
UC Berkeley
UC Berkeley Previously Published Works

Title
Hybrid Imitative Planning with Geometric and Predictive Costs in Off-road Environments

Permalink
https://escholarship.org/uc/item/2zj8n4t7

Authors
Dashora, Nitish
Shin, Daniel
Shah, Dhruv
et al.

Publication Date
2022-05-27

DOI
10.1109/icra46639.2022.9811540

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2zj8n4t7
https://escholarship.org/uc/item/2zj8n4t7#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Hybrid Imitative Planning with
Geometric and Predictive Costs in Off-road Environments

Nitish Dashora∗1, Daniel Shin∗1, Dhruv Shah1, Henry Leopold2,3, David Fan2,4

Ali Agha-Mohammadi2, Nicholas Rhinehart1, Sergey Levine1
1UC Berkeley, 2NASA Jet Propulsion Laboratory, 3University of Waterloo, 4Georgia Institute of Technology

Fig. 1: Our approach combines a learning-based method and a geometry-based planner to plan obstacle-free trajectories for a Husky robot in
a deployment area with obstacles (trees, grass, bushes) as seen in (a). An example navigation task is shown in (b), where the robot (marked in
red) must navigate to the goal (marked in green) while avoiding obstacles on its path. On its path to the goal, the robot often encounters scenes
like (c) where there are non-traversable elements like shrubs (highlighted in cyan) and novel obstacles like a wall. Learning-based methods
successfully avoid previously seen obstacles but can struggle with novel obstacles, leading to a collision with the wall (d). While a geometric
approach can avoid this by predicting the collision, it is unable to reason about the traversability of large shrubs that are hard to identify (e).
The cyan markers are for illustration and are not available to the robot. Our approach, HIP, combines attributes from both these methods and
successfully plans a collision-free trajectory (f). Videos of our results are hosted at sites.google.com/view/hybrid-imitative-planning/.

Abstract—Geometric methods for solving open-world off-road
navigation tasks, by learning occupancy and metric maps, provide
good generalization but can be brittle in outdoor environments
that violate their assumptions (e.g., tall grass). Learning-based
methods can directly learn collision-free behavior from raw ob-
servations, but are difficult to integrate with standard geometry-
based pipelines. This creates an unfortunate conflict – either use
learning and lose out on well-understood geometric navigational
components, or do not use it, in favor of extensively hand-
tuned geometry-based cost maps. In this work, we reject this
dichotomy by designing the learning and non-learning-based
components in a way such that they can be effectively combined
in a self-supervised manner. Both components contribute to
a planning criterion: the learned component contributes pre-
dicted traversability as rewards, while the geometric compo-
nent contributes obstacle cost information. We instantiate and
comparatively evaluate our system in both in-distribution and
out-of-distribution environments, showing that this approach
inherits complementary gains from the learned and geometric
components and significantly outperforms either of them.

I. INTRODUCTION

How can we enable a robot to swiftly traverse open-world
environments while minimizing heuristic and time-intensive

hand-engineering, like those depicted in Fig. 1? The robot
should receive coarse goal direction from a human supervisor,
and use this direction, along with its sensor suite and prior
experience, to make its own decisions about what actions to
take to reach the destination. A solution to this problem would
enable users to direct robots across unfamiliar territory without
requiring them to significantly change or tune components of
the system. For example, imagine a rescue worker tasking a
search-and-rescue robot to quickly search a series of locations
in an unmapped dense forest. A major challenge to developing
such a system is enabling it to both draw on prior experience
and adapt its behavior to new environments. While learning
is a powerful way to deal with open-world environments,
most learning-based methods studied are difficult to integrate
with non-learning-based navigation pipelines. This creates an
unfortunate “either-or" dichotomy – either use machine learning
and re-design the entire navigation stack around it, or do not
use it, in favor of extensively hand-tuned geometry-based cost
maps and structured sensors. The key idea of our approach
is to construct an algorithm by designing the learning and
non-learning-based components in a way such that they can be

effectively and easily combined and created without labeling
any data. Fig. 1 depicts this synthesis.

One classic approach is to perform online geometric mapping
and traversability estimation and then use these estimates, along
with a hand-tuned cost function, for planning feasible paths [1–
4]. With careful design and incorporation of prior knowledge
into the decision-making pipeline, these approaches, which we
term “geometry-based” and “geometric costmap”-based, are
a standard and performant approach. Their main drawback,
however, is a general inability to automatically tune the costmap
parameters with the inclusion of additional experience. For
example, if the costmap assumes all densely-populated points
correspond to rigid and untraversable obstacles, traversable
tall grass may cause the robot to be too conservative and
avoid the grass; if a height threshold is included to compensate
for this effect, then small, untraversable obstacles like rocks
may cause the robot to be too aggressive and get stuck on
the rocks. Another approach to robot navigation is learning-
based, e.g. goal-conditioned imitation learning and policy-based
reinforcement learning, yet these are difficult to integrate with
real-world robotic systems because they are inscrutable and
directly output actions. Can we build on both lines of work by
addressing their drawbacks in a principled way?

The main insight in our work is that, instead of trying to
reconcile conflicting actions commanded by geometry-based
and learning-based components, we can instead utilize both
components to contribute terms to a shared navigational cost
function. This cost function represents the hypotheses of both
methods about which future trajectories will or will not lead to
collisions. Once a shared cost function combining geometry-
based and learning-based reasoning has been produced, a
standard planning method can decide on the best path to take
informed by this cost. We summarize this idea, and an intuition
for why the geometry-based and learning-based components
might provide complementary strengths, in Fig. 2.

We contribute a framework to combine learned costs with
a geometric costmap into a shared navigational cost function,
enabling a system that can leverage the ability of learning-based
methods to pick on subtle cues from high-dimensional obser-
vations and the reliability and generalization capabilities of
geometric methods. We instantiate and empirically evaluate our
system in a variety of in-distribution and novel environments
in a high-fidelity simulator. We find that our hybrid approach is
able to combine the benefits of its components and out-perform
either of them in challenging domains, significantly improving
performance in out-of-distribution scenes.

II. HYBRID IMITATIVE PLANNING WITH
GEOMETRIC AND PREDICTIVE COSTS

In our problem setting, a mobile robot receives high-
dimensional sensory observations and global localization infor-
mation, and is tasked with using these sources of information
to navigate to a provided goal in an unmapped, off-road
environment partly populated with untraversable terrain (e.g.
large and small obstacles, steep hills). Let ot = (it, lt,xt)
denote the observations that are available to the robot, where

Fig. 2: Illustration of example trajectory plan costs: The geometric
costmap approach is adept at identifying obstacles like large trees and
rocks, but it may fail to assign high costs to terrain with impediments
that are only visually perceivable, since the LiDAR input often misses
small obstacles. The learning-based planner uses its prior experience
to reason about the traversability of objects and terrain with which it is
experienced, such as traversable grass, small impassable objects, and
trees. However, it may make mistakes when it encounters drastically
novel obstacles, such as painted walls or automobiles. By designing
each of these components in a way that is amenable to combination,
the hybrid planner can accrue benefits from each of its components.
In this example, it adeptly identifies large obstacles and incorporates
the data-driven experience from the learned planner to estimate that
the direct plan across the small, compliant obstacles is traversable.

xt ∈ R3 is the robot’s position estimated by odometry,
it ∈ [0, 1]Hi×Wi×4 is an RGB-D image, and lt ∈ RNt×3

is a point cloud provided by a LiDAR sensor. Let d ∈ R2

denote the provided goal. Let τ ∈ R2H denote a trajectory of
potential future positions: τ .

= xt+1:t+H , and τ i denote xt+i.
Our main idea is to design a system that allows learned

models to easily integrate with standard geometric reconstruc-
tion and planning pipelines. Learned costs are represented as
a function of trajectories and learned via density estimation to
imitate collision-free data, and geometric costs are represented
as a function of positions, which can be composed into a
function of trajectories, and then combined into a combined
single planning criterion. Finally, destination directives are
represented as positions and included as a final cost. We term
our method Hybrid Imitative Planning (HIP), and present a
system diagram in Fig. 3. While we expect integrating these
components to be generally useful, we have some intuition
for specific use cases. Geometric costmap-based planning may
confer safety around large, easily-sensed objects, like boulders
and trees, yet it cannot incorporate subtle visual cues, and more
generally, cannot be improved from additional robot experience.
Learning-based planning may offer the capability to identify
terrain directly estimated as traversable from experience, such
as grass and small bushes, yet it may be risky around objects
that appear significantly different than those in the training data.
We expect the system to be zero-shot robust to objects that
appear significantly different from the training data and able
to identify subtle aspects of the terrain that afford or inhibit
traversability. In this section, we present an abstract overview
of how geometric traversability costs can be integrated with
learned models, and then present a specific instantiation of a
navigation system based on this design in Section III.
Designing geometric costmaps. We assume the geometry-
based component is available as a costmap: Ct(·) : R2 7→
R. This decision enables interpretable design of geometric
heuristics g(lt) = Ct that process the LiDAR into a function

Fig. 3: HIP system diagram: A dataset of trajectory demonstrations
is used to learn a model of traversability and behavior. The model is
combined with a geometric costmap into the hybrid planner, which
plans a trajectory towards a received goal.

of positions. Denote costmap generation and evaluation at xt
as Ccostmap(xt;o≤t)

.
= g(lt)(xt); see Section III for details.

Designing learned costs. In order to combine geometric and
learned costs, we must construct a learner that processes the
high-dimensional sensor data to assign costs to trajectories.
Our learning-based costs aim to predict whether a given
trajectory would be collision-free – whether it corresponds
to a traversable path. Formally, we construct the learning-based
component as a conditional probability density function of
trajectories τ : q(τ |o≤t) : R2H 7→ R, and learn q from data
that excludes collisions. By satisfying this assumption and
training q via a maximum likelihood objective, q should assign
high values to a subset of the traversable trajectories and
low values to this subset’s complement, which will include
untraversable trajectories. Given q, we can construct costs
as Clearned(τ ;o≤t)

.
= − log q(τ |o≤t). Note that because q is a

function of trajectories, not positions, it has a higher modeling
capacity than if it were parameterized by a costmap. We defer
further discussion of how we learn q to Section III.
Designing directive costs. In order to direct the robot to
the final desired destination (d), we incorporate a cost that
encourages forward progress towards the final destination.
Denote this cost Cdirective(τ ;o≤t,d). We defer discussion of
how we construct Cdirective to Section III.
Combining geometric costmaps and learned costs. We
design a receding-horizon state-space planner from Eq. (1):

τ ∗
.
=argmin

τ∈R2H

L(τ ;o≤t,d)=
[
Cdirective(τ ;d)+ (1)

(1− φ)Clearned(τ ;o≤t) + φ

H∑
i=1

Ccostmap(τ i;o≤t)
]
.

Given a planned trajectory, τ , we use it to compute at as a
simple position-tracking PID controller, written as at = f(τ).

III. INSTANTIATING THE SYSTEM

Implementing learned costs. As previously discussed, our
learned costs are designed to be a conditional probability
density function of future trajectories, q(τ |o≤t) fit to data
that excludes collisions. We implement q as a “Deep Imitative
Model” [5]. We adapted the open-source PyTorch implementa-
tion of imitative models released in Filos et al. [6] and adapted
the input to use RGB-D. This model uses a MobileNetV2

encoder [7]. During training, we follow the method of Rhinehart
et al. [8] to induce an upper-bound, η, on q by perturbing the
training trajectories with a Gaussian. We defer further data-
dependent implementation details, including a full table of
hyperparameters, to Section V.
Implementing geometric costmaps. We use a LiDAR sensor
to produce a local point cloud, from which a terrain traversal
cost is computed. We use the “costmap_2d” implementation
provided by ROS to compute a discrete 2D costmap for the
ground plane, denoted C ′costmap [9]. We apply a nonlinear trans-
formation to C ′costmap so that its maximum value corresponds
to η/H. This ensures

∑H
i=1 Ccostmap(τi) ≤ maxτ q(τ |o≤t),

which makes tuning the φ parameter simpler, as the costs
are roughly in the same range. This transformation is given by
Ccostmap((x, y)) = α · expC′costmap((x,y))/

∑
x′,y′ expC

′
costmap((x

′,y′)).
Implementing directive costs. Similar to the region goals
described by Rhinehart et al. [5], we designed a directive cost
that penalizes τ with cost δ if it does not end within a particular
region a short distance away from the robot, in the direction
of d. We construct this region as a rectangle with width 2m,
center axis in the direction of d, offset towards d by 3m.
Fast planning. In order to quickly solve the optimization
problem in Eq. (1), we employ a trajectory library with size
with K = 200. The future trajectories (described in Section V
were clustered with k-means, and the centroid, τ̄ k, of each
cluster was included in a library, K = {τ̄ k}Kk=1. During
inference, we perform approximate optimization of Eq. (1)
using argminτ∈K L(τ ;o≤t,d).
System and environment overview. We instantiate our system
on a Clearpath Husky UGV in a photorealistic outdoor
navigation simulator. The sensor suite includes a 6-DoF IMU, a
GPS unit for approximate global position estimates, and wheel
encoders to estimate local odometry. We added a forward-facing
wide field-of-view RGB-D camera and a LiDAR sensor. During
data collection and evaluation, we heuristically detect collisions
using IMU and odometry data. The environment consists of
an obstacle-rich, enclosed geofence where dense rigid trees,
bushes, and traversable tall grass are scattered throughout.
While the geometric costmap may correctly identify trees as
hazardous, it can fail to disambiguate traversable grass and
untraversable bushes. Furthermore, it does not reason about
other terrain properties that may lead to collision, such as the
terrain slope. In order for the robot to succeed, it must carefully
navigate through dense obstacles over traversable terrain.

IV. RELATED WORK

Geometry-based goal-directed navigation. Existing meth-
ods for traversability estimation include geometry-based,
appearance-based, and proprioceptive systems, as categorized
by Papadakis [4]. Geometry-based methods build a 2.5D or
3D terrain map that is used to extract features, such as the
maximum, minimum, and variance of the height and slope
of the terrain [10, 11]. Planning algorithms for such methods
can take into account the stability of the robot on the terrain
[2, 12]. Since sensor and localization uncertainty can play a
large role in the construction of environment maps, various

HIP (ours)

Learned Cost

Geometric Costmap

Behavior Cloning
Random

Straight
0.0

0.2

0.4

0.6

0.8
N

or
m

al
iz

ed
S

uc
ce

ss
R

at
e

HIP (ours)

Learned Cost

Geometric Costmap
Random

Straight
0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

S
uc

ce
ss

R
at

e

Fig. 4: Goal-direction navigation success rates: Our hybrid ap-
proach, HIP, improves the task performance to the next-best approach
by over 10% in the in-distribution environment (Left) and over 80%
in the out-of-distribution environment (Right).

methods exist for estimating the probability distributions of
states based on the kinematic model of the vehicle and the
terrain height uncertainty [3, 13]. For example, Fan et al. [1]
construct distributions of traversability costs for risk-aware
planning. These approaches rely on hand-crafted models that
often rely on simplifying assumptions, and may not consider the
compressibility or compliance of geometric features, especially
with respect to vegetation [14]. In contrast, our hybrid approach
allows us to leverage geometry-based goal-directed navigation
in tandem with a learned model, which enables our approach to
overcome misspecifications of the geometry-based heuristics.
Learning-based goal-directed navigation. A variety of
learning-based methods have studied the acquisition of goal-
directed behavior, broadly classed as imitation learning
(IL) [13, 15–18] and reinforcement learning (RL) [19–21].
Goal-conditioned IL typically requires goals to be specified
during training and do not extend well beyond demonstrations.
A drawback to these more general IL and RL systems
is that they are difficult to interpret and incorporate into
existing geometry-based goal-directed navigation pipelines.
Planning and navigation in unstructured environments can
be greatly improved by learning environment traversability
using prior experience, but previous approaches to explicitly
representing environment traversability require expensive hu-
man supervision or traversability heuristics [22–25]. Recent
progress in using topological graphs to implicitly reason about
traversability [18, 26–28] gives a promising way to learn from
prior experience but has not been demonstrated for long-range
navigation in complex, unstructured environments. In contrast,
our hybrid approach employs a form of self-supervised learning-
based explicit trajectory traversability estimation in tandem
with geometry-based positional traversability estimation, which
enables our approach to more robustly deal with previously-
unseen complex obstacles and terrains.

V. EXPERIMENTS

We designed our experiments to answer the following
questions: Question 1: Can our combined approach achieve
collision-avoidance and navigation performance superior to its
constituent components? Question 2: How does varying input
modality and component weighting affect HIP?

To answer these questions, we measure the rate of naviga-
tional success for randomized start-goal pairs in two different
areas (in-distribution) in the simulator (which was described in
Section III). This success rate metric quantifies the performance

of the model when globally directed to a determined goal;
specifically, how often it succeeds in reaching the goal un-
harmed. We report a normalized version of this metric relative
to the performance of a global planner (ROS’s move_base
[9]). The planner operates with a linked coarse-grained global
obstacle map and fine-grained local map obtained from LiDAR-
based mapping and achieved a success rate of 0.72. This global
planner failed sometimes for several reasons: sometimes leading
the robot onto hills on which it capsized, sometimes spawning
inside obstacles or areas in which it was trapped, and sometimes
colliding with undetectable hazards like water puddles and
small ditches. This planner violates the problem assumption
of deployment to an unmapped environment.

Towards Question 1, we expect the geometric costmap
method to struggle with smaller untraversable obstacles, thus
affecting its capability to efficiently navigate given a global
direction. We expect the learner, on the other hand, to be able to
generate sequences of movement through areas that are percep-
tually similar to traversable scenes in the training data. Since
any learned model is susceptible to errors under distributional
shift, we might expect the learner to sometimes fail to produce
collision-free trajectories when it encounters obstacles that are
visually very different from those seen in the training data.
Finally, we expect our proposed hybrid approach to harness the
strengths of its components to outperform them with minimal
hand-engineering effort. We expect the improvement to result
primarily from superior obstacle-avoidance behavior.

Towards Question 2, we first investigate the effect of φ,
which controls the importance of the component costs on the
planning criterion (Eq. (1)). By varying φ to identify the optimal
value, φ∗, we determine if they complement each other (φ∗ ∈
(0, 1)), or whether one dominates (φ∗ ∈ {0, 1}). Furthermore,
through the ablation, we can understand the importance of each
sensor; we expect the learner’s performance to be maximized
when all sensor modalities are included.
Baselines. Beyond the components of our method, we include
three other baselines (one standard, two naïve) to further
contextualize our system’s performance. Behavior Cloning
(BC) baseline: We trained a goal-conditioned BC baseline
using the same data the learner used, as well as a nearly
identical neural-network architecture to that of the learner.
The BC baseline is trained to directly predict a control given
a provided goal, rather than a probability density function
over trajectories. Straight baseline: In order to contextualize
the importance of reactivity to perceptual cues, we include
a baseline that plans an action to track the straight-line
segment from the robot to the goal. This baseline does not
process the perceptual data, and therefore cannot react to
obstacles. Random baseline: this baseline uniformly samples
actions from the robot’s discretized action space, which further
contextualizes the difficulty of the problem.
Data collection and model learning. We performed the
following steps to automatically collect training data in the
simulator. First, we created a geofence and a generated a
set of random starting poses within it. Next, we randomized
the robot’s starting pose among this set and drove it with

Fig. 5: Example overhead and frontal HIP rollouts: (a) The robot navigates through grass and avoids trees. (b) The robot navigates
between trees and shrubs. (c) The robot avoids a wall and a shrub while traversing tall grass. (d) The robot traverses grass and between trees.

Method Normalized Success Rate

Learned Cost-only, RGB-D input 0.76
Learned Cost-only, RGB input 0.60
Learned Cost-only, Depth input 0.65

TABLE I: Ablation results: We observe that both RGB and Depth
information are helpful to the Learner.

“sticky” (executed for multiple frames) random actions. As per
our method’s data requirements described in Section II, we
automatically removed sequences that resulted in collisions.
Although the explicit collision data could be employed to
refine the model, we found this method to be effective even
when the collision data was discarded entirely. Collisions
were heuristically identified in three different ways, and the
robot was randomly respawned after any collision. The first
heuristic is a stuck collision, which triggers when the robot
is stationary for over 4 seconds. The second is a trapped
collision, which triggers when the robot does not move over
3m over a 10s period, which prevents tight circular movement
or very slow motion. The final heuristic is a capsized collision,
which uses the IMU to identify when the robot is capsized.
As part of each recorded positional trajectory, RGB-D and
odometry data was recorded. To create the set of examples
for training, the data was postprocessed by subsampling at
5Hz. Each example uses 10 past timesteps and a single
frame of RGB-D visual input, and is trained to predict
H = 10 timesteps of future positions via a maximum likelihood
objective. Over 200k examples were collected, with which our
Learner was trained to maximize the likelihood of the ground
truth odometry positions conditioned on the past odometry
and visual information: maxθ E(o≤t,τ) log qθ(τ |o≤t). Table II
summarizes the hyperparameters of our method.
Experimental setup. The simulator we employed in our
experiments was described in Section III. To measure success
rate, sgoalrate, the robot was randomly spawned 300 times in

Hyperparam. Value Meaning

fSim 30Hz Simulator framerate
|D| ∼ 200k Dataset size
fτ 5Hz Trajectory framerate
H 10 Learner’s prediction horizon
Hpast 10 Learner’s input horizon

Hi ×Wi 100× 100 Cropped RGB-D image dimensionality
B 32 Minibatch size
ε 0.001 Learning rate
σ 0.01 Scale of the training perturbation
η 64 σ-induced upper-bound of q(τ |o≤t)
α 6.4 Costmap scaling parameter
φ∗ 0.75 Final planner cost balance
K 200 Trajectory library size
fL 1Hz Replanning frequency

TABLE II: Hyperparameters used in our experiments.

the geofence with a goal at least 10m away. A constant seed
was utilized for generating start and goal points across each
method. We conducted this experiment in two environments:
(1) the environment from which data was collected, and (2) an
out-of-distribution environment containing novel obstacles.
Results analysis. Our primary results are shown in Fig. 4.
The naïve baselines – Random and Straight – illustrate the
difficulty of the problem. We find our method to be the
most performant. The Learner significantly outperforms the
Behavioral Cloning baseline, as it represents multiple possible
futures and defers goal-conditioning until test time, when the
planner can select the most appropriate trajectory for the given
goal. The Geometric Costmap outperforms the naïve baselines,
and performs similarly to BC. It cannot independently model
traversability for rigid objects shorter than grass, such as bushes
or rocks, but is adept at identifying areas with larger, more
distinguishable untraversable objects. Table I contains the result
of the ablation analysis. The RGB-D Learner outperformed
both RGB and Depth alone, thus illustrating the significance
of both modalities in determining traversability. This gap is
further widened in out-of-distribution environments, where the

Fig. 6: Qualitative results on six example scenes: We visualize the trajectory library for the different methods and highlight the plans
from each component in green. Methods which utilize a geometric costmap have an overlaid map where black represents high cost and gray
represents low cost as shown in the right color map. All trajectories are color coded by their geometric cost as shown in the left color map.
The left three scenes are out-of-distribution while the right three scenes are in-distribution. Since the geometric costmap cannot forecast the
future, it may sometimes lead into obstacles just outside the planning horizon. When out of distribution, the learned planner fails to recognize
unseen obstacles and can cause collision. Our hybrid planner combines the benefits of each component to navigate successfully.

Fig. 7: Success rate on varying φ: When no cost is incorporated
(φ = 0), our method purely relies on learning; when the learned
component is removed (φ = 1), our method purely relies on the
costmap. Empirically analyzing a range of φ suggests that combining
the components with φ = 0.75 results in the best performing system.

learned costmap suffers due to unreliable predictions.
Fig. 7 depicts the results of the φ hyperparameter sweep,

which affirm the efficacy of both components, and show that
multiple φ values are performant. In Fig. 5, we show examples
of our method navigating dense obstacles; we observed that
it is capable of winding through complex areas with many
obstacles if an open path exists. In Fig. 6, a set of qualitative
examples for our method, the Learner, and the Costmap are
depicted. In these examples, we often observe the Costmap to
identify a subset of the impassable obstacles, while the Learner
refines the remaining viable paths to account for previous
odometer positions and objects perceived in the RGB-D image
(which may be undetected by LiDAR). This results in the most

effective navigation around visually perceivable obstacles.

VI. DISCUSSION

We proposed HIP, a method designed to flexibly incorporate
learning-based and geometry-based components into a single
cost function for goal-directed navigation in open-world
off-road environments. We evaluate HIP in a high-fidelity
simulator, and find that HIP shows significant improvement
over both of its constituent components, as well as baselines.
Ablations of sensory inputs confirm the efficacy of both RGB
and depth data to the system. A hyperparameter sweep of
the primary parameter illustrates the existence of multiple
performant values. The effectiveness of our approach illustrates
that both learning-based and geometry-based components for
autonomous navigation can be integrated effectively if they
contribute distinct but complementary terms to a shared cost
function. That is, instead of sharing control between different
types of methods, we simply add their contributions to a cost
function used by a standard model-predictive control method.
This approach suggests promising directions for future work,
integrating other types of learned models, as well as additional
sensory modalities. Furthermore, since our learned costs can
be integrated with arbitrary goal representations into a standard
planner, a promising direction is to further study other types
of objectives that can be accomplished with our method.
Acknowledgements This research was supported by the Office
of Naval Research, DARPA Assured Autonomy, and ARL
DCIST.

REFERENCES

[1] D. D. Fan, K. Otsu, Y. Kubo, A. Dixit, J. Burdick, and
A.-A. Agha-Mohammadi, “Step: Stochastic traversability
evaluation and planning for safe off-road navigation,”
arXiv preprint arXiv:2103.02828, 2021.

[2] R. Thakker, N. Alatur, M. Paton, K. Otsu, O. Toupet, and
A.-a. Agha-mohammadi, “Autonomous off-road naviga-
tion over extreme terrains with perceptually-challenging
conditions,” in Experimental Robotics: The 17th Interna-
tional Symposium. Springer Nature, p. 161.

[3] K. Otsu, G. Matheron, S. Ghosh, O. Toupet, and M. Ono,
“Fast approximate clearance evaluation for rovers with
articulated suspension systems,” Journal of Field Robotics,
vol. 37, pp. 768–785, 2020.

[4] P. Papadakis, “Terrain traversability analysis methods
for unmanned ground vehicles: A survey,” Engineering
Applications of Artificial Intelligence, vol. 26, no. 4, pp.
1373–1385, 2013.

[5] N. Rhinehart, R. McAllister, and S. Levine, “Deep imita-
tive models for flexible inference, planning, and control,”
in International Conference on Learning Representations,
2020.

[6] A. Filos, P. Tigas, R. McAllister, N. Rhinehart, S. Levine,
and Y. Gal, “Can autonomous vehicles identify, recover
from, and adapt to distribution shifts?” in International
Conference on Machine Learning (ICML), 2020.

[7] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 4510–
4520.

[8] N. Rhinehart, K. M. Kitani, and P. Vernaza, “R2p2: A
reparameterized pushforward policy for diverse, precise
generative path forecasting,” in Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2018, pp.
772–788.

[9] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, A. Y. Ng et al., “Ros: an open-
source robot operating system,” in ICRA workshop on
open source software, vol. 3, no. 3.2. Kobe, Japan, 2009,
p. 5.

[10] J. Lee, C. Pippin, and T. Balch, “Cost based planning
with rrt in outdoor environments,” in 2008 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems.
IEEE, 2008, pp. 684–689.

[11] S. B. Goldberg, M. W. Maimone, and L. Matthies,
“Stereo vision and rover navigation software for planetary
exploration,” in IEEE Aerospace Conference. IEEE,
2002.

[12] A. Haït, T. Simeon, and M. Taïx, “Algorithms for rough
terrain trajectory planning,” Advanced Robotics, vol. 16,
no. 8, pp. 673–699, 2002.

[13] S. Ghosh, K. Otsu, and M. Ono, “Probabilistic kinematic
state estimation for motion planning of planetary rovers,”
in IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2018, pp. 5148–5154.
[14] M. McCullough, P. Jayakumar, J. Dasch, and D. Gorsich,

“The next generation nato reference mobility model
development,” Journal of Terramechanics, vol. 73, pp.
49–60, 2017.

[15] A. Dosovitskiy and V. Koltun, “Learning to act by
predicting the future,” 2017.

[16] F. Codevilla, M. Müller, A. López, V. Koltun, and
A. Dosovitskiy, “End-to-end driving via conditional
imitation learning,” 2018.

[17] Y. Ding, C. Florensa, M. Phielipp, and P. Abbeel,
“Goal-conditioned imitation learning,” arXiv preprint
arXiv:1906.05838, 2019.

[18] D. Shah, B. Eysenbach, G. Kahn, N. Rhinehart, and
S. Levine, “ViNG: Learning Open-World Navigation
with Visual Goals,” in IEEE International Conference
on Robotics and Automation (ICRA), 2021.

[19] L. P. Kaelbling, “Learning to achieve goals,” in IJCAI.
Citeseer, 1993, pp. 1094–1099.

[20] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Uni-
versal Value Function Approximators,” in International
Conference on Machine Learning (ICML), 2015.

[21] F. Sadeghi and S. Levine, “CAD2RL: Real Single-Image
Flight Without a Single Real Image,” in Robotics: Science
and Systems (RSS), 2017.

[22] I. Kostavelis, L. Nalpantidis, and A. Gasteratos, “Su-
pervised traversability learning for robot navigation,” in
Towards Autonomous Robotic Systems, R. Groß, L. Alboul,
C. Melhuish, M. Witkowski, T. J. Prescott, and J. Penders,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 289–298.

[23] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella,
and A. Giusti, “Learning ground traversability from
simulations,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, p. 1695–1702, Jul 2018. [Online]. Available:
http://dx.doi.org/10.1109/LRA.2018.2801794

[24] A. Howard, M. Turmon, L. Matthies, B. Tang, A. An-
gelova, and E. Mjolsness, “Towards learned traversability
for robot navigation: From underfoot to the far field,” J.
Field Robotics, vol. 23, pp. 1005–1017, 2006.

[25] D. D. Fan, A.-a. Agha-mohammadi, and E. A. Theodorou,
“Learning risk-aware costmaps for traversability in chal-
lenging environments,” arXiv preprint arXiv:2107.11722,
2021.

[26] A. Francis, A. Faust, H. T. L. Chiang, J. Hsu, J. C. Kew,
M. Fiser, and T. W. E. Lee, “Long-Range Indoor Navi-
gation With PRM-RL,” IEEE Transactions on Robotics,
2020.

[27] D. Singh Chaplot, R. Salakhutdinov, A. Gupta, and
S. Gupta, “Neural topological slam for visual navigation,”
in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[28] D. Shah, B. Eysenbach, N. Rhinehart, and S. Levine,
“Rapid Exploration for Open-World Navigation with
Latent Goal Models,” Proceedings of the Conference on
Robot Learning, 2021.

http://dx.doi.org/10.1109/LRA.2018.2801794

	Introduction
	Hybrid Imitative Planning with Geometric and Predictive Costs
	Instantiating the System
	Related Work
	Experiments
	Discussion

