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CAUSALITY AND THE LORENTZ GROUP
. Maurice Neuman
Lawrence Radiation Laboratory
University of California

Berkeley, California

June 8, 1960

ABSTRACT

A definition of causality, different from the one currently employed

in field theory, is introduced. . Its relation to the Lorentz group and to

relativity theory is clarified. It leads to a reduction of the S matrix,
appropriate to dispersion theory, that is .not subject to some limitations
hitherto encountered. The mathematical constructs appearing in the course

of this reduction are discussed.
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CAUSALITY AND THE LORENTZ GROUP
Maurice Neuman
Lawrence Radiation.Laboratory

University of California
Berkeley, -California .

June 8, '1960-

INTRODUCTION

Among the more promis,in‘g,recent attempts in field.theory are those
,thaf éxploit the principle of causality. . The matrix element for elastic
scattering is ‘represente‘d as a Fourier tran.sform.of the expectation value of
a retardgd _commutatof. The latfer is then required to vanish for fields with
spacelike separation. . This, together with the assumption of a complete set
of positive—frequgéncy_,tirr;elike eiéenstates for the displacement operator, leads
to interesting analytic properties of the scatteriﬁg amplitude. ! In order to
deal with processes of greater complexity the single-commutator representation
is generalized to one 'with vmult.iple commutators, 2 This extension is subject
to two limitations: there must be no more than two particles in one of the
states, and the one-particle states are taken to. be stable.

In this article we formulate the principle of céusa_lity in a fashion that
appears to us more apposite to the context in which it is used. Basing our-
selves on .this définition, kwe proce.éd to discuss the relation between causality
and.the Lorentz group. The discussion suggests a.-r_eduction of the S matrix
essentially different frém the mp.ltiple-commutat_or representations. It is not
subject to limitationsb‘on the number or stability 6f particles entering into or |
emerging from a reaction. Causal_ity so férmulate,d is -then shown to imply
,microcausality, a géndition on a biliﬁear fofm in the Bethe-Salpeter amplitudes

appropriate to the initial and final states.

o
“Work done under the auspices of the U.S. Atomic Energy Commission.
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C,AUSALIITY IN CLASSICAL PARTICLE MECHANICS

Let a simultaneous configuration of a system of n particles, subject.
to a -dyna.mics' :D, be ,specified’.b.y.:zk(s)H(“\:O, 1,2, 3; g}w=1, -1,-1,-1,4%.: s=1,2,-°°n). .
.Conside,r.t‘wo distinct simultaneous configuratioh.s Z(Tl)’ Z(TZ) which may evolve
from each other according to -D. Let the D be thought of as including the
‘mutual interactions of the particles and the effects of external fields. . We
-associate with it a 'DO ‘which is thought of as excluding these and representing
the free .dynamics of the system. We call the external fields and the mutual
interactions causal if Z'(‘TI) and,z.(q'z) are also accessible from each other ;by
the motion sDo. Respecting the nature of the latter, this definition has nofhing
to say.

Applied to a b.sixy'lgle -;_;article, whose .DO -is a forward motion in time

controlled by Newton's equatiéns, ‘the.definition would rule as acausal those
external fields that result ina later posviti;)n oufside :the forward light cone of
the original. For a 'DO that admits .a forward as wéll as.a backward motion
in 7 , the class of causal external fields might be broader.

It is difficult to' harmonize this denotation of causality with the
.connotations and associations the word has .c-ollectea, A more felicitous term,
reflecting our anxiety lest certain facets of free motidn==to_-which we are -
addicted--be effa.cedl by interactions, would be desirable. - The more so, since
the range of applica,bil"ityfof the word . is now limited to th'eorives with a
prepqssession for suﬁdéring,iﬁteraction.effe,c‘ts fljofn the entire motion.

. Does the word, with its common denotafive value, have any meaning
in 'physicsv? Fof a closed dynamical system, unaffected by external forces and
.without hidden degrees of fr.eeddm, we believe not. The central problem for

these systems is that of determinism, rather than causality. We are given

the law of evolution of the system in the small and inquire what additional

o
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conditions (initial, final, boundary) must be imposed for the determination in
the large. ‘More precisely the question--purely mathematical--is whether with
a certain t'ype.; of conditions the prc;blem is  well set (in the sense of Hadamard)
and not whether these refer to the past or future. On the other hand, in con-
si,de.‘ring systems subject to external agencies we are averse to basing our
solution.on promises, and account only the past performance of the agents.
Since the latter can be comprehended in a larger closed system é.nd codetermined
with the system under consideration, the concept may well be only ancillary
to classical physicé, Quantum theory may. present a somewhat different
picture, since an observer cannot bé codetermined with the system he observes
and still have any knowledge of it.

Historically, the theory of relati\(rity was the carrier of an idea,
somewhat less general and explicit, that comes under the head of our definition
of causality. We shall give now a crude .operational picture of Lorentz in-
wvariance, unembarrassed by it. . Wifhin its frame we shall also fit the
definitions and discussions of the following sections.

A physicist has somehow come by an album of sketches of orbits of
particles. He may have obtained it from observation, by integrating equations
,6f motion, or drawn them from his imagination. .To a rather exclusive exhibit
of these he invites that public which .Sees .eye to eye with him on certé.in things.
To qualify for an invitation, each one must share his opinions on:how to calculate
lengths of vectors from their componénts and agree with him on other things to
be discussed in the next section. . He exposes.one of his sketches (say a circle)
to their view. Each of them reports back his distorted impression of this object
(to each of them it may appear as a different ellipse). If he can match each

of their distortions with some sketch of his album ("I have one like it, but it

isn't the one I'm now showing') and if he can do this for every sketch of his
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album, then his collection is invariant under the distortion of this group_o-f
viewers. In this formulation. the invariance of the collection is contingent on
.the wealtlr_l of possibil_ities of motion ,t.che album contains within it rather_,_than 4
on any. dyna,rrﬁca.l,de‘cails° 'This ,pictuz:e is ,’made more precise in the .next

section.

% .2 CAUSALITY*IN QUANTUM MECHANICS

The homologues of free and interacting classical motions between two

configurations ‘are the free (x s

-1

¥y oo yn_) transition amplitudes. - They are not expected.to -

e x ARER Yn) and interacting

m

ey roox |8

exhibit the specific features of point mechanics. . Even for a single free field
,thé transition amplitude

(x[s[y)= @A) AT =1 AT (xy) Q)
does not vanish outside the light cone. A general feature .of the classical
situation, closely relating to the Loreﬁtz group, is, however, reflected in
quantum theory. It is that a.free pérticle ¢can be saddled with a Lorentz ob-
server. Our causality requirement. restricted.the -admissible external fields
open for the particle to those in which it still may be tamed. .We express this in
quantum language by saying that the free-transition amplitude (x lsl y) admits
the Lorentz group and we restrict the admissible interactions to those in which
(x [-_S' y) also admits it.. In.terms of the operai:ional statement of the previous
section: all those who agree among themselves on how to compute lengths of
. vectors do not distort .s. To preserve this unanimity, we refrain from

introducing controversial interactions that would lead to a distortion of : S.
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We now proceed to gi\;e mathematical forfn to. the idea bf distortion
as.applied to objects of field theory, to list the classes of object on which the
Lorentz public must agree. by the very nature of relativity theory, and to show that
S is not included among these classes.

The representation of a distortion is well known in the theory of groups
cf.transformations. 3 Let g be some element of such a group. . Let F(x)
be a function of the coordinates x whose numerical value is specified in a
certain set ofﬁ frames of reference, It may be a tensor, spinor, Hilbert space
vector, or some combination of these. The F 'as distorted by g, Fg, may be '
eXpresvsed symbolically in terms of the undistorted F through the relation

"Fg =g FgEl, understood to mean that we take g oﬁ the left of F in
those representations that are appropriate to the tensor or spinor character

of F, and g-l on the right in those appropriate to the realization ¢f g on

the coordinate variable. For a one-parameter (t) subgroup we denote the

latter by X, and its inverse by x ¢ The infinitesimal representation
: B ox, M
associated with tensor indices is then the matrix Jtp (x) = E, ; the

% 9x -

representations s associated with spin and Ut with Hilbert space indices

t
are taken, for the moment, as independent of J. The distortion of a c-
function tensor is then

v | v 1yt |
g ) gt =3 s v gt Y ) (2)

a spinor c function is

b = 4,00 = 5, W) - e
a spin operator is
Vi) > v e = T ey e ) St—I ’ | (4)

* a Hilbert space vector is

Qx) = 2 (x) = UQxzp) o (5)
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a scalar field:vva.riable' (Hilbert space operator) is

0 =0 b0 =T et g Ut | (6)
The q_uantifies s -and .U, in general bindependgnt‘ of J and the finite trans-
formation on x, are in field theory related to these by restricting the class
of admissible transformatiqn to those _Which do not distorf certain objects.

-We shall list the types of ijec;;s that are ,réf.quired t.o be undistortible
by Lorentz invariance and show that the transition amplitude is in general not
included among them. The pr;lmary object of this character is the metric
tensor. Its undistort;bility defines the representation of the Lofentz grbu‘p on
tensor indices through the requirement gt Hv (x) = g}w (x) . From now on we
confine ourselves to Minkowski f;ames in which g is diagonal and indepeﬁdent
of x. ATo ci)rrelate s to J we also fequi're that the spin operators vy K re-
main undistorted, thus def_ir_1ing the spin representations of the group. . The
Hilbert space representation U’c is defined by the requirement that all field‘ .
variables ¢(x) remain undistortefi, Since these are the three types.of fep—
resentation we need in field theory, Lorentz invariaﬁc-e alone does not compel
ué to postulate any further undistortible objects. In this sense causal‘if:yy
although iﬁtimately connected with the mappings under the Lorentz group, is

quite independent of the requirements of relativity theory.

Let us now consider the state vector

Q(x, 6) =[ “dot(E) at(x-t) 5, (6) e(6)a, (7)
g

where  is the vacuum state, fbpg = fBHg - (apf)g, and ¢ a scalar field

operator. For a free field this integral is independent of ¢ and may be
evaluated with x on o to yield w(x) = ¢T(x) 2. We then have, by (5),

1

6, (x) = Uelx_,) = Utgf(x_t) U, 2=, (x) 2= 0, (8)
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from the requirement that ¢ not be distorted. Relation (8) does not hold for a

general £(x,0¢). Geometric considerations indicate that Qt(é~xo), regarded as

a functional of the pseudonormal to the surface ¢, is different from Q(x, o).

.Since the transition amplitude is a.scalar product of state vectors of this type

with ¢ - * =, it need not admit the group for transitions involving interaction.
We shall accordingly reduce S by expanding it in terms of s. The

exacting demand of admitting the group is then passed on to the coefficients

of the expansion. These turn out to be bilinear forms in the BS amplitudes.

To carry out this project, we need three lemmata. The next three sections are

devoted to their derivation. The first lemma is also of some intrinsic interest.
It permits us to compare the reduction scheme of dispersion theory with those

employed in other approaches to field theory. . The second is a device for

generating elements of s. The third relates to generalized retarded
commutators and implies a certain reciprocity relation for the internal
orderings of factors in a product of fields. These in turn suggest a view on

dispersion theory, discussed briefly in the final section.
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. DIRAC IDENTITIES
‘The object of the work inthis section is-to derive the formula on which
our reduction of the. 'S matrix is-based. It is an extension of Dirac's .

rad to second quantized systems. In the extended version’ A%Ut

AoutzAin + A
and Ain~ are products.of outgoing and incoming operators as they occur in the
construction of the outgoing and incoming state vectors. . Two sets of quantities
corre sporiding to Ar_a,d are-defined and have in common.with it an essential
property. A notation requiring somewhat eleborate definitions is introduced
to make the final expression compact and. explicit.

We consider a specific matrix.elem'ent“ of the.scattering operator with
m'> 1 incoming ’and ‘n > 1 outgoing, not necessarily :distinct;, scalar fields.
Let these be arbitrarily ordered as in

Q ¢ (x',x", xM, )= ¢i+(xa) ¢i+ (x™) xi"’(x,m) Xi+(xiv') e,

i .

p 1 [}] 1] o e @ — + \ + 1) ) + 11 ‘ + 1V . o P
Qy'yyhy™,een) = 2y AT O Ty A Ty ) , Q,

where the superscript {+) denotes the positive frequency part of the incoming
(i) or outgoing (o) field and the vacuum state is assumed to be stable. The
ordered sequence with repetition in the field variables is now placed in a one-

to-one correspondence with sequences of field variables without repetition.

Tiy.)

These are A
. n‘’n

1

1

+ + . @ + + e o
1 1 e} : (o] (o]

for the field operators of Q.l and QO respectively. A permutation group P
on m letters is now associated with the A sequence, and q on n letters with
B. The domains of the permutations are the identical subscripts of the field w
operator and coordinate variable. A particular permutation p may be defined
by
P LA ), Aylxy), Ajlxg),e o AL )T = [ Ag6e), A ) Ak ).,

Aslx,) ). (9)



-11- UCRL-9260

The definition of a multifield operator constructed on a sequence of

commuting operators (like Ai+_) is given by the formulas
SPla(x) = 1 f6F s =0 ,

spl - Pl ceex ) = : . ‘
A(x) = A(xl,xz, vxs) = Apl(xpl)%z(ﬁ)ér Aps(xps)fpr 1 < s < m. (10)

The first of these is. a,_c»onventi_o\n. In the second, the first equality sign trans-
lates. a c;ovmp‘act i.nto a .more'pro_lix potatio#; the second equality explicates these
in terms of elementary field variablels._ In words: to co.ns'truct slp_lA(x) permute
the standard sequence by p and form the product of the fifst s elements of the
permuted sequence. It will be useful to have a notation spAl A (x) for the‘

complement of S'pyA(x);

SPL A/(x) = Pla(x x_ ) = Alx ). (10%)

s+1" %542, *m pl(s+1)’ xp(s+2), o e xpm

The identity permutation is not indicated; thus sl A(x) = A1 (xl)»' . -'As(xs) .

We also omit the s for s.= 1; thus pl Ax) = Apl(xpl):_ Consistently, then,
i} m o '

Alx) = AI(X1)°

p of (9) we have

PLag) = Aglx;),

Zpl _ \ :
Plag) = A, (x,) A (x)) A_(x ).
373V T m m”
In order to extend these definitions to sequences of noncommuting operators

‘we introduce a system of 6 functions.

0,

sPl»e(x) =1 fdr s

=1 for s =1,

= 00c ) [l ) = PO [y o) for s > 1, (11)
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where

p o o @ . 0 . LA < 0 -
9+ (Xll Ixs) 1_:for X pl eee &x ps

0 otherwise,

lforx0>"‘>‘x s
: pl : ps

Po_ (e[ [xg)

1]

0 otherwise.

These are direct generaliz.atio"ns of 2.6 (x) = 6'(x1 - 'xz),' and may be expressed
in .ferms,of this.syi'nbol; -thus -39(_x;) =,0(}:{1 - ‘xz) Ov(x.2 - x3) . . We associate
‘with this set a. permutétion gfoup T on ‘s letters whose domain consists‘of
the subscripts of x in 6

TSPlg(x) = B(x

mpl ’ xﬂ’pZI " lx.ﬂps') ’

- From the meaning of these symbols it is readily seen. that

=™y 1. o S a2
z 7, |

We now define the multifield(opéré.tor SpA:k’(xv) on the ordered set of

" simple operators [AI (_:i:l), AZ(XZ')’ .o .;’Am(xm) ] by the formula

’SPEAi(x) =1 for s =0,

PA,(x)= Z™Plo,(x) "™PlAKX) for m >s>1. (13)

o ' :

In words: to construct DA apply .a p permutation to the sequence, form
the product SPlp of the first s elemerits from left to right, multiply by an
appropriate 60, and sum over all possible temporal arrangements. - We note in
particular the relation 1A+ = 1A_ . If the operators in the sequence commute
we have P A(x) = SPlA(x) and, by (12), SPA(x) = °P!A(x). Definition (13)

then includes (10) as a special case. It is the p bracket of Dyson, the *

brackets of Schwinger, the T product of Wick, the - T function of LSZ, 2 etc.,
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defined on the sp‘_x_subset' of the set of m operators.  We enr‘iched.thi‘s_collection
"with one more notation, . which is handled more smoothly in al'ge‘b“rtaic
manipulations. ‘

The Dirac definition of the radiation field Q(x) given by vfhe expression

A (x)=A (x).+ Q(X) T R ' (14)
o e : V
may be regarded as a formal identity:

A = f o, (&) A-8) 5,08 A

iy ] f) d0 () Ax-£)5 ()A(E)

-+o0 - a0

% w

\

; f ao¥ (€) A6x-£)5 () A(E)

= A (x) +fdo(§) A(x-£) K(£) A() = A(x) +QUx) -
i i .
In this,éxpfession A(x-) is 1m:hé radiation kernel appropriate to the A field and
'K the Gordon-Klein operator that annihilates it. - To have a'more'éompact

‘notation we write

jdo“ ()8 (x-£) 6 () - = fd Hix-£) -+
o o
de(g)A(X-g) K(§) --- = de(x-é) e,

where H is, essentially, the Huygens kernel and K relates the radiation field
to its .source. In this notation, an abbreviated form of that in LSZ, Green's

theorem for a c¢ function f(x) is
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f dK(x-£)E (8) = < j - f ) aHx-§) 08 (15,)
o, N\ o | A '

2 1 : | x
if f(x) vanishes sufficiently rapidiy qn:the,timelike remote s_ur.faces.‘ - We |
adapt now 0;1e of their principal techniques vtor extend (150) to cases . in which
f is . replaced by the ordered operators Aﬂ: of (13). . Clea1;1y_ (150) stilllholdsb

_for A with s =1. For ‘A with s >1 *we need the following versions of.

Green's theorem: .

fi‘K(x_n_gﬁ) A+(X:1 T Xn—Ign)=A+(X1°, " ¥h- 1)A (xn)-A(xn)A+(X1' T *n. 1) (154)
' o i

_-[dK(xn-@ﬁ)A_. (e 0% 6 )=A G )A_(epeeox )-A G eox, DAG) . (15)

J ' ; : o ' ’ i

By the argument leading to »(150) we have

fd,K(xn—ﬁn)A+(xl- . -x_n_lgn) = </fo - /o. >A+(xl ---xh_lgn)dH(xn=§n),
g, = 4 o g = - @

n , n
~and according to (13),

= N VU 5 Y
A+(x~.1,-, -‘xn_l;xn-) = i ? +(§q1l [ Xﬂn(n__l).[%m) Alx) e TTTAK) A
- We see then that only permutations with fixed m(x) =n and m(l) = n.contribute
to the upper and lower limits respectively. . Equation (1_5+,) then follows. from the
definitions of A and A . Similar considerations lead to (15_) .

o i
. - The definitions

A (x) =f dH(x- £)A(E), (16al) -
o (i) A (- )

Ot :de(x—ﬁ)Ai(g). S " | (16b1)

of the quantities entering into Dirac's expression are now regarded as

[

particular cases of the more general
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PA (x) = f SPaH(x-£)°PA(£), - (162)
o teo (<) | |
o) ;-fspd_K (x-£€) SPa, (&) . - (16b)

We take the usual asymptdtic conditions to hold and therefore do not provide
the A on the right-hand side of (16a) with an ordering (%).
Definition.(16a) is a direct consequence of (16al). The designation
of -(16b) as a radiation operator is warranted on the ground that, as also in (16bj)
its positive and negative frequency projections vanish in the vacuum state.
These projections
SAi , sQi * are obtained through the integral transforms (16) with

ofi)
kernels H¥, K* in which all the A functions are replaced by A+ or all the

A functions by A”., Since A is At + A7, we have

+  3d,,-

s dHT + °H" for s =1,

dH = °

SaH # %ant + %dH™ for s > 1,
with similar relations for K. The statements
S5 F ot 0 o5 ot _a a5 ot o a0 a5 ot -
Q" @ =0, @°Q e =0, 0 --'O,Q-Q_Q-O (17)
obviou_slyv hold for s = 1 (with the assumed stable vacuum). . The (-) + on

in (17) designates a (co) contravariant vector and thus obviates the necessity of

brackets in denoting scalar products. We.shall adhere to this convention.

.
Q0 = "I 0 A6 - A6 Qe | (18,)

QL= A =)L - T 0 Ay (18.)
(o] 1

Applying K integral transforms.to the variables x X ~in (15), we obtain

n-1
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- The positive-frequency projection of '(18+),- recursively expanded and

simplified by 2 T A =0, yields

-Q°SQ++(x) ot -

i
Q" s-1

4+, 4t +
L) AT et

- s=2M +,; + 4
st = 0 70, 0 Al yx 0

= ¢ . + +
- =Q OC'(x-l)A (e, o x )€ =0,
v

The remai.ning three assertions of (17) m’éy_, be deduced:in a .similar fashion.

1.

The two pairs of expa',n'slion formulas for A’ and ™A are written

.down- as

ma (;{) =

My )= 1 B (F) =%A (%) (-1) % TPQ _»(x;)';

>
¥

I
QM

1
m' P i

m'\ ¢ p o

p

MaAx)= L oz (B) 2 (-1

i

m' ¢ P

2 (%) 2Pap PQU, 0,
0]

%) 2 7R (0 7 Pal (),
1

P TP A
(o)

The grouping into pairs is motivated by the fact that from a more detailed

version.of D (with expansions for

relat10n-=-a bilinear form 1nv01v1ng only Q --for each pair. Let p(0) be the

stab111ty subgroup of p that leaves (1 2,°:-0) 1nvar1ant and p/o the set of

equlvalence classes of p def1ned by . p(o') Since A and Qare‘symmetric

in. thelr arguments, we may convert the : sum over all the elements of the

group into one over the equ;valence,clas"ses -by( the corre,spond1ng,s,tablhty

~subgroup.

For ,(Dla) we then obtain

(D.la)

(D)

(D,2)

(D,b)

SpA) it is possible to obtain a completeness
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=z p{\ (x ‘ XO :)‘PO+(X0+1"“X ) (D'la),

m
A..-(xl . fxm) = m
p/o

o ’ C

IRE

This reduces for m =1 to A.(Xl) = A (xl) + Q.+(x1)"' the correct identity.
o i '
Assume that (DI' a) /Holds. for m=n.-1 a_nd,mu_ltiply'_ both sides from the
; _ .

/

right by A(xn.) :

n-1
n P
Ax, +ex)=2Z Z A(x, cex )Ill(x yrrix ) A (x).
o 1 n 0 =0 p/O' i g’ M o+l n-1 o M

(19)
In {19) p is a permutation on n - 1 letters. . With the aid of (18+):

' n-1 ‘
n 5 P ‘
Ax,x)= Z Z [A(x. ceex ) (x st eX X )+
o -1 n =0 p/G ;b o ‘a+ o+l n-1"n

P cen P ce
+..A(x1, ,xoxn) Q+’(XO’+1’ Xn-lJ'

i
(20)

s ‘ ,% The! summat1on of the first term in. the bracket covers the subset of p/o
S /" B ' : /" o
on n lett/etrs»that leaves/_x /\ alone,« of the sec0nd, its co/mplement T~,he,

’

two may be combined into a ,,s"inglﬂe ,.term with p/O' on n letters_‘and_
represented in the form (D! la") with o running from zero to n.  The

remaining three expansions are deduced in-a similar fashion.
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FREE FIELD COMMUTATORS
In th1s sectmns we derlve expansmns for commetators ofr free multifield
operators acting on-the*vacuum.: These -ex"pi'es'sions »ide'ntifie,dwi«th ‘either in-
- coming or outgoing fields are used in a lete.r secfioh','
Our starting point is the observation that [A™ (x), B+(y)] may be regarded

-as. an element. of .thevfreecparticle S matrix (x Is ly), ‘and the familiar expansion

(A7, BB, ) - B ) 1-0A760, B Py ) 18,70+ B Py -

‘may therefore be rewritten.as

(476, " BY1= 2 (x [s [+ 9B¥ ()= z Z (x[s[n% %ty . (21
. . q/1 . O'“qO /0 .

The .second equality is valid because the s operator between states with
different numbers of fields vanishes. . This, and a corresponding relation,

may therefore be expressed as

AT 1= 28 efsln oty w0
. . n'- o . q . . . . R . R
(A" 0, BY ) 1= L (%) 5 OPAT e Px(s [y . ®.%)
L . T m'. ‘ 0 i N - p . . . . .
vContractihg -,E+Q.with wn(xé -'~-xn), w, and E_O' with ‘w-, w+(§2°;-°ym), we get
the recurrences
"y = L 2 (B) Ze|s| 0 e fs[n',  (22a)
n' c q
Pals|yt= L 282 TP xfs]y) O Pu|s |y, (22b)
n' o P

' . ; . .,
A ‘ St N a2
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or--without redundant summations--

np:[s[yf?= Z%b{[sly)q;'(x{s[y)'q | | | (22a')
At .

B s [y = 2 P e [s [y Pix [s ]y (22b')
p/1

The contraction of E+o with w, and ,-.E_O with w_ gives

[ A%, "BT e o, = = 2(8) z P s [y) 97w, 7)™ P ruE,)

o FPAT), "B 1= 2R 2o PO%Px [s [1)7-670 e x)E )
m'. o P

where m =1 1in .E+ and n=1in E .  We shall now show that | E is valid without

this restriction. . To insure its validity for m = 0, n = 0 we inserted the terms with

‘the Kronecker deltas.

In the alternative version, E+ states

[ PaT, "Bt To, = 2 2 P ]s [1W%; Ty =
- 0=0 q/o

B

for m >n ' (23a)
= Z x]s ]| TPer P )
q/m

for 0 <m< n {23B)
where we made use of the orthogonality of initial and final states with
different numbers .of fields. Assertion (23a) is obviously correct, This
is evident from tvhe fact that, because of the presence of w+, -we can construct
a multiple commutator of nB'I'(y) with singlev ‘A—.(x.), of which there are enough
to devour it. To investigate ,(2362_ wé introduce v> 0, n=m+ Vv and re-

write the expression as

[ a7, T Y o, =2 P s Tey A (23p)
v
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valid for m = 1 by (21). We assume it to hold for m = n. and use.recurrence

(22a') to prove its validity for m =n + 1. In extenso, ,this is

-

eyt [sly vy = f/ij(xlls’y )02 gy - :'?“Z"”y“h*f”)
o (220" *

S e o loly )0 5 b sy

/n | , /
by an obvious change in variables, or -
S0l Y ,
Ge e |s ly S UARED FYFISLY f/h(x.l’ o lsly nql’ .’ann)@mllsl%@ml))’
(24)
where q 1is any permutation appearing in (23f'). Substituting this into the
right-hand member of the latter for m =n + 1, we show, by a sequence of

steps, that it is equal to the left:

z D (o] el Hh) ag,

a/(n+1)
=z e RS ,
2/ T 'xn“'l,sly,ql’ Y1)+ Yq(ne2), - - Yq(niva)), =
= Z = Cee (o e
" q/(n+l) m/n ke S ls"yf nql’ Y“qn)(xn+1‘[sly nq(n+1)’
: xw'*(YQ(n'fZ.)' T Yq(n+V+ll))
=z > (Xl.'.gx‘nISIY Tfl"“':’ynn‘) (xn+llsly’ qﬂ(n+l))

m/n q/m(n+1)!

X anmez)y " Ygnintvel) )

,°°‘-x sly ,ecry_ ) Z |

1T/n 1 nl i wl 'ﬁnq/ﬁ(_ﬁ+l)a : N
X [ 1Y guaen)) ©e0gninszy " Yqniasver)

- n+1_-(Xn+l)n§n(XI"f T %n Isl Vg o' YTTn.):Q+(Y1T(I;1+1)’ o YTf(n+l+V))
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= Agn'}'l(xn"’l) [nA-(X)’ Bn+l+V(Y)‘4| w+ - [n+1A—(X)’n+1+VB(Y)] w+ .

We go from the first member to the second by simply expanding the notation;
from the s._econd to the third, by substituting (24). A simple consideration shows
the -validity of the interchange of the order of summations involved in passing
from the third to the fourth member. We can see that the q summation is
carried out as indicated in the fifth by noting its equivalence to the actidn of a
destruction operator on-a state vector, which leads.to the sixth. In passing to the
seventh we use the hypothesis that the statement holds for m = n. The transition
to the eighth inv‘olves an elementary manipulation with operators. The same may

be done for E_°
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RETARDED CQMMUTATORS AND RECIPROCITIES
,01;11' goal.is tb je,xpress‘ an arbitrary element df the 's'éa’;te,ring,opex.'ator
by single retarded commutators of.multiple fields. . One of the factors of the
. commutator is-constructed on Heisenberg operators of the initial, and the .
.other, 'of the final state. The Dirac identities provide the link .betw'een' the
incoming and dutgoingi'ﬁelds and these factors. ' In arriving at the Dirac identifies

-we introduced- into the expansions (D) for- MA, A

i ]
- fields pertaining to.the initial and final states.  These have no physical basis

internal orderings (%) of the

and should not appear in-any.physically significant context. .In this section we
derive reciprocity relations which indicate that this is indeed so, and that the
only relevant temporal order is that of the initial relative to the final state. To

express this order we need another 6 symbol,

m n _ _ . 0. 0
(xlely) = (X-B.“"xmlel?fl’“' ,yn) =1, if x, = is less than yJ

for all 1 <_i <m, lfj_fn,
= 0, if not,
with the obvious composition law
m n n n Alan _ m m .m
(xl@ly) .= (xllely)vh(xZ'G,y) oo e (xmle ,y) = (x'@'yl) (XIGIYZ‘) so e (Xlelyn).
(25)
We start with the identities
i i V

(26i+)

[ A ). F ()] = (—vl)ofodK‘X“ 67617 Aa®) TA @), F T, (26i-)
1 . ' 1

[ 74 0.7Fen) 1 = <=1»>°[m°°dK' -8 (E[ o) [ ™A ™ %4t (6),“F(y) 1,

[ TP, "By / “aKty- 07 |o[m [ TFe, OB (7B, (260+)
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n-g

[mmx),“OB Ml=[ d&y-n clo] m' O [ mF(x),n‘_“’lg_(y-)n‘“"B;m)] ,
(260-)

where 1’lF(x) = -F(xl, v xn) is an operator depending on the indicated

coordinates. They express the commutator of an incoming or outgoing field

with an arbitrary field as an integral transform of a retarded commutator. One

of its fa..ctors has a part in which the initial or final fields are internally (%)

ordered. . This order depends on the position the fields occupy relative to the

unordered part. With the devices of LSZ their derivation is quite simple.

. We illustrate it by indicating the essential steps that lead to (26i-):
[ ™A (), "F(y) ] = j dH(x, -£)) [A (E)) A (), "F(y) ] =

1 1 1
< a0

= - de (x,-6)) (&[0 [A(E)) A" (), Fiy) 1. (27)
J i

In going from the second to the third member we ordered gl relative to the
L}

set. of y's by means of the 8 symbol. With this symbol in, we could with
impunity add a surface integral at +e and apply Green's theorem. The next

step is

[ACE) A (), "F(y)] = jdH(xzééz) [AE)AE,) At (x),"F(y)] =
i ' i

de(xz-éz) (&, /6[n™ [ A6 A,(E,) 2a ), "F(y) ]
’ 1

- f dH(x,-£,) (€, [0[n)™ [ A,(,)A, (€)™ Ak Fi]

= -de G, = £,) (6,[0[)" [A_(£ 6™ %A (). "F(y) 1 | (28)
' 1
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where the third member is obtained ,f.ror.r;th'e second by -equipping_it with |

a 0 factor and subtractingfa null surface integral at +e, with the order of .
the A( £) reversed. The fourth member is obtained from the third on the basis

of the observation that the order of the A(E)'s in the surface integrals

corresponds to that of A_(gléz), . Subs_tituting (28) into the last member of (27),

we notice that the 6 factors combine according to (25), and thé" resulting

identity is (26i) with ¢g=2.

. We now take 0 = m in_(26i) and ¢ = n in (260). . From this we deduce

fmdm- e [o[n® [ ™A, (£),7F() ] —f Ak (-8 (e [0 [0 [ Ta_(6), P F()
| | | (29)

and a similar equation involving B with identical content; the,(i) ordering
is immaterial for the transform of the retarded .commutator. Identities (26)

may then by’rewrltten as
=17 [7A 6, " D] = | TR - £ [6|y> PA(e),"Fiy)], . (300)

i
UPEE, "B ) ] =de-(y=<-n) G [o|m™ [ TFe), "BMIT . (300)

where we omitted the otiose .subscripts of .?A(g) and n:B(‘r_])., This .accérds with
the fact.that A and B are.unordered. Substituting VmF(x)_ = rnA:’:(x),

i o ,
n.F(y) = n.Bi(y) into (30) and subjecting both sides to the K transform whose

domain is .y in (30i) and x in. (30 o), we obtain, with (16b),
CDP0TA 6, B0 ] = [Tk dK(y - (&[ ol ™ [ "a), "B}, (3L) -

[ Qa0 B(y)] f dK(x- £) " dK(y-m) 7 ( [e[ T a(), "B(n 1, (31,0)

where the (%) in the retarded commutator has been dropped by invoking (29).
The right-hand member of (31i),. identical with that of (31, 0), and
independent of the internal ordering of the A's and B's, plays-a significant

role in the nextv section., Of direct physical interest will be
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Px [7] )" = [de' (x- £ akt(y-n™(¢[6| "0 [ ™al),"B(n ] 2,. (32)
This integral tra,ns_fgrm (with K~ on the initial, K+ on the final state) of the re-
tarded commutator in the vacuum state is referred to as its projection unto the
mass shell. Here we eliminate it between the (i) and (o) to obtain.two sets of

reciprocity. relations. The first,
.m n ) _rm y B !
[ Aix.xx),bggy)]] =[TAaw G ol
L7, "B =0T 6 "B 0] » (33)

states that the unordered character of A and B render'svthe ordering of the
i o :
radiation operators with which they are commuted immaterial. A single

denotation in.the commutator thendoes for both orderings. . The second,

[P0 "B 1= D71 A, BT, (34)
o i
relates the commutator of a radiation.operator with an outgoing field to that of

an incoming.
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REDUCTION OF S
With the material of the preqed;ng three sectionsthis is done quite
simply. We put

Pl s|y)? =0 AT "B (), = 2 [ AT, "B () ] o450 67,
i o i o
‘ (35)
where we added a Kronecker delta term to make the equality sign hold for all

nonnegative integers m,n. »Subs,titutingv(D_la) for ]g;, we have

T [s[y® = 2 3 (B) Te [TAT @, Pty 1P Toe,
: nt »p q i i

+1 2 (B)za Pipt (y)[ AT (x), PqB**(y)]ﬂ smo 570

n' p q i i

where (33) was used to drop the + ordering subscript from theﬂ in the
.commutator of the second term of the right-hand member. = We now identify

A , B with the free fields of E and use this"'relation to substitute for the
i i - .
.commutator in the first term, with the simple. result-

s = 2 Lz (B (B 2P [s[ %P0 TPATEPET e, 67)
m.Y n\ op jsle

because we have

2z (B zelBtml ™A w0, B wnie,

n' p q i i
_ 1
+ 6920 . L 5B 5 §P0q ™A (x)P I *iy)e, = 0. (38)
nl p q 1
The last term of (38) comes from the '"boundary term" from E_. To verify

(3_8),_ observe that the only contribution to the p sum of the first and last fe,rm
is from p = 0; the middle combines with the last to give a commutator that
cancels fhe first. The A in (37) is now commuted with the£(with the
addition of another Kronecker delta term) and this commutator

[ ‘Af_ (X)L@+(Y) J is just the 7 defined by (32).  The expansion
i
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1

n._(x_ISIy‘)n,é m(x[s[y)n,.,L = 2(-1°%(3) ¢ g)ap(?é [le.)qp op' iy I‘S,l.r};),zq;)

m.n't 0ppq : | (39a)
is obtained after some trivial changes in the summation variables. An
alternative procedure is.to first express the incoming field by means of
(Dzb) in terms of the outgoing and then have recourse to E+° In this schefne
‘one has, in.the final stage, vacuum expectation values of commutators of the
type [(l'= {x), B+1(y) 1.. Reciprocity (34) then.indicates that the result is the
same by virtue Zf an opérato-r identity.

. Without redundant sums and symmetrizations, (39a) states

Txls|y)™ = Pixs [p)® (-1 MR ()0 2 3 "Pix |5 199 TP |2 [ ' 2,
o=0 p/0 q/0 '

where we make use of the orthogonality of initial and final states for the (39D)
free s matrix. The p associated with the 'upper limit of the summation.means
the lesser of.." Such explicit indications of limits are not needed in.the rep-
resentations with binomial coefficients. It is this accident that recommends
them for certain tasks. Expression.(39b) is, however, more convenient for
generating particular expansion of .S in terms of s. . We see from (32)t'hat we

0. n
T =

o Co
have m.0 _ 0 for all m. and n. As a test of the algebraic consistency
of the formula, we also note that

°x[s[y)™ = 6 O™ ana ™x[s[y)° = §m° | | | (40, o)
follow from tl?is property of 7. For the .simplevst processes--decays--the
ex-pansions are

G || ) = tx[s|y) - (s]rfy) |

(X‘Slyl ¥y, oo . Yr{) = - v.(xl"rlyl }..’2 coe yn) for n >1. (401)

With two fields in the initial state the various possibilities in the final are

indicated in
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beyxafSly) = Gy [ w0,

ey [Sly1y5) = eyafslyy v + '(X1X.z["flV1»Y2)'-r(¥<,ll 5| vy) (’,‘2 [7lyp-ees
(40,)

_(XIXZ'S‘YIYZ o °yn) = (,’_cl'xz |"|Y1Y2 o Yn) B (_}{1'sl¥1)_(x2 IT'YZ o 'vYn)“.' o
. for n> 2.,

The presence of one-to-one particle-transition terms should be .noted. They do

not appear in a properly renormalized theory that deals only with stable particles.

. The combinational sense of the expansion is evident., A game which m
particles enter and n leave is played according to all possible arrangemehts of
spectators and participants. Throughout each engagement (each term of th.e ex-
pansion) the spectators maih’cain their number and identity; .piayers may be lost
in or new ones emerge from the scuffle. Since preponderantly spectator
sports do not seem to be popular at high energies, the expansion does not
signify. |

We now discuss the relation ._of the reduction (39) to other reductions
of the S matrix. The idea is an old one; .i'_cs nearest claséical_ c;orrelative is,
perhaps, found in the work of Dirac. \The energy (power) radiated by a charge

distribution may be calculated from the time integral (average for discrete lines)

of the surface integral of the Poynting vector at a surface remote from the source.

By defining a radiation field inside the charge distribution this author was able

to transform the asymptotic representation into a space-time integral over the

charge. This operation .corresponcis_to dH > dK integration. Most of
the perturbation treatments of scattering that favor the Heisenberg picture
follow this impulse of Dirac rather closely. . T'hey are equivalent to the use of
(Dza) to obtain
1 o ' '
m n_ - n m + .
lsly®=5 = (Brz 2" T PR Ty e, (411)
p i i

L3
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where the expectation of the (-) ordered radiation fields (earlier times to the
right) is taken in states constructed of incoming fields. . The observation that the

~other choice would be just as good is equivalent to the use of (le), which giveks
, -n™ 5, 2O - o
Mulsh®= S 5 (B’ 5 P9 PA e, o). (410)
© m' ¢ - p o - o -
The joint use of (Dza) and (le) produces a complete re\}ersal of fields:

m

m o (=1) s \O,m,  n PO, G By - (1 PAQt; 4P T
(x|S|y) .= Z(-1)7(0)(p) = 7 (x) x)TRE Cy)T et (y) .
I [Y mt ol Op P o 0" Rl_ * ﬁa v Y

v (41r)
We are not aware of any past use of this representation. - It should be noted

that the (%) order is pertinent to (41). Somewhat outside all this is the Green's-
function formalism of Schwinger. Its reflection in the S-matrix context amounts
to an indiscriminate single ordering of all fields, initial and final. What
distinguishes the reduction used in dispersion work from the others is the
reciprocity (34) that enables us to omit the (*) subscript; it is, on the other
hand, decidedly emphatic.in its discrimination between initial and final states.
The developmentofthis article followed, .too, the_ path of Dirac, but had
-a particular orientation: it sought to express S in terms of s. Prompted _b;Ir the
simple observation that a matrix element of s--"a c-number--~could be identified
with a commutator-~-a function on q numbers--of multiple fields, it proceeded to
gene'ra,te,.,the former by means of the latter (E). To contrive a mutual confrontation
in 'S of th; two factors of this commutator it-augmented the number of Dirac
identities (Dﬂb, :Déa) that may be.used in perturbation treatments with two more
. (Dla’ -Dzb).. . The elements of T were generated in the course of this con-

frontation.
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f

MICROCAUSALITY
We aSsurﬁe the eiis’cence of a complete,
by o - -
Z [dk p(K a) —4 Ak, «) w (k,a)w (ka) =1, - (42)
+ -
a . (211') ) . . . .
orthonormal,

plr,a) ATk, K)o_(ka) o (kla)ATar, «')plxtat)
= 2m? p(x, a)AT (i, & )B(k-K! )8k Z-x )a at’ | (43)
set of eigenstates w(k,a) of the Hilbert-space representation ,UD of the

displac ement group D,

Po, ka) = e %0 ka) (44)
Iundiétorted by mappings of the Lorentz group | ,
wikg) T> Fle,a) = U, 2wk, 0) = wika) . (45)

Completeness (42) and orthonormality (43) have been:stated in terms of two
distributions, rather than proper functions, in.order to evidence,th.e__ir cévariant
character,  These are p(xa), ,fhe spectral density of the mass) and

A, k) = 21 B(k) 82 - x5,
-the Fourier transform of the familiar .A+(x). All other quantum numbers needed
for the definition of a state have been designated by a. Orthogonality in these
is indicated by a dimensionless Kronecker delta to accor'd.-with‘ the fact that

in (42) w must have the dimension of length. Assumptions (42) and (43)

imply the possibility of expanding an arbitrary element | Qi .of the Hilbert

space
[ j w(ka) ATk Jp(ma) bika) | (462)
(Zw) ' o B )
with
p(xa) AT(e) [Wika) - © - (ka) @, 1 =0, (46b+)
p(xa) A% (o) [ $la) - @ -0 (ka) ] =0 (46b-)

_for contravariant and covariant Hilbert-space vectors, respectively.

o3



-31- UCRL-9260

Expanding 'mAi(x)@+(1<_,g) and wa(k,a)mAi(x_), we denote the vacuum

components .of these vectors, the Bethe-Salpeter amplitudes, 4 by

Tyt ka) = o (ke) TA ) 0, | (474)

T, (6 ka) = w A (x) @ (ka) . | | (47-)

)

Under a Lorentz mapping we have

m

m, -, m, t- - - '
q"_l_"‘(xs ka) ——W l.|J+ ‘(X: ko.-) - .ljJ+ (xmt’kta) s .
and with (47-) and (45) obtain
e ka) = o U, 2Pae_ U Po (ke . | . (48)

It is evident from (48) that {'s admit the Lorentz group trivially, for
m = 0; by virtue of the,defining equai:i.on-.(é) of the UA' representation, for
m = l:but, in genera_l, not for higher m, we can write

m, t m

by =Y, for m=0, 1. (&) (49)

For the displacement group, because the fields are ordered relative to each

other,. we have, for all m,

Dm D m
Ua Ai(x --a) U-a = Ai(x_)
and therefore
quia = mupi for all m. (D) : (50)

To obtain a differential version of (50) we define

mn = a + ) a - + v o e + .__.SL_— R
b ax H ax “ ax “
1 2 m
and deduce from (47), (48), and the well-known exponential representation
of UD _ .
. - P ) +
i"a , plxa) AT YT ka) = He, p(ra) AT e )k, ka), (51)

which indicates that pA+ ¢+ ~and pA+41° are the positive and negative frequency
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AN

functions satisfying the generalized Gordon-Klein equation

(Ta 2 4x%) px,a) Atk 0) ™y (x,ka) = 0 L . (52G)

The definition of T may now be given in terms of the B S amplitudes:

M (x IT’Y)n = fm dK (x - §)I.1dK+(yv-n)m(€ |9| )" m(g-.lD‘l n)n, (53) .
4 ) .
i [D| )" = ZIdKZ p(n,a)/d < Atk «)
a ) em-
AU ka) ot (yka) < Y oka) PeT(y, ka) ] (54)

where | pertains to the initial, ¢ to the final state. . The (%) ordering sub-
scripts of ¢ and ¢ have been omitted in accordance with (32). For the

special éase m =n = 1, this reduces to the Well-kﬁoxx}n'b'iliriear re'pres,entéti'on

of the radiation kernel, vanishing for (k - y)2 < 0 and admitting the Lorentz group.
The latter property is an irﬁmediate consequence of (49), and because of the
restricted validity of this_equation-, need not hold for other rn and n. The
implications of the requirement.that S admit the Lorentz group are now plain.
Since s admits the group, this burden is shifted to 7. An inspection of (53)
indicates that the radiation kernel D with an arbitrary number of initial and
final particles must conform in its basic properties to that of a single particle:

(a) Mx ,I'D |-y‘)n must admit the Lorentz group for all m,n;

(b) rn(x l"Dly)n =0 if (x_i - yj)2 is less than 0 forany i=1-<++.m
j =1 ¢ n .

That the physically sigr;iﬁcan.tv quantity, 7, evinces no interest in our
nice distinctions between.the + and - order is sug'ges,tiv'e. Let us imag-
inethat we éxpande‘d.the single equation. (52 -Go) into an set (GO, Gl’ cee Gs f e ai),
whose solutions are Y's equivalent to ’_che definition (47) of Y in terms of

expectation values of ordered operators. - The G's of this set are differential

denotes statements of

equations coupling the various. amplitudes, - and the a,

2>
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asymptotic .conditions, which discﬁrﬁina’cé between the orderings. Since they
are irrelevant to T, one is tempted to replace them by a set (b) of boundary
conditions; that is, statements of the asymptotic behavior"of the solutions
mL}g(x) of the system (GO' R Gs' .o b) for large spacelike separations of the
arguments. The primes of the G indicate that these boundary conditions
might be more simply. eXprés.sed for certain linear combinations of Y {the
Tamm-Dancoft wave functions, say, rather than the Bethe-Salpeter amplitudes). 4
It is not unreasonable to expect that these bc;undary_ conditions could be

satisfied only for certain values of ~ « and thus determine p{x) interms of a
few eleméntary‘ masses. The wave functions obtained from solving this set
could also be used .to construct the bilinear form {(54).

This suggests the view that it'is the wave mechanics (G'b) that is ’theA
substantial part of quantum theory of fields; manipulations with operators are
merely an umbral calculus to generate the mechanics. This descriptive term,
borrowed from combinational analysis, implies there that the analytic behavior
of the generating functions is irrelevant to the final result, the correct
enumeration of things. One might perhaps a.do‘pt a similar view that the precise
conditions imposed on field operators are not particularly germane to the sub-
stantial part of field theory. . This mechanics finds its in'chdat'e expression, af
the moment, in dispersion theory. In it, an attempt is made to exploit one of
the facets of the mechanics,.the vanishing of a bilinear form on the wave
functions in certain regions and the. existence of a mass spectrum with

positive frequencies.
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SUMMARY

- An ~arbitr\ary element of S may be expanded in terms of elements
| of s  with elements of 7 as coefficientsi. -
. +The elements of T are mass-shell projections of a retarded -
generalized;Gréen-.' s function which is a product of a retardation ;factor ordering
the final relative to the initial state, and a generalized .radiation kernel D.
.The kernel- D is a bilinear form in the BS amplitudes, appropriate to
.the initial and final states.
-The internal ordering of the fields:of the initial and final states entering
into the definition of the BS a_mblitudes in terms of matrix elements of
products of operators is immaterial for - D.
.The requirement that S follow the .examiale set by s in admitting the
Lorentz group (causality) leads to the condition that Mp conform to the
pattern established by the single-field kernel ‘l;D1 _in admitting the group and
in vanishing for spacelike separations of the initial and final states {(micro-
caus ality).
»
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