
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Predictions of Chaotic Systems with Physical Models and Machine Learning

Permalink
https://escholarship.org/uc/item/2zj8h759

Author
Wong, Adrian

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2zj8h759
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Predictions of Chaotic Systems with Physical Models
and Machine Learning

A dissertion submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Physics with Specialization in Computational Science

by

Adrian S. Wong

Committee in Charge:

Professor Henry D. I. Abarbanel, Chair
Professor Daniel Arovas
Professor Kamalika Chaudhuri
Professor Alexander Cloninger
Professor Yi-Zhuang You

2022

Copyright
Adrian S. Wong, 2022

All rights reserved.

The dissertation of Adrian S. Wong is approved, and it is acceptable in quality and form for publication
on microfilm and electronically.

University of California San Diego

2022

iii

DEDICATION

To my mom, who taught me so much while always believing in me.
To my stepdad, who has been an endless source of wisdom and confidence.
To my fiancée, who has been by my side, in the trenches, from the very beginning of this journey.

iv

EPIGRAPH

Curiosity
may have killed the cat; more likely
the cat was just unlucky, or else curious
to see what death was like, having no cause
to go on licking paws, or fathering
litter on litter of kittens, predictably.

Nevertheless, to be curious
is dangerous enough. To distrust
what is always said, what seems,
to ask odd questions, interfere in dreams,
leave home, smell rats, have hunches
do not endear cats to those doggy circles
where well-smelt baskets, suitable wives, good lunches
are the order of things, and where prevails
much wagging of incurious heads and tails.
Face it. Curiosity
will not cause us to die–
only lack of it will.
Never to want to see
the other side of the hill
or that improbable country
where living is an idyll
(although a probable hell)
would kill us all.
Only the curious
have, if they live, a tale
worth telling at all.

Dogs say cats love too much, are irresponsible,
are changeable, marry too many wives,
desert their children, chill all dinner tables
with tales of their nine lives.
Well, they are lucky. Let them be
nine-lived and contradictory,
curious enough to change, prepared to pay
the cat price, which is to die
and die again and again,
each time with no less pain.
A cat minority of one
is all that can be counted on
to tell the truth. And what cats have to tell
on each return from hell
is this: that dying is what the living do,
that dying is what the loving do,
and that dead dogs are those who do not know
that dying is what, to live, each has to do.

— Alastair Reid

v

TABLE OF CONTENTS

Dissertation Approval Page . iii
Dedication . iv
Epigraph . v
Table of Contents . vi
List of Figures . ix
List of Tables . xi
Acknowledgments . xii
Vita . xiii
Abstract of the Dissertation . xiv

1 Introduction 1
1.1 Motivations . 1
1.2 Problem Statement . 2
1.3 Outline and Structure . 3

Part I Model-based Methods 5

2 Models, Data, and their Assimilation 6
2.1 Model and Observations . 6
2.2 Twin Experiments and Self-Imposed Handicaps . 7
2.3 Dynamical Systems and State Estimates . 9
2.4 Probabilistic View of Dynamical Systems . 11
2.5 Markov, Chapman, and Kolmogorov . 12
2.6 Including Measurements . 14
2.7 Significance of the Action . 17
2.8 Summary and Interpretations . 18
2.9 Acknowledgments . 20

3 Evaluating Integrals 21
3.1 Overview . 21
3.2 Laplace Method . 23

3.2.1 Original Usage . 23
3.2.2 Applied to the Data Assimilation Action . 24
3.2.3 Approach of the Numerical Scheme . 26

3.3 Energy Landscape and Search Space . 27
3.4 Summary and Further Directions . 28
3.5 Acknowledgments . 30

4 Monte Carlo Methods 31
4.1 Introduction . 31
4.2 Metropolis, Hastings, and Rosenbluth . 32

4.2.1 Description of the Method . 32
4.2.2 Some Formalism . 34
4.2.3 Applied to the Data Assimilation Action . 35

4.3 Hamilton Monte Carlo . 37
4.3.1 Notation Change . 37
4.3.2 Motivations . 39
4.3.3 Using Hamiltonian Dynamics . 40
4.3.4 Resulting Algorithm . 43

vi

4.4 Comparison and Remarks . 46
4.5 Acknowledgments . 48

5 Heuristics and Their Implications 49
5.1 Annealing . 50

5.1.1 Introduction . 50
5.1.2 Applied to the Data Assimilation Action . 50
5.1.3 Plateauing of the Action . 53
5.1.4 Artificial Time . 56

5.2 Multiple-Start and Parallelization . 57
5.3 Remarks . 59
5.4 Acknowledgments . 59

6 Data Assimilation Results 60
6.1 Method of Choice . 60
6.2 Details of the Setup . 61
6.3 Full State Measurements . 64
6.4 Partial State Measurements . 66

6.4.1 80% Measurements . 67
6.4.2 60% Measurements . 69
6.4.3 50% measurements . 71
6.4.4 40% measurements . 73

6.5 Conclusions . 76
6.6 Acknowledgments . 76

Part II Model-free Methods 77

7 Reservoir Computing 78
7.1 Disclaimer . 78
7.2 Introduction . 78
7.3 Structure . 81

7.3.1 Input Layer . 81
7.3.2 Reservoir Dynamics and Listening . 82
7.3.3 Training Output Layer and Estimation . 83
7.3.4 Echoing and Prediction . 85

7.4 Acknowledgments . 86

8 Results from Reservoir Computing 87
8.1 Introduction . 87
8.2 Full State Measurements . 89
8.3 Partial State Measurements . 91
8.4 Different Versions of the Reservoir . 94

8.4.1 Reservoir Dynamics . 95
8.4.2 Form of Training Layer . 96
8.4.3 Form of Embedding . 98
8.4.4 Forward Integrator . 99

8.5 Further Directions . 99
8.6 Acknowledgments . 99

9 Synchronization in Reservoir Computing 100
9.1 Generalized Synchronization . 100

vii

9.2 Bridging to Reservoir Computing . 104
9.3 Acknowledgments . 105

Part III Appendix 106

A Path Integral Formulation 107
A.1 Propagator . 108
A.2 Time-Slicing into a Path Integral . 110
A.3 Recovering the Schrodinger equation . 112
A.4 Wick Rotating into Statistical Mechanics . 114

B Lagrange and Hamilton 117
B.1 Stationary Action . 117
B.2 Lagrangian Mechanics . 118
B.3 Hamiltonian Mechanics . 119
B.4 Poisson Brackets and Hamiltonian Flow . 120
B.5 Symplectic Structure . 121

C An Attempt at Fixing Backpropagation 122
C.1 The Derivations of Backpropagation . 122
C.2 Deep Neural Network Loss Function . 123
C.3 Rumelhart’s Backpropagation . 124
C.4 Vanishing Gradient and Lyapunov Exponents . 125
C.5 Search Space and Alternative Cost Function . 126
C.6 Remarks . 127

D Dynamical Initialization 128

E Lyapunov Spectrum 132
E.1 Introduction . 132
E.2 Largest Lyapunov Exponent . 133
E.3 Continuous Time Systems . 135

E.3.1 Variational System and Volume Growth . 136
E.3.2 Quick Aside: QR Decomposition . 138
E.3.3 The Entire Spectrum . 139

E.4 Practical Calculations . 141
E.4.1 Normalized Variational System . 141
E.4.2 QR Exploit . 142
E.4.3 Using Matrix Exponents (Successive QR Method) 146
E.4.4 Comparison of Methods . 150

E.5 Discrete-Time Systems . 151

F Annealed HMC from a KAM Perspective 153

References 156

viii

LIST OF FIGURES

Figure 2.1 Rough illustration of the estimation process with the assumption of very low
measurement noise for simplicity in the figure. 19

Figure 3.1 Rough idea of the Laplace method for an arbitrary but large N 24
Figure 3.2 Energy surface of the Lorenz system using the hard-constraint cost function, i. 27
Figure 3.3 Comparison of the energy surface of the Lorenz 1996 system for M = 600 time

steps. 29

Figure 4.1 Rough idea of the Markov Chain Monte Carlo method. 33
Figure 4.2 Trajectory x(t) = {x1, x2, · · · , xM} laid out on a two-dimensional grid. 36
Figure 4.3 The left part shows the linear algebraic setup of the original path x(t), which

was stored as a matrix. 38
Figure 4.4 A physical system equivalent to the HMC method. 41
Figure 4.5 Graphic showing HMC making two consecutive proposals that result in a lower

action S[Xj |Y] each time. 43
Figure 4.6 Right: Graphic comparing the trajectories of using a symplectic vs non-

symplectic integrator. 44
Figure 4.7 Right: Illustration showing the HMC method generating and accepting a

proposal that is far from the initial point. 47

Figure 5.1 Illustration on how the annealing procedure affects the state estimate. 51
Figure 5.2 Illustration, from the HMC perspective, of approaches (i) and (ii) for handling

multiple starts on the manifold defined by the action S[x(t)|y(t)]. 58

Figure 6.1 Measurement and model errors for the full measurement case as a function of
annealing steps. 64

Figure 6.2 Estimations and predictions of the Lorenz 1996 model for the full measurement
case. 65

Figure 6.3 Convergence of the parameter values for the full measurement case. 65
Figure 6.4 Measurement and model errors of the 80% measurement case. 67
Figure 6.5 State estimation and prediction for the 80% case. 68
Figure 6.6 The parameter values for the 80% case start out different, but converge to the

same value within numerical error. 68
Figure 6.7 Measurement and model errors for the 60% measurement case. 69
Figure 6.8 The state estimation and prediction of the 60% measurement case for both a

measured (top) and unmeasured (bottom) variables. 70
Figure 6.9 The parameter values for the 60% case converge in the same fashion as the

80% and 100% cases. 70
Figure 6.10 Top: As the annealing step progresses, the measurement error of 1 out of the

20 parallel instances (lime green) strays from the rest by growing significantly
faster, noting that the y-axis is on a logarithmic scale. 71

Figure 6.11 In the estimation window, one state (purple) generates a trajectory that is
different from the rest of the (more accurate) estimated states. 72

Figure 6.12 The estimated parameter values for the 50% case given the data. 72
Figure 6.13 Measurement and model error of the 40% measurement case. 74
Figure 6.14 Using the solutions of the 7 lowest error values, we reconstruct the estimated

states (red) for the measured and unmeasured variables of the 40% case. . . . 75
Figure 6.15 Parameter estimation history of the 40% measurement case. 75

ix

Figure 7.1 Structure of the Reservoir Computer in the listening and training mode. . . . 80
Figure 7.2 Flow diagram of the reservoir evolution. 82
Figure 7.3 Structure of the Reservoir Computer in the predicting mode. 86

Figure 8.1 Estimation phase of the reservoir. 90
Figure 8.2 Comparison between the reservoir prediction and the actual/noiseless trajec-

tory of the system. 90
Figure 8.3 Similar to the full state case, the time-delayed or partial measurement case

generated very good estimation. 92
Figure 8.4 Comparison between the reservoir prediction and the actual/noiseless trajec-

tory of the system, in the case of time-delayed data. 93
Figure 8.5 The autonomous/predicting reservoir produces trajectories that naturally obeys

the time-constraint, albeit with some slight mismatch. 94
Figure 8.6 Using the exact same reservoir and data, changing nothing but the reservoir

dynamics, we can see that the differential reservoir is better able to generate
less noisy trajectories. 95

Figure 8.7 In comparing the prediction capabilities of the time-delay reservoir, changing
nothing else, it appears that there is no advantage nor disadvantage. 97

Figure 9.1 The reservoir is able to reconstruct the general topology of the Lorenz attractor.101
Figure 9.2 The auxiliary systems here are different reservoirs, each with a different initial

state r(t0) but otherwise identical. 101
Figure 9.3 Each of the colored lines are one of the N nodes in the reservoir. 102
Figure 9.4 The same reservoir, after training for Wout, is able to make good prediction

for data that it has never encountered before. 103

Figure D.1 Using dynamical initialization, noisy data of the x variable and randomly cho-
sen initial values of y and z are useful to generate the entire trajectory. 129

Figure D.2 Errors in the y and z variables as time progresses. 131

Figure E.1 Divergence of different initial conditions is a way to estimate the LLE. 134
Figure E.2 Tracking the exponential growth of a unit box in time is an intermediate step

towards calculating all the Lyapunov exponents. 136
Figure E.3 The Lyapunov spectrum of the Lorenz 63 system calculated with the method

described by (E.5) and (E.15). 140

Figure E.4 The shrinking log-volume of Ỹ and Y against time. 141
Figure E.5 Using the normalized variational system of subsection E.4.1 for Lorenz 63, the

local Lyapunov exponents and their averages are calculated. 142
Figure E.6 The ‘QR exploit’ method applied to Lorenz 63 gives us the values of the Lya-

punov spectrum as we would expect. 147
Figure E.7 The matrix exponent method with successive QR decomposition, applied to

Lorenz 63, estimates the Lyapunov spectrum quite steadily. 150

x

LIST OF TABLES

Table 4.1 Variables in the HMC method. 45

Table 6.1 Parameters for generating the Lorenz 1996 data. 62
Table 6.2 Parameters for the annealing process and parallelization instances. 63
Table 6.3 List of measured variables for the cases demonstrated in this work. 66

Table 7.1 Some of the variables and terminology in reservoir computing. 79
Table 7.2 Values for the reservoir parameters when using full state measurements. . . . 83

Table 8.1 Parameter values for the data generation. 88
Table 8.2 Values for the reservoir parameters when using partial state measurements. . 92

xi

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Professor Henry Abarbanel for his

support throughout my doctoral studies, and for his mentorship as I conducted my research. His

encouragement to pursue my interests were invaluable to my younger, aimless self. In addition, his

guidance on how to view the world from the ‘perspective of a physicist’ has shaped me not just as a

researcher, but as a critical thinker.

I would also like to thank my dissertation committee: Professors Alexander Cloninger, Yi-

Zhuang You, Daniel Arovas, and Kamalika Chaudhuri for both their time and willingness to accom-

modate my situation through the recent disruptions. They were incredibly patient and understanding

as I figured my way through my research and the following dissertation process.

In addition to my committee, I would like to thank Professors Michael Holst and Melvin Leok

for their teaching, support, and encouragement early in my graduate career. They were incredibly

helpful and generous with their time as I transferred from the CSME program to Physics. They both

bridged lot of the gaps between my understanding of mathematics and physics.

Additional thanks is in order to the folks at the Air Force Research Laboratory for providing

employment during the final stretch of this dissertation. Their support and accommodations have

had a direct impact on the quality and depth of the research leading up to this dissertation.

Last but certainly not least, I would also like to thank all the student affairs staff of the

physics department. Their work, too often, goes unnoticed and is under-appreciated by many. Their

willingness to help students, such as myself, successfully navigate their undergraduate and graduate

studies is inspiring and deeply appreciated.

Chapters 2, 3, 4, 5, and 6, in part, use material and results that appear in Precision Annealing

Monte Carlo Methods for Statistical Data Assimilation and Machine Learning, submitted in Physical

Physical Review Research, 2(1), 013050. Fang, Zheng, Wong, Adrian S., Hao, Kangbo, Ty, Alexander

J., and Abarbanel, Henry D. I. (2020). The dissertation author was one of the primary investigators

and authors of this paper.

Chapters 7, 8, and 9, in part, use material and results that appear in Robust Forecasting

Using Predictive Generalized Synchronization in Reservoir Computing, submitted in Chaos: An In-

terdisciplinary Journal of Nonlinear Science, 31(12), 123118. Platt, Jason A., Wong, Adrian S., Clark,

Randall, Penny, Stephen G., and Abarbanel, Henry D. I. (2021). The dissertation author was one of

the co-authors of this paper.

xii

VITA

University of California San Diego 2014
Bachelors in Science, Physics

University of California San Diego 2015–2022
Teaching Assistant, Physics and Mathematics

Lawrence Livermore National Laboratory 2016
Computation Intern, Summer

San Diego Supercomputer Center (High Performance Geocomputing Laboratory) 2017
High Performance Computing Intern, Spring

Lawrence Livermore National Laboratory 2017
High Energy Density Physics Intern, Summer

University of California San Diego 2017–2022
Research and Teaching Assistant

University of California San Diego 2022
Doctor of Philosophy, Physics with Speicialization in Computational Science

Air Force Research Laboratory, In-Space Propulsion Branch 2021–present
Applied Mathematician

PUBLICATIONS

Platt, J. A., Wong, A. S., Clark, R., Penny, S. G., and Abarbanel, H. D. I. (2021).
Robust Forecasting Using Predictive Generalized Synchronization in Reservoir Computing. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 31(12), 123118.

Fang, Z.*, Wong, A. S.*, Hao, K.*, Ty, A. J., and Abarbanel, H. D. I. (2020).
Precision Annealing Monte Carlo Methods for Statistical Data Assimilation and Machine Learning.
Physical Review Research, 2(1), 013050. (* co-first authors)

xiii

ABSTRACT OF THE DISSERTATION

Predictions of Chaotic Systems with Physical Models and Machine Learning

by

Adrian S. Wong

Doctor of Philosophy in Physics with Specialization in Computational Science

University of California San Diego, 2022

Professor Henry D. I. Abarbanel, Chair

Dynamical systems are an incredibly broad class of systems that pervades every field of

science, as well as every aspect of daily life. Not only are they pervasive, but they often exhibit

complex behavior resulting from microscopically simple interactions. Examples of such systems are

the weather, our brains, animal population, and even home prices – to name but a few. As such,

predictions of these systems pose a towering yet necessary challenge, and this work aims at making

at dent in this effort. To the extent that models are available, they are useful in that constraints

are automatically satisfied, and a mechanistic understanding of the system naturally follows. Part

one of this work addresses this case by leveraging our knowledge of the physical model. However,

it is often the case that the model is not known, so an effective surrogate model is desired. Part

two proceeds in this vein, where the availability of large amounts of data is utilized in constructing

surrogate models. Though the theory of dynamical systems still applies to the constructed surrogate

model, this approach disregards the physics of the underlying system and has a machine learning

flavor.

xiv

1
Introduction

1.1 Motivations

Predicting the behavior of complex systems is surely one of the most important and ancient

problems that humans have faced. Some examples of such complex systems are the weather, the econ-

omy, spread of disease, population ecology, social networks, to name but a few. If we can successfully

predict the future, we will be able to reduce the infinite landscape of possibilities into a smaller, more

manageable subset. Our ability to accurately predict the outcomes of events is certainly one of the

reasons that civilization developed because it allows individuals and societies to effectively plan ahead

and allocate resources accordingly, such that we can find and take full advantage of these momentary

pockets of certainty. This exact paradigm exists till the present day – interest rates and disease mod-

eling immediately come to mind – and all signs indicate that predicting the future is more desired

now than ever before.

For the most general type of complex system, there can be many approaches to this prediction

problem, some statistical and others more mechanistic [1]. In this work, we will focus almost entirely

on physical systems where we have some concrete understanding of its behavior and causal structure.

Predictions in non-physical systems (i.e. stock prices, artificial neural network outputs, etc.), while

possible, deserved a separate treatment. The understanding of a particular (physical) system of in-

terest comes from expert knowledge and consensus following years of careful study, which is codified

in something called the model. Meanwhile, the scientific method dictates that we also collect observa-

1

tions from the real-world such that we have something to compare our carefully constructed models

to. This contrast and tension between the models and the observations often generate strong and

long-lasting disagreements, but is nevertheless the cornerstone of science and is absolutely necessary

if we hope to make progress. If we have models with no data, we risk using models that are miss

small but crucial details. Conversely, if we have data with no models, then the data itself cannot be

utilized in a meaningful way, say for prediction. Once we get our hands on both a model and some

data, we should ask: what now?

The systematic and quantitative discipline of combining models and data is called data as-

similation [2, 3]. Another way of describing this combination is that we are transferring information

from the observations to some interpreter of the model, generally a computer running code [4]. There

might be multiple stated goals that data assimilation seeks to accomplish, but all these goals are

ultimately serving one purpose – to predict the future1. If we have the ability to exert influence on

the system of interest, we might then ask ourselves how we can shape the future to better suit our

needs, wants, and desires.

1.2 Problem Statement

We are given a set of time-series measurements of a physical system, within a certain window

of time. We then want to make predictions of the same system, that is to generate a time-series beyond

the window of available measurements. The curator of the measurement data, which we shall refer to

as the ‘experimentalist’, is privy to certain rudimentary information regarding the data. Examples of

such are the sampling rate, understanding of the measurement devices, and the system that is being

measured. For the most part, we will trust the experimentalist regarding the quality of the data set

that was provided, though the distinction of quality is not always clear.

In the case where the experimentalist can propose or suggest a physical model that may

describe the data measured, it makes sense leverage the information that the model can afford us,

at least initially. We shall refer to this approach as data assimilation or model-based, and this will

be the focus of the first half of this dissertation. There is also the case where the experimentalist

1This is a rather bold claim that requires some reflection and maybe even some justification. One stated goal of
data assimilation is to retrieve the best approximation to the true state. Another stated goal would be to verify or
validate certain physical model. In both cases, one should keep in mind that accumulating knowledge for the sake of
knowledge is a rather romantic idea, but a purposeless one too. To the extent that knowledge is valuable, it should also
be useful. The use case here, in the context of dynamical systems, is to correctly predict the (near) future and attempt
to adapt to or change this future. Hence my claim.

2

cannot propose a plausible physical model, or if the previous approach failed for whatever reason. We

shall refer to this approach as the data-driven or model-free. The phrase ‘machine learning’ comes up

often, but it too often encompasses too many approaches [5]. The model-free approach, specifically

Reservoir Computing, will be the focus of the second half of this dissertation. There are certain hybrid

approaches that use both model-based and model-free approaches, but we do not cover such problem

within this work [6].

The problem statement laid out here seems very basic, and in many ways, it is just that

simple. However, it encompasses a large class of problems and therein lies the difficulty. Some

of these methods, particularly the Reservoir Computing approach, is not yet well-understood and

deserved further study. We understand that the formulation thus far has been imprecise, but the

precision of the problem statement will be addressed in the relevant chapters.

1.3 Outline and Structure

Part I of the dissertation is on tackling the data assimilation problem with the aid of physics-

based models. It begins with Chapter 2 introducing the theoretical foundations of our data assimilation

approach by establishing the necessary integrals or cost functions to extremize. The following three

chapters establishes the techniques and tactics that we employ in order to approximate and evaluate

these integrals. We then follow up with one entire chapter on the heuristics that were used within

(and in the lead up to) this work, as the heuristics prove to be a substantial boon to our productivity

and understanding of the problems we hope to tackle. Lastly, we finish Part I with an entire chapter

showing some of the results that come from our approach and techniques. The editorial choice of

placing all the results in one chapter was done in order to avoid distractions from the theoretical

foundations of the methods, and also for better side-by-side comparison.

The second part, also the last part, of the dissertation starts at Chapter 7 and focuses on

model-free methods, specifically the reservoir computing approach. Reservoir Computing is often

placed under the machine learning umbrella of methods, but when machine learning is applied to

time-series data of physical systems, it is nearly identical in scope and in practice to data assimilation.

The most prominent difference is that reservoir computing does not make use of physics-based models

that describe the data, which has its own set of advantages and challenges that will be explored.

We lay out the groundwork of Reservoir Computing and show some results. We then interpret the

3

method and its foundations from our own perspective of dynamical systems and synchronization of

chaos, rather than the standard machine learning and applied mathematical framework.

The structure within each chapter is, in my opinion, the best way to arrive at the core ideas of

said chapter assuming little familiarity with the material. My writing philosophy and style places more

focus on brevity, clarity, readability, and the overall flow of ideas rather than rigor and completeness.

This results in chapters that are relatively short and self-contained. My hope is that this dissertation

is laid out in such a way that newcomers to the field find it as a helpful guide or introduction to how

we approach these topics.

In the process of writing this work, I noticed many of the branching ideas that started in

the main chapters began to feel misplaced within the chapter itself. These branches of thoughts were

distracting and sometimes irrelevant to the chapter. My editorial choice was to gather all the short

and off-shoot ideas and place them in the appendix. The topics in the appendix were included in the

dissertation because they served as an intermediate but important step in shaping my thought process

and intuitions, so I assume that these might be useful to some readers as well. It was incredibly helpful,

for me, just to write and chronicle these ideas as they provided me invaluable nuggets of clarity and

understanding. It seemed appropriate that these ideas that were unrelated to one another were left

for the appendix, where there is no theme. A somewhat unfortunate consequence is that the appendix

itself is comparable in length to the main parts of the work. Some of the ideas in the appendix warrant

much further investigation, but I could not afford to do so if I hope to ever graduate. Still, I hope to

have time to continue developing these ideas in the near future.

4

Part I

Model-based Methods

5

2
Models, Data, and their Assimilation

2.1 Model and Observations

A model is the attempt at explaining the phenomena we perceive in the natural world1.

Systems in nature are effectively infinite dimensional, but having an almost infinite degree of freedom

renders computations extremely difficult or impossible. It is by reducing these infinite degrees of

freedom into a much smaller subset that we are able to perform meaningful calculations in order

to better understand and predict physical systems. By this definition, models have to be a finite-

dimensional encoding of our knowledge and understanding. As an encoding, models will invariably

omit some less relevant details of the problem in order to focus on explanatory power. Our focus in this

work is on physical systems, so we will only really discuss models that explain the physical world, and

these models almost exclusively exist in the form of differential equations. Models of physical systems

arise from physical principles and should have all relevant physical laws (though often approximated)

somehow being derivable or encoded into the equations. Designing a model often involves a good

physical understanding of the system of interest from first principles [7].

Even a well-designed model is wrong at some scale, but being slightly wrong is the best

anyone could have done given the practicality or the scope of the problem. We should recognize and

accept that this is an inherent property of models. We shall assume that the models are nonlinear

1It is classified only as an attempt because no finite-dimensional model is able to capture the full complexity of
reality. There are models that are extremely accurate and powerful, but every single model will break down at some
point. Nevertheless, there is an agreed upon ‘best’ model by some metric, and whatever that model happens to be will
be our choice.

6

and chaotic, since these are properties that may appear in the most general of cases. We shall also

leave the specifics of the model to the expert that know them best. This allows us to focus on how

to best make estimations and predictions (which is a difficult task by itself) without being overtly

bogged down about the complexity of the models themselves.

Observations are on the other side of the divide, where they represent measurements of the

physical system of interest. We will use the words observations and data interchangeably for the

entirety of this work. In many a sense, the observations reflect the true nature of the system and

exists independently of the simplified man-made models [8]. At the end of the day, however, these

man-made models have to agree with the data, and the data always has the final say. If the data

and the model do not agree, then it is likely the result of a faulty model. There are some corner case

exceptions to this rule, but generally speaking the data is regarded as ‘more correct’.

Invariably, the data will be exposed to some measurement noise that come from imperfect

measurement devices. This type of noise is unavoidable realistically. Measurements are also collected

by a separate set of experts. These experimental experts need to understand the nature of the system

from a different point of view than the theorists in order to make good measurements. There are

many questions here to address, one of which is how we measure certain state variable, and there is a

fair amount of creativity involved in making good measurements. However, just like with the model,

we will not concern ourselves too much with the details of the data, only that we trust the experts.

Our focus will be on techniques that attempt to assimilate or merge good models with good data.

Even though the data and the model are technically unrelated to one another, they are both

really describing the same natural phenomena. Hence, in order for a model to be deemed ‘good’, it

should be able to reproduce the data in a meaningful and accurate way. Exactly how this is done

varies from field to field. For a ‘very good’ model, the model not only need to reproduce the existing

results, but also make prediction of yet-unseen phenomena. This is the true hallmark of a successful

model.

2.2 Twin Experiments and Self-Imposed Handicaps

Real world systems and their measurements are infamously tricky to deal with [9]. A common

situation is that one seldom has access to all state variables of a system, on top of the noise of those

measurement. From the data assimilation point of view, such tasks are difficult, and we first require

7

some well-behaved testing grounds where we can test our techniques. Instead of real data, we use

simulated data where one has full information of the system at all times, by definition. However, we

purposely add noise to these measurements in order to replicate the noise that one would get from

physically measuring the system. The true noiseless state is never presented to the data assimilation

system and kept only for the sake of comparison. Only the noisy measurements are presented to

the system for the purposes of estimation and prediction. Another common practice is to purposely

omit certain variables of the twin experiment from the data assimilation program. This attempts to

replicate the situations where the measurement device might be broken, or when the variables are

unmeasured for practical reasons.

The ultimate purpose of these data assimilation methods would be applying them to real-

world data, but running the twin experiments as mentioned here allows us to troubleshoot and develop

the method, without dealing with the technical challenges of real-world data. After all, if any proposed

method fails to work on simulated data in a twin experiment, then there is no hope of it working on

real-world data. In other words, these twin experiments provide a training ground for new methods

of data assimilation to be tested and evaluated.

Regardless of whether we are dealing with simulation or real-world data, another common

practice is to withhold the latter segment (roughly half) of the time series for comparison. We start off

with the full time series data or some system. The first segment of the data is fed into the computer for

data assimilation, and it should not be surprising if the data assimilation method is able to reproduce

this segment of the data. The true test is to see if the data assimilation method is able to make

prediction beyond the data that it was given, which is the second segment of the data. The second

segment of the data set is usually never given to the computer, but purposely withheld to see how

well our data assimilation method has performed.

In the slightly related machine learning community, the way we use the first segment of the

data is equivalent to the training set since it is presented to the computer explicitly. The second

segment of the data is then equivalent to the validation set, where we validate the performance of our

algorithm.

8

2.3 Dynamical Systems and State Estimates

The underlying dynamics of a deterministic and continuous time system can be described in

the most general (hence nonlinear) sense in the following form.

ẋ = f(x, t) (2.1)

The variable x here is an N -dimensional vector that fully describes the state of system and

the time-derivative of the state is given by ẋ, which is described as a function f of the state x and the

time t. As such, the function f(·) is also called the model of the system. We shall assume that there

are no parameters in the system for the moment. The scope and notation of the problem appears to

handle the one-dimensional case, but the multi-dimensional extension is straightforward yet tedious,

which is why it will be left for the appendix. The ultimate goal here is to assimilate (to be discussed in

a later section) the model with measurements of the system, which are (if available) almost always as

a set of discrete measurements in time. Hence, it would be prudent here to immediately consider the

discrete time version of the dynamical system x(tm) = {x1, x2, · · · , xM} before proceeding further,

and never looking back at the continuous counterpart.

xm+1 = xm +

∫
f(xm, t) dt

= F (xm, tm)

(2.2)

The above integral can be evaluated with any numerical quadrature rule of choice, assuming

that the time-interval between measurements is small enough. The choice of numerical quadrature

depends on many things regarding the system, and should be evaluated on a cases-by-case basis. There

is no requirement whatsoever that the time-intervals have to be uniform, but it is an assumption that

is made here for the sake of simplicity in notation. The result is a dynamical system describes by a

discrete map; it provides the rule to bring the state xm one step forward in time to xm+1. The above

map will also be called the model of the system since it is essentially a one-to-one correspondence to

the continuous counterpart. This model, it turns out, only holds when the true state is evolving in

time. Given that we will never have meaningful access to the true state x, we should assume that

there might be uncertainties in the estimated state. We need to look at the best estimate of the true

state x̂ and what conclusions we may draw from it. The best estimate x̂ is assumed to be somewhat

9

close to the true state x such that x̂ = x+ δx.

x̂m+1 = xm+1 + δxm+1

F̂ (x̂m, tm) = F (xm, tm) +∇xF (xm, tm)δxm +O[δx2
m]

(2.3)

Following the claim that our best estimate is close to the true state, we write down the above

equations by applying simple polynomial expansion. With the assumption that δx is distributed ac-

cording to the Gaussian distribution, the remainder of x̂m+1 − F (x̂m, tm) should also be given by a

slightly wider Gaussian distribution. This extra widening occurs due to the sum of two Gaussian dis-

tributed variables, and also due to the∇xF (xm, tm) matrix. There are some δx2
m that are distributed

by the beta distribution, but this is extremely small and negligible.

x̂m+1 − F (x̂m, tm) =
��

���
���

�:0

xm+1 − F (xm, tm) + δxm+1 −∇xF (xm, tm)δxm −O[δx2
m]︸ ︷︷ ︸

'ξ

(2.4)

The justification for this is the following – placing x̂m into our forward map F (x̂m, tm) will

not result in x̂m+1. Both x̂m and x̂m+1 are to be estimated independently and the condition x̂m+1 =

F (x̂m, tm) holds if and only if x̂m = xm and x̂m+1 = xm+1 are both true. Since we expect that

the true and estimated values will, even in the best case, deviate slightly from one another. All the

unknown dynamics that come from using the forward map on the estimated state is conveniently

encapsulated in the stochastic term ξ, which is distributed by the Gaussian N (0, σ2) up to a good

approximation.

x̂m+1 − F (x̂m, tm) ' ξ (2.5)

We believe that this formulation is more general and more useful as well. We have taken the

liberty to assume that the central limit theorem holds, such that the mismatch is that of white noise,

i.e. ξ ∼ N (0, σ2), but none of this is strictly required for the formulation. The original equation

for the evolution of the true state can be recovered from the evolution of the estimated state when

σ → 0. This formulation prescribes a probabilistic/stochastic approach to the problem and will allow

us progressively refine our estimations. Readers familiar with stochastic processes will inevitably know

the above equation as describing a drift-diffusion process, but this is not strictly true. Here, we are

concerned really in the relation between two local-in-time states. The estimate is not actually going

to evolve according to the above equation.

10

2.4 Probabilistic View of Dynamical Systems

From the previous section, we see that the estimate of the system, locally, evolve stochastically.

In the spirit of this probabilistic view, one can write down (albeit trivially) the conditional probability

of observing xm+1 given xm for a deterministic system.

p(xm+1|xm) = δ[xm+1 − F (xm, tm)] (2.6)

Where δ[·] is the Dirac delta function. The above formulation is almost completely tauto-

logical, but it gives a keen insight once certain relaxations are taken [4]. Specifically, the Dirac delta

function is not a probability distribution in the strictest sense, but one can view it as the limiting

case of a Gaussian distribution with near-zero standard deviation. The physicists’ usual lack of formal

mathematical rigor clearly shows in this approach, but hopefully the explanation is clearer and/or

intuitive this way. Through this simple relaxation, we arrive at a more practical definition. The

following equation describes the probability of observing some estimated state xm+1 given xm, where

the deterministic limit σ → 0 approaches a Dirac delta function.

p(x̂m+1|x̂m) =
1

Z
exp

[
−1

2

∥∥∥∥ x̂m+1 − F (x̂m, tm)

σmodel

∥∥∥∥2
]

(2.7)

The new variable Z =
(
2πσ2

)−N/2
is the normalizing constant typical of statistical mechanics.

From the above equation, one can easily see that given x̂m, the probability of x̂m+1 being valid is

higher when x̂m+1 ' F (x̂m, tm). This equation also implies that the process is Markovian, which is

the assertion that the probability of an event is dependent only on the previous state. Finally, the

above conditional probability is maximized when x̂m+1 = F (x̂m, tm), which implies that the state

estimate has converged to the true state, i.e. x̂m → xm. This formulation effectively states that the

deterministic dynamical system xm+1 = F (xm, tm) behaves much the same as a stochastic Markov

process [10]. In other words, the dynamics in the state space of the system x(t) may be nonlinear,

but in probability space the transitions are linear. The tradeoff is that even though the transitions

are linear, the probability space is infinite dimensional. Hence, there are no computational savings in

this formulation, merely a different approach to use when thinking of such problems.

11

2.5 Markov, Chapman, and Kolmogorov

From here on, there is no need to talk about the true state x in any meaningful way since there

is no way to access that state without some measurement process, which induces noise. We will be re-

placing x̂ with x going forward. We shall consider the trajectory of a state as x(t) = {x1, x2, · · · , xM}

given as an ordered sequence of M states xm that are each N -dimensional. In the usual treatment of

dynamical systems, the Markov property is already tacitly assumed. Such an assumption is relatively

harmless, yet it provides tremendous computational and analytical simplification. Treating a deter-

ministic dynamical system from a probabilistic perspective outlined above, along with the Markov

assumption, we can invoke the Chapman-Kolmogorov equation.

p(xm+1) =

∫
dxm p(xm+1|xm)p(xm) (2.8)

Starting from the final state xM , we can iteratively apply the Chapman-Kolmogorov equation

and the Markov property on the reversed-ordered states xm until we reach the initial state x1 [11].

Once the entire expansion then simplification in done, we can collect almost all the terms into a

product, as demonstrated below.

p(xM) =

∫
dxM−1dxM−2 · · · dx1 p(xM |xM−1, xM−2, · · · , x1)p(xM−1, xM−2, · · · , x1)

=

∫
dxM−1 p(xM |xM−1)p(xM−1, xM−2, · · · , x1)

=

∫
dxM−1dxM−2 · · · dx1︸ ︷︷ ︸

(M−1)-times

p(xM |xM−1)p(xM−1|xM−2) · · · p(x2|x1)︸ ︷︷ ︸
(M−1)-times

p(x1)

=

∫ [
dxm

M−1∏
m=1

p(xm+1|xm)

]
p(x1)

(2.9)

A very clear pattern emerges from the decomposition, and it can be written in the more

compact and more insightful form. With a small change of perspective, it is simple to make a quick

substitution below to recover the form resembling a path integral, which is familiar to physicists from

its use in quantum mechanics. There is a key difference in the form below in that the exponent is

entire real rather than imaginary. Fortunately, real exponents are handled in statistical physics and

there are links between statistical and quantum physics can be drawn in order to build the necessary

12

intuition.

K[x(t)] =

M−1∏
m=1

p(xm+1|xm) ; Dx(t) =

M−1∏
m=1

dxm
Z

(2.10)

p(xM) =

∫
Dx(t)ZMK[x(t)]p(x1) (2.11)

The extra factor of ZM is introduced with the purpose of having an all-encompassing nor-

malizing constant. This normalizing constant ZM will not play any role in our eventual optimization

procedure since it is, after all, a constant that scales the probability distribution function. It does not

affect the relative shape of the function, nor the location of the extrema. It is also worth mentioning

that with this notation, each xm is a D-dimensional vector at time tm, so dxm itself should be treated

as a product of differentials. Now we substitute our previous definition of the conditional probability

function p(xm+1|xm) , which is an approximation to the first order, into the propagator functional

K[x(t)]. We then choose to write the resulting equation in an exponential form.

K[x(t)] =

M−1∏
m=1

1

Z
exp

[
−1

2

∥∥∥∥xm+1 − F (xm, tm)

σmodel

∥∥∥∥2
]

=
1

ZM
exp

[
−1

2

M−1∑
m=1

∥∥∥∥xm+1 − F (xm, tm)

σmodel

∥∥∥∥2
]

︸ ︷︷ ︸
−S[x(t)]

(2.12)

The argument of the exponential function S[x(t)] is called the action due to its roots in

physics. See the appendix on path integrals for further elaboration. The most striking point here is

to notice that the action S[x(t)] is scalar function of a path x(t) and that the full nonlinearity of the

dynamics F (xm, tm) is preserved. There is no linearizaton of any kind, merely the assumption that

the proposed model works well in estimation the forward state xm+1 from xm.

S[x(t)] =
1

2

M−1∑
m=1

∥∥∥∥xm+1 − F (xm, tm)

σmodel

∥∥∥∥2

(2.13)

We now have access to a statement regarding the probability of the dynamical system being

at some state xM at time tM . Not only that, but this probability is achieved by integrating over every

possible path that can precede xM . All the relevant information about the states transitioning across

time is encoded in this action S[x(t)]. It is this action that essentially ‘picks out’ the most likely path

13

among all possible ones.

p(xM) =

∫
Dx(t) e−S[x(t)] p(x1) (2.14)

Rewriting the previous probability function with the action S[x(t)] in mind, we get the above

function. This equation is a statement regarding the probability distribution and can be made even

more general, such that any function or quantity (vector or scalar) defined along the path can be

calculated by this integral evaluation [12]. We simply insert any function G[x(t)] inside the integrand,

and we get an expectation value for this function 〈G[x(t)]〉.

E(G[x(t)]) = 〈G[x(t)]〉 =

∫
Dx(t) e−S[x(t)]G[x(t)] (2.15)

At this point, only the assumptions made so far are threefold: 1) that the Markov property

holds, 2) the system can be discretized in time smoothly, and 3) that p(xm+1|xm) can be relaxed into

a Gaussian-like distribution. All three of these assumptions are rather mild, and the last of which

only determines the functional form of the action, not the path integral [13, 4]. Of particular interest

is when G[x(t)] is the identity function such that we are solving for the average trajectory 〈x(t)〉 of

the system.

〈x(t)〉 =

∫
Dx(t) e−S[x(t)] x(t) (2.16)

For now, this average trajectory 〈x(t)〉 is evaluated over an infinite number of possible solu-

tions, or paths. This gives us nothing useful for now, as there are no other constraints to consider.

However, if we can condition the action S[x(t)] sufficiently, say with priors in the form of measurement

data, then we will be able to make some good use of this path integral formulation, which is the topic

of the following section.

2.6 Including Measurements

Thus far, we have converted a deterministic model into a probability distribution, roughly

speaking. The question now is how time-series measurements of the system of interest y(tm) =

{y1, y2, · · · , yM} should be incorporated into this probability distribution in order to arrive at useful

and sensible state estimates x(tm) = {x1, x2, · · · , xM}. We shall assume that we can measure state

variables directly so that H(xm) = xm is in the same space as ym, where H(xm) is a nonlinear

14

measurement function. Also implicitly assumed, in the notation, is that the time-series data is available

at the same time-scale as the model dynamics, which is seldom the case for weather systems but it

is the case when dealing with neuronal data collected at the rate of several kilo-Hertz. In the case of

a mismatch between measurement and model time-steps, we could introduce a Dirac delta function

into the measurement term, but this will not be address in this work. The simplest and most naive

approach of including measurement data would be to impose a standard Gaussian distribution at

every point in time, which introduces the following term multiplicatively.

p(xm|ym) =
1

Z
exp

[
−1

2

∥∥∥∥H(xm)− ym
σmeas

∥∥∥∥2
]
≡ 1

Z
exp

[
−1

2

∥∥∥∥xm − ymσmeas

∥∥∥∥2
]

(2.17)

This white-noise spectrum should be a good approximation of the noise spectrum of most

well-tuned measurement devices. We can then make a claim regarding the estimate of the state at

a particular time xm, conditioned on the previous estimated state xm−1 and a measurement at the

current time ym. This is effectively using the measurements to introduce an enveloping term on top of

the existing probability density function, which previously only considered the model dynamics. This

addresses the issue previously had, where there were infinite number of paths to sum over. In effect,

we use the measurements to reduce the number of paths to sum over, and this makes estimations a

lot more useful.

p(xm|xm−1, ym) ≡ p(xm|xm−1)p(xm|ym)

=
1

Z
exp

[
−1

2

∥∥∥∥xm − ymσmeas

∥∥∥∥2

− 1

2

∥∥∥∥ x̂m − F (x̂m−1, tm−1)

σmodel

∥∥∥∥2
]

(2.18)

All technical issues regarding the normalization are entirely absorbed into the Z term for

simplicity. We do not spend time on issues regarding Z since the normalizing constant will not play a

role in our calculations. It is noted that the above conditional probability does not necessarily follow

from the previous equations, but that they are merely consistent with one another. We have assumed

that model estimates xm are independent from the measured data ym, which is a relatively safe and

conservative assumption. Of course, the estimate and the data must be intrinsically related given that

they are both attempting to describe the same system, so this assumption results in a search over a

space that is larger than necessary. This handicap, however, is partially overcome by the use of other

15

Markov chains that will be discussed in the next chapter.

p(xM |y(t)) =

∫
Dx(t) e−S[x(t)|y(t)] p(x1) (2.19)

The exact treatment of the previous section is given to this conditional probability function,

with the only notable difference being the messiness of the intermediate steps [4]. This results in a

new form of the action S[x(t)|y(t)] that is now conditioned on data as well as the model.

S[x(t)|y(t)] =
1

2

M∑
m=1

∥∥∥∥xm − ymσmeas

∥∥∥∥2

+
1

2

M−1∑
m=1

∥∥∥∥xm+1 − F (xm, tm)

σmodel

∥∥∥∥2

(2.20)

Some additional care should be taken when dealing with this action, primarily due to the

physical models as a constraint interacting with the inescapable presence of physical units in the

measurements. This might be unclear and ambiguous, but consider the following example. Sea

surface height is measured in meters and the crest-to-valley variation of ocean waves is on the order

of fractions of meters. Wind velocity on the other hand is measured in meters per second, and say

it is a windy day where the wind speed varies around tens of meters per second. If both these

variables enter the model as it stands now, the variation in the wind speed will easily overshadow

the variation in the sea surface height, biasing the probability distribution towards estimating the

wind velocity variables well and forsaking the sea surface height estimation. More generally, without

adjustments, this action will prioritize estimating variables with larger variation in their measurement.

Assuming that neither variable is more important or reliable, it would make more sense to use a scale-

free definition in the action such that the dynamics in the measurement window range from −1 to

1 approximately, effectively de-dimensionalizing the system and removing this bias. This is done by

pushing the necessary scaling, as well as the inversion of the covariance of the system into two matrices

Rmeas and Rmodel.

S[x(t)|y(t)] =
1

2

M∑
m=1

‖xm − ym‖2Rmeas
+

1

2

M−1∑
m=1

‖xm+1 − F (xm, tm)‖2Rmodel
(2.21)

Both the Rmeas and Rmodel are D × D symmetric positive definite matrices which modify

the Euclidean norm by simply scaling the argument vectors2. Within the scope of this work, both

these matrices are populated along the diagonal only and the resulting computations were good

enough. There is room for more complicated covariant structures to be introduced within Rmeas

16

and Rmodel, which should result is better convergence rates especially when applying this method

to higher dimensional and more complex systems. The challenge of using the covariant structure is

entirely technical and left for the interested reader to pursue.

2.7 Significance of the Action

Up till now, we have shown the emergence of a path integral from the probabilistic view of a

dynamical system. This path integral leads to an action term S[x(t)], which we further augment by

introducing measurements in a sensible manner, thus leading to the newer action S[x(t)|y(t)] which is

now conditioned on the measurements y(t). Having this action, we address how and why this entire

path integral formulation is worth considering in that it gives two insights on how to proceed.

The first insight is that we might consider that each state xm can be treated as independent

from the state right before it xm−1 and right after it xm+1. This is not an approximation, but a

purposeful oversight. One is always free to assume, initially, that two objects are not related, at the

risk of feigning too much ignorance. Due to the assumed lack of relationship between subsequent

states, the space of possible solutions is drastically increased. Thankfully, a search for solutions in

this larger space turns out to be better behaved as the landscape becomes smoother. The details of

this claim, and the accompanying approach will be discussed in the following chapter.

p(xM |y(t)) =

∫
Dx(t) e−S[x(t)|y(t)] (2.22)

E(G[x(t)]|y(t)) =

∫
Dx(t) e−S[x(t)|y(t)]G[x(t)] (2.23)

The second insight is that the action S[x(t)|y(t)] contains all the relevant information neces-

sary to determine the probability distribution p(xM |y(t)) exactly. This means that the states along

the entire trajectory x(t) is necessary for finding the most probable final state xM , even though all

the previous states are technically integrated out [14, 15, 16]. Evaluating this integral exactly, if even

possible, is extremely difficult due to the spatial dimension D and the number of time points M of

x(t) ∈ RD×M . As such, we have to resolve to either using analytical approximations or numerical

methods for evaluating the p(xM |y(t)) integral. The chosen approximation is that of the Laplace

2To elaborate in a practical manner, some term written as ‖z‖R is practically computed, in a linear algebra sense,
as z>Rz. Here z ∈ RD is a standard column vector and R must be a matrix of dimension D ×D.

17

method. Due to the form of the resulting action S[x(t)|y(t)], the conditions for the chosen approxi-

mation to work well on p(xM |y(t)) are easily met and the approximation itself also holds extremely

well for E(G[x(t)]|y(t)) as well. The conditions of the Laplace method, applied to this case, are:

(i) there exists a stationary path x∗(t) (hopefully a minimum) of the action S[x(t)|y(t)]

(ii) the action is sharp enough at the stationary point given by ∂2S
∂x(t)2

∣∣∣
x∗(t)

(iii) the action evaluated at the stationary path S[x∗(t)|y(t)] must be large relative to the possible

variation in x(t)

Under these conditions, it so happens that the integral of E(G[x(t)]|y(t)) can also be well

approximated by the Laplace method, at no significant loss of accuracy. The usage of these approxi-

mations to solve for these stationary paths x∗(t) will be called variational methods for the purposes

of this work [17].

As for numerical methods, the Monte Carlo family of methods is the approach of choice due

to the high dimensions of x(t). The dimensions are high enough that any grid-based or quadrature

methods are rendered useless, but the Monte Carlo methods are not affected as much. The challenges

of high dimensional space are still present for Monte Carlo methods, but there are efficient ways to

overcome the high dimensions that quadrature methods simply do not have access to. Monte Carlo

method are much more expensive than the previous alternative of variational methods, in general,

but offer additional forms of accuracy that are not addressed in the variational methods. Namely,

the Monte Carlo methods will explore the shape of the distribution around the stationary points,

considering all higher order statistics of the distribution (notably the third-moment or skew) if given

a long enough exploration time. This is in contrast to the variational method, which assumes that the

first- and second-moments (mean and standard deviation) are sufficient for estimating the integrals.

All the details of these claims will be handled and discussed in the following chapter.

2.8 Summary and Interpretations

The path integral formulation/framework give us an action that we hope to extremize. This

action pins the measured noisy state at the center of a ball, shown in the first term above. We impose

a simple Euclidean penalty so that the states do not wander off too far from the measured state. Such

is standard practice, and this measurement error term is sometimes also called the background error.

18

If measurements were performed properly, the true state should be relatively close by the measured

state and y(t) can be used as the first guess in our search for the best estimate x(t).

S[x(t)|y(t)] =
1

2

M∑
m=1

‖xm − ym‖2Rmeas
+

1

2

M−1∑
m=1

‖xm+1 − F (xm, tm)‖2Rmodel
(2.24)

In addition to the data itself, we also have a credible model which describes the approximate

dynamics of the observed data. Not only should the best-estimated state be somewhat consistent

with the data, but it should also be somewhat consistent with the model F (x, t). This is the purpose

of the second term shown above, which can be viewed as a constraint term [18]. The best-estimate

should simultaneous be close to the measured state while satisfying the constraint imposed locally by

the model dynamics. We can think of extrema of the action as the solutions to the most-probable

path defined by the path integral.

Figure 2.1: Rough illustration of the estimation process with the assumption of very low measure-
ment noise for simplicity in the figure. The lightblue regions may be viewed as the continuous error
bars of the estimate. Measurements provide a ‘pinching’ in the possible trajectories, shown by the
grey arrows, as we iteratively refine the estimates. Where there are no measurements, we see that
there is a larger spread in the possible values that the estimate can take on. The estimation process
handles all points in time simultaneously, not sequentially, which is the distinguishing feature of the
path integral approach compared to weak-constraint 4Dvar.

This path integral approach for dynamical systems is not something completely new. Our

approach bears very strong resemblance to the Onsager-Machlup function for a most probably diffusion

path. There is some slight difference in the conclusion and approach since their definition of diffusion

occurs in the time dimension t. If anything, our approach is to ‘undo the diffusion’ of a state that results

from the act of measurement. We will expound on this topic more in the heuristics chapter. This action

is also very similar to the cost function of the 4Dvar family of methods, more specifically long-window

19

weak-constraint 4Dvar. These similarities subside rather quickly since the approach of assimilating

long-window weak-constraint 4Dvar with the data is considerably different past the functional form

of the cost function. We will not be further discussing 4Dvar or their differences/similarities to this

work.

There is also a strong resemblance to (perhaps even an untraced inspiration from) the Path

Integral Monte Carlo (PIMC) method and its premises. The biggest difference is that PIMC is applied

to physical problems where the dynamics (say the Schrodinger equation) is extremely precise, so the

physical quantities like the energy and the action are on much firmer ground3. In comparison, the

action we use for data assimilation is qualitatively correct in the proper limit, but there are no explicit

physical constraints or reasons from nature why it would be de facto true. PIMC almost exclusively

uses the Metropolis-Hastings technique for evaluating the integral, while we use other techniques as

well. These other techniques perform well on our action and do not manifest the issues that PIMC

faces, perhaps due to the lack of physical realism in our formulation.

In summary, this action is the most significant result of the path integral formulation of data

assimilation, as it lends us a lot of intuition on how to proceed with practical calculations. The goal

is to get a best estimate of the dynamical system x(t) from measurements y(t) and the model F (x, t).

The interpretation and approach are provided by the path integral formulation outlined thus far,

which lets us know that the focus should be placed on the finding the stationary points of the action.

This action also implies that the Laplace method approximation can be used. Lastly, the missing

piece of this puzzle are the tools with which we could use to find these stationary points. These tools

have been teased many times in this chapter, but will be the focus of the following chapter.

2.9 Acknowledgments

Chapter 2, in part, uses material and results that appears in Precision Annealing Monte Carlo

Methods for Statistical Data Assimilation and Machine Learning, submitted in Physical Physical

Review Research, 2(1), 013050. Fang, Zheng, Wong, Adrian S., Hao, Kangbo, Ty, Alexander J., and

Abarbanel, Henry D. I. (2020). The dissertation author was one of the primary investigators and

authors of this paper.

3It is common practice in PIMC to use approximate or effective actions, rather than the full action, due to the
interaction terms of the Hamiltonian or action being incredibly sophisticated and computationally expensive to evaluate.

20

3
Evaluating Integrals

3.1 Overview

The previous chapter dealt with showing that estimating the state of a dynamical system can

be treated as a statistical problem. We then further explore how this statistical treatment leads to a

sensible probability density function, and that data can be used to further condition this function. This

then allows for the calculation of expectation values by evaluating some high dimensional integral that

closely resembled a path integral from physics. High dimensional integrals of arbitrary but bounded

functions are not an easy task, and estimating or approximating the integral is a common challenge

in many areas of engineering, statistics, and the sciences. The resemblance to a path integral informs

our intuition about how one can approach such integrals. The goal of this chapter is to address

the methods of choice when faced with integrals of the general form below. The specifics of the

implementation require another chapter discussing additional heuristics for these method, and will be

covered in that chapter.

E(G[x(t)]|y(t)) =

∫
Dx(t) e−S[x(t)|y(t)]G[x(t)] (3.1)

Also in the previous chapter, we asserted that the action necessarily has the form of two

quadratic terms, the first being linear and the second nonlinear. The quadratic form was arbitrarily

prescribed in the previous chapter as a sensible and believable form for a cost function, but it is

21

important to address the assumptions that were made.

p(xM |y(t)) =

∫
Dx(t) e−S[x(t)|y(t)]

=

∫ [
dxm

M−1∏
m=1

p(xm+1|xm)

]
︸ ︷︷ ︸

model-consistency

[
M∏
m=1

p(xm|ym)

]
︸ ︷︷ ︸
conditioned on data

p(x1)
(3.2)

The first assumption is that the dynamics of the system are Markovian, which has been tacitly

assumed this entire work. The second assumption is that the measurement error xm − ym is given

by uncorrelated (in time) Gaussian noise. The third assumption is that the model and measurement

error are independent. All three of these assumptions are very mild and commonplace assumptions.

The third assumption is that the model error or model-consistency term xm+1 − F (xm, tm) is also

given by uncorrelated Gaussian noise, which is perhaps the assumption that is hardest to satisfy.

S[x(t)|y(t)] = −
M−1∑
m=1

ln p(xm+1|xm)−
M∑
m=1

ln p(xm|ym) +��
��:constant

ln p(x1)

=
1

2

M∑
m=1

‖xm − ym‖2Rmeas
+

1

2

M−1∑
m=1

‖xm+1 − F (xm, tm)‖2Rmodel
+ constants

(3.3)

There are two approaches to estimating the expectation values given by the integral. One such

approach is to employ the Laplace method, which makes an asymptotic expansion around the mode

(assuming for now that there is but one mode) of the probability function e−S[x(t)|y(t)]. The mode of

this function is necessarily located at the same path x∗(t) that satisfies the stationary condition of

the action S[x(t)|y(t)].

∂S
∂x(t)

∣∣∣∣
x∗(t)

= 0 (3.4)

By finding the stationary path x∗(t), the Laplace method allows us to approximate the integral

under suitable conditions, the specifics of which will be covered in its own section. This is remarkable

(yet commonplace) as the problem of evaluating of integrals is replaced with a minimization problem

of a cost function, in our case, the action S[x(t)|y(t)]. The Laplace method allows us to effectively

avoid explicit evaluation of the integral by fitting the closest possible Gaussian curve. This entire

process only uses functions evaluated at the minimum x∗(t), namely S[x∗(t)|y(t)] and ∂2S
∂x(t)2

∣∣
x∗(t)

, and

does not require exploration around the minimum.

On the other hand, there is the Monte Carlo approach to evaluating integrals, which is used

22

alongside Markov chains. These family of methods explores the typical set of the probability distribu-

tion function, but it is still guided by the principle that the mode and its immediate neighborhood will

dominate the integral. Generally speaking, it does not matter what the initial state or parameter is

set to because it should always converge. This is not the case given limited computational resources,

but having a theoretical guarantee is always nice. We visit the Metropolis-Hastings method and the

Hamilton Monte Carlo method later in this work.

3.2 Laplace Method

3.2.1 Original Usage

The Laplace method an approximating technique for integrals of the following form. Once

the integral is evaluated, we get a function I(N) which is an integral function of some parameter N .

I(N) =

∫
dz exp[−N f(z)] (3.5)

J(N) =

∫
dz g(z) exp[−N f(z)] (3.6)

For the purposes of this work, we will limit the scope of the problem such that 1) the bounds

of integration are set to be the entire space, 2) the stationary point is necessarily a minimum, and

3) that we are working in the limit for N → ∞. We also assume that there is only one mode in

the distribution which dominates the integral. A detailed treatment will be handled in the appendix

handling the multiple-mode case as well, but a quick version is presented in this chapter.

I(N) =

√
2π

N det[f ′′(z∗)]
exp[−N f(z∗)] +O

[
1

N

]
(3.7)

J(N) =

√
2π

N det[f ′′(z∗)]
g(z∗) exp[−N f(z∗)] +O

[
1

N

]
(3.8)

We begin by ‘searching’ for the location z∗ of the minima, which is accomplished by solving

f ′(z∗) = 0 for z∗. This step can be done analytically in one dimension, even for nonlinear f ′(·).

In higher dimensions and nonlinear f ′(·) we would have to rely on numerical methods. We can

23

Figure 3.1: Rough idea of the Laplace method for an arbitrary but large N . The mode z∗ and height
of the actual function of interest exp[−N f(z)] are inherited by the best-fit Gaussian. Additionally,
the Gaussian requires some definition of a thickness or width, and this is provided by the second
derivative of exp[−N f(z)] evaluated at z∗. The best fit Gaussian here underestimates the actual
function due to it having fat tails.

then proceed to calculate the height and width of this best-fit Gaussian once we have found z∗ given

by exp[−N f(z)] and det[f ′′(z∗)] respectively. Some care should be taken given that f ′′(z∗) is a

Hessian matrix in dimensions higher than 1. This asymptotic approximation holds very well when N

is sufficiently large due to the leading order error which scales as 1/N , assuming no other pathological

behavior of the function f(·).

Our problem of integral evaluation has been exchanged with a numerical optimization problem

instead. There is a small trade-off in that we are using as asymptotic approximation by using the

Laplace method. We use the Newton family of methods for the optimization procedure, which uses

gradient information of the cost function f(·). As a practical matter, we use quasi-Newton methods

for the procedure as it avoids calculating the inverse of the Hessian f ′′(·) within the iterative part of

the method.

3.2.2 Applied to the Data Assimilation Action

The Laplace method allows us to estimate the value of integrals based on information local

to the mode of the distribution. It gives us the following approximation where the leading order error

24

(not shown) scales at 1
N .

J(N) =

∫
dx g(z) exp[−N f(z)] '

√
2π

N det[f ′′(z∗)]
g(z∗) exp[−N f(z∗)] (3.9)

This is the general case, and we want to apply the Laplace method to our particular probability

distribution function. Saying that this estimation holds better when some parameter N is high reduces

our understanding to a mechanistic one, with no intuition to guide us any further. A more useful way

of phrasing this is that the Laplace method works better when the distribution gets sharper, defined in

our case as when the second derivative or Hessian S ′′[x(t)∗|y(t)] is large. However, this is all assuming

that there are no serious pathologies in the distribution (e.g. very fat tails, extreme skew, multiple

deep minima, etc.). We address these serious pathologies in a later section.

E(G[x(t)]|y(t)) =

∫
Dx(t) e−S[x(t)|y(t)]G[x(t)] '

√
2π

det{S ′′[x(t)∗|y(t)]}
G[x(t)∗] exp{−S[x(t)∗|y(t)]}

(3.10)

The above form is recovering when we use the notation for the data assimilation action and

the stationary path x(t)∗. It can be further simplified by looking at the specific structure of the action

S[x(t)|y(t)].

S ′′[x(t)∗|y(t)] ≡ ∂2S
∂xi∂xj

∣∣∣∣
x∗(t)

= Rmeas +RmodelQ[x(t)∗] (3.11)

Some simplification is swept into Q[x(t)∗], suffice to say that it approaches a large diagonal

matrix (or just a constant) in the immediate neighborhood of the stationary path x(t)∗. This amounts

to saying that our action can be well approximated by a quadratic function close to the stationary

path x(t)∗, which is an alternative statement to having Q[x(t)∗] = N →∞. Since Q[x(t)∗] approaches

a large constant, this is tantamount to saying that the model error term of the action dominates the

measurement error term. Admittedly, the notation in ∂2S
∂xi∂xj

is extremely vague here, but we refer

to subsection 4.3.1 for a more rigorous treatment. A detailed treatment of all these claims will be

included in the appendix.

E(G[x(t)]|y(t)) '
√

2π

detRmodel
G[x(t)∗] exp{−S[x(t)∗|y(t)]} (3.12)

So far, Rmodel is a prescribed diagonal matrix, meaning that the user can decide on its

magnitude and values. The matrix Q[x(t)∗] can then be absorbed into Rmodel. The important

25

takeaway here is that we need to work with an action S[x(t)|y(t)] where Rmodel applies a strong

scaling structure to the action. The mathematical condition is given by detRmodel � detRmeas, and

conceptually this means that we should work in the limit of a strong-constraint model.

3.2.3 Approach of the Numerical Scheme

We have shown that the evaluation of an integral can be posed as an optimization problem

in the first section of the chapter. The second section that resolves some of the notational issues and

extend the Laplace method to the specific form of our action. The natural follow up question would

be how one approaches this optimization problem. The optimization problem itself is nonlinear owing

to the nonlinear terms in model error of the action.

x(t)∗ = argmin
x(t)

S[x(t)|y(t)] (3.13)

Our method of choice for solving this optimization problem is the quasi-Newton method. The

standard Newton method makes use of the second-derivative (or Hessian) S ′′[x(t)|y(t)] of the action

by inverting it. More specifically, the quasi-Newton method of choice recommended and used within

this work called Low-Memory Broyden-Fletcher-Goldfarb-Shanno(L-BFGS), which uses approximates

of the Hessian S ′′[x(t)|y(t)] and its inverse. The result is a computational complexity of O[N2]

rather than O[N3] for the standard Newton method, where N = MD is the number of variables

we are optimizing over. The low memory aspect of the method helps avoid costly memory fetches if

everything can fit on the CPU cache, thus offering a potential speed upgrade. L-BFGS is a standard

algorithm available in every major numerical toolkit, regardless of the programming language. This

numerical method is left as an option in any optimization routine. The exact details of the method

and implementation are far beyond the scope of this work.

At this point, there is no need to dive further into details. The complications of imple-

mentation in code are minimal. It is worth mentioning that we are looking for the stationary path

x(t)∗ ∈ RD×M , which involves optimization over (D×M)-dimensional space. Implementation in code

requires a ‘flattening’ of x(t)∗ into a vector, which is handled in detail in subsection 4.3.1.

26

3.3 Energy Landscape and Search Space

The treatment of the optimization problem thus far is classified as a weak-constraint approach,

which means that error in the model are assumed. A strong-constraint approach would assume that

the model is near perfect, which is almost never the case. Even if we have access to the perfect

model, this approach is unstable for the general nonlinear case particularly when the system is in

a chaotic regime of its dynamics. As mentioned in the previous section, the Laplace approximation

requires us to work in the limit where detRmodel � detRmeas. This is us working in the limit of the

strong-constraint, but not an absolutely-strong-constraint.

Figure 3.2: Energy surface of the Lorenz system using the hard-constraint cost function, i.e when
xm+1 = f(xm) is obeyed absolutely. There plots were generated from using the respective M values,
which are the number of ∆t = 0.01 time steps within the measurement window. The energy surface
gets more complicated as M increases, and the global minimum is located at the origin and marked
by a red cross.

In the (absolutely) strong-constraint, the formulation of our problem breaks down substan-

tially because it no longer makes sense to perform a search of path space x(t) = {x1, x2, · · · , xm}.

Rather, the hand-constraint ties xm+1 = f(xm) unquestionably, so the search space is inevitably going

to be over the first state x1 only. Such an approach obviously fits within our formulation since the

space of x1 is a subspace of x(t), but a lot of the built-up structure and notation becomes obsolete.

The weak-constraint approach is over a much larger space comparatively, by a rather large factor of

M . There are both advantages and drawbacks for doing so, at least within our formulation.

The advantage that weak-constraint has is that the search over path space x(t) is much more

stable than only searching over the initial condition space x1, at least for nonlinear and even chaotic

system. This is due to the extremely sharp and jagged surface of the cost function when varying

27

over x1 alone, which comes from the nonlinearity of imposing xm+1 = f(xm) and is increasingly

exaggerated for long windows of measurement. This is particularly true if the underlying system of

interest passes through a chaotic region of its dynamics in the optimization routine. Finding the best

local minima then becomes a rather tedious and challenges task, as one would very likely get stuck in a

inferior local minima very easily. The surface of the cost function is much smoother in our formulation,

as it generates extremely deep and well-separated local minima. This is not without consequence, as

we need to make sure that we initialize the search close to the basin of attraction of a superior local

(hopefully global) minimum. We explore a solution to this weak in the Appendix D. The search is

over a much larger space, so our numerical methods of choice need to work well for extremely high

dimensional (105 at least) space. We believe that our approach is well worth its trade-offs, and the

L-BFGS method alleviates the computer memory issues of high dimensions fairly well.

There is also the question of the total run time of each approach. Weak-constraint offers

optimization over a simple but higher-dimensional space, whereas strong-constraint offer optimization

of a complicated but lower-dimensional space. We make the case that the simpler geometry that the

weak-constraint offers allows for a much larger step-size and even less iterations. Strong-constraint

methods use very small step-size to deal with all the issues outlined above, as well as some additional

tricks to help it break-out of local minima. The rest of this work only uses the weak-constraint

approach in the limit of a strong-constraint. The specifics of the claims here in the context of Deep

Learning and Backpropagation are handled in Appendix C.

3.4 Summary and Further Directions

We would like to emphasize, in closing, that the strong-constraint problem is indeed the

correct problem to solve. However, the cost function associated with the strong-constraint problem is

difficult to handle due to its jagged surface. An alternative is the weak-constraint problem taken to

the limit of the strong-constraint, which is an approach equivalent to applying the Laplace method

to our action S[x(t)|y(t)]. Doing so increases the dimension of the system tremendously and also

hints at iteratively optimizing the problem. These are computationally far more intense than the

simple optimization of the hard-constraint, but it avoids the problematic jaggedness associated with

the strong-constraint. We believe that the net result of our weak-constraint approach is a modest yet

acceptable increase in computation time, at the benefit of a more stable problem to solve. The jagged

28

surface requires a large number of small step sizes, whereas our approach may use a fewer number of

larger step sizes.

Figure 3.3: Comparison of the energy surface of the Lorenz 1996 system for M = 600 time steps. The
hard-constraint energy surface is incredibly complicated and even displays fractal structures, whereas
the weak-constraint energy surface is smoother but approximate. The red cross is the location of
the true global minimum, and the green cross is for the estimated global minima using the weak-
constraint. This green cross is close to the red cross and will converge to the red cross upon iteratively
applying the algorithm.

In addition, the Laplace method is not the only method we use to evaluate the integrals of

interest to this work. There are many other options, notably the Monte Carlo family of methods.

These methods are incredibly rich in detail and go far beyond just integral evaluation. For these

reasons, Monte Carlo methods have been given a chapter on their own rather than being included

in this chapter. We briefly mentioned about the use of heuristics that aid in our challenging task of

evaluating these integrals. The biggest clue of such is given by the condition detRmodel � detRmeas

under which the Laplace method holds well. This limit, however, is challenging if taken too seriously

so some strategy is employed in hopes of overcoming this issue. We use the fact that Rmodel is actually

a prescribed value of our confidence in the model, and we start by setting the magnitude of Rmodel to

be comparable to Rmeas. We slowly increase the magnitude of Rmodel during the optimization process,

practically speaking we iteratively run the L-BFGS algorithm with a higher magnitude Rmodel each

time. Such practices are called heuristics, and this is similar to the annealing heuristic, or the penalty

method used in certain area of optimization. An entire chapter is dedicated to these heuristics, which

will also tackle some of the implementation aspects of this work.

29

3.5 Acknowledgments

Chapter 3, in part, uses material and results that appears in Precision Annealing Monte Carlo

Methods for Statistical Data Assimilation and Machine Learning, submitted in Physical Physical

Review Research, 2(1), 013050. Fang, Zheng, Wong, Adrian S., Hao, Kangbo, Ty, Alexander J., and

Abarbanel, Henry D. I. (2020). The dissertation author was one of the primary investigators and

authors of this paper.

30

4
Monte Carlo Methods

All human wisdom is contained in these two words - Wait and Hope

- Alexander Dumas, The Count of Monte Cristo

4.1 Introduction

Monte Carlo methods are an extremely broad class of computational techniques which leverage

random number generation to perform a variety of calculations. Monte Carlo methods are, loosely

speaking, further divided into three paradigms: optimization, integration, and sample generation.

Each of these paradigms have been further leveraged in countless ways for all sorts of applications,

tools, and sub-methods which permeate various fields such as physics, chemistry, biology, mathematics,

epidemiology, meteorology, artificial intelligence, and finance. Even within these fields, there are

various sub-fields under which Monte Carlo methods are used in substantially different ways [19]. The

full scope of possible applications is astonishing, frankly. It is no wonder that Monte Carlo methods

have become a staple in a within science and engineering.

The fundamental idea of Monte Carlo methods is that a deterministic problem can be solved

with a method in which the individual steps are random – these are called stochastic methods. Monte

Carlo methods are generally used when the problem is incredibly complicated, rendering the available

analytic approaches either impractical or intractable.

31

4.2 Metropolis, Hastings, and Rosenbluth

4.2.1 Description of the Method

The Metropolis-Hastings algorithm is a procedure for exploring state space through generating

random samples. These samples are not completely random but are proposed as random perturbations

to the most recent accepted state. We assume to have access to an energy or cost function that, in

effect, tells the algorithm how to differentiate between bad and good states. This energy function also

happens to be the logarithm of the probability density function.

Algorithm 1 Original instantiation of Metropolis-Hastings algorithm. E(·) is a prescribed or as-
sumed energy function and the distribution of p(x) ∝ exp[−E(x)] is tacitly implied.

x randomly initiated
while not converged do

∆x ∼ N (0, σ2) . ∆x drawn from the Gaussian distribution.
x′ ← x+ ∆x . Generate a new state from the old one.
∆E ← E(x′)− E(x) . Calculate the change in energy.
u ∼ U(0, 1) . Generate a random uniform number between 0 and 1.
if exp[−∆E] < u then . Accept the new state probabilistically.

x← x′

Lower energy states are better in general, guided by the principle that nature trends to the

lowest energy states locally. By moving towards the better states on average, the algorithm not only

explores the space to a large degree, but it will also spend more time in areas with higher probability.

Under ideal behavior, the algorithm updates the state as it slowly approaches the lowest stable energy

state. Upon reaching the local minimum, the state will deviate slightly around it and produce samples

around the local minimum in line with the underlying distribution. A record of all previous accepted

states
{
x(0), x(1), · · · , x(N)

}
is kept, and from this history we can calculate the expectation values.

f̂N =
1

N

N∑
i=1

f(x(i)) (4.1)

This method is simple to implement and understand, yet unbelievably effective under reason-

able conditions. The entire algorithm constitutes of basic math operators, if statements, for loops,

and function evaluations. These reasons combined meant that the algorithm would be implementable

and useful as early as the 1950s, given the technology at the time. In other words, the method was

exceptionally useful and practical given the time period and the available computational technology.

As problems became increasingly complex and computational power comes by easier, the staggeringly

32

inefficiency of the original Metropolis-Hastings algorithm became more and more apparently. The

method runs into issues of slow convergence when the dimension of state space becomes too large or

if there are pathological smoothness issues in the probability function. This method is nevertheless

a good starting point pedagogically, and there are parallelization techniques that can help overcome

the potential inefficiency of the approach. Other methods, like Hamilton Monte Carlo, were also

developed as an attempt to overcomes the inefficiencies of the Metropolis-Hastings algorithm. As a

technical and historical note, we used the name Metropolis-Hastings algorithm for historical accuracy.

A more appropriate name would be called the Random-Proposal Monte Carlo (RPMC), and the name

Metropolis-Hastings refers to the acceptance-rejection step specifically, which is used in other methods.

We tackle and consider Hamilton Monte Carlo in a later section, which uses the Metropolis-Hastings

refers to the acceptance-rejection step, but not random proposals.

Figure 4.1: Rough idea of the Markov Chain Monte Carlo method. The latest state, on average,
finds its way to the mode leaving a history of state. This history serves as samples from the typical
set of the underlying probability distribution function. Note: not depicted (for visual clarity) are the
potential state transitions to regions of lower probability, as well as the state sampling around the
mode upon reaching there.

The RPMC algorithm came from research that was originally done at Lawrence Livermore

National Laboratory, which means to say that it must have had some contribution to the development

or maintenance of nuclear armaments [20]. A lot of the computation and theoretical work in the

original work was done by the Rosenbluths, who are often not credited enough for their contributions.

In 1970, Hastings published remarkably concise work that generalized and formalizes the mathematics

that was utilized in the original work. We explore these generalizations in the next section [21].

33

4.2.2 Some Formalism

Algorithm 1 is a particular instantiation (the original instantiation) of the RPMC algorithm,

chosen here for its simplicity and originality rather than its generality. In this section, we discuss

some of the generalizations of the method and even include some mathematical formalism. The above

instantiation gives a basic idea of what the algorithm does and what it is attempting to accomplish.

Once we can appreciate the basic idea, we can dive into the details more and generalize the idea.

There are two ways of generalizing the basic instantiation of Metropolis-Hasting.

The first generalization is to notice that the proposal mechanism from the old to the new state

is somewhat arbitrary. There is no prescribed way of choosing the standard deviation σ of the standard

Gaussian N (0, σ2) – even the choice of using the standard Gaussian is arbitrary. For the general case,

we can say that x′ is generated according to some conditional transition function π(x′|x). However,

this still does not tell us how to choose or construct π(x′|x) in general, merely that it is the most

general formulation of the method. This does not bode well since a properly construction transition

function π(x′|x) is key to getting faster convergence, and one wants to save as much computational

resources as possible. There are many heuristics to how to construct π(x′|x) for faster convergences,

but there is no obvious winner because it all depends on the use case. Various ways of generating

proposals have been explored, and it is a fairly well studied field. We will not explore this in further

detail in this work.

The second generalization is in the acceptance mechanism, given in Algorithm 1 roughly by

u ∼ U(0, 1) and exp(−∆E) < u. This results in the following rule of how we choose to update the

states:

“If the new proposed state results in a lower energy, then we always accept that

proposal. If it results in a higher energy state instead, accept the new state with some

probability that is proportion to exp(−∆E). ”

This rule comes from a slight modification to the original principle that nature trends to lower

energy states. The modification is that nature trends to the lower energy states on average. From

the molecular physics point of view, this means that particles are able to take on a higher energy

state microscopically, perhaps by absorbing some thermal energy from the surroundings. The exact

mechanism that excites the particle into a higher energy state is unimportant, but merely allowing

for that possibility is important.

34

One consequence of this modified principle and update rule is that the RPMC method can

now hop out of shallow local minima, where it might get prematurely stuck, thus exploring a larger

space. The second consequence is that we can now satisfy detailed balance, which is a nice additional

property to have. Detailed balance happens to be a sufficient (but not necessary) condition for the

system to have when the algorithm converges.

Detailed Balance: π(x′|x)p(x) = π(x|x′)p(x′) (4.2)

If the particle is never allowed to assume a higher energy state, then detailed balance cannot

be satisfied as even if π(x′|x) results in p(x′) > p(x), the reverse process π(x|x′) is necessarily zero

given that the particle cannot increase in energy. Hence, detailed balance is not obeyed in the case

where “only lower-energy updates are allowed”.

It is important to note that a convergence criterion was not defined in the entire section, only

because it is not clear what such a criterion should be. Though poorly defined, it is generally the

case that convergence is defined as simply having the algorithm run ‘long enough’. The conditional

transition function π(x′|x) is also left as an open option, and it is also not clear that this function

should be for the general case.

4.2.3 Applied to the Data Assimilation Action

Within our data assimilation action, the space which we explore is the path space x(t) ∈

RD×M . We can effectively threat this as a two-dimensional D ×M grid – one of these dimensions

is the original time dimension given by index m, the other is the spatial dimension (the elements of

xm ∈ RD) not shown explicitly in this notation. Each of the elements on this grid is perturbed in

the step x′ ← x + ∆x as a means of generating the Markov chain. Below is the action that we are

attempting to minimize, which will act as the ‘energy’ function of this RPMC method.

S[x(t)|y(t)] =
1

2

M∑
m=1

‖xm − ym‖2Rmeas
+

1

2

M−1∑
m=1

‖xm+1 − F (xm, tm)‖2Rmodel
(4.3)

However, recall that the RPMC algorithm has the following step ∆E ← E(x′) − E(x). We

are only concerned about the relative change in energy, so calculating the full action S[x(t)|y(t)] is

redundant hence a waste of computational resources. To overcome this, we define a localized action

Slocal[xm|ym] so that when we perturb the states x to be x′, only the change local to tm will count. The

35

interaction of an element of xm is every element of that vector, along with the two nearest temporal

neighbors xm+1 and xm−1.

Slocal[xm|ym] =
1

2
‖xm − ym‖2Rmeas

+
1

2
‖xm+1 − F (xm, tm)‖2Rmodel

+
1

2
‖xm − F (xm−1, tm−1)‖2Rmodel

(4.4)

The other practical issue is the multi-dimensional normal distribution that we are sampling

from N (0, σ2). As mentioned before, we want to avoid variables with large variations dominating

the action S[x(t)|y(t)], so σ2 should follow the same structure as R−1
meas. Almost everything else

about the implementation of the RPMC method is identical to the original. Graphical Processing

Units (GPUs) are naturally suited for such an algorithm. Such a practice is commonplace and for

the RPMC algorithm. GPUs are made up of a large number (nowadays 2000-10000) of independent

cores which are individually weak but, thankfully, still powerful enough to handle the above algorithm

reasonably. The speedup can be massive due to the large number of cores and, in the limit that

the number of time steps and the number of cores approaches infinity, the speed up is given by

speedUp = min(M/2,numCores).

Figure 4.2: Trajectory x(t) = {x1, x2, · · · , xM} laid out on a two-dimensional grid. All odd/blue
states are simultaneously processed and updated, following but the even/red states. In between each
update, the states need to be updated on their respective processors by a simultaneous memory
transfer from a core to its immediate neighbors.

Of course, one cannot realistically achieve this speedup in practice due to slow process of

memory transfer that occur at the end of each parallel block. There is also some overhead/start-up

cost associated with using GPUs. Once everything is accounted for, the speed up is roughly ten to a

hundred times slower than the theoretical maximum. This ratio depends entirely on the hardware that

36

is used, the efficiency and skill of the implementation, and the specifics of the problem. Nevertheless,

a speed up is always welcome no matter its efficiency. This parallelization scheme overcomes a lot

of the inefficiency of the crude and naive proposal method given by x′m ← xm + ∆xm, though in a

brutish manner. This leads us to the next topic, in which a much more elegant proposal method is

explored.

The RPMC also suffers from occasionally taking too small or too large of a step size in space

x [22]. There are methods that change a ‘block’ of states at one, which is equivalent to taking a

‘medium sized’ step. Within the PIMC literature, this technique is known as a Brownian Bridge and

can help alleviate some of the slow convergence issues that RPMC suffers from [23]. One can even

construct bridges such that the proposal is almost certainly going to be accepted, but doing so involve

additional computation that may or may not be worth the cost. We do not explore the idea of a

Brownian Bridge, as we decided to pursue other more promising methods. The use of a Brownian

Bridge also decreases the potential speedup that one might get from parallelization.

4.3 Hamilton Monte Carlo

4.3.1 Notation Change

Before we dive into the Hamilton Monte Carlo (HMC) bit of this work, we should take a

moment to adjust the notation that was previously used. The new notation is exceptionally useful

for the purposes of HMC and de-clutters the notation at the price of additional complications. We

could have made this simplification sooner, at the risk of confusing the reader and distracting from

the essence of the other topics. For these reasons, we only use this change in notation within this

chapter. The nature of these complications is detailed for the purposes of implementation and should

not distract the reader beyond that scope. This change in notation effectively ‘flattens’ the original

path x(t) ∈ RD×M into a column vector representation X ∈ RDM . One motivating reason is to get

rid of the notion of ‘time’ in the data. The path integral formulation treats the data set more like a

two-dimensional mesh. Doing so absorbs the sum over the time index into the definition of the norm,

which is no different from applying the Frobenius norm ‖ · ‖F on the slightly modified x(t) − y(t)

matrix.

37

Figure 4.3: The left part shows the linear algebraic setup of the original path x(t), which was stored
as a matrix. The right part shows the setup of X, defined as a ‘flattened’ column vector. This is no
different from representing a two-dimensional grid by a column vector.

R =



R1,1

R2,2

. . .

RD,D


︸ ︷︷ ︸

D-times

=⇒ R =



R

R

. . .

R


︸ ︷︷ ︸

M-times

(4.5)

Even the two matrices R ∈ RD×D for the metric gets adjusted. This is just a trivial embedding

performed by repeating the D ×D matrix along the diagonal for a total of M times, forming a new

matrix R ∈ RMD×MD. Again, all these adjustments are only highlighted here for the purposes

of implementation since we are adjusting the notation. The core method and approach is not any

different from before.

‖X − Y ‖2Rmeas
≡

M∑
m=1

‖xm − ym‖2Rmeas
≡
∥∥∥√Rmeas[x(t)− y(t)]

∥∥∥2

F
(4.6)

The symmetric positive definitive matrix Rmeas that modifies the norm was described in a

previous chapter. This norm and the sum are absorbed into a new norm ‖ · ‖Rmeas
. The presence of the

square root is only for formalities, as the full matrix Rmeas is recovered in the process of calculating

the Frobenius norm. However, the square root suggests that the Rmeas matrix resembles a metric

tensor in many ways. Applying these changes in notation consistently to the action results in the

38

following form.

S[X|Y] =
1

2
‖X − Y ‖2Rmeas

+
1

2

∥∥L+X − F (L−X)
∥∥2

Rmodel
(4.7)

The shift operators L± here are (M−1)D×MD matrices introduced for accounting purposes,

where all the diagonal elements are 1. The positive operator L+ excludes the last D elements of X,

and the negative operator L− excludes the first D elements of X. We defined a modified function

F (X) ≡ {F (x1, t1), F (x2, t2), · · · , F (xM , tM)} ∈ RMD. For the above case, the L− operator is acting

on X to exclude the F (x1, t1), so F (L−X) ≡ {F (x1, t1), F (x2, t2), · · · , F (xM−1, tM−1)} ∈ R(M−1)D.

Consequently, L+X = {x2, x3, · · · , xM}. These shift operators L± are necessary for getting the

calculations right, but are otherwise unimportant since they are just an artifact of the change in

notation. Conceptually, the second term of the action should be viewed as the nonlinear constraint

term just as before.

The adjustment in notation chronicled above may not appear as a simplification thus far,

but it will soon be apparent when we dive into the HMC method in detail. The slight addition of

notation clutter is of no pedagogical consequence, as most of the work detailed in this section is for

the purposes of implementation. These are nonetheless important details to consider for pedagogical

understanding, but it will suffice to sweep all these detail under the carpet that we call S[X|Y].

4.3.2 Motivations

Hamilton Monte Carlo (HMC) was originally called Hybrid Monte Carlo. It was developed

originally to tackle the computational issues with Lattice Quantum Chromodynamics (Lattice QCD)

in the 1980s, specifically the problem of inefficient sample generation in high dimensions [24]. Hybrid

Monte Carlo used information from the gradient to generated efficient Markov chain such that π(x′|x)

will almost always generate samples that are accepted at order unity, all while preserving the stochastic

acceptance mechanism of the original RPMC [25]. It is the combination of using gradient information

while stochastically accepting states that inspired the ‘hybrid’ part of Hybrid Monte Carlo. The

authors even considered usage of the leap-frog method (more specifically the Størmer-Verlet method)

in order to preserve the phase space volume of their Hamiltonian. It was David MacKay who began

calling it Hamilton Monte Carlo instead of Hybrid Monte Carlo due to the stark similarities in the

underlying structure [26]. The new name stuck, perhaps due to the similarities but perhaps due to

his leaving the acronym intact.

39

As mentioned in the section regarding RPMC, perhaps the most vexing issue in the original

implementation is the extremely naive proposal mechanism π(x′|x)p(x). This naive mechanism be-

comes terribly inefficiency as the dimensionality of the system grows, because the volume of space

required to explore grows exponentially. This is one of the facets of the curse of dimensionality, and

HMC aims to tackle this specific inefficiency. Another great issue that RPMC faces is the limited

search range of each proposal. Too large of a search range will result in many rejections of the samples,

and too small a search range results in borderline-trivial updates. HMC uses information regarding

the gradient of the cost function ∇XS[X|Y] in order to make proposals that will be accepted with

high probability. The efficiency of the method does not end there, because using a phase-space pre-

serving integrator like the Størmer-Verlet method, means that we can take as many steps as we would

like when integrating the Hamiltonian dynamics. As a result, we are able to explore huge swaths of

the space X very efficiently.

4.3.3 Using Hamiltonian Dynamics

The goal of HMC is to introduce a better way of sampling the underlying space X which does

not involve naive and random generation of samples. Using information of the gradient ∇XS[X|Y]

during the conception of the method was not a new idea by any stretch [27]. Gradient descent

methods were already around, but built into that method inherently is a slow downhill crawl towards

the minimum, then it idles once it is there. The lack of exploration makes gradient descent particularly

susceptible to even the shallowest local minima [28]. Instead, we want an algorithm that can explore

the typical set around the mode for additional information, rather than just seeking and then staying

at the mode. This allows us to break away from shallow local minima.

H[X,P |Y] = S[X|Y] +
1

2
P>M−1P (4.8)

The original proposal of HMC imposed on an additive kinetic energy term 1
2P
>M−1P to the

function we wish to optimize over S[X|Y], as Duane[24] wrote, ‘by fiat’ to form a new function called

the Hamiltonian H[X,P |Y]. This Hamiltonian function is defined to be constant in ‘time’ τ , but

not the time defined in the measurement data, rather ‘computer time’ or ‘optimization epoch time’.

This structure naturally imposes a momentum P as a proposal mechanism, which tells the algorithm

where/what the next proposal should be. The dynamics induced by the HMC method is no different

40

from a particle moving around in a phase space (X,P) with the energy or Hamiltonian conserved in

time τ [29, 30].

Figure 4.4: A physical system equivalent to the HMC method. The particle is exploring X around
the minimum of S[X|Y] using a random level set of the Hamiltonian H[X,P |Y]. If the particle is
very far from the minimum, it will tend towards it on average. Once it is close to the minimum, it
could begin to show periodicity of orbits. This natural mix of downhill-seeking and exploration is the
hallmark of the HMC method.

Another noteworthy consequence in the introduction of ‘computer time’ τ . In fact, one of

the primary reasons we switched notations was to get rid of the variable t which might prove to be

confusing for some. By simply imposing that the Hamiltonian function H[X,P |Y] be conserved in

computer time τ , we get the following rules for generating new proposals.

dH
dτ︸︷︷︸
=0

=
∂H
∂P

dP

dτ
+
∂H
∂X

dX

dτ
+
∂H
∂τ︸︷︷︸
=0

= 0
(4.9)

∂H
∂P

dP

dτ︸︷︷︸
≡Ṗ

= − dX

dτ︸︷︷︸
≡Ẋ

(4.10)

Ẋ =
dH
dP

= M−1P Ṗ = − ∂H
∂X

=∇XS[X|Y] (4.11)

Keep in mind here that the superscript dots are for the derivatives of the computer time

or update time τ , which are how new proposals are generated. Since X and P are independent

variables, generating or even prescribing P will leave the underlying distribution of X unchanged,

as long as we follow these rules. We are then free, within reason, to prescribe P from the correct

distribution in order to explore the level sets of H[X,P |Y]. Given that P shows up as a quadratic

term in the Hamiltonian, it necessarily has to be distributed according to the Gaussian distribution

41

and the geometry of is defined by M−1, i.e. P ∼ N (0,M−1). In order to be efficient with our

proposal, M−1 should inherit some rough geometry from the original objective function S[X|Y]. If

we then sequentially re-prescribe P from the same Gaussian distribution, we are able to sample X

substantially by jumping across different level sets of the Hamiltonian. The inherent randomness of

generating P is the reason that this method still belongs in the Monte Carlo family. That said, we still

have to obey the underlying deterministic Hamiltonian structure after P is generated [30, 25]. This

combination of a random sample followed by deterministic dynamics earned HMC its initial name of

Hybrid Monte Carlo.

H[X,P |Y] = − log π(X,P |Y) = − log π(P |X,Y)︸ ︷︷ ︸
=K[X,P |Y]

− log π(X|Y)︸ ︷︷ ︸
=S[X|Y]

(4.12)

This method of generating the momenta P is of a particular preference or choice. More

general, we can write the Hamiltonian in the form below, where π(X,P |Y) is the proposal mechanism

under which we generate samples that obey our Hamiltonian structure. Our choice of kinetic energy

K[X,P |Y] is independent of X.

K[X,P |Y] ≡ 1

2
P>M−1P =⇒ π(X,P |Y) = π(X|Y)π(P |Y) (4.13)

Even when we are considering distribution that are independent of X, we have settled specif-

ically on the standard Gaussian distribution to sample the momenta, i.e. P ∼ N (0,M−1). The

generation of standard Gaussian samples is very well studied and readily available in all programming

languages – as a result, it is very efficiently implemented, so the resulting code will be very efficient.

The quadratic momentum term in K[X,P |Y] also results in the update rule Ẋ = M−1P , which

is simple and straightforward conceptually. Computationally, this involves a standard matrix-vector

multiple that is also readily available and extremely efficient. For these reasons, other distribution of

P can compare1. The alternative is to consider a kinetic energy term K[X,P |Y] that takes Ẋ into ac-

count, but unless there is a good a priori reason for doing so, this task is much slower computationally

and generally not worth the effort.

1There have been interesting proposals to use quasi-periodic Hamiltonians (such as a quartic P) to generate the
samples in order to avoid re-sampling points along the same orbit. These attempts have better mixing theoretically, but
the implementation might be slower. This feature likely displaces the main proposal of imposing additional nonlinear
dynamics to induce better mixing [31]. The use case seems to be limited only to low-dimensions, where periodicity may
readily show up. The quadratic momentum P should still be preferred, especially as dimensions get higher.

42

4.3.4 Resulting Algorithm

For an initial guess X0, we prescribe an initial P0 in a random direction and a magnitude

that is sensible according to M−1. We then evolve the system in computer time τ for some number

of steps J to give us a proposal X ′1 and P ′1. The new proposed momentum P ′1 is of little importance

and served more as a technical accounting tool because of the prescribed Hamiltonian structure. This

new proposal X ′1 has yet to be accepted, but likely will be accepted due to the preservation of the

Hamiltonian structure. The proposal X ′1 is accepted or rejected according to the following criteria,

where a is a randomly generated number from the uniform distribution in the range of 0 and 1 given

by U(0, 1).

∆H = H[X ′1,P
′
1]−H[X0,P0]

exp(−∆H) < u ; u ∼ U(0, 1)

(4.14)

If X ′1 is rejected, we revisit the first step of generating new momenta P0 and the above steps

are repeated. If X ′1 is accepted, we save this new proposal X1 ←X ′1 and prescribe a new momentum

P1 and repeat the above steps for the next time step. This whole process is repeated until some

convergence criteria, whether a priori or a posteriori, is met.

Figure 4.5: Graphic showing HMC making two consecutive proposals that result in a lower action
S[Xj |Y] each time. At the end of each proposal, the momentum is re-sampled. This causes the
particle to explore different sets of the Hamiltonian H[Xj ,Pj |Y] given by the red trajectories. This
graphic only shows the transition to the lower energy sets, which is generally the case if we are far
from the minimum. It is possible, likely even, that the transitions result in a higher S[Xj |Y]. Keep in
mind the level sets of S[Xj |Y] (green) are distinct but related to the level sets of H[Xj ,Pj |Y] (red).

The structure from the Hamiltonian, whether we are talking about the physical system of the

sampling technique, relies very strongly on the preservation of phase space volume. This structure

is called symplectic and is a property of the system or method itself. When we are generating new

trajectories, the numerical integration scheme must also respect this symplectic structure, otherwise

the phase space volume will not be preserved in the integration steps. A lack of phase space volume

43

preservation is especially poignant when the number of integration steps K is large, and will result

in spurious acceptance or rejection of newer proposals simply by virtue of K being large. In other

words, our symplectic structure will break down without the proper numerical integration techniques,

and we rely on this structure immensely when generating distant proposals.

Thankfully, such numerical integration techniques are available, well-studied, and easily im-

plementable. These schemes belong in the symplectic integrator family of methods, unsurprisingly,

and we will focus entirely on the Størmer-Verlet method. Higher-order integrators can be used, but

to no noticeable affect for this application [32]. As a quick remark, keep in mind that these integrator

are only used in between (Xj ,Pj) and (X ′j+1,P
′
j+1), which are the level sets of the Hamiltonian

H[Xj ,Pj |Y] given by the red trajectory vectors in Figure 4.5.

Figure 4.6: Right: Graphic comparing the trajectories of using a symplectic vs non-symplectic
integrator. The true trajectory stays on a prescribed level set, whereas the symplectic integrator stays
close by to the true trajectory indefinitely. Any non-symplectic integrator (red) will result in deviation
from the level set, thus destroying the necessary symplectic structure required for the method to work
efficiently. Left: Graphic showing two jumps in the level sets as a result of resampling the momentum
Pj at the points marked in dark green.

Symplectic mechanics is its own (rather deep) field of study that belong under the differential

geometry umbrella. It is interesting in that a manifold is defined by demanding that trajectories be

generated such that H[Xj ,Pj |Y] is unchanged, and that such a simple demand leads to an entire

field of research and study. Much like how the position X and momentum P are conjugate variable

that form the vector basis for the symplectic/phase space, the Hamiltonian H[Xj ,Pj |Y] (in units of

energy) is the scalar conjugate to time τ .

If (Xj ,Pj)
proposes−−−−−→ (X ′j+1,P

′
j+1) then (X ′j+1,−P ′j+1)

proposes−−−−−→ (Xj ,−Pj). (4.15)

44

Conservation of the Hamiltonian then implies reversibility of time shown by the statement

above. Reversibility is a property of the symplectic structure itself, but it also has to be present in

the integrator of choice. The basic Størmer-Verlet or leap-frog method is one of the most well-known

and common symplectic integrator, detailed by the steps below. We have added some extra notation

here and only here such that P (0) ≡ P0 and P (K∆τ) ≡ P ′1, but this notation is not used elsewhere

in order to avoid confusion and an overload of notation/indexing.

P (k/2)← P (0)− ∆τ

2
∇XS[X(0)|Y]

X(k)←X(0) + ∆τM−1P (k/2)

P (k)← P (k/2)− ∆τ

2
∇XS[X(k)|Y]

(4.16)

Notice that there is an inherent time-reversibility in the Størmer-Verlet scheme, which was

alluded to in the previous paragraph on symplectic structure. This integration scheme is second order

accurate in ∆τ . Størmer-Verlet is carried out for a total of K uniform steps of step size ∆τ . Between

each initial condition (Xj ,Pj) and its proposal (X ′j+1,P
′
j+1), we will perform this integration step

K-times before evaluating whether (X ′j+1,P
′
j+1) is viable. Once (X ′j+1,P

′
j+1) is accepted or rejected,

the momentum is resampled and the above integration is performed again, K-times. This entire

process is repeated iteratively until the number of accepted samples is J . To recap, total number of

times we resample the momentum will be at least J times, if and only if every proposal is accepted.

For each of these resampling events, there will be K-steps of the Størmer-Verlet integration on the

corresponding level set.

Table 4.1: Variables in the HMC method.

Variable Description

∆τ Integration step size
K Number of integration steps
J Number of accepted proposals

(X ′j+1,P
′
j+1) Most recent proposal, yet to be accepted or rejected

(Xj+1,Pj+1) Most recent accepted proposal

Once the HMC algorithm is completed, we should have J samples of X that form a history

of accepted state. These accepted states give a good representation of the typical set of our target

distribution π(X|Y) = exp(−S[X|Y]). As mentioned before, the history of accepted values of P

are of no consequence, therefore were discards in the resampling process. Lastly, there are three

45

hyperparameters associated with the HMC method – ∆τ , J , and K.

The integration step size ∆τ is not terribly important since the Størmer-Verlet method ensures

that our method generates trajectories that leave the Hamiltonian invariant, up to some deviation

proportional to ∆τ2. It is good practice, nevertheless, to use sensible values, because the acceptance

probability does scale with ∆τ . As a rule of thumb, we tune τ for an acceptance rate of roughly 80%

so as to have a ∆τ that is large enough to explore quickly while not wasting too much time generating

samples that will be rejected. We could also tune ∆τ on-the-fly so as to adapt to the geometry of the

problem and overcome any a priori assumptions.

f̂N =
1

N

N∑
i=1

f(x(i)) (4.17)

Lastly, we have J and K. J corresponds to the number of proposals that are accepted.

K corresponds to the number of integration steps performed for each proposal. Assuming a 100%

acceptance rate, this means that there will be a total of JK integration steps taken. In our usage of

HMC, J is fixed and are kept on the order of 102 so the law of large numbers applies to our statistics.

K is also fixed to be on the order of 102 as well. Once we have a large number J of samples around

the mode, we can use calculate expectation values but taking the average value of the sample, as

shown in the equation above. The values that these hyperparameters take on is problem dependent.

There are more advanced and sophisticated techniques that can be added to HMC, like the No-U-Turn

Sampler, such that these hyperparameters are optically chosen or tuned. These are interesting and

useful topics, but we will not discuss this in our work.

4.4 Comparison and Remarks

The Metropolis-Hasting method used random proposal that avoided the use of a gradient.

Fundamentally, the RPMC proposal is driven by diffusion that is symmetrically distributed from its

latest accepted state. As a direct result, the Metropolis-Hasting is terribly inefficient when the latest

accepted state is in the following situations:

(i) Flat regions of the Hamiltonian with a gradual slope

(ii) Far away from local minima

(iii) Within a sufficiently deep local minima

46

(iv) Regions of the Hamiltonian with ‘deep valleys’, mathematically given by the condition number

of the Hessian2

In cases (i), (ii), and (iii), we would likely require a large number of proposals in order to

drift significantly from the initial starting point. Case (iv) would likely see a steep drop in acceptance

rates due to there being ‘wrong directions’ to propose. One can alleviate these problem by tuning

the step sizes accordingly, but doing so with a priori information requires additional considerations

in the algorithm – doing so with a priori information requires direct calculation of the Hessian, which

is costly and requires derivatives. This almost immediately puts us in the wheelhouse of HMC and

defeats one of the original reasons for using RPMC, which was to avoid derivative calculations. The

use of parallelization, particularly when leveraging GPUs, is a partial and brutish solution to the

above stated issues since it does not directly address the flaws of RPMC.

Figure 4.7: Right: Illustration showing the HMC method generating and accepting a proposal
that is far from the initial point. Left: Illustration showing RPMC generating and accepting many
proposals, each very close to one another. Roughly speaking, these should have comparable run times
on a computer.

Needless to say, HMC addresses these issues well at the cost of including gradient information,

making it the state-of-the-art and preferred method of exploring these high-dimensional problems. The

RPMC assumes that there is but one mode. There can be situations where the mode is given by a set.

We can compare gradient descent or even stochastic gradient descent to HMC, but SGD searches initial

condition space which is really jagged. Whereas HMC is much more suited for smoother surfaces. So

concludes the description of RPMC and HMC, however, there are further steps that we can take to

ensure that our integral evaluations yield better results. These additional steps are the focus of the

next chapter, and will simply be called heuristics.

47

4.5 Acknowledgments

Chapter 4, in part, uses material and results that appears in Precision Annealing Monte Carlo

Methods for Statistical Data Assimilation and Machine Learning, submitted in Physical Physical

Review Research, 2(1), 013050. Fang, Zheng, Wong, Adrian S., Hao, Kangbo, Ty, Alexander J., and

Abarbanel, Henry D. I. (2020). The dissertation author was one of the primary investigators and

authors of this paper.

2The condition number of a square matrix is given by the ratio of the largest to the smallest eigenvalue magnitude
of a matrix, i.e. |λmax/λmin|. If this square matrix is the Hessian of a Hamiltonian function, then this is equivalent to
saying that the variations of the Hamiltonian in certain directions is much larger than others. Keep in mind that the
Hamiltonian is assumed to be twice differentiable everywhere in order for the corresponding probability function to be
properly defined.

48

5
Heuristics and Their Implications

In the two previous chapters, we laid out three methods for evaluating integrals. These

integrals are high-dimension, easily capable of 104 (Lorenz System) to 109 (Shallow Water Equations)

within the scope of problems considered in this work. These three methods for evaluating integrals are

the quasi-Newton solver, RPMC, and Hamilton Monte Carlo (HMC). These method, though excellent

in their own right, can be made even more effective at robustly and accurately evaluating the integral

with the use of additional steps. We shall call these additional steps as heuristics from here on. These

heuristics are additional steps that we can take to improve existing methods, but are largely unrelated

to the original method. Heuristics were given a chapter of their own since they can apply to each of

the three integral evaluation methods, hence they do not belong in either of the previous chapters.

We cover two heuristics in this chapter, namely the simulated annealing method and (a basic)

multiple-start method. These two heuristics affect the original optimization problem in different

ways, hence they can both be used at the same time [33]. These methods, though costly, makes the

optimization routine more robust [34]. We are much more likely to get better solutions when using

these heuristics, so we believe they are well worth the cost. In fact, we believe that the using them

both at once actually complement one another, because some of the weaknesses in simulated annealing

is address with the multiple-start method, as we will address when discussing the methods themselves.

49

5.1 Annealing

5.1.1 Introduction

The first of these heuristics is the simulated annealing method, also known in some circles

as the penalty method. The term Simulated Annealing is more prevalently used in the physics and

even the computer science community. Simulated Annealing gets its name from a practice of actual

annealing used by glass-smiths and blacksmiths till this day. These professionals noticed that their

crafts were much less likely to chip, crack, or fracture when they allowed it to cool gradually from their

initially high temperatures. This process was unlikely well-understood within the practice of metal or

glass smithing, but we have come to understand the reasons why annealing works. Annealing allows

for the system to access more thermodynamic states due to it cooling slowly. This effectively results

in the system ‘exploring’ a larger number of states and freeing it shallow local minima.

The fundamental idea of simulated annealing is exactly the same. By introducing a concept of

an artificial temperature to the system, we have some say of the general behavior of the optimization

routine. We begin at high temperature, where the optimization routine is allowed to make move

into regions of lower probability more often. This allows the optimization routine to have access

to a wider array of states, corresponding to the exploratory phase. As the temperature lowers, the

likelihood of states transitioning to region of lower probability becomes less likely. At a sufficiently

low temperature, exploratory behavior diminishes and the optimization routine focuses more on strict

optimization.

As a result, the practice of simulated annealing results in, empirically speaking, superior local

minima on average. However, it does not guarantee it or even provide any form of assurance strictly

speaking. Nevertheless, we believe that a lack of assurances or guarantees to be discouraging, as we

have found this practice to be extremely beneficial for our purposes. From here on we will be referring

to this as simply annealing for simplicity.

5.1.2 Applied to the Data Assimilation Action

Recall that the original problem that we would like to solve is to find a path x∗(t) =

{x∗1, x∗2, · · · , x∗M} that agrees with some measurements y(t) = {y∗1 , y∗2 , · · · , y∗M} of the same system,

while simultaneously satisfying the dynamics of the system x∗m+1 = F (x∗m, tm) for all m exactly, which

we call the hard-constraint. We discussed the fact that since the dynamics must be obeyed exactly,

50

Figure 5.1: Illustration on how the annealing procedure affects the state estimate. If we can think of
the spread of the estimate as being described by some distribution, the annealing procedure forces the
estimate to obey the model more strictly and tightens the width of the distribution. In other words,
we can slowly enforcing the constraint that the model properly describes the observed dynamics.

the optimization is actually performed over the initial state x(t1) rather than the entire path. This

constrained optimization problem is then given by the equation below.

min
x(t1)

1

2

M∑
m=1

‖xm − ym‖2Rmeas

s.t. ẋ = f(x, t)

(5.1)

The landscape of this search is difficult for any optimization routine to traverse. In certain

areas, the step size must remain small due to the evaluation of the gradient being local, but this can

also lead to slow convergence. Significant effort is put into a balance of stability and convergence due

to the troublesome and jagged landscape. Our approach is to assume that there will always be some

mismatch between subsequent state x(ti) and x(ti+1), which effectively means that we are softening

the hard-constraint.

S[x(t)|y(t)] =
1

2

M∑
m=1

‖xm − ym‖2Rmeas
+

1

2

M−1∑
m=1

‖xm+1 − F (xm, tm)‖2Rmodel
(5.2)

We constructed the above cost function, which we call the action, as a consequence of ap-

proaching the problem from a soft constraint. The original constrained minimization problem can

51

then be reformulated as an unconstrained minimization problem.

min
x(t)
S[x(t)|y(t)] (5.3)

These two problems, to constrained and unconstrained, are not disparate by any means.

In fact, the limit of the unconstrained optimization problem returns us to the original constrained

optimization problem.

min
x(t1)

1

2

M∑
m=1

‖xm − ym‖2Rmeas
= min

x(t)

{
lim

Rmodel→∞
S[x(t)|y(t)]

}
s.t. ẋ = f(x, t)

(5.4)

By virtue of this relationship, we work in the limit of detRmodel → ∞. The heuristic of an-

nealing very naturally fits into our soft-constraint approach, almost suggesting that it be used. Notice

that Rmodel enters the equation much like an inverse temperature of, say, a Boltzmann distribution

p(x) ∝ exp
(
− E
kBT

)
. Working in the limit of detRmodel → ∞ is akin to working in the low tem-

perature regime from the annealing point of view. In annealing, allowing the system to cool slowly

will generate solutions of the optimization problem that lie within deeper and more stable minima.

Following this logic, we can approach detRmodel →∞ slowly by varying the individual components of

the matrix Rmodel. We give a new index β to the this matrix such that R
(β)
model is the β-th iterate. The

same adjustment is made for the action where S(β)[x(t)|y(t)] corresponds to the old action S[x(t)|y(t)]

with the substitution Rmodel ← R
(β)
model.

lim
β→∞

{
min
x(t)
S(β)[x(t)|y(t)]

}
(5.5)

Practically speaking, the implementation is simple. We iteratively perform the optimization

routine, using the minimizer/solution x∗(t) of the previous routine as the initial condition of the

following call of the optimization routine. Between each optimization call, we have to also slightly

increase the magnitude of R
(β+1)
model . We use a simple exponential update to illustrate the change, but

more complicated and advanced update rules can always be implemented instead. There should be

no change at all in the core optimization routine aside from these changes.

R
(β+1)
model ← αR

(β)
model s.t. α > 1 (5.6)

52

Once this entire optimization routine is complete, we say that we have solve the constrained

optimization problem. We keep the value of R
(0)
model < 1, but not too much smaller. Practically

speaking, we have found that the stopping condition of detR
(final)
model ' 105 detR

(0)
model is a fair place to

stop. This corresponds to roughly 20 to 150 iterations of the method, depending on the chosen value

of α. The scaling constant c is a hyperparameter that needs to be adjusted depending on the problem.

We usually choose α to be as close to 1 as possible, since the exponential nature of the scaling is quite

dominant as β gets larger. We noticed that the necessity of using smaller values of α is tied to high

complexity of the dynamics xm+1 = F (xm, t).

R
(β)
model = R

(0)
modelα

β (5.7)

We can also think of the value of R
(β)
model as an indicator of the more of the behavior. Values of

R
(β)
model < 1 can be thought of as the ‘exploratory phase’ of the Simulated Annealing addition to HMC.

since the system will not consider the nonlinear effects coming xm+1 − F (xm, tm) very much. Hence,

the choice of R
(0)
model < 1 is so that the system may should more of its ‘artificial’ time on exploration.

When R
(0)
model ∼ 1 is roughly of order unity, there is no clear phase that it is in. But as R

(0)
model � 1, we

can think about the system as ‘forgetting’ the data set, at least explicitly speaking. The contribution

of the data set can be thought of as

At this point, the astute reader would recognize at this point that everything has been framed

from the perspective of minimization, whereas the Monte Carlo methods are about generating samples.

Optimization and generating samples with Markov chains are equivalent problems, and the same

routine employed about can be used for the Monte Carlo methods. Everything discusses in about

annealing so far will apply once we replace the minimization routine with a Monte Carlo sample

generation routine.

5.1.3 Plateauing of the Action

For a moment, let us rewrite the action by extracting the R diagonal matrices and treat them

as constants temporarily. This is done for simplicity can even be implemented in code following this

scheme, provided that the ratios of the diagonal elements of R are handled carefully.

S[x(t)|y(t)] =
1

2

M∑
m=1

Rmeas‖xm − ym‖2 +
1

2

M−1∑
m=1

Rmodel‖xm+1 − F (xm, tm)‖2 (5.8)

53

Since we have allowed Rmodel to be updated according to the rule R
(k+1)
model ← cR

(k)
model, it can

effectively be treated as a variable that changes in artificial time τ . We will not be handling the

explicit relationship between Rmodel and τ here, as it adds nothing but clutter for now. We will

impose that Rmodel increases as τ decreases, monotonically, so Rmodel → ∞ implies τ → 0. We then

take a look at how the action varies in Rmodel.

dS
dRmodel

=

M∑
m=1

Rmeas
dxm

dRmodel
· (xm − ym)

+

M−1∑
m=1

Rmodel

(
dxm+1

dRmodel
− ∂F

∂xm
· dxm

dRmodel

)
·
(
xm+1 − F (xm, tm)

)
+

1

2

M−1∑
m=1

‖xm+1 − F (xm, tm)‖2

(5.9)

Notice that the first two terms can be simplified by factoring out dxm

dRmodel
from both terms.

This common factor dxm

dRmodel
vanishes as Rmodel → ∞, which also pushes the first term to zero. The

second term is a little trickier to handle, as the large term Rmodel is present. However, we argue that

both
(
xm+1 − F (xm, tm)

)
and dxm

dRmodel
approach zero, and these two terms out-compete the growing

Rmodel term. The arguments thus far have argued for the disappearance of the first two terms are from

a numerical point of view. Analytically speaking, these first two terms are in fact the Euler-Lagrange

equations of the action if we define S[x(t)|y(t)] ≡
∑
m L[xm, xm+1], where the sum is over the system

time t (not optimization time τ).

{
Rmeas(xm − ym) +

1

2
Rmodel

∂

∂xm

[
xm+1 − F (xm, tm)

]2}
· dxm

dRmodel
(5.10)

By virtue of the first two terms satisfying the Euler-Lagrange equations of the original system,

they necessarily must equal to zero for the stationary path x∗(t) that satisfies the dynamics. The claim

that the first two terms are zero stands – only the last term remains. The full derivative of the action,

with respect to the time proxy Rmodel is then given solely by the same partial derivative, which is a

positive definite quantity.

dS
dRmodel

=
∂S

∂Rmodel
=

1

2

M−1∑
m=1

‖xm+1 − F (xm, tm)‖2 > 0 (5.11)

54

If and when our estimate of the state x∗(t) converges, which should ultimately occur in the

limit of Rmodel → ∞, its derivative with respect to Rmodel will be zero. This corresponds to our

estimate converging to the best state estimate x∗(t).

lim
Rmodel→∞

dx(t)

dRmodel

∣∣∣∣
x∗(t)

= 0 (5.12)

The telltale sign of our approach is effective is a combination of the two previous equations.

We will notice, as the method runs, that the action S[x(t)|y(t)] will steadily grow. Any behavior that

is not a gradual and steady growth in actual should be met with suspicion. Upon reaching the best

estimate or solution x∗(t), the action will cease to increase, effectively forming a plateau, i.e. it has a

zero slope with respect to the time proxy Rmodel →∞. Of course, the slope will never hit exactly zero,

as there will be inevitable errors in the term ‖xm+1 − F (xm, tm)‖ whether from an imperfect model

or from simple numerical discretization [35]. A more general statement is that we will see a positive

slope quickly approach a zero slope. We do not believe that such issues pose a serious problem to our

method, as model-mismatch error should be small for a good model and numerical error scale with

∆t2. This may be useful for identifying seriously flawed models that do not describe the data, as our

method will not display a plateauing of the action.

The fact that in the limit of Rmodel → ∞, we see the action plateau is not tied to the act

of annealing. Rather, annealing is a technique we can leverage to approach this limit while giving

the optimization routine the added benefits of generally producing superior minima of the action. It

also allows for the above analysis, which gives us some insight on and appreciation of the method.

Our method makes no guarantee on the iterations of annealing steps required or the magnitude of

the relevant hyperparameters. Lastly, keep in mind that Rmodel → ∞ should be taken too literally,

otherwise one would inevitably run into numerical precision issues.

We stress that anytime a plateau is observed, the solution will satisfy the equations of motion.

That is not to say that the solution corresponds to the global minima, just any local minima. We

have the possibility of multiple local minima since the dynamics of the system xm+1 = F (xm, tm) are

nonlinear. As usual with such problems, determining whether our local minima is indeed the global

minima is a NP-hard (non-polynomial hard) problem. In other words, any such algorithm requires

an unrealistic run-time that scales exponentially with problem size. We can offer, however, the next

best thing – we can run many copies of this method in parallel to search for multiple solutions. The

55

solution that corresponds to the lowest action S[x(t)|y(t)] is the best that we could do under those

circumstances. The following section will discuss why and how we use multiple initial conditions to

give better solutions.

5.1.4 Artificial Time

The parameter that we are annealing Rmodel is very similar to the inverse temperature of

the system, generally called β in those cases. Sending Rmodel → ∞ is akin to sending temperature

to zero. A rather interesting result occurs when we treat Rmodel as the inverse of the artificial time,

specifically Rmodel = 1
τ . Recall the probability density function with the following notation for HMC,

detailed in subsection 4.3.1. We substitute the relation between Rmodel and τ .

p(X|Y) =

∫
DX exp {−S[X|Y]}

=

∫
DX exp

−1

2
Rmeas‖X − Y ‖2 −

1

2τ

∥∥L+X − F (L−X)
∥∥2︸ ︷︷ ︸

≡‖G(X)‖2


(5.13)

We look at the derivative of this probability function with respect to artificial time τ , and it

gives the following form.

∂p

∂τ
= p(X|Y)

[
1

2τ2
‖G(X)‖2

]
(5.14)

We then use look at the second derivative with respect to the position X, however, keeping

only the highest order term. There have been many other terms that are neglected due to the 1
τ2

dominating the behavior of the system at low values of τ .

∂2p

∂X2
' p(X|Y)

[
1

τ2
‖G(X)‖2 ·G′(X)2

]
as τ → 0 (5.15)

A particularly interesting relationship emerge as we recover the linearized diffusion equation,

only valid for low values of τ . Since we are prescribing the values of Rmodel which is inversely

proportional to time Rmodel = 1
τ , sending Rmodel →∞ is functionally the same as τ → 0.

∂p

∂τ
' 1

2G′(X)2

∂2p

∂X2
as τ → 0 (5.16)

This implies that the act of annealing is attempting to ‘undo diffusion’ or decrease entropy,

56

which is a rather amusing implication of the algorithm. This allows further interpretation of the

measurement process. Imagine that the probability density function exists for an unmeasured state,

if it can be formulated that way, then it must be that of a delta function or an extremely sharp

Gaussian. We can think of the act of measuring a state as taking a sample or a snapshot of a diffusion

process unfolding in artificial time. As a result, we get a diffused state when measuring a system,

where the width of the probability function is the magnitude of noise. From this point of view,

the act of annealing is akin to reconstructing the original probability function at τ = 0, which is

well-approximated by a sharp Gaussian.

5.2 Multiple-Start and Parallelization

In the previous section, we discussed that finding a solution to nonlinear optimization is a

difficult problem, requiring method that scale exponentially with the size of the problem. As for

minimization, guaranteeing the global minima is not feasible for the high-dimensional problems that

we are tackling. The best we can hope for is that we are not in a shallow minimum when there exists

a much deeper minima close by. Again, we cannot guarantee this, but we have taken steps to attempt

to break out of local minima, for example, the random sampling of momentum in HMC. Then again,

we can still do more. We could run multiple copies of the same method, one copy on each processor

(typically a CPU node). Each of these copies are differentiated from one another in some way or

fashion. The two simplest ways are the following:

(i) Run the same method on each processor/core, but for a different initial condition

(ii) Run the same method on each processor/core, but using a different set of samples (for Monte

Carlo only)

Approach (i) starts each method with a different initial condition, and is as simple as that.

Assuming a completely deterministic algorithm, different initial conditions may place us in different

basins of attraction, potentially exploring a wider space and getting deeper minima1 This approach

is a little crude and wasteful, since there will undoubtedly be overlap in the form of multiple initial

conditions being in the same basin of attraction. A simple illustration of this is the case when there

is only one minima of the system, then all initial conditions will be attracted towards the same point,

1Even though we use random sample, we can make the sampling deterministic by fixing the random seed that is
used to generate random numbers, effectively assigning the same set of random numbers for instance of the algorithm.

57

making the entire practice redundant. Nevertheless, this practice has been fruitful when tackling more

difficult problems at the cost of being inefficient at simpler tasks. We always have the option to not

use this practice if we have a priori knowledge that the problem is simple.

Figure 5.2: Illustration, from the HMC perspective, of approaches (i) and (ii) for handling multiple
starts on the manifold defined by the action S[x(t)|y(t)]. Approach (i) has multiple initial conditions,
each with the same initial momentum vector P1. Approach (ii) has the same initial condition, but
now each with a different initial momentum vector.

Approach (ii) only works when we use some kind of stochasticity in our method, so it is

primarily applicable to the Monte Carlo methods (both RPMC and HMC). Strictly speaking, we

can always introduce stochasticity into the quasi-Newton or gradient descent methods, but that is

definitely a special case of their application2. In the case of HMC, a different set of momentum

samples given to each instance of the algorithm means that each instance will explore the solution

space in a different manner. A simple but illustrative example is that a different momentum will make

each instance explore a different direction. One of these directions may or may not lead to a better

minimum, but at the very least they will not be exploring the same space.

It turns out that we can even use both these approaches at once as long as there is no

correlation between the initial position X1 and the initial momentum P1, using the terminology

and notation of HMC. Each instance will explore the manifold from whatever initial position and

momentum they were given, all in parallel. This parallelization is done on top of the annealing that

was discussed previously. For the instances that do converge, we simply compare the final values of

2There are a whole communities that study nonlinear optimization method, with considerable success achieved by
adding stochastic elements to otherwise deterministic methods. This research came to prominence with the introduction
and success of the Stochastic Gradient Descent (SGD) algorithm to tackle the optimization problem associated with
deep neural network and backpropagation. There are now entire families of methods that are extensions or variants of
the SGD algorithm.

58

their actions and choose the solutions that corresponds to the lowest level action.

5.3 Remarks

Overall, these heuristics add an extra amount if robustness to our methods. We find that

the added computational costs were not prohibitive, as parallel computing capabilities are becoming

increasingly commonplace. The problems that we worked on to develop these methods are relatively

small compared to the real world problems (weather systems, plasma, fluid dynamics, etc). We

understand that computational limits and resources may be prohibitive for such problems, but we

hope that they might and further research/development in these techniques might uncover additional

methods or structures that allow for faster computations.

It is worth stressing that these additional and potentially costly heuristics are optional. They

are not required in order for the algorithm to run. It might be best to think about them as extra

steps that you can take if you have the means or the resources to do so. In our case, we did have

these additional resources and we were also interested in the limits of these methods when we have

done our utmost to get good results.

5.4 Acknowledgments

Chapter 5, in part, uses material and results that appears in Precision Annealing Monte Carlo

Methods for Statistical Data Assimilation and Machine Learning, submitted in Physical Physical

Review Research, 2(1), 013050. Fang, Zheng, Wong, Adrian S., Hao, Kangbo, Ty, Alexander J., and

Abarbanel, Henry D. I. (2020). The dissertation author was one of the primary investigators and

authors of this paper.

59

6
Data Assimilation Results

6.1 Method of Choice

In this chapter, we present the results accumulated in the process of writing this work and

explore their implications. We have covered three methods so far for evaluating the data assimilation

integral, which are (i) the quasi-Newton root solver, (ii) Random-Proposal Monte Carlo, and (iii)

Hamilton Monte Carlo. Functionally speaking, these three methods perform more or less the same

task of evaluating the integral, but the strategies that they invoke are substantially different [36].

The quasi-Newton solver differs the most from the two Monte Carlo methods in that the

solver attempts to find the location of the minima, whereas the Monte Carlo methods locates the

approximate area of the minima and generates samples around it. The difference in the outcome is

that the minimum seeking quasi-Newton method will accumulate more error if there is significant

skew (third moment) in the distribution, or any higher odd-numbered moments, which diminishes the

quality of the estimated states. The Monte Carlo methods are technically not affected by any of the

moments, but the solution that they converge to depends on the number of samples that are taken

around the minimum. The differences in these methods are fairly fundamental, so comparing them

to one another is not a straightforward task.

The quasi-Newton solver, executed specifically with the L-BFGS algorithm, converges well

when the size of the problem is not too large, such that the gradient information can be store on the

CPU/processors cache (on-board memory), where memory fetches and storage is quick. If the gradient

60

information no longer fits on the cache, the code may quick become many orders of magnitude slower.

The factors that may affect the emergence of this problem is the size of the cache relative to the

size of the problem. It is difficult to address these issues without the focus of this work switching to

that of high-performance computing. The RPMC method excels when GPU parallelization is readily

available since the proposal mechanism is very inefficient. This method is perhaps the most agnostic

to complexities of the model, but is beholden to the curse of dimensionality more so than the other

methods due to the inefficient sampling. Lastly, the HMC method is very versatile in the sense that

it inherently has an exploration and sampling stage built into it. HMC is also incredibly efficient in

generating sample compared with the RPMC method. The tradeoff is that there are a number of

extra hyperparameters that are introduced in this method compared to RPMC. There are sensible yet

simple ways to pick these hyperparameters, which avoid spending considerable time tuning/finding

parameters that work.

The ideal use cases of each method may vary significantly, depending primarily on the com-

plexity of the equations and the size of the problem. As such, we avoid comparing these methods

directly to one another. Our goal is to highlight the advantages of using the path integral approach to

data assimilation. The individual methods are different instances of the same approach with some va-

riety in computational approaches. Instead of examining the differences between the methods, which

is not the intent of the work, we focus on using the HMC method to showcase the strengths of the

path integral approach, which allows us to avoid duplicating results.

6.2 Details of the Setup

The data set that we focus on is the D = 10 dimensional chaotic Lorenz 1996 (L96) model.

This L96 system is autonomous in that the dynamics do not have an explicit time dependence, but

there is a uniform forcing parameter µ = 8.17 applied to the vector field of every element. This puts

the system into the chaotic dynamics regime. The spatial indices of the L96 system lay on a periodic

grid where, for example, such that the vector field ẋd at spatial grid point d = 9 sees data points from

the d = 7, d = 8, and d = 0 spatial grid points.

Lorenz 1996 model: ẋd = (xi+1 − xi−2)xi−1 − xi + µ (6.1)

61

These dynamics are simulated with a time step of ∆t = 0.025 for a total of M = 400 steps,

which gives a time-window of 10 arbitrary time units. This data is the measurement data that will

be presented to the algorithm. We then continue the simulation for another M = 400 steps, but

this segment of data is kept aside for later comparisons and not presented, in any fashion, to the

algorithm. We use the explicit RK4 integrator to generate the subsequent state given the current

state and its vector field. This data is considered synthetic data, in the sense that data is generated

from a prescribed model where we have perfect information of the states. To make sure that the

problem is not trivially easy, artificial additive noise is introduced to the data. The spectrum of the

noise is given by the zero-mean Gaussian distribution and standard deviation of 2.5% of the total

range of dynamics, in this case that value is roughly 0.6.

Table 6.1: Parameters for generating the Lorenz 1996 data.

Variable Description Value

∆t Time step 0.025
D Number of dimensions 10
M Number of time steps for data and predictions 400
µ Uniform forcing parameter 8.17

Once the data set is generated, it is given to the HMC algorithm (detailed above) to run

as prescribed. Upon completing one entire cycle of the HMC process, we increase β and repeat the

HMC process again. The HMC process with the new β value is given the best guess from the previous

β value, and these steps are repeated βmax = 30 times. This constitutes the annealing method

that we laid out in Chapter 5. We run N = 20 copies of the HMC algorithm, each using a different

set of random number generators. The initial condition that each copy gets is Y for the observed

variables, whereas the unobserved variables are given by the dynamic initialization procedure laid

out in Appendix D. The initial guess for the forcing parameter µ is randomly chosen from a sensible

range of values, in our case we choose the uniform random distribution from 7 to 8. As a result, the

sampling done by each copy of the algorithm is slightly different. Once all instances of the algorithms

converge, we can choose to use any of the N = 20 solutions. In particular, we can use the final state

within that time-window, and integrate that forward in time M = 400 steps to generate predictions.

The resulting trajectory is compared with the M = 400 points of data that we previously generated,

not presented to the algorithm, and kept aside for this explicit purpose.

62

Measurement Error:
1

2

M∑
m=1

‖xm − ym‖2

Model Error:
1

2

M−1∑
m=1

‖xm+1 − F (xm, tm)‖2
(6.2)

Each of the N = 20 solutions should have different values associated with the action, measure-

ment error, and model error. We can compare these N = 20 solutions based on these three metrics.

The measurement error should reach a plateau and the annealing step progresses, signaling that the

solution has converged. The model error should also decrease until it approaches a constant value,

signaling that the solution obeyed the dynamics imposed by the model. Ideally, we want to observe

that the measurement error increases until some limit, at which we say that it has converged. We also

want to observe model error decreasing to indicate that we have found a solution that is consistent

with the model.

Table 6.2: Parameters for the annealing process and parallelization instances.

Variable Description Value

βmax Total number of annealing steps 30
N Number of parallel instances 20

For most cases, these 20 solutions will have different measurement and model errors. We

should pick the solutions with the lowest model errors and lowest measurement errors. It is not clear,

a priori exactly which of these two is more important. The action is one of the better candidates

for determining the quality of our solution, with a lower action being indicative of a better solution.

Once we have generated the measurement error and model error, we are able to observe the errors

associated with each solution and exclude or include them in the calculation of an average trajectory

that will be used for predictions.

X =
1

N

∑
n∈{N}

X(n)
(6.3)

Say that there are a set of solutions that pass muster such that they are deemed ‘good

solutions’ – which we detail in the partial measurement case of 40% below. These solutions form the set

{N}, of which there are N such elements. The average solution that is used for both estimations, then

prediction is given by the unweighted average of these ‘good solutions’. We estimate the parameters

63

of the system the same way. After the averaging, we use the state at the end of the measurement

window and the estimated parameters to generate predictions. We simply integrate the system forward

in time, using the model dynamics previous specified, in order to get predictions.

6.3 Full State Measurements

The case of full state measurements refers to when all state variables are available as time-

series data. Effectively, we are simply attempting to de-noise the data set. Trajectories that are

inconsistent with the model dynamics will be discarded in the process. Such inconsistencies, which

cannot be explained by the model dynamics, usually arise from the presence of noise. As we iterate

the HMC procedure while slowly increasing the value of β (keeping in mind that R
(β)
model = R

(0)
model),

the algorithm refines the solution iteratively.

Figure 6.1: Measurement and model errors for the full measurement case as a function of annealing
steps. All 20 instances are plotted here in different colors, with no particular order. The measurement
error starts off small at β = 0 since we are using X0 ← Y to initialize the algorithm. It eventually
plateaus, which indicates that our method has converged. Upon comparison to the true state (which
we have kept aside earlier), our converged solution has the same error. The model error, on the other
hand, starts off large at β = 0, since noisy data should not be consistent with the model. It eventually
decreases to 10−6 as the solution state begins to agree more with the true state. All 20 solutions
overlap one another completely for both graphs.

64

Only the solutions that are consistent with the model survive as the algorithm iterates. As

the process goes on, the measurement error should increase smoothly while the model error decreases,

also smoothly, as shown in Figure 6.1. The figure shows an ideal case of the state estimation, though

this problem is almost trivially easy. Both the measurement and model error for the full measurement

case is given by the equation in (6.4). Once the estimation part of the algorithm is complete, we may

now run the predictions based on the last estimated state of the trajectory, namely xM in Figure 6.2.

The case of full state measurements is a rudimentary but informative first step to establish, before

delving into the partial measurement case.

Figure 6.2: Estimations and predictions of the Lorenz 1996 model for the full measurement case. In
this case, all 20 instances of the HMC algorithm converge to the exactly same trajectory (red) within
numerical precision. The predictions (blue) agree well with the data (black) at first, only to diverge
slightly later.

Figure 6.3: Convergence of the parameter values for the full measurement case. All 20 difference
instances are plotted here, each in a different color with no particular order. The parameters have
some variance at the lower value of β only to converge around step 11. For some reason, all instances
the algorithm converges to the value of roughly 8.20 when the true value is 8.17.

65

6.4 Partial State Measurements

The partial measurement case refers to the situation where the time-series for an entire state

variable is missing from the measured data set. Situation like these may arise when there are broken

sensors, or if certain variables of the system cannot be reasonably measured for practical/experimental

reasons. The case of a broken sensor is easy to imagine, a simple case is when a car’s speedometer only

displays zero, or when the barometer of a weather station is not functional while the thermometer

and wind gauge work just fine.

Table 6.3: List of measured variables for the cases demonstrated in this work. We attempts to space
the measured variables out uniformly to avoid huge consecutive patches of missing data, which will
immediately deteriorate the quality of the estimations and predictions.

Case Measured Variables

100% [0,1,2,3,4,5,6,7,8,9]
80% [0,1,3,4,5,6,8,9]
60% [0,1,3,5,6,8]
50% [0,2,4,6,8]
40% [0,3,5,8]

There is some slight modification necessary for the measurement error term that was pre-

viously used, so that we may take into account the fact that only a subset of the state variables

are measured. Let the indices of the measured variables be given by the set {L} where L itself is

the number of measured variables, the measurement error will only need to take into account these

variables, because only these variables are presented to the algorithm for optimization.

Measurement Error:
1

2

∑
`∈{L}

‖xm − ym‖2

Model Error:
1

2

M−1∑
m=1

‖xm+1 − F (xm, tm)‖2
(6.4)

As mentioned early, the measured variables are initialized with whatever values are present

from Y . We would like the unmeasured values to be ‘close by’ the true solutions, so the Dynamic

Initialization trick of Appendix D is used as a ‘better than random’ initial guess. When choosing

which variables to omit, we purposefully try to keep the omitted variables uniformly separated so that

we not leave huge gaps between measured variables, as shown in Table 6.3.

The difficulty of the task increases as the number of measured variables decreases, as one

would expect [37]. There is nothing particularly interesting between the 100% to 60% measurement

66

case, so figures will be shown only for the 80% and 60% cases with no discussion on them otherwise.

To summarize the observation, the results almost identical for these cases. We do see some interesting

behavior, however, in the 50% and 40% measurement cases. We shall discuss the observation in their

respective subsection. Values below the 40% mark give results that do not display any reliable ability

for predictions, so we omit these cases. To be clear, any of the conclusions that we arrive at within this

entire section is conditioned on the Lorenz 1996 system, for the parameters prescribed to it specifically

within this work.

6.4.1 80% Measurements

Figure 6.4: Measurement and model errors of the 80% measurement case. These values are not
noticeably different from the full/100% measurement case. Side-by-side, they look almost identical,
indicating that manifold of the 80% case is qualitatively similar to the 100% case.

67

Figure 6.5: State estimation and prediction for the 80% case. All 20 instances of the algorithm have
converged to within numerical error. In fact, the 80% and 100% case have exactly the same solution.
This convergence may indicate the smoothness of the manifold defined by our data assimilation action.
The prediction, as expected, is the same as the 100% case for both the measured and unmeasured
cases. The bottom figure shows an unmeasured variable, where the data was available but artificially
held back from the code, i.e. it was not presented to the code.

Figure 6.6: The parameter values for the 80% case start out different, but converge to the same
value within numerical error. This is unsurprising given the numerical convergence of the estimated
trajectories.

68

6.4.2 60% Measurements

Figure 6.7: Measurement and model errors for the 60% measurement case. Both these graphs are
nearly identical to both the 80% and 100% cases. This indicates the simplicity of the landscape all
the way down to the 60% measurement case.

69

Figure 6.8: The state estimation and prediction of the 60% measurement case for both a measured
(top) and unmeasured (bottom) variables. The unmeasured variable for this case is different from
the 80% case. All 20 instances of the algorithm converge to the same numerical solution, which is
different from the solutions in the 80% and 100% cases (which were both the same to one another).
The duration of an accurate prediction is roughly the same.

Figure 6.9: The parameter values for the 60% case converge in the same fashion as the 80% and
100% cases. However, the converged value at high values of β is different from the 80% and 100%
cases.

70

6.4.3 50% measurements

Thus far, the 100%, 80% and 60% cases had nothing substantial differentiating them from

one another, but were nevertheless included because their similarities were themselves telling of some

interesting phenomenon happening. Once we hit the 50% measurement case, however, we begin to

see new behavior that was not observed in the cases that came before this. Specifically, 1 of the 20

parallel instances of the algorithm strays from the rest as the annealing step progresses. The algorithm

solves for a state that very noticeably misses the global minima, and appears to be approaching a

local minimum. This is the first time in the progression of this work that there is deviation in results

among the 20 parallel instances.

Figure 6.10: Top: As the annealing step progresses, the measurement error of 1 out of the 20
parallel instances (lime green) strays from the rest by growing significantly faster, noting that the
y-axis is on a logarithmic scale. The state corresponding to the lime green appears to have missed the
global minimum and instead settles in a local minimum that is close by. Bottom: The model error
of the stray state decays much slower as the annealing steps proceed.

71

Figure 6.11: In the estimation window, one state (purple) generates a trajectory that is different
from the rest of the (more accurate) estimated states. The stray state, in the estimation window,
generates predictions (lime green) that deviates much quicker from the withheld data (black), as
compared to the state that correspond to the lower measurement error (blue).

Figure 6.12: The estimated parameter values for the 50% case given the data. There is one instance
whose parameter is poorly estimated and, unsurprisingly, this is the same instances that would gen-
erate poor estimations and predictions. For this reason, the solution that corresponds to this outlier
is excluded from the analysis and usage in predictions.

The lone stray solution will noticeably have a higher measurement error and, in this case, also

displays a higher model error. There is no reason to expect that stray solutions to always correspond

to a higher model error. The model error is low when a trajectory obeys the dynamical equations

of motion, used as a constraint here, well. Since it is always possible to find trajectories that satisfy

the equations of motion, say by simply integration any initial condition on the attractor, a low model

error is insufficient as a metric to determine a good solution.

As we are lowering the number of measured variables, this is the first time that we see a

72

‘splitting ’ of action levels as the annealing progresses. This suggests that the splitting of action

leveling may be used an indicator of the prediction quality. Specially, it appears that higher values

of the action, in general, corresponds to poorer quality of predictions and lower values of the action

correspond to better quality predictions. Trajectories with a higher action either do not agree with

the model dynamics or the data, as compared to the trajectories with lower action level. This may

seem as slightly unsurprising due to the definitions of the measurement and model errors. However,

it is encouraging that we could use these errors as a proxy for prediction quality, even though the

errors are only defined in the measurement window. We could think of these errors as the amount of

information that has been extracted from the data set.

6.4.4 40% measurements

The 40% measurement case is interesting because of the severe degradation in the average

quality of predictions, as compared to the 50% case. Even though the difference is just one less vari-

able being measured, it seems to be a significant challenge to make predictions in the 40% case [38].

This is demonstrated by having only 6 out of the 20 parallel instances of the algorithm converging to

the expected level of measurement error. Indeed, this is a difficult problem to handle in general, not

just for our algorithm to handle. This is attributed to a significant portion of the measurement data

being missing. It happens that, at least for the D = 10 case, that this is the lower limit of partial mea-

surements – going to 30% measurement results in not plateauing of the action whatsoever, regardless

of how many parallel instances are used. As such, the results of cases with 30% measurements and

lower are omitted.

When attempting to make predictions, we exclude the trajectories associated with higher

errors and only use the 6 lowest-error trajectories. These 6 lowest trajectories are chosen a priori –

that is, without knowing the expected errors beforehand. This can be done by looking for a cluster

of low-error trajectories. Once we have found the cluster of low-error trajectories, we take their

unweighted average and generate the predictions as usual. Though the average quality of the 40%

measurement case is much lower than the rest, selecting the cluster of low-error trajectories yields

predictions that are just accurate as the higher-measurement cases.

73

Figure 6.13: Measurement and model error of the 40% measurement case. Here, only 7 of the 20
parallel instances reach the theoretical minimum amount of error while the remaining 13 instances do
not. Several of the 14 instances congregate at another error level, and we expect this to correspond
to the existence of a nearby local minimum.

74

Figure 6.14: Using the solutions of the 7 lowest error values, we reconstruct the estimated states
(red) for the measured and unmeasured variables of the 40% case. We use the final state of the
measurement window to run predictions (blue), and they agree will with the data. The quality of the
predictions is comparable to the 100%, 80%, 60% and 50% cases. As such, the dominant error in the
prediction window is attributed to the limit of predictability of chaotic systems, not the algorithm.

Figure 6.15: Parameter estimation history of the 40% measurement case. In this graphic, only 7 out
of the 20 instances resulted in an estimated parameter close to our expected value. A good estimation
of the parameter has direct effects on both the measurement and model errors.

75

6.5 Conclusions

Our method of data assimilation which iteratively enforces a model-consistency term is able to

estimate trajectories of a given system well. It can even reconstruct variables that were not explicitly

given to the system – what we call unmeasured state variables – due the consistency term of our

data assimilation action. We started with 100% measurements, so the algorithm was effectively just a

denoiser that recovered the true state of the system without any the noise. In our case, the added noise

was artificial but in general this corresponds to noise that comes from the measurement apparatus.

The number of measured variables is gradually lowered, but it generated the same results

down to the 60% measurement case. At the 50% measurement case, we begin to see that not every

instances of the algorithm converges to the global minimum. The 50% case shows one instances that

has strayed from the others into another local minimum. The 40% case shows even fewer trajectories

converging to the global minimum, but choosing the trajectories that correspond to the lower cluster

of errors still yielded predictions in line with the other cases.

Across the board, we are able to generate prediction that agree well with the (artificially

withheld) prediction data up to 2.5 arbitrary time units, which is roughly 4 Lyapunov times1. Given

the fact that the algorithm is able to perform well with more than half of the state variables being

missing is very encouraging.

6.6 Acknowledgments

Chapter 6, in part, uses material and results that appears in Precision Annealing Monte Carlo

Methods for Statistical Data Assimilation and Machine Learning, submitted in Physical Physical

Review Research, 2(1), 013050. Fang, Zheng, Wong, Adrian S., Hao, Kangbo, Ty, Alexander J., and

Abarbanel, Henry D. I. (2020). The dissertation author was one of the primary investigators and

authors of this paper.

1A single Lyapunov time is the reciprocal of the largest Lyapunov exponent of the system. In our case of the Lorenz
1996 system with a uniform time-independent forcing parameter of 8.17, the largest Lyapunov exponent is roughly 1.6.
The Lyapunov time of Lyapunov timescale is then roughly 0.6 arbitrary time units.

76

Part II

Model-free Methods

77

7
Reservoir Computing

Any sufficiently advanced technology is indistinguishable from magic.

- Arthur C. Clarke, Profiles of the Future

7.1 Disclaimer

First and foremost, the terminology landscape of this field is difficult to navigate cleanly. The

names and definitions vary from author to author, from subfield to subfield, and even from decade to

decade. Some early authors refer to this method/approach exclusively as ‘reservoir computing’, and

the structure doing the computation as ‘the reservoir’. Other authors refer to it solely as ‘reservoir

computers’, without distinguishing the method/approach from the structure that performs the com-

putation. Both camps are slightly awkward grammatically, and I find myself somewhere in between

them both. Fortunately, it does not seem that differing terminology impedes the understanding of the

core concepts. Most readers should be able to parse this out with little effort if they even notice the

difference at all. In this work, I will use semantics that are most natural to myself, which are some

weighted average of what many established and contemporary authors would use [39].

7.2 Introduction

A reservoir computer (the method) takes input data u(t) sequentially from an external

system of interest. The dynamics of the system that generates u(t) are one of the following: a) not

78

Table 7.1: Some of the variables and terminology in reservoir computing.

Variable Description

u(t) data presented to the reservoir
r(t) reservoir state
Win input weights
g(r,u) dynamics of listening/estimating reservoir
Ψ[·] projection function
û(t) reservoir reconstruction of u(t)

generally known, b) known but certain parameters are not measured or not well estimated, or c) known

but the full model is too computationally expensive to warrant its use. All systems are nonlinear to

some extent even though linear assumptions are often made, but in this work, we will further focus on

chaotic systems. The reservoir computer itself also has an internal state r(t), sometimes called ‘the

reservoir’, that is generated on-the-fly from its own previous state and some subset of the input data

u(t). The reservoir states are generated sequentially from somewhat arbitrary nonlinear equations

g(r,u) as it takes in the data, so the reservoir can be viewed as a dynamical system in its own right.

This process is called ‘listening’ in the ESN literature. The arbitrariness of these nonlinear equations

does not exclude the use of other physical systems as the reservoir itself, but it merely suggests that

the physical system that is used for the reservoir need not have any relation to the physical system

of interest. If the equations g(r,u) chosen to represent the reservoir has no physical basis, then the

reservoir is best classified as an artificial neural network (ANN), specifically an echo state network

(ESN) [40]. There is also another camp where biologically inspired equations of spiking neurons are

used, called liquid state machines (LSM). Though the differences between ESN and LSM are mostly

historic in nature, the treatment in this work is general enough to encapsulate both schools. The

function g(r,u) describing the dynamics of the system is called the ‘activation function’ and, in ESN,

sigmoidal functions like the hyperbolic tangent or the logistic function is chosen. But other arbitrary

functions like a sine or cosine function still results in a well-performing reservoir, no better on average

than a sigmoidal function. Any sufficiently smooth function should work.

Due to the reservoir having to update its own state, it is classified more specifically as a

recurrent neural network (RNN). Once the reservoir has ‘listened’ to the input data sufficiently,

only the final/output/readout layer is subject to training, as compared to other networks where the

internal or hidden layers receive some training. Only training the final layer greatly reduces the

training time for reservoir computers, as compared to its RNN cousins, which often use the rather

expensive and unstable Back-Propagation-Through-Time method. The output layer is chosen to be

79

Figure 7.1: Structure of the Reservoir Computer in the listening and training mode.

linear with respect to the reservoir state, which introduces some uniqueness to the solution and is

also the source of the quick training times. This linear readout layer of reservoir computers bypasses

any vanishing/exploding gradient problems that many RNNs face completely. The result is a RNN

that has the potential to be a universal function approximator [41]. However, there are still tradeoffs.

Reservoir computers use random matrices, and there are only loose heuristics on how to properly

construct these random matrices. Moreover, the random nature of generating these matrices leaves a

lot of variability in performance unexplained. Despite the randomness and the use of heuristics, these

properties make reservoir computing uniquely tailored toward dealing with sequential or time-series

data.

The realm of predicting the future states of physical systems given some time-series data is

generally and traditionally classified under the large umbrella of data assimilation. The data assim-

ilation community mostly excludes the machine learning revolution, including reservoir computing,

because such methods do not make use of physical model or physical constraints. This is justified by

the lack of physical realism in most machine learning systems, such as not obeying the conservation of

mass. Yet, there is a huge effort by many to bridge this apparent divine between machine learning and

(traditional) data assimilation, to some success in hopes of leveraging the best of both worlds. My own

interests in reservoir computing comes from the fact that the reservoir itself is a dynamical system,

specifically a dynamical system that is being ‘driven’ by the input data. As such, many of the tech-

niques, intuitions, and insights that are common in dynamical systems theory should directly apply

to reservoir computing. Also, it seems like the effectiveness of reservoir computing can be attributed

to synchronization, and helps peel back the black-box nature of reservoir computers by, potentially,

providing some mathematical guarantees for the method. Synchronization of the reservoir and the

80

data is an interesting phenomenon in its own right, but successfully leveraging synchronization might

facilitate the widespread use of reservoir computing.

7.3 Structure

Let us start off with an overview of the requirement of the data before diving into the specifics

of the reservoir. To begin, we should have access to some time-series data set with some noise

u(t), given to us by a trusted expert of the field of interest. This time-series is D-dimensional and

consists of M evenly spaced measurements. Any qualms regarding the quality, measurability, sampling

resolutions, and anything of practical consequence will be tabled for subsequent sections – we shall

assume merely that the data set u(t) is ‘viable’. The only thing worth addressing about u(t) now is

that measurements are rarely made on the actual state of the system, but rather on some downstream

and more practical variables. We shall assume, in the setup here, that we have access to the state

variables. The specifics will be discussed in a later section. As mentioned previously, we will focus here

on times series data coming from chaotic systems. There are two versions of the reservoir, continuous

and discrete, and it seems that both versions work much the same [42]. Our focus in this work will

be on the continuous version. The structure of the reservoir can be cleanly broken down into three

parts: input layer, reservoir dynamics, and output layer.

Continuous: ṙ(t) = γ(−r(t) + activ[Ar(t) + σWinu(t)]) ≡ g(r,u)

Discrete: r(tm+1) = activ[Ar(tm) + σWinu(tm)]

(7.1)

7.3.1 Input Layer

At each point in time, u(t) is embedded into a much higher N -dimensional (N � D) space

through the use of an input weight matrix Win. This input matrix Win is a relatively sparse and

skinny N × D matrix that acts on u(t) as a preliminary step before this input is subject to use by

the reservoir r(t) ∈ RN . The sparsity of this matrix arises from the fact that each of the N nodes

inside the reservoir receives input from exactly one of the input states of u(t) at random, leaving the

fraction of non-zero matrix entries at exactly 1/D.

These relations do not vary as time progresses in the data set. The non-zeros entries of the

Win matrix are stochastically generated using the Uniform distribution between (−1, 1), though a

81

Normal distribution of standard deviation of 1 appears to work equally well. Since the row space of

Win are of order unity on average, the hyperparameter σ can be seen as a scaling parameter for the

resulting Winu(t) term.

The σ term is perhaps the single most important hyperparameter in the reservoir. It is akin

to the coupling parameter in the synchronization literature and shares the Goldilocks property – if

σ is either too high or too low, synchronization will not occur. It is also responsible for generating

the correct Lyapunov spectrum in the reservoir dynamics. As usual, even for such an important

hyperparameter, there is no a priori way of choosing σ such that the reservoir has the desired behavior.

A combination of heuristics and trial-and-error is necessary for finding the appropriate σ, but it just

needs to be found once for a particular system. Luckily, there is a fairly large margin of error for

getting the right value for σ, such that a small discrepancy in σ does no generate wildly differing

reservoir dynamics.

Figure 7.2: Flow diagram of the reservoir evolution. The reservoir uses both its previous internal
state and the previous data point to update its state forward in time. This figure is for the continuous
reservoir, but it holds equivalently for the discrete reservoir as well.

7.3.2 Reservoir Dynamics and Listening

There is also a matrix A that determines the nature of the connectivity between the nodes

r(t) within the reservoir, unsurprisingly called the connectivity matrix. Just like the Win matrix, the

A matrix is also sparse, however the sparse of the matrix is set explicitly such that only 2% of the

matrix elements are non-zero, primarily so that the computation is much faster. Empirical evidence

suggests that the sparsity may aid in the reservoir’s performance, but this hyperparameter has worked

for a variety of values and, of course, it is specific to the data set and the system of interest. Again,

just like the Win matrix, the non-zero elements of A are also generated stochastically, and the use of

either the Uniform [−1, 1) or the unit Normal distribution work equally well. Unlike the Win matrix,

the spectral radius (largest eigenvalue) of A is adjusted on a case-by-case basis, but this is no different

82

from the role of σ for the input. The act of generating trajectories for reservoir states r(t) while

taking in the data u(t) is also known as ‘listening’.

There are two definitions of reservoir dynamics, which are the discrete or continuous reservoirs.

Both are explored in the confines of this work, and there seems to be only minor differences their use.

The discrete reservoir has less hyperparameters to tune, but the trajectories of r(t) generated are little

bit more noisy/jagged than the continuous counterparts, but for the most part, parameters that work

for the discrete and continuous reservoir are very similar. The evaluation of the advance state r(tm+1)

is straightforward and quick. The continuous reservoir seems to be better at ‘denoising’ in general,

since zero-mean noise in the input u(t) is fed into the ṙ equation, which shows up as a short-lived

diffusion of trajectories. It also requires some integrator (typically RK2 or RK4) as an additional

step, resulting in run times that are a multiple times slower than the discrete counterparts. This is

no different from the relation between continuous and discrete dynamical systems.

A more general reservoir structure can sometimes be used for the continuous reservoir, where

the magnitude and signs of the r(t) and activation functions are tuned, but this omitted in this work

as the additional hyperparameter introduces another dimension of tuning when the degree of tuning

required of this system is already very involved. The run times for the continuous reservoir is directly

proportional to the order of time-integrator used and is much longer than the subsequent training

phase. The listening phase is the bulk of the computation time by a huge margin and much effort

should be spent in making sure that this phase is quick and efficient.

Table 7.2: Values for the reservoir parameters when using full state measurements. Partial measure-
ment use a slightly different set of parameters.

Variable Description Value

N number of dimensions/nodes 1000
γ time scaling constant 23
σ coupling constant 0.03
ρ density of non-zero elements of connectivity matrix A 2%
λ spectral radius of connectivity matrix A 0.9

activ[·] activation function tanh[·]

7.3.3 Training Output Layer and Estimation

Regardless of whether the discrete or continuous versions of the reservoir architecture is used,

the resulting trajectory of r(t) has to be fit onto the input data u(t). Specifically, we have generated

a time series r(t) from its own internal dynamics and u(t), but the goal now is to find a function that

83

best projects r(ti) onto u(ti) at every point in time. The simplest and most common practice is to

use a Linear Least Squares (LLS) fit to find some projection Wout such that u(ti) and Woutr(ti) are,

on average, as close to one another as possible. All the data was used to train the reservoir including

the transient data, which was very short lived. Empirically, it did not matter whether or not the

transient data was used, as the on-attractor data points outnumber the transients by two or three

orders of magnitude generally.

argmin
Wout

∑
i

∥∥∥u(ti)−Woutr(ti)
∥∥∥2

2
(7.2)

This is the preferred method by many because, most importantly, solving for this relation is

linear in Wout. Hence, it is quick and the solution Wout is unique to u(t) and r(t). The tool of choice

is the usual (Moore-Penrose) pseudoinverse, powered by the Singular Value Decomposition (SVD).

Other methods involve constructing an extended basis q(t) and fitting this extended reservoir state,

rather than the original state r(t), to u(t). Here, q(t) is constructed from nonlinear combinations

of the reservoir state r(t), e.g. q(t) = [r(t), r2(t)] where r2(t) is the squared value of r(t) at each

temporal and spatial point.

argmin
Wout

∑
i

∥∥∥u(ti)− W̃outq(ti)
∥∥∥2

2
(7.3)

Of course, one could add more and more polynomial terms to q(t) ad infinitum, but the

computational costs of doing so is hardly justifiable given that stopping at first order already gives

marvelous results. In fact, the most general treatment has it that u(t) = Ψ[r(t)], but the space of

such possible functions is effectively infinite, rendering the search for Ψ[·] nigh impossible. For most

applications, it seems that the first or second order (first order being the standard LLS) basis is more

than enough to produce good predictions. The following sections will proceed assuming the use of the

LLS fit as it performs very well, and it keeps the computational time low.

DO NOT do the following: u(ti) = Woutr(ti) ⇒ Wout��
���

�:1

r(ti)r(ti)
† = u(ti)r(ti)

† (7.4)

Next, we should talk about the practical matter of solving for Wout. If no additional structure

84

is imposed on Wout, then the method of choice would be the Moore-Penrose pseudo-inverse (denoted

with †) shown above. Keeping in mind that the time series r(t) is treated as a N ×M matrix, where

N is the number of reservoir nodes and M is the number of measurements across time1. The resulting

object r(ti)r(ti)
† is the N ×N identity matrix and Wout seems to solved with u(ti)r(ti)

†. However,

due to the large values of M and N , the condition number of r(ti)
† is also large, passing on these

large condition numbers to Wout as well2. Repeated application of Wout in the algorithm generated

numerical instabilities which can be avoided through regularization shown below.

u(ti) = Woutr(ti) ⇒ u(ti)r(ti)
> = Woutr(ti)r(ti)

> (7.5)

Wout = u(ti)r(ti)
> [r(ti)r(ti)

> + α2
1
]−1

(7.6)

This regularization procedure may seem unnecessarily complicated, but it is absolutely neces-

sary in order for predictions to be stable. It should be noted that this additional regularization is due

to the inherent numerical stability of the LLS algorithm, not the reservoir computing framework per

se. Practically speaking, this regularization reduces the strictness of the fit. Throughout this work,

the value of the regularization parameter α = 0.01 was used.

7.3.4 Echoing and Prediction

After this minimization or fitting task, we get access to the best-fit of u(t) which is given by

û(t) ≡ Woutr(t). It is important to distinguish between the actual data u(t) and the reconstructed

or best fit u(t). We can then loop the outputs back into the reservoir, by feeding in the output û(t)

rather than the original input u(t). This opens up the idea of being able to predict the state of the

system past the given measurements within the time window.

The reservoir is said to be in the prediction, echoing, or autonomous mode when doing so.

The term echoing comes from the audio-inspired naming scheme of classic literature. The description

of the reservoir being autonomous comes from the lack of a driving/input stimulus u(t). Rather than

1The notation here has M and N flipped from the conventional notations. It is by complete coincidence an unfor-
tunate downstream consequence of previous notation.

2The condition number is the ratio of the smallest to the largest eigenvalue or singular value, depending on the
problem formulation. These condition numbers make more sense when discussing the SVD and eigendecomposition,
but it directly affects the pseudo-inverse.

85

Figure 7.3: Structure of the Reservoir Computer in the predicting mode. This figure resembles the
previous one except that output-to-input feedback is introduced, effectively defining the prediction
mode.

following (7.1), we use the following equations instead, noting that u(t) is no longer used as û(t) is

purely a function of r(t).

Continuous: ṙ(t) = γ(−r(t) + activ[Ar(t) + σWinWoutr(t)]) ≡ g(r,u)

Discrete: r(tm+1) = activ[Ar(tm) + σWinWoutr(t)]

(7.7)

Hopefully, at this point, the reservoir state r(t) and the weights Win has learned or captured

something about the incoming steam of data, and is capable of producing accurate predictions. Once

the hyperparameters have values that make the reservoir ‘receptive’ to the stimulus u(t), these pre-

dictions accurately predict the data, which is to say that it can forecast states of the system that it

has never encountered before. In a colloquial sense, during the prediction phase, we are fooling the

reservoir into believing that it is still being driven by the input data u(ti), whereas in reality it is

being driven by û(ti) = Woutr(ti).

7.4 Acknowledgments

Chapter 7, in part, uses material and results that appears in Robust Forecasting Using Predic-

tive Generalized Synchronization in Reservoir Computing, submitted in Chaos: An Interdisciplinary

Journal of Nonlinear Science , 31(12), 123118. Platt, Jason A., Wong, Adrian S., Clark, Randall,

Penny, Stephen G., and Abarbanel, Henry D. I. (2021). The dissertation author was one of the

co-authors of this paper.

86

8
Results from Reservoir Computing

8.1 Introduction

Before even considering the idea of acquiring data, there are a few things consider. We have

to first assume that there are a set of variables that can uniquely describe the system at all times.

We also add in the extra constraint that we want a minimal set of variables such that we describe

the system is a concise fashion. This is mainly to avoid scenarios where one can always introduce

superfluous variables that may be linear combinations of another variable or, worse, variables that do

not contribute any descriptive power at all. This minimal set makes up the state variables, and this

state is usually (and hopefully) a unique description of the system. Once we have an idea of what

physical quantities constitute the state, we can start thinking about measurements.

We also have to consider that the state variables might not be directly measurable due to

practical limitations. For example, the temperature field over a large region of the ocean surface is

the desired measurement for weather prediction, in whatever grid scheme or resolution necessary. It

would be silly to even imagine placing thousands of millions of thermometers at every grid point.

Instead, the one measures the intensity of radiation on those grid points, at the wavelengths that

correspond to water’s absorption bands1. The measured data y is a nonlinear function of the actual

state variables x such that y = h(x), and one must trust that h(·) and y are properly vetted by the

experts of the respective field. On top of all this, there is noise in the system such that the data y that

we are given must be assumed to contain (usually Gaussian distributed) noise that y = ytrue + η.

87

In this work, we are concerned about the prediction process rather than the measurement process, so

we happily assume that the measurement function is simply the identity h(x) = x. These methods

should hold, in theory, when there is a measurement function present, but there will be some added

steps and potentially even added complications along the way that will not be addressed here.

Table 8.1: Parameter values for the data generation. There is some slight but otherwise inconse-
quential overlap in notation with reservoir parameters.

Variable Description Value

∆t uniform time-step 0.01
T time window 50
M number of time steps 5000
D dimension of system 3
σ Prandtl number 10
ρ Rayleigh number 28
β convection constant 8/3
η variance of uniform noise 1.5

Having access to the full state is a true luxury when it comes measurements, especially

observational experiments – experiments that are not under strict laboratory controls. One every-day

example would be weather systems, which are extremely high dimensional system. It is impossible

to measure the wind speed and pressure at every point in a small town. But even if we are in a

controlled laboratory setting, we still might not have access to certain variables. Such is the case in

many biological systems, like neurons for instance, where the membrane potential can be measured,

whereas the gating variables (quantifying the degree that certain ion channels are able to let ion

through the gates) cannot be realistically measured at all. This is not so much a technological limit

as it is the fact that measurements fundamentally change the system that they are measuring. In

the case of biological systems, the act of measuring certain variables could cause irreparable damage

to the organism or the cell, therefore changing the function of it entirely2. Another example is in

fluid dynamics, where it is extremely difficult to measure the flow field at every spatial point without

blocking the flow and fundamentally changing the system. Thankfully, the lack of full measurements

does not put a halt to our ability to make predictions. One has to ‘fill in’ the data somehow, and the

standard approach is to use the delay-embedding theorem of Takens [43].

1These are some examples of handy tidbits to know about the system but, for the most part, we will be relying
on the experts in the field that specialize in the physics and engineering aspects of acquiring these measurements. The
reality of the situation is that these measurements are very difficult to make. There are other factors such as cloud
cover or the overlap of the absorption bands with other molecules that might confound the measurement process, but
knowing just a little bit about the system of study is always a plus.

2The phenomena of death makes organisms truly nonlinear, among other things.

88

As such, this is the justification of separating the results section into two parts, handling

the full- and partial-state measurement cases. Procedurally, these two cases are handled in much the

same way. Having access to the full state is a natural starting point, though wishfully ignoring some

of the more practical aspects of real-world measurements. Its main contribution is that such systems

are used as an instructional and informative situation for study and proofs of concept. We establish

certain baseline expectations when full state measurements are available, we can then move on to

the partial-state case. There is an additional step of using delay-coordinate embedding as a ‘post-

processing’ of the partial data. Some familiarity with standard delay-embedding practice is exercise

in this work; there will be no in-depth discussion of delay-coordinates, attractor dimensions, or the

like. The reader is encouraged to read some of the references. Most of the numerical experiments are

focused on the Lorenz 1963 system, but the results do hold more generally as well if one is willing to

do the hyperparameter search. Some experiments were also conducted on the Lorenz 1996 system as

well and those results will be presented later without much exposition on the specifics.

Before moving on to the actual results, it worth mentioning that results will vary depending

on the random number generation (RNG) of the computer, even if the same hyperparameters were

used. Because of the inherent luck of the draw, there is going to be some fluctuations of the results

from seed to seed. None of the reported results in this work were cherry picked such that

they performed particularly well or badly. As far as we are aware, they are run-of-the-mill

results.

8.2 Full State Measurements

As mentioned, the use of full state measurements is a natural starting point for experiments

with time series prediction, simply because it is simple and requires less knowledge and exposure. The

model of choice that generates the data is the Lorenz (1963) model, which was a simplification of a

weather system and the progenitor of the concept of chaos. We will skip the subtleties of the Lorenz

model except for the fact that our choice of parameters, as shown in Table 8.1, puts the system in the

chaotic regime [44]. Once the entire data set of generated, some random uniform noise was added to

the data3. Both the true trajectory utrue(t) and the noisy trajectory u(t) were kept for later use. It

should be stated explicitly that only the noisy trajectory is ever presented to the reservoir

system, whereas the true trajectory utrue(t) is only used for error calculation purposes.

3It makes little difference to the reservoir computer whether or not the noise was Gaussian or uniform.

89

Figure 8.1: Estimation phase of the reservoir. ‘True’ refers to the noiseless simulation trajectory;
‘data’ refers to the data that one would get from measurements, which the ‘true’ state plus artificial
noise; ‘est’ refers to the output of the reservoir after training. The true and estimated state are
indistinguishable at this macroscopic scale. Microscopically, the difference resembles white noise.

Figure 8.2: Comparison between the reservoir prediction and the actual/noiseless trajectory of the
system. The reservoir is able to predict roughly seven Lyapunov times before prematurely making a
lobe switch.

As shown in Figure 8.1, the reservoir is able to fit its internal states r(t) to the data u(t) very

well. This is what one gets after the training phase is complete, and the combination of the listening

and training phase is called the estimation. All observed cases have that the estimated state is always

close to the true trajectory that the data itself. In other words, the estimated state is always less noisy

than the data. This result is absolutely a necessary condition for the reservoir to predict beyond the

window of available measurements. A reservoir that does a poor job estimating has not been able to

generate good prediction, as one would naively expect.

Figure 8.2 show that the reservoir is able to make good predictions after a successful estimation

phase. The overall attractor dynamics, sometimes called the ‘climate’, also seems to be replicated by

90

the reservoir. This level of prediction rivals the standard and traditional methods of data assimilation,

but is made more impressive given that absolutely no model is given to the reservoir. Needless to

say, this is particularly useful for real world scenarios where the physical system has parameters that

also need to be estimated. The reservoir makes no distinction of bias towards the lack of parameters,

though only sensible ranges of the parameters have been tested.

As mentioned earlier, these results will vary when attempting to reproduce them even though

the exact hyperparameters are used. It is advised to use the same RNG seed for repeatability. The

Lorenz system has certain regions of the attractor that vary in stability or instability. For example,

the region between the two lobes is particularly unstable, leading to larger local Lyapunov exponents.

In contrast, being within the lobes is generally more stable and the local Lyapunov exponents are

smaller. One needs to be mindful when choosing the measurement window, such that it does not end

at a particularly stable or unstable region of the attractor. Doing so may lead one to be mistakenly

over- or under-confident in the reservoir’s ability.

8.3 Partial State Measurements

This subsection will be very similar to the previous section in structure. The major difference

being that this subsection assumes incomplete or partial measurements, and a time-delay embedding

is used as a means of overcoming this obstacle. Such a method is standard in the field of dynamical

system. There have also been other methods using RC that attempt to deal with incomplete state

measurement. For example, there have been attempts to present one state variable to the RC and

have it fit another state variable [45]. This will not be address in this work as we chose to focus

on time-delayed formalism. We will briefly cover time-delay embedding, but a deeper dive will be

included in the appendix. The exact same data and set up from the previous subsection is used here

except that the y and z variables are purposely discarded for this partial measurement case. When

doing time delay, we have to specify some new and important variables – one of which is the time-delay

embedding (integer) dimension Dy.

This time-delay embedding state is given by y(t) = [x(t), x(t − τ), x(t − 2τ), ..., x(t − `τ)],

and y(t) is fed into the reservoir instead of the full state x(t) = [x(t), y(t), z(t)]. This example uses

τ = 10∆t with ∆t = 0.01 and ` = Dy−1 = 2. The embedding dimension is chosen to be Dy = 3 simply

because it has been found to be the least number of dimensions necessary to capture the attractor

91

Table 8.2: Values for the reservoir parameters when using partial state measurements. Full mea-
surement use a slightly different set of parameters.

Variable Description Value

N number of dimensions/nodes 1000
γ time scaling constant 23
σ coupling constant 0.12
ρ density of non-zero elements of connectivity matrix A 2%
λ spectral radius of connectivity matrix A 0.9

activ activation function tanh

topology [46]. It just so happens that D = Dy for the Lorenz system. In general, Takens’ embedding

theorem guarantees us that Dy < 2Dbox + 1, where Dbox is the (fractional) box-counting dimension

of the attractor. This is a rather fortunate and astounding result since it gives an upper bound of the

time-delay embedding dimension when attempting to reconstruct a system in this manner. For this

example, we are limiting ourselves to only measuring the x variable, effectively a scalar time series,

and then constructing the time-delay embedding from that. Since we are only measuring x, Dy will

also be the number of previous measurements of x, each delayed by some fixed interval τ .

Figure 8.3: Similar to the full state case, the time-delayed or partial measurement case generated
very good estimation.

The delay τ is chosen such that it is the first local minimum of the mutual information of

x(t) and x(t − τ). Having low mutual information, means that the states at these two times are

the least informative of one another. Consequently, this means that using there two states x(t) and

x(t−τ) at once to begin constructing y(t) provides the most amount of information about the system4.

This relation between should hold for any pair of time-delayed states since the calculation for mutual

information is ergodic. Lastly, we are using exactly the same data (with the exact same noise) as the

full-measurement case to generate y(t).

92

Figure 8.4: Comparison between the reservoir prediction and the actual/noiseless trajectory of the
system, in the case of time-delayed data. The reservoir is able to predict roughly five Lyapunov times
before slight deviation and an eventual lobe switch. It is very similar in performance to the full state
case, falling only a little bit short arguably.

As for the reservoir, both the input weight matrix Win is identical as far as the individual

elements. The connectivity matrix A is almost the same, except that the coupling constant σ was

quadrupled. See Table 8.2 for detailed values. This was a purely empirical and practical adjustment

made in order for the reservoir to give better prediction, but the change in coupling constant seems to

be a fairly dramatic change . The similarities in u(t), Win, and A are only done for consistency and

ease of comparison. It does not appear that any of these steps are or should be necessary practice for

producing good results.

In this exercise, the reservoir acting on time-delayed data performed comparably well against

the full state data. This was found to be the case, generally, when different RNG seeds were used,

resulting in different data sets, input weights Win, and connectivity matrices A. Again, keep in mind

that these results will vary based on the RNG seed and the order of operations in the setup of weights

Win and connectivity A.

In concluding this subsection on time-delayed data, we should look at whether the reservoir

itself respects the presence of time-delay. Another way of putting this is that we hope that the reservoir

has learned, somehow, that the incoming data u(t) is time-delayed. This might be an almost trivial

question in the estimation phase, since we are fitting the reservoir states to the data explicitly, but

it is an important constraint to obey when the reservoir is autonomous in the prediction phase. The

4This concept is a little counter-intuitive to newcomers of the field. It is somewhat akin to measuring the position
of a point on the two-dimensional plane – measuring the x-coordinate is completely uninformative of the y-coordinate.
Hence, the x and y coordinates on the two-dimensional plane gives us the most ‘information’ of the position of a point.
Of course, this example is not statistical in any way cannot directly apply to information theory, but we feel that it is
illustrative enough for pedagogical purposes.

93

Figure 8.5: The autonomous/predicting reservoir produces trajectories that naturally obeys the
time-constraint, albeit with some slight mismatch. A perfectly constrained reservoir should generate
trajectories with zero mismatch, and this plot would be uniquely zero for all plotted variables. For
example, in the incoming data set we have defined that u1(t) ≡ u0(t− τ) explicitly, but this relation
is not necessarily true for the reservoir’s reconstruction of these states û0(t− τ) and û1(t).

remarkable result here is that the predicting reservoir does obey the time-delay constraint naturally

and seems to obey it indefinitely. The predicting reservoir respects the time-delay constraint even

better than the estimating reservoir. This constraint was never presented to the reservoir explicitly,

but learned from the incoming data u(t) alone.

8.4 Different Versions of the Reservoir

When it comes to building a reservoir, there are so many ways of doing so, so many knobs to

turn and buttons to push. There is no clear way of doing so that is transparent and widely accepted

– only heuristics and hearsay – and this work does not provide additional clarity except that it is

an additional data point. The reason for reservoir computing being in such as a state is, as far

as we are aware, due to the flexibility of the reservoir computing framework. Flexibility here is a

double-edged sword. It provides freedom for the user to design and mold their reservoir such that two

completely different types of reservoirs can produce similarly good results. However, this freedom can

be overwhelming sometimes because there is no clear starting point. There have been attempts using

evolutionary optimization strategies to find the appropriate hyperparameters to some success. Still,

such an approach is slightly antithetical to one of the reasons we chose to use reservoir computing,

which is to bypass the need for an expensive training step of many neural network structures.

94

In this section, we will discuss the various options that the user would have when building their

own reservoir. The purpose of this section is to summarize our past attempts of building reservoirs

and their consequences. It is, by no means, an exhaustive list nor a steadfast set of rules – merely

anecdotes and suggestions gathered through experience. It remains unfortunate that this process is

still opaque and relies on heuristics. Hopefully, this will quickly change as the field matures, but how

long this will continue, or the rate of improvement is anyone’s guess.

8.4.1 Reservoir Dynamics

Perhaps one of the most pressing issues when designing reservoirs is which type of reservoir

dynamics to choose. One has the choice between the continuous and discrete reservoirs, both of which

have similarities and differences that are worth discussing. Some details about this were teased in an

earlier section, but we will delve into more details here. One of the more noticeable differences is the

trajectories generated from the two types of reservoirs. The discrete reservoir generates trajectories

that inherit the noisiness from the input data. The continuous reservoir, on the other hand, is able

to fend off the noise. We attribute this to the differential reservoir receiving zero-mean noise, which

generates a slight diffusion of trajectories from the true one.

Figure 8.6: Using the exact same reservoir and data, changing nothing but the reservoir dynamics,
we can see that the differential reservoir is better able to generate less noisy trajectories. We compare
the phase space projection using two nodes within the reservoir, and it turns out that the reservoir’s
attractor is similar regardless of which type of reservoir dynamics is chosen. The black lines are
reservoir states r(t) generated from the noiseless data utrue(t), and the green lines are generated from
the noisy data u(t).

95

An interesting consequence in this investigation is that it seems that the order of data being

presented is what is truly important to both these reservoirs, not so much the presence of noise [47].

There is some point, if the signal-to-noise ratio is very poor, where the structure of the attractor is

completely clouded out and estimation cannot be properly done. But short of that, the differential

reservoir seems to be fairly robust to the presence of noise relative to the discrete reservoir. The

prediction capabilities of the continuous reservoir far out-performs that of the discrete reservoir in

this example. The discrete reservoir has not been able, in our limited attempts, to perform as well

as the continuous reservoirs when it comes to noisier data. The conclusion here being that the

differential reservoir being better suited to deal with a noisier data set. However, then the data is

much less noisy, the discrete reservoir is able to match the performance of the continuous reservoir,

and even outperform it in certain situations.

These advantages are not free. It turns out that there is a small price to pay when using

continuous reservoirs, coming in two forms. The first is that the continuous reservoir is order of

magnitudes slower than their discrete counterpart, depending on the order of time-integrator chosen;

more about that in the next section. The continuous reservoir also requires the addition of a time-

constant hyperparameter γ, with the ability to add even more hyperparameters if desired. All this

results in a more complicated structure and a larger search space for reservoir hyperparameters.

Everything considered, it seems that the continuous reservoir is worth the extra trouble except if

sheer speed of computation is required. The additional hyperparameters were easily managed and the

prediction quality is rather insensitive to the hyperparameter γ.

8.4.2 Form of Training Layer

For the entirety of this work, we have assumed that a linear basis will fit, on average, the

reservoir trajectory to the input data within the given time window, i.e. u(ti) = Woutr(ti),∀ti ∈ [0, T].

This is achieved performing the following minimization routine to find the appropriate Wout. Another

successful option is to use an extended basis involving the squared values of the reservoir states, see

Subsection 7.3.3 for specifics.

It seems, most generally, that one has to find a candidate function Ψ[·] such that u(ti) =

Ψ[Woutr(ti)]. Such a search is typically done by imposing a parameterized form for Ψ[·] then solving

for said parameters. Our choice within this work happens to be u(ti) = Woutr(ti), but there can be

many more options. This projection function Ψ[·] is the inverse of the generalized synchronization

96

Figure 8.7: In comparing the prediction capabilities of the time-delay reservoir, changing nothing
else, it appears that there is no advantage nor disadvantage. The same is observed for full state
reservoir and slightly different reservoir structures. Using squared terms hardly affects the overall run
time of the code since the linear fit is itself one of the quickest parts of the code.

function Φ−1[·] = Ψ[·]. In parallel to this work, some testing was done using the form u(ti) =

W̃outq(ti) where q(t) = [r(t), r2(t)]. Changing nothing but the presence of the squared terms, the

resulting prediction capabilities for both methods were much the same, as shown in Figure 8.7. It

is possible that more complicated training layers could contribute to better predictions, but this is

not observed on average and requires further study. The training phase of the reservoir is not the

dominant contributor to the code’s overall run time, so there is plenty of leeway to pursue more

computationally intensive training.

There is also the option of enforcing sparsity, with or without the presence of the square term.

There have been many attempts to hard-code in various a priori structures. Additionally, using the

Euclidean L2 norm (as does this work) is not the only viable approach. There may be potential in

using the L1 norm, which is sparse in the nodes, and this might give insight as to which nodes are the

sole/dominant contributors in the synchronization step.

97

8.4.3 Form of Embedding

The reservoir dimension N is much larger than the input data dimension D. As such, we

have to embed the initial data into this higher dimensional space. The method of choice is to use a

stochastically generated input weights matrix Win to embed u(t) as Winu(t). In a sense, this is the

opposite process of the training step because, here, we are embedding a low dimensional object into

a higher dimension space, whereas the training layer aims to project a high dimensional object into

the low dimensional space.

ṙ(t) ≡ g(r,u) = γ(−r(t) + activ[Ar(t) + Θ[u(t)]) Θ[u(t)] ≡ σWinu(t) (8.1)

We shall call this arbitrary or random embedding Θ[·] and is closely related to the generalized

synchronization function Φ[·] discussed in Section 9. The exact nature of this relation was not

explored in this work, but should be a very interesting and important topic for further research.

Within this work, this function was chosen as Θ[u(t)] = σWinu(t) with no variation whatsoever.

This can be generalized in many of the same ways that the training layer’s projection function Ψ[·],

but keeping in mind the relative dimensionality of these two functions Ψ[·] and Θ[·].

Earlier, we discussed the arbitrariness of the reservoir dynamics. Since there are no true

restrictions (that we know of) when it comes to constructing the function g(r,u), this should also

apply to the embedding function Θ[·]. One could even replace the Ar(t) term with a more general

form. There can even be more ‘mixing’ between r(t) and r(t) if desired, but there seems to be no real

justification to do so at this point.

There is also a very specific sparsity structure that is imposed on the input weights Win.

The structure is such that each of the N nodes of the reservoir receives input from 1 of the D input

variables, and the strength of this connection is randomly chosen from a uniform distribution in the

range of -1 to 1. This is how we chose to embed the input data given the previous successful attempts

in the literature, but there is nothing explicitly special about our chosen sparsity structure – at least

from empirical attempts.

98

8.4.4 Forward Integrator

If one chooses to use the continuous form of the reservoir, there is a question of which integrator

to use. The usual suspects here are the explicit Runge-Kutta family (e.g. RK2 and RK4) of method,

and perhaps even Heun’s rule (sometimes called the explicit trapezoidal rule). This work uses the

RK4 method exclusively, with RK2 being tried in passing to no extra effects aside from shorter run

times.

8.5 Further Directions

Hence concludes our exposition of reservoir computing as a model-free means of making

predictions. We will say a few words regarding possible research directions in general. It is extremely

tempting to make a project out of turning all the knobs and pressing all the buttons in a reservoir, only

to find out that they all work much the same. A sweep of all possible reservoir structures will unlikely

offer additional insights, since most reservoir structure are able to make good predictions already.

In this pursuit, one will likely find that reservoirs are notoriously receptive to the incoming data,

regardless of their structure. A better understanding of how reservoir works is the recommended

direction, not more ways to design a reservoir work. There are other approaches that also bridge

RC with existing time series methods, where its ties to Volterra series and time delay methods are

intriguing [48, 49].

So far, most of the work on reservoir computing has been done with computer simulation

data, where information of state variables is perfect, and the noise is definitively Gaussian. There is

a true need to find out how well these methods apply to real-world data.

8.6 Acknowledgments

Chapter 8, in part, uses material and results that appears in Robust Forecasting Using Predic-

tive Generalized Synchronization in Reservoir Computing, submitted in Chaos: An Interdisciplinary

Journal of Nonlinear Science , 31(12), 123118. Platt, Jason A., Wong, Adrian S., Clark, Randall,

Penny, Stephen G., and Abarbanel, Henry D. I. (2021). The dissertation author was one of the

co-authors of this paper.

99

9
Synchronization in Reservoir Computing

Perhaps the most striking and interesting property of reservoir is its ability to reconstruct the

input data u(t) and predict its future behavior, having no explicit information about the equations

that generated u(t). Once reservoir computers were fed time-series data from chaotic physical systems,

this relationship became much more apparent. It also raises the question of whether synchronization

plays any role in reservoir computing. It seems that the listening phase of reservoir computing is

mechanistically identical to the concept of Generalized Synchronization (GS), specifically the one-way

or drive-response configuration of two systems. We briefly discuss GS before diving into its role in

reservoir computing.

9.1 Generalized Synchronization

Earlier work on synchronization used identical systems, where the same variable from each

copy the systems are coupled together with a scalar coupling constant. Generalized Synchronization

was an attempt to generalize these early concepts of synchronization, specifically when the two systems

are completely or physically different systems, and even when the multiple variables are being coupled

[50]. In reservoir computing, the input data u(t) is used as a forcing, driving, or control term whereas

the reservoir state r(t) is the response system. After some initial transient time T , the reservoir

becomes synchronized to the input data if the reservoir state r(t) can be uniquely determined as some

function of the input data, i.e r(t) = Φ[u(t)] ∀t > T . This relation will hold exactly and for all time

100

Figure 9.1: The reservoir is able to reconstruct the general topology of the Lorenz attractor. The
blue line is the reservoir state generated using noisy data u(t), in comparison to the black line which
was generated from noiseless true trajectories utrue(t) – an exercise only done here for illustration. The
point here is that the reservoir is robust to noisy input data and, counter-intuitively, even performs
better with slight noise rather than no noise. The outgrowth on the left is from transient trajectories
– an inconsequential remnant of initializing the reservoir at t = t0 that will be address separately.

t > T , as long as the input data u(t) continues to be presented to the reservoir as it did before. Once

the stimulus is no longer presented, the two systems are no longer guaranteed to be synchronized.

Figure 9.2: The auxiliary systems here are different reservoirs, each with a different initial state
r(t0) but otherwise identical. The quick convergence of trajectories is evidence of GS.

The synchronization relationship r(t) = Φ[u(t)] does not need to be found explicitly, showing

its existence is sufficient for GS to be have occurred. There are many ways to demonstrate the

existence of such a function Φ[u(t)], such as original proposal of Mutual False Nearest Neighbors.

That calculation, however, is computationally expensive as it has to search for nearest neighbors in

both the driving signal space u(t) and the response signal’s space r(t). Another test, called the

auxiliary system method, was proposed and this works almost as well. The only catch here is that the

auxiliary systems method is a necessary condition, but insufficient to guarantee GS. In this work, we

101

have made sure that the pathologies that cause the auxiliary system method to not hold are avoided,

specifically by tuning γ so that the frequency spectrum of u(t) and r(t) are similar. A quick but

illustrative example is that when once-periodic driving signal causes a twice-periodic response, then

the relationship r(t) = Φ[u(t)] necessary for GS to occur would immediately break down.

Figure 9.3: Each of the colored lines are one of the N nodes in the reservoir. The black line is the
unweighted average of there N lines, where the average is taken over the N nodes at every slice in
time. We see that the trajectories are numerically indistinguishable after roughly 50 steps. The norm
of the standard deviation can be used as well, reaching the same conclusion that the trajectories.

Here, we propose and use an expanded and more reliable version of the auxiliary system

method where dozens of systems are used rather than just two. The original auxiliary systems method

works but driving two copies of a response system z1(t) and z2(t) with the same input u(t). Both

z1(t) and z2(t) have the same dynamics and parameters, which is to say that they both evolve obeying

the equation ż1,2 = g(z1,2). The only difference between these two systems are their initial conditions

z1(t0) and z2(t0). If these two almost-identical systems converge to the same trajectory after a finite

number of steps, as measured by their Euclidean norm at every time point ti, then it demonstrates

that all conditional Lyapunov exponents of the system must be negative1. Though seldom framed in

such a manner, a response system may only have a one-to-many relationship to the inputs, past a

certain time horizon T , if all conditional Lyapunov exponents of the response system are negative. We

stress again that this is a necessary but insufficient condition. Since we do observe this convergence,

there may be some functional relationship between the two, i.e. r(t) = Φ[u(t)].

1The prefix conditional here means that the systems z1(t) and z2(t) are conditioned on them both being driven by
the same input u(t).

102

The expansion to the auxiliary system method (just called the auxiliary systems approach)

is to use many dozens of systems rather than just two. Additionally, we also use the standard

deviation of trajectories at every time point ti rather than the Euclidean norm between two arbitrary

trajectories. Convergence of this generalized method is defined as the standard deviation reaching

machine-precision zero. Everything else between the two methods remain the same. We come to

the conclusion that GS does indeed occur within these reservoirs, which gives us the added comfort

knowing that whatever results we get is independent of the initial state r(t0).

Figure 9.4: The same reservoir, after training for Wout, is able to make good prediction for data
that it has never encountered before. ‘True’ refers to the noiseless data utrue(t) of the true trajectory.
‘Driven1’ refers to the reservoir driven by the ‘true’ data utrue(t). ‘Driven2’ refers to when the
reservoir is driven with noisy data u(t), which is true data plus noise. Most remarkably, the reservoir
driven with utrue(t) (‘driven1’) continues to stay synchronized indefinitely even though the reservoir
was trained on noisy data. This is proof that synchronization has occurred. ‘Driven2’ performs better
than the autonomous reservoir in the previous figure, roughly doubling the prediction capability, but
strays from the true trajectory eventually. This implies that the synchronization is partially due to the
training step, and that this synchronization seems to be permanent if a noiseless driving signal utrue(t)
continues to be fed in. If the noisy driving signal u(t) is provided instead, then the synchronization
is temporary.

Further investigation shows that reservoirs, in general, are naturally inclined to synchronize

with the input data u(t). One has to try to proactively attempt to tune the reservoir such that it does

not synchronize, for example by using extremely large or extremely small hyperparameters. It is also

noted that GS is a necessary condition for producing good predictions, but is ultimately insufficient

to guarantee even decent predictions. The conclusion here is that the presence of GS is not a good

indicator of a reservoir’s ability to make predictions. Nevertheless, the fact that GS is a necessary

condition is an extremely interesting phenomenon and further study could reveal some better metrics

for determining prediction quality.

103

9.2 Bridging to Reservoir Computing

The question of why and how RC works exactly remains poorly understood. Thankfully, at

the very least, we do have a few necessary conditions for reservoir computers to work as intended.

• Echo State Property is a statement that trajectories of the reservoir converge upon being

driven by a time-varying and bounded signal, which we have called u(t) thus far. There are

other conditions that are worth mentioning briefly.

• Fading Memory Property states that the initial conditions of the reservoir are ‘forgotten’ as

the reservoir evolves in time. This condition is directly implied by the ESP, since convergence

of trajectories necessitates that initial conditions do not have any effect [49, 51].

• Separation Property states that a unique input u(t) will result in a corresponding unique

reservoir trajectory r(t). Effectively, this is a statement regarding the desire for the RC to be a

unique but non-degenerate filter of the data.

We want to focus for a moment on the ESP. The test for ESP is to run a large number of

reservoirs, each with a different initial condition, and observe that the trajectories converge eventually.

This test is, word for word, identical to the auxiliary systems method that we previously covered. To

put this bluntly, the test for ESP is exactly the same as the auxiliary systems test of GS. Both ESP

and the auxiliary systems method are necessary condition for RC and GS to work, which suggests a

potential relationship between the two.

But there are differences between the two as well that need to be reconciled. The statement

that GS grants is that if GS is present, then the relationship r(t) = Φ[u(t)] exists after some transients,

but nothing is guaranteed about the inverse relationship u(t) = Φ−1[u(t)]. The inverse relationship is

only established through mutual GS where the dynamics of u(t) is also driven by r(t). The reservoir

only displays drive-response GS due to r(t) being driven by u(t) only. Therefore, even though we can

say that the functional relationship Φ[u(t)] exists, it is never used explicitly by the reservoir. Instead,

the training phase solves for u(t) ' Winr(t), which seems to be an attempt to establish the inverse

relationship u(t) = Φ−1[r(t)] ≡Woutr(t).

Only mutually coupled systems, such that r(t) is used to generate u(t) and vice versa,

guarantee the existence Φ[·] and Φ−1[·]. Yet, Φ−1[·] exists and knowledge about its precise form is

absolutely crucial to the predictive capabilities of the reservoir. When working with higher dimensions

104

objects, it is easy to find a unique projection to a lower dimensional object. There is reason to believe

that the ratio of dimensions being high allows for Φ−1[·] to occur. In this setup, the dimension of

r(t) is order of magnitudes larger than the dimension of u(t). Usually, the dimension of r(t) is 200 to

1000 times the dimension of u(t) and this seems to work well and is standard practice. In the build-up

of this work, values between 200 to 600 were typically used. Some work has been done to push this

to a multiple of 10. It is unclear if it is necessary for r(t) to be in a much higher dimension, but there

is also certainly something deeper that is generating this phenomenon. Nevertheless, the question of

the roles of dimensionality, RC, GS, and their relationships to one another seem to be fundamental

in understanding reservoir computing methods [52]. This warrants significant further investigation if

one hopes to build efficient, reliable, and useful reservoirs [53].

9.3 Acknowledgments

Chapter 9, in part, uses material and results that appears in Robust Forecasting Using Predic-

tive Generalized Synchronization in Reservoir Computing, submitted in Chaos: An Interdisciplinary

Journal of Nonlinear Science , 31(12), 123118. Platt, Jason A., Wong, Adrian S., Clark, Randall,

Penny, Stephen G., and Abarbanel, Henry D. I. (2021). The dissertation author was one of the

co-authors of this paper.

105

Part III

Appendix

106

A
Path Integral Formulation

Path integrals trace their conception to as early as Norbert Wiener and Paul Dirac. However,

it took decades before a young doctoral student, by the name of Richard Feynman, managed to

formulate it in an elegant and digestible manner in his dissertation. His piercing insight was the

time-slicing approach and ‘sum of paths’ interpretation, which served as an alternative formulation

or interpretation to quantum mechanics. Regardless, the path integral formulation was crucial to the

development of theoretical physics as a whole, not just to the quantum realm, and it established itself

as a staple in the toolbox of physicists.

To fully derive and appreciate the path integral, at least from the physicists points of view,

requires some basic understanding of quantum mechanics which will not be covered here for brevity

(and sanity) sake. The notation used should be widely understood by most graduate students in

physics, but we encourage unfamiliar readers to go to XYZ before tackling this topic. The path

integral formulation can be stated in one elegant line using the Heisenberg picture.

〈xf , tf |xi, ti〉 =

∫
Dx(t) exp

(
i

~
S[x(t)]

)
(A.1)

This should be interpreted as an integral over every possible path of x(t) which the endpoints,

x(ti) ≡ xi and x(tf) ≡ xf , are fixed. It is worth noting here that x(t) is a N -dimensional vector that

varies in time and that there is a normalizing factor built-in to Dx(t) that depends on the dimension

N and various fundamental constants. This integral is over a huge space. There are only a few trivial

107

cases where the integral can be evaluated exactly, but most cases rely on several approximations. For

the purposes of this chapter, we will omit the vector notation and simply assert that every vector exists

in an N -dimensional space. The scalar object S here is called the quantum mechanical action. It so

happens that S is almost identical to the classical action except for the operator nature of position and

momentum, which is a somewhat remarkable result. It is only somewhat remarkable since the quantum

formulation must hold in the classical limit (~ → 0). In that limit, it is the classical trajectory that

ends up dominating the integral, since the variations around this classical trajectory end up canceling

one another out on average. To see this, the stationary phase approximation is used, and one would

expand around the stationary points of the action S given by the Euler-Lagrange equations. Hence,

there is no substantial reason to differentiate between the quantum and classical actions and we will

use the word action to refer to both.

A.1 Propagator

Starting with the wave equation at a particular time ψ(xf , tf), we can insert our choice of an

identity matrix 1 =
∫
dxm|xm, tm〉〈xm, tm| and define, in the Heisenberg picture1, how we arrive

at this wave equation from an initial state ψ(xi, ti).

ψ(xf , tf) = 〈xf , tf |ψ〉

=

∫
dxi〈xf , tf |xi, ti〉〈xi, ti|ψ〉

=

∫
dxiK(xf , tf ;xi, ti)ψ(xi, ti)

(A.2)

Here K(xf , tf ;xi, ti) = 〈xf , tf |xi, ti〉 is the full propagator between the initial and final state.

This equation tells us that we need to integrate ψ(xi, ti) over all initial positions xi along with the

propagator K(xf , tf ;xi, ti) in order to arrive at the final state ψ(xf , tf) and is, so far, unsurprising.

Yet, the above equation almost begs to be further decomposed as there seems to be little reason to only

look at the initial and final states; there are an infinite number of steps in between. Let us divide the

problem up M times into M+1 uniform and small time-intervals ∆t such that x(t) = {x1, x2, · · · , xM},

where x1 ≡ xi and xM ≡ xf . This allows the decomposition of the above equation, essentially by

1The Heisenberg picture has it that the state kets |ψ〉 do not depend on time, but the basis kets |x〉 and operators
carry the time dependence. A noteworthy result here is that the basis kets do not transform the same way that state
kets do; in fact, they transform with the Hermitian conjugate instead. The work is neater when using the Heisenberg
picture here, but we will switch later on. The Heisenberg picture is a more natural place to start for the path integral
formulation because it does not require us to specify the time evolution of the system nor the usage of ~.

108

inserting M identity matrices rather than just one.

∫
dx1〈xM , tM |x1, t1〉〈x1, t1|ψ〉 =∫

dxM−1 · · ·
∫
dx1〈xM , tM |xM−1, tM−1〉 · · · 〈x1, t1|x1, t1〉〈x1, t1|ψ〉

(A.3)

Using the substitution 〈x1, t1|ψ〉 = ψ(x1, t1) and absorbing relevant terms into a product, we

can compactly rewrite the above equation, keeping in mind that the integral is evaluated at every

time interval.

ψ(xM , tM) =

∫  M∏
m=1

dxm−1 〈xm, tm|xm−1, tm−1〉︸ ︷︷ ︸
K̃(xm,tm;xm−1,tm−1)

ψ(x1, t1) (A.4)

The object K̃(xm, tm;xm−1, tm−1) can be seen as a local propagator that brings the system

one step forward in time. Therefore, the product of all these local propagators should give us the

full propagator from the initial to final state, once integrated properly. These local (or time-sliced)

propagators will be useful later on in revealing the form of propagator and its relationships with the

classical action.

K(xM , tM ;x1, t1) =

∫
dxM−1 · · ·

∫
dx2

∫
dx1×

K̃(xM , tM ;xM−1, tM−1) · · · K̃(x2, t2;x1, t1)K̃(x1, t1;x0, t0)

= 〈xM , tM |x1, t1〉

(A.5)

From this perspective, we can (hopefully) more clearly see that the propagatorK(xM , tM ;x1, t1)

contains all the information required to fully propagate the system in time, hence its name. The key

takeaway here is that even the propagator itself is an integral made up of smaller, local propagators

and a lot of integral evaluation is necessary in order to arrive at the full propagator. At this point,

the Heisenberg picture exhausts its convenience and generality, so we will change to the Schrodinger

picture.2

2The Schrodinger picture has it that all kets have explicit time dependence but the operators are constant. From
here on, the Schrodinger picture makes more sense as we will need the explicit form of the Hamiltonian.

109

A.2 Time-Slicing into a Path Integral

In the above section, we used the Heisenberg picture for notational and conceptual conve-

nience. More importantly, the Heisenberg picture allows us to avoid specifying how time evolution

happens, just accepting that it somehow does happen is sufficient. From here on however, we do need

to look at the generator of time evolution, given by the Hamiltonian operator. To do so neatly and

intuitively requires the Schrodinger picture, the equivalence to the Heisenberg picture is given,

roughly speaking, by the equation below.

Heisenberg Picture︷ ︸︸ ︷
〈xm+1, tm+1|xm, tm〉 =⇒

Schrodinger Picture︷ ︸︸ ︷
〈xm+1|e−iĤ∆t/~|xm〉

(A.6)

In the representation above, Ĥ is the Hamiltonian operator and ∆t is the uniform time-

interval between two consecutive states. The Hamiltonian operator is the infinitesimal generator of

time-evolution, as seen by the exponentiation of the operator, which means that it is solely responsible

for moving the system state forward in time. This exponential solution is given by the Schrodinger

equation, which can be solved appropriately to reproduce the exponential term above.

i~
∂

∂t
ψ(x, t) = Ĥψ(x, t) (A.7)

The propagator can then be subdivided in the specified window with a method known as

time-slicing.

K(xM , tM ;x1, t1) = 〈xM |e−iĤ(tM−t1)/~|x1〉

= 〈xM | e−iĤ∆t/~ · · · e−iĤ∆t/~︸ ︷︷ ︸
M-times

|x1〉
(A.8)

Between each of these e−iH∆t we can insert M − 1 copies of the identity function 1 =∫
dxm|xm〉〈xm|, evaluated at different times. Note that the integration is only over x1 through xM−1

since the endpoints x1 and xM are held fixed.

〈xM |e−iĤ(tM−t1)/~|x1〉 =

∫
dxM−1 · · ·

∫
dx2

∫
dx1×

〈xM |e−iĤ∆t/~|xM−1〉 · · · 〈x2|e−iĤ∆t/~|x1〉〈x1|e−iĤ∆t/~|x0〉
(A.9)

Everything here, including the time-slicing is, has been exact so far. Once, however, the

110

Hamiltonian is split into its constituent parts of kinetic energy and potential energy. We shall assume

a separable Hamiltonian and that the non-relativistic form of the kinetic energy is given by T̂ = p̂2

2m .

Nothing about the form of the potential V̂ is assumed. Going forward with the calculation, it is

important to keep the ∆t factor as it informs us about the relative importance of each term. This Lie

product or Trotter product limit is the foundation of the time-slicing method.3

Ĥ = T̂ + V̂ =⇒ eĤ∆t = lim
∆t→0

[
eT̂∆teV̂∆t

]
= eT̂∆teV̂∆t +O(∆t2) (A.10)

Since T̂ and V̂ do not necessarily commute, one needs to work in the limit that ∆t is sufficiently

small such that the approximation holds. Fortunately, these technical aspects are well-studied and are

of no detriment to the derivation or validity of the path integral formulation. The local propagator

from time tm to tm+1 can be written an insightful way.

〈xm+1|e−iĤ∆t/~|xm〉 =

∫
dp〈xm+1|p〉〈p|e−iĤ∆t/~|xm〉

'
∫

dp

(2π~)N
exp

[
ip

~
(xm+1 − xm)− i∆t

~

(
p2

2m
+ V̂

)]
=
(m

2πi~∆t

)N
2

exp

[
i∆t

~

(
m

2

[
xm+1 − xm

∆t

]2

− V̂

)] (A.11)

Since we are working in the limit that ∆t → 0, it should be abundantly clear that xm+1−xm

∆t

is in fact the velocity of the system, written as v̇ in Lagrangian coordinates. Also, the exponent is

clearly equivalent to the classical Lagrangian L(xm, ẋm) except that the above Lagrangian is discrete

in time. There is some ambiguity when specifying discrete Lagrangian, but in the infinitesimal limit

of ∆t it will suffice to say that the Lagrangian is evaluated at time tm.4

〈xM |e−iĤ(tM−t1)|x1〉 =

∫ [M−1∏
m=1

dxm

][
M−1∏
m=1

〈xm+1|e−iĤ∆t|xm〉

]

=

∫ [(m

2πi~∆t

)MN
2

M−1∏
m=1

dxm

]
︸ ︷︷ ︸

Dx(t)

exp

[
i

~

M−1∑
m=1

L(xm, ẋm)∆t︸ ︷︷ ︸
S[x(t)]

]
(A.12)

In homage to the usual physics fashion, any lingering error terms of the discretization can

3There are various ways to approach these operators that are collectively know of Hamiltonian splitting methods

or symplectic integrators, one notable example is eĤ∆t = eT̂∆t/2eV̂ ∆teT̂∆t/2 + O(∆t3) which is equivalent to the
Stormer-Verlet method of integrating energy-preserving dynamical systems. We will not be dealing with the technical
implementations for the purposes of this work.

4There are many ways to discretize a continuous time system,
xm+1−xm

∆t
is one of them. But

xm−xm−1

∆t
and

111

be swept into previous approximations. Something to note in the above equation is the mismatch

between the number of terms of the two products. One can make sense of this by either considering

that the (local or full) propagator should have units of inverse position, or noticing that there is one

more integral over dx1 to be done when evaluating the final state.

K(xM , tM ;x1, t1) =

∫
Dx(t) exp

(
i

~
S[x(t)]

)
(A.13)

Finally, we arrive at the form of the path integral formulation and some interpretation is in

order. The above equation states concisely that the propagator is acquired by integrating over all

possible paths that a particle can take between two fixed endpoints. When using the propagator to

evolve the system forward in time, we are effectively saying that the particle travels every possible

path, and the weight or phase factor of each path is given by the action S. As we look toward the

classical limit (~ → 0), the phase of these weight factors eiS[x(t)]/~ oscillate rapidly. The dominant

contribution of the path integral then comes from looking at the stationary points of the action, which

is inevitably given by the (classical) Euler-Lagrange equation. This is none other than the classical

trajectory of the system following Newton’s laws.

A.3 Recovering the Schrodinger equation

The Schrodinger equation was used in the above formulation, but we should quickly check if

we can recover the Schrodinger equation from the above path integral. Starting at the

ψ(x, t+ ∆t) =

∫
dyK(x, t+ ∆t; y, t)ψ(y, t)∫

dy

A
exp

[
i

~
L(x, y)∆t

]
ψ(y, t)

=

∫
dy

A
exp

[
i∆t

~

{
m

2

(
x− y

∆t

)2

− V
(
x+ y

2

)}]
ψ(y, t)

(A.14)

We will also be expanding around x and switching to the variable ε.

y = x+ ε dy = dε (A.15)

xm+1−xm−1

2∆t
are just as viable and, in certain cases, even preferable for stability issues. Since we are working in the

limit ∆t→ 0, they are fortunately all equivalent.

112

ψ(x, t+ ∆t) =

∫
dε

A
exp

[
i∆t

~

{
m

2

(ε

∆t

)2

− V
(
x+

ε

2

)}]
ψ(y, t) (A.16)

We also Taylor expand ψ(x, t + ∆t) on the LHS in orders of ∆t, discarding anything higher

than first-order.

ψ(x, t+ ∆t) = ψ(x, t) + ∆t
∂ψ

∂t
+O(∆t2) (A.17)

On the RHS, three Taylor expansions are used. The first is on the exponential is also

Taylor expanded in order of ∆t. Second, the potential is also Taylor expanded V (x + ε
2) = V (x) +

O(ε). Combined with the ∆t term, these two expansions give an O(ε∆t) term that disappears under

integration the lone ε term.

∫
dε

A
exp

[
i∆t

~

{
m

2

(ε

∆t

)2

− V
(
x+

ε

2

)}]
ψ(y, t)

=

∫
dε

A
exp

[
imε2

2~∆t

]{
1− i∆t

~
V (x)

}
ψ(y, t) +O(∆t2) +O(ε∆t)

(A.18)

The last Taylor expansion is on ψ(y, t) in orders of ε. Here, we keep terms up to O(ε2) since,

as we will soon see, terms of order ε become trivial under integration.

ψ(y, t) = ψ(x, t) + ε
∂ψ

∂x
+
ε2

2

∂2ψ

∂x2
+O(ε3) (A.19)

From here on, the arithmetical accounting becomes rather tedious. The following terms will

be evaluated in some form or another, and any terms not shown below should be assumed to be

negligible in the appropriate limit. ∫
dε

A
exp

[
imε2

2~∆t

]
= 1 (A.20)

∫
dε

A
ε exp

[
imε2

2~∆t

]
= 0 (A.21)

∫
dε

A

ε2

2
exp

[
imε2

2~∆t

]
=
i~∆t

2m
(A.22)

Collecting terms and keeping the notation ψ ≡ ψ(x, t+∆t) and keeping the potential constant

V (x) ≡ V , we can recover the Schrodinger equation.

113

ψ = ψ −∆t
∂ψ

∂t
+
i~∆t

2m

∂2ψ

∂x2
− i∆t

~
V ψ =⇒ i~

∂

∂t
ψ =

(
− ~2

2m

∂2

∂x2
+ V

)
ψ︸ ︷︷ ︸

Schrodinger Equation

(A.23)

There is something to be said here about the mathematical rigor in this section, or rather the

lack thereof. In fact, there is probably a lot to say about the lack of mathematical rigor in this entire

dissertation. There are certainly more rigorous approaches to this section, but this trades some of the

physical intuition for lengthy and technical discussion.

A.4 Wick Rotating into Statistical Mechanics

One of the more important objects in quantum mechanics is exp
[
−iĤt/~

]
, affectionately

called the time-evolution operator. The Hamiltonian operator Ĥ has eigenvalues that are the energy

of the system, and it also happen to be the infinitesimal generator of the time-invariant Lie group.

All states generated using Ĥ will have the same energies and thus live on the same manifold. The

Schrodinger equation then describes specifically what the structure of Ĥ would look like.

i~
∂ψ

∂t
= Ĥψ =

[
−~2

2m
∇2 + V

]
ψ. (A.24)

This operator bears resemblance to another object exp[−βE] from statistical mechanics, which

describes the (unnormalized) probability of observing a state with energy E given the inverse tem-

perature β = 1/kBT . If we just make the substitution of t → −i~β into the time-evolution operator

before, it becomes apparent that these two objects are very similar.

exp
[
−iĤt/~

]
→ exp[−βE] (A.25)

Informally speaking, we have just performed simple substitution. This is often called a Wick

rotation, inspired by how a phase of imaginary unit i corresponds to a 90-degree rotation in a complex

space. Strictly speaking, it is not a rotation in a 4-dimensional space or 4-dimensional space-time.

Formally, it is called an analytic continuation and it is curious to see that quantum mechanics and

statistical mechanics can be related to one another with this analytic continuation. Even in the

path integral formulation of quantum mechanics, which is just an alternative to the Hamiltonian

approach to quantum mechanics, we see that the quantum mechanical action S[x(t)] gets replaced by

114

a Hamiltonian-like function which we call H̄[x(τ)] here. Conceptually, this new function H̄[x(τ)] is

very similar to the total energy of the path in ‘imaginary’ time τ .

i

~
S[x(t)] =

i

~

∫
L
(
x,

dx

dt

)
dt

=
i

~

∫ [
m

2

dx

dt

2

− V̂ (x)

]
dt

' i∆t

~
∑(

m

2

[
xm+1 − xm

∆t

]2

− V̂ (xm, xm+1)

)

⇒ ∆τ

~c
∑(

−mc
2

2

[
xm+1 − xm

∆τ

]2

− V̂ (xm, xm+1)

)

= − 1

~c

∫ [
mc2

2

dx

dτ

2

+ V̂ (x)

]
dτ

≡ − 1

~c
H̄[x(τ)]

(A.26)

Yet, the effects of this analytic continuation do not end here. There are additional similarities

of such a move. We start by looking at the basic Minkowski metric of special relativity for a flat

spacetime. Quantum mechanics and special relativity are still compatible when we use such a metric

with the (−1, 1, 1, 1) signature.

ds2 = d(ict)2 + dx2 + dy2 + dz2 =⇒ ds2 = dτ2 + dx2 + dy2 + dz2 (A.27)

The substitution t → −iτ/c moves us from the (−1, 1, 1, 1) Minkowski signature to the

(1, 1, 1, 1) Euclidean signature, where we treat time as if it is just another spatial variable. The

previously ‘real’ time t is replaced by a ‘imaginary’ time τ scaled accordingly, and we are free to go

back and forth between the two metrics as well.

i~
∂ψ

∂t
=
−~2

2m
∇2ψ =⇒ ∂ψ

∂τ
=

~c
2m
∇2ψ (A.28)

The basic Schrodinger equation for a free particle also transforms in an interesting way with

this simple substitution t → −iτ/c. In fact, it looks identical in form to the diffusion equation as

shown above. Evolution according to the Schrodinger equation begins to look very similar to that of

diffusion, which is interesting to consider. Steven Hawking famously called this ‘imaginary time’, but

there is nothing really fictitious about it. Just like how the imaginary unit i is not a fictitious number.

It is by a historical malfeasance that Descartes, disliking the concept of i, called them imaginary

115

numbers – yet the name stuck. Perhaps a better way of thinking about the concept of imaginary time

is just to treat it as another spatial dimension.

In the Hamiltonian setting, this mechanism allows us to trade a D-dimensional dynamical

problem for a (D + 1)-dimensional statistical one, and vice-versa. In the path integral setting, this

means that we treat the D-dimensional trajectory as a (D ×M)-dimensional spatial vector, which is

how we approach our data assimilation problem in Chapter 2. Whether this relationship or whether

it carries some deeper relationship depends on one’s personal inclination towards metaphysics. At the

very least, it is a tool that we can leverage in the proper setting.

116

B
Lagrange and Hamilton

B.1 Stationary Action

For any dynamical problem, one can define a quantity L called the Lagrangian that is a

function of positions x(t), velocities ẋ(t), and time t. Both the position and velocity should be

understood to be D-dimensional vectors that vary in time t, though the notation below may not

always suggest it for simplicity sake. The time integral of the Lagrangian L along the path xa to xb

is called the action S.

S[x(t)] =

∫ tb

ta

L(x, ẋ, t) dt

xa ≡ x(ta) xb ≡ x(tb)

(B.1)

Now that we have the action S, we can recover the equations of motion for the system by

invoking the Principle of Least Action and looking for stationary points. Many will suggest here

that the principle is a misnomer, and the proper name should be the Principle of Stationary

Action since the original name suggests that we are simply looking for minima. Extremizing the

action S involves using the calculus of variations. This means that the first variation of S must be

117

zero, i.e. δS = 0, which is to say that the action is non-changing up to first-order variations δx.

δS =

∫ tb

ta

(
∂L
∂x

δx+
∂L
∂ẋ

δẋ

)
dt

=

∫ tb

ta

(
∂L
∂x
− d

dt

∂L
∂ẋ

)
δx dt+

[
∂L
∂ẋ

δx

]xb

xa

(B.2)

The only way to get a stationary action δS = 0 is for the first integrand to be uniquely zero.

Integration by parts is used within the integrand to decompose the δẋ term into two terms. Usually,

the endpoints xa and xb are kept fixed, which means that the square bracket above is equal to zero

once evaluated. Necessarily, the second integrand above will also have to be zero.

d

dt

∂L
∂ẋ
− ∂L
∂x

= 0 (B.3)

B.2 Lagrangian Mechanics

In order for the Stationary Action Principle to hold, a very specific set of conditions have

to hold. These conditions are given the name of Euler-Lagrange equations, which are a set of

N second-order Ordinary Differential Equations (ODE) defined in terms of the canonical position

coordinates x. When used in this way, it gives rise to what is known as Lagrangian mechanics.

d

dt

∂L
∂ẋ

=
∂L
∂x

(B.4)

The Euler-Lagrange equations are both necessary and sufficient conditions for stationary

points of the action. Whether or not each stationary point is a minimum, maximum, or saddle point

warrants further investigation, usually on the determinant of the Hessian ∂2L
∂xi∂xj

of the Lagrangian.

Effectively, the functional S is stationary if and only if the corresponding Euler-Lagrange equations

(defined only on the function L) are satisfied. The Euler-Lagrange equations gives the equations of

motion for a classical system, but is also used in quantum systems since the classical limit must also

hold true.

L = T (ẋ)− V (x)

=
1

2
mẋ2 − V (x)

(B.5)

118

B.3 Hamiltonian Mechanics

The Hamiltonian formulation for classical mechanics is also another way to approach dynam-

ical problems. These two formulations are equivalent descriptions of the same problem, just that the

mathematical structures that underpin these two formulations differ. We can perform a Legendre

transform to form a Hamiltonian which is defined in (x, p) rather than (x, ẋ). Defining the canonical

momentum p as:

p ≡ ∂L
∂ẋ

(B.6)

Exercising some shorthand, we can define the Legendre transform that brings us from the

Lagrangian L to the Hamiltonian H with the following equation.

H ≡ ẋp− L (B.7)

Using the Legendre transform, we look at how this new Hamiltonian function H varies with

respect to its constituents in the equation above.

dH = ẋ dp+ p dẋ− dL

= ẋ dp+ p dẋ− ∂L
∂ẋ

dẋ− ∂L
∂x

dx− ∂L
∂t
dt

= ẋ dp− ∂L
∂x

dx− ∂L
∂t
dt

(B.8)

We know that Euler-Lagrange equations must hold for and contains the term ∂L
∂x dx directly.

Upon some substitution and the definition of p ≡ ∂L
∂ẋ earlier, we get the following equation.

dH = ẋ dp− ṗ dx− ∂L
∂t
dt (B.9)

In parallel, we can also directly evaluate the variation of the Hamiltonian H as a function of

(x, p).

dH =
∂H
∂p

dp+
∂H
∂x

dx+
∂H
∂t

dt (B.10)

To reconcile these two equations, we have the following relations for how the variables (x, p)

evolve in time. As usual, we assume that the Lagrangian L has no explicit time dependence, which

translates to the Hamiltonian also not possessing any explicit time dependence. These are called

119

Hamilton’s equations, which are an alternative but equivalent approach to Lagrangian and New-

tonian mechanics.

ẋ ≡ ∂H
∂p

ṗ ≡ −∂H
∂x

∂H
∂t

= −∂L
∂t

= 0 (B.11)

B.4 Poisson Brackets and Hamiltonian Flow

The mathematical structure of Hamiltonian mechanics does not end with the evolution of the

canonical coordinates x andp, it holds much more generally. We can look at any function f(x, p, t)

that is lives on the (symplectic) manifold defined by H and examine how it evolves in time. We use

the above substitution of Hamilton’s equations to generate a Poisson bracket relationship defined by

H.
df

dt
=
∂f

∂x

dx

dt
+
∂f

∂p

dp

dt
+
∂f

∂t

=
∂f

∂x

dH
dp
− ∂f

∂p

dH
dq

+
∂f

∂t

= {f,H}+
∂f

∂t

(B.12)

From this, we can see that the Hamiltonian is the continuous generator of time-evolution.

Focusing for a moment on functions that do not have an explicit time-dependence, we can recover the

time dynamics of any function that lives on the manifold by simply evaluating the Poisson bracket.

ḟ = {f,H} = XHf (B.13)

Moreover, the Poisson bracket is effectively as a linear operator such that { · ,H} = XH. As

a word of clarification, XH is linear in the sense that it is an operator. There are undoubted going

to be x and p dependence in the specific structure of XH for the general case scenario. As usual,

time-invariant, conserved quantities, or first-integral can be identified with this, and their Poisson

bracket under the Hamiltonian returns zero.

{f,H} = 0 ⇒ f(x, p, t) = const. (B.14)

The appearance of a Poisson bracket is emblematic of the deep mathematical structure that

arises from Hamiltonian mechanics. It is a worthwhile pursuit to go deeper into the field of symplectic

120

geometry, but is alas not within the scope of this work. As we mentioned earlier, the Lagrangian

formalism and Hamiltonian formalism are in fact equivalent. There are certain classes of problems

where the Lagrangian formalism is better suited for handling, and others where the Hamiltonian

formalism is better suited.

B.5 Symplectic Structure

The position variable x is a D-dimensional vector, so its corresponding momentum p is also

a D-dimensional vector. Together, this forms the phase space of the system. If we take the variables

(x, p) and create an extended vector space z = (x, p), then Hamilton’s equations can be condensed

into a more compact form.

ż = J∇zH(z) (B.15)

The operator ∇z ≡ (∂
∂x ,

∂
∂p) is the gradient in the extended state space of z = (x, p). The

matrix J can be inferred by noticing that, in the original Hamilton’s equations, x and p appear only

once in each equation, always on the opposing sides. This is to say, in crude terms, that the block

off-diagonal elements of J should be identity matrices (of size D × D) whereas the block diagonal

elements should be the zero matrix (of consistent size).

J =

 0 1

−1 0

 (B.16)

Oddly, this matrix J has no formal name and is often referred to in textbooks and literature

simply as “the skew/anti-symmetric matrix”. It has the expected property of JT = −J , but more

remarkably that J2 = −1 and det(J) = 1.

121

C
An Attempt at Fixing Backpropagation

C.1 The Derivations of Backpropagation

Historically, there are two main approaches towards deriving the backpropagation algorithm.

The first, simplest, and most famous is Rumelhart, Hinton, and Williams (1985) [54]. The derivation

is straightforward but elegantly simple, enough that a first-year university student can understand it

and implement in code. It seems that, for these reasons, Rumelhart’s derivation is the dominant and

more pervasive one.

On the other hand, there is also LeCun’s derivation (1988) [55]. Even though LeCun is a

famous scientist in his own right, his derivation of backpropagation is very seldom mentioned. This

derivation stems from dynamic programming and control theory, specifically from the calculus of

variations. Functionally, it achieves the same result as Rumelhart’s but is slightly more complicated

[56].

Hidden in LeCun’s derivation is the fact that he imposes a strict equality constraint on the

network dynamics. This corresponds to a hard-constraint, but the method can be further generalized

with a soft-constraint. Specifically, we can start from a very relaxed (soft) constraint and gradually

enforce the network’s structure iteratively, arriving at the original hard-constraint. This is known as

annealing in the physics and optimization community, or as a penalty method in other communities.

We discuss this is some detail in Chapter 5, though that treatment focused more on our use case for

the data assimilation action, which is effectively our cost function. There are tremendous similarities

122

between the data assimilation framework and the deep learning framework [57]. Once you treat the

layers of a deep network as if it was a unfolding in time, then the connection becomes more apparent.

The biggest differences are that the deep network has a different structure at each layer, and that the

equations of the model have no physical basis.

C.2 Deep Neural Network Loss Function

When using a Deep Neural Network (DNN), the task of classification of, say, images usually

uses a loss function that takes on the following form.

L(W;Y) =
1

2N

∑
n∈Y

[
x

(n)
L − y(n)

L

]2
(C.1)

Y is the training set consisting of N labeled images, indexed by n. A particular image (think

of an array of pixels) has index n and is represented above as y
(n)
0 . Its respective label is represented

as y
(n)
L . The zero index of y

(n)
0 is indicative of the image being an input to the network. The last index

L of y
(n)
L tells us that y

(n)
L is related to the output of the final layer of the network. So,

{
y

(n)
0 , y

(n)
L

}
forms an input-output pair, where we have access to N such pairs in our training set.

W is a set of weights connecting the nodes of our multi-layered network of depth L. The use

of an image classification network is chosen for conceptual understanding and reader familiarity, but

this loss function is generalized enough for any classification task. This loss function L(W;Y) will be

large when there is a huge mismatch between the network’s ability to classify an image, hence it is a

justified cost function to minimize.

min
W
L(W;Y) (C.2)

Of critical importance is x
(n)
L , which should be thought of as the output of a network given

y
(n)
0 . Keep in mind that the network output x

(n)
L is dependent on the weights W. The goal of the

network is to generate an estimated label x
(n)
L , which should be as close as possible to the original

label y
(n)
L , given only y

(n)
0 . That is to say, we want a network that can output the correct label of a

given image most of the time. The internal or hidden states of the network
{
x

(n)
1 , x

(n)
2 , · · · , x(n)

L−1

}
are

largely unimportant, except for the fact that these states are stationary with respect to the input-

output pairs, which we will explore in depth later. To train the network, our task is to tune the

weights W such that the above loss function is minimized.

123

C.3 Rumelhart’s Backpropagation

We have the following equations that describes the fully deterministic relationship between

the layers, written as a discrete forward mapping from layer `− 1 to layer `. As per tradition, f`(·)

here represents any reasonable nonlinear activation function, most often chosen to be one of the many

sigmoid functions. The weight at a particular layer is given by W` and the subscript ` on the function

is to account for the situation where the activation function might be slightly different between layers,

considering operations like convolution and pooling operations etc.

x` = f`(W`x`−1) ; ` ∈ {1, 2, · · · , L} (C.3)

This mapping gives the following equations when taking derivatives with respect to the ar-

guments W` and x`−1. For the matrix calculus, we are using row-vector notation for these equations.

Hence, these equations below are all matrix-vector products. The relationship between layers give us

the following equations, which we will be using very soon.

∂x`
∂W`

= f ′`(W`x`−1)x`−1 (C.4)

∂x`
∂x`−1

= f ′`(W`x`−1)W` (C.5)

Here we have an energy or cost function L associated with the network, previously discussed.

This energy function is associated with the cost of a prediction, having high cost for very wrong

predictions and low cost for less wrong predictions.

L(W;Y) =
1

2N

∑
n∈Y

[
x

(n)
L − y(n)

L

]2
(C.6)

For the time being, we will ignore the fact that the labels come from a batch of input-output

pairs. Hence, the N and (n) terms in the equation above will be dropped. The derivative of the loss

function with respect to the internal states x` are not directly relevant because the states themselves

take on any value that it needs to satisfy the structural constraints of the network. The derivatives

of the weights W on the other hand is of chief importance, since it tells us how to update W, which

dictates the relationship between the layers. Here we look at the derivative of the cost function with

124

respect to the weights of the final layer as a first pass calculation.

∂L
∂WL

=
∂L
∂xL

∂xL
∂WL

= (xL − yL) f ′`(W`x`−1)x`−1

(C.7)

As we look at how the weights of the shallower (` → 1) layers change, a simple functional

form of the equation appears in terms of a sequence of matrix products. This simple form of the

derivatives is one of the many reasons for the popularity and widespread use of backpropagation.

∂L
∂W`

=
∂L
∂xL

∂xL
∂W`

=
∂L
∂xL

∂xL
∂xL−1

∂xL−1

∂xL−2
· · · ∂x`+1

∂x`

∂x`
∂W`

=
∂L
∂xL

[
L−1∏
k=`

∂xk+1

∂xk

] [
∂x`
∂W`

] (C.8)

C.4 Vanishing Gradient and Lyapunov Exponents

The goal of the minimization is to find a set of weights W such that ∂L
∂W`

is individually near

zero for all `. The above function tells us how to move in this high dimensional space such that we

can minimize L, at which point ∂L
∂W`

will be close to zero. What this equation recognizes is that

the weights at different layers are completely independent of one another, seeing that there are no

terms like ∂W`+1

∂W`
appearing in the equations. We run into a problem then at, say a certain layer `′,

when the gradient ∂L
∂W`

approaches an incredibly small value at one such layer ` > `′ that occurs after

`′. This effectively bottlenecks the search/training for an optimal set of weights W, since updates

can no longer be pushed into a previous layer. This structure of repeated matrix multiplication is

the primary source of the vanishing gradient problem. This is because, as a network’s architecture

gets deeper, all odds of one or more terms approaching zero increases. This will artificially make the

update procedure ∂L
∂W`

small.

We also see the appearance of a product of terms ∂xk+1

∂xk
, which arises from the fact that xk is

used to generate xk+1. The product term
∏L−1
k=`

∂xk+1

∂xk
is often encountered in the context of dynamical

systems, specifically related to the Lyapunov spectrum of a discrete time system. The Lyapunov

spectrum is a set of numbers (individually called Lyapunov exponents) that, roughly speaking, measure

of the exponential growth rate of errors in different directions as the dynamical system progressing.

125

The Lyapunov exponents can be zero or negative. For a Lyapunov exponent that is exactly zero, two

close-by trajectories stay a fixed distance away from one another, for every time-slice of the trajectory.

Negative Lyapunov exponents mean that small errors in certain directions diminish over time.

Assuming that neither ∂L
∂xL

nor ∂x`

∂W`
is exactly zero, it would mean that the resulting product∏L−1

k=`
∂xk+1

∂xk
should be small, but not exactly zero either. This is similar to minimizing the Lyapunov

spectrum of the apparent network with respect to the weights W, effectively creating a more stable

network1. After all, we don’t want to flip one pixel of a photo of a cat and have it labeled as a

dog by our network. It seems that deep learning and dynamical system share a lot of the same

structure, where approaching deep networks from the perspective of dynamical systems may alleviate

the vanishing gradient problem.

C.5 Search Space and Alternative Cost Function

In the prevailing view of backpropagation, the search space is over the set of weights W =

{W1,W2, · · · ,WL}. However, the way that this search is conducted is by fixing the weights at a

particular layer `, then solving for the weights in the previous layer `− 1. Such a practice means that

erroneous information in the latest layer are also propagated to the earlier layers, which causes the

instability in the training process.

L(W;Y) =
1

2N

∑
n∈Y

[
x

(n)
L − y(n)

L

]2
+

ε

2(L− 1)

L−1∑
`=1

[x` − f`(W`x`−1)]
2

(C.9)

The controls/weights W are adjusted, and the entire system dynamics is integrated forward,

which is known in this field as the forward pass. The instability is due to the Hamiltonian nature of the

forward pass. Instead, we can look for the set of weights that creates a stationary loss function L(W;Y)

which is the Lagrangian formulation. This is the dual formulation to the backpropagation method,

which is inherently more stable. This stability comes at a cost, of course, which is that the parameters

have to be individually adjusted. The search space of these networks is enormous compared to the

backpropagation, but these may see some use in the more recent implicit deep learning architectures,

1The idea of ‘minimizing the Lyapunov spectrum’ is an extremely crude way of describing the idea. As for exactly
what is meant by this, I must admit that I am not exactly sure what it means either. A first-pass description of the
procedure might be something like the following: we want to change the controls or weights of the system such that
the system is more stable in certain directions, but unstable in the directions that matter. Minimizing some of the
Lyapunov exponents is a way to create a network that may be stable in some directions, but is it unclear how this
affects the instability of the other directions.

126

where the weights of each layer are held fixed, since they are perfectly compatible. This compatibility

is easy to notice since states that satisfy x` − f`(W`x`−1 do not contribute at all to the sum. In some

sense, this loss function almost suggests the jump from the usual deep learning architecture to the

implicit version.

C.6 Remarks

Admittedly, the ideas laid out here are lacking somewhat in rigor, specifically in treating

terms like ∂xk+1

∂xk
as scalars rather than matrices. These ideas are also underdeveloped, so they require

implementation and comparisons to test their validity. Nevertheless, we believe that these ideas present

a different paradigm towards optimizing and interpreting neural networks. A lot of the groundwork

here is establish in the recent paper by Abarbanel et al. [58], and the ideas of this appendix are a

direct result of our discussions with those authors. The formulation of this alternative approach to

deep learning is almost identical to the data assimilation approach used throughout this work. This

alternative view on training deep networks is very interesting and a potentially useful direction of

research to pursue, if possible.

127

D
Dynamical Initialization

The data assimilation technique explored in Part I of this work searches a large space for

trajectories that are consistent with the model dynamics. As an initial guess, the model uses the

available data and slowly ‘forgets’ the initial state as the constraint term of the cost function is

steadily increased in magnitude. The convergence of the algorithm and the quality of the solution is

strongly dependent on how close our initial guess is to the true state.

There are a variety of reasons which may influence this. One scenario to imagine is that

when you are far away from the global minimum, there may be a multitude of local minima that the

states encounters as it makes its way towards the global minimum. It is possible, and common, that

the state gets stuck in a sufficiently deep local minimum. The state estimate may not ever reach the

global minimum in such a situation, not even a local minimum that is comparable in depth as the

global minimum (loosely called superior minima). Now, starting the initial guess close to the global

minimum is an ill-defined task to begin with, since it begs the question of how one knows which points

are close to the global minima. If one has information about the global minimum in the first place,

there is no reason to have to find the global minimum. However, all we have to do is to propose

a better initial condition than a random one, and the bar is set fairly low so we can actually make

progress on this.

We will lay out a special case here on how to propose a good initial condition in trajectory

space (not state space). The trajectory x(t) is represented as a D×M matrix, so the distance between

two trajectories x(t) and y(t) is given by the Frobenius norm of their different, i.e ‖x(t)− y(t)‖2F . In

128

our special case scenario, we have a physical system with a D-dimensional state space that is set

up in a laboratory setting, where we can make measurements of all D dimensions of the system.

We also have access to the dynamical equations of this system, which are known to a high degree of

confidence. Fortuitously, the instruments that are measuring this system were not properly set up such

that some fraction of these instruments/sensors fail to produce coherent and reliable measurements

of this system. In other words, we can only rely on the data from a few instruments. How does one

‘make up’ or reconstruct the missing data?

Figure D.1: Using dynamical initialization, noisy data of the x variable and randomly chosen initial
values of y and z are useful to generate the entire trajectory. This is repeated for the same data for
x, but 50 different initial values of y and z. We observe that all 50 trajectories eventually converge to
a wrong but relatively close-by state. This relationship appears to hold indefinitely.

We have found an interesting technique that will apply in such a situation. We shall look

at a more concrete example of the situation laid out above, namely measurements of the Malkus

waterwheel which are governed by the Lorenz equations. In our case, we set up the problem such

that the x variable of the Lorenz system is the only reliable measurement, albeit some noise. The

measurements of the y and z variables are utterly unreliable and discarded completely. The method

that we call Dynamic Initialization is to use the noisy time-series measurements of x as the de facto

input for x, for all time, when constructing the vector field of the Lorenz system. On the other hand,

129

at the first time step we use randomly initiated values for y0 and z0. The system is integrated forward

in time one step, say, with the RK4 scheme and only the resulting values of y1 and z1 are kept from

this integration step. Whatever value for x that resulted from the integration is discards, instead we

use the measurement data of x1, as well as the integrated values of y1 and z1, to generate the y and

z variables of the next step. We continue this process until we run out of data. For this example, the

parameters used to generate x are exactly the same as the parameters used to perform the integration,

and we are aware of how convenient but unlikely this situation is. This wordy explanation might be

confusing, so we have included an algorithmic pseudo-code description below.

Algorithm 2 Dynamic Initialization example for the Lorenz system, with x(t) measured but y(t) and
z(t) not measured. Both y(t) and z(t) are set to 0 in this example, but the idea holds more generally.

x0 ← x0

y0 ← 0
z0 ← 0
for i = [1,M − 1] do
{ẋi, ẏi, żi} ← f(xi)
xi+1 ← xi+1 . x(t) is never updated.
yi+1 ← yi + ẏi+1

zi+1 ← zi + żi+1

We believe that the mechanism that induces this behavior is related to some form of syn-

chronization, even though we will not be exploring the phenomenon of dynamical initialization any

further, at least within the confines of this work. We are also aware that the applicability of dynamical

initialization is narrow since we would have access to the exact equations and the state space data.

Even so, we have illustrated a situation where dynamical initialization may be used with the Malkus

waterwheel and faulty sensors, and we hope that there are more situations like this. Nevertheless, the

phenomenon of dynamical initialization warrants further exploration and exposure so that it may be

useful to whomever is faced with a scenario similar to what we laid out.

130

Figure D.2: Errors in the y and z variables as time progresses. The errors decay over time until all
50 states converge. The convergence of state implies that there is some form of synchronization that
drives this approach.

131

E
Lyapunov Spectrum

E.1 Introduction

When handling nonlinear systems exhibiting chaos, one should have some tools available that

can characterize the chaos in the system. The Lyapunov spectrum is one of these tools, and it refers

to the set of Lyapunov exponents that succinctly describes the global behavior of chaos within the

system. Fundamentally, they measure the average rate of divergence or convergence of trajectories

around the entire attractor. The calculations for the Lyapunov spectrum are inherently statistical

in their nature, which arise from the invocation of ergodic theory on the dynamical system, so long-

time averages are a fundamental part of the calculation. The full scope of topics that the Lyapunov

spectrum touches many branches of mathematics such as differential geometry, topology, fractals, and

measure theory – to name but a few. Across all these branches, the Lyapunov spectrum have different

interpretations and consequences, leading to some pretty deep questions that span across different

disciplines. Regardless of the choice of application, this section of the appendix handles the methods

for calculating the Lyapunov spectrum in both continuous and discrete time systems, but only for the

case of when there is access to the dynamical equations. Though important, we do not handle the

calculation of the Lyapunov spectrum in the case where we only have access to data with no equations.

Almost all of the time is dedicated to continuous systems, because the practical problems faced by

the modern world are generally continuous – fluid mechanics and electromagnetism chiefly being the

two largest culprits. Various methods, each with its own quirks and insights, will be visited.

132

E.2 Largest Lyapunov Exponent

No matter what type of problem one wants to approach – continuous or discrete, using

equations or using data – it is instructive to start with the largest (most positive) element of the

Lyapunov spectrum, which is called the Largest Lyapunov Exponent (LLE). This will serve as a

soft introduction of the Lyapunov spectrum as it is the simplest to calculate and interpret. We will

only be handling autonomous systems that are either represented by differential equations (continuous)

or some forward map (discrete). When calculating only the largest exponent with this method, it is

irrelevant whether the system is continuous or discrete. If there is no access to the underlying equations

that generate the data, simply skip the (trivial) generation step.

ẋ = f(x) ; xk+1 = F (xk) (E.1)

We shall be assuming here that the system of interest does exhibit chaotic behavior, otherwise

the entire discussion will be moot. Though there is no widely agreed upon definition of chaos, it will

suffice here to say that chaotic systems can simply be described as having extreme sensitivity to initial

conditions. More practically, the definition can be ‘exponential divergence of nearby trajectories up to

a bounded size’. The boundedness of this divergence is important, otherwise a trivial function such as

the time exponential et will be deemed chaotic. This bound happens to be the size of the attractor.

We can compare a simple case where a close-by initial pair xi0 and xj0 are integrated forward up to

some large time t. At time t, these two final states are xi(t) and xj(t) respectively. The LLE is then

given by

Λ̃(xi0, x
j
0) = lim

xi
0→x

j
0

lim
t→∞

1

t
ln

∥∥xi(t)− xj(t)∥∥∥∥∥xi0 − xj0∥∥∥ ≡ lim
δxi,j

0 →0
lim
t→∞

1

t
ln

∥∥δxi,j(t)∥∥∥∥∥δxi,j0

∥∥∥ . (E.2)

However, this is definition is biased towards the choice of the two initial conditions xi0 and xj0.

It could incorporate the parts of the attractor that are unusually stable (e.g. within one lobe of Lorenz

63) or unstable (e.g. only capturing the lobe switches of Lorenz 63). To eliminate the bias, we simply

repeat the above calculation for a large number of such pairs xi0 and xj0 in a brute force manner, and

take the unweighted average. Effectively, we are looking at some point xi0 and many of its neighbors

xj0, then this is repeated for values of xi0 at other parts of the attractor. It is imperative that the

points chosen for xi0 are on the attractor, and not transients of some far-away initial conditions. The

choice of xj0 also need to be close to the chosen xi0, generally this means that xj0−xi0 forms a small ball

133

roughly four to five orders of magnitude smaller than the attractor size. These steps should eliminate

the biases as much as reasonably possible.

We also need to consider that there is some point in time t after which the ‘exponential

divergence of nearby trajectories’ is capped by the size of the attractor, after which we no longer

want to incorporate these samples into our average. This point in time will be called T i,j , and it is

a function of the pair of initial conditions. Pausing for a moment to consider what this means; this

suggests that the LLE is calculating the local growth rates of the differences between neighboring

states.

Λ =
1

MN

M∑
i=1

N∑
j=1

1

T i,j
ln

∥∥δxi,j(T i,j)∥∥∥∥∥δxi,j0

∥∥∥ (E.3)

This formulation hardly the most elegant representation of the concept of Lyapunov expo-

nents, but it is illustrative of the fact that the LLE is an averaged quantity calculated only through

numerical simulations. A few well-warranted questions come to mind, the first is regarding the size

of both M and N , to which there is no good a priori answer. In practice, both M and N on the

order of 200 yield reasonable calculations. The second question pertain to how long of a time window

T is necessary. There is a Goldilocks-zone one has to wrestle with. We only want to look at the

growth rate of the errors, so too long of a window results in the errors plateauing at attractor size,

contaminating our sample pool. On the flip side, too short of a window will results in the improper

lly captured. There is really no good answer here as well.

Figure E.1: Divergence of different initial conditions is a way to estimate the LLE.

As should be obvious by now, this method is crude in many ways and fraught with imprecision,

in addition to it only giving the largest exponent. For starters, the sheer amount of computational

power required to perform (E.3) successfully is frighteningly wasteful given the quality of the calcu-

134

lation. The following sections will deal with the rest of the spectrum, which is handled differently for

continuous and discrete time systems, and also differently when one has no access to the underlying

equations.

E.3 Continuous Time Systems

Continuous time systems are represented by differential equations and the continuity refers to

the nature of time, not states. These differential equations are integrated by the differential equation

specified, using any reasonable numerical integrator, from some initial condition x(t0) ≡ x0.

ẋ = f(x) (E.4)

These continuous systems always have to be of dimension three or greater in order for chaos

to manifest and almost always involves a set of parameters that are not shown here in the notation.

This is due to the mathematical limitations of one-dimensional trajectories eventually crossing in two

dimensions, but there exists ‘another way out’ in three dimensions and above. For the entirety of the

continuous time section, we will demonstrate our findings using the Lorenz 63 with the parameters

σ = 16, ρ = 45.92, and β = 4. The numerical integrator used in the ‘classic’ 4th-order Runge-Kutta

method (RK4) and a time-step of ∆t = 0.01. The initial conditions are x0 = [19, 20, 50], which already

lie very close to the attractor.

Omitting the use of the equations is certainly possible because there are methods that can

be used to estimate Lyapunov exponents directly from data. These methods turn out be the most

general and widely applicable approach since we can always use the equations to generate data.

However, having access to the underlying equations, we might as well utilize them to calculate the

Lyapunov spectrum. Leveraging the equations also allows us to calculate the Lyapunov exponents

to incredibly high accuracy and at significantly faster computation. Without the equations, the

quality of the calculation relies heavily on having extremely long histories of the trajectories, and the

presence of noise low noise also caused the quality of calculation to deteriorate quickly. Practically

speaking, having access to such data sets is rare, but having access to the underlying equations and

the parameters is, arguably, equally as rare. As such, we should have methods and approaches for

both these cases. If access to both the data and the system are available, then the methods leveraging

the equations should definitely be utilized.

135

E.3.1 Variational System and Volume Growth

To properly estimate the Lyapunov exponents, we first introduce the concept of a variational

system Y (t) which co-evolves alongside the usual system x(t) with the rules

Ẏ = J(t)Y ; Jij ≡
∂fi
∂xj

∣∣∣∣
x(t)

; Y (t0) ≡ Y0 = 1 (E.5)

where the Y (t) is a matrix system with arbitrary initial condition Y0, chosen as the D-

dimensional identity matrix for simplicity and convenience (as will be revealed later). It may be

instructional to view the variational system Y (t) as an auxiliary system which tracks certain aspects

of the original system x(t). The matrix J(x), called the Jacobi matrix of the vector field or

simply Jacobian, is populated by the elements Jij that are evaluated at every point x(t) along its

trajectory [59]. Note that above, i or j are the spatial indices and will remain so for the rest of the

paper. The initial basis vector Y0, which forms a unit box spanning the entire D-dimensional space,

is integrated forward to produce Y (t) that tracks the contraction or expansion of spatial dimensions

across time.

Figure E.2: Tracking the exponential growth of a unit box in time is an intermediate step towards
calculating all the Lyapunov exponents. This box is both stretched and rotated as the system evolves,
but only the stretching aspect is of interest. The use of a variational system is an elegant generalization
of the previous method which only yielded the largest exponent.

Whereas the previous calculation in (E.3) only gives the largest exponent, tracking the vari-

ation system Y (t) will give the entire spectrum. Solving for the entire trajectory Y (t) invariably

requires numerically integrating the above system, say with the RK4 method. From the set of evolu-

tion rules (E.5), we can integrate a solution for Y (t) alongside x(t) by defining an extended system

136

and its dynamics.  ẋ
Ẏ

 =

 f(x)

J(t)Y

 ;

x(t0)

Y (t0)

 =

x0

1

 (E.6)

As a practical aside, it is important to note here that the integration of both x(t) and Y (t)

should be carried out as a single extended system rather than two systems independently. This is

just an artifact of order of function evaluations that forward integrators use. Once the entire time

series of both x(t) and Y (t) have been calculated, we can observe how the volume of the variational

system grows or shrinks. Since vol Y0 ≡ 1, the relative volume of Y (t) is given by the scalar triple

product of its columns, which happen to correspond to the determinant of Y (t) as well. It was

previously mentioned that we are interested in the exponential divergence, so the exponential form

for the volume of Y (t) is imposed. We can now move the determinant operation into the trace of the

exponent.

vol Y (t) = |detY (t)| = det eJ̃t = etr J̃t. (E.7)

Given the appearance of the trace operation, the connection between eigenvalues of the matrix

J̃ and the volume of the variational system Y (t) become apparent. These eigenvalues of J̃ turn out to

be the Lyapunov exponents or the Lyapunov spectrum of the original system, which were co-opted

to grow the variational system according to the rules in (E.5)[60].

tr J̃ =

D∑
d=1

λd = lim
t→∞

1

t
ln vol Y (t) (E.8)

The Lyapunov exponents are always arranged in the descending order λ1 > λ2 > · · · >

λD where D is the dimension of the state space x. Notice that there is a limit of t → ∞ in the

equation above to ensure that we are estimating global properties of the attractor, rather than being

biased by transient from the local region around the initial condition. So far, we have shown how

to compute the trace of the Lyapunov spectrum, but teasing out the individual Lyapunov exponents

individually require some additional work in the form of matrix decompositions. The individual

Lyapunov exponents can be seen as the growth rate of the principle directions describing the matrix

decomposition of choice, as is the topic of the next segment, is the QR decomposition.

137

E.3.2 Quick Aside: QR Decomposition

A quick and brief introduction to QR decomposition is in order, covering only the requisite

knowledge for our use case. We will be assuming here that Y is real D ×D square matrix, as is the

case for our purposes. Given a real square matrix Y , there always exists a decomposition

Y = QR (E.9)

where Q is an orthogonal matrix and R is an upper triangular (or right triangular) matrix. It

could be helpful to think about the this as a decomposition of Y into two parts - a stretching operation

R followed by an improper rotation Q. The summary of orthogonal square matrices is simply1

QT = Q−1 ; QQT = QTQ = 1. (E.10)

The vectors spanning Q are all mutually orthogonal and of unit length, which means that

they form an orthonormal basis. If Y is invertible (specifically that all eigenvalues are non-zero),

then the decomposition is also unique. This decomposition is unusually useful for calculating the

determinant, and provides additional benefits later on. With Q being an orthogonal matrix, we have

that |detQ| ≡ 1.

|detY | = |detQR| = |detQ| · | detR| = |detR| (E.11)

The determinant of Y can be calculated directly from that of R, and this is the justification

for using the QR decomposition. This is more than a quick numerical trick for the determinant, as

the added structure of Q and R is going to be useful.

|detY | =
D∏
d=1

|λd(Y)| =
D∏
d=1

|Rdd| . (E.12)

As another added bonus of triangular matrices, the diagonal elements Rdd do not just multiply

together to give the determinant, they are themselves the eigenvalues of R – a fact that we will leverage

this later on. For how powerful the QR decomposition is, especially in the Lyapunov spectrum

calculation, it is surprisingly cheap/fast to run at O(D3). It is almost always going to be efficiently

1For non-square matrices, only QTQ = 1 holds and QQT 6= 1. This is common in high-dimensional problems,
where Q is generally expected to be a tall/skinny matrix that spans only a subspace.

138

implemented and readily available in a good linear algebra library written in any major programming

language you chose to work with.

E.3.3 The Entire Spectrum

Armed with the knowledge of QR decomposition and its usefulness, we pick back up recalling

the relationship between the Lyapunov spectrum and volume, that is the volume if given by the

product of all Lyapunov exponents. Once we perform the QR decomposition Y (t) = Q(t)R(t), recall

that volume of the variational system can be rewritten as

vol Y (t) = |detY (t)| =
D∏
d=1

|Rdd(t)| . (E.13)

Plugging in the above equation into (E.8), the product can be moved out of the logarithm

and transformed into a sum. Moving away from having a product inside the logarithm means better

numerical stability, as extremely small values of Rdd will be operated on by the logarithm, which

reduces the range of possible values. A smaller range of values leads to better numerical stability

because machine precision creeps in when operating on a very large and a very small number.

D∑
d=1

λd = lim
t→∞

1

t
ln

D∏
d=1

|Rdd(t)| =
D∑
d=1

lim
t→∞

1

t
ln |Rdd(t)| (E.14)

Given that the QR decomposition is unique, the set of numbers Rdd(t) along the diagonal of

R(t) is also unique2. Thus, we conjecture that the individual elements of the Lyapunov spectrum are

also uniquely determined and given by

λd = lim
t→∞

1

t
ln |Rdd(t)| . (E.15)

To add some interpretation to the importance of R(t), its diagonal elements Rdd(t) charac-

terize the local growth of the basis vectors that span Y (t), which are given by the column vectors of

2These diagonal elements Rdd are the eigenvalues of R, but not the eigenvalues of Y . However, the two sets of
eigenvalues are closely related. Since we are concerned with the exponential growth of volumes handled by R, which
is independent from the rotations handled by Q, the eigenvalues of Rdd do the job of characterizing the exponential
growth of volume of Y (t). This justifies their use in calculating the Lyapunov spectrum, rather than the eigenvalues of
Y that are complex numbers. These imaginary parts describe some (surprisingly quick) rotations, but are unimportant
for tracking volumes.

139

Q(t) = [q1(t), q2(t), · · · , qD(t)]. The individual elements of Lyapunov spectrum λd describe how the

exponential growth of distances, on average, along the corresponding basis vectors qd(t).

Figure E.3: The Lyapunov spectrum of the Lorenz 63 system calculated with the method described
by (E.5) and (E.15). λ1 holds steady and agrees well with the true value. λ2 holds steady at the true
value only initially, but gets corrupted by the creeping values of λ3 around t = 25. λ3 manages to
hover around the true value (approximately −22.5) but very quickly becomes corrupted.

Some might argue that the above definition of the Lyapunov spectrum is not sufficient, with

some merit, as some form of ensemble average should be taken to avoid biases in sampling the attractor.

This may be true, but there are more pressing issues to deal with. Namely, the smallest Lyapunov

exponent quickly deteriorates and begins to corrupt the next smallest exponent, as seen in the figure

above. Despite the trouble it took to get to this point, the equation (E.15) only looks elegant but

is otherwise unwise to use for practical calculations. The degradation occurs because the smallest

Lyapunov exponents is comparatively larger in magnitude than the other exponents, leading to an

extremely fast shrinkage in that direction. Computationally, this results in machine precision issues

when attempting to keep track of that exponent. This degradation eventually spreads from only

affecting the smaller exponent, to affecting the second smaller exponent. It is unclear what exactly

causes the degradation, but likely it is due to the mixing of the Lyapunov vectors (directions in which

the exponents affect) as the variational system evolves in time. Regardless, this is a strict upgrade to

(E.3) due to the LLE being well approximated even for long time windows - and the calculation is faster

to run too. The main takeaway of the section should be that the Lyapunov spectrum characterizes

the average expansion of volume in time, though precise calculations require additional careful steps.

There is much improvement to be made in varying directions and will be explored in the following

sections. The variational system method here, as it turns out, is similar in nature to the Successive

QR method that will be covered later. The one difference between these two methods is that there

are redundant calculations in the variational system method, as will be discussed when we talk about

140

Successive QR. Nevertheless, this variational system method establishes a good conceptual starting

point and is preferred from a pedagogical standpoint.

E.4 Practical Calculations

E.4.1 Normalized Variational System

In the previous segment, we showed the calculation of the entire Lyapunov spectrum by

observing the expansion of volumes of a variational system Y (t). Leveraging the powerful QR de-

composition, we show that the fundamental directions of growth are given by the column of Q(t) and

the local growth rate in those directions are given by the diagonal elements Rdd(t). Yet, we run into

issues because the important structures of Y (t) do not hold in long-time simulations [61]. Numerical

instabilities arise, yet these are simply artifacts of using finite precision. Otherwise, there is nothing

fundamentally wrong with the method above. One simple fix that comes to mind is to avoid taking

the limit in (E.15) too literally. Instead, we can break up the full time window of n-steps into multiple

shorter windows of m-steps (such that n = am where a is an integer), where Yk is normalized to have

unit volume at the end of that window. This way, the same calculation can be done without running

into numerical issues. We shall call the normalized Yk as Ỹk.

Figure E.4: The shrinking log-volume of Ỹ and Y against time. Ỹ is normalized as a unit volume
(ln 1 = 0) every m = 25 steps of ∆t = 0.01. The normalized Ỹ continues behaving well even after Y
is running into stability issues, presumably from numerical precision issues. The average slope of this
saw-tooth, excluding the discontinuities, will give the sum of Lyapunov exponents. After computing
Ỹk = QkRk, the individual exponents can be calculated according to the diagonal elements of Rk, as
usual.

Every m-steps, i.e whenever k is a multiple of m, we have to normalize Ỹk = QkRk by setting

Ỹk ← Qk. This constitutes a normalization step because the columns of Qk are all unit vectors

hence volQk = |detQk| = 1. This is yet another clever application of the QR decomposition since

141

it preserves the direction of growth that is important to keep track of, all while preserving the full

Lyapunov spectrum. There is a small price to pay, which is a normalization step every so often, and

it results in a minuscule effect on the computational times. So, instead of taking the limit of t → ∞

and dealing with numerical and stability issues, the equation below is better thought of an average

quantity in the limit of large sample sizes.

λd = lim
n→∞

n∑
k=1

(k mod m)6=0

1

tk
ln |Rdd(tk)| . (E.16)

On the usual topic of how large of a value to use for m, Figure E.4 gives us an a posteriori

clue. Around t = 1.5, the smooth slope of the plot gives way to some sort of error that is clearly

creeping into our calculation. This hints that any value of m that stops the window before then would

likely be a safe choice. This normalization method is incredibly useful and will serve as a basis for

next method to be discussed.

Figure E.5: Using the normalized variational system of subsection E.4.1 for Lorenz 63, the local
Lyapunov exponents and their averages are calculated. The three lighter colored lines are the local
Lyapunov exponents. The three darker colored lines are the rolling average of the local Lyapunov
exponents. With normalization, this method converges very quickly to (essentially) the consensus
value of [1.49, 0.00,−22.49] and is much more reliable than that of Figure E.3.

E.4.2 QR Exploit

This method exploits the QR method in a way that utilizes many of the important properties

of orthogonal and upper-triangular matrices, hence its name. This method is also called the continuous

QR method, but there appears to be no wide-agreed-upon name due to the relative obscurity of this

method. The choice of the word ‘continuous’ makes sense given that this method is completely agnostic

142

to the chosen value of ∆t. As long as trajectories (even the shadow trajectories) along the attractor

are given, the method should accurately determine the Lyapunov spectrum with no problems. We

start by posing that the variational system Y (t) can be QR decomposed at any point in time.

Y (t) = Q(t)R(t) (E.17)

All three matrices Y (t), Q(t),and R(t) are assumed to have a time dependence to them. So

naturally, we can look at their time derivatives. Applying the chain rule, we can write down the

equation

Ẏ (t) = Q̇(t)R(t) +Q(t)Ṙ(t). (E.18)

However, we already have another definition of Ẏ (t) from the dynamic equation of the vari-

ational system given in (E.5). We further leverage both these definitions to establish the following

relation.

Ẏ (t) = J(x)Y (t) = J(x)Q(t)R(t) (E.19)

Lastly, we have the definition of orthogonal matrices, which holds at any point in time. The

RHS of the equations below is constant though the LHS is time dependent. Taking a time derivative

of the orthogonal property gives a very useful relation, which is one of the cornerstones of this method.

QT (t)Q(t) = 1

QT (t)Q̇(t) + Q̇T (t)Q(t) = 0

(E.20)

From the above equations, we now have a complete set of interesting equations that underpins

this method. From here on, the time dependence of the matrices inside the parentheses will be

dropped for clarity and brevity sake. Collecting the time derivatives Ẏ from (E.17) and (E.18) gives

the following equation.

Q̇R+QṘ = JQR (E.21)

This equation is rearranged to get all the matrices involving R, which are ṘR−1 here, to one

side. Both these matrices have special properties that arise from their relation to upper-triangular

143

matrices, and all the information regarding the Lyapunov spectrum are contained in the upper-

triangular matrices of the QR decomposition.

ṘR−1 = QTJQ−QT Q̇. (E.22)

Two facts about upper-triangular matrices are in order. First, the inverse of upper-triangular

matrices is also upper-triangular. Second, the product of two upper-triangular matrices is also upper-

triangular. Hence, we see that ṘR−1 is still upper-triangular – which we will soon leverage. The

importance of the upper-triangular matrix like ṘR−1 is due to them preserving the determinant of

matrices, as shown in (E.12), which will be apparent soon. Next, we can see from (E.20) that

QT Q̇ = −Q̇TQ ; Q̇TQ ≡ (QT Q̇)T . (E.23)

Gathering the above terms, it is revealed that the matrix QT Q̇ has a surprising structure,

that it is actually anti-symmetric.

−QT Q̇ = (QT Q̇)T (E.24)

As QT Q̇ is an anti-symmetric matrix, the elements along the diagonal are necessarily all zeros

and the subtraction of the QT Q̇ leaves the diagonal elements of the ṘR−1 intact and unchanged. This

leads to the diagonal elements of ṘR−1 being uniquely supplied by the diagonal elements of QTJQ,

which does not have any time derivatives. The lack of time derivatives is a fascinating and welcomed

feature as it avoids potential numerical instabilities in the calculation of (ṘR−1)dd.

(QTJQ)dd = (ṘR−1)dd =
Ṙdd
Rdd

= (R−1Ṙ)dd (E.25)

We serendipitously run into another remarkable property of two upper-triangular matrices

regarding diagonal elements, hence the second equality in the equation above. Specifically, that the

diagonal elements of two upper-triangular matrices are sufficient to determine the diagonal elements

of their resulting product. We need not look at the off-diagonal elements of Ṙ or R−1, nor do we need

to evaluate the inverse of R explicitly. This is not a property leveraged at all in the method, but it

144

yet another serendipitous property that results in computational savings. One could also populate all

the off-diagonal elements of QT Q̇ from QTJQ if so desired, but those elements will not be useful for

our purposes [62]. Now that we have gained some insight on the importance of ṘR−1, we table this

result and look at (E.22) and its relation to ṘR−1. Rearranging for J , we see ṘR−1 show up in the

following way.

J = Q̇QT +QṘR−1QT (E.26)

We run into a familiar looking object Q̇QT on the RHS. Though not trivially related to its

cousin QT Q̇, some simple shuffling of (E.20) will reveal that both these objects are anti-symmetric,

but only for square matrices Q. For more general cases, which may come up when solving for the

top few Lyapunov exponents, one has to deal with rectangular matrices for which QTQ = 1 6= QQT .

However, under the operation of a trace, we get more surprising but useful results.

tr J = tr
(
Q̇QT

)
+ tr

(
QṘR−1QT

)
(E.27)

The trace has a useful property regarding cyclic permutations, and we use this to move the

orthogonal matrices QT to the front.

tr
(
Q̇QT

)
+ tr

(
QṘR−1QT

)
= tr

(
QT Q̇

)
+ tr

(
QTQṘR−1

)
(E.28)

In the first term, the anti-symmetric matrix QT Q̇ appears again. An anti-symmetric matrix

definitively has zeros along its diagonal, hence the trace of QT Q̇ is zero and bears no effect on the

trace of J . In the second term, we have the appearance of QTQ = 1 defined to be the identity matrix

and plays no part at all in the trace operation. All that is left for determining the trace of J is the

trace of the upper-triangular matrix ṘR−1.

D∑
d=1

λd = tr J = tr
(
ṘR−1

)
(E.29)

The matrix ṘR−1 is not directly computed. Calculation Ṙ from time difference can be fraught

with issues, and it is not clear how the analytic form for R−1 should be approached. Inverting R may

be quick and straightforward, but is otherwise useless unless we are able to determine R−1 properly.

145

As a result, neither of these matrices are explicitly calculated. Instead, we use the relation in (E.25).

Remember that both Q and R are unique once the square matrix J is prescribed. The trace is also

not evaluated, but is left merely as a a tool for simplifications done above. The Lyapunov spectrum is

therefore uniquely determined, but here only locally in space – we refer to this as the local Lyapunov

spectrum. The spectrum is given by the diagonal element of the resulting matrix QTJQ.

λlocal
d = (QTJQ)dd (E.30)

Since this is only a local exponent, we would need to take an ensemble average at various

locations on the attractor to get the (global) Lyapunov exponents.

λd = lim
n→∞

1

n

n∑
k=1

[
Q(tk)TJ(tk)Q(tk)

]
dd

; Y (tk) = Q(tk)R(tk) (E.31)

However, this calculation also relies on performing QR decomposition on the variational sys-

tem Y (t) to get Q(t). This will quickly run into numerical rounding issues or other stability issues

as t fuels the exponential growth or contraction of the system. Luckily, we already covered the nor-

malization trick of subsection (E.4.1), which can be utilized here in addition to the QR exploit to get

much better accuracy. This method seems to be a natural fit for the normalization trick because the

calculation suggested for the Lyapunov exponents here do not care about the growth rates R(tk) of

the variational system Y (tk), just the directions of the growth Q(tk). As beautifully elegant as this

method is, it appears to be agnostic to the issue of path-ordering. Path-ordering is important as the

J(tk) are mutually non-commutative, yet they need to be applied in the correct order for the varia-

tions system Y (t) to exhibit the proper growth rates. So far, through empirical trials, this method

has proven to be just as good as the others and the issue of ordering may not be important. It might

be the case that the ergodic property of the Lyapunov spectrum overcomes the need for sequential

applications of J(t).

E.4.3 Using Matrix Exponents (Successive QR Method)

The method has two key features. The first is the use of a matrix exponent as an integration

scheme of the variational system Y (t). The second key feature is a workaround for the normalization

issue previously explored. However, we would need to use some features of the QR decomposition

146

Figure E.6: The ‘QR exploit’ method applied to Lorenz 63 gives us the values of the Lyapunov spec-
trum as we would expect. A rolling average of the local Lyapunov exponents is used here. However,
without normalization, we run into spurious degradation of the lower two exponents. Once normaliza-
tion is implemented (denoted with superscript ∼), the calculation converges to the expected values.
The first Lyapunov exponents with and without normalizing are identically overlapped. The degrada-
tion happens around the t = 22 mark, and affects the lower two Lyapunov exponents symmetrically
such that the trace is always preserved. The convergent values here are [1.51,−0.02.− 22.48].

again to fully utilize this workaround. To explore the first feature, we look at the formulation of the

variational system (E.5), specifically where Ẏ = J(t)Y . It would seem like a matrix exponential of

J(t) would be a solution in the form of a forward map

Y (k∆t) ' Yk = eJk−1∆tYk−1, (E.32)

denoting Jk ≡ J(tk) and the time step is ∆t ≡ t
n . Through some analysis, this exponential

form holds well when the vector field of the original system f(x) varies very slowly in x, specifically

that
∥∥f ′(x)2

∥∥� ‖f ′′(x)f(x)‖. This is often the case with continuous systems that have some notion

of smoothness implied in their definition. Assuming the smoothness, we can reiterate the map of the

above equation n-times until we arrive at time t. We then pose that Y (t) can be described by some

averaged behavior for sufficiently large t such that

Y (t) ≈ Yn =

n-times︷ ︸︸ ︷
eJn−1∆teJn−2∆t · · · eJ0∆t Y0 = eJ̃tY0,

(E.33)

where J̃ is the resultant matrix exponent of the above calculation3. Notice that the state Y (t)

3Remember that J̃ 6= Jn−1 + Jn−2 + · · · + J0 due to the nature of matrix exponents whereby two matrices Ja
and Jb do not generally commute. In fact, any two matrices Ja and Jb will almost never commute in this application.

Nevertheless, it is still true that eJn−1eJn−2 · · · eJ0 = enJ̃ because that is how we chose to define it. It is impractical,
though possible, to use the Baker-Campbell-Hausdorff formula here so we will avoid it completely.

147

never enters the equation in a nonlinear sense. The above equation treats the variational system as

locally-linear (w.r.t. Y), with the values of J(x) provided to the Y (t) from the original system x(t)4.

Empirically, equation (E.32) turns out to hold extremely well locally, for small ∆t, given a numerically

integrated trajectory x(t). The exponential of the Jacobian matrix serves as a viable alternative to

other numerical integrators. This hints that there is little reason to explicitly integrate the extended

system Y (t), described in (E.6). Instead, it is sufficient to simply calculate and store the series of

matrices Sk ≡ eJk∆t when calculating the Lyapunov spectrum.

Yn =

n−1∏
k=0

SkY0 = eJ̃tY0, (E.34)

Here, we should note that the intention is just to store the sequence of matrices Sk, and no

matrix-matrix multiplication should be carried out. Naive multiplication of a large numbers of matrices

is numerically unstable. One would notice severe numerical precision issues as the condition number

(a measure of numerical rounding error for our purposes here) increases exponentially with each

subsequent matrix-matrix multiplication. This is a similar issue that subsection E.4.1 is attempting

to resolve with normalization. The workaround here is to perform successive QR decomposition on

each Sk such that the resulting sequence of matrices are in the same basis [63].

Sn · · ·S1

Q0R0︷︸︸︷
S0 = Sn · · ·

Q1R1︷ ︸︸ ︷
S1Q0R0

(E.35)

We start by decomposing the right-most matrix S0 and repeat the iterative/successive steps

of decomposition SkQk−1 in increasing order. Note that each subsequent Sk needs to be right-

multiplied by Qk−1 before the QR decomposition is utilized. These steps are repeated until we end

up with a sequence of Rk ≡ R(tk) matrices and one Qn matrix, shown below. This particular matrix

multiplication of Qk that, though done often, will not propagate bad condition numbers. Such a

property is due to orthonormal matrices having a low condition number, usually of order unity.

n-times︷ ︸︸ ︷
Sn−1 · · ·S1S0 = Qn

n-times︷ ︸︸ ︷
Rn−1 · · ·R1R0

(E.36)

4Linear systems are traditionally defined to have analytic solutions globally. These, on the other hand, are linear in
the sense that they locally obey Yk+1 = eJk∆tYk extremely well, where Jk is time-varying but not explicitly dependent
on time. This result in systems that, in general, have no analytic solutions, but they are not nonlinear either! The
general solution to equation (E.32) is Y (t) = exp

∫ t
0 J(x(s))ds.

148

The Qn matrix can be seen as the Lyapunov vectors - directions where the growth or shrinkage

occurs – but is otherwise not of interest. The matrices Rk can be used to efficiently and stably calculate

the Lyapunov spectrum. We use an averaged version of (E.15), in the same spirit as (E.16), to calculate

the global Lyapunov spectrum.

λd = lim
n→∞

n∑
k=1

1

tk
ln |Rdd(tk)| (E.37)

One particularly useful way of interpreting the success of the successive QR decomposition

here is that it computes an ‘agreed upon’ orientation Qn that growth occurs at every step of the

system. The intermediate matrices Rk are then reoriented at every step in such a way that the

diagonal element preserve the Lyapunov exponents, shown in the equation below.

QnRn · · ·R1R0 = QnRnQ
T
n · · ·QnR1Q

T
nQnR0 (E.38)

It might seem that from (E.37) that there is no respect for the path-ordering in the averaging

process. The ordering is actually contained within the construction of Rk in (E.35), where the suc-

cessive QR decomposition is carried out starting from R0 and moving leftward. To readers familiar

with this topic of Lyapunov exponents, this method is identical to how one would find the Lyapunov

spectrum of discrete time systems. It is identical except for a quick substitution, so this method

is sometimes known as the discrete QR method. However, the name is somewhat misleading since

this method works for continuous systems that have to be discretized for computation. The matrix

exponential eJk∆t serves as the discrete time system’s equivalent of the Jacobian. The workhorse in

calculating the Lyapunov spectrum is a sequence of QR decompositions, so we opt to call both these

methods the successive QR method or sequential QR method.

This method is conceptually identical to the variational system method covered earlier. One

can make the case that the explicit RK schemes are actually attempting to approximate the matrix

exponential, so invoking the matrix exponential is technically the more general case. The one advan-

tage is that Y (t) does not need to be explicitly calculated. Instead, the growth of Y (t) is implicitly

contained in the eJk∆t term, and we trade the price of computing Y (t) with an explicit time integrator

with the price of computing the matrix exponent5, at least for continuous time systems. In terms

of computer memory, both methods use the same amount of memory. For discrete time systems,

however, the successive QR method is the clear winner as we avoid many unnecessary calculations.

5The matrix exponent calculation generally uses some eigenvalue decomposition algorithm as the back-end

149

Figure E.7: The matrix exponent method with successive QR decomposition, applied to Lorenz 63,
estimates the Lyapunov spectrum quite steadily. Refer to Figure E.5 as a direct comparison. The
values for the Lyapunov exponents here are [1.50, 0.00,−22.50].

E.4.4 Comparison of Methods

Our first comparison will be on the computational requirements of the two methods, which is

one of the more important and practical questions that one might have when making a comparison.

The QR exploit method performs one QR decomposition and two matrix multiplications for each data

point included in the calculation. The successive QR method performs one QR decomposition and one

matrix multiplication for each data point. There are other operations such as normalization, picking

diagonal terms, logarithms, that require an insignificant amount of computational time, so there are

not included for our simple comparison. In this respect, the successive QR method has a slight edge

in computational speed, but not by much.

The second comparison regarding the computed trajectories of the variational system Y (t).

The QR exploit explicitly requires the trajectory of Y (t), so a good integrator and small values of

∆t is required to generate accurate trajectories of Y (t). The successive QR method does not need

explicit trajectories of Y (t) at all, but it uses ∆t explicitly in the calculations. It also requires a

good approximation for eJ∆t, but this is conceptually and computationally equivalent to using a good

integrator for Y (t). The moral here is that a good integrator and a small ∆t is necessary regardless

of the method. These were required for the calculation of the state space trajectories x(t) to begin

with, and it seems to play an equally pivotal role for the variational system (perhaps unsurprisingly).

workhorse. These eigendecomposition algorithm typically take longer than an explicit time integrator such as RK4.
However, there exist iterative eigendecomposition algorithms that converge in O(N2), which is the same order as the
time integrators. Still, the variational system method performs quicker than the matrix exponent method in general if
speed is really an issue. There is also the option of using the first order approximation eJk∆t ' 1+ Jk∆t, or whatever
the chosen order is, to save some computation. This achieved results that just as accurate no matter the approach.

150

Lastly, we compare the sequential nature of the two calculations. The QR exploit has no

respect for ordering, and the successive QR method is completely the opposite. Yet, both seem to be

just as accurate holding everything else constant. However, the sequential nature of the successive

QR method means that everything needs to be performed in order, thus rendering any notions of

parallelization completely moot. The QR exploit method, on the other hand, can be parallelized with

little effort once the trajectory of the variational system Y (t) has been calculated. Unfortunately,

Lyapunov exponents do not require long histories of trajectories in the first place, which really limits

the usefulness of parallelization.

Overall, both these methods are very similar. Both have very similar run times and very

similar ease of implementation. The steps and tricks in the QR exploit method is rather involved, and

it is not clear exactly what is happening in that calculation except that it

E.5 Discrete-Time Systems

Discrete systems have distinct features that do not exhibit in their continuous counterparts,

but are otherwise nearly identical. To be specific, the discreteness here refers to the nature of time, not

a discrete set of states. The most prominent distinction of discrete systems is that chaos can exhibit

themselves in dimensions less than three and that system parameters are not required to transition

the system into chaos. In fact, discrete maps of dimension one is already capable of exhibiting chaos.

This property is attributed to the lack of smoothness in these discrete maps which may generate a

sudden ‘kick’ to the system. Discrete maps are generally described by a forward map, starting from

some initial condition x0.

xk+1 = F (xk) (E.39)

As discussed in section E.4.3, we do not need to use a variational system in order to calculate

the Lyapunov spectrum, but the formulation of the variational system for discrete time systems is

useful for understanding and interpreting the calculation. Note that below, the index k is for time

progression and the i or j are the spatial indices. These will be the augmented dynamics that describes

our variational system.

Yk+1 = LkYk ; (Lk)ij ≡
∂Fi
∂xj

∣∣∣∣
xk

; Y0 = 1 (E.40)

151

Previously, however, we had the following equations describing our variation system for the

continuous time case. These equations are nearly identical and involve the vector field ẋ = f(x) rather

than the forward map xk+1 = F (xk). The equations for the continuous system repeated here for ease

of comparison.

Yk+1 = eJk∆tYk ; Jij ≡
∂fi
∂xj

∣∣∣∣
x(t)

; Y0 = 1 (E.41)

Calculating the Lyapunov spectrum for discrete time systems still involves the same intuition,

that is we are looking for the exponential growth of neighboring trajectories within the system. The

(normalized) variational system method in E.4.1 and the successive QR method in E.4.3 will both

work, except for a simple replacement of with eJk∆t → Lk. Since discrete systems have direct access

to the forward map of the system as Yk+1 = LkYk, we can use successive QR method directly on

Lk without using it to generate the trajectories Yk. This renders the variational system method

completely redundant for discrete systems. When dealing with discrete time forward maps, it seems

that the successive QR method is the only game in town. Due to the time constraints and the limited

use case for the author’s work, we intentionally do no got into further detail on the discrete time

calculation of the Lyapunov spectrum. We also do not delve into the Lyapunov spectrum calculations

when only data is available [64].

152

F
Annealed HMC from a KAM Perspective

In this section, we will talk about KAM theory and then some of its implications from applied

to HMC and the data assimilation action in our approach. The full treatment of KAM theory is very

esoteric and has details that are far beyond the scope of its use for the purposes of this work. Some

of the details regarding the inequality bounds of KAM are very technical and almost impenetrable

to non-experts (including the author). However, we will be skipping over most of these details of the

theory as they are irrelevant to our use case. We will only focus on a small fraction of its implications.

As far as our use of KAM theory, it will suffice to summarize our use of the theory in one sentence:

“Almost all small perturbations to an integrable Hamiltonian dynamical system will

result in trajectories with persistent quasi-periodic motion.”

There is admittedly a lot of important details that are glossed over in this statement, and we

will not even attempt to address them all. It shall suffice to say that the magnitude of the perturbation

affects the fraction of trajectories that become quasi-periodic. These quasi-periodic trajectories trace

out the entire surface of a fixed torus. In comparison, the trajectories that fail to become quasi-

periodic do not trace out a fixed surface. They tend to have a phase space that is not conserved,

which means that these other trajectories reach a fix point or diverge. Such trajectories are destroyed

in the context of KAM theory. We shall pick up where we left off in Chapter 4 with the HMC action

including the annealing term ε.

153

H[X,P |Y] = S[X|Y] +
1

2
P>M−1P

=
1

2
‖X − Y ‖2Rmeas

+
1

2

∥∥P 2
∥∥
M−1︸ ︷︷ ︸

H0[X,P]

+
1

2

∥∥L+X − F (L−X)
∥∥2

Rmodel︸ ︷︷ ︸
εH1[X]

(F.1)

Recall the Hamiltonian that we constructed from the original data assimilation action S[X|Y]

by adding a term akin to kinetic energy. We split this Hamiltonian H[X,P |Y] into two parts, which

we call H0[X,P] and εH1[X]. The ε factor is artificially extracted from the definition of the norm

in order to draw similarities between KAM theory and the annealed HMC action. This dimensionless

factor ε can be viewed as the inverse characteristic length scale of the problem.

H0[X,P] =
1

2
‖X − Y ‖2Rmeas

+
1

2

∥∥P 2
∥∥
M−1

(F.2)

εH1[X] =
1

2
ε
∥∥L+X − F (L−X)

∥∥2

Rmodel
(F.3)

The resulting equation of motions is linear if taking only H0[X,P] into account, which is to

say that the trajectories are known for all time once initial conditions are specified. Specifically, these

linear dynamics correspond to noisy variations of trajectory X around the measured trajectories Y ,

one of these trajectories matches the ‘true’ trajectory. Through imposing the nonlinear term H1[X],

by gradually increasing ε, it becomes more clear which values of X best fits the data Y .

Ẋ =
∂H
∂P

=
∂H0

∂P
(F.4)

Ṗ = − ∂H
∂X

= −∂H0

∂X
− ε∂H1

∂X
(F.5)

From the point of view of KAM theory, our annealing technique increases ε, thereby increasing

the nonlinear coupling of the system. For values of ε sufficiently small1, most of the trajectories are

integrable, meaning that they will continue to explore phase space in a stable manner. Not only is

this annealing method stable from the KAM perspective, but the theory also states that the resulting

trajectories are quasi-periodic hence well-mixing.

1We do not provide an estimate in this work.

154

There seems to be some relationship between annealing and KAM theory that warrants addi-

tional exploration. One could plausibly explain the effectiveness of the annealing family of methods,

on a very specific set of problems, using KAM theory. At the very least, this provides some evidence

as the effectiveness of the annealing method applied to our data assimilation action.

155

Bibliography

[1] E. N. Lorenz, “Predictability: A problem partly solved,” in Proc. Seminar on predictability,

vol. 1, 1996.

[2] G. Evensen, Data assimilation: the ensemble Kalman filter, vol. 2. Springer, 2009.

[3] K. P. B. Chandra and D.-W. Gu, “Nonlinear filtering,” Cham, Switzerland: Springer, 2019.

[4] H. Abarbanel, Predicting the future: completing models of observed complex systems. Springer,

2013.

[5] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,”

Science, vol. 349, no. 6245, pp. 255–260, 2015.

[6] J. Pathak, A. Wikner, R. Fussell, S. Chandra, B. R. Hunt, M. Girvan, and E. Ott, “Hybrid

forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based

model,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 4, p. 041101,

2018.

[7] E. Kalnay, Atmospheric modeling, data assimilation and predictability. Cambridge university

press, 2003.

[8] O. Talagrand, “Assimilation of observations, an introduction,” Journal of the Meteorological

Society of Japan, vol. 75, no. 1B, pp. 191–209, 1997.

[9] H. D. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, “The analysis of observed

chaotic data in physical systems,” Reviews of modern physics, vol. 65, no. 4, p. 1331, 1993.

[10] D. Dürr and A. Bach, “The onsager-machlup function as lagrangian for the most probable path

of a diffusion process,” Communications in Mathematical Physics, vol. 60, no. 2, pp. 153–170,

1978.

[11] C. Gardiner, Stochastic methods, vol. 4. Springer Berlin, 2009.

[12] R. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum mechanics and path integrals. Courier

Corporation, 2010.

156

[13] J. C. Quinn, A path integral approach to data assimilation in stochastic nonlinear systems. Uni-

versity of California San Diego, 2010.

[14] J. Bröcker, “What is the correct cost functional for variational data assimilation?,” Climate

Dynamics, vol. 52, no. 1, pp. 389–399, 2019.

[15] J. M. Restrepo, “A path integral method for data assimilation,” Physica D: Nonlinear Phenom-

ena, vol. 237, no. 1, pp. 14–27, 2008.

[16] O. Zeitouni and A. Dembo, “A maximum a posteriori estimator for trajectories of diffusion

processes,” Stochastics: An International Journal of Probability and Stochastic Processes, vol. 20,

no. 3, pp. 221–246, 1987.

[17] N. Kadakia, D. Rey, J. Ye, and H. D. Abarbanel, “Symplectic structure of statistical variational

data assimilation,” Quarterly Journal of the Royal Meteorological Society, vol. 143, no. 703,

pp. 756–771, 2017.

[18] A. Dembo and O. Zeitouni, “Onsager-machlup functionals and maximum a posteriori estimation

for a class of non-gaussian random fields,” Journal of multivariate analysis, vol. 36, no. 2, pp. 243–

262, 1991.

[19] G. Evensen, “Sequential data assimilation with a nonlinear quasi-geostrophic model using monte

carlo methods to forecast error statistics,” Journal of Geophysical Research: Oceans, vol. 99,

no. C5, pp. 10143–10162, 1994.

[20] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of

state calculations by fast computing machines,” The journal of chemical physics, vol. 21, no. 6,

pp. 1087–1092, 1953.

[21] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,”

Biometrika, vol. 57, pp. 97–109, 04 1970.

[22] A. Gelman, W. R. Gilks, and G. O. Roberts, “Weak convergence and optimal scaling of random

walk metropolis algorithms,” The annals of applied probability, vol. 7, no. 1, pp. 110–120, 1997.

[23] D. Ceperley, “Metropolis methods for quantum monte carlo simulations,” in AIP Conference

Proceedings, vol. 690, pp. 85–98, American Institute of Physics, 2003.

157

[24] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid monte carlo,” Physics letters

B, vol. 195, no. 2, pp. 216–222, 1987.

[25] M. Betancourt, “A conceptual introduction to hamiltonian monte carlo,” arXiv preprint

arXiv:1701.02434, 2017.

[26] D. J. MacKay, D. J. Mac Kay, et al., Information theory, inference and learning algorithms.

Cambridge university press, 2003.

[27] R. M. Neal, Bayesian learning for neural networks, vol. 118. Springer Science & Business Media,

2012.

[28] R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of markov chain monte carlo,

vol. 2, no. 11, p. 2, 2011.

[29] H. Goldstein, C. Poole, and J. Safko, “Classical mechanics,” 2002.

[30] B. Leimkuhler and S. Reich, Simulating hamiltonian dynamics. Cambridge university press, 2004.

[31] N. Kadakia, “Hybrid monte carlo with chaotic mixing,” arXiv preprint arXiv:1604.07343, 2016.

[32] H. Yoshida, “Construction of higher order symplectic integrators,” Physics letters A, vol. 150,

no. 5-7, pp. 262–268, 1990.

[33] Z. Fang, A. S. Wong, K. Hao, A. J. Ty, and H. D. Abarbanel, “Precision annealing monte carlo

methods for statistical data assimilation and machine learning,” Physical Review Research, vol. 2,

no. 1, p. 013050, 2020.

[34] J. Ye, D. Rey, N. Kadakia, M. Eldridge, U. I. Morone, P. Rozdeba, H. D. Abarbanel, and J. C.

Quinn, “Systematic variational method for statistical nonlinear state and parameter estimation,”

Physical Review E, vol. 92, no. 5, p. 052901, 2015.

[35] J. E. Marsden and M. West, “Discrete mechanics and variational integrators,” Acta Numerica,

vol. 10, pp. 357–514, 2001.

[36] D. Rey, M. Eldridge, M. Kostuk, H. D. Abarbanel, J. Schumann-Bischoff, and U. Parlitz, “Ac-

curate state and parameter estimation in nonlinear systems with sparse observations,” Physics

Letters A, vol. 378, no. 11-12, pp. 869–873, 2014.

158

[37] J. Ye, N. Kadakia, P. J. Rozdeba, H. D. Abarbanel, and J. C. Quinn, “Improved variational

methods in statistical data assimilation,” Nonlinear Processes in Geophysics, vol. 22, no. 2,

pp. 205–213, 2015.

[38] W. G. Whartenby, J. C. Quinn, and H. D. Abarbanel, “The number of required observations in

data assimilation for a shallow-water flow,” Monthly weather review, vol. 141, no. 7, pp. 2502–

2518, 2013.

[39] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, “Using machine learning to replicate chaotic

attractors and calculate lyapunov exponents from data,” Chaos: An Interdisciplinary Journal of

Nonlinear Science, vol. 27, no. 12, p. 121102, 2017.

[40] M. Lukoševičius, “A practical guide to applying echo state networks,” in Neural networks: Tricks

of the trade, pp. 659–686, Springer, 2012.

[41] L. Grigoryeva and J.-P. Ortega, “Echo state networks are universal,” Neural Networks, vol. 108,

pp. 495–508, 2018.

[42] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-free prediction of large spatiotem-

porally chaotic systems from data: A reservoir computing approach,” Physical review letters,

vol. 120, no. 2, p. 024102, 2018.

[43] J. Huke, “Embedding nonlinear dynamical systems: A guide to takens’ theorem,” 2006.

[44] T. S. Parker and L. O. Chua, “Chaos: A tutorial for engineers,” Proceedings of the IEEE, vol. 75,

no. 8, pp. 982–1008, 1987.

[45] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E. Ott, “Reservoir observers: Model-free

inference of unmeasured variables in chaotic systems,” Chaos: An Interdisciplinary Journal of

Nonlinear Science, vol. 27, no. 4, p. 041102, 2017.

[46] L. Grigoryeva, A. Hart, and J.-P. Ortega, “Learning strange attractors with reservoir systems,”

arXiv preprint arXiv:2108.05024, 2021.

[47] Z. Lu, B. R. Hunt, and E. Ott, “Attractor reconstruction by machine learning,” Chaos: An

Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 6, p. 061104, 2018.

[48] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. Barbosa, “Next generation reservoir computing,”

Nature communications, vol. 12, no. 1, pp. 1–8, 2021.

159

[49] S. Boyd and L. Chua, “Fading memory and the problem of approximating nonlinear operators

with volterra series,” IEEE Transactions on circuits and systems, vol. 32, no. 11, pp. 1150–1161,

1985.

[50] L. Kocarev and U. Parlitz, “Generalized synchronization, predictability, and equivalence of uni-

directionally coupled dynamical systems,” Physical review letters, vol. 76, no. 11, p. 1816, 1996.

[51] L. Gonon and J.-P. Ortega, “Fading memory echo state networks are universal,” Neural Networks,

vol. 138, pp. 10–13, 2021.

[52] T. Lymburn, D. M. Walker, M. Small, and T. Jüngling, “The reservoir’s perspective on general-

ized synchronization,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 29, no. 9,

p. 093133, 2019.

[53] T. L. Carroll and L. M. Pecora, “Network structure effects in reservoir computers,” Chaos: An

Interdisciplinary Journal of Nonlinear Science, vol. 29, no. 8, p. 083130, 2019.

[54] D. E. Rumelhart and J. L. McClelland, Learning Internal Representations by Error Propagation,

pp. 318–362. MIT Press, 1987.

[55] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski, “A theoretical framework for back-

propagation,” in Proceedings of the 1988 connectionist models summer school, vol. 1, pp. 21–28,

1988.

[56] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444,

2015.

[57] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[58] H. D. Abarbanel, S. Shirman, D. Breen, N. Kadakia, D. Rey, E. Armstrong, and D. Margoliash,

“A unifying view of synchronization for data assimilation in complex nonlinear networks,” Chaos:

An Interdisciplinary Journal of Nonlinear Science, vol. 27, no. 12, p. 126802, 2017.

[59] L. Dieci, R. D. Russell, and E. S. Van Vleck, “On the compuation of lyapunov exponents for

continuous dynamical systems,” SIAM journal on numerical analysis, vol. 34, no. 1, pp. 402–423,

1997.

160

[60] Z.-M. Chen, K. Djidjeli, and W. Price, “Computing lyapunov exponents based on the solution

expression of the variational system,” Applied Mathematics and Computation, vol. 174, no. 2,

pp. 982–996, 2006.

[61] M. Sandri, “Numerical calculation of lyapunov exponents,” Mathematica Journal, vol. 6, no. 3,

pp. 78–84, 1996.

[62] K. Geist, U. Parlitz, and W. Lauterborn, “Comparison of different methods for computing lya-

punov exponents,” Progress of theoretical physics, vol. 83, no. 5, pp. 875–893, 1990.

[63] H. D. Abarbanel, R. Brown, and M. B. Kennel, “Local lyapunov exponents computed from

observed data,” Journal of Nonlinear Science, vol. 2, no. 3, pp. 343–365, 1992.

[64] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining lyapunov exponents from

a time series,” Physica D: nonlinear phenomena, vol. 16, no. 3, pp. 285–317, 1985.

161

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Vita
	Abstract of the Dissertation
	Introduction
	Motivations
	Problem Statement
	Outline and Structure

	I Model-based Methods
	Models, Data, and their Assimilation
	Model and Observations
	Twin Experiments and Self-Imposed Handicaps
	Dynamical Systems and State Estimates
	Probabilistic View of Dynamical Systems
	Markov, Chapman, and Kolmogorov
	Including Measurements
	Significance of the Action
	Summary and Interpretations
	Acknowledgments

	Evaluating Integrals
	Overview
	Laplace Method
	Original Usage
	Applied to the Data Assimilation Action
	Approach of the Numerical Scheme

	Energy Landscape and Search Space
	Summary and Further Directions
	Acknowledgments

	Monte Carlo Methods
	Introduction
	Metropolis, Hastings, and Rosenbluth
	Description of the Method
	Some Formalism
	Applied to the Data Assimilation Action

	Hamilton Monte Carlo
	Notation Change
	Motivations
	Using Hamiltonian Dynamics
	Resulting Algorithm

	Comparison and Remarks
	Acknowledgments

	Heuristics and Their Implications
	Annealing
	Introduction
	Applied to the Data Assimilation Action
	Plateauing of the Action
	Artificial Time

	Multiple-Start and Parallelization
	Remarks
	Acknowledgments

	Data Assimilation Results
	Method of Choice
	Details of the Setup
	Full State Measurements
	Partial State Measurements
	80% Measurements
	60% Measurements
	50% measurements
	40% measurements

	Conclusions
	Acknowledgments

	II Model-free Methods
	Reservoir Computing
	Disclaimer
	Introduction
	Structure
	Input Layer
	Reservoir Dynamics and Listening
	Training Output Layer and Estimation
	Echoing and Prediction

	Acknowledgments

	Results from Reservoir Computing
	Introduction
	Full State Measurements
	Partial State Measurements
	Different Versions of the Reservoir
	Reservoir Dynamics
	Form of Training Layer
	Form of Embedding
	Forward Integrator

	Further Directions
	Acknowledgments

	Synchronization in Reservoir Computing
	Generalized Synchronization
	Bridging to Reservoir Computing
	Acknowledgments

	III Appendix
	Path Integral Formulation
	Propagator
	Time-Slicing into a Path Integral
	Recovering the Schrodinger equation
	Wick Rotating into Statistical Mechanics

	Lagrange and Hamilton
	Stationary Action
	Lagrangian Mechanics
	Hamiltonian Mechanics
	Poisson Brackets and Hamiltonian Flow
	Symplectic Structure

	An Attempt at Fixing Backpropagation
	The Derivations of Backpropagation
	Deep Neural Network Loss Function
	Rumelhart's Backpropagation
	Vanishing Gradient and Lyapunov Exponents
	Search Space and Alternative Cost Function
	Remarks

	Dynamical Initialization
	Lyapunov Spectrum
	Introduction
	Largest Lyapunov Exponent
	Continuous Time Systems
	Variational System and Volume Growth
	Quick Aside: QR Decomposition
	The Entire Spectrum

	Practical Calculations
	Normalized Variational System
	QR Exploit
	Using Matrix Exponents (Successive QR Method)
	Comparison of Methods

	Discrete-Time Systems

	Annealed HMC from a KAM Perspective
	References

