Lawrence Berkeley National Laboratory

Recent Work

Title

BIS(PENTAMETHYLCYCLOPENTADIENYL) YTTERBIUM (II) AS A LEWIS ACID AND AN ELECTRON-TRANSFER LIGAND; PREPARATION AND CRYSTAL STRUCTURE OF [Yb(C5Me5)2 (u -OC)2Fe(C5H4Me)]2

Permalink https://escholarship.org/uc/item/2zk387dj

Authors Boncella, J.M. Andersen, R.A.

Publication Date

1986-08-01

-BL-21980

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

LAWRENCE LAWRENCE BERKELEY LABORATORY SEP 1 6 1986

Materials & Molecular **Research Division**

LIBRARY AND

DOCUMENTS SECTION

Submitted to Inorganic Chemistry

BIS(PENTAMETHYLCYCLOPENTADIENYL) YTTERBIUM (II) AS A LEWIS ACID AND AN ELECTRON-TRANSFER LIGAND; PREPARATION AND CRYSTAL STRUCTURE OF $[Yb(C_5Me_5)_2(\mu-OC)_2Fe(C_5H_4Me)]_2$

J.M. Boncella and R.A. Andersen

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Bis(Pentamethylcyclopentadienyl) Ytterbium (II) as a Lewis Acid and an Electron-Transfer Ligand; Preparation and Crystal Structure of $[Yb(C_5Me_5)_2(\mu-OC)_2Fe(C_5H_4Me)]_2$

James M. Boncella and Richard A. Andersen*

Chemistry Department and Materials and Molecular Research Division of Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

*Address correspondence to this author at Chemistry Department, UCB.

ABSTRACT

The divalent ytterbium metallocene, $Yb(C_5Me_5)_2(OEt_2)$, reacts with $M_2(C_5H_4R)_2(CO)_4$ to give dimers of composition $M_2(C_5H_4R)_2(CO)_4Yb_2(C_5Me_5)_4$, where M is Fe and R = H, Me, and Me₃Si or M is Ru and R = Me₃Si. X-Ray crystallographic studies with M = Fe and R = Me, show that the molecule is a centrosymmetric dimer of the structure $[(Me_5C_5)_2Yb(\mu-OC)_2(FeC_5H_4Me)]_2$. The space group is $P2_1/n$ with a = 10.6069(15)Å, b = 23.4930(31)Å, c = 10.8730(20)Å, β = 92.041(13)°, V = 2707.7(13)Å³, and Z = 2. In an earlier paper, we outlined an approach for using the divalent metallocene, $Yb(C_5Me_5)_2(OEt_2)$, as a Lewis acid and as a one electron-transfer reagent towards transition metal carbonyls, giving compounds in which the carbon monoxide ligand bridges the transition metal and lanthanide metal atoms (M-CO-Yb).¹ The net result of coordination and electron-transfer is reduction of the carbon-oxygen stretching frequency and bond order. For example, the lowest carbon-oxygen stretching frequency of $[(Me_5C_5)_2Yb(\mu-OC)_2Mn(CO)_3]_2$ in tetrahydrofuran is 1723 cm⁻¹ whereas the lowest CO stretching frequency in $NaMn(CO)_5$ in tetrahydrofuran or $(Me_2N)_3PO$ is 1829 or 1861 cm⁻¹, respectively.² Thus the C-O bond order in the ytterbium-manganese contact ion-pair is lower than that in the sodium-manganese ion-pair.

One strategy for reducing the carbon-oxygen bond order to an even lower value in complexes of the general type M-CO-Yb, where M is a transition metal, is to replace the electron-withdrawing carbon monoxide ligands (terminal) with electron-donating ligands, such as the cyclopentadienide group. In order to test the validity of this suggestion, we chose to allow $Cp_2Fe_2(\mu-C0)_2(C0)_2$ to react with the diethyl ether complex of bis(pentamethylcyclopentadienyl) ytterbium (II), since the CpFe and Mn(CO)₃ fragments are electronically equivalent (thirteen electron fragments). Assuming that both molecules are structurally equivalent, they will differ only by the amount of electron density located on the transition metal fragment which will be manifested in the carbon-oxygen (bridging) stretching frequency and bond length. In this regard, it has been shown recently that $[(Me_5C_5)_2Zr0_2(D_2)_2(N_2)_2]$ acts as a two electron-transfer reagent towards $Cp_2Fe_2(\mu-C0)_2(C0)_2$ to give $(Me_5C_5)_2Zr0_2C_2Fe_2Cp_2(\mu-C0)_2$, a complex in which a carbon-carbon bond has been formed between the two carbonyl ligands.³

Synthetic Studies. The diethyl ether complex of bis(penta-

methylcyclopentadienyl)ytterbium reacts with $Cp_2Fe_2(\mu-CO)_2(CO)_2$ in toluene to give a black, sparingly soluble material of stoichiometry $(Me_5C_5)_2YbCpFe(CO)_2$. The complex reacts with water-d₂ to give Me_5C_5D and $Cp_2Fe_2(\mu-CO)_2(CO)_2$ in a 2:1 molar ratio as shown by ¹HNMR spectroscopy of a benzene-d₆ extract. The infrared spectrum of the black material, recorded as a Nujol mull since the complex is essentially insoluble in saturated hydrocarbons, has two strong absorptions at 1800 and 1740 cm⁻¹. The complex is paramagnetic as shown by the shifted and broadened ¹HNMR resonances, see experimental section. The data suggest a formulation based upon $(Me_5C_5)_2Yb(III)$ with local C_{2v} symmetry of the Fe(CO)₂ unit or overall C_{2h} symmetry for a dimer unit,<u>i.e</u>. a geometry similar to the dimeric portion of $[(Me_5C_5)_2Yb(\mu-OC)_2Mn(CO)_3]_2$, in which the Mn(CO)₃ portion is replaced by FeCp. However, the low solubility of the complex makes further study difficult.

In order to prepare a more soluble material we allowed $(Me_5C_5)_2Yb(OEt_2)$ to react with $(MeC_5H_4)_2Fe_2(-CO)_2(CO)_2$ in toluene. The black solid, which is soluble in hot methylcyclohexane, is stoichiometrically identical to the cyclopentadienyl analogue, <u>viz</u>., $(Me_5C_5)_2Yb(MeC_5H_4)Fe(CO)_2$. The infrared spectrum in cyclohexane shows two strong CO stretching frequencies at 1787 and 1723 cm⁻¹, similar to those of the C_5H_5 -analogue in the solid state of 1800 and 1740 cm⁻¹. The CO stretching frequencies of the MeC_5H_4 -derivative are <u>ca</u>. 100 and 65 cm⁻¹, respectively, lower than those found for $(n-Bu_4N)(CpFe(CO)_2)$ in tetrahydrofuran. See Table I for other comparisons. Two other substituted cyclopentadienyliron and ruthenium derivatives were prepared,

 $(Me_5C_5)Yb(Me_3SiC_5H_4Fe(CO)_2)$ and $(Me_5C_5)Yb(Me_3SiC_5H_4)Ru(CO)_2$. The infrared spectra, listed in Table I, prove that all the derivatives are isostructural. Curiously, $(Me_5C_5)_2Yb(Me_5C_5)Fe(CO)_2$ is rather insoluble in hydrocarbons; the

solubility is similar to the C_5H_5 -derivative and is presumably related to the way these symmetrically substituted cyclopentadienyl derivatives pack in the crystalline lattice.

The magnetic susceptability of $(Me_5C_5)_2$ Yb (MeC_5H_4) Fe $(CO)_2$ follows Curie-Weiss behaviour $[x_M=C_M(T-\theta)^{-1}]$ from 5-45K with $C_M = 1.283 \pm 0.012$, $\theta = -0.50 \pm 0.10K$, and $\mu_{eff} = 3.217 \pm 0.015$ B.M. and from 90-290K with $C_M = 2.267 \pm 0.004$, $\theta = -33.78 \pm 0.39K$, and $\mu_{eff} = 4.276 \pm 0.004$ B.M. The solid state susceptibility of $(Me_5C_5)_2$ Yb (MeC_5H_4) Fe $(CO)_2$ in conjunction with the infrared spectra suggest that all of the complexes are based upon trivalent ytterbium, <u>i.e.</u> electron transfer from $(Me_5C_5)_2$ Yb(II) to Cp_2 Fe $_2(\mu-CO)_2(CO)_2$ has occured. As the lowest unoccupied molecular orbital in the transition metal carbonyl is metal-metal antibonding,⁴ population of this orbital will break the iron-iron bond giving $(Me_5C_5)_2$ YbCFFe $(CO)_2$. Since the CpFe $(CO)_2^-$ fragment is electronically equivalent to Mn $(CO)_5^-$, a structure related to that found for the latter is likely². That this postulate is correct is shown by X-ray crystallographic analysis.

<u>Structural Studies</u>. An ORTEP diagram of $[(Me_5C_5)_2Yb(MeC_5H_4)Fe(CO)_2]_2$ is shown in Figure 1. As can be seen, the MeC_5H_4 and the Me_5C_5 ligands are undergoing substantial thermal motion, which contributes to the large spread in the carbon-carbon bond lengths and angles. A table of the rms thermal amplitudes is given in the Supplementary Material. The Yb_2Fe_2C_4O_4 core, however, does not seem to undergoing substantial thermal motion. Table II lists some bond lengths and bond angles, Table III lists the positional parameters and crystal data are given in Table IV.

The complex is a dimer, similar to that found in the dimeric portion of the electronically equivalent $[(Me_5C_5)_2Yb(u-OC)_2Mn(CO)_3]_2$.¹ Each of the carbonyl groups in the $(MeC_5H_4)Fe(CO)_2$ units are connected to the ytterbium

atoms by way of an essentially linear Fe-C-O interation. The averaged Fe-C-O and Yb-O-C angles are 176.4 \pm 0.1° and 170.3 \pm 0.3°, respectively. The Yb₂Fe₂ unit is planar since the molecule has a crystallographic inversion center. The dihedral angles formed by the intersection of the Yb₂Fe₂ and YbO(1')O(2) planes is 6.1°, and between the YbO(1')O(2) planes is 5.5°. The plane defined by the FeC₂ atoms passes only 0.08Å from the inversion center at $\frac{1}{2}$ O,O but the YbO₂ plane is 0.37Å from the inversion center. Therefore, the bending direction for both planes is approximately parallel to the Fe-Fe vector. The angles formed by the MeC₅H₄ plane with the FeC₂ and Yb₂Fe₂ planes are 89.6° and 88.0°, respectively. The MeC₅H₄-rings are orientated so that C(7)C(8) are gauche relative to Fe-C(2), the C(2)FeCp(1)C(7) torsional angle being 34.3°. The Cp(1) and C(4) are eclipsed relative to Fe-C(1), the torsional angle being -0.5°, see the Newman projection down the iron-iron vector. The Me₅C₅-rings are essentially staggered with respect to each other.

(see illustration, next page)

The coordination geometry about the ytterbium atom is pseudo-tetrahedral, defining the midpoint of the Me₅C₅-group as occupying one coordination site. The centroid-Yb-centroid and O-Yb-O angles are 140° and 87.92(15)°, respectively. The averaged Yb-O bond length of 2.229 \pm 0.001Å is similar to that found in the ytterbium-manganese complex of 2.277 \pm 0.002Å.¹ The averaged Yb-C distance of 2.577 \pm 0.016Å and the averaged Yb-centroid distance is 2.293Å, again similar to that found in the ytterbium-manganese complex.¹

In the discussion that follows we will compare the metrical parameters of $[(Me_5C_5)Yb(\mu-OC)_2Fe(MeC_5H_4)]_2$ with the related anion $[Et_4N][CpFe(CO)_2AlPh_3]$, which contains a direct Fe-Al bond^{6a}, and with the electronically equivalent $[(Me_5C_5)_2Yb(\mu-OC)_2Mn(CO)_3]_2$.¹ The averaged Fe-C(MeC_5H_4) bond length in the Yb-Fe compex of 2.097 ± 0.013Å is identical within experimental error to that

-4a-

۰.

.

¢

found in the Fe-Al compound of 2.097 \pm 0.003Å. These bond lengths are also identical to those found in <u>trans</u>- and <u>cis</u>-Cp₂Fe₂(μ -CO)₂(CO)₂. The averaged Fe-C(CO) distance in the Yb-Fe compound of 1.671 \pm 0.002Å is shorter than that found in the Fe-Al compound (1.731 \pm 0.001Å) and the C-O bond length is longer, 1.200 \pm 0.001Å <u>vs</u>. 1.158 \pm 0.001Å, than that found in the Fe-Al compound. Thus, the carbon monoxide ligands in the Yb-Fe compound carry significantly more negative charge, relative to the Fe-Al compound, as suggested by the carbon monoxide stretching frequencies (Table I). The bond length data suggest that the electronic structure of the Yb-Fe complex may be represented by the two resonance forms I and II and the Al-Fe complex by III.

(see illustration, next page)

The averaged bridging Fe-C(CO) bond length of 1.671 ± 0.002 Å in the Yb-Fe complex is shorter (1.748 ± 0.002 Å) than that found for the Mn-C(CO) bond distance in the Yb-Mn complex. This is expected since the radius of iron is <u>ca.</u> 0.06Å smaller than that of manganese. Thus, the Yb-Fe and Yb-Mn dimers are very similar in a geometrical and electronic sense.

Additional studies. The Yb-Fe dimers react with methyl iodide to give $(RC_5H_4)_2Fe_2(CO)_4$ as the only metal carbonyl containing species, as shown by infrared spectroscopy. The Yb-Fe dimers also dissolve in tetrahydrofuran but the infrared spectra of the solutions show that $(RC_5H_4)_2Fe_2(CO)_4$ is the only carbonyl containing species present in solution. This is due presumably to decomposition in the infrared cells by air or moisture since when the Yb-Fe dimers are dissolved in thf in a Schlenk tube and the thf is evaporated, the infrared spectra of the solids show that the Yb-Fe dimers are intact. The latter experiment is rather informative since it suggests that thf is not as good a base towards $(Me_5C_5)_2$ Yb as is the lone pair of electrons on the carbonyl group of the $(RC_5H_4)Fe(CO)_2^-$ unit. Unfortunately, the extreme

Q

moisture and air sensitivity of solutions of the Yb-Fe complexes prevent us from studying the solution equilibria in a more quantitative manner. In a qualitative manner, pyridine cleaves the dimeric unit of $(Me_3SiC_5H_4)_2Fe_2(\mu-CO)_4Yb_2(C_5Me_5)_4$ to give $(Me_3SiC_5H_4)Fe(CO)(\mu-CO)Yb(C_5Me_5)_2(py)$. The two infrared stretching frequencies, Table I, in the CO region suggest that the complex has Cs symmetry. Curiously the CO stretching frequencies of the pyridine complex at 1870 and 1678 cm⁻¹ are shifted to higher and lower frequency relative to the parent dimer at 1795 and 1732 cm⁻¹. This was observed earlier in, for example, $Co(CO)_3(\mu-CO)Yb(C_5M_5)_2(thf)$.¹ The ¹HNMR spectra of all of the Yb-Fe and Yb-Ru dimers are listed in the experimental section and they will be discussed in detail in the following paper in this issue, since they are deceptively simple.

Experimental Section. All operations were carried out under nitrogen. Microanalyses were performed by the Microanalytical Laboratory of this department. Infrared spectra were recorded on a Perkin-Elmer 597 instrument; solid spectra were measured as Nujol mulls and solution spectra were measured on matched NaCl cells, with spacings of 0.5 mm. The magnetic susceptibility measurements were made on a SHE Corporation Model 905 Squid magnetometer, as previously described.¹

 $[FeCp(CO)_2Yb(C_5Me_5)_2]_2$. Bis(pentamethylcyclopentadienyl) ytterbiumdiethyl ether (0.57 g, 0.0011 mol) in toluene (30 mL) was added to cyclopentadienyliron dicarbonyl dimer (0.20 g, 0.00056 mol) in toluene (30 mL). The mixture turned dark red and black microcrystals formed. The mixture was stirred for 12 hours and then was allowed to settle. The solution was filtered and the filtrate was saved. The residue was extracted with toluene (3 x 60 mL) and the combined extracts were filtered and the filtrate was concentrated to ca. 30 mL and cooled to -10°C. The combined yield of black

microcrystals was 0.55 g (80%), mp 350°C (dec). <u>Anal</u>. Calcd for $C_{54}H_{70}Fe_2O_4Yb_2$: C, 52.3; H, 5.68. Found: C, 51.6; H, 5.70. IR (Nujol Mull): 3100 w, 2730 w, 2005 w, 1965 m, 1960 m, 1800 br, vs, 1732 br, vs, 1665 s sh, 1165 w, 1110 w, 1060 w, 1015 m, 892 w, 840 m, 810 m, 800 m, 725 w, 695 w, 655 w, 605 m sh, 583 s, 512 s, 395 sh, 378 m, 355 w, 320 s, 279 sh cm⁻¹. 1HNMR (C_6D_6 , 26°C) w35.2 ($\eta_{/2}$ =13 Hz, 10 H) and 8.09 ($\eta_{/2}$ =36 Hz, 60 H).

 $\frac{[Fe(C_5H_4Me)(CO)_2Yb(C_5Me_5)_2]_2}{P(C_5H_5)_2]_2}$ Bis(pentamethylcyclopentadienyl) ytterbium-diethyl ether (1.3 g, 0.0024 mol) in toluene (50 mL) was added to methylcyclopentadienylirondicarbonyl dimer⁸ (0.46 g, 0.0012 mol) in toluene (40 mL). The solution was stirred for 12 h, filtered and the filtrate was concentrated to <u>ca</u>. 40 mL and cooled (-10°C). The small black prisms were collected and dried under reduced pressure. A second crop of crystals was isolated and the combined yield was 1.2 g (78%), mp 340°C (dec.). <u>Anal</u>. Calcd for C₅₆H₇₄Fe₂O₄Yb₂: C, 53.0; H, 5.88. Found: C, 52.7; H, 5.76. IR (Nujol): 3095 w, 2730 w, 2015 w, 1972 m, 1958 sh, 1785 vs, br, 1725 vs, br, 1665 s, 1165 w, 1062 w, 1020 s br, 930 w, 885 w, 855 w, 823 w, 801 m, 725 m, 695 w, 660 m, 630 w, 585 s, 514 s, 390 m, 360 m, 325 s, and 285 sh cm⁻¹. ¹HNMR (C₆D₆,+25°C): w44.2 (q₂=11 Hz, 4H), 40.3 (q₂=8.6 Hz, 4 H), 38.5 (q₂=7.8 Hz, 6 H), 7.91 (q₂=45 Hz, 60 H).

<u>[Fe(C₅H₄SiMe₃)(CO)₂Yb(C₅Me₅)₂]₂</u>. Bis(pentamethylcyclopentadienyl) ytterbium-diethyl ether (0.50 g, 0.00097 mol) in toluene (20 mL) was added to trimethylsilylcyclopentadienylirondicarbonyl dimer⁹ (0.24 g, 0.00048 mol) in toluene (20 mL). The mixture was stirred for 20 h, filtered, and the filtrate was concentrated to <u>ca</u>. 15 mL. Cooling (-10°C) yielded black prisms which were collected and dried under reduced pressure. The mother liquors afforded more black prisms on cooling. The combined yield was 0.57 g, 86%, mp 240-245 °C (dec.). <u>Anal</u>. Calcd for $C_{60}H_{86}O_4Fe_2Si_2Yb_2$: C, 52.0; H, 6.26. Found: C,

51.4; H, 6.13. IR (Nujol): 3170 w, 3100 w, 2720 w, 1795 s, br, 1365 m, 1243 m, 1158 m, 1059 w, 1040 m, 1017 w, 902 m, 865 m, 832 s, 798 m, 750 m, 690 m, 630 m, 620 w, 585 m, 575 sh, 508 m, 430 w, 380 m, 340 w, 315 s, 280 s cm⁻¹. ¹HNMR (C_6D_6 , 29°C): δ 50.2 ($Y_{/2}$ =13 Hz, 4 H), 32.3 ($Y_{/2}$ =12 Hz, 4 H), 19.5 ($Y_{/2}$ =10 Hz, 18 H), 8.01 ($Y_{/2}$ =37 Hz, 60 H). The complex reacts with two molar equivalents of pyridine in toluene. The pyridine complex, Fe(C_5H_4 SiMe_3)(CO)₂Yb(C_5Me_5)₂(py), was isolated from diethyl ether (-10°C) as red-black prisms in essentially quantitative yield. <u>Anal</u>. Calcd for C₃₅H₄₈FeNO₂SiYb: C, 54.5; H, 6.27; N, 1.81. Found: C, 52.1; H, 6.23; N, 1.61. ¹HNMR (C_7D_8 , 26°C): δ 10.2 (2 H), 9.92 (2 H), 6.30 (9 H), 4.46 (30 H).

 $[\operatorname{Ru}(\operatorname{C_5H_4SiMe_3})(\operatorname{CO})_2\operatorname{Yb}(\operatorname{C_5Me_5})_2]_2.$ Bis(pentamethylcyclopentadienyl)ytterbium-diethyl ether (0.72 g, 0.0014 mol) in toluene (40 mL) was added to the trimethylsilylcyclopentadienylrutheniumdicarbonyl dimer (0.41 g, 0.00070 mol) in toluene (30 mL). The red solution was stirred for 24 hours, filtered, and the filtrate was concentrated to <u>ca</u>. 25 mL and cooled (-10°C). The purple prisms were collected and dried under reduced pressure. Two additional crops of crystals were obtained from the mother liquor. The combined yield was 85% mp 250-255 °C (dec). <u>Anal</u>. Calcd for $C_{60}H_{86}O_4\operatorname{Ru}_2\operatorname{Si}_2\operatorname{Yb}_2$: C, 48.8; H, 5.87. Found: C, 48.3; H, 5.67. The infrared spectrum was essentially identical to that of its iron congener. ¹HNMR (C_6D_6 , +27°C): δ 43.8 ($\operatorname{Y}_2^=$ 9.4 Hz, 4 H), 31.9 ($\operatorname{Y}_2^=$ 10 Hz, 4 H), 19.6 ($\operatorname{Y}_2^=$ 7.4 Hz, 18 Hz), 8.27 ($\operatorname{Y}_2^=$ 41 Hz, 60 H).

 $[\operatorname{Ru}(\operatorname{C_5H_4SiMe_3}(\operatorname{CO})_2]_2$. Trimethylsilylcyclopentadiene (0.41 g, 0.0029 mol) was added to \operatorname{Ru_3(CO)}_{12} (0.52 g, 0.0024 mol) in octane (50 mL). The $\operatorname{Ru_3(CO)}_{12}$ slowly dissolved as the mixture was refluxed and the orange-red solution turned pale yellow, <u>ca</u>. 45 min. The solution was cooled to room temperature , the reflux condenser was removed and the solution was stirred in

air for ca. 5 min. The orange-red solution was evaporated and the brown oil was extracted with pentane (25 mL). The pentane solution was filtered and the filtrate was concentrated to ca. 5 mL and cooled $(-25^{\circ}C)$. The orange needles (60% yield) were collected, and dried under reduced pressure, mp 106-107 °C. A second crop of crystals may be obtained from the mother liquor. Anal. Calcd for C20H2604Si2Ru2: C, 40.6; H, 4.42. Found: C, 40.7; H, 4.54. NMR (C_6D_6) : ¹H (200 MHz): The protons of the AA'BB' spin system appear as apparent triplets at $\delta 5.01$ and 4.85 with a separation between the outermost lines of 4 Hz, and the Me₃Si protons appear at $\delta 0.311$. ¹³C: The ring carbons appear at $\delta 95.6$, 95.4, and 93.9; and, the Me₃Si carbons appear at -0.17. Ir (Nujol): 1952 s, 1935 sh, 1924 m, 1766 s, 1735 sh, 1407 w, 1356 w, 1301 w, 1245 m, 1190 w, 1156 m, 1053 w, 1037 m, 1025 sh, 928 w, 890 m, 834 s, 811 m, 753 m, 718 w, 640 m, 626 m, 610 m, 595 w, 576 w, 532 m, 519 s, 478 w, 415 w, 372 w, 275 w, 240 w cm⁻¹, v(CO, hexane): 2005 m, 1972 s, 1963 s, 1941 s, and $1788 \text{ s cm}^{-1}.10$

<u>X-Ray Crystallography</u>. Crystals of $[Fe(C_5H_4Me)(CO)_2Yb(C_5Me_5)_2]_2$ suitable for X-ray crystallography were grown by cooling slowly a saturated solution of the dimer in methylcyclohexane from 60°C to room temperature over a 24 hour period. Single crystals were inserted into quartz capillaries which were then flame sealed. Preliminary precession photographs indicated monoclinic (2/n) Laue symmetry and yielded preliminary cell dimensions. The crystal used for data collection was transferred to our Enraf-Nonius CAD (for details of the CHEXRAY facility see ref. 1). Automatic peak search and indexing yielded the same unit cell as found from the photographs and confirmed the Laue symmetry. Inspection of the hol and OkO zones showed systematic absences OkO, $k \neq 2n + 1$ and hol, $h+l \neq 2n + 1$ only consistent with space group $P2_1/n$.

normally, see Table IV for details of data collection.

The 3862 raw intensity data were converted to structure factor amplitudes and their esds by correction for scan speed, background and Lorentz and polarization effects. Analysis of the azimuthal scan data showed significant variation, $(I min)(I max)^{-1} = 0.86$ for the average relative intensity curve. An absorption correction based on the measured shape and size of the crystal and a 6 x 12 x 18 Gaussian grid of internal points was performed after solution of the structure. The maximum and minimum transmission factors were 0.509 and 0.430, respectively. Rejection of systematically absent and redundant data yielded a unique set of 3531 data which were used to solve and refine the structure. The structure was solved by analysis of the Patterson map followed by standard Fourier and least-squares techniques. The hydrogen atoms were not included in calculation of the structure factors.

<u>Acknowledgement</u>. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy, under Contract DE-AC03-76SF00098. We thank Dr. F.J. Hollander, staff crystallographer of the U.C. X-ray facility (CHEXRAY), for doing the crystal structure, and the NSF for departmental grants to purchase the X-ray and magnetic susceptibility machines.

<u>Supplementary Material</u>. Carbon-carbon bond lengths and angles, temperature factors and structure factors (18 pages). Ordering information is given on any current masthead page.

References

- (1) Boncella, J.M.; Andersen, R.A. Inorg. Chem. 1984, 23, 432.
- (2) Darensbourg, M.Y.; Darensbourg, D.J.; Burns, D.; Drew, D.A. <u>J. Am. Chem.</u> <u>Soc. 1976, 98, 3127.</u>
- (3) Berry, D.H.; Bercaw, J.E.; Jircitano, A.J.; Mertes, K.B. <u>Ibid.</u>, 1982, <u>104</u>, 4712.
- (4) (a) Harris, D.C.; Gray, H.B. Inorg. Chem. 1975, 14, 1215.
 - (b) For an alternative view of the bonding in Cp₂Fe₂(u-CO)₂(CO)₂ that does not invoke a direct metal-metal bond, see Mitschler, A.; Rees, B.; Lehmann, M.S. J. Am. Chem. Soc. 1978, 100, 3390; Benard, M. Inorg. Chem. 1979, 18, 2782.
- (5) (a) Ellis, J.E.; Flom, E.A. J. Organomet. Chem. 1975, 99, 263.
 - (b) Wong, A.; Harris, M.; Atwood, J.D. J. Am. Chem. Soc. 1980, 102, 4529.
 - (c) Pannell, K.H.; Jackson, D. <u>Ibid.</u>, 1976, <u>98</u>, 4443.
 - (d) Ulmer, S.W.; Skarstad, P.M.: Burlitch, J.M.; Hughes, R.E. <u>Ibid</u>. 1973, <u>95</u>, 4469.
 - (e) McVicker, G.B. Inorg. Chem. 1975, 14, 2087.
- (6) (a) Burlitch, J.M.; Leonowicz, M.E.; Petersen, R.B.; Hughes, R.E.,
 <u>Ibid.</u> 1979, <u>18</u>, 1097.
 - (b) Bryan, R.F.; Greene, P.T. J. Chem. Soc. (A), 1970, 3064.
 - (c) Bryan, R.F.; Greene, P.T.; Newlands, M.J.; Field, D.S. <u>Ibid.</u>, 1970, 3068.
- (7) Shannon, R.D. Acta Cryst. 1976, 32A, 751.
- (8) (a) Reynolds, L.J.; Wilkinson, G., <u>J. Inorg. Nucl. Chem.</u> 1959, <u>9</u>, 86.
 (b) Parker, D.J.; Stiddard <u>J. Chem. Soc. (A)</u>, 1970, 1040.

- (9) (a) Kraihanzel, C.S.; Conville, J. <u>J. Organometal</u>. <u>Chem</u>. 1970, <u>23</u>, 357.
 (b) Abel, E.W.; Moorhouse, S. <u>Ibid.</u>, 1971, <u>28</u>, 211.
- (10) The solution infrared spectrum is consistent with the presence of two isomers of $C_{2h}(2 \text{ bands})$ and C_{2v} (3 bands) symmetry, as found for $Cp_2Ru_2(CO)_4$.
 - Humphries, A.P.; Knox, S.A.R. J. Chem. Soc. Dalton Trans. 1975, 1710.
 - (b) Cotton, F.A.; Yagupsky, G. <u>Inorg. Chem.</u> 1967, <u>6</u>, 15.

Figure I. An ORTEP view of $[Yb(C_5Me_5)_2(\mu-0C)_2Fe(C_5H_4SiMe_3)]_2$

.

Infi	ared Spectral	Data	
Compound	Medium	$vC0, cm^{-1}$	Reference
[(Me ₅ C ₅) ₂ Yb(C ₅ H ₅)Fe(CO) ₂] ₂	Nujol	1800s,1740s	This work
[(Me ₅ C ₅) ₂ Yb(MeC ₅ H ₄)Fe(CO) ₂] ₂	cyclohexane	1787s,1723s	This work
[(Me ₅ C ₅) ₂ Yb(Me ₃ SiC ₅ H ₄)Fe(CO) ₂] ₂	cyclohexane	1795s,1732s	This work
[(Me ₅ C ₅) ₂ Yb(Me ₅ C ₅)Fe(CO) ₂] ₂	Nujol	1760s,1695s	This work
(Me ₅ C ₅) ₂ YbPy(Me ₃ SiC ₅ H ₄)Fe(CO) ₂	Nujol	1870s,1678s	This work
$[(Me_5C_5)_2Yb(Me_3SiC_5H_4)Ru(CO)_2]_2$	Nujol	1815s,1730s	This work
(n-Bu ₄ N)CpFe(CO) ₂	thf	1865s,1788s	5a
(Et ₄ N)CpFe(CO)(AlPh ₃)	Nujol	2012w,1960w,1940s, 1920wsh,1871s, 1843w	6a
LiCpFe(CO) ₂	thf	1884s,1869s,1812s, 1788w,1750s	5b
NaCpFe(CO) ₂	thf	1877s,1862m,1806s, 1786m,1770m	5c
KCpFe(CO) ₂ thf	1868s,1792s,17	72s	5Ъ
Mg[CpFe(CO) ₂] ₂	thf	2010w,1948w,1916s, 1883s,1852s,1712s	5b,d,e

Table I

Some Selected Bond Lengths and Angles

INTRA-MO	LECULAR	DISTANCES
ATOM 1	ATOM 2	DISTANCE
YB	01	2.228(4)
YB	02	2.23Ø(4)
YB	C11	2.565(5)
YB	C12	2.598(5)
YB	C13	2.6Ø9(5)
YB	C14	2.572(5)
YB	C15	2.545(5)
YB	CP2 *	2.29Ø
YB YB YB YB YB	C21 C22 C23 C24 C25 CP3 *	2.577(6) 2.59Ø(6) 2.59Ø(5) 2.559(6) 2.567(6) 2.296
F E	C1	1.669(6)
F E	C2	1.673(5)
F E F E F E F E F E	C3 C4 C5 C6 C7 CP1 *	2.106(7) 2.086(8) 2.089(8) 2.083(8) 2.120(6) 1.733
C1	01	1.2Ø1(6)
C2	02	1.199(6)

INTRA-	MOLECULAR	ANGLES	
ATOM 1	ATOM 2	ATOM 3	ANGLE
01' 01' 01' 02 02 CP2	YB YB YB YB YB YB	02 CP2 * CP3 * CP2 CP3 CP3 CP3	87.92(15) 1ø5.ø 1ø3.ø 1ø4.9 1ø4.2 14ø.ø
C1 C1 C2	FE FE FE	C2 CP1 * CP1	87.8Ø(23) 135.5 136.7
YB' YB	01 02	C1 C2	169.7(4) 17Ø.8(4)
FE FE	C1 C2	01 02	176.6(5) 176.2(4)
•			

* CP1, CP2, and CP3 are the centroids of the rings C3-C7, C11-C15, and C21-C25 respectively.

' Primed atoms are related to atoms in the asymmetric unit by the inversion center at 1/2, \emptyset , \emptyset .

Table III

Positional Parameters

Atom	× -	у _	Z
YB	Ø.43734(3)	8.14724(1)	-Ø.ØØØ14(2)
FE	Ø.3Ø76(1)	-Ø.Ø1754(4)	Ø.27Ø73(9)
01	Ø.4649(5)	-Ø.Ø848(2)	Ø.1181(5)
02	Ø.3657(5)	Ø.Ø737(2)	Ø.1Ø66(5)
C1	Ø.399Ø(7)	-Ø.Ø58Ø(3)	Ø.1845(6)
C2	Ø.3385(7)	ø.ø368(3)	Ø.1769(6)
C3	Ø.1484(9)	-ø.ø569(5)	Ø.3439(9)
C4	Ø.2563(11)	-0.0764(5)	Ø.4Ø36(1Ø)
C5	Ø.3142(12)	-Ø.Ø3Ø1(7)	Ø.461Ø(8)
C6	Ø.2483(11)	ø.ø179(6)	Ø.4345(8)
C7	Ø.1449(8)	9.9961(4)	Ø.3663(8)
C8	Ø.Ø536(13)	Ø.Ø481(6)	Ø.3347(13)
C11 ·	Ø.5382(8)	Ø.1715(4)	Ø.2114(6)
C12	Ø.5272(7)	Ø.2234(3)	Ø.1524(7)
C13	Ø.6Ø84(7)	Ø.2241(3)	Ø.Ø527(7)
C14	Ø.6695(7)	Ø.172Ø(4)	Ø.Ø512(8)
C15	Ø.6255(7)	Ø.1399(3)	Ø.151Ø(7)
C16	Ø.4711(12)	Ø.1526(5)	Ø.3287(9)
C17	Ø.4596(9)	Ø.2754(4)	Ø.2Ø3Ø(9)
C18	8.6488(11)	Ø.276Ø(4)	-Ø.Ø269(1Ø)
C19	Ø.7727(9)	Ø.1583(5)	-Ø.Ø345(11)
C2Ø	8.6785(18)	Ø.Ø79Ø(4)	Ø.1852(11)
C21	Ø.2213(8)	Ø.196Ø(4)	-Ø.Ø344(8)
C22	Ø.2Ø42(8)	8.1398(4)	-Ø.Ø775(8)
C23	Ø.273Ø(8)	8.1339(4)	-Ø.1797(7)
C24	Ø.3345(9)	8.1838(4)	-Ø.2Ø21(8)
C25	8. 3 <i>8</i> 3 <i>8</i> (8)	Ø.2215(4)	-Ø.1181(1Ø)
C26	Ø.1559(11)	Ø.2218(7)	Ø.Ø682(12)
C27	Ø.1143(1Ø)	Ø.Ø964(6)	-Ø.Ø248(11)
C28	Ø.2738(11)	8.8824(5)	-ø.2592(1ø)
C29	Ø.4195(12)	Ø.1941(8)	-Ø.3Ø88(1Ø)
C38	Ø.329Ø(14)	ø.2851(5)	-Ø.1192(16)

Table IV

Crystal Data (25°C) for $[Yb(C_5Me_5)_2(\mu-0C)_2Fe(C_5H_4SiMe_3)]_2$

Space Group

P2₁/n

a(Å)	10.6069(15)						
b(Å)	23.4930(31)						
c(Å)	10.8730(20)						
β(deg)	92.041(13)						
v(Å ³)	2707.7(13)						
Z	2						
Formula Wt. (amu)	1268.98						
d(calc) gcm ⁻³	1.556						
µ(calc) cm ⁻¹	39.8						
Size (mm)	$0.22 \times 0.27 \times 0.47$						
Reflections, collected	3862						
Reflectons, unique	3561						
Reflections, $F^2 > 3\sigma(F^2)$	2941						
R(%)	2.81						
R _w (%)	4.48						
Variables	289						
GOF	2.190						
Monochromator	highly orientated graphite						
Radiation	$M_{o}K_{\alpha}$, $\lambda = 0.71073$ Å						
Scan Range, type	3°< θ < 45°, θ−2θ						
Scan Speed	$0.69-6.7 (deg min^{-1})$						
Scan Width	$\Delta \theta = 0.55 + 0.347 \tan \theta$						

Supplementary Material for

Bis(Pentamethylcyclopentadienyl)Ytterbium (II) as an Lewis Acid and an Electron-Transfer Ligand; Preparation and Crystal Structure of [Yb(C5Me5)2(µ-OC)2Fe(C5H4SiMe3)]2

James M. Boncella and Richard A. Andersen

Table I, Carbon-carbon bond lengths and bond angles. Table II, General Temperature Factor Expressions and rms Amplitudes Table III, Structure Factors

INTRA-MOLECULAR ANGLES IN THE CYCLOPENTADIENIDE LIGANDS

\$

\$

ŧ

.

ATOM 1	ATOM 2	ATOM 3	ANGLE				
C7	C 3	C4	186.1(9)				
C 3	C4	C5	107.5(11)		ATOM 1	ATOM 2	DISTANCE
C 4	C 5	Сб	109.9(12)				
C5	C 6	C7	110.7(13)		C3	C7	1.501(11)
C 6	C7	C3	105.7(9)		C3	Č4	1.374(13)
					C4	C5	1.387(17)
C 3	C7	C 8	131.9(13)		C 5	C.6	1.353(17)
C 6	C7	C 8	122.2(14)		Č6	67	1 332(13)
					C7	Č8	1.415(11)
C15	C11	C12	107.6(5)				
C11	C12	C13	108.9(5)		C11	C12	1 201/01
C12	C13	C14	107.3(5)		C12	C12	1.301(0)
C13	C14	C15	107.2(5)		C12		1.409(0)
C14	C15	C11	109.0(5)	•		C14 C15	1.303(0)
		•••			C14	C15 .	1.414(9)
C16	C11	612	127.9(7)		C15		1.3/3(8)
C 16	C11	Č15	125.3(7)				1.54/(9)
C17	612	ČI I	124.9(6)				1.530(8)
C17	C12	Č13	125 1(7)				1.540(9)
C18	C13	C12	126 3(7)		C14	C19	1.498(9)
C18	013		125.6(7)		C15	C210	1.549(8)
C19		C13	123 3(8)				
C19		C15	129 1/8)				
C28	C15	C11	126 3(7)		C21	C22	1.412(1Ø)
C28	C15		124.7(7)		C22	C23	1.358(9)
010	010	014	164.7(7)		C23	C24	1.352(1Ø)
					C24	C25	1.336(11)
C 2 5	C 2 1	C 2 2	195 9/5)		C25	C21	1.412(11)
C21	C22	C22 '	103.0(0)		C21	C26	1.466(1Ø)
C22	C22	C24	107.4(07		C22	C27	1.521(9)
C22		C25	103.7(0)		C23	C28	1.488(9)
C23	C25	C23			C24	C29	1.517(11)
624	623	U21	109.1(7)		C25	C 3Ø	1.519(1Ø)
C26	C21	C22	125.5(11)				
C26	C21	C25	129.3(11)				
C27	C22	C21	125.2(8)				
C27	C22	C23	127.1(8)				
C28	C23	C22	124.9(8)				
C28	C23	C24	125.3(8)				
C29	C24	C23	126.0(11)				
C29	C24	C25	125.2(11)				
C 3Ø	C25	C21	122.6(12)				
C 3Ø	C25	C24	127.6(12)				

-19-

.

.

·· ··

Đ

×.

Name	B(1,1)	B(2,2)	8(3,3)	B(1,2)	B(1,3)	8(2,3)	Baqv
YB	3.98(1)	3.73(1)	3.15(1)	8.47(1)	Ø.88(1)	Ø.Ø3(1)	3.594(6)
FE	5.88(5)	4.36(4)	3.85(4)	8.27(4)	1.55(4)	8.18(4)	4.66(2)
01	7.8(3)	5.5(3)	6.3(3)	1.4(2)	1.6(2)	-1.8(2)	6.2(1)
02	6.7(3)	5.5(3)	6.1(2)	-#.#(2)	Ø.9(2)	1.7(2)	6.1(1)
C1	6.1(4)	4.2(3)	4.9(3)	-#.3(3)		Ø.7(3)	5.8(2)
C2	5.1(3)	4.4(3)	4.4(3)	8.7(3)	Ø.9(3)	-8.2(3)	4.6(2)
C 3	8.8(5)	12.8(7)	8.2(4)	-3.8(5)	5.3(3)	8.3(5)	9.5(3)
C4	12.8(7)	9.7(6)	9.8(5)	-#.3(6)	4.3(5)	3.1(5)	18.1(3)
C5	11.3(7)	28(1)	4.1(4)	#.5(8)	2.8(4)	6.1(6)	14.4(5)
C6	13.6(7)	16.8(9)	4.3(4)	-4.8(7)	4.7(4)	-2.7(5)	11.4(3)
C7	8.7(4)	8.7(5)	7.4(4)	1.8(4)	5.5(3)	1.7(4)	8.1(2)
C8	21.3(8)	22(1)	23.1(8)	15.0(7)	17.1(6)	14.9(7)	21.7(4)
C11	6.2(4)	7.1(4)	3.4(3)	-1.1(4)	-Ø.4(3)	-#.7(3)	5.6(2)
C12	4.9(4)	6.2(4)	5.6(3)	8.2(3)	-1.2(3)	-1.6(3)	5.6(2)
C13	5.7(4)	6.1(4)	5.4(4)	-1.3(3)	-1.1(3)	-#.4(3)	5.7(2)
C14	3.4(3)	8.9(5)	6.4(4)	-#.4(3)	#.6(3)	-2.7(4)	6.2(2)

Table of General Temperature Factor Expressions - 8's

Table of Root-Mean-Square Amplitudes of Thermal Vibration in Angstroms.

Atom	Min.	Int'med.	Max.	Atom	Min.	Int'med.	Max.
 VD	a 200 (a 205	 a 222	 C15	a 216	 a 260	a 249
55	<i>a</i> 100 /	Ø.200	A 200	C15	0.210	0.200	Ø 405
rt	0.130	0.234	10.200	C18	0.223	0.320	
01	18.214	<i>B</i> .296	Ø.322	C17	8.284	Ø.298	10.4/9
02	Ø.223	Ø.287	Ø.314	C18	Ø.225	Ø.317	Ø.499
C1	Ø.216	0.257	8.281	C19	Ø.225	8.387	Ø.551
C2	8.218	8.242	ø.269	C2Ø	0.231	Ø.328	Ø.475
C3	8.185	8.374	8.434	C21	Ø.195	0.251	8.441
C4	8.243	8.369	Ø.436	C22	0.218	Ø.28Ø	8.321
C5	8.172	8.382	8.618	C23	8.286	8.278	Ø.352
C 6	8.171	8.379	8.512	C24	0.216	8.294	8.400
C7	8.182	8.318	8.424	C25	8.185	Ø.275	Ø.485
CB	8.257	8.315	Ø.813	C26	8.227	Ø.343	Ø.736
C11	Ø.198	8.269	Ø.315	C27	Ø.25Ø	Ø.299	Ø.595
C12	8.212	8.268	8.317	C28	0.231	Ø.334	Ø.554
C13	8.215	8.279	8.387	C29	Ø.232	8.328	Ø.727
CI4	8.285	8.246	8.368	C3Ø	8.229	Ø.32Ø	Ø.739

.

¢

-20-

Fobs & Fclc (x 18.) for [(C5Me5)2 Yb (OC)2 Fe (C5H4Me)] 2 at 25 C

3

.

H	K	L	Fobs	Fcalc	н	K	L	Fobs	Fcalc	н	K	L	Fobs	Fcalc	н	1	K L	Fobs	Fcalc	н	κ	L	Fobs	Fcalc
8	8	2	1664	1648	g	4	8	898	982	g	8	9	9,8*	123	a	13	3 3	1212	1227	a	18	2	484	491
8	ø	Ā	2382	228#		Ă	9	94+	127	Ā	8	1.8	215	218	ด	12	i i	271	272	ã	18	2	314	318
8	8	6	1593	1536	Ø	Ă	1.8	833	817	ŝ	8	11	g*	19	Ĩ	13	3 5	884	820	ŝ	18	Ă	554	572
8	8	8	1149	1162	Ø	4	11	g =	39	8	9	1	1148	1131		1	3 6	323	328	Ĩ	18	5	147	124
8	8	1.0	798	788		5	1	825	655	Ø	9	2	8*	1.0	8	12	3 7	832	842	ø	18	6	348	353
ø	1	1	1915	1937	ø	5	2	498	474	ø	9	3	646	656		13	3 8	186	195	8	18	7	85*	74
ø	1	2	118	1.02	ø	5	3	238	266	ø	9	4	226	233	8	13	39	687	59 <i>8</i>	ø	18	8	411	415
ø	1	3	153 <i>8</i>	1435	8	5	4	185	167		9	5	1898	1876		13	3 10	134	139	ø	19	1	186	183
ø	1	4	232	218		5	5	388	395	ø	9	6	2.07	214	8	-14	1 Ø	1915	1921	8	19	2	Ø*	92
ø	1	5	812	87 <i>8</i>	Û	5	6	3Ø1	292	8	9	7	241	228	8	-14	4 1	266	3ø9	ø	19	3	3ø5	323
ø	1	6	68*	79	8	5	7	Ø*	29	ø	9	8	96	83	ß	-14	12	1364	137Ø	8	19	4	24*	2.0
ø	1	7	1178	1176	8	5	8	124	94	ø	9	9	596	682		-14	6 3	414	396	ø	19	5	324	3.03
8	1	8	63*	68	ø	5	9	343	339	8	9	10	189	199	<i>B</i>	-14	4 4	886	898		19	6	127	157
ø	1	9	414	424	ø	-5	10	Ø*	59	ø	10	Ø	1736	1727	ß	-14	1 5	251	261	ø	19	7	45*	81
8	1	18	36*	42	ø	5	11	88*	54	8	10	1	415	387	ø	-14	6 6	894	92 <i>8</i>	ø	20	ø	493	513
ø	1	11	649	65Ø	0	6	ß	1908	2834	ø	18	2	1859	1908	8	-14	4 7	29 <i>8</i>	286	ø	2.0	1	217	185
ø	2	ø	278	1#3	8	6	1	474	428	ø	18	3	622	637	ø	-14	4 9	735	754	ø	2Ø	2	911	944
	2	1	4.03	428	8	6	2	1193	1102	8	10	- 4	1386	1365	Ð	-14	19	74*	99	ø	2Ø	3	` 197	222
Ø	2	2	1897	1888	ø	6	3	797	761	8	10	5	348	336	ø	15	51	34Ø	352	ø	2Ø	4	644	652
	2	3	146	133	ø	6	4	2164	2199	ø	10	6	1418	1432	ø	15	52	Ø*	84	ø	2Ø	5	Ø=	46
8	2	4	355	364		6	5	191	197	ø	1.0	7	25 <i>8</i>	234	ø	15	53	27ø	271	ß	2Ø	6	717	712
8	2	5	283	278		6	6	1050	1034	8	10	8	795	784		15	5 4	289	3Ø1	ø	2Ø	7	g+	7
Ű	2	6	859	859	Ø	6	7	77*	116	8	1.0	9	58*	33	ø	15	55	310	294	ø	21	1	7Ø9	7ø5
۱۵ ۳	2	1	8 *	41	Ø	6	8	79 <i>0</i>	801	8	1.0	10	684	673	ø	15	56	234	214	ø	21	2	74*	18
	2	8	131	94		6	.9	Ø*	93	8	11	1	1394	1367	Ø	15	5 7	183	179	Ø	21	3	573	586
	2	. 9		11		6	10	538	531	ø	11	2	51*	43	0	15	58	155	169	ø	21	4	89*	6
. .	~	1.0	266	283		0	11	36*	14		11	3	973	1005		- 11	5 9	164	174	ø	21	5	627	624
	~		35"	31	ň		1	1939	1838		11	4	379	362	Ű	10	5 19	1.032	1.029	ø	21	6	88*	29
2	3		3///	3938		4	4	182	1/8			2	1933	1834				3/1	3/4	۳ ۳	22		. 19-	24
a	3	2	2162	110	л а	4	3	23/6	2348				313	384	8			683	/15		22	1 I	189	195
a	2	3	2102	2030		4	-	103	100	u a			/25	/32	8		5 3	258	251	10	22	~	10/	152
a	3	2	2012	2024	D 4	4	2	1020	1011				120	142	10	- 13	0 4 . E	595	7.01	10	22	3	/3-	124
a	2	5	2042	2034		4	2	133	189				23/	238				299	384	8	22	2	- 6	83
ã	2	7	0.96		2	4	6	1393	1400	ю а	12	10	440	110			5 5	536	517	ю а	22	5	420	466
ã	3	á	127	192	ä	÷	å	767	760		12	1	440	430			5 /	103	441	р а	23	2	430	400
ã	3	ă	1100	1161	a 10	5	14	01#	126		12		403	300	10 A	- 11		442	441	10 A	23	5	676 676	23
ã	2	1 9	1100	1101	а а	4	10	727	120		12		295	22				1164	5/		23	3	333	544
ã	3	11	279	394	a	6	• a	694	744	р а	12	3	303	310	10 (1	- 13	, 1	1104	1100	ю а	23	à	720	711
ñ	Ă	â	1967	1110	a	ě	1	214	102	а а	12	- 2	265	263	10 a	- 13	7 2	101	100	р а	24	1	720	100
ã	Ĩ.	ĩ	694	599	a .	ä	2	695	692	a	12	2	100	110	10 11	- 13	7 4	1033	1040	10 (1	24	2	462	100
ø	Ă	2	2588	2545	p p	Å	2	292	289	а а	12	7	100	135	р а	11	7 4 7 E	104	916	D 21	24	2		400
ø	Ă	3	13*	96	Â	ă	ž	1137	1157	a a	12	é	212	225	10 21	1	, 0 7 F	0.00 Att	610	ю а	25	1	227	219
ø	Ă.	Ā	1037	1184	ģ	ă	5	439	452	р р	12	0	144	165		1	, 0	- 10 	822	1	- a-		684	710
ø	Ă.	5	264	281	ĝ	Ă	6	472	463	a a	12	10	944	100	10 A	1	, / , e	164	130	1	a a	-0	772	786
ß	À	6	1784	1715	a	å	7	9/2	114	a	12	1	1607	1592	10 11		, 0 a	100	729	1	a	- 7	1950	1926
ø	4	7	77*	94	â	8	Ŕ	617	614	a	13	2	116	1202	0 4	11	9 <i>1</i> 9 9 1	227	207		a	-6	1252	1250
		-	• •				-	•./	~ * * *	~	• •	-		1 2 0	10			33/	231		~		1203	12.00

Reflections flagged with an asterisk were considered unobserved.

-21-

Page 1

Fobs & Fold (x 18.) for [(C5Me5)2 Yb (OC)2 Fe (C5H4Me)] 2 at 25 C

Page	2
------	---

• • • •

÷

Ч**г**

н	ΚL	Fobs	Fcalc	н	ΚL	Fobs	Fcalc	н	ΚL	Fobs	Fcalc	H	ΚL	Fobs	Fcalc	HKL	Fobs	Fcalc
1	Ø - 3	1298	1372	1	25	347	356		4 6	215	328	1	67	719	728	. 1	200	200
ī	Ø -1	2787	2778	i	2 6	493	483	i	Å 7	958	976	i	6 8	312	325	1 8 9	192	383
i	B 1	3678	3971	ī	2 7	385	381	ĩ	ÅŘ	185	182	i	6 9	721	735	1 8 14	241	255
i	Ø 3	1845	996	ī	2 8	413	428	ī	4 9	888	861	i	6 1.8	214	198	1 8 11	273	268
1	85	1973	1951	ĩ	2 9	251	252	i	4 18	185	174	i	6 11	418	418	1 9-18	282	285
i	Ø 7	1142	1142	i	2 1 8	355	346	i	A 11	488	588	ī	7-11	89*	63	1 9 - 9	386	371
1	<i>Ø</i> 9	1828	1887	· 1	2 11	g.	75	ī	5-11	358	368	i	7-18	765	764	1 9 -8	385	491
1	8 11	653	648	ī	3-11	56*	44	ī	5-10	152	146	i	7 -9	281	187	1 9 -7	175	191
i	1-11	196	192	i	3-18	495	488	i	5 -9	275	273	ī	7 -8	738	738	1 9 -6	521	587
1	1-18	721	782	1	3 -9	179	158	ī	5 -8	371	357	i	7 - 7	53*		1 9 - 5	657	653
1	1 - 9	378	384	i	3 - 8	1218	1283	ī	5 -7	6.82	597	ī	7 -6	1511	1493	1 9 -4	791	81.0
1	1 - 8	476	478	1	3 -7	76*	113	1	5 -6	214	226	i	7 -5	394	357	1 9 - 3	649	540
1	1 -7	478	474	1	3 -6	1478	1450	ī	5 - 5	784	696	i	7 -4	1761	1760	1 9 - 2	561	582
1	1 -6	1378	1318	1	3 - 5	241	256	1	5 -4	289	250	ī	7 -3	132	95	1 9 -1	585	569
1	1 - 5	462	437	1	3 -4	1442	1467	1	5 - 3	1882	928	i	7 -2	2082	2898	199	1152	1135
1	1 -4.	1138	1116	1	3 - 3	572	516	1	5 - 2	188	59	Ĩ	7 -1	42*	68	191	59.0	568
1	1 - 3	476	487	1	3 - 2	1762	1877	1	5 -1	85ø	873	1	7 8	2182	2828	192	1.01.0	1.011
1	1 -2	1795	1718	1	3 -1	428	484	1	5 Ø	147	98	1	71	354	328	193	186	172
1	1 -1	1531	1477	1	3 <i>B</i>	2514	2684	1	51	112	135	1	72	1384	1355	194	668	665
1	1 8	2392	2602	1	31	81 <i>8</i>	877	1	52	669	744	1	73	336	316	195	1148	1140
1	1 1	783	882	1	32	1888	1774	1	53	1ø38	1.859	1	74	2295	2257	196	7ø6	742
1	12	286	214	· 1	33	291	284	1	54	338	348	1	75	526	532	197	134	127
1	1 3	49.0	444	1	34	1323	1351	1	55	523	532	1	76	1193	12Ø7	198	262	284
1	1 4	1286	1293	1	35	297	299	1	56	548	516	1	77	64*	121	199	443	439
1	1 5	489	581	1	36	1797	1796	1	57	584	595	1	78	1187	12Ø1	1 9 18	443	448
1	16	386	367	1	37	67*	67	1	58	76*	19	1	79	224	223	1 18-18	124	137
1	1 7	269	254	1	38	667	669	1	59	272	271	1	7 10	555	57Ø	1 107 - 9	822	813
1	1 8	877	859	1	39	223	225	1	5 10	328	3.08	1	7 11	71=	81	1 119 - 8	15Ø	137
1	1 9	379	. 358	1	3 1.0	93Ø	924	1	5 11	353	348	1	8-11	235	231	1 10 -7	7Ø7	724
1	1 1.0	3.07	296	1	3 11	36*	55	1	6-11	474	588	1	8-10	393	392	1 10 -6	347	354
1		271	, 271	1	4-11	431	4.82	1	6-10	89*	91	1	8 - 9	156	145	1 10 -5	1556	1557
	2-11	614	35		4-19	167	156	1	6 ~ 9	465	466	1	8 - 8	76=	51	1 10 -4	472	457
	2-10	418	425	1	4 - 9	995	1016	1	6 -8	336	345	1	8 -7	678	654	1 10 -3	1338	1354
-	2 ~ 9	432	426		4 - 8	346	331	1	6 -7	1.045	1038		8 - 6	763	763	1 10 -2	913	912
	2 -8	339	344		4 -/	9.87	871	ļ	6 - 6	71-	65	1	8 - 5	7.6*	78	1 19 -1	1889	1880
	2 -7	82	23		4 - 5	385	283	8	6 -5	982	855	1	8 -4	237	89	1 10 10	116	87
- 1	2 - 0	031	107		4 - 5	18/1	18/8		D -4	64.0	859	1	8 - 3	1537	1545	1 10 1	15/3	1625
	2 - 5	1127	1120			281	639	1	6 - 3	2639	2298		8 -2	1931	1.04.0	1 10 2	466	5.05
1	2 - 4	043	845		4 - 3	1324	1217	1	6 -2	219	149	1	8 -1	235	314	1 19 3	1000	1662
	2 - 3	3/3	0/9		1 14	121	141		01	649	7.88	1	8 8	134	136	1 1.6 4	24.0	238
1	2 -1	2695	2659		4 -1	2908	2938		6 1	1019	988		8 1	90/	8/9	1 10 5	1320	1364
	2 9	1000	1967			1009	216	1		1043	1281	+	8 2	//3	/87	1 100 5	29/	319
i	2 1	1830	11007	1		203	310	1	6 2	345	340		0 1	408	439	1 10 /	1093	144
i	2 2	710	700		1 2	2319	2272	1	6 4	763	1131	+	0 4 0 F	233	20/	1 10 6	139	144
i	2 3	1015	886	:		681	698	3	6 6	1661	1591	;	0 0	500	900	1 1 1 1 1 1 1 1 1	/34 Ø#	/ 310
i	2	578	617	:	72	952	035	1	6 6	1001	324	1	0 0 8 7	664	514	1 11-14	335	312
-				•			200	•	~ 0			•	• /		340			

•

.

Reflections flagged with an asterisk were considered unobserved.

ť.

x

.

٠.

Fobs & Fold (x 18.) for [(C5Me5)2 Yb (OC)2 Fe (C5H4Me)] 2 at 25 C

P	a	g	e	3
---	---	---	---	---

Ċ,

-23-

HKL	Fobs	Fcalc	H	K	L	Fobs	Fcalc	н	K	L	Fobs	Fcalc	H	K	L	Fobs	Fcalc	н	ΚL	Fobs	Fcalc
1 11 -9	116	118	1	13	-4	855	845	1	15	5	573	564	1	18	-1	423	433	1	21 1	262	278
1 11 -8	649	645	1	13	-3	342	336	1	15	6	253	231	1	18		555	55 <i>8</i>	1	21 2	639	627
1 11 -7	346	35Ø	1	13	-2	1399	1386	1	15	7	g*	28	1	18	1	6Ø5	586	1	21 3	1Ø1	99
1 11 -6	773	775	1	13	- 1	711	667	1	15	8	1ø5	113	1	18	2	32*	114	1	21 4	425	418
1 11 -5	159	121	1	13	ø	1478	1504	1	15	9	397	399	1	-18	3	483	499	1	21 5	194	288
1 11 -4	1863	1072	1	13	1	282	263	1	16	-9	295	3.Ø3	1	18	- 4	456	474	1	21 6	579	564
1 11 -3	5#8	488	1	13	2	1846	1868	1	16	-8	43*	28	1	18	5	434	422	1	22 -5	182	163
1 11 -2	1413	1368	1	13	3	483	428	1	16	-7	446	444	1	18	6	127	165	1	22 -4	228	183
1 11 -1	586	615	1	13	- 4	978	99ø	1	16	-6	4.08	481	1	18	7	384	388	1	22 ~3	94*	1.078
1 11 Ø	1857	1014	1	13	5	Ø*	67	1	16	~5	5.02	5.87	1	18	- 8	171	164	1	22 -2	4.82	396
1 11 1	52*	36	1	13	6	753	773	1	16	-4	48*	32	1	19	-7	318	298	1	22 -1	262	259
1 11 2	12.02	1228	1	13	7	372	373	1	16	-3	757	776	1	19	-6	1.01	92	1	22 Ø	152	161
1 11 3	745	751	1	13	8	716	717	1	16	-2	779	754	1	19	-5	277	251	1	22 1	69*	82
1 11 4	/51	768	1	13	9		63	1	16	-1	735	766	1	19	-4	306	327	1	22 2	429	435
1 11 5	144	154	. 1	14	-9	583	553	1	16	Ø	75*	120	1	19	-3	36Ø	363	1	22 3	Ø*	53
1 11 6	1992	1977	1	14	-8		7	1	16	1	784	891	1	19	-2	2.08	212	1	22 4	141	151
	498	585		14	-/	833	893	1	16	2	697	695	1	13	-1	396	419	1	22 5	38=	
1 11 0	524	212		14	-0	439	455	1	10	3	501	515	1	13	U.	168	126	1	23 -4	381	391
1 11 9	424	87		14	- 2	851	8/3	1	10	4	153	183		13	1	3.02	320	1	23 -3	228	192
1 11 10	424	431		14	-4	208	231		10	5	587	585		19	Ž	346	358	1	23 -2	435	423
1 12 - 10	110	123		14	- 3	1047	104/		10	2	320	318		13	3	508	530	1	23 -1	63-	0.01
1 12 -9	663	550		14	-4	1629	1626		10		4/2	400		10	4	211	208	1	23 10	489	4/4
1 12 -7	175	174		17	- 1 a	1920	1030		17	_0	133	507		10	5	193	207		23 1	100	201
1 12 -6	a*	20	1	- 17	1	1203	1222	1	17	- 0	150	176		10	2	310	290		23 2	391	9.01
1 12 -5	76*	4.00		- 17	-	465	474	1	12		776	704	1	20		303	421		23 3	470	105
1 12 -4	1116	1 6 8 1	:	- 17	2	1030	1949		12	-6	//S	73		20	-6	4.00	421	1	24 - 2	693	627
1 12 -3	A*	22	i	14	4	95	66	:	17	-4	<u>918</u>	841		24	-6	727	728		24 -2	0.03 A*	34
1 12 -2	388	276	i	- i 4	ŝ	912	319	i	17	-3	68*	93	i	28	-4	227	249	i	24 -1	497	4 8 4
1 12 -1	18*	23	ī	14	6	158	149	i	17	-2	988	966		28	-3	637	638	i	24 8	135	131
1 12 8	1883	983	i	14	7	794	799	;	17	-1	48*	4.9	i	28	-2	a=	75	i	24 1	642	630
1 12 1	393	389	ī	14	ġ	g*	64	i	17	ġ	1187	1129	1	28	-1	794	772	i	24 2		28
1 12 2	239	248	ī	14	ğ	539	545	ī	17	ĩ	255	262	i	20	, a	384	381	i	24 3	395	395
1 12 3	381	365	i	15	-9	324	323	ī	17	2	990	984	ī	28	ĩ	571	590	ī	25 -1	243	229
1 12 4	694	649	i	15	-8	223	213	ī	17	3	15Ø	138	ī	2.0	Ž	g*	38	ī	25 Ø	235	245
1 12 5	Ø*	32	1	15	-7	269	234	1	17	4	923	886	1	28	3	798	796	i	25 1	152	138
1 12 6	284	287	1	15	-6	215	218	1	17	5	283	2.03	· 1	28	- 4	257	268	2	Ø-1Ø	86Ø	862
1 12 7	8*	16	1	15	-5	384	349	1	17	6	716	7ø6	1	2Ø	5	521	524	2	8 -8	632	645
1 12 8	4.81	383	1	15	-4	2Ø9	189	<u>`1</u>	17	7	157	156	1	2Ø	6	72*	41	2	Ø -6	2119	2139
1 12 9	177	181	1	15	- 3	445	381	1	17	8	649	652	1	2Ø	7	554	547	2	Ø -4	85 <i>0</i>	8.02
1 12 18	245	246	1	15	-2	39ø	376	1	18	-8	242	253	1	21	-6	399	429	2	Ø -2	1222	1323
1 13-10	444	446	1	15	-1	474	467	1	18	-7	5.81	515	1	21	-5	197	17ø	2	Ø Ø	155	17ø
1 13 -9	Ø*	11	1	15	ø	310	288	1	18	-6	151	123	1	21	-4	546	56Ø	2	Ø 2	1327	1478
1 13 -8	661	686	1	15	1	689	634	1	18	-5	299	288	1	21	-3	241	238	2	<i>B</i> 4	87Ø	929
1 13 -7	218	2Ø1	· 1	15	2	224	224	1	18	-4	5 <i>8</i> /5	5.01	1	21	-2	615	643	2	Ø 6	1113	1163
1 13 -6	86.0	883	1	15	3	245	23Ø	1	18	- 3	6.08	59ø	1	21	-1	Ø*	53	2	Ø 8	911	9ø2
1 13 -5	1Ø7	66	1	15	4	372	374	1	18	-2	Ø*	31	1	21	8	543	545	2	Ø 1Ø	. 499	508

÷ 6 . ′

2

Reflections flagged with an asterisk were considered unobserved.

•

Fobs & Fclc (x 1#.) for [(C5Me5)2 Vb (OC)2 Fe (C5H4Me)] 2 at 25 C

Page 4

٩

×

н	K L	Fobs	Fcalc	н	ΚL	Fobs	Fcalc	H	κ	L	Fobs	Fcalc	H	ΚI	. Fobs	Fcalc	н	K	L	Fobs	Fcalc
2	1-11	182	86	2	3-18	139	1.07	2	5 -	-9	39*	21	2	7 -1	9 B.	86	2	9	-3	244	272
2	1-18	536	633	2	3 - 9	584	597	2	5.	-8	684	629	2	7 -	65ø	637	2	9	-2	1636	1653
2	1 -9	668	664	2	3 ~8	329	332	2	5 -	-7	21.65	183	2	7 -1	5 281	291	2	9	-1	452	5#9
2	1 -8	692	689	2	3 - 7	1233	1231	2	5 -	-6	1228	1193	2	7 -1	5 1881	1013	2	9	8	849	8ø6
2	1 -7	481	484	2	3-6	414	488	2	5 -	-5	59*	56	2	7 -	163	153	2	9	1	323	359
2	1 -6	1282	1153	2	3 - 5	135Ø	1365	2	5 -	- 4	164Ø	1577	2	7 -:	3 1795	1798	2	9	2	1275	1326
2	1 -5	293	386	2	3 -4	689	611	2	5 -	- 3	639	536	2	7 -1	2 53ø	495	2	9	3	957	946
2	1 -4	944	982	2	3 - 3	1148	1844	2	5 -	-2	1985	1820	2	7 -	966	972	2	ģ	4	692	667
2	1 - 3	1203	1124	2	3 - 2	168	161	2	5 -	-1	301	278	2	7 1	5 144	124	2	9	5	226	249
2	1 -2	984	1 <i>98</i> 8	2	3 -1	1745	1778	2	5	ø	1894	1849	2	7	1478	1495	2	9	6	1258	1274
2	1 -1	925	926	2	3 Ø	215	271	2	5	1	238	241	2	7	2 54.0	558	2	9	7	486	496
2	1 8	898	981	2	3 1	457	372	2	5	2	1153	1079	2	7	911	962	2	9	8	477	478
2	1 1	1424	1611	2	32	2121	2822	2	5	3	916	911	2	7	218	2ø8	2	9	9	210	209
2	12	167	235	2	3 3	1868	1919	2	5	4	1864	1845	2	7 9	1628	1655	2	9	18	549	556
2	1 3	742	658	2	34	188	197	2	5	5	293	273	2	7 (482	491	2	1.0	-19	436	446
2	1 4	1010	1921	2	35	561	556	2	5	6	829	8ø1	2	7	635	638	2	18	-9	285	289
2	1 5	1140	1164	2	3 6	450	441	2	5	7	310	328	2	7 1	3 8*	6	2	10	-8	779	884
2	1 6	883	788	2	37	1096	1891	· 2	5	8	886	885	2	7 9	76Ø	771	2	10	-7	Ø*	91
2	1 7	183	182	2	3 8	248	241	2	5	9	86*	115	2	7 1	144	153	2	1.0	-6	677	672
2	1 8	675	669	2	39	573	567	2	5 1	ø	479	455	2	8-11	269	264	2	10	-5	577	588
2	1 9	655	65.0	2	3 10	263	267	2	5 1	11	154	156	2	8 -	675	68ø	2	1.0	-4	1433	1489
2	1 1.8	566	552	2	3 11	492	492	2	6-1	11	355	356	2	8 -1	3 228	212	2	18	-3	Ø*	72
2	1 11	182*	140	2	4-11	337	338	2	6-1	lØ -	629	625	2	8 - 3	436	45 <i>0</i>	2	18	-2	892	863
2	2-11	423	429	2	4-18	264	268	2	6.	- 9	18ø	173	2	8 -1	5 562	568	2	1Ø	-1	769	71 <i>8</i>
2	2-10	183	1.82	2	4 -9	2:7	249	2	6 -	- 8	268	292	2	8 -!	5 1497	145Ø	2	10	ø	1446	1495
2	2 - 9	773	775	2	4 -8	1822	1814	2	6 -	-7	799	889	2	8 -	191	171	2	1.0	1	98	84
2	2 - 8	521	522	2	4 -7	792	81.0	2	6 -	-6	1198	1208	2	8 -:	3 657	615	2	10	2	1Ø21	1Ø63
2	2 -7	955	946	2	4 -6	45Ø	457	2	6 -	-5	516	489	2	8 - 2	2 1255	1242	2	1.0	3	228	238
2	2 - 6	278	382	2	4 -5	477	495	2	6.	- 4	586	53 <i>0</i>	2	8 -	2Ø98	2051	2	18	4	1110	1100
2	2 - 5	1337	1329	2	4 -4	1263	1245	2	6 -	- 3	1237	1269	2	8 /	278	272	2	10	5	428	436
2	2 -4	94.8	949	2	4 - 3	1361	1214	2	6 -	- 2	1666	1610	2	8	821	886	2	18	6	9ø5	9Ø7
2	2 - 3	1669	1478	2	4 -2	1103	1#58	2	6 -	- 1	759	691	2	8 ;	2 6ø1	689	2	10	7	16Ø	149
2	2 - 2	397	487	2	4 -1	474	493	2	6	ø	594	529	2	8 :	3 14.05	1382	2	10	8	585	596
2	2 -1	1835	1866	2	4 Ø	1873	1922	2	6	1	1137	1123	2	8 4	557	553	2	10	9	1ø6	87
2	2 🔊	1458	1447	2	4 1	427	383	2	6	2	654	719	2	8 1	5 99Ø	984	2	1Ø	1.0	419	422
2	21	442	522	2	4 2	1232	1198	2	6	3	77ø	812	2	8 (5 458	445	2	11	-1ø	43Ø	432
2	22	1584	1368	2	4 3	461	486	2	6	4	874	892	2	8	7 635	633	2	11	-9	385	379
2	23	1889	1816	2	4 4	1623	1622	2	6	5	944	941	2	8 1	3 326	314	2	11	-8	422	42Ø
2	24	787	7ø5	2	4 5	976	982	2	6	6	7Ø3	7ø2	2	8 9	9 579	59 <i>8</i>	2	11	-7	553	564
2	25	961	951	2	4 6	843	824	2	6	7	514	5ø5	2	8 1/	9 15Ø	142	2	11	-6	572	581
2	26	364	4.89	2	4 7	489	481	2	6	8	638	65 <i>8</i> -	2	9-1	357	353	2	11	-5	72.00	7Ø5
2	27	816	819	2	4 8	610	611	2	6	9	469	472	2	9 - 9	283	295	2	11	-4	75Ø	733
2	28	119	114	2	4 9	377	393	2	6 1	ø	319	325	2	9 -1	3 581	59Ø	2	11	- 3	1132	1139
2	29	813	781	2	4 10	537	537	2	6 1	11	343	349	2	9 -	7 3ø8	310	2	11	-2	426	452
2	210	251	252	2	4 11	254	267	2	7-1	11	3ø5	327	2	9 -1	5 761	738	2	11	-1	88.0	832
2	2 11	477	462	2	5-11	88*	121	2	7-1	Ø	57*	62	2	9 -!	5 487	496	2	11	ø	1Ø85	112Ø
2	3-11	575	575	2	5-18	6.08	616	2	7 -	-9	724	737	2	9 -	1263	1198	2	11	1	578	58 <i>0</i>

•

Reflections flagged with an asterisk were considered unobserved.

¥

ζ

Fobs & fclc (x 18.) for [(C5Me6)2 Yb (OC)2 Fe (C5M4Me)] 2 at 25 C

	Fcalo	365	282	357	371	52				231		48	3	3.03	173	1	20	741	4	1423	924	632	736	1387	200	2.4	1.671	497	168	69	144		1136	3.81	1476	86	161				1.96	1212	649	6	
	f obs	348	296	361	387	28.8			100	248	6.9	498	.8	3.8.8	173	413	1 9	758	*6 8	1413	1.048	618	848	1399	4/4	148	1.86	485	182	7.86	414	959T	1.085	338	1541	352	1695	674 721	1267	2895	66	1221	621	643	
	-	S	7	ñ	م	- °	Q -	• ^	10	1 •		Ŷ	-	8	-	N	-1	۴	-1	ۍ ۱	с Г	7	- 0	m .	0 r	. o	1	Ę	-18	6 (œ ۲	- 4 1	ې د ۱	7	۳ ۱	2	- 8 1	9 -	- c	1 (1	• -	ß	9	-	
	¥	22	23	23	23	n c	30	3 6	20	3 5	24	12	54	24	24	24	ė,	8	9	9	8	9	60 1		99	9 6	9 69	-	-	-		-	•	-	-	-	-	-	-	•	-	-		-	
ß	x	2	2	2	2	N (4	~	10	1 N			~	2	~	~	m	m	ო	m	e	m	ო (m (n r	, 4	n 1	e	m	Ċ I	m (" "	n n	e	m	m (m (" (n c	, ,	n 1	m	с о	m	
e ge q	'calc	283	441	247	8.05		100	a 1 6 9	145	347	228	272	7 6	619	327	4.87	53	671	339	519	96	484	233	224	148	272	387	484	524	171	3.86	101	112	281	275	454	221		6 1 C	221	4.05	84	493	34	
	f obs	189	47.8	258	8.82	# 7 8 7 #		672	135	100	219	264	. 8	596	332	4.88	# B	7.81	345	5.07	86*	513	246	4 1 B	201	276	382	389	5.87	196	281	904	114	288	26.0	482	121			146	392	118	498	67#	
		m I	~	7	B .	- ·	4 0	n 4	r ut	0 0	~	. vo	ŝ	-	ę	~	7	8	-	~	ო	-	ŝ	0	ں م ۱	-	r m	2	-	8	- (2	n 🖣	'n	9	۰ ۱	4 6	ה ייי	v -	- 62	• •	2	с .	4	
	¥	19	61	61	61		n d	h 0		6	6	93	5.0	2.8	58	58	50	28	58	8	28	58	8			:=	:	21	21	2	22		12	21	5			9 C		10		22	20	22	
	x	2	2	~	~	N C	• •	2	10	1 0			2	N	2	~	2	~	2	2	2	2	~	N	20	10	1 (1	2	N	~	~	N 0	1 (1	~	N	N (N (40	40	10	10	N	-	N	
	fcalc	176	559	5.68	133	128		158	375	287	65	487	16	516	m	692	153	657	2.89	887	381	737	153	64.8	184	129	235	53.0	336	356	1.05	104	289	221	738	558	131	505 101	176	376	36	512	214	1.68	
	_		_	_	-	.					<u>.</u>	_	£				_	_			-	_	<u>.</u> :			_						_	_								_	
at 25 (f obs	976	568	524					275	286		485	94	516	67	69	155	67.6	207	857	367	739	36	10			245	526	316	355	1.96		567	226	734	578	24	202	110		6	585	225	728	rved.
-	-	7	8	-	~	- 11	e u	0.0		. 00	8	5	Ŷ	ŝ	1	ñ	2	7	8	-	~	ო	41	0 (0 r	- α	9	-	9	Ŷ	•	י ו ו	-	9	-	2	M 4	• 1	р ч	2	~	9	ŝ	1	195
1 2	¥	16	16	16	9	2	2	9	2	9	1	17	17	17	17	17	17	1	17	17	17	12	2:	2:	22	:-	. 8	18	18	8	8	p q	8	18	18	8	2	b 0	9 9	2	6	19	61	6	nob
5H4Me)	I	2	2	2	~ •			- ~	• •	1 01	0	2	2	2	2	2	2	8	8	7	8	~	~ `	~ ~	~ ~	• •	• ~•	2	2	2	~ •	~ ~	10	2	2	20	N (10	10	10	2	~ ~	2	dered u
Fe (C	Fcalc	477	388	334	524	210		671	113	878	655	821	119	845	54.8	852	187	684	252	488	2.81	117	281		R * 0	7.88	12.0	1.812	177	584	156	325	446	261	6.67	1.84	1915	10	107	133	861	422	BCC C	667	cons 1
0C)2	e pe	475	383	347	537			5 / 5 9 9 9		876	65.8	748	141	862	537	843	281	677	249	383	222	128	586	158	600 400	725		1997	17.8	583	181	191	136	253	962	118	5 8 2		• • •	100	847	4.85	115	65.0	Were
م																															•	-													a,
2	-	89	σ	ф,	00 r	~ 4	9 u	-	5	ı م			-	2	m	4	ŝ	ø	~	œ	s.	ς. 1		~`	0 U	, , ,	י מ	2	7	8	- (4 6	,	ស	ø	~ '	20 00	ם ת ו		ģ	ې ۱	-	ę,	2-	eri
e5)	¥	13	e.	1	1		::	: _	-	1	1	1	1	1	**	1	1	1	1	1	=	5	5	<u>م</u>	0 u	2 1	2.0	15	15	5	5		2	15	15	<u>م</u>	<u>.</u>			2	19	16	91	9	ast
C (C5M	Ŧ	2	2	2	~ ~	ч r		1 (1	•	10	2	2	2	~	2	~	2	~	~	~	2	2	~ (20	~ ~	10	101	2	~	2	~ ~	v 0	101	~	2	N 1	2 10	~~~	40	10	101	2	~	2	ch an
2	v	N	9	5	-	- 1	9 0	1 10	•	و ا	2	N	9	8	ŝ	2	N	2	2	=	80	8		5	• •	0	i õ	-	ž	3	9	• 14	ຸດ		ŝ	- 1	و و	2	2 5	2 10	5	*	80	Ξ	ž
Ĵ,	5	83	6	591		4 4	5 -		-		6		6	ŝ	9	28	186	2	78	=	132	e e	6.		⇒ u n			5	8	41		0 C	:2	52	~	5					5.4	59	=	4	þ
<u>.</u>	-																																												86
×	sqo	811	B 1 6	863 893	558		200	282	66	9	395	9	949	36.8	4.82	288	849	118	79.8	158	273	338	116			713	1.83	514	1.82	462	326	202	737	546	8.05	6.87	134	760		728	774	688	133	488	Ţ
: le (L	•	~			• •					-	-	_							_	_		_					-		_														_	lons
ž	-			-	42 4		- 0	. 01	1.6	- 16	1		î	1	Ϋ́	ĩ	1	1	ī	-	-			- u			. 00	<u>л</u>	31	01 ()	1		1	7	1	1	- 4			. (*1	-	0		•	ect
-0	×	11	-		2:		-		1	2	12	12	12	12	12	12	12	2	2	2	2		2	40	10	2	12	12	12	E 1		2 -		13	<u> </u>	-	-			: =	13	13	£1	1	ef]
Fob	Ξ	2	2	~ '	N 6	~~	10	• ~	0	• ~•	2	~	2	2	2	2	2	2	~	2	2	2	~ ~	2 6	~ ~			2	2	~ •	~ ~	90	101	2	~	N	~ ~	10	10	10		2	~ ~	N	a.

-25-

Fobs & Fold (x 18.) for [(C5Me5)2 Vb (OC)2 Fe (C5H4Me)] 2 at 25 C

.

Page 6

ă.

٦

n	κι	Fobs	Fcalc	н	ΚL	Fobs	Fcalc	н	ΚL	Fobs	Fcalc	н	ΚĹ	Fobs	Fcalc	HKL	Fobs Fcalc
3	18	82*	66	3	39	278	252	3	5 18	46*	79	3	8 - 7	77*	73	3 14 -2	# # 22
3	1 9	764	771	3	3 1.0	178	169	3	6-11	73+	84	2	8 - 6	796	795	3 14 -1	347 367
3	1 10	215	233	3	3 11	285	286	3	6-18	556	577	3	8 -5	516	518	3 1 97 97	176 284
3	1 11	466	455	3	4-11	371	393	3	6 - 9	487	491	2	8 - 4	1585	1595	3 1 9 1	687 696
3	2-11	383	299	3	4-18	515	581	3	6 - 8	448	432	3	8 -3	41*	46	3 16 2	49* 39
3	2-18	654	661	3	4 -9	135	136	3	6 - 7	23#	28	2	8 - 2	1156	1149	3 1 4 3	686 613
3	2 - 9	169	161	3	4 -B	234	219	3	6 - 6	1250	1245	3	8 -1	659	698	3 16 4	311 345
3	2 - 8	1838	1861	3	4 -7	739	76.0	3	6 - 5	834	RAR	3	8 9	1799	1877	3 1 8 5	383 378
3	2 -7	612	617	3	4 -6	894	886	3	6 - 4	1117	1855	3	8 1	119	164	3 10 6	A28 A18
3	2 - 6	1254	1245	3	4 -5	158	139	3	6 - 3	266	257	3	8 2	1359	1382	3 10 7	AA1 A34
3	2 - 5	583	565	3	4 -4	61.0	647	3	6 - 2	1459	1489	3	8 3	133	146	3 10 8	184 188
3	2 -4	1461	1478	3	4 - 3	1111	1866	ã	6 -1	1141	1191	3	8 4	1333	1329	3 18 9	188 186
3	2 - 3	115	161	3	4 -2	1328	1341	3	6 8	1217	1155	3	8 5	31.0	301	3 10 10	216 206
3	2 - 2	1657	1648	3	4 -1	357	353	3	6 1	8.0	9.0	3	8 6	1.098	1.062	3 11-10	195 194
3	2 -1	131	118	3	4 8	837	762	3	62	1477	1487	3	8 7	Ø*	27	3 11 -9	443 451
3	2 🕫	1958	1881	3	4 1	1125	1148	3	63	757	769	3	88	792	8.05	3 11 -8	258 268
3	21	5ø*	113	3	4 2	524	535	3	64	989	1013	3	8 9	135	132	3 11 -7	749 737
3	22	2838	2793	3	4 3	781	781	3	65	518	515	3	8 1.0	522	5ø2	3 11 -6	149 138
3	23	64*	38	3	4 4	1111	1128	3	66	691	679	3	9-18	175	192	3 11 -5	669 662
3	2 4	1967	1965	3	4 5	361	366	3	67	252	26Ø	3	9-9	748	734	3 11 -4	577 555
3	2 5	314	313	3	4 6	778	755	3	68	681	666	3	9 - 8	191	188	3 11 -3	1099 1074
3	26	1277	1277	3	4 7	5.81	488	3	69	387	387	3	9 - 7	784	781	3 11 -2	491 47 <i>8</i>
3	2 7	299	287	3	4 8	669	672	3	6 18	343	342	3	9 -6	191	173	3 11 -1	5 <i>0</i> /4 485
3.	28	1846	1045	3	49	187	178	3	7-10	3#3	3ø7	3	9 - 5	1337	1312	3 11 Ø	492 528
3	2 9	73=	15	3	4 10	314	389	3	7 -9	113	92	3	9 -4	520/	519	3 11 1	1573 1583
3	2 1.0	7.05	699	3	4 11	269	259	3	7 -8	288	285	3	9-3	1412	1369	3 11 2	259 227
3	2 11	199	184	3	5-11	531	532	3	7 -7	81*	73	3	9 - 2	92	66	3 11 3	862 865
3	3-11	191	192	3	5-10	-88	43	3	7 -6	498	4.82	3	9 -1	1926	1945	3 11 4	480 476
3	3~1.0	350	345	3	5 - 9	/60	782	3	/ -5	191	149	3	9 9	481	384	3 11 5	934 949
3	3 - 9	290	287	3	5-8	/1=	19	3	/ -4	3/3	334	3	9 1	1948	1051	3 11 6	238 218
3	3 - 8	348	340	3	5 -/	1156	11/8	3	7 - 3		219	3	9 2	/4=	3.0	3 11 7	484 484
2	3 -1	522	430	3	5 5	100-	59	3	<u>'</u> " <u>'</u>	1140	1996	3	9 3	1981	1008	3 11 8	18/ 186
2	3 - 6	975	020	3	5 - 5	1023	10/1	3	/ -1 / a	687	/ 35	3	9 4	593	228	3 11 9	546 548
3	3 -4	1221	1221	2	5 - 4	1021	490	3	7 1	414	4.00	3	9 5	/92	/91	3 12 -9	610 620
3	3 - 3	592	554	2	5 - 2	612	505	3	· · ·	752	759	2	9 0 07	10~	1071	3 12 -0	
3	3 - 2	485	443	2	5 -1	1973	1963	3	7 2	774	700	3	3 /	200	200	3 12 -7	1164 1162
3	3 -1	383	383	3	5 8	491	497	2	7 4	333	221	2	0 0	543	400	3 12 -6	276 275
3	3 8	1792	1782	2	5 Î	2124	2299	2	7 6	243	222	2	0 10	05 *	433	312 - 3	967 024
3	3 1	1696	1585	3	5 2	158	169	3	7 6	788	733	2	19-18	85*	10	312 - 4	724 6
3	3 2	2.05	197	3	5 3	1922	1945	2	7 7	475	457	2	10^{-10}	282	297	312 - 3	1771 1732
3	3 3	1585	1565	3	5 4	434	461	ž	7 8	228	213	3	10 -0	159	442	3 12 -1	205 214
3	3 4	1242	1233	3	5 5	1790	1819	3	7 9	76*	49	3	18 -7	451	447	3 12 4	1028 1029
3	3 5	168	180	3	5 6	377	369	3	7 10	315	318	3	18 -6	215	195	3 12 1	63* 78
3	36	133	121	3	5 7	976	978	3	8-10	447	438	3	10 -5	293	299	3 12 2	1586 1585
3	37	478	462	3	5 8	97	122	3	8 - 9	3.02	315	3	18 -4	972	949	3 12 3	56* 49
3	38	518	548	3	5 9	985	959	3	8 - 8	937	927	3	10 -3	993	992	3 12 4	1188 1208

Reflections flagged with an asterisk were considered unobserved.

4

٢

ħ.

-26-

Fe (C5H (0C)2 \$ (C5Ma6 fç 1 č

Fobs & Folc (x 18.) for [(C5Me6)2 Vb (OC)2 Fe (C5H4Me)] 2 at 25 C

Page 8

\$

Ľ

н	K L	Fobs	Fcalc	н	ΚL	Fobs	Fcalc	н	κι	. Fobs	Fcalc	н	K	L	Fobs	Fcalc	нк	L	Fobs	Fcalc
4	32	968	929	4	57	148	162	4	8 -9	5ø2	514	4	1.0	-3	578	557	4 12	6	32*	82
- 4	33	411	388	- 4	58	973	973	4	8 -8	9 6 *	45	- 4	18	-2	386	264	4 12	7	681	679
- 4	34	358	381	4	59	g•	19	4	8 -7	7 1110	1897	4	10	-1	Ø*	34	4 12	8	ø*	34
- 4	35	362	365	- 4	5 10	616	617	4	8 -6	5 177	179	4	18	ø	42*	79	4 12	9	697	68Ø
- 4	36	199	197	4	6-18	98*	137	4	8 -8	5 836	871	. 4	10	1	171	173	4 13	-9	g*	12
- 4	37	155	177	4	6 - 9	663	678	4	8 -4	120	187	4	10	2	g*	73	4 13	-8	389	292
- 4	38	39ø	397	- 4	6 -8	. Ø *	59	4	8 -3	3 1754	1729	4	1.0	3	2.88	219	4 13	-7	67*	13
- 4	39	48*	83	4	6 - 7	438	413	4	8 - 2	2 82	191	4	10	4	141	14Ø	4 13	-6	552	569
4	3 10	189	194	4	6 -6	308	388	4	8 -1	1757	1719	4	18	5	Ø*	26	4 13	-5	148	132
- 4	4-10	289	217	4	6 - 5	1361	1345	4	8 4	9 117	136	4	1.0	6	110	68	4 13	-4	331	332
- 4	4 -9	479	5ø6	- 4	6 -4	327	314	4	8 1	1438	1429	Ą	18	7	342	355	4 13	- 3	146	1.02
4	4 -8	299	388	4	6 - 3	954	963	4	8 2	2 227	248	4	18	8	Ø*	81	4 13	-2	876	878
4	4 -7	273	268	4	6 - 2	181	214	- 4	8 3	3 14Ø8	1419	4	1Ø	9	85*	4.0	4 13	-1	Ø*	23
4	4 -6	436	45Ø	4	6 -1	1294	1335	4	8 4	224	216	4	11	-9	Ø*	6	4 13	ø	218	212
4	4 -5	542	553	4	6 Ø	268	267	4	8 5	5 766	764	4	11	- 8	386	39Ø	4 13	1	8Ø*	4.0
- 4	4 -4	295	292	- 4	6 1	1468	1439	4	8 6	5 1.01	94	4	11	-7	45*	26	4 13	2	979	998
- 4	4 -3	1031	1#31	- 4	62	g*	76	.4	87	1.678.67	1ø97	4	11	-6	989	986	4 13	3	87*	81
- 4	4 -2	144	137	- 4	63	695	693	- 4	88	3 174	19ø	- 4	11	-5	174	145	4 13	4	333	353
4	4 -1	1369	1419	4	64	184	78	- 4	8 9	581	58 <i>8</i>	4	11	-4	579	585	4 13	5	36*	3
4	4 8	16Ø	134	- 4	65	848	865	- 4	8 14	5 124	118	- 4	11	-3	248	237	4 13	6	564	567
4	4 1	1049	1012	4	66	213	2Ø7	- 4	9-16	593	589	- 4	11	-2	1299	1294	4 13	7	85*	71
4	4 2	92	124	4	67	559	561	4	9 -9	65*	15	4	11	-1	Ø*	12	4 13	8	256	25Ø
4	4 3	1335	1371	4	68	152	143	4	9 -8	8 857	853	4	11	ø	633	619	4 13	9	Ø*	27
4	4 4	186	184	- 4	69	576	554	4	9 - 7	7 78*	8	4	11	1	7.8*	62	4 14	-8	61*	15
4	4 5	783	782	4	6 10	44 *	111	4	9 -6	688	594	- 4	11	2	1371	1398	4 14	-7 :	438	453
4	4 6	245	225	4	7-10	1.Ø3	92	4	9 - 5	i 165	124	- 4	11	3	149	134	4 14	-6	23*	11
4	4 7	718	697	4	7 -9	58*	89	4	9 -4	1598	1568	4	11	4	526	514	4 14	-5	228	210
4	4 8	150	145	4	7 -8	230	242	4	9 -3	8 497	473	- 4	11	5	71*	23	4 14	-4	129	122
4	4 9	491	486	4	7 -7	265	251	4	9 -2	2 1991	974	4	11	6	798	8.06	4 14	-3	572	567
	4 1.0	127	11.0	4	7 -6	61ª	28	4	9 -1	372	358	4	11	7	1Ø3	84	4 14	-2	151	94
1	5-18	/16	785	4	7 -5	185	177	4	9 4	1998	2008	4	11	8	386	396	4 14	-1	188	174
	5 - 9	132	147	4	/ -4	396	489	4	9 1	257	274	4	11	9	Ø*	17	4 14	ß	77*	79
1	5 - 8	/84	897		/ -3	3.01	3.01		9 8	11/5	1145	4	12	-9	847	832	4 14	1	363	383
1	5 - 6	1476	32		1 -2	1/1	157	4	9 3	54"	8	4	12	-8	69*	56	4 14	2	g*	35
-	5 - 6	14/0	1407		/ -1	522	525	4	9 4	1278	1257	4	12	-7	657	656	4 14	3	5.09	514
	5 - 5	1167	1141		7 10	709	/40			198	212	4	12	-0	83-	18	4 14	4	. Ø *	92
	5	525	520	1		335	339		3 6		/59		12	-5	1132	1116	4 14	5	310	311
- 7	5 - 2	2961	2057		7 2	303	310				49	4	12	-4		46	4 14	0		9 0 -
1	5 -2	976	2037	1	7 4	£17	278	1		3 910	895	4	12	-3	920	924	4 14		365	358
1	5 9	1812	1840	- 1	- / E	245	204	*	10-10	, 10" X 04"	07	•	12	-2	1200	34	4 14	- 0	5.47	50
7	5 1	552	545		7 4	143	231		10-11	, 60°	23		12	-1	1300	1323	4 15	-8	D4/	049
1	5 2	2218	2231		7 7	210	22		10 - 5	, 10" 1146	8	1	12	10/	1400	1.02	4 15	-/	- 6 07	00
7	5 3	483	495	- 1	7 9	344	340	1	10 -0	100	179	1	12	2	1402	1411	4 15	-0	032	049
Ă	5 4	1010	1884	4	7 0	344 Øs	340	1	10 -4	124	1/8	1	12	2	1224	1227	4 15	-0	1157	1162
Ā	5 5	179	167		7 10		22	1	10 -0	134	121	1	12	ت 4	1239	1227	4 15		113/	1103
Å	5 6	1386	1395		R-10	129	120	1	10 -1	3 161 1 701	121	1	12	-	115	109	4 15	-3	211	120

Reflections, flagged with an asterisk were considered unobserved.

λ.

¢

-28-

Fobs & Fclc (x 10.) for [(C5Me5)2 Vb (OC)2 Fe (C5H4Me)] 2 at 25 C

HKL Fobs Fcalc 4 15 4 22 8. -1 4 18 - 1 ø -3 37Ø 4 15 ø 4 18 8* 4 22 2 -2 4 15 32* 4 18 4 22 98* -1 4 15 4 18 g * 4 22 ø 4 15 4 18 4 23 -2 3Ø7 4 15 - 4 4 18 71* 4 23 -1 5ø6 4 15 72* 4 18 6#9 4 23 ø B 4 15 79* 1Ø8 4 18 4 23 8. - 9 1.82 4 15 88* 4 19 -6 4 23 8* 1.0 4 15 4 19 -5 _____ e = ø -9 5-1# 4 16 -8 8* 4 19 -4 ø -7 2 -9 4 19 -3 4 16 -7 7ø3 ø -5 B -8 23Ø .4 19 -2 4 16 -6 -3 85* -7 4 16 -5 4 19 -1 59* -1 2 10 -6 -4 4 16 8* 4 19 . 62Ø ø - 1 1ø69 3-10 88* -5 4 16 - 3 4 19 174. ø 3 -9 -4 3ø3 4 16 -2 38* -8 -3 4 19 ø 4 16 - 1 4 19 g* 3 - 7 -2 3Ø5 4 16 92* 4 19 ø - 9 3 -6 -1 2Ø16 4 16 4 19 41* 1-10 -5 ø 45Ø 4 16 83* 4 19 1 -9 -4 4 16 4 28 -6 -8 Ø * -3 69Ø 35Ø 37Ø -7 -2 4 16 8* -5 B79 1Ø85 4 20 4 16 5ø8 4 28 -4 8* -6 -1 4 16 75* 4 20 -3 -5 - 5 . 4 16 4 28 -2 188* -4 69* - 7 4 17 -1 -3 1.050 Ø * 4 28 4.09 4.03 1Ø81 4 17 -6 24* 4 28 ø -2 88* Ø* 4 17 - 5 8* 4 28 -1 7Ø1 4 17 -4 4 28 3 8* Ø* 4 17 - 3 g * 4 28 128Ø 6-18 33Ø 4 17 -2 3Ø9 4 28 7Ø* 5Ø 85Ø -9 4 17 -1 Ø* 4 20 35Ø -8 4 17 ø 4 21 -5 1.07 62* -7 -4 3 10 4 17 48* 4 21 -6 4 17 -3 4 21 97* 4-18 33Ø -5 4 17 4 21 -2 4 -9 17Ø -4 1Ø18 4 17 72* - 4 4 21 -1 46* -8 -3 5ø8 4 17 -5 91* 4 21 - 9 4 -7 -2 4 17 - 6 4 21 26* 1 18 -6 -1 4 17 26* 4 21 2-10 52Ø 4 -5 ø 4 18 -7 4 21 2 -9 63* -4 4 18 -6 25* 4 21 - 4 38Ø 2 -8 -3 4 18 -5 4 22 -4 85* - 7 -2 4 22 4 22 4 18 -4 8* -3 -6 -1 75Ø 4 18 -3 4Ø3 6ø6 -2 2Ø8

ø

 86Ø

5

 88Ø

Reflections flagged with an asterisk were considered unobserved.

4 22 -1

4 18 -2

8*

8*

1.24

-5

-4

. Ţ.

Page 9

Fobs & Fold (x 10.) for [(C5Me5)2 Yb (OC)2 Fe (C5H4Me)] 2 at 25 C

Page 18

. • •

۹.

۲

н	K L	Fobs	Fcalc	н	ĸ	L Fobs	Fcalc	н	ĸ	L	Fobs	Fcalc	н	ĸ	L	Fobs	Fcalc	HKL	Fobs	Fcalc
5	67	185	198	5	9 -	5 591	562	5	11		357	352	5	14	-2	361	35.8	5 17 -2	417	494
5	6 8	465	467	5	9 -	4 38Ø	391	5	11	5	538	537	5	14	-1	478	495	5 17 -1	278	276
5	69	288	262	5		3 1321	1329	5	11	6	251	245	5	14	Å	276	283	5 17 A	265	263
5	7-18	299	31.8	5	<u>9</u> -:	2 8*	17	Š	ii -	7	5.08	519	5	14	ĩ	472	468	5 17 1	194	188
5	7 -9	56*	86	5	<u>9</u> –	836	866	5	ii -	8	284	183	5	14	2	314	296	5 17 2	A14	412
5	7 -8	239	237	5	9 1	8 494	582	5	11	ġ.	348	338	5	14	3	487	426	5 17 3	315	301
5	7 - 7	454	472	5	9	1 1532	1547	5	12	-9	g *	24	5	14	4	582	579	5 17 A	241	258
5	7 -6	535	588	5	9 ;	2 🖉 🕯	27	5	12	-8	768	753	5	14	5	400	4.01	5 17 5	36*	54
5	7 -5	158	144	5	9 :	3 649	645	5	12	-7	72*	3Ø	5	14	6	165	141	5 17 6	244	250
5	7 -4	238	235	5	9	2Ø9	2.07	5	12	-6	729	727	5	14	7	193	192	5 18 -6	382	308
5	7 - 3	873	846	5	9	5 929	936	5	12	-5	54*	49	5	14	8	269	273	5 18 -5	178	146
5	7 -2	1127	1.093	5	9 (6 174	158	5	12	-4	989	956	5	15	-8	g n	1.03	5 18 -4	566	574
5	7 -1	119	39	5	9 '	7 72.9	726	5	12	-3	Ø*	21	5	15	-7	7.05	721	5 18 -3	242	239
5	7 <i>B</i>	358	349	5	9 1	B 86*	117	5	12	-2	848	863	5	15	-6	95*	1.07	5 18 -2	642	623
5	71	412	417	5	9	9 584	582	5	12	-1	Ø*	2	5	15	-5	554	567	5 18 -1	273	267
5	72	731	742	5	10 -	9 162	167	5	12	8	1818	1.057	5	15	-4	77*	2ø	5 18 Ø	612	6.85
5	73	13ø	156	5	18 -	9 ø*	42	5	12	1	66*	66	5	15	-3	1.034	1811	5 18 1	238	242
5	7 4	2.08	199	5	10 -	7 378	369	5	12	2	1136	1168	5	15	-2	144	146	5 18 2	674	659
5	75	142	156	5	18	5 ø*	° 7.8	5	12	3	135	159	5	15	- 1	566	565	5 18 3	184	186
5	76	535	549	5	18 -	5 376	384	5	12	4	762	777	5	15	ø	283	289	5 18 4	417	396
5	7 7	130	125	5	18 -	4 2.8*	19	5	12	5	46*	14	5	15	1	1136	1168	5 18 5	19Ø	2Ø1
5	78	348	349	5	10 -:	3 43Ø	489	5	12	6	972	969	5	15	2	126	125	5 18 6	471	466
5	7 9	127	151	5	10 -:	2 237	25 <i>0</i>	5	12	7	35*	83	5	15	3	784	685	5 19 -5	655	65ø
5	8-10	573	597	5	10 -	619	624	5	12	8	462	471	5	15	4	241	251	5 19 -4	77*	98
5	8 - 9	230	218	5	1.6	8 343	343	5	13	-8	192	204	5	15	5	886	867	5 19 -3	481	477
5	8 - 8	552	541	5	10	1 595	598	5	13	-7	15Ø	137	5	15	6	Ø*	112	5 19 -2	100	111
2	8 -/		50	5	10	2 117	182	5	13	-6	292	280	5	15	7	455	457	5 19 -1	762	754
5	8 - 6	1066	10/8	5	10	3 48.0	466	5	13	~5	723	722	5	16	-7	Ø*	56	519Ø	56*	13Ø
5	8 - 5	3.95	3198	5	1.0	212	230	5	13	-4	276	274	5	16	-6	623	623	5 19 1	480	5Ø1
5	0 ~4	937	321	2	10	5 2/3	300	5	13	-3	143	142	5	16	~5	122	123	5 19 2	85*	85
5	0 - 3	109	154	2	1.0	5 45"	11	5	13	-2	434	446	5	16	-4	667	67.0	5 19 3	620	618
5	0 -2	1524	1694	5	1.0	/ 391	390	5	13	-1	984	912	5	16	-3	246	263	5 19 4		67
Ĕ		1502	230	2	10	200	238	2	13		2/5	294	þ	10	-2	543	518	5 19 5	394	392
5	8 1	1332	109/	3	1.0		120	2	13	1 1	286	.283	2	10	~1	155	128	5 210 -5	144	148
š	0 1	003	430	5		9 438	457	2	13	~	3/8	372	2	10		/62	//4	5 210 -4	232	239
E.	0 2	352	1010	5	11 -0	233	239	2	13	3	045	000	, p	10	1	8/-	84	5 210 - 3	2102	1/1
5	8 4	977	131	5	11 -	5 166	337	2	13	2	298	389	2	10	ź	5.84	5199	5 210 - 2	149	169
š	8 6	242	221	5	11 -	5 103	120	2	13	2	320	340	5	10	3	187	183	5 20 -1	240	254
š	8 6	683	593	Ē	11 -	0 724 1 607	523	5	13	7	243	233	5	10		0/3	176	5 2 10 10	141	119
5	8 7	003 gra	96	С Д	11 -	3 35/	3/5	5	13	6	337	328	5	10	5	190	1/0	5201 5202	229	225
š	a a	784	782	5	· · · ·	2 124	120	5	14	_0	141	110	2	10	7	304	303	5202	200	242
5	8 9	187	187	5	11 -	1174	1144	5	14	-7	209	260	5	10		102	122	520 J	131	139
5	9 - 9	492	484	5	11 4	784	688	5	17	-6	250	263	5	17	-6	256	249	5 21 -4	307	281
5							~~~		• •	~						200	270	J L 1 79	302	7 O 1
-	9 - 8	271	274	5	11	A21	435	5	14	-5	385	298	a	17	- 5	122	120	5 21 - 3	387	200
5	9 - 8 9 - 7	271 841	274 844	5	11 1	l 421 2 459	435 484	5	14	-5 -4	3Ø5 287	298 278	5 5	17	~5 -4	123	129	5 21 -3	387	390

Reflections flagged with an asterisk were considered unobserved.

¥

£

-30--

Fobs & Folc (x 18.) for [(C5Ne6)2 Vb (OC)2 Fe (C5H4He)] 2 at 25 C

¢

.

.

ĸ

Page 11

Ð

нк	L	Fobs	Fcalc	н	ĸ	L	Fobs	Fcalc	н	κ	L	Fobs	Fcalc	н	ĸ	L	Fobs	Fcalc	Н	ĸ	L	Fobs	Fcalc
5 21	8	365	351	6	2	- 2	281	178	6	4	6	621	632	6	7	-4	83*	1.67	6	9	5	4.975	398
5 21	i	4.83	484	6	2	-1	1144	1112	6	4	7	437	438	6	7	-3	514	520	6	ģ	6	596	616
5 21	2	82*	115	6	2	ø	516	513	6	4	8	580	583	6	ż	-2	546	572	6	9	7	257	249
5 21	3	215	177	6	2	1	823	826	6	4	ĝ	191	188	6	7	-1	1394	1419	6	9	8	425	421
5 22	-2	497	5Ø3	6	2	2	79	63	6	5	-9	191	2.8.8	6	7	ġ	121	1.07	6	10	- 9	183	174
5 22	-1	1.83	9.0	6	2	3	847	869	6	5	-8	650	648	6	7	1	65Ø	638	6	10	-8	443	448
5 2 2	ø	568	579	6	2	4	429	448	6	5	-7	225	216	6	7	2	263	268	6	10	-7	8*	11
5 22	1	77*	34	6	2	5	9ø1	885	6	5	-6	641	653	6	7	3	829	8.08	6	10	-6	577	578
5 22	2	412	418	6	2	6	73*	66	6	5	-5	180	169	6	7	- 4	Ø*	99	6	10	~5	46*	58
6 Ø-1	10	386	317	6	2	7	541	553	6	5	-4	1199	1068	6	7	5	824	823	6	18	-4	713	737
6 8	~8	686	687	6	2	8	253	239	6	5	-3	343	337	6	7	6	148	137	6	10	- 3	73*	3ø
6 Ø ·	-6	682	593	6	2	9	482	416	6	5	-2	667	662	6	7	7	618	649	6	18	-2	629	644
6 Ø ·	-4	117Ø	1130	6	3-	10	133	148	6	5	-1	155	156	6	7	6	Ø*	111 -	6	18	-1	147	118
6 9 .	-2	1141	1129	6	3	-9	226	286	6	5	8	1292	13ø2	6	7	9	459	449	6	10	ø	886	913
6 8	8	612	631	6	3	-8	162	146	6	5	1	331	312	6	8	-9	474	476	6	10	1	379	356
6 8	2	1502	1497	6	3	-7	845	848	6	5	2	86Ø	891	6	8	-0	242	230	6	1ø	2	654	652
. 6 8	4	663	657	6	3	-6	518	525	6	5	3	82	6.0	6	8	-7	586	589	6	10	3	8Ø*	1Ø1
	0	914	388	6	3	-5	433	431	6	5	4	589	6.08	6	8	-6	315	318	6	10	4	764	746
6 1-1	8 1 a	420	421	, b	3	-4	228	214	6	5	5	357	37.0	6	8	-5	646	625	6	1.0	5	281	282
6 1-	-0	329	324	6	3	-3	1468	1461	6	5	6	79.8	796	6	8	~4	340	359	6	18	6	548	573
6 1	- 9	338	55/	, ș	3	-2	533	536	0	5		115	112	b	8	-3	662	691	6	10	7	65*	72
6 1	- 7	438	404	D C	3	-1	205	203	ò	5	8	524	543	b b	8	-2	555	566	6	1.0	8	491	469
6.1	- 6	131	105	D C	3	1	1225	1202	, o	5		- 10	35	þ	8	-1	832	/99	6		-8	447	459
6 1	-6	044	014	6	3	-	1230	1292	6	2	- 9	281	292	D C	8		305	3//	6	11	-/	455	444
6 1	- 4	937	914	6	3	2	620	100	6	2	-7	442	450	2	8	1	1933	1000	b	11	-6	227	234
6 1 -	- 3	369	359	5	2	3	515	6J9 E12	ŝ	2	-6	470	490	۵ د		2	480	484	2	11	-5	529	535
6 1 -	-2	994	972	6	2	Ē.	754	312 754	6	6	-0	443	44J 640	2	0	3	4/7	4/4	6	11	-4	600	/91 60 <i>0</i>
6 1 -	-ī	954	975	š	2	6	322	322	6	ĕ	-9	692	621	6	8	- 2	622	250	6	11	-3	267	201
6 1	Å	981	922	š	2	ž	500	695	š	ĕ	- 2	569	5/6	6	8	6	419	421	6	11	- 4	522	291
6 i	ĩ	335	354	6	3	8	174	165	š	ĕ	-2	845	868	6	ă	7	420	421	6		- <u>a</u>	742	732
6 I	ž	828	815	6	3	ğ	368	378	6	6	-1	693	687	š	Ř	Ŕ	177	174	6		ñ	783	805
6 1	3	699	722	6	Ā	- <u>9</u>	331	333	6	6	â	479	587	š	Ř	ğ	462	455	6	ii.	•	341	311
6 1	4	693	686	6	- Å	-8	439	466	6	6	ĩ	576	567	6	ğ	-9	67*	75	6	ii.	3	458	493
6 1	5	478	462	6	4	-7	455	466	6	6	2	841	871	6	9	-8	382	386	6	11	Ă	641	648
6 1	6	595	688	6	4	-6	657	657	6	6	3	7.01	786	6	9	-7	358	356	6	11	5	468	474
61	7	443	446	6	4	-5	280	289	6	6	4	251	246	6	9	-6	795	817	6	ii.	6	429	417
61	8	358	367	6	4	-4	783	786	6	6	5	444	457	6	ĝ	-5	79*	65	6	ĩĩ	7	338	331
61	9	263	265	6	4	-3	649	635	6	6	6	728	728	6	9	-4	3Ø3	274	6	11	8	3Ø6	388
6 2-1	18	219	222	6	4	-2	835	851	6	6	7	562	555	6	9	-3	432	423	6	12	-8	Ø*	27
62.	-9	485	4.83	6	4	-1	557	579	6	6	8	267	256	6	9	-2	1.014	1885	6	12	-7	547	566
62.	-8	117	119	6	4	ø	1223	1256	6	6	9	218	2ø5	6	9	- 1	115	85	6	12	-6	Ø*	15
62.	-7	721	787	6	4	1	536	537	6	7	-9	6Ø7	619	6	9	ø	655	656	6	12	-5	664	655
62.	- 6	339	351	6	4	2	439	477	6	7	-8	Ø*	58	6	9	1	4.02	394	6	12	-4	82*	48
62.	-5	951	943	6	4	3	424	442	6	7	-7	436	438	6	9	2	827	839	6	12	-3	613	589
62.	-4	312	3Ø7	6	4	4	897	897	6	7	-6	388	397	6	9	3	243	255	6	12	-2	73*	32
62.	-3	1984	1894	6	4	5	115	98	6	7	-5	836	849	6	9	4	519	527	6	12	-1	921	919

Reflections flagged with an asterisk were considered unobserved.

-31-

٠.

•

Fobs & Fold (x 18.) for [(C5Me5)2 Yb (OC)2 Fe (C5H4Me)] 2 at 25 C

. .

Page 12

4

.4

H	ĸ	L	Fobs	Fcalc	н	ĸ	: L	Fobs	Fcalc	н	ĸ	ι	Fobs	Fcalc	н	ĸ	L	Fobs	Fcalc	н	ĸ	L	Fobs	Fcalc
6	12	8	55 °	68	6	15		472	494	6	19	8	481	481	7	2	-5	166	152	7	4	6	166	142
6	12	1	552	548	6	15	ĩ	284	188	6	19	ĩ	175	189	Ż	2	-4	331	327	ż	À	7	539	534
6	12	2	1.03	91	6	15	2	773	758	6	19	Ż	299	289	7	2	-3	360	363	7	Å.	8	198	196
6	12	3	825	834	6	15	3	97	182	6	19	3	Ø*	15	7	2	-2	484	484	7	5	-9	195	195
6	12	4	71*	13	6	15	4	495	588	6	19	4	386	385	7	2	-1	g*	33	7	5	-8	164	173
6	12	5	488	492	6	15	5	218	284	6	28	-3	46*	43	7	2	ø	296	283	7	5	-7	453	463
6	12	6	61*	94	6	15	6	43Ø	443	6	2Ø	-2	369	371	7	2	1	655	645	7	5	-6	297	3ø2
6	12	7	533	543	6	16	-6	17ø	181	6	28	-1	128	146	7	2	2	400	426	7	5	-5	195	118
6	12	8	93*	ø	6	16	-5	414	399	6	2Ø	ø	463	477	7	2	3	. g*	29	7	5	-4	68*	95
6	13	-8	338	329	6	16	-4	291	276	6	2Ø	1	89*	8	7	2	- 4	373	368	7	5	-3	51 <i>Ø</i>	5 <i>8</i> 9
6	13	-7	353	366	6	16	-3	412	4.08	6	28	2	293	283	7	2	5	291	29ø	7	5	-2	449	433
6	13	-6	8*	34	6	16	-2	396	396	6	28	3	165	189	7	2	6	399	411	7	5	-1	242	219
6	13	-5	535	541	6	16	-1	291	288	6	21	-2	388	310	7	2	7	Ø*	45	7	5	ø	Ø*	71
, p	13	-4	444	425	6	16	Ø	267	254	6	21	-1	328	321	7	2	8	178	168	7	5	1	555	565
b	13	-3	5.62	517	6	16	1	4/4	471	6	21	ø	191	196	7	3	-9	95*	71	7	5	2	36*	68
2	13	-2	627	- / 19 	D	10	4	372	358	<u>p</u>	21	1	4.03	385		3	-8	395	386		5	3	445	446
4	13	-1	5//	2819	0	10	3	238	221	4		-9	594	588		3	-/	4.9 *	61		5	4	26.0	257
6	12	1	553	630	0	10		509	303	4		1	726	/24		3	- 0	954	942	4	2	5	318	316
ĕ	13	2	201 #*	5/4	6	16	5	200	102	'		- 2	970	970	'	3	-5	243	238		5	2	200	245
6	13	2	541	547	6	10	-6	152	144	<u>'</u>	a	-3	330	9/0	4	3		044	6/6		2	6	289	305
6	13	Ă	416	447	6	17	-5	468	473	ź	a	- 1	679	699	4	2	-3	11073	1110	'	6	-0	376	365
6	13	5	588	523	6	17	-4	249	228	ź	ã	2	1368	1375	÷	3	-1	248	261	' 7	6	-9	197	190
6	13	6	232	234	6	17	-3	525	517	. 'r	ลี	5	677	671	'	3	å	784	884	÷	6	-7	488	474
6	13	7	316	311	ā	17	-2	g =	8	ż	ã	7	798	891	ż	3	ĩ	163	191	ż	6	~ 6	110	135
6	14	-7	#*	99	. 6	17	-1	624	635	ż	ĩ	-9	191	185	7	3	2	1116	1128	ż	6	-5	527	531
6	14	-6	5#9	584	6	17		262	268	7	ī	-8	689	615	Ż	3	3	171	154	7	6	-4	261	282
6	14	-5	233	231	6	17	i 1	455	435	7	1	-7	226	287	7	3	Ā	822	826	7	6	-3	517	510
6	14	-4	631	62Ø	6	17	2	94=	47	7	1	-6	2ø7	283	7	3	5	112	136	7	6	-2	168	168
6	14	-3	484	5ø7	6	17	3	562	534	7	1	-5	268	257	7	3	6	784	799	7	6	-1	86 <i>8</i>	857
6	14	-2	598	61.0	6	17	- 4	184	184	7	1	-4	942	968	7	3	7	78*	58	7	6	ø	399	425
6	14	-1	195	184	6	17	5	481	393	7	1	-3	333	337	7	3	8	586	559	7	6	1	574	559
6	14		657	65 <i>8</i>	6	18	-5	3Ø3	318	7	1	-2	368	366	7	- 4	-9	497	492	7	6	2	130	151
6	14	1	487	488	6	18	-4	273	283	7	1	-1	491	515	7	- 4	-8	241	236	7	6	3	893	9ø2
6	14	Z	644	644	6	18	-3	369	366	7	1	ø	851	868	7	4	-7	642	652	7	6	4	347	351
b	14	3	249	248	5	18	-2	417	438		1	1	283	273	7	4	-6	118	87	7	6	5	622	631
6	14	-	698	200	0	18	-1	529	521		1	2	539	548	7	4	-5	623	626	<u> </u>	6	6	g.	51
D C	14	5	316	329	0	18	. 10	296	292		1	3	383	388	7	4	-4	222	210	7	6	7	580	575
2	14	2	431	415	Þ	18		322	339	4	1	4	617	619		4	-3	968	998		0	8	194	184
2	16		170	160	0	10	2	284	297	4		Ş	3/8	398			-2	183	191		4	-8	/84	783
6	15	-6	1/10	677	0	10	1 3	490	484	4	1	2	291	242		4	~1	///4	121	',	4	-/	1 9 =	672
ň	15	_6	222	212	0 £	10	- -	230	243	4	1		204	200	4	4	1	383	489	4	'	C	3/0	3/3
ő	15	-4	195	483	0 A	10	-4	496	231	÷	2	-0	3.02	157	'	2	2	1155	276	',	4	- 3	207	202
6	15	-3	96*	145	0 A	10	-3	4.70 Q.70	115	÷	5	- 7 - R	214	215	5	1	2	500 622	671	7	5	-3	864	186
6	15	-2	786	782	6	19	-2	254	254	ź	2	-7	253	242	÷	7		282	301	2	5	-2	797	814
6	15	-1	263	262	6	19	-1	 #*	56	7	2	-6	347	331	2	1	š	1142	1140	'	7	-1	313	321

1

Reflections flagged with an asterisk were considered unobserved.

'n

x

-32-

Fobs & Fclc (x 18.) for [(C5Me6)2 Vb (OC)2 Fe (C5H4Me)] 2 at 25 C

7 1.0 -4

H K L Fobs Fcalc HKL Fobs Fcalc HKL Fobs Fcalc HKL Fobs Fcalc HKL Fobs Fcalc 7 1.0 -3 7 13 88* 7 17 -2 59Ø -8 - 1 8* 7 18 -2 7 13 7 17 -1 ø 2 -7 Ø* - 3 7 18 ~1 7 13 7 17 8 6.08 2 -6 1.05 77* 7 18 7 13 2 - 5 7 17 Ø* 7 10 - 1 7 13 55* -34 7 17 -4 81* 7 18 7 13 - 4 *8* 7 17 -3 89* 46* 3Ø 7 18 77Ø 7 13 8* 7 17 4 -2 *a* • 7 1.0 89* 7 13 7 18 -4 -1 83* ß 7 18 7 14 -6 7 18 -3 ø ß - 8 7 18 Ø* 7 14 -5 7 18 -2 52* 89* -7 3#9 7 18 7 14 -4 7 18 -1 4Ø6 - 6 7 11 -7 38Ø . 31* 7 14 - 3 7 18 -5 7 11 -6 62Ø 7 14 -2 7 18 8* 3Ø -4 7 11 -5 54* 7 14 -1 7 18 Ø* 78* - 3 7 11 -4 7 14 . 8* 7 18 36Ø -2 7 11 -3 7 14 7 19 -3 99* -1 7 11 -2 7 14 7 19 -2 76* Ø* ~8 7 11 -1 7 14 7 19 -1 3 -7 53* a 64Ø 7 11 7 14 36* 13Ø 3 -6 Ø* 7 19 5ø3 7 11 7 14 7 19 -5 7 11 7 14 7 19 98* -4 5.0* 2Ø1 7 11 7 15 -8 -3 -6 8 Ø 7 11 7 15 -5 Ø -6 -2 56Ø 76* 3ø 7 11 7 15 -4 ø -4 -1 1Ø16 ø 7 15 7 11 -3 Ø -2 8Ø6 - A • A 7 11 7 15 ~2 ø ø -8 1.05 7 12 -7 8* 7 15 -1 a • q -7 24* 7 12 -6 7 15 ø ø 7 12 -5 -6 8* 7 15 ø 1.98 -5 7 12 -4 39Ø 7 15 ø -4 2Ø9 7 12 -3 8* 7 15 1 -8 62* Q -3 71* 7 12 -2 7 15 1 -7 7 12 -1 -2 56* 7 15 1 -6 47* - R -1 7 12 7 16 -5 1 -5 3Ø2 -7 55* ø 7 12 77* 7 16 -4 63* 1 -4 Ø* -6 66Ø 75Ø 7 12 7 16 -3 1 -3 -5 16Ø 16ø 7 12 8* 7 16 -2 1 -2 43* -4 7 12 7 16 -1 1 -1 5ø9 -3 7 12 8* 7 16 ø 25* 52* -2 1Ø55 1Ø61 7 12 7 16 63Ø -1 75* 7 12 ø 7 16 74* 7 13 -7 7 16 6Ø7 Ø* 7 10 - 8 8* 7 13 -6 48Ø 7 16 18* Ø* ø 7 10 -7 7 13 -5 7 16 24Ø 46Ø Ø, 7 18 -6 73* 7 13 -4 7 17 -5 47* 7 Ø* 5 7 10 -5 7 13 -3 7 17 -4 78*

2Ø7

84*

-2 Reflections flagged with an asterisk were considered unobserved.

7 17 -3

7 13

Page 13

ŵ ũ

Fobs & Fold (x 10.) for [(C5Me6)2 Yb (OC)2 Fe (C5H4Me)] 2 at 25 C

Page 14

Н	κι	Fobs	Fcalc	н	K	L	Fobs	Fcalc	H	K	L	Fobs	Fcalc	н	K	L	Fobs	Fcalc	н	ΚL	Fobs	Fcalc
8	4 7	77•	55	8	7	7	456	437	8	11	-3	514	523	8	15	-1	85*	141	9	2 -2	323	334
8	5 -6	37*	3.8	8	8	-7	g.+	15	â	ii.	-2	122	183	à	15	ø	63*	16	9	2 -1	377	377
8	5 -7	148	136	Ē	8	-6	258	238	8	11	-1	587	582	ă	15	ĩ	73*	126	9	2 8	319	347
8	5 -6	78*	68	ŝ	Ř	-5	64*	96	8	ii.	â	58*	35	8	15	2	g*	2	ģ	2 1	115	87
B	5 - 5	181	198	R	8	-4	387	486	8	11	ī	565	552	Ř	15	3	217	288	- 9	2 2	337	346
8	5 -4	115	123	8	Ā	-3	242	245	Ř	ii	2	34*	18		15	Ă	66*	13	á	2 3	332	333
8	5 -3		29	8	Ā	-2	333	322	8	ii.	3	568	578	8	16	-4	287	278	á	2 4	286	298
8	5 - 2	67*	73	8	Ř	-1	159	143	Ř	ii.	Ă	g=	19	Ä	16	-3	59*	96	á	2 5	83#	82
â	5 -1	217	238	8	Ř	à	535	542	8	ii.	5	486	398	Ā	16	-2	319	317	á	2 6	245	238
8	5 8	66*	112	8	8	ĩ	72*	98	â	ii	6	· · · ·	2	ă	16	-1	85*	98		3 -7	94*	67
8	5 1	116	62	Ä	ā	2	275	266	Ř	12	-6	83*	6	Ř	16	â	398	499	, a	3 -6	392	397
Ä	5 2	42*	33		Ř	3	92*	46	Ä	12	-5	158	149		16	ĩ	182	182	á	3 -5	42#	132
8	5 3	g*	63	Ř	Ř	Ā	469	471	Ä	12		199	287	Ř	16	2	279	272	ģ	3 -4	819	817
8.	5 4		16		8	5	130	114	Ā	12	-3	286	283	8	16	3		A R	á	3 - 3	198	132
8	5 5	87*	92	Ř	Ā	6	81#	68	Ā	12	-2	65*		Ř	17	-3	5ตโ	589	á	3 - 2	759	765
8	5 6	110	95	Ā	8	7	89*	8.0	8	12	-1	192	179	8	17	-2	66*	77	9	3 -1	171	164
8	5 7	Ø*	49	8		-7	131	142	ā	12	ġ	153	159	8	17	-1	589	580	9	3 8	790	791
8	6 -8	464	466	ã	9	-6	164	173	8	12	ĩ	<u>8</u> *	73	8	17	Ø		45	9	3 1	58*	58
8	6 -7	87*	34	8		-5	489	416	8	12	2	ğ+	41	8	17	· ī	584	487	9	3 2	817	825
8	6 -6	483	487	ŝ	9	-4	68*	66	8	12	3	155	125	8	17	2	90*	39	9	3 3	171	178
8	6 -5	243	232	8	9	-3	367	387	8	12	Ā	Ø*	65	8	18		351	337	9	3 4	539	53Ø
8	6 -4	748	754	8	9	-2	173	172	8	12	5	84*	41	9	ġ	-7	595	6.01	ĝ	3 5	94*	124
8	6 - 3	105	188	8	ġ	-1	424	424	8	13	-6	Ø*	92	9	8	-5	496	493	9	3 6	567	550
8	6 - 2	498	513	8	9		69*	28	8	13	-5	499	584	9		-3	1078	1.081	9	4 -7	293	291
8	6 -1	183	172	8	9	1	432	421	8	13	-4	168	157	9	8	-1	778	767	9	4 - 6	Ø*	22
8	6 8	987	973	6	9	2	71*	62	8	13	-3	689	615	9	ø	1	977	996	9	4 -5	68Ø	672
8	6 1	63*	77	8	9	3	362	372	8	13	-2	66*	81	9	8	3	498	523	9	4 -4	262	265
8	6 2	655	653	8	9	4	24*	8.0	8	13	- 1	593	591	9	Ð	5	707	7Ø3	9	4 - 3	567	553
8	6 3	138	131	8	9	5	412	411	8	13	ø	Ø*	33	9	1	-7	159	169	9	4 -2	66*	14
8	6 4	833	827	8	9	6	9Ø*	24	8	13	1	631	613	9	1	-6	443	439	9	4 -1	866	864
8	6 5	42*	17	8	18	-7	58*	73	8	13	2	184	116	9	1	-5	169	197	9	4 B	335	322
8	66	433	449	8	10	-6	671	675	8	13	3	546	547	9	1	-4	443	462	9	4 1	58Ø	563
8	67	26*	52	8	18	-5	74*	9.0	8	13	4	Ø1	52	9	1	-3	173	17Ø	9	4 2	Ø*	81
8	7 -7	797	783	8	10	-4	664	666	8	13	5	435	423	9	1	-2	549	546	9	4 3	742	747
8	7 -6	81*	54	8	10	-3	156	153	8	14	-5	88*	1#5	9	1	-1	317	318	9	4 4	82*	1Ø4
8	7 -5	582	576	8	10	-2	931	932	8	14	-4	599	593	9	1	ø	559	552	9	4 5	423	4.84
8	7 -4	94*	65	8	18	-1	142	191	8	14	-3	Ø*	44	9	1	1	31Ø	312	9	4 6	140	152
8	7 - 3	922	9ø9	8	10	ø	744	77 <i>8</i>	8	14	-2	585	597	9	1	2	449	444	9	5 - 7	222	236.
8	7 - 2	115	122	8	10	1	228	231	8	14	-1	184	172	9	1	3	263	28Ø	9	5 -6	72*	1.08
8	7 -1	942	973	8	1.0	2	919	926	8	14	ø	545	537	9	1	- 4	424	436	9	5 ~ 5	237	254
8	7 É	144	143	8	10	3	79*	78	8	14	1	99	125	9	1	5	211	213	9	5 -4	42*	62
8	7 1	962	956	8	10	- 4	68Ø	697	8	14	2	566	582	9	1	6	279	285	9	5 - 3	327	32.6
8	7 2	64*	20	8	1.0	5	177	162	8	14	3	2.08	195	9	2	-7	Ø*	31	9	5 - 2	138	130
8	7 3	979	98ø	8	1ø	6	541	525	8	14	- 4	499	5ø8	9	2	-6	265	293	9	5 -1	314	318
8	7 4	88=	17	8	11	-6	176	156	8	15	-4	143	142	9	2	-5	416	425	9	5Ø	Ø*	21
8	7 5	674	71.0	8	11	-5	535	531	8	15	-3	64*	151	9	2	-4	156	164	9	51	379	384
8	76	100*	103	8	11	-4	93*	135	8	15	-2	36*	15	9	2	-3	Ø*	25	9	52	Ø*	79

Reflections flagged with an asterisk were considered unobserved.

-34-

Fobs & Fold (x 18.) for [(C5Me5)2 Vb (OC)2 Fe (C5H4Me)] 2 at 25 C

Page 15

.4

-4

н	K	L	Fobs	Fcalc	н	K	L	Fobs	Fcalc	н	K	L	Fobs	Fcalc	H	K	L	Fobs	Fcalc	н	K	L	Fobs	Fcalc
9	5	3	272	258	9	9	-1	357	345	9	14	-1	438	437	1.6		-4	513	582	1.67	q	-3	249	234
ġ	5	4	8*	15	ğ	9	ġ	388	392	ġ	14	ø	52*	68	10	- 4	-3	252	266	iø	ģ	-2	368	373
9	5	5	179	197	ģ	9	1	338	328	9	14	1	422	4.86	1.0	4	-2	251	242	18	9	-1	300	294
9	5	6	87*	51	9	9	2	337	34.8	9	14	2	59*	188	1.0	4	-1	157	164	10	9	ß	336	321
9	6	-6	188*	71	<u> </u>	9	3	180	2.86	9	15	-2	121	122	1.0	- 4	. 8	478	467	10	9	1	187	176
9	6	-5	335	345	9	9	4	236	226	9	15	-1	163	186	1Ø	- 4	1	288	282	1.0	9	2	39Ø	379
9	6	-4	345	346	9	9	5	268	242	9	15	ø	65*	63	1.0	- 4	2	291	293	1Ø	9	3	214	199
9	6	-3	7ø6	7.03	9	18	-5	599	588	9	15	1	239	233	19	- 4	3	Ø*	122	1.0	1Ø	-3	Ø*	8
9	6	-2	144	156	9	10	-4	89*	95	1ø	8	-4	3ø8	3ø5	10	- 4	- 4	332	325	1Ø	1Ø	-2	294	292
9	6	-1	448	452	9	10	-3	526	523	10	ø	-2	594	577	10	5	-5	45*	67	10	1Ø	-1	243	233
9	b	JU I	367	358	9	10	-2	2,07	216	1.8	ø	8	425	413	10	5	-4	461	452	1.0	10	ø	423	423
9	0	1	753	753	9	10	-1	679	653	1.0	ø	2	494	492	10	5	-3	Ø*	17	10	1.8	1	Ø*	69
ä	ò	2	288	215	9	1.0	, M	8-	19	1.0		4	289	278	1.0	5	-2	394	394	10	18	2	385	37.0
3	ĉ	3	400	468	ž	1.0	1	579	572	1.0	1	-5	289	281	1.0	5	-1	84*	86	10	11	-2	195	284
2	6	2	200	251	3	1.0	~	187	16%	1.0	1	- 4	321	310	1.0	5		454	461	10		-1	154	176
2	2	5	4/5	40.0		10	3	028	623	1.0	1	-3	3219	328	1.0	5	1	50-	62	1.0			2.04	216
3	7	- 6 -	620	626	3	10	4	64-	11	10		-2	384	387	10	2	2	398	4.00	1.0		1	244	240
ă	5	-5	0.35	020	, ,	1.0	-6	413	404	10		-1	424	422	10	2	3	270	360	1.0	11		131	124
á	'	-4	691	570			- 3	427	490	10	- 1	1	279	923	10	6	-	3/0	177	10	12	-1	293	2/3
á	ź	-3	a*	A1	3		_ 2	142*	179	19	- 1	2	370	334	10	6	-5	245	225	10	12		10 ~ A #	21
ģ	ż	-2	782	688	á	11	-2	368	371	1.4	:	2	330	131	10	6	_ 7	432	419		a	-1	277	243
9	7	-1		37	á	ii	-1	139	143	1.4	i	Ă	298	299	1.9	ĕ	-2	485	499		ã	i	172	176
9	7	ġ	742	757	9	ii	ġ	312	296	เต	ī	5	279	269	1.0	6	-1	297	194		ĩ	-3	325	321
9	7	1	62*	9	9	ii	ĩ	58*	65	1.0	2	-5	427	441	10	6	â	275	276	11	i	-2	161	157
9	7	2	692	689	ĝ	11	ž	451	452	1.0	2	-4	331	326	1.0	6	ĩ	395	377	ii	ī	-1	421	428
9	7	3	47*	42	9	11	3	184	171	18	2	-3	374	381	10	6	2	419	414	11	ī	ø	53*	45
9	7	4	658	648	9	11	4	288	298	1.8	2	-2		47	1.0	6	3	254	279	ii	ī	ĩ	365	355
9	7	5	98*	82	9	12	-4	252	272	1.0	2	-1	546	529	18	6	Ā	228	239	11	1	2	177	173
9	7	6	335	322	9	12	-3	179	162	1.0	2	ø	245	23ø	1.8	7	-4	59*	47	11	2	-3	124	129
9	8	-6	248	275	9	12	-2	8*	81	10	2	1	418	417	1.0	7	-3	376	372	11	2	~2	396	4.89
9	8	-5	153	-146	9	12	-1	88*	184	1.0	2	2	35*	64	1.0	7	-2	Ø*	47	11	2	-1	93*	46
9	8	-4	88*	117	9	12	ø	393	39ø	1.6	2	3	395	397	10	7	-1	341	333	11	2	ø	513	495
9	8	-3	357	349	9	12	1	155	148	1.0	2	- 4	188	178	1.0	7	ø	· 45*	31	11	2	1	Ø*	94
9	8	-2	478	480	9	12	2	Ø*	139	1.0	2	5	• 361	354	10	7	1	499	485	11	2	2	4.06	398
9	8	-1	124	116	9	12	3	29*	24	1.9	3	-5	36Ø	357	10	7	2	Ø*	27	11	3	-3	129	148
9	8	8	141	113	9	12	4	280	27.0	1.0	3	-4	156	155	10	- 7	3	354	329	11	3	-2	54*	54
Ä	8	1	341	331	9	13	-4	415	437	1.0	3	-3	396	388	10	7	4	Ø*	3Ø	11	3	-1	184	177
3	8	ž	335	313	9	13	-3	2.62	197	1.0	3	-2	235	239	1.9	8	-4	<u>8</u> *	57	11	3	ø	279	256
3	8	3	251	248	9	13	-2	477	467	1.0	3	-1	495	488	1.0	8	-3	216	228	11	3	1	162	165
2	0	-	1/9	1/9	9	13	-1	156	153	1.0	3		150	130	10	8	-2	189	108	11	3	Z	99*	10/
2		-6	166	181	Ä	13	10	425	429	1.0	3	1	3//	3/8	1.0	8	~ I a	462	45/	11	4	-2	26/	262
9	9	-6	120	262		13	2	144	138	10	3	4	192	200	110	8	1	226	51	11	1	-1	222	109
6	ā	-5	247	202	9	13	2	430 210	430	10	3	3	404	443	1.0	0	2	230	233	11	1	1	216	107
ģ	ā.	-3	183	197	2	13	-3	400	491	10	3	4	104	135	10	0	2	244	230	11	1	2	240	224
a a	ā.	-2	313	10/ 25/		1.4	-2	470	971	1.0	3	с а_	243	122	10	0	-4	200	331	11	2	-2	240 μ±	234
-	-	-			~ ~		ے	00.			-	- 3	13/	134	1.0			303	313			- 2	<i>p</i>	1.10

Reflections flagged with an asterisk were considered unobserved.

· •

-<u>35</u>-

 Fobs & Fclc (x 18.) for [(C5Me6)2 Yb (OC)2 Fe (C5H4Me)] 2 at 25 C
 Page 16

 H
 K
 L
 Fobs Fcalc
 L
 Fobs Fcalc
 <td

1

Reflections flagged with an asterisk were considered unobserved.

۰**,**

٠.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720