0.5732 0.5732 0.9911 0.9934 0.991 2005 2005 2005

64 1.563 1.218 3.675 2.336 2.336 2.335 0.9911 0.9953 0.9963 2149 2149 2129

128 13.17 9.396 39.83 9.171 9.171 9.171 0.9826 0.9861 0.9786 2124 2124 2124

256 127 97.01 351.3 37.44 37.44 37.43 0.9976 0.975 0.9771 2183 2184 2184

Table 2.1: Metric projection experiments. Columns are scaled as indicated.

2.4.2.1 Metric projection

In our comparisons, we use input matrices Y ∈ Rn×n whose i.i.d. entries yij are drawn

uniformly from the interval [0, 10] and set weights wij = 1. Each algorithm is allotted 3000

iterations to achieve a relative change in the loss of ε1 = 10−6 and the distance to feasibility

of ε1 = 10−3. The annealing schedule is set to ρ(n) = min{106, 1.1bn/20c} for the proximal

distance methods. Table 2.1 summarizes the performance of the three algorithms. Best

values appear in boldface. The three algorithms take a comparable number of iterations to

converge and deliver solutions of comparable quality. Interestingly, ADMM appears to have

a slight edge in achieving a smaller distance penalty with fewer iterations. These positives

are outweighed by the large cost in terms of compute time with SD clearly being the fastest

algorithm as the problem size increases.

2.4.2.2 Convex regression

In convex regression one is given n responses yi and corresponding predictor vectors xi ∈ Rd.

The goal is to find the convex function ψ(x) minimizing the sum of squares 1
2

∑n
i=1[yi −

ψ(xi)]
2. Recall the problem reduces to estimating the value θi and subgradients ξj at each

point xi. In our numerical examples the yi are independent Gaussian deviates with means

ψ(xi) and common variance σ2 = 0.1. The predictors are i.i.d. deviates sampled from

the uniform distribution on [−1, 1]d. We choose the simple convex function ψ(xi) = ‖xi‖2

for our benchmarks for ease in interpretation; the interested reader may consult the work
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of [MCI19] for a detailed account of the applicability of the technique in general. Each

algorithm is allotted 3000 iterations to converge with ε1 = 10−6, ε2 = 10−3, and ρ(n) =

min{106, 1.1bn/20c}.

Table 2.2 shows that although ADMM is a distant third in speed, in the large-scale

problems it strongly outperforms both MM and SD on the metrics of loss and mean squared

error (MSE). It has a poorer distance to feasibility. As for MM and SD, they are comparable

in accuracy, but SD is much faster. It is possible that the annealing schedule in large-scale

problems is ill adapted to the convergence properties of MM and SD, but we are reluctant

to generalize from such a small sample.

Time (s) Loss ×103 Distance ×103 MSE ×103

d n MM SD ADMM MM SD ADMM MM SD ADMM MM SD ADMM

1 50 0.1104 0.07588 0.1527 193.1 197.1 207.9 0.9799 0.9996 0.9818 1.814 1.593 2.327

2 50 0.1558 0.02733 0.7126 56.21 66.28 57.02 0.5813 0.7095 0.2646 5.961 5.587 5.885

10 50 0.3415 0.01845 1.546 0.00206 0.0704 0.03454 0 0 0.07506 10.61 10.54 10.58

20 50 1.047 0.04032 3.643 0.0005515 0.0002422 0.01308 0 0 0.02146 9.69 9.681 9.702

1 100 0.4035 0.1835 1.583 452.1 474.5 441.5 0.6618 0.9691 0.7512 1.004 0.4323 1.046

2 100 0.7724 0.152 3.233 416.3 468.5 350.1 0.8624 0.7612 0.8727 1.626 2.065 1.977

10 100 3.238 0.2226 15.44 1.789 11.02 0.08498 0.9708 0.6192 0.09576 10.34 10.62 10.29

20 100 5.848 0.2972 23.63 0.000179 0.2437 0.03805 0.06488 0.5855 0.003289 7.692 7.691 7.687

1 200 2.699 1.764 7.081 1218 1321 1134 0.9534 0.5567 1.725 0.8839 1.773 0.2313

2 200 4.581 1.295 13.58 1114 1544 792.4 1.352 0.9655 3.292 3.985 8.092 1.721

10 200 18.07 1.711 110.3 276.9 343.9 0.2766 0.8843 0.9989 0.05209 12.21 13 9.261

20 200 69.93 3.028 289 159.8 468.9 0.1646 0.5258 0.5957 0.04089 11.61 15.37 9.741

1 400 18.71 10.35 40.43 2417 3333 1818 0.9301 0.9534 2.818 3.624 8.373 0.5421

2 400 28.98 12.38 74.98 3992 6506 1625 1 0.05938 7.162 12.28 24.67 1.449

10 400 125.8 15.38 734.6 4179 4209 205.4 0.9679 0.9783 1.908 23.91 23.33 9.596

20 400 288.2 25.28 1917 3291 3257 24.34 0.918 0.7363 1.754 22.91 23.16 9.809

Table 2.2: Convex regression experiments. Columns are scaled as indicated. The mean

squared error (MSE) is based on the ground truth yi and estimates θi.
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2.4.2.3 Convex clustering

To evaluate the performance of the different methods on convex clustering, we consider a

mixture of simulated data and discriminant analysis data from the UCI Machine Learning

Repository. The simulated data in gaussian300 consists of 3 Gaussian clusters generated

from bivariate normal distributions with means µ = (0.0, 0.0)t, (2.0, 2.0)t, and (1.8, 0.5)t,

standard deviation σ = 0.1, and class sizes n1 = 150, n2 = 50, n3 = 100. This easy dataset

is included to validate Algorithm 1 described later as a reasonable solution path heuristic.

The data in iris and zoo are representative of clustering with purely continuous or purely

discrete data, respectively. In these two datasets samples with same class label form a

cluster. Finally, the simulated data spiral500 is a classic example that thwarts k-means

clustering. Each algorithm is allotted 3000 iterations to converge with ε1 = 10−6, ε2 = 10−4,

and ρ(n) = min{106, 1.2bn/20c}.

Time (s) Distance ×103 ARI

dataset d n k MM SD MM SD MM SD

zoo 16 101 7 67.19 43.26 0.9192 0.92 0.8324 0.7474

iris 4 150 3 52.49 52.09 15.3 15.3 0.5895 0.5895

gaussian300 2 300 3 119.9 91.05 0.9989 0.9989 1 1

spiral500 2 500 2 148.4 65.34 0.834 0.8359 0.1642 0.1642

Table 2.3: Convex clustering experiments. The adjusted Rand index (ARI) measures

the closeness of reconstructed clusters to underlying true clusters. Columns are scaled as

indicated. Times reflect the total time spent generating candidate cluster assignments. The

Distance and ARI values correspond to the optimal clustering on the basis of maximal ARI.

Because the number of clusters is usually unknown, we implement the search heuristic

outlined in Algorithm 1. The idea behind the heuristic is to gradually coerce clustering

without exploring the full range of sparsity levels ν. Our procedure generates a list of

candidate clusters that can be evaluated by various measures of similarity [VEB10]. ADMM

is not remotely competitive on these examples given its extremely long compute times;
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these times are only exacerbated by the search heuristic. The findings reported in Table

2.3 indicate about the same accuracy for MM and SD as measured by loss and distance to

feasibility. The adjusted Rand index (ARI) provides a reasonable measure of the distance

to the ground truth in our examples. Both MM and SD achieve similar ARI values on each

dataset. Notably, the combination of the proximal distance algorithms and the overall search

heuristic (Algorithm 1) yields nearly perfect clusters in the gaussian300 example. To its

disadvantage, the search heuristic is greedy and generally requires tuning.

Algorithm 1 Search Heuristic

1: procedure cvxclusterpath(X, s0, sstep)

2: U ←X . Initialize centroid assignments.

3: s← s0 . Initialize sparsity level in [0, 1].

4: νmax ←
(
n
2

)
. Determine upper bound from samples n.

5: while s < 1 do

6: ν ← round((1− s)× νmax) . Set parameter for sparse projection.

7: U ← argminhρ(U) . Minimize with choice of ν.

8: sproposal ← count(U)/νmax

9: . Propose new level based on satisfied constraints.

10: if sproposal > s then

11: s← sproposal . Accept proposal if it increases sparsity.

12: else

13: s← s+ sstep . Otherwise move by a fixed amount.

14: end if

15: end while

16: end procedure
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image width height Time (s) Loss Distance ×103 MSE PSNR

cameraman 512 512 743.3 4016 9.955 0.002727 25.64

peppers gray 512 512 888.3 4138 9.631 0.002208 26.56

Table 2.4: Image denoising experiments. Results are for algorithm SD only. The

mean squared error (MSE) and peak signal-to-noise ratio (PSNR) assess the quality of the

reconstructed image relative to the ground truth. Columns are scaled as indicated. Times

reflect the total time spent generating candidate images. Loss, Distance, MSE, and PSNR

correspond to the optimal image on the basis of minimal MSE.

2.4.2.4 Total Variation Image Denoising

To evaluate our denoising algorithm, we consider two standard test images, cameraman and

peppers gray. White noise with σ = 0.2 is applied to an image and then reconstructed

using a variant of Algorithm 1. Only SD is tested with a maximum of 5000 iterations and

convergence thresholds ε1 = 10−6 and ε2 = 10−2. ADMM and MM are too slow to merit

consideration. A gentle schedule ρ(n) = {106, 1.075bn/20c} performs best for a broad range of

sparsity levels. We adapt the search heuristic (Algorithm 1) to this example by replacing the

parameter νmax with the total variation of the input image, TV1(W ). This provides a device

that generates a solution path of images with varying levels of noise. Table 2.4 reports the

quality of the images in terms of the Mean Squared Error (MSE) and Peak Signal-to-Noise

Ratio (PSNR). Timings reflect the total time spent generating solutions, starting from a

50% reduction in the total variation of the input image. Figure 2.1 depicts the original and

reconstructed images along the solution path.

2.4.2.5 Projection of a Matrix to a Good Condition Number

We generate base matrices M ∈ Rp×p as random correlation matrices using MatrixDepot.jl

[ZH16], which relies on Davies’ and Higham’s refinement [DH00] of the Bendel-Mickey al-

gorithm [BM78]. Our simulations generate matrices with condition numbers c(M ) in the
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Figure 2.1: Sample images along the solution path of the search heuristic. Images

are arranged from left to right as follows: noisy input, first candidate image (50% reduction

of total variation), best candidate by MSE, and candidate generated after the optimal image.

set {7.02, 107, 690}. Our subsequent analyses target condition number decreases in the per-

centage set {20, 40, 60, 80}. Each algorithm is allotted 5000 iterations to converge with

ε1 = 10−3, ε2 = 10−2, and ρ(n) = min{106, 1.1bn/20c}. Table 2.5 summarizes the performance

of the three algorithms. Both MM and SD attain smaller losses than ADMM. On the other

hand, the table suggests that ADMM has a slight edge in enforcing adherence to the con-

straint set. Notably, all three methods preserve much of the sign structure of the original

correlation matrix.

2.4.3 Hybrid Algorithms

Motivated by ADMM’s tendency to generate high quality solutions, we implemented a hybrid

algorithm by combining ADMM with the speed of SD. The method is split into two phases.

In Phase 1 we obtain the approximate solution xsol = argminhρ(x) using SD. This is followed

by projection of xsol onto the constraint set in Phase 2. Because the projection lacks a closed-
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Time (ms) Loss ×103 Distance ×103 c(X)

p c(M) % MM SD ADMM MM SD ADMM MM SD ADMM MM SD ADMM

10 7.02 20 0.0364 0.0322 0.073 3.84 3.86 3.88 9.41 7.81 7.32 5.64 5.64 5.64

100 107 20 0.447 0.441 0.818 0.0198 0.0198 0.0283 4.67 4.67 0 86.1 86.1 82.8

1000 690 20 208 213 152 0.000497 0.000497 0.000624 7.64 7.64 0 554 554 541

10 7.02 40 0.174 0.173 0.273 28.1 28.1 28.1 9.61 9.64 9.38 4.23 4.23 4.23

100 107 40 0.483 0.474 0.864 0.15 0.15 0.186 0 0 0 63.9 63.9 61.1

1000 690 40 270 278 217 0.00438 0.00438 0.00599 8.64 8.64 0 415 415 413

10 7.02 60 0.415 0.383 0.485 172 172 170 2.46 3.25 9.28 2.81 2.81 2.82

100 107 60 0.741 0.739 0.962 0.88 0.88 1.07 0.979 0.98 0 43 43 41.7

1000 690 60 269 280 215 0.0369 0.0369 0.0474 6.67 6.67 0 277 277 274

10 7.02 80 0.407 0.407 0.673 1090 1090 1090 9.27 9.21 9.26 1.41 1.41 1.41

100 107 80 0.712 0.698 4.76 12.7 12.7 12.1 0.438 0.379 9.45 21.5 21.5 21.5

1000 690 80 270 280 284 0.469 0.469 0.575 6.69 6.69 0 138 138 138

Table 2.5: Condition number experiments. Here c(M) is the condition number of the

input matrix, % is the target percentage decrease in the condition number, and c(X) is the

condition number of the result for a given algorithm.

form solutions, it must be computed by an iterative procedure such as ADMM. According to

the classical penalty method, the projection is well approximated by solving the penalized

problem

min
x

1

2
‖x− xsol‖2 +

ρ

2
dist(Dx, C)2

for large ρ. In practice, we carry over to Phase 2 the penalty coefficient ρ achieved at the end

of Phase 1, provided it is large enough. In our experience, this hybrid SD-ADMM procedure

makes considerable progress in improving the loss and reducing the distance to feasibility.

The alternative of refining the objective by initializing ADMM with the final value attained

by SD is much less effective. Presumably this happens because ADMM requires a good dual

variable (multiplier) to work well. By its nature SD operates entirely on the primal problem.

Table 2.6 summarizes our findings for the metric projection problem using the annealing

schedule ρ(n) = min{106, 1.1bn/20c} and strict convergence parameters ε1 = 10−3 and ε2 =

10−6. In our experiments Phase 1 (SD) and Phase 2 (ADMM) are allotted 2000 and 1000
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n Time (s) Loss ×10−3 Distance ×103 Iterations

32 0.1232 0.5611 0 2009

64 1.137 2.303 0 2013

128 9.172 9.089 0 2014

256 91.97 37.28 0 2011

Table 2.6: Metric projection using a hybrid SD/ADMM algorithm. Columns are

scaled as indicated. Iterations in excess of 2000 reflect the number of steps taken by ADMM

to enforce feasibility.

d n Time (s) MSE ×103 Loss ×103 Distance ×103 Iterations

1 50 0.1042 1.593 196.7 1.093 3000

1 100 0.4763 0.4253 474.7 0.65 3000

1 200 2.486 1.777 1273 0.4957 3000

1 400 16.93 8.48 3352 0.4433 3000

2 50 0.05995 5.588 66.3 0 2036

2 100 0.6175 2.066 450.9 0.2435 3000

2 200 3.224 8.11 1542 0.432 3000

2 400 24.53 24.51 6471 0.4734 3000

10 50 0.01892 10.54 0.07002 0 201

10 100 1.264 10.59 9.308 0 2881

10 200 6.632 12.96 339.8 5.824× 10−5 3000

10 400 42.91 23.27 4192 2.353× 10−5 3000

20 50 0.1367 9.681 0.0002378 0 229

20 100 1.558 9.588 0.046 0 2558

20 200 7.438 30.84 461.4 0 2431

20 400 70.46 23.08 3240 6.889× 10−5 3000

Table 2.7: Convex regression using a hybrid SD/ADMM algorithm. Columns are

scaled as indicated. Iterations in excess of 2000 reflect the number of steps taken by ADMM.

iterations, respectively. Comparing Table 2.1 with 2.6 reveals that the hybrid algorithm

improves the loss and produces a feasible point with only a moderate increase in computing

time.

However, Table 2.7 reports results on convex regression that counters the idea that the

hybrid approach is strictly superior. Specifically, improvements to feasibility in Table 2.7 are
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less dramatic across problem sizes compared to SD in Table 2.2 and there is no little to no

improvement to MSE compared to ADMM. These results are based on identical settings as

in Table 2.2 with ρ(n) = min{106, 1.5bn/100c}, ε1 = 10−6, and ε2 = 10−3.

2.5 Discussion

Let us recapitulate the main findings of our numerical experiments. Tables 2.1 through

2.5 show a consistent pattern of superior speed by the steepest descent (SD) versions of

proximal distance algorithms. This is hardly surprising since unlike ADMM and MM, SD

avoids solving a linear system at each iteration. Interestingly, the speed gap between the three

algorithms is much narrower when the linear system can be solved exactly. This phenomenon

is apparent in the condition number example summarized in Table 2.5. In our examples MM

is usually faster than ADMM, which we attribute to the number of operations required

per iteration. Specifically, ADMM requires more matrix-vector multiplications involving the

fusion matrix D. In fairness on convex regression, ADMM does a noticeably better job of

minimizing loss and MSE. The hybrid algorithm combining SD followed by ADMM corrects

the poor constraint satisfaction of SD but retains most of its speed. Tables 2.6 and 2.7

document this tendency.

Let us remind readers of some advantages and disadvantages of the proximal distance

method. First, fusion constraints fit naturally in the proximal distance framework. Second,

proximal distances enjoy the descent property. Third, there is a nearly optimal step size

for gradient descent when second-order information is available on the loss. The main dis-

advantages of the proximal distance methods are (a) the overall slow convergence due to

the lost of curvature information on the distance penalty and (b) the need for a reasonable

annealing schedule. In practice, a little experimentation can yield a reasonable schedule for

an entire class of problems. Fourth, proximal distance algorithms are competitive if not su-

perior to ADMM on many problems. Fifth, proximal distance algorithms like iterative hard
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thresholding rely on set projection and are therefore helpful in dealing with hard sparsity

constraints. Many methods are only capable of dealing with soft constraints imposed by the

lasso and other convex penalties. To their detriment soft constraints entail severe parameter

shrinkage and often lead to an excess of false positives in model selection.

We readily acknowledge that other algorithms may perform better than MM and proximal

distance algorithms on specific problems. The triangle fixing algorithm for metric projection

is a case in point [BDS08]. This objection obscures the generic utility of the proximal

distance principle. ADMM can certainly be beat on many specific problems, but nobody

seriously suggests that it be rejected across the board. Optimization, particularly constrained

optimization, is a fragmented subject, with no clear winner across problem domains. Generic

methods serve as workhorses, benchmarks, and backstops.

In closing, we would like to draw the reader’s attention to some generalizations of the

MM principle and connections to other well-studied algorithm classes. For instance, a linear

fusion constraint Dx ∈ S can in principle by replaced by a nonlinear fusion constraint

M(x) ∈ S. The objective and majorizer are then

hρ(x) = f(x) +
ρ

2
dist[M(x), S]2

g(x | xn) = f(x) +
ρ

2
‖M(x)− PS[M(xn)]‖2.

The objective has gradient g = ∇f(x)+ρdM(x)t{M(x)−PS[M(x)]}. The second differen-

tial of the majorizer is approximately d2f(x)+ρdM(x)tdM(x) for M(x) close to PS[M(x)].

Thus, gradient descent can be implemented with step size

γ =
‖gn‖2

gtnd
2f(xn)gn + ρ‖dM(xn)gn‖2

,

assuming the approximate second differential d2f(xn) is positive definite.

Algebraic penalties such as ‖g(x)‖2 reduce to distance penalties with constraint set

{0}. The corresponding projection operator sends any vector y to 0, and ‖g(x)‖2 =

dist[g(x), {0}]2. This observation is pertinent to constrained least squares with g(x) =
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d−Cx [GV96]. The proximal distance surrogate can be expressed as

1

2
‖y −Ax‖2 +

ρ

2
‖d−Cx‖2 =

1

2

∥∥∥∥∥∥
 y
√
ρd

−
 A
√
ρC

x
∥∥∥∥∥∥
2

and minimized by standard least squares algorithm. No annealing is necessary. Inequality

constraints g(x) ≤ 0 behave somewhat differently. The proximal distance majorization

dist[g(x),Rm
− ]2 ≤ ‖g(x) − PRm

−
[g(xn)]‖2 is not the same as the Beltrami penalty g(x)2+

[Bel70]. However, the standard majorization [Lan16] g(x)2+ ≤ ‖g(x)− PRm
−

[g(xn)]‖2 brings

them back into alignment.

ADMM can be motivated by the MM principle. The optimal pair (x,y) and λ furnishes

a stationary point of the Lagrangian. Because the Lagrangian is linear in λ, its maximum for

fixed (x,y) is ∞. To correct this defect, we add a viscosity minorization to the Lagrangian.

This produces the modified Lagrangian

Lµ(x,y,λ) = f(x) + g(y) + µλt(Dx− y) +
µ

2
‖Dx− y‖2 − α

2
‖λ− λn‖2.

The penalty term has no impact on the x and y updates. However, the MM update for λ

is determined by the stationarity condition

0 = µ(Dxn+1 − yn+1)− α(λ− λn),

so that

λn+1 = λn +
µ

α
(Dxn+1 − yn+1).

The choice α = 1 gives the standard ADMM update. Thus, the ADMM algorithm alternates

decreasing and increasing the Lagrangian in a search for the saddlepoint represented by the

optimal trio (x,y,λ).

2.6 Proofs

In this section we provide proofs for the convergence results discussed in Section 2.3.
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2.6.1 Proposition 2.3.1

Proof: Without loss of generality we can translate the coordinates so that y = 0. Let B

be the unit sphere {x : ‖x‖ = 1}. Our first aim is to show that hρ(x) > f(0) throughout

B. Consider the set B ∩ T , which is possibly empty. On this set the infimum b of f(x)

is attained, so b > f(0) by assumption. The set B \ T will be divided into two regions, a

narrow zone adjacent to T and the remainder. Now let us show that there exists a δ > 0

such that hρ(x) ≥ f(x) ≥ f(0) + δ for all x ∈ B with dist(Dx, S) ≤ δ. If this is not so,

then there exists a sequence xn ∈ B with f(xn) < f(0) + 1
n

and dist(Dxn, S) ≤ 1
n
. By

compactness, some subsequence of xn converges to z ∈ B∩T with f(z) ≤ f(0), contradicting

the uniqueness of y. Finally, let a = minx∈B f(x). To deal with the remaining region take ρ

large enough so that a+ ρ
2
δ2 > f(0). For such ρ, hρ(x) > f(0) everywhere on B. It follows

that on the unit ball {x : ‖x‖ ≤ 1}, hρ(x) is minimized at an interior point. Because hρ(x)

is convex, a local minimum is necessarily a global minimum.

To show that the objective hρ(x) is coercive, it suffices to show that it is coercive along

every ray {tv : t ≥ 0, ‖v‖ = 1} [Lan16]. The convex function r(t) = hρ(tv) satisfies

r(t) ≥ r(1) + r′+(1)(t− 1). Because r(0) < r(1), the point 1 is on the upward slope of r(t),

and the one-sided derivative r′+(1) > 0. Coerciveness follows from this observation. �

2.6.2 Proposition 2.3.2

Proof: The first assertion follows from the bound gρ(x | xn) ≥ hρ(x). To prove the second

assertion, we note that it suffices prove the existence of some constant ρ > 0 such that the

matrix A+ ρDtD is positive definite [Deb52]. If no choice of ρ renders A+ ρDtD positive

definite, then there is a sequence of unit vectors um and a sequence of scalars ρm tending to

∞ such that

utmAum + ρmu
t
mD

tDum ≤ 0. (2.7)
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By passing to a subsequence if needed, we may assume that the sequence um converges to

a unit vector u. On the one hand, because DtD is positive semidefinite, inequality (2.7)

compels the conclusions utmAum ≤ 0, which must carry over to the limit. On the other

hand, dividing inequality (2.7) by ρm and taking limits imply utDtDu ≤ 0 and therefore

‖Du‖ = 0. Because the limit vector u violates the condition utAu > 0, the required ρ > 0

exists. �

2.6.3 Proposition 2.3.3

Proof: Systematic decrease of the iterates hρ(xn) is a consequence of the MM principle.

The existence of zρ follows from Proposition 2.3.1. To prove the stated bound, first observe

that the function gρ(x | xn)− ρ
2
‖Dx‖2 is convex, being the sum of the convex function f(x)

and a linear function. Because ∇gρ(xn+1 | xn)t(x−xn+1) ≥ 0 for any x in C, the supporting

hyperplane inequality implies that

gρ(x | xn)− ρ

2
‖Dx‖2 ≥ gρ(xn+1 | xn)− ρ

2
‖Dxn+1‖2

−ρxtn+1D
tD(x− xn+1),

or equivalently

gρ(x | xn) ≥ gρ(xn+1 | xn) +
ρ

2
‖D(x− xn+1)‖2. (2.8)

Now note that the difference

d(x | y) =
1

2
‖x− P(y)‖2 − 1

2
‖x− P(x)‖2

has gradient

∇d(x | y) = P(x)− P(y).
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Because P(x) is non-expansive, the gradient ∇d(x | y) is Lipschitz with constant 1. The

tangency conditions d(y | y) = 0 and ∇d(y | y) = 0 therefore yield

d(x | y) ≤ d(y | y) +∇d(y | y)t(x− y) +
1

2
‖x− y‖2

=
1

2
‖x− y‖2 (2.9)

for all x. At a minimum zρ of hρ(x), combining inequalities (2.8) and (2.9) gives

hρ(xn+1) +
ρ

2
‖D(zρ − xn+1)‖2

≤ gρ(xn+1 | xn) +
ρ

2
‖D(zρ − xn+1)‖2

≤ gρ(zρ | xn)

= hρ(zρ)−
ρ

2
‖Dzρ − P(Dzρ)‖2 +

ρ

2
‖Dzρ − P(Dxn)‖2

= hρ(zρ) + ρd(Dzρ |Dxn)

≤ hρ(zρ) +
ρ

2
‖Dzρ −Dxn‖2.

Adding the result

hρ(xn+1)− hρ(zρ) ≤
ρ

2

[
‖D(zρ − xn)‖2 − ‖D(zρ − xn+1)‖2

]
over n and invoking the descent property hρ(xn+1) ≤ hρ(xn), telescoping produces the

desired error bound

hρ(xn+1)− hρ(zρ) ≤
ρ

2(n+ 1)

[
‖D(zρ − x0)‖2 − ‖D(zρ − xn+1)‖2

]
≤ ρ

2(n+ 1)
‖D(zρ − x0)‖2.

This is precisely the asserted bound. �

2.6.4 Proposition 2.3.4

Proof: The existence and uniqueness of zρ are obvious. The remainder of the proof hinges

on the facts that hρ(x) is µ-strongly convex and the surrogate gρ(x | w) is L+ρ‖D‖2-smooth
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for all w. The latter assertion follows from

∇gρ(x | w)−∇gρ(y | w) = ∇f(x)−∇f(y) + ρDtD(x− y).

These facts together with ∇gρ(y | y) = 0 imply

hρ(x)− hρ(y) ≤ gρ(x | y)− gρ(y | y)

≤ ∇gρ(y | y)t(x− y) +
L+ ρ‖D‖2

2
‖x− y‖2 (2.10)

=
L+ ρ‖D‖2

2
‖x− y‖2.

The strong convexity condition

0 ≥ hρ(zρ)− hρ(x) ≥ ∇hρ(x)t(zρ − x) +
µ

2
‖zρ − x‖2

entails

‖∇hρ(x)‖ · ‖zρ − x‖ ≥ −∇hρ(x)t(zρ − x) ≥ µ

2
‖zρ − x‖2.

It follows that ‖∇hρ(x)‖ ≥ µ
2
‖x − zρ‖. This last inequality and inequality (2.10) produce

the Polyak- Lojasiewicz bound

1

2
‖∇hρ(x)‖2 ≥ µ2

2(L+ ρ‖D‖2)
[hρ(x)− hρ(zρ)].

Taking c = L+ ρ‖D‖2 and

x = xk − c−1∇gρ(xk | xk) = xk − c−1∇hρ(xk),

the Polyak- Lojasiewicz bound gives

hρ(xk+1)− hρ(xk) ≤ gρ(xk+1 | xk)− gρ(xk | xk)

≤ gρ(x | xk)− gρ(xk | xk)

≤ −c−1∇gρ(xk | xk)t∇hρ(xk) +
c

2
‖c−1∇hρ(xk)‖2

= − 1

2c
‖∇hρ(xk)‖2

≤ − µ
2

2c2
[hρ(xk)− hρ(zρ)].
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Rearranging this inequality yields

hρ(xk+1)− hρ(zρ) ≤
[
1− µ2

2c2

]
[hρ(xk)− hρ(zρ))],

which can be iterated to give the stated bound. �
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CHAPTER 3

Examining School Reopening Strategies During a

Pandemic

3.1 Introduction

Reopening K-12 schools is a topic of intense discussion. Because transmission of SARS-CoV-2

occurs through respiratory droplets, reopening policies must adequately reduce crowded envi-

ronments at school to protect children, teachers, staff, and ultimately communities. Unfortu-

nately, many factors work to the detriment of ostensibly reasonable strategies, including ex-

tended hours for teachers, challenges in transporting children to and from school, and reduced

quality of educational experience. Although U.S. school closures in March 2020 reduced

COVID-19 cases in states with low cumulative incidence, education researchers worry about

lagging educational development of children once schools reopen [ASR20, KT20, KST20]. A

predictable, regular attendance policy is crucial in balancing social burden with maintaining

steady educational progress.

As school systems, professional organizations, and governments have proposed different

reopening strategies to reduce infection risks to students, teachers, school staff, and faculty,

it is helpful to quantify ramifications of different plans [SSS20]. Here we explore a simple,

interpretable mathematical model that compares infection rates under various reopening

scenarios. We compare consequences of (1) reopening at full capacity, (2) allowing half of all

children to return to in-person schooling while the other half continues with remote learning

(parallel cohorts), and (3) alternating sessions in which different student cohorts attend
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school every other or every third week (rotating cohorts). Our goal is to provide insight into

epidemiological consequences of reopening strategies and to quantify their consequences. In

particular, we explore implications of the reclosing guidelines announced by Governor Gavin

Newsom for California schools [Off20].

3.2 Methods

3.2.1 Compartmental Model

Our approach uses a deterministic Susceptible-Exposed-Infected-Removed (SEIR) model

stratified by age group and cohort. We assume that infecteds may or may not present

with symptoms and that the removed pool accounts for individuals with negligible contribu-

tion to infection spread, including individuals that have either recovered with full immunity

or died. Given that natural immunity may persist over several months [SGM20, GWL21,

SCB21, DMK21] and that our simulations span a period of 6 months, we make the plausible

assumption that individuals do not return to the susceptible pool once infected. For simplic-

ity, the simulation scope is limited to two age groups, children in K-12 education spread over

1 to 3 child cohorts and adults over 18 years. Births are ignored because our simulations

operate on relatively short time scales. Although mortality certainly represent an important

metric for public health concerns, we do not model deaths explicitly. This simplification

avoids introducing additional model parameters. In theory, one might approximate deaths

by adjusting our predictions for the number of removed individuals by community-specific

estimates for death rates. Model assumptions are further elaborated in our discussion of

transmission rates and other model parameters.

In our differential equations model the functions S(t), E(t), I(t), and R(t) denote the

fraction of susceptible, exposed, infected, and removed individuals, respectively, in an overall

population at time t. Each compartment is stratified by age class (1 for children, 2 for

adults) and cohort membership so that I1k refers to infected children in cohort k. With
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this notation in mind, we propose the following model for the force of infection acting on

susceptible individuals in class j and cohort k, denoted λjk(t), as

λjk(t) =
∑

cohort `

∑
age class i


interaction

between

cohorts k, `

×


transmission

from age

group i→ j

×


fraction of

infecteds in

age group i,

and cohort `


=

∑
`

∑
i

αk` × βij × Ii`(t).

For pairs of cohorts k 6= `, the extremes αk` = 0 and αk` = 1 reflect complete separation and

mixing between two cohorts, respectively. Values in between these limits may be interpreted

as decreased interaction due to physical or social distancing. Weak cohort interactions are

fixed at αk` = 0.05 in all of our simulations. The transmission rates βij may be asymmetric

to capture heterogeneity in transmission due to different contact patterns, susceptibility, or

infectiousness. Lastly, the parameters σj and γj for age class j represent rates at which

exposed individuals become infectious (latency) and infecteds recover from the contagious

stage (infectiousness), respectively. Specifically, we take 1/γj as the average number of days

an individual in class j is contagious based on a time-homogeneous Markovian model; an

analogous interpretation holds for the latency parameters.

The ordinary differential equations (ODEs) describing cohort k are given by

Children Adults

dS1k

dt
= −λ1kS1k

dS2k

dt
= −λ2kS2k

dE1k

dt
= λ1kS1k − σ1E1k

dE2k

dt
= λ2kS2k − σ2E2k

dI1k
dt

= σ1E1k − γ1I1k
dI2k
dt

= σ2I2k − γ2I2k
dR1k

dt
= γ1I1k

dR2k

dt
= γ2I2k,

where the left and right columns correspond to SEIR compartments for children and adults,

respectively. Fig. 3.1 summarizes the high level features of our mathematical model. All
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numerical simulations are carried out in the Julia programming language using tools from

the SciML ecosystem [RN17, RN19, Sci20a, Sci20b].

Figure 3.1: Overview of SEIR compartmental model. The main compartments are

denoted by S(t), E(t), I(t), and R(t) for susceptible, exposed, infected, and removed, respec-

tively. Compartments are stratified by age class (1 – children, 2 – adults) and membership

to cohort k. The coefficients αk` ∈ [0, 1] account for the strength of interaction between

cohorts k and `.

3.2.2 Basic Reproductive Number

We characterize the basic reproductive number R0 indicative of growth potential of an

infectious disease. Specifically, R0 quantifies the expected number of secondary infections

due to a single infected within a completely susceptible population. The threshold R0 value

of 1 marks the boundary between explosive growth (R0 > 1) and decline of an epidemic to

extinction (R0 < 1). We derive R0 for our stratified SEIR model using the next generation

method outlined by Diekmann, Heesterbeek, and Roberts [DHR10]. Near a disease-free

equilibrium point, it is reasonable to linearize dynamics by taking the initial proportion of

susceptibles, Sjk(0), approximately equal to its maximal value defined by the population’s

demography, qjk. Thus, the transmission and transition operators T and Σ are given by the
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matrices

T =


0 α11β11q11 0 α11β12q11

0 0 0

0 α11β21q21 0 α11β22q21

0 0 0

 Σ =


−σ1 0 0 0

σ1 −γ1 0 0

0 0 −σ2 0

0 0 σ2 −γ2

 ,

based on the infectious subsystem defined by x = [E11, I11, E21, I21]
> for a single cohort.

Together, these linear operators recover the linearized subsystem dx
dt

= (T + Σ)x. Following

Diekmann et al. [DHR10], R0 is taken as the spectral radius of the next generation matrix

with large domain, −TΣ−1. In the case of multiple cohorts, the structures of T and Σ as

given are repeated in a tiled fashion, with the appropriate changes in indices for αk` and qjk.

3.2.3 Simulation Studies on Prevalence Thresholds

We consider the effect of a stopping rule on cumulative prevalence. Inspired by California’s

guidelines urging schools to revert to remote learning whenever the infections within a school

reach 5% in 2-week period (3), we define the stopping time tthreshold as the first time that

detected school cases reach the specified threshold. Formally, the stopping time is given by

tthreshold = inf

t ∈ T :
∑

s∈window(t)

C(s) ≥ 5%

 ,

where T is a set of testing times and the sum is taken over a sliding 14-day window up

to time t. The quantity C(s) = sensitivity × I1k(s)/q represents detected cases adjusted

for population size q. Detection necessarily depends on a particular test’s sensitivity and

is based on testing at the beginning of a school day, after which infected individuals in the

active cohort are immediately isolated and placed in the removed state (I(t)→ R(t)). The

isolation rule applies only to the cohort at school, while the sensitivity factor in the rule

captures imprecision in testing and reporting.

Note that tthreshold = ∞ if the threshold is never reached over the time span of our

simulations. Furthermore, our simulation results involving tthreshold represent a lower bound
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because case isolation is taken to be instantaneous. In practice, segregation of affected

pupils is delayed. Our model does not explicitly account for adult staff at school. Our

simplifying assumption is justified by our focus on qualitative behavior and the fact that

students typically outnumber teachers and ancillary staff. For example, the average class

sizes for public elementary and public secondary schools are estimated to be 21.2 and 26.8

students, respectively, for the 2011–2012 academic year [Nat19]. At a 20:1 student to staff

ratio, a school with 1000 students would need 53 cases in a 14-day period to meet the closure

criterion of 50 set in our simulations.

3.2.4 Modelling Transmission Between Age Classes

In spite of less severe disease and lower case-fatality rates than adults, children may be

just as prone to SARS-CoV-2 infections as adults [ZC20]. Children’s symptoms range from

fever, rhinitis, cough, and GI symptoms, to a Kawasaki-like disease termed Multisystem

Inflammatory Syndrome in Children (MIS-C) [VMG20, Cen20, DKC20]. However, because

children’s symptoms are typically less severe and of shorter duration than those of adults

[Lud20], the likelihood of pediatric infection escaping symptom-based monitoring, such as

temperature screening, is higher than that of adults. This reality increases pre-symptomatic

and asymptomatic transmission [PZW20, JMV20]. Thus, detecting transmission in children

is difficult; quantifying it is all the more challenging [Lop20, PCP20, LPC20].

Contact tracing data from Singapore suggest that per contact transmission between

children, particularly in educational settings, is low compared with adult-adult transmis-

sion [YKN20]. Yet the number of contacts between children is expected to be significantly

higher compared to other age groups[ZLL20, Sza20]. Changes in contact structure will nec-

essarily change estimates of transmission rates. For example, Li et al. provide transmission

rate estimates for Wuhan prior to (1.12 per day) and following travel restrictions (0.52 per

day) [LPC20]. An additional source of heterogeneity in transmission is the potentially re-

duced susceptibility of children compared to adults [DKL20]. The review by Viner et al.
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summarizes much of the early literature on this topic and suggests that the susceptibility of

adolescents may be similar to that of adults [VMB21]. Infectiousness of different age groups

is not as well characterized. Each source of heterogeneity poses a challenge to developing a

parsimonious mathematical model.

Rather than reconciling transmission rate estimates across populations based on different

scientific models, we vary transmission rates between and within age classes to underscore

the influence of modelling assumptions on epidemiological consequences and to calibrate the

range of effects given existing evidence. To this end, our transmission rates βij are designed

to separate the magnitude of transmission from the effects of different age class interactions.

Scale is determined by baseline transmission rate, β0 and is interpreted as a characteristic

of a population. The baseline transmission rate is then used to define each βij based on the

formula βij = β0 × fij with weights fij ∈ [0, 1] capturing the contribution of each i → j

interaction to the aggregate transmission rate β0. For our model with only 2 age classes,

imposing the constraint

f11 + f12 + f21 + f22 = 1,

allows us to explore the effect of transmissibility assumptions at a fixed scale while retaining

the complexity of contact matrices, susceptibility, and infectiousness.

There are a few special cases to point out. The case

f11 = f12 = f21 = f22 = 1/4,

assumes that child-child, child-adult, adult-child, and adult-adult interactions are indistin-

guishable and therefore that the two age groups are equivalent on the basis of transmission.

In the absence of cohort structures, the force of infection on class j becomes

λj = β0
∑
i

fijIi = β0I,

effectively collapsing our model to the basic SEIR equations under which β0 is the transmis-

sion rate of a homogeneous population. The case f11 < f22 reflects lower susceptibility in
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children compared to adults, differences in contact structure, or both. Assuming the nature

of contacts between groups is symmetric, the scenario f12 > f21 suggests that child-adult

interactions contribute more to transmission than adult-child interactions due to differences

in susceptibility or infectiousness. Our definition of transmission rates sidesteps the com-

plexity in modelling SARS-CoV-2 transmission and affords our model greater flexibility and

interpretability at the expense of parameter identifiability.

3.2.5 Cohort Structure and Increased Child-Child Contact

A well-timed cyclic attendance strategy tuned to the latent period of SARS-CoV-2 may

curtail secondary infections [KBM20]. Assuming a latent period of 3-4 days, a weekly rotation

schedule synchronizes with peak infectiousness. To compare with full-time and online-only

instruction, we investigate consequences in reopening at 50% and 33% capacity with rotating

cohorts. Our simulations therefore model transmission between children using period rates

that cycle between high and low contact values. Namely, we take t 7→ c × β11 on school

days and t 7→ β11 otherwise, where c is a multiplier reflecting increased contacts in children.

This function is phased between cohorts to reflect school rotation. In summary, children in

rotating cohorts attend school for 5 consecutive days and then rotate with the next cohort

at the beginning of the following week. With two cohorts children attend school every other

week; for three cohorts they attend every third week (rotating cohort strategy). A trend

in the U.S. is to allow families to opt for remote learning in lieu of in-person instruction

during the SARS-CoV-2 pandemic. We model this situation by dividing our virtual school

community into two cohorts of equal size, one which attends school and thus experiences an

elevated transmission rate while a second group opts for a remote learning option (parallel

cohort strategy).
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3.2.6 Choices for Other Model Parameters

In contrast to factors contributing to transmission rates, latent, infectious, and incubation

periods for SARS-CoV-2 are better characterized in the literature. Lauer et al. estimate

a median incubation period of approximately 5 days [LGB20]. Li et al. infer latency and

infectious periods of 3.69 and 3.47 days, respectively [LPC20]. The review by Bar-On reports

median latent and infectious periods of 3 and 4 days, respectively [BFP20]. Other studies

report serial intervals and incubation periods consistent with these estimates for latency

and infectiousness [DXW20, HLW20]. Unfortunately, the literature on similar epidemiolog-

ical inferences in children is sparse. One observational study suggests children may have

incubation periods similar to those of adults [ZBH20].

Because our simulations model school reopening, the proportion of infected individuals

will influence prevalence and especially time to school closures. A periodic joint report

from the American Academy of Pediatrics and Children’s Hospital Association indicates

that children account for 12.9% (range: 8%-20%) of COVID-19 cases across US states and

territories as of February 4, 2021 [Ame21].

Table 3.1 summarizes our choices and lists references pertinent to each choice, where

applicable.

3.3 Results

3.3.1 Cohorts Reduce Basic Reproduction Number Under Various Transmis-

sion Modalities

We first examine the impact of separating children into rotating cohorts on the basic re-

production number R0 of the model. Unfortunately, this quantity necessarily depends on

poorly characterized transmission rates and varies with different contact patterns and human

behaviors. Thus, we use our parameterization βij = β0fij to identify dominant terms fij con-
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Parameter Description Range/Estimate

β0 Bulk transmission rate for population 1.2 day-1, 1.5 day-1

f11 Weight for child to child transmission. 0–1; 0.1

f12 Weight for child to adult transmission. 0–1; 0.25

f21 Weight for adult to child transmission. 0–1; 0.15

f22 Weight for adult to adult transmission. 0–1; 0.5

1/σ1 Average child latency period. 3 days

1/σ2 Average adult latency period. 3 days

1/γ1 Average child infectious period. 4 days

1/γ2 Average adult infectious period. 4 days

αkk Strength of interactions within a cohort k. 1

αk` Strength of interactions between cohorts k and `. 0.05

I(0) Proportion of infecteds at reopening (incidence). 0 – 10%

I1k Proportion of infected children at reopening. 0 – 10%

c Multiplier modelling increased child-child contact. 1,2,10

Table 3.1: Summary of model parameters with ranges and estimates. The range

for transmission between adults suggested by Li et al. [LPC20] calibrates the bulk rate.

Latency and infectious period estimates are based on Li et al. and the summary by Bar-On

et al. [LPC20, BFP20]. The initial proportion of infected individuals is equally distributed

across cohorts.

tributing to R0 under varying cohort numbers but with β0 fixed. In particular, we consider 3

interesting cases: (1) adult-child and child-adult transmission are symmetric, (2) child-child

transmission is weak, and (3) adult-adult transmission is weak. Fig. 3.2 summarizes the

results of our analysis. In each of these cases, we find that splitting a school community into

2 or 3 rotating cohorts substantially reduces R0 under a wide range of parameter values.

For example, in the regime with symmetric between-class transmission and weak child-child

transmission, moving from full capacity to 2 cohorts shifts R0 from about 3 to about 1.5

(Fig. 3.2A–B, right corners). Moving further to 3 cohorts brings the reproduction number

below 1 in the same regime (Fig. 3.2C). Relaxing the symmetry assumption, we find the pat-

tern recapitulated under both assumptions of weak child-child transmission (Fig. 3.2D–F)

and weak adult-adult transmission (Fig. 3.2G–I). Further, this analysis suggests that child-

59



adult and adult-adult transmission can play dominant roles in the short-term dynamics of

our model under the plausible scenario of weak child-child transmission (Fig. 3.2D, right and

top corners). The influence of β22 is not surprising because our virtual population’s demog-

raphy is skewed toward adults (78%). However, our results demonstrate that child-adult

transmission should be weighed carefully in reopening decisions because it less characterized

and poses a potent risk, especially to school teachers. We focus our attention on the asym-

metric case with weak child-child transmission for the remainder of the study. Specifically,

we set f11 = 0.1, f12 = 0.25, f21 = 0.15, and f22 = 0.5 to model this scenario, and take

β0 = 1.2 to simulate under R0 ≈ 3. This choice does not reflect a belief about conditions of

the pandemic in any particular population; it is merely intended to demonstrate effects of

mitigation strategies within our modelling framework.

3.3.2 Reopening Under Prevalence-Informed Criteria

Identifying conditions under which schools can be safely reopened is paramount to proposing

public health policy for containing the epidemic. In particular, reopening schools only to

quickly close down after a few days of instruction is costly both in resources and its negative

health effect. Here we investigate the influence of initial conditions and elevated child-child

transmission on the stopping time tthreshold under an ideal scenario with a 100% sensitive

test. Fig. 3.3 reports values for tthreshold after varying child-child transmission in active

school cohorts by a factor of c = 1, c = 2, and c = 10. Reopening schools under high

infection burden leads to smaller values for tthreshold, as expected. Interestingly, these results

suggest that multiple cohorts have a desired effect of delaying school closures beyond the

time span of 26 weeks (6 months) in our simulations. For example, assuming 0.1% prevalence

at reopening leads to school closure after 6–7 weeks under a single cohort whereas multiple

cohorts or the hybrid approach have tthreshold > 26 weeks. The behavior of the stopping

time is insensitive to the contact multiplier c. However, there is a sharp transition from

tthreshold > 26 weeks to tthreshold ≈ 4 weeks under multiple cohorts as prevalence at reopening
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increases.

Next, we investigate the influence of test sensitivity in our simulated monitoring pro-

gram and closure criteria on period prevalence, taken as the sum of infecteds and removed

individuals. We compare predictions of our model over 26 weeks (6 months) when (1) no

action is taken (Fig. 3.4A–B), (2) the monitoring program employs a perfectly sensitive test

without delays in reporting (Fig. 3.4C–D), and (3) the monitoring program employs a rapid

but less sensitive test (Fig. 3.4E–F). Our simulations with a single cohort indicate that a 5%

percent threshold policy can shift period prevalence in children from 55% to 45% over the

simulated 26-week period (Fig. 3.4A–C). Compared to this ideal scenario, an imperfect test

with 50% detection leads to a slightly later stopping time owing to infections spread by unde-

tected cases and greater overall pediatric infections (Fig. 3.4E). The effect is less pronounced

in the adult population due to high adult-adult transmission. Crucially, reopening with a

surveillance program may provide approximately 2 weeks of continuous instruction. In our

model, infections after closing are driven by a lack of interventions outside of school; testing

and isolation in this context can curtail this growth. Our results support the importance of

testing and complete school closure in preventing a major disease outbreak after reopening.

We repeat the same simulation study with the hybrid parallel cohort policy. Fig. 3.5

reports the same indices recorded under the same parameter values as in the single cohort

policy. Reducing the force of infection through the community’s contact network successfully

decreases period prevalence, sustained contact between children notwithstanding (Fig. 3.5A–

D). The stopping rule for the in-person cohort is not triggered even when detection is im-

perfect (Fig. 3.5E–F). Infections are generally higher in the in-person cohort compared to

the remote cohort for both children and adults.
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3.3.3 Mitigating Transmission Between Children

Although face masks can reduce the spread of SARS-CoV-2 by 40% in adults [MKR20],

risks of mask wearing by elementary school children include impaired learning, speech de-

velopment, social development, and facial recognition [Ame20a, Ame20b]. It is also unclear

whether children can consistently wear masks. An October 2020 survey of middle school and

high school students, communicated by the CDC, underscores this point with mask wear-

ing varying from approximately 65% in classrooms and hallways to 25% in outdoor settings

within school boundaries [Cen21].

We explore the impacts of varying degrees of protection conferred by combined risk reduc-

tion strategies, such as mask wearing, desk shields, handwashing, vigilant surface cleaning,

improved ventilation, and outdoor instruction. Combined impacts of these strategies are

modeled as 20%, 40%, 60%, and 80% reductions in the transmission rates β11 and β22 rela-

tive to reference values. Specifically, we take β11 = 0.12, β12 = 0.3, β21 = 0.18, and β22 = 0.6

as natural rates and apply a 40% reduction factor to adults by setting β21 = 0.072 and

β22 = 0.24. This implies R0 ≈ 1.7 prior to reopening. Increased contact is modeled by

taking c = 10 so that β11 = 1.2, which corresponds to R0 ≈ 2.2 under the full capacity

reopening scenario. This represents an extreme that illustrates effects in a poor situation.

Fig. 3.6 compares prevalence trajectories for interventions directly targeting transmission

under a single or two rotating child cohorts. With a single cohort and no mitigation in

children, our choices lead to approximately 8%, 24%, and 28% infected children after 4, 13,

and 26 weeks following reopening, respectively (Fig. 3.6A, blue line). However, with measures

that lead to an 80% reduction in transmission, infections at 4, 13, and 26 weeks are 5%,

11%, and 13%, respectively (Fig. 3.6A, purple line). Targeting transmission rates in children

also reduces infections in adults to a similar degree (Fig. 3.6B). Much stricter adherence to

transmission mitigation measures is required for low infection levels when there is a single

cohort (Fig. 3.6A–B) than when there are two cohorts (Fig. 3.6C–D). A combination of both
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types of interventions ultimately results in even fewer infections.

3.4 Concluding Remarks

Our analysis identifies child-adult transmission as a potential risk to reopening schools even

under the plausible assumption of weak child-child transmission relative to adult-adult trans-

mission (Fig 3.2D–F). Moreover, our simulation studies highlight the profound impact of

reducing cohort size with parallel or rotating cohorts under a range of transmission rates

and reproduction numbers. For example, during a 6-month time span, reopening schools

in a population with 0.1% infections with 2 cohorts avoids triggering a prevalence closure

decision rule based on a 5% pediatric infection threshold. This, allows schools to stay open

longer compared to reopening at 100% capacity without cohort separation (Fig. 3.3). Si-

multaneous adherence to transmission mitigation measures and multiple separated cohorts

can keep cases low, for example under 3% (Fig. 3.6C–D). Our work also underscores the

importance of tracking infections and setting a threshold for reverting to remote learning. In

the absence of any intervention to in-person instruction, the proportion of school safe from

infection stays just above 40% at equilibrium (Fig. 3.4B, blue). This compares with keeping

the susceptible proportion above 60% under the combination of a rapid testing program, a

stopping rule, and a single cohort (Fig. 3.4B, green and orange).

There are several limitations to our modelling that could be addressed in future studies.

Finer age stratification is required to predict outcomes in specific communities and can be

implemented within our modelling framework. For example, high school students may wear

masks and practice physical distancing more reliably than elementary school children, and

may also have transmission rates closer to those of adults [VMB21]. Second, we assume

equal transmission rates among all adults and omit explicit interactions between students

and teachers within a classroom, which are critical in implementing backup protocols that

allow switches to remote learning. Network-based models are better suited to accounting
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for classroom and household structures in a population, as well as shifting contact patterns

[BAX20, Bri20, JKY19] Third, our model treats school communities in isolation. Schools

in urban settings have diverse commuting patterns and face potential for importing cases

from outside adjacent neighborhoods. Fourth, our conclusions about reproduction numbers,

period prevalence, stopping times, and impact of various mitigation strategies should be

understood as offering policy guidance rather than precise quantitative predictions. Our

ODEs are suited to fitting prevalence data rather than incidence data which poses a challenge

to predictive capabilities. Lastly, our models omit the stochastic nature of infections in small

populations. Although these caveats limit the quantitative accuracy of our predictions, we

contend that our qualitative conclusions are correct.

We find that measures reducing class density by rotating cohorts between in-person

and remote schooling are likely to have greater impact in reducing the spread of SARS-

CoV-2 than policies such as mask wearing, handwashing, and physical distancing in the

classroom. Nevertheless, the latter policies combined with a reduction in class density are

still quite effective in reducing effective transmission. From the perspective of mathematical

epidemiology, this is to be expected as separating a contact graph into disconnected pieces

ultimately limits the proliferative potential of an infectious disease. Surprisingly, parallel

cohorts are as effective as rotating cohorts in case reduction, while requiring less coordination

and work schedule adjustment for parents. Educating children under either cohort strategy

should be a priority in school re-openings. Benefits of switching to remote learning when

infections climb to an unacceptable level benefit from rapid testing, even if imperfect. Our

rapid testing predictions are consistent with a recent study [LWL20] on the influence of viral

kinetics, test sensitivity, test frequency, and sample-to-answer reporting time in surveillance

protocols, which also demonstrates that test efficacy is a secondary concern given the dangers

of the pandemic.
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Figure 3.2: Predicted R0 under various transmission-cohort scenarios. The color

gradient changes from purple to blue to reflect R0 shifting from < 1 to > 1 in each ternary

plot, with the white line denoting the boundary. Yellow is used to represent R0 > 6.

(A-C) Assuming child-adult and adult-child transmission rates are identical (black axis),

movement along the blue axis indicates that child-child transmission has a weak effect on R0

at a fixed scale for β0. (D-F) Fixing child-child transmission to be weak (β11 = 0.1) relative

to other interactions, both child-adult and adult-adult transmission play dominant roles in

increasing R0. (G-I) Fixing adult-adult transmission to be weak (β22 = 0.1), only child-adult

transmission plays a dominant role in increasing R0.
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Figure 3.3: Number of weeks to reach a 5% stopping threshold in a community.

Each scenario assumes a 100% sensitive test. The stopping time tthreshold (y-axis) is simu-

lated under varying prevalence conditions at reopening (x-axis). The contact multiplier for

child-child transmission is also varied from (A) c = 1 to (B) c = 2 and (C) c = 10 and

has little influence on stopping times. Multiple cohorts are effective at prolonging school

operations while staying below a 5% prevalence threshold over a 14-day window. Note that

only detected cases in children contribute to the decision rule.
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Figure 3.4: Comparison of infections and susceptibles under different test sen-

sitivities in both children and adults. Simulations are based on parameter values

f11 = 0.1, f12 = 0.25, f21 = 0.15, and f22 = 0.5 with bulk transmission rate β0 = 1.2.

Reopening takes place at a 2% prevalence level (2000 infections per 100,000). The decision

criterion over a 14-day sliding window is highlighted in a dotted line. Blue, orange, and

green lines correspond to scenarios without intervention, with a 100% sensitive test, and a

50% sensitive test, respectively. (A) The 14-day prevalence criteria hits the 5% threshold

after just over 2 weeks in the two testing scenarios. (B) Prevalence in adults peaks after

about 4 weeks independent of test sensitivity in children. (C) Testing is effective in keeping

most children safe from infection regardless of test sensitivity. (D) Testing in children has

little impact on keeping adults free from infection under these conditions.
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Figure 3.5: Comparison of cumulative under the parallel cohort approach. (A-C)

The 14-day prevalence criteria increases over the first 4 weeks, but point prevalence consis-

tently trends downward due to cohort structure. Over 90% of children are kept safe from

infection under the conditions of this simulation. (D-F) The combination of testing in chil-

dren and cohort separation prevents a high level of infection in adults.
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Figure 3.6: Cumulative prevalence trajectories under risk reduction strategies for

children while at school. For child-child transmission, we set β11 = 0.1×(1−r) outside of

school and β11 = (1− r)× c×0.1 during school, where r is a reduction factor due to effective

risk reduction strategies and c = 10 accounts for increased contact between children. (A–B)

Mitigation that reduces transmission between children can lead to a substantial reduction

in infections for both children and adults, provided the mitigation effects are large. (C–D)

The impact of risk reduction strategies persists when children are separated into 2 rotating

cohorts but does not demand as strict an adherence to be effective. An 80% reduction in

pediatric transmission has a weaker effect compared to separating children into 2 rotating

cohorts as the latter strategy result in fewer than 5% pediatric infection over 26 weeks (6

months).
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CHAPTER 4

Improving Hierarchical Linear Models via the

Proximal Distance Method and Hard Thresholding

4.1 Introduction

Regression with hierarchical linear models, also known as multilevel or mixed models, gen-

eralizes the notion of regression to nested data. A canonical example involves test scores

of students across different classrooms. Characteristics about both individual students and

classrooms may influence test scores. Given that students are naturally grouped into class-

rooms, one might reasonably expect classroom effects, such as a teacher’s experience level, to

influence effects at the level of students, such as student participation, which in turn affect

test performance. In the realm of genetics, there is interest in integrating sequencing data,

methylation patterns, transcriptomic expression, and other functional annotations to better

understand phenotypic variation in complex traits [SZH13]. Pharmacodynamics and phar-

macokinetics modelling consider variable drug absorption and biological responses in study

participants. Applications of hierarchical linear models abound in the biological sciences due

to the natural occurrence of multiple scales.

Before delving into our methodology, let us first review the theory for multiple regression

for a continuous response as a motivating example. Denote by yi ∼ xiβ + εi a simple linear

model. In this setting one fits the p model parameters (β1, β2, . . . βp)
> to capture the effects

of each predictor (x1i, x2i, . . . , xpi)
> on the response yi for the particular sample i. Under the

appropriate regularity conditions and additional assumptions that E[εi] = 0 and Var[εi] = σ2,
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the best linear unbiased estimator for β is obtained by considering n samples and solving a

least-squares problem, minβ
1
2
‖Xβ − y‖2, yielding the solution

β̂ = (X>X)−1X>y.

This solution exists only when the n× p data matrix X has full column rank. One remedy

to this problem is to consider the Moore-Penrose pseudoinverse, (X>X)+, which guarantees

an `2-minimal solution. In fact, (X>X)−1X> is the pseudoinverse X+. The solution gener-

ated by this approach is equivalent to the solution produced by solving the ridge regression

problem,
1

2

[
‖Xβ − y‖2 + λ‖β‖2

]
in the limit λ→ 0.

In practice, large data sets may have far more putative predictors than samples so that

n� p. Two issues may arise in this setting. First, computing a pseudoinverse requires com-

puting a singular value decomposition of X, which is typically more expensive than a QR

decomposition used to solve Xβ = y. Second, it may be desirable to obtain sparse solutions

for β to recover a more parsimonious model. Specifically, a model with few nonzero compo-

nents βj will better generalize to out-of-sample predictions, have nicer statistical properties,

and reflect a stronger scientific model overall.

Unlike ridge regression [HK70], the general framework of Tikhonov regularization [TA77]

can penalize individual parameters differently to emphasize a particular structure in solutions

by solving

min
β
‖Xβ − y‖2 + ‖Dβ‖22,

with a suitably chosen Tikhonov matrix D (ridge regression takes D = λI). In practice, it is

not always clear what structure to choose forD. For example, to perform subset selection one

would need to choose the Tikhonov matrix in a manner that emphasizes a particular sparsity

pattern in solutions, but the sparsity pattern itself is an unknown property of one’s model.

Moreover, it is known that the special case of ridge regression will necessarily introduce
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shrinkage in solution and therefore dilute estimates for effect sizes. The lasso developed by

Tibshirani [Tib96, TSR05b]addresses these problems by imposing an `1 penalty; that is, one

solves

min
β
‖Xβ − y‖2 + ‖Dβ‖1.

In the basic case with D = λI, one controls the degree of regularization on the magnitude of

each effect by the free parameter λ. Namely, increasing λ sends more model parameters to-

wards 0. Efficient algorithms for this problem and some of its variants exist. While effective,

one unfortunate drawback of the lasso method is that it enforces sparsity indirectly. More

critically, taking λ too small will drive up the false positive rate as in ridge regression whereas

taking λ too large will introduce false negatives. Cross-validation is a useful technique to

avoid this issue.

Our review thus far motivates the need for regularization methods from a mostly the-

oretical perspective. The interesting case of the lasso makes a connection to practice by

addressing the important issue of parsimony in building models. However, the lasso as orig-

inally developed mostly applies either in cases of complete ignorance about the effects of

predictors or when there is no clear consensus about which predictors are most meaningful.

It is at this point that we make our return to praxis and motivate hierarchical linear models

in this context.

Specifically, we consider a situation in which an additional set of data provides informa-

tion about the original predictors, thus establishing a hierarchy in the set of independent

variables in the regression. One example is in human genetics in which one studies a par-

ticular trait by integrating information from Single Nucleotide Polymorphisms (SNPs) and

functional annotations. In this setting, the trait of interest (yi) is observed and quantified

for each of n individuals. The genetic information of each individual is also recorded through

sequencing to identify SNPs (xi). In a Genome-Wide Association Study (GWAS), one then

regresses the trait of interest on each SNP individually while possibly controlling for addi-

tional non-genetic predictors. This produces an estimate the effect of a SNP on the trait
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of interest. Multiple hypothesis tests are then used to ascertain the statistical significance

of each SNP individually. Unfortunately, multiple testing requires adjusting p-values (e.g.

through the Benjamini-Hochberg procedure) in order to protect against an inflated false

discovery rate. Furthermore, it is not clear how to integrate prior information from related

studies that establish compelling empirical evidence for the role of each SNP j in signaling

pathways, expression patterns, regulatory functions, and other biologic information that is

typically overlapping (zj). In summary, the typical GWAS study considers only univariate

linear models of the form yi ∼ xijβj +εi and therefore cannot perform any subset selection or

incorporate prior information zj. Comparatively, a hierarchical modelling approach might

tackle this problem as follows:

yi ∼ xiβ + εi, for each person i = 1, 2, . . . , n.

βj ∼ zjα+ γj, for each SNP j = 1, 2, . . . , p.

Here the model parameters (α1, α2, . . . , αd)
> account for the contributions of d functional

annotations in a particular predictor SNP j. Thus, an ideal situation is to fit both SNP

effects and functional annotation effects for a particular trait.

4.2 A Proximal Distance Approach

Recent work on iterative hard-thresholding (IHT) applies multiple regression to a GWAS-like

context for continuous and discrete traits based on both linear and generalized linear models

[CKG20]. This approach relies on fast iterative updates based on gradient descent that

directly enforce sparsity via projections to sparsity sets. However, the projected gradient

descent updates will not generalize to our particular hierarchical regression problem. Another

related work is implemented in the software package xrnet [WL19]. This approach is based

on a soft-thresholding coordinate descent algorithm extending the work of Friedman et al. to

the exact hierarchical problem considered above [FHT10]. While fast, the xrnet approach

faces the same issues as the lasso in terms of tuning a hyperparameter to minimize false
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positives and false negatives.

Here we outline an alternative approach based on the proximal distance method. For-

mally, we seek solutions to the penalized least-squares problem

min
α,β

1

2

[
‖Xβ − y‖22 + λ‖Zα− β‖22 + ρ dist(α, Sk)

2
]
.

The first term is the usual least-squares term corresponding to the internal data. The

second term accounts for external data that regularizes the main effect estimates, β, and

is modulated by the hyperparameter λ. The third term quantifies distance from a sparsity

set with k non-zero elements, applied to the external effects. Recalling our genetics example

from before, the motivation for enforcing sparsity only on external effects is due to the fact

that a SNP’s functional annotations may overlap and may only apply in certain contexts

(that is, for the particular trait under analysis). In theory, one might extend the objective

above to enforce sparsity on β directly but this direction is not discussed here.

The key to producing the MM update is to write the loss as the unified least-squares

criterion

f(α,β) =
1

2

∥∥∥∥∥∥
y

0

−
 0 X
√
λZ −

√
λI

α
β

∥∥∥∥∥∥
2

.

The surrogate then can be expressed as

hρ(α,β | αn,βn) ≤ 1

2

∥∥∥∥∥∥∥∥∥


y

0
√
ρP(αn)

−


0 X
√
λZ −

√
λI

√
ρI 0


α
β


∥∥∥∥∥∥∥∥∥
2

.

Thus, the MM update reduces to the solution of a least squares problem.

4.2.1 Direct Solution

The normal equations for our least-squares problem read asλZ>Z + ρI −λZ>

−λZ X>X + λI

α
β

 =

ρP(αn)

X>y

 .
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Solving the first and second blocks for α and β, respectively, substitution, and rearrangement

yields explicit updates

αn+1 = M−1
2

[
ρP(αn) + λZ>M−1

1 X
>y
]

βn+1 = M−1
1

[
X>y + λZαn+1

]
,

where M 1 = X>X + λIp×p and M 2 = λZ>Z − λ2Z>M−1
1 Z + ρId×d. This direct ap-

proach requires inverting two matrices, one of which depends on the penalty coefficient ρ.

Fortunately, high-dimensional problems with tall or wide matrices X and Z can make use

of Woodbury’s matrix identity to reduce computational complexity. For example in the case

p� n� d pertinent to genetic analyses, computing X>X is prohibitive whereas XX> is

considerably smaller. Further, one can avoid additional storage requirements by computing

a LU factorization for M 1 and M 2 and work instead with matrix-vector operations.

4.2.2 A Steepest Descent Alternative

Motivated by the satisfactory performance of steepest descent methods via proximal distance,

we consider the same approach here. For a fixed viscosity ν and surrogate hρ anchored at

(αn, βn), the optimal step η for a steepest descent method is given by

η =
‖∇hρ‖2

∇h>ρA∇hρ + ν‖∇hρ‖2
,

where A is the matrix identified previously in the unified least squares criterion.

4.2.3 Alternative Parameterization

The substitution γ = β −Zα transforms the original model to

f(α,γ) =
1

2

∥∥∥∥∥∥y −
(
XZ X

)α
γ

∥∥∥∥∥∥
2

+
λ

2
‖γ‖2.

We can then apply the same principles to derive an explicit iterative map from the normal

equations or a steepest descent method. While the problems minα,β f(α,β) and minα,γ f(α,γ)
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are equivalent under a sparsity constraint, the choice of parameterization may converge to

different local optima because the penalized objective is not convex. The solution sets be-

tween the two versions of the problem may in fact be the same, but one may be preferred

depending on how the parameter landscape changes under the change of variables.

4.3 Preliminary results

Here we compare our proximal distance methods that enforce sparsity directly against the

`1-regularized solutions produced by xrnet. Throughout these experiments we simulate an

instance of the problem with size (n, p, d) and sparsity level k0 according to the recipe

Xij ∼ Uniform{0, 1, 2}

Zjk ∼ Normal(0, 1)

αk = 1 or αk = 0 such that #{αk 6= 0} = k0

βj ∼ Zj,·α+ Normal(0, 1)

yi ∼X i,·β + Normal(0, 1).

This produces X ∈ Rn×p, Z ∈ Rp×d, y ∈ Rn, β ∈ Rp, and α ∈ Rd. We fix n = 1000, d = 50,

and k0 = 10 while varying the number of predictors p ∈ {2000, 4000, 6000, 8000, 10000}. Our

proximal distance algorithm is allotted 200 iterations for solving a problem for fixed ρ with

the penalty coefficient scaling by a factor of 1.2. Further, our method varies k ∈ {15, 10, 5}

and λ ∈ {1, 10, 102, 103}. In Figure 4.1 we report performance of our steepest descent method

against xrnet on the basis of mean squared error (MSE) with respect to ground truth.

Figure 4.2 reports results on the basis of false positives and false negatives, respectively.

Figure 4.3 compares our proximal distance method against xrnet. These preliminary results

suggest that our sparsity-based algorithms avoid a high false positive rate while preserving a

low false negative rate, which is a notable improvement over xrnet. Further work is needed

in implementing a fast cross-validation procedure using our algorithms.
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Figure 4.1: Comparison based on mean squared error. MSE optimal solutions with

respect to ground truth on the basis of α only (top), β only (middle), and (α,β) jointly

(bottom). Our MM algorithms outperform xrnet in estimating external effects α.
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Figure 4.2: Comparison based on false positives and false negatives. The number

of false positives is based on solutions that minimize MSE with respect to α only (top), β

only (middle), and (α,β) jointly (bottom). Our MM algorithms are successful in controlling

false discoveries and show an improvement compared to xrnet.

Figure 4.3: Timing comparisons with xrnet. Our proximal distance method has a

higher cost in terms of compute time. Importantly, the xrnet software results reflect the

time needed to compute solutions over a wide range of values for the hyperparameters λ1

and λ2.
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[SCB21] Aurélien Sokal, Pascal Chappert, Giovanna Barba-Spaeth, Anais Roeser, Slim
Fourati, Imane Azzaoui, Alexis Vandenberghe, Ignacio Fernandez, Annalisa Me-
ola, Magali Bouvier-Alias, Etienne Crickx, Asma Beldi-Ferchiou, Sophie Hue,
Laetitia Languille, Marc Michel, Samia Baloul, France Noizat-Pirenne, Marine
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