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Cytoplasmic incompatibility (CI) is a conditional sterility in numerous

arthropods that is caused by inherited, intracellular bacteria such as Wolba-
chia. Matings between males carrying CI-inducing Wolbachia and

uninfected females, or between males and females infected with different

Wolbachia strains, result in progeny that die during very early embryogen-

esis. Multiple studies in diploid (Drosophila) and haplodiploid (Nasonia)

insects have shown that CI-Wolbachia cause a failure of the paternally derived

chromatin from resolving into distinct chromosomes. This leads to the for-

mation of chromatin bridges and other mitotic defects as early as the first

mitotic division, and to early mitotic arrest. It is currently unknown if CI-

inducing symbionts other than Wolbachia affect similar cellular processes.

Here, we investigated CI caused by an unrelated bacterium, Cardinium,

which naturally infects a parasitic wasp, Encarsia suzannae. CI crosses in

this host–symbiont system resulted in early mitotic defects including asyn-

chrony of paternal and maternal chromosome sets as they enter mitosis,

chromatin bridges and improper chromosome segregation that spanned

across multiple mitotic divisions, triggering embryonic death through accu-

mulated aneuploidy. We highlight small differences with CI-Wolbachia,

which could be due to the underlying CI mechanism or host-specific effects.

Our results suggest a convergence of CI-related cellular phenotypes between

these two unrelated symbionts.
1. Background
Numerous arthropod species, particularly insects, carry vertically transmitted,

intracellular bacterial symbionts that manipulate reproductive developmental

processes of their hosts in ways that enhance symbiont transmission. By

far the most common symbiont-induced reproductive manipulation is cyto-

plasmic incompatibility (CI). This form of sterility, best characterized in

Wolbachia (a-Proteobacteria), results when infected males mate with uninfected

females (unidirectional CI) or when mates harbour different strains of Wolbachia
(bidirectional CI) [1]. The current understanding is that male chromosomes

are marked during male gametogenesis to cause a lethal paternal effect (as

Wolbachia are not present in the sperm). Paternal chromosomes are rescued in

the egg if Wolbachia of a similar type are present in the egg cytoplasm (reviewed

by [2,3]). The understanding of the molecular mechanism of Wolbachia-induced

CI has been recently improved [4,5], supporting the modification–rescue frame-

work, with two CI-inducing genes that appear to work together causing

modification that can be rescued by CI-Wolbachia-infected host females.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2017.1433&domain=pdf&date_stamp=2017-09-06
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Initial cytological studies of CI performed in Wolbachia-

infected Nasonia vitripennis ( jewel wasp) embryos revealed

a tangled paternal chromatin mass next to the female

chromosomes during metaphase of the first mitosis [6]. This

abnormal mitotic behaviour in Nasonia was subsequently

confirmed [7] and attributed to improper condensation of

the paternal chromatin. Subsequently, mitotic defects

were observed in the cleavage products of Wolbachia-infected

Drosophila simulans embryos, such as the formation of a chro-

matin bridge during the first cleavage division (CD) and

smaller, condensed chromatin bodies, presumably break-

down products resulting from defective subsequent

cleavage divisions [8]. Later work confirmed the improper

condensation of paternal chromosomes, causing some frag-

ments to become incorporated into daughter nuclei (DN)

and extensive chromosome bridging during anaphase in the

first and later cleavage divisions [9–12].

The mitotic defects caused by Wolbachia-induced CI affect

development in an organism-dependent manner. In diploid

species, CI leads to early embryonic developmental arrest.

By contrast, in haplodiploid organisms including Nasonia,

CI results in either haploid male embryos (male develop-

ment) or embryonic lethality (female mortality [13,14]). In

N. vitripennis, defects in the male-derived pronucleus (PN)

are so severe that the paternal chromosomes do not segregate,

or segregate to one daughter nucleus and embryonic devel-

opment proceeds from the remaining normal haploid

nucleus at the end of the first mitotic division [15]. Embryonic

lethality in Drosophila and Nasonia results from interference of

the defective paternal chromatin with mitotic progression

of the viable maternal chromosomes, with consequent

aneuploidy in all cleavage nuclei [12,15]. The fact that CI-

embryos from Drosophila and Nasonia exhibit very similar

mitotic defects suggests that Wolbachia may be disrupting

the same host targets that are conserved between these

two organisms.

The entirety of what is known regarding the cellular basis

of CI stems from studies on Wolbachia–host systems. Interest-

ingly, Cardinium, an unrelated bacterial symbiont in the

Bacteroidetes that appears to infect 9% of arthropods [16],

also causes CI [17–19]. Cardinium strains, like Wolbachia
strains, can elicit a range of effects on host development in

addition to CI, including parthenogenetic female develop-

ment [20,21] and feminization of genetic male embryos

[22,23]. The sequencing of the genome (cEper1) of a

CI-inducing Cardinium strain infecting the parasitic wasp

Encarsia pergandiella, now known as Encarsia suzannae [24],

found little homology and no evidence of lateral gene transfer

between these two symbionts [25], despite records of co-

infections in other species [18,26,27]. This lack of homology

between Wolbachia and Cardinium genomes indicates CI has

arisen independently in these two bacterial lineages [25]. A

compelling question, then, is how similar are the underlying

cellular and molecular mechanisms of CI-induced by these

bacteria? In E. suzannae infected by CI-causing Cardinium,

CI-affected embryos do not hatch into larvae, but the cytolo-

gical mechanism and specific developmental window of

Cardinium-induced mortality has remained unknown [17].

Here, we performed the first detailed cytological analysis

of CI-Cardinium-affected embryos in Encarsia. Our work

suggests that Cardinium-induced CI results from mitotic

defects occurring during the first and subsequent mitotic div-

isions. There is a large degree of overlap in the specific
cytological phenotypes of CI between Cardinium and Wolba-
chia (e.g. mitotic asynchrony, chromatin bridging), with

some differences (e.g. absence of mortality at the first mitotic

division in Cardinium), pointing to a possible convergence of

Wolbachia and Cardinium on the same targeted pathway(s) in

their respective hosts.
2. Material and methods
(a) Insect cultures
We used laboratory cultures of Cardinium-infected and unin-

fected E. suzannae. The infected line is fixed for Cardinium and

was originally collected from its natural whitefly host Bemisia
tabaci in the Rio Grande Valley in Texas in 2003. An uninfected

line was obtained by curing adult wasps of a subpopulation of

the infected line with 50 mg ml21 rifampicin in honey for three

generations. Both cultures were maintained on B. tabaci reared

on cowpea plants (Vigna unguiculata) in a climatic chamber at

278C, 60–70% relative humidity and 16 L : 8 D photoperiod.

Encarsia suzannae has an unusual biology; only diploid female

eggs are laid in whiteflies (male eggs are laid in parasitoid

pupae developing within the whitefly [28]). All eggs examined

in this study were dissected from whiteflies and were therefore

diploid, incipient females.

(b) Egg collection
Three types of matings were set up in glass vials: the CI cross

between infected males and cured females of E. suzannae, and

two control crosses, cured males � cured females and infected

males � infected females. Cytological events of embryogenesis

were studied from the eggs taken from small oviposition arenas

prepared by laying a leaf disc hosting third and fourth instar

nymphs of whiteflies into a Petri dish (50 mm diameter) contain-

ing a moist filter paper disc. Several mated E. suzannae females

were allowed to oviposit under observation for about 30 min,

parasitized whiteflies were marked and the time of each ovipos-

ition recorded on a map of the whiteflies in the dish. After

removing the parasitoids, the wasp eggs were left to develop by

incubating arenas at room temperature (25+28C) until shortly

before the chosen fixation time. Each hydropic egg, measuring

70–80 mm at oviposition [29,30], was extracted from whitefly

nymphs by dissection under a binocular microscope and immedi-

ately fixed. Varying the incubation time yielded embryos that

ranged in age from 15 min to 96 h post-oviposition, although we

focused, in particular, on the first 24 h of embryo development.

(c) Cytological technique
Eggs were dissected from nymphs on a microscope slide in 50 ml

of tris-buffered saline (TBS), and, in order to remove most of the

whitefly debris, subsequently transferred to 50 ml of 3.7% formal-

dehyde in TBST (TBS plus Tween 20) for fixation, using a glass

Pasteur pipette that had been pulled to a narrow capillary end.

The slide with the drop of fixative was then placed in a humid

chamber for 1 h, followed by three washes in TBST at 5 min inter-

vals with fluid removed by either a slightly moist twisted

Kimwipe (Kimtech Science) or the modified pipette. After the

third wash, eggs were stained with 1 mg ml21 DAPI (40,6-diami-

dino-2-phenylindole) (Molecular Probes) in TBST for 5 min and

washed three more times in TBST as above. Each stained egg

was mounted on a Superfrost Plus slide (Fisher Scientific) or

on a slide previously rubbed with siliconized paper (Bausch

and Lomb). The mounting medium was a solution of 80% gly-

cerol, 20% TBST with 2% n-propyl-gallate (Sigma), and the

coverslip was sealed with clear nail polish. Slides were then

stored at 48C in the dark for at least one day to allow sufficient

stain penetration.
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(d) Confocal microscopy
Meiosis and early embryonic development of DAPI-stained eggs

were imaged by optically sectioning embryos using a laser scan-

ning confocal inverted microscope, either a Zeiss 510 LSCM or

Nikon C1si. DAPI fluorescence was generated with a 405 nm

excitation beam, using either a 40� dry objective or a 63�
immersion oil objective at 1 to 2� zoom.

(e) Data analysis
Stacked images and three-dimensional videos of the different

optical sections were obtained from multifocal Z-stack imaging

using the microscopes’ native software: Zeiss’s LSM IMAGE

BROWSER and Nikon’s EZ-C1. Images were then edited and

assembled using GIMP. Cytological events occurring during

embryo development were compared between CI crosses and

cured and infected compatible crosses.
284:20171433
3. Results
(a) Normal development of compatible embryos
We observed embryogenesis in 102 eggs from the control

crosses (infected female � infected male and cured female �
cured male), most in stages before the end of the fourth

CD. We found no difference in meiosis and early embryonic

development between the two control crosses. By 50–70 min

after egg deposition (AED), the second division of meiosis

produced four haploid nuclei. One of these products

became the haploid female PN that moved towards the

interior of the egg’s cytoplasm, while the other three products

formed haploid polar bodies (PB), remaining at a position

near the plasma membrane (figure 1a,b). Simultaneously,

the sperm nucleus changed from a needle-like shape to

become more ovoid and decondensed, and became the

paternal PN. By 75–90 min AED, the male PN had migrated

towards the female PN in the middle of the egg. By 01.30–

01.50 h AED, the two PN in prophase were physically

apposed (figure 1c,d ), forming the synkaryon (figure 1e),

while the PB coalesced into a single polar body derivative

(PD) (figure 1c). At the end of metaphase through early ana-

phase of the first CD, four groups of chromosomes, two from

each PN, were visible (figure 1e). The first CD was completed

by 02.15–02.30 h AED (figure 1f,g), ultimately resulting in

two DN and two PDs arising from the division of the first

one. The second CD was completed by 03.00–03.30 h AED,

resulting in four DN, while the two PDs did not undergo a

further division (figure 1h,i). Within 04.00–04.30 h AED,

the third CD resulted in eight DN, while the two PDs

remained apparently inactive (figure 1j ). The DN at the

pole close to the PDs then lost synchrony with the other

DN, so that at the end of the fourth CD (05.00–05.30 h

AED) there were 14 DN and one apical blastomere (AB), a

mitotic product that loses synchrony with the other DN

and does not contribute to the formation of the multinu-

cleated embryo (blastula) [30]. The AB completed a division

01.00–01.30 h later, forming two ABs, while the other 14

DN approached the prophase of the fifth CD. At the same

time, the two PDs underwent polyploidization, each of

them giving rise to a giant nucleus (figure 1k–n). Later obser-

vations of infected embryos at 24 and 48 h AED showed a

blastula surrounded by big extra-embryonic nuclei stretched

against the chorion (figure 1o). These giant nuclei, forming

an extra-embryonic membrane, are known as teratocytes
and have been found in the yolkless (hydropic) eggs of many

families of Hymenoptera [30]. The normal development of

compatible embryos that we observed in E. suzannae closely

matched the embryonic development of the sibling species

Encarsia gennaroi (E. pergandiella in [30]), to which the reader

is referred for a detailed description of embryonic development

in Encarsia, and the normal development of the sibling species

Encarsia marthae (E. pergandiella in [31]).

(b) Abnormal development of cytoplasmic
incompatibility embryos

We observed 112 eggs from the incompatible cross (cured

female � infected male), representative of each stage

of embryonic development until the end of the fifth CD

(7–9 h AED) and of later embryonic development occurring

at 16–96 h AED. As about 70% of progeny die in the CI

cross [32], we expected a minority of eggs to exhibit normal

embryogenesis. For all eggs examined, events leading to the

apposition of female and male PN (figure 2a) did not differ

between control and CI-embryos. Like eggs from control

crosses, meiosis was completed by 60–75 min, and in the

same time frame, the sperm underwent apparently normal

modifications. At pronuclear apposition (90–120 min), the

two PN seemed to be at the same condensation level

during prophase as in the control embryos (figure 2b). Aber-

rant mitotic events were observed immediately following

synkaryon formation (02.00–02.10 h). During prometaphase

and metaphase (02.10–02.40 h AED) chromosomes of one

PN appeared less condensed than the other (figure 2c,d )

and at the end of the first CD (02.40–03.00 h) one set of

chromosomes lagged behind the two DN (figure 2e), often

along with the formation of a chromatin bridge between

the two DN (figure 2f ). Occasionally along with, or instead

of, bridge formation, we observed misshapen DN at the

end of mitosis (figure 2g), probably a result of bridge for-

mation. Chromatin bridges and misshapen nuclei are both

considered products of improper chromosome segregation

[15]. Overall, of the 28 eggs observed during the first CD,

only two did not show any mitotic defects.

During the second CD, which was completed at

03.15–03.40 h AED, we observed more mitotic defects,

including improper segregation of one set of chromosomes,

chromatin bridges and/or small, condensed chromatin

bodies (figure 2h–k). Abnormal segregation and asynchrony

of one chromosome set continued in the third CD

(04.20–05.30 h AED). At this stage, there would normally

be eight DN and two PDs, but we sometimes observed

fewer than eight DN, as some nuclei may have stopped divid-

ing. In addition, we recorded many small, condensed

chromatin bodies resulting from irregular divisions, chroma-

tin bridges sometimes connecting several pairs of sister

nuclei, and misshapen nuclei with a distinct peduncle

(figure 2l–o). However, the severity of the aberration was

variable, with instances of normal numbers of DN and only

slight defects, like some misshapen nuclei or a few unsegre-

gated chromosomes scattered in the egg cytoplasm

(figure 2l,m). In the fourth CD (05.30–07.00 h AED), only

10% of observed embryos reached the 17–18 nuclei stage

(14 DN þ 1–2 AB þ 2PDs) seen in the compatible control

embryos without apparent mitotic defects (figure 2p). The

remaining 90% included either embryos with the normal

number of nuclei and small mitotic defects or embryos with
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severe aberrations. In general, the defects observed consisted

of different condensation levels among nuclei, abnormal seg-

regation of chromosomes, irregularly shaped nuclei, small

condensed chromatin bodies or chromatin bridges

(figure 2q,r). Similarly, at the fifth CD (07.00–09.00 h AED),

we found aborted embryos and a few developed embryos

with slight defects (figure 2s– t). In eggs fixed at 16–20 h

AED, all embryos were defective, with 42% showing

normal development (multinucleated blastula surrounded

by big stretched extra-embryonic nuclei) associated with

slight mitotic defects consisting of one to four very dense

chromatin bodies of much smaller size than the blastula

nuclei (figure 2u). In the remaining 58% of embryos, the dele-

terious effects of the accumulation of mitotic defects in

previous divisions resulted in aberrant embryos that did

not complete normal development (figure 2v,w). Even in

these later embryos, we could sometimes observe chromatin

bridges (figure 2w). Eggs imaged from 48 to 96 h from ovi-

position did not complete embryogenesis (figure 2x), and in

only one case did we observe a first instar larva at 96 h

(they normally hatch within 48 h). The frequencies of
anomalies at different developmental stages remained fairly

constant throughout development, suggesting that all mitotic

defects follow from what happened at the first mitosis, fol-

lowing pronuclear apposition, but not necessarily as a

result of chromatin bridging, which was evident only in

28% of defective embryos (table 1).

Therefore, Cardinium causes widespread mitotic defects

that are nearly identical to those caused by Wolbachia, but

unlike Wolbachia, the defects span a much wider range of clea-

vage divisions, leading not to early (i.e. at first CD) but to late

embryonic death, probably through the accumulation of

mitotic defects in the first several divisions.
4. Discussion
Our results showed a remarkable resemblance of cellular

phenotypes caused by CI-Cardinium (Bacteroidetes) to the

distantly related Wolbachia (a-Proteobacteria). Hallmarks of

Wolbachia-induced CI in Drosophila and Nasonia parasitic

wasp species are the asynchrony of the paternal and maternal
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chromosome sets as they enter into mitosis, and abnormal

chromosome segregation, usually revealed by chromatin

bridging, which leads to the formation of aneuploid nuclei

during early embryonic development [2,3]. Here, we

showed that Cardinium also causes such phenotypes,
although the prevalence of chromatin bridges seems to be

somewhat lower than in Wolbachia-mediated CI. Owing to

the lack of chromosomal differences between the sexes in

Hymenoptera, our current experimental approach does not

allow us to distinguish between the paternal and maternal
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chromosome sets. Genetic studies in CI-Wolbachia-influenced

N. vitripennis embryos have shown that it is the paternal

genome that is excluded from the developing embryo, as

haploid males resulting from CI-embryos express maternal

but not paternal markers [6,7]. Molecular markers of paternal

chromatin confirmed Wolbachia CI-induced defects are lim-

ited to paternal chromosomes in Drosophila [33]. It is highly

likely that the paternal chromatin is the one affected also in

CI-Cardinium-affected embryos in Encarsia, as the hypercon-

densation of one of the two nuclei is very consistent with

Wolbachia-induced CI in all Drosophila and Nasonia species

examined thus far [11,15]. In E. suzannae, the expression of

Cardinum-induced CI matches the phenotypic expression of

Wolbachia-induced CI, that is, sterility when an uninfected

female crosses with an infected male, and fertility recovery

when an infected female mates with an infected male [16].

In Drosophila and Nasonia systems, this effect is driven by Wol-
bachia products that mark male chromosomes during

gametogenesis, causing mitotic abnormalities and arrest

during early embryogenesis and rescue of paternal chromo-

somes in the egg infected by Wolbachia of a similar type

[4,5]. Similarly, it is highly unlikely that in the unidirectional

CI of our system the modification mechanism targets the

female nucleus and spares the male nucleus, making our

hypothesis that the paternal set is the one affected the most

plausible at this time. However, this hypothesis needs to be

tested in future experiments.

The first mitosis in insects is unique, because the female

and male pronuclei do not fuse upon apposition but stay

on two separate regions of the metaphase plate, and enter

independently into anaphase [12,34]. It is thus essential that

the female and male pronuclei enter and exit mitosis synchro-

nously to successfully produce DN that contain both

maternal and paternal chromosomes. Instead, in Encarsia
embryos affected by CI-Cardinium, chromosome conden-

sation of the two pronuclei is defective, just as it is in both

Drosophila and Nasonia infected by Wolbachia [12,35].

Although similar phenotypes could have different genetic

bases, the striking similarity of pronuclear asynchrony and

abnormal chromosome segregation caused by both sym-

bionts suggests that, despite their phylogenetic distance and

evidence of independent evolution of CI [25], Wolbachia
and Cardinium affect mitotic progression in similar ways

during very early embryo development, possibly aiming at

conserved molecular targets in their hosts.

Despite the similar cellular phenotypes between these

two symbiont–host systems, we also observed several differ-

ences. Wolbachia-induced incompatible crosses in Drosophila
cause the arrest of almost 50% of embryos during very

early mitosis, with the remaining part arrested at the syncy-

tial blastoderm stage or before hatching [11]. In

haplodiploids, the most common phenotype of Wolbachia-

induced CI is the arrest of embryo development as early as

the first mitotic division in N. longicornis and N. giraulti,
while in N. vitripennis more variants are observed due to

the possible expression of both types of CI (male develop-

ment and female mortality) [15]. However, in Encarsia, most

of the Cardinium-induced CI-embryos do not arrest during

the first mitotic division. In fact, the mitotic anomalies we

observed during the first mitosis did not prevent embryos

from progressing in their development. We also did not

observe other phenomena seen in Wolbachia CI in Nasonia:

embryos with two morphologically normal nuclei and one
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highly condensed genome that does not segregate, or

embryos where one chromosome set segregates to only one

daughter nucleus, which in N. vitripennis results in normal

development of haploid males [15]. The absence of such

embryos provides cytological evidence that E. suzannae
does not have the male development type of CI, confirming

the evidence of crossing experiments [17]. The lack of abnor-

mal embryos that will develop as males signals a difference

from the Wolbachia–Nasonia system, where the two species

with predominantly female mortality type of CI (N. longicor-
nis and N. giraulti) also have a few such ‘male development’

embryos [15]. However, like the Cardinium–Encarsia system,

30% of the N. giraulti CI-embryos were found to reach the

blastoderm stage with evidence of aneuploid cells [14].

Recently, the understanding of the molecular mechanism

of Wolbachia-induced CI has been substantially improved

[4,5]. Homologous genes to the ‘CI genes’ identified in Wolba-
chia are absent in Cardinium, and the conserved domains of

these genes across taxa are still not characterized [5]. Given

that the molecular mechanism of CI-Cardinium is probably

different, the observed phenotypic differences could be due

to functional disparity in how these two symbionts cause

CI. However, the differences seen could also be attributed

to symbiont density or host-species effects. Defective

embryos that develop as males in Nasonia are thought to be

associated with the highest levels of Wolbachia modification

and potentially density-dependent, with higher titres of the

symbiont resulting in complete condensation and exclusion

of the paternal set in embryogenesis [15]. The observed differ-

ences in cytological events between Wolbachia- and

Cardinium-induced CI could also be influenced by inter-

actions of the symbiont with particular host species, as is

well known for Wolbachia CI in different hosts [36].

CI in E. suzannae, as well as in other systems with CI-

Cardinium, is often incomplete, with egg hatching reduced

but not eliminated [17,18,26]. We speculate that the disparity

in the overall frequency of embryos with mitotic defects (mild

or severe) observed here (90%) and the known lethality of CI

in E. suzannae (73%) [32] may result from the likelihood that a

small portion of embryos can survive mild mitotic defects. In
such embryos, the affected nuclei may be those not contribut-

ing to the blastula formation. It has been demonstrated that

Drosophila embryos can undergo substantial mitotic defects

and still survive to adulthood [37,38].

The prevailing model for Wolbachia-induced CI is that

Wolbachia modify sperm chromatin during spermatogenesis

and these modifications render the sperm unable to success-

fully participate in embryonic development. It has been

hypothesized that the fate of the paternal genome during

the first mitosis of the zygote is determined by the extent of

Wolbachia modification present in the sperm [2,39]. Thus,

sperm nuclei that have been strongly altered by Wolbachia
may produce chromosomes that will not segregate, resulting

in embryos that will develop as haploid males, whereas

sperm nuclei that have been only moderately modified may

produce chromosomes that mis-segregate, resulting in

detrimental aneuploidy. It would be interesting to know if

this model also holds for Cardinium. If so, the sperm nuclei

mis-segregate, allowing the embryo to survive for a time

while ensuring it ultimately dies from the accumulated

insults of incomplete segregation.
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