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Traditional genetics, which includes forward and reverse genetics, has been employed extensively

to study influenza virus. Although traditional genetics is powerful, it has a limited throughput which

only focuses on the linkage of one mutation with one phenotype at a time. In my thesis research,

a high-throughput genetics platform is being developed to examine the phenotypic outcomes of

all point mutations in a viral gene or genome in parallel. The underlying concept is to randomly

mutagenize every nucleotide of an entire genome, monitor enrichment or diminishment of all point

mutations under specified growth conditions, and perform massive deep-sequencing to determine

which mutations contribute to negative, neutral, or positive outcomes under the given conditions.

Using this high-throughput genetics platform, the fitness effects of individual point mutations was

profiled across influenza A virus hemagglutinin gene. This technique was further applied to identify

novel functional residues and interferon-sensitive mutation. The high-throughput genetics platform

can potentially be adapted to study any microbes that can be genetically manipulated. My thesis

also describes a novel experimental approach, tag linkage sequencing, to monitor viral quasis-
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pecies. Tag linkage sequencing utilizes a molecular tag to identify short sequencing reads that are

from the same original DNA template. This allows the reconstruction of individual viral genomes

within a viral quasispecies from deep sequencing data. This approach was employed to investi-

gate the genetic content of a clinical sample from a patient infected with human immunodeficiency

virus (HIV).
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CHAPTER 1

INTRODUCTION TO HIGH-THROUGHPUT GENETICS
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1.1 BACKGROUND

Viral infection is one of the largest global socio-economic burdens. Most, if not all, people ex-

perience illness caused by viral infections at least once in their life. Viral infection may result in

hospitalization or even death depending on the virus strains and species. Several detrimental and

most concerned viruses include human immunodeficiency virus (HIV), hepatitis C virus (HCV),

hepatitis B virus (HBV) and influenza virus. Together, they caused two to three million deaths

annually from either acute infection or secondary complications [1–4]. The mortality rate can be

a magnitude higher during influenza pandemic years [5]. In addition, there are 35 million people

chronically infected by HIV [1], 150 million by HCV [2], and more than 240 million by HBV [3]. The

continued development of anti-viral drug and vaccine becomes utmost important to ameliorate the

global cost brought by viral infection.

Despite the current availability of multiple anti-viral drugs and vaccines, resistant and escape mu-

tants remain a challenge. Mutation rate ranges from 10−8 to 10−6 mutations per nucleotide per

cell infection for DNA viruses and from 10−6 to 10−4 mutations per nucleotide per cell infection

for RNA viruses [6]. This high mutation rate and genome flexibility enable rapidly development of

drug resistance and vaccine escape in natural circulating virus strains [7–13]. This highlights the

necessity of advancing current antiviral strategy. An ideal antiviral drug or vaccine should target

a viral region that has a high fitness cost upon mutation to maximize the genetic barrier for the

emergence of resistant or escape mutants. Various virus sequence databases are established

to document genetic information of different clinical isolates around the world [14–22]. They pro-

vide a basis for identifying conserved regions across the viral genome, which are potential target

regions for effective antiviral agents [25–30]. The caveat is that sequence conservation is not

equivalent to sequence essentialness. New viral variants emerge constantly, implying that a por-

tion of residues that are conserved currently are mutable. In addition, several mutational analyses

on influenza virus suggested that conserved residues are not essential for viral replication in cell

culture [5, 6, 28]. Therefore, experimental interrogation is often required to validate the essential-

ness of individual conserved mutants and to examine their biological roles.
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Traditional genetics, which focuses on a single genotype-phenotype relationship at a time, has

been extensively applied to experimentally characterize viral mutants of interest. It provides the

foundation in understanding the virus life cycle and virulence factors. However, this process has a

low throughput and thus, restricts the number of mutants being tested. With the advert of sequenc-

ing technology, the concept of high-throughput genetics has started to emerge (reviewed in [31]).

High-throughput genetics aims to study the phenotypic outcome of multiple mutants simultane-

ously. A general strategy is to employ a mutant library consisting of a large number of mutants and

to monitor the enrichment or diminishment, hence the phenotypic outcome, of individual mutants

(Fig. 1-1). This strategy has been adapted to many different biological systems (reviewed in [40]),

and also becomes more popular in virus research.

1.2 INSERTIONAL HIGH-THROUGHPUT GENETICS

Prior to the existence of high-throughput genetic approach at single-residue resolution, transpo-

son insertional mutagenesis is one of the standard techniques for high-throughput genetic screen-

ing. It utilizes the random insertion property of transposon to construct a mutant library. Dif-

ferent transposon systems have been employed in high-throughput genetics, such as Ty1 [33],

Mu [34], MoMLV [35]. Following transposon insertion, a digestion and religation steps are usu-

ally performed to minimize the length of insertion and the disruption of the genome. For ex-

ample, by coupling MuA transposase with NotI restriction sites only gives a final insertion of 15

nucleotides [36–38]. To describe the genetic content of an insertion mutant library, it is neces-

sary to quantify individual insertion mutants present in the library. Genetic footprinting is a classic

approach for examining an insertion mutant library. The underlying concept of genetic footprint-

ing is to use a PCR-based approach along with a radioactive primer complement to the insert.

The insertion site for individual mutants can be proximate by the PCR product size. The genetic

content of the mutant library is therefore determined by analyzing the PCR product using elec-

trophoresis gel and quantified through the relative abundance of individual bands [36–38]. This

approach was further advanced by a fluorescence-based capillary electrophoresis profiling [22],

which improved the accuracy in insertion site calling. The development of next generation se-

quencing (NGS) has sophisticated the monitoring of an insertion mutant library both qualitatively

3



Figure 1-1. Overview of fitness profiling using high-throughput genetics. The viral mutant library is

selected by passaging. The selection pressure is replication fitness. Each circle represents an individual

viral particle. Different colors represent different genotypes (WT or mutants). The fitness of each mutant

inferred from the profiling is described in the lower panel. Input frequency represents the frequency of the

mutant in the pre-selected mutant library. Post-selection frequency represents the frequency of the mutant

in the post-selected mutant library. Enrichment ratio is calculated by the ratio of post-selection frequency to

pre-selection frequency. Relative fitness for each mutant is calculated by the normalizing the enrichment

ratio to that of the WT.
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and quantitatively [23, 40]. The conceptual detail of integrating NGS with insertion mutant library

is well-described by van Opijnen et al. and will not further discussed here [42].

Insertional-based high-through genetics has been applied to study organisms with a small genome

such as yeast and bacteria with at a single gene-resolution level [43, 44]. It was also adapted to

identify essential genes in murine gamma-herpesvirus 68 (MHV-68, a double-stranded DNA virus).

A higher genetic resolution, at a protein subdomain level, can be achieved in RNA virus, which has

a more compact genome. Insertional-based high-throughput genetics has aided the identification

of flexible protein regions in the murine norovirus [45], venezuelan equine encephalitis virus [24],

influenza virus [23], and HCV [22, 40]. However, the maximum resolution is limited at a protein

subdomain level due to the significant structural disruption of the amino acid insertion. Conse-

quently, the resolution of insertional-based approach is not sufficient for identification of critical

residues.

1.3 HIGH-THROUGHPUT GENETICS AT SINGLE-RESIDUE RESOLUTION

With the advert of the sequencing throughput in NGS, it becomes possible to perform high-

throughput genetics at single-residue resolution. Mutant library construction for high-throughput

genetic study of virus is mainly based on two different strategies, namely error-prone PCR [43,46,

48,50], and oligo-based approach [50–52]. Nonetheless, alternative approaches such as “doped”

oligonucleotide [54] and chemical-induced mutagenesis [51] have also been described for single-

residue mutant library construction and potentially can be adapted for high-throughput genetic

study of virus.

Regardless of the experimental strategies for mutant library construction, the occurrence fre-

quency of each mutation is often lower than the sequencing error rate in NGS. Therefore, one

of the major challenges of high-throughput genetics is to distinguish true point mutations from

sequencing errors in NGS. Several strategies of sequencing library preparation have been de-

veloped to provide a solution. The most straight-forward approach is to take advantage of the

paired-end property of NGS read [54]. This approach requires a short insert length of the paired-
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end read such that the forward read overlaps with the reverse read . Consequently, it increases

the confidence of base calling by sequencing the same nucleotide twice. A more sensitive ap-

proach is to add a molecular tag to individual nucleotide templates for sequencing error correc-

tion [21, 54, 57, 59, 60]. The underlying conceptual basis is to assign a unique tag to individual

nucleotide templates. Individual tagged templates would be sequenced multiple times. True mu-

tations would exist in most, if not all, reads sharing the same tag, while sequencing error would

only exist in one or two reads sharing the same tag. Recently, an approach termed “circle se-

quencing” is also described for sequencing error correction [49], which takes advantage of the

increased read lengths in Illumina sequencing technology. CirSeq involves a circularization step

such that each sequencing read is a tandem repeat of a nucleotide template. It enables a given

nucleotide template to be sequenced multiple times within a single read to distinguish sequencing

errors from true mutations. All of the above approaches have been employed for high-throughput

genetic study of virus [43,46,50,50–52,62]. The increase of sensitivity in detecting rare mutations

increases the confidence in identifying lethal mutation (mutation that disappear after selection).

High-throughput genetics has potential applications in addressing several important biomedical

issues. As high-throughput genetics is achieving single-amino acid resolution, it enables identi-

fication of essential surfaces on available protein structures for rational drug design to increase

the fitness cost of potential escape mutations. In addition, peptide stretches intolerable to mu-

tations provide potential epitopes for vaccine development. In addition, high-throughput genetics

has many other applications which would potentially transform several subfields in virus research.

In my thesis, the development and application of high-throughput genetics at single-residue reso-

lution are described.
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CHAPTER 2

HIGH-THROUGHPUT PROFILING OF INFLUENZA A VIRUS HEMAGGLUTININ GENE AT

SINGLE-NUCLEOTIDE RESOLUTION
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2.1 ABSTRACT

Genetic research on influenza virus biology has been informed in large part by nucleotide vari-

ants present in seasonal or pandemic samples, or individual mutants generated in the laboratory,

leaving a substantial part of the genome uncharacterized. Here, we have developed a single-

nucleotide resolution genetic approach to interrogate the fitness effect of point mutations in 98%

of the amino acid positions in the influenza A virus hemagglutinin (HA) gene. Our HA fitness

map provides a reference to identify indispensable regions to aid in drug and vaccine design as

targeting these regions will increase the genetic barrier for the emergence of escape mutations.

This study offers a new platform for studying genome dynamics, structure-function relationships,

virus-host interactions, and can further rational drug and vaccine design. Our approach can also

be applied to any virus that can be genetically manipulated.
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2.2 INTRODUCTION

The broad field of systems biology was significantly advanced in the past decade due to many

technological improvements, such as the invention of DNA microarray, next generation sequenc-

ing, mass-spectrometry and other applications permitting high-throughput screenings [1,2]. These

technical advancements have enabled large scale studies including interactomics, proteomics,

transcriptomics, genomics, epigenomics, and metagenomics, which have revolutionized biomedi-

cal research [3–8]. A multitude of structure-function information is embedded in these studies that

is valuable for rational drug and vaccine design. In addition, the continued development of in silico

approaches to protein structural modeling, prediction, and design further complements the impact

of high-throughput biological data [9,11,12,32].

High-throughput tools have also influenced the advancement of genetic approaches. Traditional

genetic methods focus on a single genotype-phenotype relationship at a time, and has been ex-

tensively employed to analyze individual mutations. In contrast, high-throughput genetic methods

examine the phenotypic outcomes of multiple mutations simultaneously. Genome-wide insertional

mutagenesis is a common high-throughput genetic approach. It has been employed to charac-

terize bacterial genomes at a single-gene resolution level [13, 14]. A higher resolution has been

achieved in two medically important RNA viruses, HCV and influenza [22,23]. However, the max-

imum resolution of the insertional mutagenic approach is limited to a protein subdomain level and

thus is insufficient to identify critical amino acid residues. Therefore, there is a demand for a high-

throughput genetic platform at a single-residue resolution.

In this study, we developed a single-nucleotide resolution genetic approach using a large mu-

tant library and a sensitive deep sequencing technique to annotate the influenza A virus hemag-

glutinin (HA) gene, which carries critical roles in receptor binding, viral entry, host shifts, and

immune escape mechanisms. Here, we probe for fitness effects of individual substitutions in 98%

of all amino acid positions across HA. Our results provide a comprehensive structure-function

description of HA and offer a reference to identify potential vaccine epitope. More importantly,

the high-throughput profiling platform established in this study can be applied to any genetically
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manipulable viral gene or genome to probe mutational fitness effects under any specified growth

condition.
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2.3 RESULTS

High-throughput genetic approach at single-nucleotide resolution

The conceptual basis of our high-throughput genetic platform is to randomly mutagenize each

position of the genome, monitor the enrichment or diminishment of each point mutation under a

specified growth condition, and perform massive deep-sequencing to determine which mutations

are associated with negative, neutral, or positive fitness outcomes under the given growth condi-

tion. The mutant library was created on influenza A/WSN/1933 (H1N1) hemagglutinin (HA) gene

by performing error-prone PCR on the eight-plasmid reverse genetics system [27] (see materials

and methods). Subsequently, the viral mutant library was generated by transfection and passaged

for two 24-hour replication selection rounds in A549 cells (human lung epithelial carcinoma cells)

(Fig. 2-1A). The plasmid library and the passaged viral library were each sequenced by Illumina

HiSeq 2000. Individual mutants would experience an identical selection pressure with other mu-

tants in the pool during the course of transfection and infection. Therefore, comparing the genetic

compositions of the plasmid library and the passaged viral library reflects the variation in replica-

tion rates for each mutation. Here, we use a relative fitness index (RF index) as a proxy for the

fitness effect of individual mutations. The RF index is calculated as:

RF index = (occurrence frequency in passaged library)/(occurrence frequency in plasmid library)

The occurrence frequency of individual mutations was largely expected to be lower than the se-

quencing error rate of 0.1% in the Illumina next generation sequencing (NGS). Therefore, we

utilized a two-step PCR approach for library preparation to distinguish true mutations from se-

quencing errors (Fig. 2-1B). In the first PCR, the HA gene was divided into 12 amplicons for

amplification with a unique tag assigned to individual molecules. In the second PCR, multiple

identical copies for individual tagged molecules were generated. The input copy number for the

second PCR was well-controlled such that after a sub-saturation PCR, individual tagged molecules

would be sequenced ∼10 times. True mutations would exist in most, if not all, sequencing reads

sharing the same tag, whereas sequencing errors would not. This error-correction approach is

based on a valid assumption that occurrence of sequencing error is independent of the identity of
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Figure 2-1. Mutant library passaging and sequencing library preparation. (A) The HA segment was

randomized by error-prone PCR. The randomized segment with the remaining seven wild type segments

were transfected into C227 cells to generate the viral mutant library. Two rounds of 24-hour infections were

performed using A549 cells with an MOI of 0.05. Both the plasmid library and the passaged viral library

were subjected to sequencing using the Illumina HiSeq 2000 machine. (B) The HA gene was divided into

12 amplicons for the first PCR. Unique tags were assigned to both ends of the individual molecules during

the amplification process. The second PCR generated identical copies of individual molecules linked with

unique tags. Red circles represent true mutations; Yellow circles represent sequencing errors.
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the nucleotide tag [21]. Therefore, sequencing errors could be distinguished from true mutations.

Individual molecules, each carrying a unique tag, have an average copy number of ∼10 (median

= 10) in the sequencing data, which verified the sequencing library preparation design.

Point mutation fitness profiling of hemagglutinin

The RF indices of individual point mutations were profiled across 98% of amino acid positions of

HA in biological duplicate (Spearman correlation = 0.78) (Fig. 2-2A). The remaining 2% of amino

acid positions not observed were from the termini of HA, where the first and last amplicon primers

are located. Silent mutations and nonsense mutations provided an internal control to access the

data quality. In principle, silent mutations, which alter the nucleotide sequence but not the amino

acid sequence, rarely impose a fitness cost. On the other hand, nonsense mutations, which result

in a truncated protein product, are lethal to the virus. Indeed, our data is consistent with this no-

tion. Silent mutations have a significantly higher RF index than nonsense mutations (P < 2e−16,

two-tailed Student’s t-test) (Fig. 2-2B). In addition, the RF index distributions of silent mutations

and nonsense mutations are well separated, which validated the reliability of our approach. How-

ever, several silent mutations with a low RF index were observed, which may be indicative of their

roles in codon usage, RNA structure, and other functions beyond protein-coding.

Furthermore, the fitness data is consistent with the reported phenotypes of mutants that have

been previously characterized in the literature. Examples include a temperature sensitive sub-

stitution (Y174H) [20], a host switching substitution (D238G) [21], two thermodynamic stabilizing

substitutions (D111E and Q299R) [22], and four HA cleavage site substitutions (Y342H, Y342C,

Y342N and Y342F) [23]. Y174H, D238G, Y342H, Y342C, and Y342N, which are expected to be

deleterious under our experimental condition, have a relatively low RF index (ranging from 0.04

to 0.23). On the other hand, D111E, Q299R, and Y342F, which are expected to be neutral under

our experimental condition, have a relatively high RF index (ranging from 0.37 to 1.03). These

comparisons show the consistency between our dataset and the experimental results reported in

the literature.
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Figure 2-2. Single-nucleotide resolution fitness profiling. (A) The RF index for individual point

mutations across the HA gene was computed. Log10 of the RF index is plotted on the y-axis. Each

nucleotide position is represented by four consecutive lines for the RF indices that correspond to mutating

to A (blue), T (green), C (orange), or G (red). The Log10 RF index of wild type (WT) nucleotides is set as

zero. Only point mutations with a coverage of ≥ 30 tag-conflated reads in the plasmid library are shown.

Otherwise, point mutations are plotted as a gray circle on the zero baseline. A short region is shown as an

inset to demonstrate the resolution of our dataset. (B) The distributions of the log10 RF indices for silent

substitutions, nonsense substitutions and missense substitutions are displayed as histograms. Mutations

located at the 5’ terminal 200 bp and 3’ terminal 200 bp regions are not included in this analysis to avoid

confounding by the vRNA packaging signal [19].
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Independent experimental validation also confirmed our dataset. Six randomly selected point

mutations were individually reconstructed and analyzed. RF indices of each mutation have a pos-

itive correlation with the TCID50 value measured from a rescue experiment (Fig. 2-3A-B). Overall,

these analyses verified the reliability of the fitness profiling data and demonstrated our platform to

be comprehensive and at high resolution.

Figure 2-3. Experimental validation.(A) The top panel displays the log10 TCID50 value of mutant virus

rescued from transfection. The bottom panel represents their log10 RF indices from the biological

duplicate. (B) A Pearson correlation of 0.9 is obtained between log10 TCID50 from transfection (x-axis) and

log10 RF index (y-axis)

Structural analysis of hemagglutinin

Our platform has a high sensitivity for monitoring negative selection in addition to positive selec-

tion and therefore enables the identification of deleterious mutations that disappear throughout

viral passaging. The availability of the influenza HA crystal structure allowed us to further extrap-

olate structural insights from our dataset. A weak, yet significant spearman correlation of 0.30

was observed between the RF index and the relative solvent accessible surface area (SASA) of

HA (P < 2e−16). This indicates that surface residues are more tolerant to substitutions than core

residues, which is consistent with observations in cellular proteins [24, 25]. We also analyzed the

fitness effects of mutations in different types of structural elements, namely α-helices (mean log10

RF index = -1.19), β-strands (mean log10 RF index = -0.97), turns (mean log10 RF index = -0.98)

and coils (mean log10 RF index = -1.01). Interestingly, mutations in α-helices are more deleterious

than mutations in β-strands (P = 1e−4), turns (P = 1e−3) and coils (P = 2e−3). In contrast, the
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fitness effects of mutations in β-strands, turns and coils are not significantly different from each

other (P > 0.4). This result implies that most functional elements in HA are contained within α-

helices.

We further investigated each α-helix by computing their individual mean log10 RF index (Fig. 2-

4A). As expected from the SASA analysis, the α-helices located at the core of HA1 are the least

tolerant to mutations (red and pink, mean log10 RF index = -1.52 and -1.40 respectively). The

other α-helix in HA1 is also relatively intolerable to mutations (orange, mean log10 RF index =

-1.11), which is consistent with its role in receptor binding for viral entry. [26]. In HA2, the two

α-helices located at the stem-loop region are relatively intolerable to mutations (green and cyan,

mean log10 RF index = -1.11 and -1.22 respectively), which can be attributed to their functional

role in membrane fusion during viral entry [27]. In fact, all of the mean log10 RF indices reported

above are lower than that of the entire HA (mean log10 RF index = -1.04). Together, these findings

demonstrated that α-helices in HA are important for different functional mechanisms.

Interestingly, the non-structural loop region (blue) that interspaces the aforementioned helices

(green and cyan) is more tolerant to mutations compared to its neighboring α-helices (mean log10

RF index = -0.76) (Fig. 2-4A). This region undergoes a transition from a non-structural loop to

an α-helix during membrane fusion. Nonetheless, the relatively high RF index in this region sug-

gests that the structural requirement for this transition is not stringent. This is further evidenced

by a proline substitution analysis (Fig. 2-4B). Among all 20 standard amino acids, proline has

the poorest α-helix formation propensity as its presence would result in a break or a kink of an

α-helix [28]. Therefore, it is expected that proline substitutions in an α-helix would carry a low RF

index (deleterious). Indeed, all proline substitutions in the HA α-helices have a log10 RF index <

-1. In contrast, two out of three proline substitutions in the non-structural loop have a log10 RF

index > -1 (-0.81 and -0.19 respectively). This result suggests that the formation of a continuous

α-helix in this region is not a strict requirement during membrane fusion.

We also performed an in depth analysis on the α-helix that is important for homotrimer forma-

tion (colored in cyan in Fig. 2-4A). Helix wheel projection showed that high hydrophobicity was
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critical at heptad position d (Fig. 2-4C). We further investigated the RF index of those amino acid

substitutions at heptad position d (Fig. 2-4D). Silent mutation at G430 had the lowest RF index

(0.24) among all silent mutations at this heptad position. This RF index was employed as a refer-

ence to identify substitutions that has a relatively neutral fitness effect. Only three out of 27 amino

acid substitutions at this heptad position has an RF index ≥0.24, namely Y437F (RF index = 0.35),

V465I (RF index = 0.40) and V465A (RF index = 0.30). These three substitutions are conserved

in volume and hydrophobicity, which suggests that residues at heptad position d has a stringent

structural constraint in side chain conformation and hydrophobicity for homotrimer formation.

Identification of essential regions

Our profiling also provides information to identify possible essential protein surfaces and indis-

pensable regions useful for vaccine epitopes. The RF indices of the most destructive substitutions

in our dataset can be projected on the HA structure to identify putative functional regions that can-

not tolerate certain amino acid substitutions (Fig. 2-5A-B). Whereas the RF indices of the least

destructive substitutions for HA is projected on the HA structure to identify essential regions that

are intolerable to any substitution (Fig. 2-5C). As expected, the trimer formation surface (Fig. 2-

5A) and the stem domain (Fig. 2-5B-C), which is the major functional component of the membrane

fusion machinery in HA, show as essential regions in our profiling data. In addition, our dataset

identified the cross-subtype conserved influenza HA stalk region as an indispensable region (Fig.

2-5C-D), which is at the binding site of the proposed influenza universal antibody, CR6261 [29,30].

Although several missense substitutions in the binding site are allowed, they are conservative sub-

stitutions (N389D and T392S) unlikely to disrupt antibody recognition (Fig. 2-5C-D). It confirms

the promising aspect of the proposed universal antibody [30]. In addition, the main antigenic sites

on the globular head of HA were largely tolerable to substitutions (Fig. 2-5C). This observation

suggests a functional basis for the tendency of this domain to rapidly undergo genetic drift, which

adversely affects both natural and vaccine-induced immunity [31]. Overall, our work details the

genetic cost for individual point mutations across HA − the primary target of anti-influenza neutral-

izing antibodies [29–33]. This dataset therefore provides a valuable reference for rational vaccine

design.

23



Figure 2-4. Structural analysis on hemagglutinin. (A) All α-helices (orange, red, pink, cyan, green,

yellow) and a non-structural loop (blue) in HA are highlighted. Mean log10 RF indices for individual

highlighted structural elements are shown. (B) The log10 RF indices for all observed X→ P mutations

(where X can be any amino acids but P) in individual highlighted structural elements are plotted as

stripcharts. The colors of the stripcharts match the highlight colors of the corresponding structural

elements in panel A. The bottom stripchart represents the non-structural loop that undergoes α-helix

formation during membrane fusion. (C) Helical wheel was constructed by DrawCoil 1.0

(http://www.grigoryanlab.org/drawcoil/). Amino acid property of each residue is color coded. Polar: orange;

Hydrophobic: grey; Positively charged: red; Negatively charged: blue. (D) The bar chart represents the RF

indices of all profiled amino acid substitutions at heptad position d. RF indices of silent mutations are also

included for comparison.
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Figure 2-5. Essential regions on hemagglutinin. The RF indices of (A-B) the most destructive missense

substitutions or (C) the least destructive missense substitutions in the profiling data for individual amino

acids are projected on the HA protein structure to identify essential regions intolerable to mutations. The

inset represents the side chain interaction between HA (grey) and the proposed influenza universal

antibody CR6261 (green) (PDB: 3GBN) [29]. Parentheses represent the residue naming according to

HA2 [29]. The mean log10 RF indices of nonconservative mutations for each residue are shown. All

hydrogen bonds (black dotted lines) are displayed as described [29]. (A-C) Red: RF index < 0.05; Orange:

RF index < 0.1; Green: other. The structure is based on PDB: 1RUZ [34]. (D) The RF indices for missense

mutations within the universal antibody recognition sites are shown. Red: nonsense substitution; orange:

nonconservative substitution; blue: conservative substitution; green: silent mutation.
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2.4 DISCUSSION

Traditionally, critical residues on a viral genome are discovered by testing individual mutants and

requires multiple assays to dissect the associated biological functions. The low throughput nature

of this process limits the number of mutants tested. In this study, we have developed a compre-

hensive strategy using the influenza A virus as a model system to profile the fitness effects of

individual point mutations and to identify essential residues throughout the HA gene in a high-

throughput manner.

Recently, two studies that describe the development of a deep sequencing-based high-throughput

genetic platform at single-nucleotide resolution have been reported in the literature [51,52]. Robins

et al. probed for essential residues in T7 bacteriophage and T7-like virus JSF7 of Vibrio cholerae

using mutant libraries constructed by chemical-induced transition of a GC base pair to an AT base

pair [51]. Acevedo et al., on the other hand, interrogated the fitness effects of individual point

mutations that naturally emerged in an evolving poliovirus population which has a high mutation

rate, rather than employing any engineering strategy of introducing mutations [52]. In this study,

we have developed a novel strategy which utilizes a saturated point mutation library together with

a sensitive sequencing approach. When compared to the two aforementioned approaches, our

method is more comprehensive and unbiased due to the mutant library construction strategy,

which is independent of spontaneous mutations. This application can be extended to other in-

fluenza genes and to other genetically manipulable viruses under any applied selection condition

at a single-nucleotide resolution level.

Identification of residues essential for viral replication is often inferred by sequence conservation.

Observed sequence conservation derives from the viral sequences that initiated the endemic, and

is influenced by the host genetic background and the specific immune responses associated with

the host. Conservation is not equivalent to essentialness for viral replication in cells. Mutational

analysis of conserved amino acid residues on influenza A virus has revealed that a significant frac-

tion of conserved residues are dispensable in viral replication [5,6,38]. In addition, new mutations

emerge every flu season, implying that a certain portion of residues that are conserved currently
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are still capable to mutate in the natural environment and provide a fitness advantage under future

unforeseen selection pressures. This also suggests that a conserved amino acid may not nec-

essarily be essential to viral replication. Additionally, analyses of conserved sequences provide

information on viral genetic elements that survived in the selected human population in recent his-

tory, but does not provide much information on viral genetic elements that were unable to survive

the selection process, nor about which host factor was responsible for exerting the selection. Our

approach provides a complementary, yet more direct approach to identify amino acid residues that

are critical for viral replication in a defined cellular environment. Nonetheless, to be more com-

prehensive, similar studies should be performed with strains across subtypes and include different

selection conditions.

In summary, the platform described here enabled the simultaneous functional profiling of point

mutations across the entire influenza HA at single-nucleotide resolution to determine their roles in

viral replication. Our platform provides an efficient tool to address several important biomedical

questions. The fitness profiling data allows the study of structure-function relationships at single-

amino acid resolution. It enables the search for essential protein surfaces on available structures

and thus offers a reference for drug design approaches that aim to increase the genetic barrier for

the emergence of escape mutations [40–42]. Essential peptide stretches could also provide po-

tential targets for drug and vaccine development [43]. Our genetic platform can be applied to study

viral genome dynamics and identify critical residues for virus-host interactions in a specific cellular

responses (such as apoptosis, autophagy, inflammasome induction, ER stress, etc.) and immune

responses (such as NK cells, T cells, antibodies, macrophages, cytokines, etc.) [44,45]. The cur-

rent development of a live attenuated influenza vaccine has been based on the modification of

NS1 to increase interferon sensitivity [37]. However, this study provides a platform to explore alter-

native strategies. Comparing the in vitro fitness profile with an in vivo profile could also permit the

identification of mutants that replicate efficiently in vitro but not in vivo. The resultant information

when coupled with known mutants that are sensitive to a specified immune response could help

achieve a higher titer during vaccine production, but exhibit an attenuated phenotype after injection

into the human body where an intact immune system is present. Most importantly, our platform

is applicable to other viral or microbial genomes where genetic manipulation is available in the
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laboratory. The sensitivity of our platform will increase as NGS technology improves. With the

continued development of NGS technology, we foresee that our platform will be further advanced

and can be applied at a much lower cost.

28



2.5 MATERIALS AND METHODS

Viral mutant library and point mutations

The plasmid mutant library was created by performing error-prone PCR on the HA segment of the

eight-plasmid reverse genetics system of influenza A/WSN/1933 (H1N1) [27]. We PCR-amplified

the HA gene insert with error-prone polymerase Mutazyme II (Stratagene, La Jolla, CA). The muta-

tion rate of the error-prone PCR was optimized by adjusting the input template amount to avoid the

accumulation of deleterious mutations. The restriction enzyme site BsmBI was present in the PCR

primers, and used to clone into a BsmBI-digested parental vector pHW2000. Ligations were car-

ried out with high concentration T4 ligase (Life Technologies, Carlsbad, CA). Transformations were

carried out with electrocompetent MegaX DH10B T1R cells (Life Technologies), and > 200,000

colonies were scraped and directly processed for plasmid DNA purification (Qiagen Sciences, Ger-

mantown, MD). As extensive trans-complementation was expected during the transfection step, >

35 million cells were used for transfection to average out any bias or artifact generated from pos-

sible trans-complementation. Point mutants for the validation experiment were constructed using

the QuikChange XL Mutagenesis kit (Stratagene) according to the manufacturer’s instructions.

Transfections, infections, and titering

C227 cells, a dominant negative IRF-3 stably expressing cell line derived from human embryonic

kidney (293T) cells, were transfected with Lipofectamine 2000 (Life Technologies) using the HA

mutant library plasmid plus 7 other wildtype plasmids. Supernatant was replaced with fresh cell

growth medium at 24 hrs and 48 hrs post-transfection. At 72 hrs post-transfection, supernatant

containing infectious virus was harvested, filtered through a 0.45 um MCE filter, and stored at -80

degree Celsius. The TCID50 was measured on A549 cells (human lung carcinoma cells).

Virus from the C227 transfection was used to infect A549 cells at an MOI of 0.05. Infected cells

were washed three times with PBS followed by the addition of fresh cell growth medium at 2 hrs

post-infection. Virus was harvested at 24 hrs post-infection. For the mutant library profiling, HA

mutant library was passaged for two 24-hour rounds in A549 cells. Our pilot experiments as well

as our previous study revealed that two rounds of passaging were suffcient for profiling [48]. The
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biological duplicate was performed by an independenly transfected viral library, followed by two

rounds of passaging as described above.

Sequencing library preparation

Viral RNA was extracted from the passaged viral mutant library using QIAamp Viral RNA Mini Kit

(Qiagen Sciences) and was reverse transcribed to cDNA using Superscript III reverse transcrip-

tase (Life Technologies). DNA from the plasmid library or cDNA from the passaged viral mutant

library were amplified with both forward and reverse primers each flanked with a 6 “N” tag and the

Illumina flow cell adapter region. Flanking region for 5’ primer: 5’-CTA CAC GAC GCT CTT CCG

ATC TNN NNN N-3’, Flanking region for 3’ primer: 5’-TGC TGA ACC GCT CTT CCG ATC TNN

NNN N-3’. Following PCR, 12 amplicon products were pooled together. 1.5 million copies of the

pooled product were used as the input for the second PCR, which was equivalent to 10 paired-end

reads per molecule if 15 million paired-end reads were sequenced. 5’-AAT GAT ACG GCG ACC

ACC GAG ATC TA CAC TCT TTC CCT ACA CGA CGC TCT TCC G-3’ and 5’-CAA GCA GAA GAC

GGC ATA CGA GAT CGG TCT CGG CAT TCC TGC TGA ACC GCT CTT CCG-3’ were used as

the primers for the second PCR. Products of the second PCR were submitted for next generation

sequencing. The error-correction technique described in this study shared the same philosophy

as described for detecting rare mutations in human cells [21]. However, this study included the fine

restraint of limiting the input tagged template copy number and PCR efficiency during the second

step PCR to accurately control the distribution of cluster size in the sequencing output to a median

of 10. Raw sequencing data have been submitted to the NIH Short Read Archive under accession

number: PRJNA243038.

Data analysis

Sequencing reads were mapped by BWA with a maximum of six mismatches and no gap [55].

Amplicons with the same tag were collected to generate a read cluster. Since each read cluster

was originated from the same template, true mutations were called only if the mutations occurred

in 90% of the reads within a read cluster. We acknowledged that this error-correction approach

would only correct errors that occured during the deep sequencing process but not those that were
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introduced during the reverse transcription process. Read clusters with a size below three reads

were filtered out. Read clusters were further conflated into “error-free” reads. Average coverages

in terms of “error-free” reads were 177028 per nucleotide in the plasmid mutant library, 112355 per

nucleotide in replicate 1 of passaged viral mutant library, and 161773 per nucleotide in replicate

2 of passaged viral mutant library. Relative fitness index (RF index) for individual point mutations

was computed by:

(occurrence frequency in passaged library)/(occurrence frequency in plasmid library)

For all the downstream analysis, only point mutations covered with ≥ 30 tag-conflated reads

(“error-free” reads) in the plasmid library were included. This arbitrary cutoff filtered out mutants

with low statistical confidence, which is ∼16% of all possible point mutations. In addition, all C→

A and G→ T mutations are not included in the reported dataset due to an observed DNA oxidative

damage during library preparation [49].

Structural analysis

The solvent accessible surface area (SASA) for individual residues was computed from PyMOL

using the default “get area” function. SASA obtained from the folded structure was then normal-

ized with the SASA calculated from an unfolded structure to obtain the relative SASA. Secondary

structure assignment was performed by STRIDE [50]. The structural analysis was based on PDB:

1RUZ [34]. A two-tailed Student’s t-test was employed to compare the log10 RF indices in dif-

ferent types of structural elements. Only missense mutations are included in the analysis unless

otherwise stated.
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CHAPTER 3

FUNCTIONAL CONSTRAINT PROFILING OF A VIRAL PROTEIN REVEALS

DISCONCORDANCE OF EVOLUTIONARY CONSERVATION AND FUNCTIONALITY
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3.1 ABSTRACT

Viruses often encode proteins with multiple functions due to their compact genomes. Existing

approaches to identify functional residues largely rely on sequence conservation analysis. Infer-

ring functional residues from sequence conservation can produce false positives, in which the

conserved residues are functionally silent, or false negatives, where functional residues are not

identified since they are species-specific and therefore non-conserved. Furthermore, the tedious

process of constructing and analyzing individual mutations limits the number of residues that can

be examined in a single study. Here, we developed a systematic approach to identify the func-

tional residues of a viral protein by coupling experimental fitness profiling with protein stability

prediction using the PA influenza virus polymerase subunit as the target protein. We identified

a significant number of functional residues that were influenza type-specific and were evolution-

arily non-conserved among different influenza subtypes. Our results indicate that type-specific

functional residues are prevalent and would not otherwise be identified by sequence conserva-

tion analysis alone. More importantly, this technique can be adapted to any viral (and potentially

non-viral) protein where structural information is available.
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3.2 INTRODUCTION

To comprehensively describe the functional roles of a given protein, which are often diverse for

many viral proteins and include catalytic activity, intermolecular interactions, and/or cofactor bind-

ing, it is necessary to identify the individual functional residues that carryout the biochemical mech-

anism. Sequence conservation analysis is a common strategy to search for functional residues

and is facilitated by the availability of public protein sequence databases [1–3]. The underly-

ing logic is composed of two parts. First, functional residues are essential. Second, essential

residues are conserved. However, the reverse may not hold true − conserved residues are not

necessary essential. With the extensively studied influenza A virus, several groups have experi-

mentally demonstrated that conserved residues need not be essential for viral replication [5,6,55].

In addition, a residue shown to be essential for viral replication can also be the result of stability

constraints, where the residue is essential for protein stability and expression levels, rather than

due to the functional constraints [7].

Another caveat of sequence conservation analysis is the inefficacy for identifying species-specific

functional residues. This issue is often overlooked. During natural evolution, continuous diversifi-

cation and adaptation leads to the acquisition of new functions. For example, NS1 from influenza

B but not influenza A interacts with ISG15 [8]; NS1 from influenza A but not influenza B interacts

with CPSF30 [9]. Furthermore, certain phosphorylation sites are not conserved across influenza

A and B viruses [10]. In fact, non-conserved functional residues have been demonstrated in var-

ious organisms [11–14]. Consequently, when sequence conservation analysis is based on a set

of diverse homologs, as is the case when comparing sequence conservation across influenza

types A, B, and C, species-specific functional residues appear as non-conserved residues and are

classified as non-functional. As a result, development of a sequence conservation-independent

approach is needed to provide an unbiased assessment for the functionality of individual residues

and to permit a systematic interrogation of the relationship between functionality and evolutionary

conservation.

The influenza A virus PA polymerase subunit consists of a ∼25 kD N-terminal domain and a ∼55
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kD C-terminal domain [15, 16]. Structural information for both domains is available [17–20]. PA

forms a heterotrimer complex with two other influenza virus proteins, PB1 and PB2. Together, they

function as an RNA-dependent RNA polymerase. The three subunits perform distinct functions,

which contribute to the replication and transcription of the viral RNA genome. PB1 binds to the

viral promoter and is the catalytic subunit for viral RNA synthesis [21]. PB2 is essential for the tran-

scription of viral RNA and can bind to the 5’ cap of host pre-mRNAs for “cap-snatching” [22–24].

PA is required for both replication and transcription of the viral RNA and contains an endonuclease

catalytic site for cleaving the capped RNA primer [25–28]. It has also been reported that PA may

be involved in other viral processes, such as viral assembly [29, 30], and may possess protease

activity [31, 32]. Recently, several groups have proposed targeting the influenza PA polymerase

subunit for antiviral drug development as it is an essential component for viral replication [33–39].

In this study, we have developed a systematic approach that is independent of any prior knowl-

edge in sequence conservation to identify functional residues at single-amino acid resolution. In

this strategy, we coupled a high-throughput fitness profiling platform with an in silico mutant sta-

bility prediction. We employed the influenza A virus PA polymerase subunit as the target protein,

due to the availability of structural information and the extensive information available for natural

sequence variants. The fitness effects of amino acid substitutions were profiled across 94% of all

PA protein residues using a novel “small library” approach. Computational modeling predicted the

stability effect of all individual substitutions, thus uncovering the structural constraints for individual

residues. By integrating the fitness and structural information, we identified known functional sites

previously documented in the literature and provide additional insight into the structure-function re-

lationship of the influenza PA protein. We further examined the relationship between evolutionary

conservation and functional constraints and show that functional residues are not necessarily con-

served. This study not only describes a novel functional annotation platform that provides insight

into the relationship between functionality and sequence conservation, but also presents valuable

information for drug development and future functional studies of the influenza A virus PA protein.

More importantly, this approach has the potential to be adapted for any protein where structural

information available.
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3.3 RESULTS

Design of a high-throughput genetic platform for fitness profiling

High-throughput genetic approaches have been applied to the study of various proteins (reviewed

in [40]), which include several from influenza virus and HIV [42–46,48]. Generally, a mutant library

is monitored using deep sequencing, and the relative fitness of each mutation can be inferred by

changes in the frequency of mutation occurrence throughout passaging. Mutant library construc-

tion represents a key step in these high-throughput genetic approaches. An ideal mutant library

should contain only one point mutation per genome, which poses a challenge for high-throughput

mutagenic strategies. Existing approaches have used viral genomes that contain multiple muta-

tions within the mutant library. However, the short read length in current deep sequencing tech-

nologies disallows the examination of any possible linkage between distantly placed mutations

within each genome. Consequently, genetic interactions between mutations may exist during the

selection process, but are not accounted for during the fitness calculation for individual point mu-

tations.

To resolve this drawback in existing high-throughput genetic approaches, we have developed a

“small library” strategy (Fig. 3-1A). Each mutant library contains a mutated region that can be cov-

ered by a single sequencing read. Here, we generated a 240 bp mutated amplicon by error-prone

PCR, which is then cloned into a PCR-generated vector using type IIs restriction enzymes (BsaI

or BsmBI). The resulting plasmid mutant library was constructed from ∼50,000 clones. A total of

nine different “small libraries” for influenza A/WSN/33 PA were constructed. Together, these nine

“small libraries” covered the entire PA gene. Each viral mutant library was rescued by transfecting

the plasmid mutant library with the other seven wild type (WT) plasmids of the influenza A/WSN/33

eight-plasmid reverse genetic system [27], and then passaged for 24 hours in A549 cells.

The plasmid mutant libraries (DNA library), pre-passaged viral mutant libraries (transfection), and

post-passaged viral mutant libraries (infection) were subjected to deep sequencing. In this study,

we included a technical replicate for sequencing the DNA library, a biological replicate for trans-

fection, and a biological replicate for infection to estimate the reproducibility of individual steps. In
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addition, we also sequenced the WT PA plasmid as a control.

The amplicon sequencing library was prepared for the Illumina MiSeq 250 bp paired-end sequenc-

ing, using either DNA (DNA library or WT plasmid) or cDNA (transfection or infection) (Fig. 3-1B).

For each “small library”, the 240 bp mutated region was amplified by a primer pair that contained

a BpmI restriction site. A subsequent BpmI digestion excised the primer region from the PCR

amplicon. As a result, the entire 240 bp mutated region would be covered by both forward and

reverse reads. This enabled sequencing error correction by read-pairing. We obtained a coverage

of at least 20,000 (range = 20,128 to 965,488) for each sequencing library.

Point mutation fitness profiling of influenza PA

The design of our high-throughput genetic platform enables us to examine the mutation in individ-

ual genomes. On average, 44% (range = 25% to 76%) of viral genomes contain no mutation (i.e.

WT), 33% (range = 20% to 36%) of viral genomes contain a single mutation, and 23% (range =

3% to 42%) of viral genomes contain at least two or more mutations. Occurrence frequency for

each point mutation was computed from genomes that contained only one mutation. This allowed

a precise fitness calculation for individual point mutations without complication by genetic interac-

tions that may exist with additional mutations. Individual point mutations exhibited an occurrence

frequency of 0.04% (range = 0% to 0.3%) across all DNA libraries. Whereas the mutation fre-

quency obtained from sequencing the WT plasmid, which served as a control for sequencing error

rates, was 0.005% (range = 0% to 0.07%).

Comparison of the relative frequency of individual point mutations between replicates was per-

formed to assess the reproducibility of our “small library” high-throughout genetic platform (see

Materials and Methods for the calculation of relative frequency). A Pearson’s correlation of 0.95

was obtained for the technical replicate of DNA library, 0.76 for the biological replicate of transfec-

tion, and 0.96 for the biological replicate of infection (Fig. 3-2A). The strong correlations between

replicates validated the design of our high-throughput genetic platform. The relative fitness index

(RF index) was used as a proxy to estimate the fitness effect for each point mutation.

42



Figure 3-1. Construction of the mutant libraries. (A) A schematic representation of the fitness profiling

experiment is shown. A 240 bp insert was generated by error-prone PCR and BsaI digestion. The

corresponding vector was generated by high-fidelity PCR and BsmBI digestion. Each of the nine plasmid

libraries in this study consist of ∼50,000 clones. Each viral mutant library was rescued by transfecting ∼35

million 293T cells. Each infection was performed with ∼10 million A549 cells. (B) A schematic

representation of the sequencing library preparation is shown. DNA plasmid mutant library or viral cDNA

was used for PCR so only the 240 bp randomized region was amplified. The amplicon product was then

digested with BpmI, end-repaired, dA-tailed, ligated to sequencing adapters, and sequenced using the

Illumina MiSeq platform. BpmI digestion removed the primer region in the amplicon PCR, resulting in

sequencing reads covering only the barcode for multiplex sequencing and the 240 bp region that was

randomized in the mutant library. With this experimental design, the number of mutations carried by

individual genomes in the mutant libraries could be precisely determined.
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RF index = (Relative frequencyinfection)/(Relative frequencyDNA library)

The RF index of silent mutations (mean = 0.98) was significantly higher than that of nonsense

mutations (mean = 0.09) (P < 2e−16, two-tailed Student’s t-test). Furthermore, the RF index distri-

butions of silent mutations versus nonsense mutations were well-separated (Fig. 3-2B), validating

that fitness selection was taking place. The fitness effects of substitutions were profiled across

94% of all amino acid residues in PA. The fitness profiling data is shown in Fig. 3-2C.

Combining high-throughput fitness profiling with mutant protein stability predic-

tion identifies functional sites at single-amino-acid resolution

Next we aimed to identify amino acid residues that were functionally essential, but not structurally

important. Essential residues in viral replication can be systematically mapped by high-throughput

fitness profiling experiments [43–45, 50–52]. However, fitness profiling only quantifies essential-

ness, but does not partition the structural versus functional role of individual residues. It has

been previously shown that functional residues often carry a suboptimal thermodynamic stability

contribution to the proteins in which they reside [53], suggesting the majority of substitutions at

functional residues will not affect protein stability. Therefore, functional residues can be identified

by substitutions that are deleterious to the virus but not destabilizing to the protein.

Using Rosetta software we predicted the effect of individual substitutions on protein stability; we

used the parameters from row 16 of Table I in Kellogg et al., which has been shown to give a corre-

lation of 0.69 with experimental data [32,54]. In general, substitutions had a lower RF index when

the predicted ∆∆G increased (Fig. 3-3A). This indicates that viral replication fitness decreases

as the PA protein is destabilized. However, we did identify substitutions that had a low RF index,

but did not destabilize the protein. We hypothesized that these residues had large functional con-

straints with little structural effects to the protein upon substitution. To identify the substitutions of

interest, a cutoff was set at an RF index < 0.15 (based on the separation point of silent mutations

and nonsense mutations) and a predicted ∆∆G < 0 (not destabilizing). A total of 32 substitutions
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Figure 3-2. Fitness profiling of PA influenza virus polymerase subunit. (A) Correlations of log10

relative frequency of individual point mutations between replicates are shown. Relative frequencymutation i

= (Occurrence frequencymutation i)/(Occurrence frequencyWT ) (B) Log10 RF indices for silent mutations,

nonsense mutations, and missense mutations are shown as histograms. Point mutations located at the 5

terminal 400 bp and 3 terminal 400 bp regions are not included in this analysis to avoid complication by the

vRNA packaging signal [48,49]. (C) The locations of the PA C-terminal domain and the PA N-terminal

domain are shown as white boxes. The locations of the mutated regions in each mutant library are shown

as green boxes. Log10 RF indices for individual point mutations are plotted across the PA gene. Each point

mutation is colored coded as in panel B. Purple: silent mutations; Cyan: nonsense mutations; Brown:

missense mutations. A smooth curve was fitted by loess and plotted for each point mutation type.
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(22 unique residues) in the PA N-terminal domain and 110 substitutions (81 unique residues) in

the PA C-terminal domain satisfied this criteria.

A number of functional residues in the PA protein have been characterized in the literature. Out of

32 substitutions of interest in the PA N-terminal domain, eight were at residues that carried known

biological functions. This included five substitutions in the endonuclease active site (E80V, E80G,

E80K, E119V, K134) [17, 18], and six substitutions in the cRNA promoter binding site (E166D,

R170W, R170M, R170K, T173I, T173A) [15, 56]. We also found multiple residues with known bi-

ological functions among the 110 substitutions of interest in the C-terminal domain. This included

a substitution at a residue required for endonuclease activity (H510R) [25], a substitution at a

residue required for small viral RNA (svRNA) binding (R566W) [57], four substitutions at residues

required for viral genome replication (E410V, E524V, K539M, K539E) [25], and six substitutions

at the PB1-binding site (N412I, N412Y, Q670R, Q670L, F710I, F710Y) [19, 20]. For all residues

that carry a deleterious substitution (RF index < 0.15), residues identified as functional residues

(∆∆G < 0) had a larger relative SASA (solvent accessible surface area) than amino acid positions

that were not (P = 2.6e−8, two-tailed Student’s t-test) (Fig. 3-3B). This indicates that the identified

functional residues were mostly surface exposed, as expected if they mediate possible interactions

with biomolecules. These results demonstrated the feasibility of combining high-throughput fitness

profiling with mutant stability prediction to identify functional sites at single-amino acid resolution.

Identification of residues in PA C-terminal region with functions unrelated to poly-

merase activity

Because the PA C-terminal region’s structure-function relationship remains largely unclear, we

aimed to identify functional residues in this region to provide insight into the role of PA during viral

replication. Ten substitutions with an RF index < 0.15 and a predicted ∆∆G < 0 were individually

reconstructed and analyzed. Their spatial locations were distributed throughout the PA C-terminal

domain (Fig. 3-4A). The effect of these substitutions on the influenza polymerase activity was

tested using an influenza A virus-inducible luciferase reporter assay [58] (Fig. 3-4B). Three substi-

tutions, K281I, K413M, and F681S, completely abolished the influenza polymerase activity. This
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Figure 3-3. Systematic identification of functional residues. (A) Predicted ∆∆G for each point

mutation is plotted against the log10 RF index. A smooth curve (purple) was fitted by loess and plotted.

The horizontal green line represents the RF index cutoff used in this study, RF index = 0.15. (B) The

distributions of relative SASA are shown for residues that carried at least one substitutions of interest and

for residues that did not carry any substitutions of interest. SASA was computed based on the “get area”

function in PyMOL. SASA obtained from the folded structure was normalized with the SASA calculated

from an unfolded Gly-X-Gly tripeptide structure (X = any amino acid) to obtain the relative SASA.
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defect is unlikely to be a protein destabilizing effect since all ten mutants analyzed did not alter

protein expression levels as compared to WT (Fig. 3-4C).

Interestingly, we found six substitutions (D426G, E427V, G429E, E430G, L470H, and R512W)

that retained >10% of the WT influenza polymerase activity (Fig. 3-4B). A rescue experiment

was performed using the influenza A/WSN/33 eight-plasmid reverse genetic system [27]. L470H,

G429E, and R512W, which had ∼10%-60% of the WT polymerase activity, completely abolished

the production of viral particles (Fig. 3-4D). In addition, E430G, which had a WT-level polymerase

activity, displayed a four-log drop in virus titer as compared to WT. In contrast, although D426G

and E427V displayed a polymerase activity that was only ∼10%-20% of WT, each could produce

a much higher amount of infectious virus as compared to other substitutions in this set (one-log to

two-log higher titers as compared to E430G). Our results suggest that the L470H, G429E, E430G,

and R512W substitutions each had a defect that is unrelated to the polymerase activity.

Structural analysis of the single-residue functional profile

When this study was initiated, PA was the only influenza polymerase subunit with structural in-

formation available. The structural information for the other two influenza polymerase subunits,

PB1 and PB2, were largely unknown. Nonetheless, after the completion of this study, the crystal

structure of the complete influenza A virus polymerase complex bound to the viral RNA promoter

has been published [59], which provides an independent reference to validate and interpret our

data.

Our functional profile identified the PA residues that interact with PB1, and the viral RNA pro-

moter. Moreover, six out of the 10 validated functional residues participate in these interaction

interfaces: − D426, E427, and F681 interacted with PB1; L470 interacted with PB2; K281 and

R512 interacted with the viral RNA promoter. Our data also identified functional residues that

were not involved in polymerase complex formation or RNA binding activity. For example, E430

did not interact with either PB1, PB2, or the viral RNA promoter. This is consistent with our data

that E430 is involved in a non-polymerase function. In addition, a putative functional subdomain

48



Figure 3-4. Identification of PA residues that carry non-polymerase functions. (A) Locations of

substitution with an RF index < 0.15 and a predicted ∆∆G < 0 are colored in orange or red respectively.

Mutations that were individually reconstructed and analyzed in this study are labeled and colored in red.

Residues that were not covered in our profiling data are colored in grey. PB1 is colored in green. PDB ID:

2ZNL [20]. (B) The effects of different PA point mutations on influenza polymerase activity were measured

using an influenza A virus-inducible luciferase reporter assay [58]. Error bar represents the standard

deviation of three biological replicates. (C) The expression level of each PA mutant was tested by

immunoblot analysis. (D) TCID50 of the rescued mutant or WT viruses was measured.
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independent of the polymerase-interacting surface was identified in our functional profiling data.

This putative functional subdomain is composed of a series of charged or polar residues − D286,

N412, K413, R454, D529, K559, and K635. Interestingly, this patch of functional residues was ad-

jacent to residue 552, which has been shown to be a host-specific determinant [60]. This indicates

a possible biological significance of the putative functional subdomain we identified. Consistently,

substitutions at positions D286, N412, K413, R454, D529, and K635 were shown to abolish the

polymerase activity in our validation experiment (Fig. 3-4C and 3-5B-C), further confirming the

functional importance of this subdomain in viral replication.

Overall, our profiling data is consistent with the polymerase complex-viral RNA promotor complex

structural data, which provides an independent validation of our approach.

Relationship between functional constraints, structural constraints, and evolution-

ary conservation

Phylogenetic analysis indicates that PA displays a high inter-type diversity, while the intra-type

diversity is limited. The huge divergence among different types of influenza viruses leads us to hy-

pothesize that a significant number of functional residues are type-specific and are non-conserved

across different influenza types. Consequently, we aimed to interrogate the relationship between

functional constraints, structural constraints and evolutionary conservation. In this study, sequence

conservation for each residue was computed using Shannon’s entropy [61]. The higher the en-

tropy, the less conserved a residue is. Here, we divided all profiled residues into three groups: 1)

Functional residues, which had at least one substitution that displayed an RF index < 0.15 and

a predicted ∆∆G < 0. 2) Structural residues, which did not satisfy the condition of functional

residues but had at least one substitution that displayed an RF index < 0.15. 3) Neutral residues,

which contained all other profiled residues that were neither functional nor structural residues (i.e.

all profiled substitutions at a neutral residue displayed an RF index ≥ 0.15).

The entropy calculation was performed for three different influenza type groupings, type A only

(Fig. 3-6A), type A and type B (Fig. 3-6B), and for type A, B and C influenza virus (Fig. 3-
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Figure 3-5. Structural analysis of putative functional residues. (A) The location of a putative functional

subdomain is shown on the structure of the influenza polymerase heterotrimeric complex (PDB:

4WSB) [59]. For PA, residues were colored as according to the scheme presented in Fig. 3-4. A putative

host determinant residue, S552, is colored in magenta. Note, residue 559 carries an arginine [R] instead

of a lysine [K] on the PA of A/WSN/33. (B) The effects of different PA point mutations on influenza

polymerase activity were measured using an influenza A virus-inducible luciferase reporter assay [58].

Error bar represents the standard deviation of three biological replicates. (C) The expression level of each

C-terminal Flag-tagged PA mutant or WT was tested by immunoblot analysis.
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6C). In general, functional residues were more conserved than structural residues (P=0.019 to

0.17, Wilcoxon rank-sum test), and structural residues were more conserved than neutral residues

(P=7.7e−13 to 4.4e−5, Wilcoxon rank-sum test). When the entropy calculation was solely based

on type A sequences, 98% of functional residues, 96% of structural residues, and 81% of neu-

tral residues were highly conserved (entropy < 0.1). When the entropy calculation included the

sequences from both type A and B influenza virus, 56% of functional residues, 43% of struc-

tural residues, and 26% of neutral residues were highly conserved. The fraction of highly con-

served residues further decreased when sequences from type C were included− 23% of structural

residues, 18% of structural residues, and 9% of neutral residues were highly conserved. These

results indicate that a significant number of functional residues are only conserved among type A

influenza virus but not across the other types of influenza virus.

We next examined individual residues validated in this study. Among the 13 validated functional

residues, six (K281, D286, K413, D426, E430, R454) were only conserved within influenza type

A virus but not across type B and C (Fig. 3-6D), and only two (E427, F681) were conserved

across different types of influenza viruses. In fact, a similar conservation pattern was observed

in the residues of the PB1-binding site. Out of 15 residues that interacted with PB1, six (F411,

M595, W619, E623, L639, L640) were conserved only within influenza type A virus, and only one

(L666) was conserved across different types of influenza viruses. These results further confirm

that functional residues may not necessarily be evolutionarily conserved.

Structural basis of type-specific functional residues

We aimed to further investigate the structural basis of type-specific functional residues. The RNA

binding function is required for viral replication and is conserved among type A and B influenza

viruses. In the validation above, substituting lysine [K] to isoleucine [I] at residue 281 completely

abolished the polymerase activity. This highlights the importance of the hydrogen bond formed

between K281 and the RNA phosphate backbone in the influenza A virus (Fig. 3-7A). However,

PA K281 is not conserved between type A and B influenza viruses. All influenza B viruses carry

an alanine [A] at residue 281, which is unable to form a hydrogen bond with the RNA backbone.
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Figure 3-6. Sequence entropy analysis. (A) Distribution of sequence entropy for functional residues. (B)

Distribution of sequence entropy for structural residues. (C) Distribution of sequence entropy for neutral

residues. (D) Sequence entropy for different residues, including the validated functional residues in this

study and residues in the PB1-binding site. Residues in the PB1-binding site are defined as those residues

on the PA C-terminal domain that are in contact with PB1 based on PDB: 2ZNL [20].
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The critical hydrogen bond mediated by K281 in influenza A virus is replaced by the main chain of

G569 in the influenza B virus (Fig. 3-7B). Thus, conserved functions may not necessarily require

conserved functional residues.

Together, these analyses show that while certain functional residues were completely conserved

among different types of influenza viruses, a significant number of residues that mediate critical

viral functions may not be conserved, and suggests that some residues may have acquired func-

tionality in recent evolutionary history.

Figure 3-7. Structure-function relationship of residue 281. (A) The interaction of influenza A PA with

the RNA phosphate backbone located between base 3 and 4 is shown. RNA is colored in green. PA is

colored in cyan. Hydrogen bonds are represented by dotted black lines. Numbering of residue position is

based on A/WSN/33. (B) The interaction of influenza B PA with the RNA phosphate backbone located

between base 3 and 4 is shown. RNA is colored in green. PA is colored in cyan. Hydrogen bonds are

represented by dotted black lines.
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3.4 DISCUSSION

Traditionally, sequence conservation is the common approach for identifying functional residues.

In this study, we coupled two high-throughput techniques, experimental fitness profiling and in

silico mutant stability prediction, to systematically identify functional residues in the influenza A

virus PA protein. This strategy provided a direct measure of essentialness and enabled the par-

titioning of functional constraints versus structural constraints at each residue position. This ap-

proach is independent of any prior knowledge of sequence conservation. Therefore, it is devoid of

the caveats associated with sequence conservation analysis and possesses the power to identify

species-specific functional residues. A number of functional residues identified in this study, includ-

ing eleven that were validated, are not completely conserved across different types of influenza

viruses, suggesting that even functional residues may not be conserved. This disparity between

conservation and function highlights the power of our approach to identify functional residues that

would not be identified by traditional sequence conservation analysis alone.

During natural evolution, continuous accumulation of protein mutations drives speciation and di-

vergence from the common ancestor. The genomic plasticity of an evolving species permits the

acquisition of new function through mutations [62]. Evolution of a new function has been demon-

strated in bacteriophage λ within an experimental timescale [63], and a long-term evolution ex-

periment on Escherichia coli [64]. Therefore, it is not surprising to see species-specific function

even in recently separated species. Based on the sequence comparison of hemagglutinin, it was

estimated that type A and B influenza virus diverged from type C ∼8,000 years ago, whereas type

A influenza virus diverged from type B ∼4,000 years ago [65]. This length of time is sufficient for

the influenza virus to develop a type-specific function as exemplified by type-specific virus-host

interactions in NS1 [8,9]. Furthermore, conservation of protein function does not necessarily sup-

port that sequence conservation exists at the primary sequence level, which is evidenced by the

differences between the nuclear localization signal of influenza A and B NP proteins [66, 67]. In

fact, this study reveals that type-specific functional residues are prevalent in the influenza virus PA

protein. These results not only provide insight into how functional residues evolve through species

diversification, but also highlights the caveats encountered when identifying functional sites from
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conservation-based approaches.

In the past decade, proteins from different medically important viruses, such as influenza, HIV,

and HCV, have been crystallized [68–70]. The approach described in this study systematically

integrates the available structural information with mutation fitness information to examine the

structure-function relationship of a viral protein of interest and to map functional subdomains. Pro-

filing datasets will facilitate functional characterization of the protein of interest, and will promote

drug target discovery and rational drug design. The emergence of drug resistant mutations is a

major challenge for antiviral drug development. Therefore, it is important to target functional sub-

domains that are less tolerable to substitution in order to increase the genetic barrier for developing

drug resistant mutations. Our profiling technique can help locate such functional subdomains that

are suitable for drug development. More importantly, our technique can potentially be adapted to

study any protein, provided the relevant structural information is available.
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Construction of mutant libraries and individual point mutations

The PA plasmid mutant libraries were created by performing error-prone PCR on the PA segment

of the eight-plasmid reverse genetics system of influenza A/WSN/1933 (H1N1) [27]. To generate

the mutated insert, We PCR-amplified regions of the PA gene with error-prone polymerase Mu-

tazyme II (Stratagene, La Jolla, CA) using the following primers:

Library 1 insert: 5’-CAG GTC TCA TCA AAA TGG AAG ATT TTG TGC GA-3’ and 5’-CAG GTC

TCA ATA CTG TTT ATT ACT GTC CAG GC-3’

Library 2 insert: 5’-CAG GTC TCA TCG AGG GAA GAG ATC GCA CAA TA-3’ and 5’-CAG GTC

TCA CTG GTT TTG ATC CTA GCC CTG CT-3’

Library 3 insert: 5’-CAG GTC TCA CCG ACT ACA CTC TCG ATG AAG AA-3’ and 5’-CAG GTC

TCA TTT ACT TCT TTG GAC ATT TGA GA-3’

Library 4 insert: 5’-CAG GTC TCA ACG GCT ACA TTG AGG GCA AGC TT-3’ and 5’-CAG GTC

TCA TAA TTT GGA TTT ATT CCC TTT TC-3’

Library 5 insert: 5’-CAG GTC TCA AAC CCA ATG TTG TTA AAC CAC AC-3’ and 5’-CAG GTC

TCA GCC TTG TTG AAC TCA TTC TGA AT-3’

Library 6 insert: 5’-CAG GTC TCA AAT TGA GGT CGC TTG CAA GTT GG-3’ and 5’-CAG GTC

TCA CCC TCC TTA GTT CTA CAC TTG CT-3’

Library 7 insert: 5’-CAG GTC TCA ATT TCC AAT TAA TTC CAA TGA TA-3’ and 5’-CAG GTC TCA

TTA ATT TTT GAG GTT CCA TTT GT-3’

Library 8 insert: 5’-CAG GTC TCA GGC CTA TGT TCT TGT ATG TGA GG-3’ and 5’-CAG GTC

TCA TGT GGA GAT GCA TAC AAG CTG TT-3’

Library 9 insert: 5’-CAG GTC TCA GAA GGT CTG CAG AAC TTT ATT GG-3’ and 5’-CAG GTC

TCA GGA CAG TAT GGA TAG CAA ATA GT-3’

The corresponding vector for each of the nine mutant library was generated by PCR with KOD

DNA polymerase (EMD Millipore, Billerica, MA) using the following primers:

Library 1 vector: 5’-CAC GTC TCT TTG AAT CAG TAC CTG CTT TCG CT-3’ and 5’-CAC GTC
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TCA GTA TTT GCA ACA CTA CAG GGG CT-3’

Library 2 vector: 5’-CAC GTC TCC TCG ATT ATT TCA AAT CTG TGC TT-3’ and 5’-CAC GTC

TCA CCA GGC TAT TCA CCA TAA GAC AA-3’

Library 3 vector: 5’-CAC GTC TCG TCG GCC TTT GTG GCC ATT TCC TC-3’ and 5’-CAC GTC

TCG TAA ATG CTA GAA TTG AAC CTT TT-3’

Library 4 vector: 5’-CAC GTC TCG CCG TTC GGT TCG AAT CCA TCC AC-3’ and 5’-CAC GTC

TCA ATT ATC TTC TGT CAT GGA AGC AA-3’

Library 5 vector: 5’-CAC GTC TCG GGT TCC TTC CAT CCA AAG AAT GT-3’ and 5’-CAC GTC

TCA AGG CAT GTG AAC TGA CCG ATT CA-3’

Library 6 vector: 5’-CAC GTC TCC AAT TCT GGT TCA TCA CTA TCA TA-3’ and 5’-CAC GTC

TCG AGG GAA GGC GAA AGA CCA ATT TG-3’

Library 7 vector: 5’-CAC GTC TCG AAA TCA TCC ATT GCT GCA CAG GA-3’ and 5’-CAC GTC

TCA TTA AAA TGA AAT GGG GGA TGG AA-3’

Library 8 vector: 5’-CAC GTC TCA GGC CTT GAC ACA TGG CCT ATG GC-3’ and 5’-CAC GTC

TCC CAC AAC TAG AAG GAT TTT CAG CT-3’

Library 9 vector: 5’-CAC GTC TCC CTT CCC AAT GGA ACC TTC CTC CA-3’ and 5’-CAC GTC

TCT GTC CAA AAA GTA CCT TGT TTC TA-3’

The insert was then digested by BsaI (New England Biolabs, Ipswich, MA), whereas the vec-

tor was digested by BsmBI (New England Biolabs). Ligation was performed for each of the nine

libraries with T4 DNA ligase (Life Technologies, Carlsbad, CA) using the corresponding insert

and vector. Transformations were carried out with electrocompetent MegaX DH10B T1R cells

(Life Technologies). For each of the nine mutant libraries, ∼50,000 colonies were scraped and

directly processed for plasmid DNA purification (Qiagen Sciences, Germantown, MD). Point mu-

tations for the validation experiment were constructed using the QuikChange XL Mutagenesis kit

(Stratagene) according to the manufacturer’s instructions.
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Transfections, infections and titering

∼35 million 293T (human embryonic kidney) cells were used for transfection to rescue each vi-

ral mutant library from the plasmid mutant library as described [42, 43, 48]. Transfections were

performed using Lipofectamine 2000 (Life Technologies) according to the manufacturer’s instruc-

tions. Supernatant was replaced with fresh cell growth medium at 24 hours and 48 hours post-

transfection. At 72 hours post-transfection, supernatant containing infectious virus was harvested,

filtered through a 0.45 um MCE filter, and stored at -80oC. The TCID50 was measured on A549

cells (human lung carcinoma cells). To passage each viral mutant library, ∼10 million A549 cells

were used for infection at an MOI of 0.05. At 2 hours post-infection, infected cells were washed

three times with PBS followed by the addition of fresh cell growth medium. Virus was harvested at

24 hrs post-infection.

Sequencing library preparation

Viral RNA was extracted using QIAamp Viral RNA Mini Kit (Qiagen Sciences) and treated with

DNaseI (Life Technologies) to digest any residual plasmid DNA from transfection. The DNA-free

RNA was then reverse transcribed to cDNA using Superscript III reverse transcriptase (Life Tech-

nologies). The plasmid mutant libraries or cDNA from the viral mutant libraries (transfection or

infection) were amplified using the following primers:

Library 1: 5’-CTG ATT CTG GAG GGA AGA TTT TGT GCG A-3’ and 5’-TGC AAA CTG GAG

TTA TTA CTG TCC AGG C-3’

Library 2: 5’-AAT AAT CTG GAG AAG AGA TCG CAC AAT A-3’ and 5’-ATA GCC CTG GAG TGA

TCC TAG CCC TGC T-3’

Library 3: 5’-AAA GGC CTG GAG CAC TCT CGA TGA AGA A-3’ and 5’-TAG CAT CTG GAG CTT

TGG ACA TTT GAG A-3’

Library 4: 5’-ACC GAA CTG GAG CAT TGA GGG CAA GCT T-3’ and 5’-GAA GAT CTG GAG GAT

TTA TTC CCT TTT C-3’

Library 5: 5’-GAA GGA CTG GAG TGT TGT TAA ACC ACA C-3’ and 5’-CAC ATG CTG GAG TGA

ACT CAT TCT GAA T-3’
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Library 6: 5’-ACC AGA CTG GAG GTC GCT TGC AAG TTG G-3’ and 5’-GCC TTC CTG GAG

TAG TTC TAC ACT TGC T-3’

Library 7: 5’-GGA TGA CTG GAG ATT AAT TCC AAT GAT A-3’ and 5’-TCA TTT CTG GAG TTG

AGG TTC CAT TTG T-3’

Library 8: 5’-GTC AAG CTG GAG GTT CTT GTA TGT GAG G-3’ and 5’-CTA GTT CTG GAG ATG

CAT ACA AGC TGT T-3’

Library 9: 5’-ATT GGG CTG GAG TGC AGA ACT TTA TTG G-3’ and 5’-TTT TTG CTG GAG ATG

GAT AGC AAA TAG T-3’

The resulting PCR amplicons were digested with BpmI (New England Biolabs). End repair and 3’

dA-tailing were performed by end repair module and dA-tailing module respectively (New England

BioLabs). dA-tailed amplicons were ligated to sequencing adapters using T4 DNA ligase (Life

Technologies). Adapters were generated by annealing two oligos: 5’-ACA CT CTT TCC CTA CAC

GAC GCT CTT CCG ATC TNN NT-3’ and 5’-/5Phos/NNN AGA TCG GAA GAG CGG TTC AGC

AGG AAT GCC GAG-3’. The location of multiplex ID for distinguishing different samples is under-

lined. The adapter-ligated products were enriched by a final PCR using primers: 5’-AAT GAT ACG

GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC-3’ and 5’-CAA GCA GAA GAC

GGC ATA CGA GAT CGG TCT CGG CAT TCC TGC TGA ACC-3’. Deep sequencing was per-

formed using two lanes of the Illumina MiSeq with 250 bp paired-end reads. Raw sequencing data

have been submitted to the NIH Short Read Archive (SRA) under accession number: BioProject

PRJNA254185.

Sequencing data analysis

Sequencing data were de-multiplexed by the three-nucleotide barcode. A paired-end read was

filtered and removed if the corresponding forward and reverse reads did not match. Each mutation

was called by comparing individual reads to the WT reference sequence. All analysis was per-

formed by custom python scripts, which are available upon request. For the RF index calculation,

only mutants that carried a single mutation were considered. RF index for a given mutation was

computed as follow:
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RF index = (Relative frequency in passaged library)/(Relative frequency in plasmid library), where

Relative frequencymutation i = (Occurrence frequencymutation i)/(Occurrence frequencyWT )

To avoid fitness calculations being obscured by sequencing errors, only the point mutations with

an occurrence frequency of ≥0.03% in the DNA library were included in the downstream analysis

unless otherwise stated.

∆∆G predictions for single amino acid substitutions

PDB: 4M5Q (PA N-terminal endonuclease domain) [34] and PDB: 2ZNL (PA C-terminal domain)

[20] were used for ∆∆G prediction of single amino-acid substitution. ∆∆G prediction was per-

formed by the ddg monomer application in Rosetta software [54]. Parameters from row 16 of

Table I in Kellogg et al. were used [32]. Briefly, a “soft-rep” energy function was used for sidechain

repacking for all residues, in which the Lennard-Jones repulsive interactions at short atomic sep-

arations were damped. After repacking, a restrained quasi-Newton minimization step was per-

formed for both sidechain and backbone using a “hard-rep” energy function, in which the repul-

sive interactions were not damped. All options followed the high resolution protocol flags of the

ddg monomer application. The ∆∆G prediction result along with the RF index for individual sub-

stitutions are shown in Supplemental Dataset 1. Minimal, if any, destabilizing effect is expected if

predicted ∆∆G is < 0.

Luciferase reporter assay for influenza polymerase activity

An influenza A virus-inducible luciferase reporter assay was used to measure the virus polymerase

activity [58]. 293T cells seeded on 48-well plates were transfected with 100 ng each of PB2, PB1,

PA, NP, 50 ng of vLuciferase reporter plasmid and 5 ng of PGK-renilla-luciferase using Lipofec-

tamine 2000 (Life Technologies) according to the manufacturer’s instructions. Luciferase activity

measurement was performed at 24 hours post-transfection using Promega Dual-Luciferase Assay

Kit according to the manufacturers instructions (Promega, Madison, WI). Relative luciferase activ-

ity was calculated by normalizing the firefly-luciferase activities to their internal renilla luciferase
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controls.

Protein expression analysis

293T cells seeded on a 12-well plate were transfected with pHW2000-PA plasmid using Lipofec-

tamine 2000 (Life Technologies) according to the manufacturer’s instructions. At 24 hours post-

transfection, cells were lysed and heated with SDS loading buffer for five minutes. Lysates were

loaded onto a 10% polyacrylamide gel and subjected to immunoblot analysis. Rabbit anti-PA

antibody (catalog number: GTX125932, GeneTex, Irvine, CA), mouse anti-Flag antibody (Sigma),

sheep horseradish peroxidase-conjugated anti-mouse Immunoglobulin G (GE Healthcare, Pasadena,

CA), and donkey horseradish peroxidase-conjugated anti-rabbit Immunoglobulin G (GE Health-

care) were used for protein detection.

Real-time reverse-transcription PCR (RT-qPCR)

Viral RNA was extracted using QIAamp Viral RNA Mini Kit (Qiagen Sciences) and treated with

DNaseI (Life Technologies) to digest any residual plasmid DNA from transfection. The DNA-free

RNA was then reverse transcribed to cDNA using Superscript III reverse transcriptase (Life Tech-

nologies). The cDNA was subjected to qPCR analysis. qPCR was performed on a DNA Engine

OPTICON 2 system (Bio-Rad, Irvine, CA) using SYBR Green (Life Technologies) with primers:

5’-GAC GAT GCA ACG GCT GGT CTG-3’ and 5’-ACC ATT GTT CCA AC TCC TTT-3’.

Sequence entropy and phylogenetic analysis

PA protein sequences of type A and B influenza virus and P3 protein sequences of type C influenza

virus were retrieved from the Influenza Research Database [71]. A total of 3271 PA protein se-

quences from type A influenza virus, 562 PA protein sequences from type B influenza virus, and 4

P3 protein sequences from type C influenza virus were obtained using the following parameters:

human host, all geographical locations, complete segment only, include pH1N1, remove duplicate

sequences.

Due the large number of sequences available, sequence entropy was computed using a boot-
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strapping approach. Briefly, 100 sequences were sampled with replacement from each of the

indicated types of influenza virus. Multiple sequence alignment was performed on the sampled

sequences along with the A/WSN/33 PA sequence using MUSCLE (version 3.8.31) [72]. Shan-

non’s entropy for each residue position was calculated by:

Entropy = -
∑M

i=1Pilog2(Pi) [61], where Pi is the fraction of residues of amino acid type i, and

M is the number of amino acid types (i.e. 20).

This whole procedure (starting from the sampling process) was performed 100 times. For each

residue position, the entropy was computed as the average value in this 100-time bootstrap.
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CHAPTER 4

HIGH-THROUGHPUT IDENTIFICATION OF LOSS-OF-FUNCTION MUTATIONS FOR

ANTI-INTERFERON ACTIVITY IN INFLUENZA A VIRUS NS SEGMENT
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4.1 ABSTRACT

Viral proteins often display several functions which require multiple assays to dissect their ge-

netic basis. Here, we describe a systematic approach to screen for loss-of-function mutations that

confer fitness disadvantage in a specified growth condition. Our methodology is achieved by ge-

netically monitoring a mutant library under two growth conditions, with and without interferon, by

deep sequencing. We employed a molecular tagging technique to distinguish true mutations from

sequencing error. This approach enabled us to identify mutations that were negatively selected

against in addition to those that were positively selected for. Using this technique, we identified

loss-of-function mutations on the influenza A virus NS segment that were sensitive to type I in-

terferon in a high-throughput fashion. Mechanistic characterization further showed that a single

substitution, D92Y, resulted in the inability of NS to inhibit RIG-I ubiquitination. The approach

described in this study can be applied under any specified condition for any virus that can be

genetically manipulated.
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4.2 INTRODUCTION

Type I interferon (IFN) is a major component in the host immune system against influenza A virus

infection [1]. Briefly, upon influenza infection, signal transduction via the mitochondrial antiviral-

signaling protein (MAVS) is initiated upon RIG-I ubiquitination [2–4]. MAVS signaling leads to

phosphorylation of interferon regulatory factor 3 (IRF3) by TANK-binding kinase 1 (TBK1) or IκB

kinase-ε (IKKε) [5]. Subsequently, it results in the activation of IFN expression [6–8]. IFN acts

as both a paracrine and an autocrine signaling molecule. Binding of IFN to type I interferon re-

ceptors (IFNARs) activates the classical JAK-STAT pathway [9]. It then induces the expression of

hundreds of interferon inducible genes (ISGs), which possess varied antiviral functions [1]. The

IFN antiviral signal can be further amplified by a positive-feedback mechanism [10]. Influenza A

virus non-structural protein (NS1), one of the two protein products encoded by segment 8 (NS

segment), has acquired multiple strategies to counteract the IFN system [11]. It has been re-

ported that NS1 suppresses the IFN system during viral replication in multiple ways, including the

inhibition of IRF3 activation [12], the JNK/AP-1 pathway [13], NF-κB signaling [14], PKR [15], and

OAS/RNase L [16].

To study virus-host interactions, various high-throughput approaches, such as siRNA screen-

ing [17–19], yeast two-hybrid screening [20], and mass spectrometry [21], have been employed to

identify relevant host genetic elements. However, there is a lack of a high-throughput platform for

the viral counterparts of these interactions. Identification of viral genetic elements involved in virus-

host interaction often requires the construction and analysis of individual mutants. This process

has a very low-throughput that limits the number of mutants to be tested. Insertional mutagenesis

does permit a higher throughput for identifying critical viral genetic elements and has been applied

to hepatitis C virus, venezuelan equine encephalitis virus, and influenza A virus [22–24]. Nonethe-

less, the resolution of this approach is limited to the protein subdomain level and does not allow

the identification of critical residues.

Our previous study has demonstrated the feasibility of using a point mutation library to screen

for compensatory mutations at a single nucleotide resolution [48]. Compensatory mutations that
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conferred a fitness advantage increased in relative occurrence frequency throughout viral pas-

saging. Consequently, these mutations could be easily identified using 454 pyrosequencing as

previously described [48]. Although this previous approach can rapidly identify gain-of-function

mutations that provide fitness benefits, the method lacks the power to distinguish between neutral

and deleterious mutations. The majority of point mutations in a mutant library exhibit an occurrence

frequency of <0.1%, which is lower than the error rate of next-generation sequencing (∼0.1-1%).

True mutations can not be distinguished from sequencing error unless there is positive enrich-

ment. As a result, any loss-of-function mutations that confer a fitness disadvantage cannot be

identified. For example, a mutation that has a 10-fold decrease in occurrence frequency during

passaging (0.01% → 0.001%) would be interpreted as a neutral phenotype (∼0.1% → ∼0.1%)

in the next-generation-sequencing data due to the sequencing error rate. This limitation poses a

unique challenge in utilizing next-generation sequencing technology to screen for loss-of-function

mutations that carry a fitness defect in large mutant pools. However, loss-of-function mutations

often provide valuable information to characterize genetic elements involved in virus-host inter-

action. It is therefore important to establish a platform to identify loss-of-function mutations that

undergo negative selection in a high-throughput manner.

In this study, we describe an approach that incorporates a sensitive deep sequencing technique

to systematically identify loss-of-function mutations. It allows the identification of mutations that

are negatively selected against in addition to those that are positively selected for. We provide a

proof-of-concept of our approach by identifying residues in the influenza virus NS segment that

are critical for anti-IFN function. This is achieved by monitoring a point mutation library of the

NS segment in two growth conditions − with and without IFN treatment. By utilizing a tag-based

sequencing strategy, we were able to distinguish true mutations from sequencing error. The rela-

tive interferon-sensitivities for 1021 NS missense mutations were then estimated by comparing the

mutant profiles between both conditions. Experimental validation led to the identification of a novel

interferon-sensitive substitution, NS1 D92Y. Further characterization suggests that NS1 D92Y has

a defect in blocking RIG-I ubiquitination, which is a critical step in the interferon signaling pathway.

To our knowledge, this is the first example of systematically identifying loss-of-function mutations

involved in a virus-host interaction. This approach can potentially be adapted to any specified
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condition for any virus that can be genetically manipulated.
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4.3 RESULTS

Experimental design of the high-throughput screening

The underlying rationale of the high-throughput screening for loss-of-function mutations is that

substituting a residue phenotypically critical in one particular growth condition would display a fit-

ness deviation compared to the control environment (Fig. 4-1A). We propose that a mutant library

can be employed for this purpose to identify such substitutions. The fitness deviation of a par-

ticular substitution would be reflected by the difference of its occurrence frequency between two

conditions. This establishes the conceptual foundation for the systematic identification of loss-of-

function mutations that are selected against in a specified growth condition but not in the control

growth condition.

In this study, we aimed to provide a proof-of-concept by identifying interferon-sensitive mutations

on the influenza A virus NS segment. We constructed a plasmid mutant library of NS segment

of influenza A/WSN/1933 using error-prone PCR. A mutation rate of one to two point mutations

was achieved to minimize any genetic interactions that could potentially confound the results. As

a result, on average, each point mutation had an occurrence frequency of ∼0.04-0.08% in the mu-

tant library. This mutation rate was significantly higher than the natural mutation rate of influenza,

which has been shown to be in the order of 10−6 mutation per site per infectious cycle [26], but was

lower than the sequencing error rate in next-generation sequencing (∼0.1-1%). The plasmid mu-

tant library consisted of a collection of >200,000 clones, allowing sufficient coverage of individual

point mutations. The viral mutant library was rescued in 293T cells using the eight-plasmid system

as described [27], and then passaged in two different growth conditions, with or without IFN. The

viral mutant library was passaged for two 24-hour rounds in A549 cells. Consequently, two viral

populations (passaged with or without IFN) derived from the same library were deep sequenced

to quantify the occurrence frequency of individual point mutations. During each step in both viral

rescue and passaging, >35 million cells were employed to avoid any bottleneck effect that would

randomly drift the occurrence frequency of each point mutation in the mutant pool. In addition, a

low MOI (MOI = 0.05) was used to minimize transcomplementation. As a result, the relative fitness

of each point mutation would be reflected from its occurrence frequency.

76



Next-generation sequencing error poses a unique challenge to identify loss-of-function mutations

that confer a fitness disadvantage. The majority of point mutations in our mutant library has an

occurrence frequency below the Illumina sequencing error rate (∼0.1-1%). During selection, a

given point mutation can be enriched, remain unchanged or diminished in occurrence frequency

depending on its relative fitness under the specified growth condition. However, only mutations

that are significantly enriched would be identified by conventional deep sequencing techniques

due to the high sequencing error rate. Deleterious or phenotypically neutral mutations, which have

a low occurrence in the population, are not distinguishable from each other. Here, a nucleotide

tagging strategy was adapted to distinguish true mutations from sequencing errors [21]. Briefly,

a two-step PCR approach was employed in the DNA sequencing library preparation for sequenc-

ing error correction. The first PCR assigned a 12 “N” nucleotide tag to individual molecules. Six

amplicons, each with ∼140 bp were generated in the first PCR to cover the NS segment (from

nt 33 to 826). The input amount for the second PCR was well-controlled such that each tagged

template would be sequenced ∼10 times. The complexity of the tag population (412 ≈ 17 mil-

lion) was >100-fold higher than the number of tagged template being sequenced (∼0.16 million

per amplicon). Therefore, sequencing reads generated from the same template would share a

unique tag. True mutations can be distinguished from sequencing errors by clustering reads that

share the same tag (read cluster). True mutations will appear in all reads within a read cluster.

In contrast, sequencing errors only appear in a small fraction of the reads within a read cluster.

Ultimately, an “error-free” read will be generated from each read cluster. This approach allowed

us to identify loss-of-function mutations that decreased in frequency during viral passage without

being obscured by sequencing errors.

Interferon-sensitivity profiling result

Each read cluster had an average size of ∼10 reads in the deep sequencing data. True mutations

were called only if the mutation occurred in >90% of the reads within a read cluster. Further-

more, read cluster with <3 reads were removed to increase the confidence level in distinguishing

true mutations from sequencing errors. An even coverage across the NS segment, ranging from
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Figure 4-1. Single-nucleotide resolution interferon sensitivity profiling of NS segment. (A) The viral

mutant library (middle panel) was passaged in two different growth conditions − with and without IFN.

Each circle represents an individual viral particle. Different colors represent mutants with different

genotypes. In this depiction, the red virus genotype represents a mutant with a defect in anti-IFN function.

Here, red virus has a normal replication phenotype without IFN (right panel), but a deleterious phenotype

in the presence of IFN (left panel). (B) Histograms show the distribution of the occurrence frequency of

individual point mutations within the mutant library after passage with and without IFN. Sequencing error

rate margin (0.1-1%) is shaded in red. Frequency below the sequencing error rate (<0.1%) is shaded in

grey. Percentages of point mutations within different ranges of occurrence frequency are shown.
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∼180000 to ∼260000 “error-free” reads, was obtained. This coverage enabled a mutations with

an occurrence frequency of the order 10−5 to be detected.

As expected, none of the point mutations in the passaged mutant library had an occurrence fre-

quency above the sequencing error margin (>1%), whereas 22-24% fell within the sequencing

error margin (0.1-1%), and 76-78% were below the sequencing error margin (<0.1%) (Fig. 4-

1B). This occurrence frequency distribution showed that none of the point mutations conferred

significant replication fitness advantage. It also suggested that occurrence frequency of all point

mutations within the mutant pool would not be accurately estimated if sequencing error were not

corrected. It fully confirmed the necessity to distinguish true mutations from sequencing error using

the molecular tag approach. This strategy increased the sensitivity of next-generation sequencing

such that the occurrence frequency of individual mutations within the mutant library could be ac-

curately determined.

The occurrence frequency of individual mutations exhibited a Pearson correlation of 0.91 between

the two passaging conditions. This indicated that most mutations on the NS segment do not exhibit

a relative fitness deviation dependent on IFN. The IFN-sensitivities of individual mutations can be

computed by the ratio of their occurrence frequency between the two conditions.

IFN-sensitivity = (occurrence frequencywithout IFN )/(occurrence frequencywith IFN )

We aimed to identify loss-of-function mutations that disrupt the anti-IFN function. These loss-

of-function mutations would be negatively selected against under IFN treatment but not under

the control growth condition. Therefore, they would exhibit a higher relative fitness cost (lower

occurrence frequency) in the presence of IFN as compared to the control growth condition. Con-

sequently, loss-of-function mutations would be associated with a high IFN-sensitivity. Our data

analysis only included mutations that were sufficiently abundant in the control condition, which

allowed IFN-sensitivity to be computed with a higher statistical confidence. A cutoff was set at

>0.02%, which was reached by ∼60% of all possible point mutations. Only mutations that satis-

fied the confidence cutoff were included in our analysis unless otherwise stated.
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Although NS1 is important for counteracting IFN anti-viral effects, it is nonessential for viral repli-

cation [29]. As a result, defective NS1 would confer a higher IFN-sensitivity than its functionally

intact counterpart. It is expected that mean IFN-sensitivity would be the lowest for silent muta-

tions, followed by missense mutations, and the greatest for nonsense mutations. Indeed, the IFN-

sensitivities of nonsense mutations (mean IFN-sensitivity = 1.53) were significantly greater than

missense mutations (mean IFN-sensitivity = 1.13) (P = 2e−6, Wilcoxon rank-sum test), whereas

the IFN-sensitivities of missense mutations were significantly greater than silent mutations (mean

IFN-sensitivity = 0.97) (P = 1e−9, Wilcoxon rank-sum test). These results support the validity of

the data.

IFN-sensitivity was computed for each of the 1021 missense mutations that satisfied the confi-

dence cutoff (Fig. 4-2). A total of 21 missense mutations displayed an IFN-sensitivity greater

than three standard deviations above the mean (IFN-sensitivity > 2.46). Included in this set of

IFN-sensitive mutations was an arginine [R] to leucine [L] substitution at NS1 residue 38. R38

has been reported to be absolutely required for NS1 RNA-binding activity [30,31], which facilitates

the masking of viral RNA to inhibit IFN activation during viral infection [12–14]. In fact, the mean

IFN-sensitivity of all missense mutations at residues critical for RNA-binding activity, P31, D34,

R35, R38, K41, G45, R46 and T49, (mean IFN-sensitivity = 1.32) was significantly greater than

that of all missense mutations throughout the entire NS segment (P = 5e−4, Wilcoxon rank-sum

test). This result confirms the reliability of our dataset.

Validation of individual interferon-sensitive mutations identified from the screen

Next, we aim to identify novel loss-of-function mutations that disrupt the anti-IFN function of NS1.

We randomly selected 9 of the 21 missense mutations in the NS segment that had an IFN-

sensitivity greater than three standard deviation above the mean (Fig. 4-3). Individual mutants

were constructed and analyzed. The viral copy numbers were compared using qPCR at 24 hours

after replication in A549 (MOI of 0.05) with (30 U/ml) and without IFN-α. Six of the nine mutants

displayed a >2-fold higher IFN-sensitivity than WT in this assay. Three of the six missense mu-
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Figure 4-2. IFN-sensitivity profiling. The coding region of NS1 and NEP is depicted as a green

rectangle at the top of the figure. The IFN-sensitivity for individual missense mutations is plotted versus

nucleotide positions. Only mutations with an occurrence frequency >0.02% in the control condition are

shown. The red dotted line represents three standard deviations above the mean. Labels indicate the

corresponding amino acid substitution. Subsitutions in NEP are underlined. Substitutions in blue label

represent mutations that were individually constructed and analyzed in this study.
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Figure 4-3. Identification of novel IFN-sensitive mutation. The relative viral replication inhibition by

IFN-α was measured by RNA copy number using qPCR. Error bars represent the standard error of the

mean (SEM) of three independent experiments. The grey dotted line represents the WT level.

Substitutions in NEP are showed in parentheses. Mutants with a p-value <0.05 are indicated with an

asterisk. One-tailed t-test was performed to compute the p-value.

82



tations resulted in substitutions in the NS1 RNA-binding domain (D24Y, Q40K and A60G), one in

each of the NS1 effector domain (D92Y), the NEP (L79F), and the overlapping reading frame of

NS1 effect domain (W187C) with NEP (G30V). As a control, three missense mutations on NS1

(A86V, H101Y and K108R) that had an IFN-sensitivity ranging from 0.85 to 0.98 in the profiling

data were included in this validation assay. None of them displayed any phenotypic difference

from WT in this assay. The validation result verifies the design of our high-throughput screening

approach. NS1 D92Y showed the strongest IFN-sensitivity phenotype (12-fold higher than WT, P

= 10−5) among the validated mutants and was selected for further characterization.

Mechanistic characterization of D92Y reveals its role in IFN-signaling pathway

Residue 92 on NS1 has been reported as a tumor necrosis factor-α (TNF-α) resistance determi-

nant [33]. Human influenza viruses carry a conserved aspartic acid at this position whereas avian

influenza viruses carry a glutamic acid. The D92E NS1 substitution has been shown to contribute

to TNF-α resistance while exerting no effect on IFN-sensitivity in human influenza virus [33, 34].

On the other hand, our data suggests that substituting residue 92 to tyrosine significantly increases

IFN-sensitivity (Fig. 4-3). We first performed a structural analysis of this mutant by Rosetta soft-

ware using parameters from row 16 of Table I in Kellogg et al. [32]. The energy minimization

simulation predicts that D92Y disrupted a hydrophobic pocket on NS1 due to the volume increase

from aspartic acid to tyrosine (Fig. 4-4A). We then performed a cycloheximide blocking experiment

to examine the protein stability effect of D92Y on NS1. The rates of degradation of D92Y NS1 and

WT NS1 did not display a significant difference (Fig. 4-4B), suggesting that D92Y did not affect

NS1 protein stability. As a result, residue 92 may be involved in maintaining the conformation of the

hydrophobic pocket critical for anti-IFN function. Furthermore, our sequencing data also showed

that D92V, D92N, D92G, and D92A had no effect (Fig. 4-4C). Structural modeling demonstrated

that these substitutions did not significantly alter the conformation of the hydrophobic pocket (Fig.

4-4A). These results are consistent with the importance of maintaining the hydrophobic pocket for

counteracting IFN antiviral effects.

NS1 effector domain has been shown to mediate the inhibition of RIG-I ubiquitination [12], and
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Figure 4-4. Structural and stability effect of substitutions at NS1 residue 92. (A) The structures for

different substitutions at residue 92 are displayed. The rotamers for different substitutions were generated

by free energy minimization simulation using Rosetta software [32]. Only the D92Y substitution reduced

the pocket space. (B) Transiently transfected 293T cells were treated with 40 ug/ml cyclohexamide. The

NS1 protein level at different time points were quantified by densitometry to examine the rate of protein

degradation. (C) IFN-sensitivities for the profiled missense substitutions at D92 are shown.
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hence the inhibition of IFN expression and potentially the positive-feedback mechanism [3, 4, 36].

We hypothesized that D92Y abolished the suppression of RIG-I ubiquitination. We first looked at

the downstream effectors of RIG-I ubiquitination, NF-κB and IFN-β [2, 3, 36], using a luciferase

reporter assay. Indeed, compared to WT, D92Y lost the ability to suppress NF-κB promoter ac-

tivation (Fig. 4-5A) and IFN-β promoter activation (Fig. 4-5B) induced by Sendai virus (SeV).

These results are consistent with our hypothesis that suppression of RIG-I ubiquitination can be

abolished by D92Y. Consequently, we performed a co-immunoprecipitation assay to test the effect

of D92Y on the inhibition of SeV-induced RIG-I ubiquitination (Fig. 4-5C). HA-tagged ubiquitin and

Flag-tagged RIG-I were cotransfected in the presence of NS1 WT or D92Y. Flag-tagged RIG-I was

immmunoprecipitated 18 hours after SeV infection. Ubiquitination of RIG-I was then detected by

HA-antibody. Indeed, ubiquitination of RIG-I was inhibited by NS1 WT but not NS1 D92Y. Taken

together, our results indicate that residue 92 is critical for the inhibition of RIG-I ubiquitination,

an important step for IFN signaling [3], likely by maintaining the conformation of the hydrophobic

pocket.

Figure 4-5. Characterization of the NS1 D92Y substitution. (A) SeV mediated NK-κB promoter

activities were measured by luciferase assay. (B) SeV mediated IFN-β promoter activities were measured

by luciferase assay. (A-B) Mean value is plotted. Error bars represent the standard error of the mean

(SEM) of three independent experiments. (C) SeV mediated ubiquitination of RIG-I was measured by

immunoprecipitation and western blot. All differences between D92Y and WT were significant (p-value

<0.05) as indicated with an asterisk. Two-tailed t-test was performed to compute the p-value.
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4.4 DISCUSSION

Identification of loss-of-function viral mutation is critical for understanding virus-host interactions.

They often represent essential mechanisms for viral replication under a specified growth condi-

tion. Mechanistic interrogation of identified mutations offers further structure-function insight. The

impact can be translated to vaccine and antiviral drug development. For example, temperature-

sensitive mutations and anti-interferon actions provide the foundation for influenza vaccine devel-

opment [37,38]. In addition, the cell entry mechanism of influenza virus has been suggested as a

potent antiviral target [39–41]. This and many other examples highlight the medical importance of

characterization of viral genetic elements. However, there is a lack of high-throughput platform to

screen for these functional elements.

In vitro culture system and reverse genetics offer a powerful tool to study virus-host interaction

in laboratory settings. They are well-established for several medically important viruses, such as

HCV [42–44], HIV [45], and influenza virus [27, 46]. Functional characterization of viral genetic

elements often relies on constructing and analyzing individual mutants with multiple assays. The

low-throughput of this process limits the number of mutants to be analyzed. In this study, we

overcame this challenge by coupling saturation mutagenesis with a sensitive deep sequencing

technique. This allowed us to monitor negative selection in addition to positive selection. Func-

tionality of each mutation was inferred by comparing the mutational profile of a point mutation

library under different growth conditions. This approach is rapid, unbiased and comprehensive.

We provided a proof-of-concept for this differential profiling technique by identifying IFN-sensitive

mutations in the influenza A NS segment.

To our knowledge, this is the first example of utilizing a high-throughput genetic platform at single-

nucleotide resolution to identify loss-of-function mutations under a specific growth condition. Our

previous study described a similar technique, which utilized deep sequencing to monitor a mutant

library to identify compensatory mutations [48]. However, the approach described in our previ-

ous study was only capable of identifying mutations that were enriched during selection. This is

because without significant enrichment during viral passaging, occurrence frequencies of most
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point mutations, if not all, would remain below the sequencing error rate. The phenotypic effects

of non-enriched point mutations could not be inferred as it was impossible to partition them from

sequencing errors. In this study, an error-correction technique was implemented to distinguish

true mutations from sequencing errors. This critical step allowed the monitoring of individual point

mutations even if their occurrence frequency was below the sequencing error rate. Therefore, we

are now capable of identifying loss-of-function mutations that decreased in frequency during the

IFN treatment.

We anticipate that the power of the screening technique described in this study will increase as

sequencing technology advances. Increasing sequencing depth will minimize the sampling error

of individual point mutations, hence increase the accuracy in computing the occurrence frequency

of individual point mutations and improve the precision of estimating their fitness deviations be-

tween different growth conditions. Additionally, a longer read length will enable the examination

of different mutations existing in the same clone, which will allow the study of genetic interactions

among point mutations.

A recent study has suggested that besides NS segment, other segments of the influenza A virus

also possessed the ability to counteract IFN activity [13]. Although we only applied the screening

technique to NS segment, it is worthwhile to extend the analysis to the whole genome or other

viral genetic backgrounds in the future. Moreover, this approach is not limited to interferon. It

can also be employed to identify temperature sensitive mutations as well as viral genetic elements

involved in virus-host interaction under a specific cellular or immune response, such as apoptosis,

autophagy, ER stress, NK cells, macrophages, etc. In summary, the genetic approach presented

in this study has a wide range of potential applications to identify residues involved in viral-host

interactions. More importantly, our methodology can be applied to probe any virus that can be

genetically manipulated in the laboratory.
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4.5 MATERIALS AND METHODS

Viral mutant library and point mutations

The NS segment point mutation library was constructed as previously described [48] using the

eight plasmid reverse genetic system of influenza A/WSN/1933 (H1N1) [27]. Briefly, the NS seg-

ment was PCR amplified using the error-prone polymerase Mutazyme II (Stratagene, La Jolla,

CA) and cloned into a BsmBI-digested parental vector pHW2000. Ligations were carried out with

high concentration T4 ligase (Life Technologies, Carlsbad, CA). Transformations were carried out

with electrocompetent MegaX DH10B T1R cells (Life Technologies). Sequencing individual clones

showed that the plasmid mutant library had an average of one to two point mutations per clone.

The plasmid mutant library was purified from a collection of >200,000 clones using the QIAGEN

plasmid maxi kit (Qiagen Sciences, Germantown, MD). Point mutations for experimental validation

were constructed using the QuikChange XL Mutagenesis kit (Stratagene) according to manufac-

turer’s instructions.

Transfections, infections, and titering

C227 cells, a dominant negative IRF-3 stably expressing cell line derived from human embryonic

kidney (293T) cells [48], were transfected with the NS mutant library plasmid (for screening) or NS

point mutation plasmid (for validation) plus 7 other wildtype plasmids using Lipofectamine 2000

(Life Technologies). Supernatant was replaced with fresh cell growth medium at 24 hrs and 48

hrs post-transfection. At 72 hrs post-transfection, supernatant containing infectious virus was har-

vested, filtered through a 0.45 um MCE filter, and stored at -80oC. The TCID50 was measured on

A549 cells (human lung carcinoma cells).

Virus from C227 cells transfection was used to infect A549 cells at an MOI of 0.05. Infected

cells were washed three times with PBS followed by the addition of fresh cell growth medium at 2

hrs post-infection. Virus was harvested at 24 hrs post-infection. For infection under IFN treatment,

30 U/ml of IFN-α (Fitzgerald, Acton, MA) was added 18 hrs pre-infection and the concentration

was maintained throughout the course of infection. The viral mutant library was passaged for two

rounds in A549 cells before subjected to deep sequencing. Due to the huge complexity of the mu-
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tant library, >35 million cells were used at both viral rescue and passaging to avoid any bottleneck

effect.

Sequencing library preparation

The viral RNA was extracted using QIAmp viral RNA kit (Qiagen Sciences) and reverse-transcribed

to cDNA using SuperScript III reverse transcriptase (Life Technologies). A two-step PCR was

performed for sequencing library preparation. In the first PCR, the NS segment was divided into

six amplicons generated using the primers:

Amplicon 1: 5’-CTA CAC GAC GCT CTT CCG ATC TNN NNN NTA ATG GAT CCA AAC ACT GTG

T-3’ and 5’-TGC TGA ACC GCT CTT CCG ATC TNN NNN NCC AGC ACG GGT GGC TGT-3’

Amplicon 2: 5’-CTA CAC GAC GCT CTT CCG ATC TNN NNN NTC TTG GTC TGG ACA TCG AA-

3’ and 5’-TGC TGA ACC GCT CTT CCG ATC TNN NNN NTT TCT GCT TGG GCA TGA GC-3’

Amplicon 3: 5’-CTA CAC GAC GCT CTT CCG ATC TNN NNN NAT GTC AAG GCA CTG GTT

CAT-3’ and 5’-TGC TGA ACC GCT CTT CCG ATC TNN NNN NCG CCA ACA ATT GTC CCC T-3’

Amplicon 4: 5’-CTA CAC GAC GCT CTT CCG ATC TNN NNN NTA AGG GCC TTC ACC GAA

G-3’ and 5’-TGC TGA ACC GCT CTT CCG ATC TNN NNN NTC ATT ACT GCT TCT CCA AGC-3’

Amplicon 5: 5’-CTA CAC GAC GCT CTT CCG ATC TNN NNN NAA CAC AGT TCG AGT CTC

TGA-3’ and 5’-TGC TGA ACC GCT CTT CCG ATC TNN NNN NCT ATT CTC TGT TAT CTT CAG

TC-3’

Amplicon 6: 5’-CTA CAC GAC GCT CTT CCG ATC TNN NNN NTG GCG GGA ACA ATT AGG

TC-3’ and 5’-TGC TGA ACC GCT CTT CCG ATC TNN NNN NAT AAG CTG AAA CGA GAA AGT

T-3’

The six amplicon products were then mixed at an equal molar ratio and subjected to the second

PCR, which generated multiple copies of each tagged template using the primers: 5’-AAT GAT

ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG-3’ and 5’-CAA

GCA GAA GAC GGC ATA CGA GAT CGG TCT CGG CAT TCC TGC TGA ACC GCT CTT CCG-3’.

For individual sample population, ∼1 million copies of mixed amplicon products were provided as

input for the second PCR. The product from the second PCR was then deep sequenced using

Illumina HiSeq 2000.
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Data Analysis

Sequencing reads were mapped by BWA with a maximum of six mismatches and no gap [55]. Am-

plicons with the same tag were grouped into a read cluster and further conflated into an “error-free”

read as described in [21]. True mutations were called only if the mutation occurred in >90% of the

reads within a read cluster. Read clusters with less than three reads were removed. All analyses

were performed with custom python scripts that are available upon request. IFN-sensitivity for each

point mutation was computed by (occurrence frequencywithout IFN )/(occurrence frequencywith IFN ).

Real-time reverse-transcription PCR (RT-qPCR)

Supernatant from infected cells was processed with the QIAmp viral RNA kit (Qiagen Sciences).

Viral RNA was reverse transcribed with Superscript III (Invitrogen) using random hexamers. qPCR

was performed on a DNA Engine OPTICON 2 system (Bio-Rad, Irvine, CA) using SYBR Green

(Life Technologies) with primers: 5’-GAC GAT GCA ACG GCT GGT CTG-3’ and 5’-ACC ATT GTT

CCA AC TCC TTT-3’.

Immunoprecipitation and Immunoblot

293T cells seeded on a 6 well-plate were transfected using Lipofectamine 2000 (Life Technolo-

gies). At 24 hours post transfection, cells were infected with Sendai virus (100 U/ml). At 18 hours

post infection, cells were lyzed with lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1.0% Nonidet

P-40, 10% glycerol, 10 g/ml aprotinin, 10 g/ml pepstatin, 0.5 mM phenylmethylsulfonyl fluoride).

Lysates were incubated with EZview red anti-Flag M2 affinity gel (Sigma, St. Louis, MO) for 6

hours. Beads were washed 3 times with lysis buffer. Proteins were eluted with SDS loading buffer

(50 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 1% β-mercaptoethanol, 12.5 mM EDTA, 0.02%

bromophenol blue) and heated at 90 degree celsius for 5 mins. Mouse anti-Flag antibody (Sigma),

mouse anti-β actin antibody (Sigma), mouse anti-HA antibody (Sigma), rabbit anti-NS1 antibody

(GeneTex, Irvine, CA), sheep horseradish peroxidase-conjugated anti-mouse Immunoglobulin G

(GE Healthcare, Pasadena, CA), and donkey horseradish peroxidase-conjugated anti-rabbit Im-

munoglobulin G (GE Healthcare) were used for protein detection.
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Protein stability

293T cells were transfected with flag-tagged NS1. At 24 hrs post transfection, 40 ug/ml cyclohex-

amide was added. Transfected cells were harvested at indicated time points. Relative amount of

cellular flag-tagged NS1 was quantified by densitometry.

Luciferase Assay

293T cells seeded on 48 well plates were transfected with 50 ng of firefly-luciferase reporter plas-

mid, 5 ng of PGK renilla-luciferase, and other indicated expression plasmids using Lipofectamine

2000 (Life Technologies). SeV (100 U/mL) was added at 24 hrs post-transfection and luciferase

activity assay was performed at 48 hrs post-transfection using Promega Dual-Luciferase Assay

Kit according to manufactuerer’s instructions (Promega, Madison, WI). For over-expression medi-

ated promoter activity assay, luciferase activity assay was performed at 24 hrs post-transfection.

Adjusted luciferase activity was calculated by normalizing the firefly-luciferase activities to their in-

ternal renilla luciferase controls. Fold induction was calculated by dividing the adjusted luciferase

activities in the treated samples by that of the untreated samples.
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CHAPTER 5

HIV-1 QUASISPECIES DELINEATION BY TAG LINKAGE DEEP SEQUENCING
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5.1 ABSTRACT

Trade-offs between throughput, read length, and error rates in high-throughput sequencing limit

certain applications such as monitoring viral quasispecies. Here, we describe a molecular-based

tag linkage method that allows assemblage of short sequence reads into long DNA fragments.

It enables haplotype phasing with high accuracy and sensitivity to interrogate individual viral se-

quences in a quasispecies. This approach is demonstrated to deduce ∼2000 unique 1.3 kb viral

sequences from HIV-1 quasispecies in vivo and after passaging ex vivo with a detection limit of

∼0.005% to ∼0.001%. Reproducibility of the method is validated quantitatively and qualitatively

by a technical replicate. This approach can improve monitoring of the genetic architecture and

evolution dynamics in any quasispecies population.
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5.2 INTRODUCTION

Many viruses have such high replication and mutation rates that they exist as a quasispecies in

vivo [1]. A viral quasispecies population contains a variety of genotypic variants that are related

by similar mutations and exist in varying abundance depending on their relative fitness within the

host environment. In this report, we refer to viral quasispecies as the whole population of geno-

typic variants, whereas viral sequence is defined as the individual viral variant within quasispecies

population. Viral sequence variation in the quasispecies population can be rapidly generated by

point mutation and/or recombination [1, 2]. Mutation rates can be as high as in the order of one

per replication cycle, in which the progeny virus is unlikely to be identical to its parental template.

This diverse array of viral sequences permits robust adaptation and evolution.

Often, genotypes with a particular set of mutations gain a significant fitness advantage through

synergistic phenotypic effect among multiple mutations, which is also known as epistasis. Epista-

sis has an important role in host adaptation and may drive evolution towards drug resistance and

immune evasion [4–7,14]. In many cases, virus drug resistance requires two or more mutations in

concert, especially when multiple drugs are applied simultaneously [7–9]. Therefore, monitoring

individual viral haplotypes in the quasispecies populations within patients is important to estimate

the risk of viral rebound and further provide customized treatment [10]. Characterizing the popula-

tion structure of viral quasispecies in the host also helps to understand the evolutionary landscape

and cis-interactions among genetic elements.

Clonal sequencing has been frequently employed to examine the genetic makeup of individual

viruses within a quasispecies population. However, clonal sequencing has a low throughput and

a high sequencing cost per nucleotide. It limits the number of viral sequences, hence haplotype

variants, being genetically interrogated. On the other hand, next generation sequencing (NGS)

technology provides enough throughput and sensitivity to detect very rare viral mutations. Nev-

ertheless, the short read lengths of NGS pose a challenge in reconstruction of individual viral

sequences within a viral quasispecies. First of all, it is often difficult to distinguish rare mutations

that exist in the quasispecies population with sequencing errors from NGS. Secondly, haplotype

99



phasing is extremely challenging when mutations are sporadic and are separated by long, highly

conserved or even completely identical regions. These technical challenges make it extremely

difficult to reconstruct viral quasispecies from NGS data.

Existing methods in reconstructing viral quasispecies from NGS platforms rely heavily on com-

putational tools, including the development of read graph-based or probabilistic-based algorithms

that utilize the information from overlapping reads [11–20]. Although they provide an approxima-

tion of haplotype information present in a viral quasispecies, the sensitivity and accuracy vary

depending on sequencing error rate and quasispecies diversity. As a result, it is critical to develop

a viral quasispecies recontruction method with higher sensitivity and accuracy in both mutation

calling and haplotype phasing.

In order to genetically define a viral quasispecies population, we developed a novel analytical

technique to assemble short Illumina amplicon sequence reads derived from individual viral se-

quences. In contrast to algorithmic-based methods for quasispecies reconstruction, tag linkage

approach is a molecular-based approach. To the best of our knowledge, this is the first experimen-

tal approach that specialized in quasispecies reconstruction. The methodology consists of three

key steps: 1) Assigning unique tags to individual viral sequences to distinguish each variant within

the viral quasispecies, 2) Controlling the complexity of the library during amplification to ensure

sufficient coverage for sampled viral sequences, and 3) Using a tag linkage strategy to deduce the

full-length templates from non-overlapping amplicons. Here, we provide a proof-of-concept study

by utilizing this approach to genetically characterize an HIV-1 quasispecies population under two

conditions: an isolated in vivo virus population and the virus population derived from the same

chronically infected HIV-1 patient passaged ex vivo in cell culture. We achieve a detection limit

of ∼0.005% to ∼0.001%. The reproducibility is validated with a technical replicate. Overall, this

approach enables accurate haplotype phasing with very high sensitivity.
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5.3 RESULTS

Library preparation for sequencing

The underlying rationale is to assign a unique tag to individual viral sequences within the quasis-

pecies and to distribute the tag to every sequencing read originated from the same viral sequence

(Fig. 5-1A). Individual viral sequences within the quasispecies can be assembled by grouping

sequencing reads that share the same tag. As a result, the tag linkage approach described in

this study permits reconstruction of individual viral sequences from NGS reads despite the lack of

overlap.

The workflow for sequencing library preparation is summarized in Fig. 5-1B-F. Briefly, individ-

ual DNA molecules are assigned a unique tag by PCR (Fig. 5-1B). The tag consists of a 13

“N” sequence that allows distinguishing 413 ≈ 70 million molecules. After tagging individual DNA

molecules within the pool, the complexity of the pool is being controlled. Complexity is defined

as the number of tagged DNA molecules being processed after the first round of PCR. Thus, the

more tagged molecules are being processed, the higher the complexity becomes. If complexity is

too high, individual tagged molecules will not be covered repeatedly, leading to a failure in assem-

ble individual DNA molecules. On the other hand, if complexity is too low, sequencing capacity

will be wasted due to redundant sequencing coverage of individual tagged DNA molecules being

processed. Nonetheless, for quasispecies determination, it is more detrimental if the complexity

is too high versus too low because excessive complexity will abolish the sequence assembly pro-

cess. In general, the relationship between complexity and expected coverage for an individual viral

sequence can be calculated with the expected sequencing output:

Coverage = (Sequencing output) / (Complexity x Length of region of interest).

In this formula, sequencing capacity and length of region of interest can be predetermined. There-

fore, complexity is estimated solely based on the desired coverage of each tagged DNA molecules.

For example, if the region of interest is 1 kb and 1 Gb of sequencing output is expected, then a

complexity of 100,000 gives on average 10-fold coverage for individual tagged DNA molecules
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Figure 5-1. Schematic representation of the experimental design. (A) Individual viral sequences within

a quasispecies are assigned with a unique tag. In this example, three viral sequences are present in the

quasispecies. Horizontal black lines represent individual viral sequences. Red circle represents mutation

from the consensus. Colored tag represents unique tag assigned to individual viral sequences. The same

tag is distributed to every sequencing reads originated from the same viral sequence. During quasispecies

reconstruction, the tag contains the phasing information to reconstruct individual viral sequences. (B) A

cassette consisting of a constant region (Constant), a restriction site (R1), a random oligonucleotide (tag)

and the forward Illumina adapter (5’ FlowCell) is added to the 5’ end of the DNA sample. Individual DNA

molecules in the resultant pool will each be afforded with a unique tag. (C) The input pool in this PCR step

contains a limited number of DNA templates to reduce the complexity of the pool. The resultant PCR

amplification generates multiple copies of individually tagged DNA templates. (D) The DNA pool is then

divided into a series of PCRs with a second restriction site (R2) added to the 3’ end of the reaction

product. (E) Ligation with population ID, which is a short specific DNA sequence serving as a barcode for

multiplex sequencing, utilizes the two restriction sites, R1 and R2. (F) Amplicons with similar size are

generated from different ligated DNA pools. Reverse Illumina adapter (3’ FlowCell) is added. Different

amplicon pools can then be mixed and subjected to Illumina sequencing.
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being processed. With sufficient coverage for an individual viral sequence, we can distinguish se-

quencing error from true mutation as described previously [21], in addition to haplotype phasing.

Therefore, complexity control represents a critical step in our experimental design.

After controlling the complexity, a PCR is performed to generate multiple copies of individually

tagged DNA molecules (Fig. 5-1C). The resultant DNA pool is then divided into a series of PCRs

to generate products with different lengths (Fig. 5-1D). For every pool, the resultant PCR products

contain two different restriction sites on each ends. Next, restriction enzyme digestions generate

two sticky ends and remove the constant region for PCR in the earlier step. A self-ligation step

follows with the addition of a short insert (Fig. 5-1E). The short insert can serve as a barcode

for multiplex sequencing. This ligation step circularizes the DNA, resulting in different sequence

regions being proximal to the tag and further allowing linkage formation between any distal region

with the tag - another key step in our experimental design. In the final step, a short amplicon

(∼200 bp) is recovered for NGS (Fig 5-1F). Each NGS read, from 5’ to 3’, will cover a tag for short

read assembly within a quasispecies sample, a barcode for quasispecies sample identification,

and a particular region of interest on the targeted viral sequence. NGS reads sharing the same

tag belong to the same DNA molecules. Therefore, haplotypes of individual viral genomes within

the quasispecies population can be interrogated.

Assembly of two HIV-1 viral quasispecies

Virus derived from a chronically infected HIV-1 patient was analyzed before (in vivo) and after (ex

vivo) cell culture passaging for 10 weeks. In vivo virus sample represented the viral quasispecies

within the HIV-1 infected patient. Whereas in ex vivo passaging, virus from the same patient was

passaged serially in primary CD4+ T lymphocytes from an HIV-1-uninfected donor and reflected

the evolution of the viral quasispecies population in the absence of intra-patient selection pressure.

We limited the complexity by processing roughly 300,000 viral sequences to ensure sufficient cov-

erage (∼50-fold) in all regions for any given viral sequence (Fig. 5-1B).

50-fold coverage = (18 Gb sequencing output) / (300,000 complexity x 1200 bp region of inter-
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Figure 5-2. Proof-of-concept study using ex vivo passaged HIV-1 quasispecies. (A) Sequence

coverage for each of the 12 amplicon segments is plotted. (B) Tag coverage for each of the 12 amplicon

segments is plotted. Tag coverage is calculated by the number of unique tags present in a given amplicon

segment. (C) The assembling successful rate is assessed by a parameter called the ‘number of

informative segments’, which represents the number of amplicon segments a unique tag is present in. For

example, in the present study, a tag with 12 informative segments represents a complete assembled

contiguous sequence of our HIV-1 DNA target region, while a tag with 11 informative segments indicates

that 1 amplicon segment is missing from the assembled contiguous sequence. All tags in the data set are

categorized by this parameter. (D) The fraction of sequences containing a stop codon is plotted against

different cutoffs for the minimum sequence occurrence.
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est length).

Twelve non-overlapping amplicons, which cover a 1,295 nucleotide stretch and encompass most

of the gag and a portion of the pol genes of the HIV-1 genome, were prepared. Sequencing was

performed using an Illumina HiSeq 2000 machine. Sequencing coverages in different regions

were similar (Fig. 5-2A). The numbers of unique tags in different regions were also comparable

(Fig. 5-2B). The absence of apparent coverage bias confirmed the quality of sequencing library

preparation. For each region, tags with fewer than three occurrences were filtered and removed to

adequately apply the error correction algorithm. This filter eliminated 35-57% of tags depending

on region. For a complete viral sequence to be assembled, sequences of all 12 amplicon regions

sharing the same tag had to be available. We successfully assembled 54,583 viral sequences

in the in vivo viral quasispecies and 228,936 viral sequences in the ex vivo quasispecies, thus

validating the complexity control procedure. However, about ∼30-40% of the tags were present in

only one or two regions, which we attributed to PCR or sequencing errors at the tag region (Fig.

5-2C).

To further evaluate the data quality, the appearance of stop codons in gag was examined. Given

that viable virus requires translation of a full length Gag polyprotein, stop codons would likely

represent PCR errors. While ∼0.4% (in vivo) and ∼0.2% (ex vivo) of the assembled sequences

contained a stop codon, this number dropped dramatically (<0.05%) after we filtered-out the se-

quences with just one occurrence (Fig. 5-2D). Further increasing the cutoff stringency, however,

did not significantly suppress the stop codon occurrence frequency. These rare viral sequences

were likely to be non-functional virus within the viral quasispecies population generated by hy-

permutation [22–24]. 47,083 assembled viral sequences from the in vivo viral quasispecies and

223,966 assembled viral sequences from the ex vivo viral quasispecies passed this quality filter,

yielding 2,672 and 1,983 unique viral sequences, respectively. The number of unique viral se-

quences we successfully assembled represented a > 20 fold increased as compared to that of

the previously reported algorithm-based quasispecies assembly method [11–17]. Additionally, the

detection limits of rare viral sequences in this study (∼0.005% and ∼0.001% for the in vivo and ex

vivo viral quasispecies, respectively) also significantly exceeded that reported for the algorithm-
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based technique, which was reported to be ∼0.1% to ∼1% [15–18].

Comparison with algorithmic-based approach

To the best of our knowledge, the existing quasispecies reconstruction approaches are algorithmic-

based inference methods. In contrast, tag linkage approach is a molecular-based, direct interro-

gation method. It is devoid of any inference error that is intrinsic to algorithmic-based approach.

Consequently, it enables a much higher accuracy in quasispecies reconstruction than conventional

algorithmic-based approach. We compared the performance of our tag linkage method with two

algorithmic-based approaches: 1) the state-of-the-art ShoRAH tool [13], and 2) a recently pub-

lished approach, QuasiRecomb [12], which takes natural recombination event into account. To

implement the algorithmic-based approaches, single-read DNA sequencing library of the in vivo

quasispecies sample was prepared by standard DNA fragmentation. We also employed the tag-

ging strategy here to distinguish true mutations from sequencing error as previously described

(see materials and methods) [21]. As a result, quasispecies reconstructions by ShoRAH and

QuasiRecomb were minimally confounded by sequencing error. To provide a reference for com-

parison, we conducted traditional clonal sequencing for the in vivo quasispecies population. In this

experiment, a 1106 bp region in the gag gene was considered. A total of 20 randomly selected

clones were sequenced, which represented 14 different haplotypes.

ShoRAH reconstructed 252 viral sequences from the in vivo quasispecies sample. However, none

of the 14 haplotypes were being reconstructed (Fig. 5-3). For those 14 haplotypes, the respective

closest viral sequence deduced by ShoRAH had an edit distance ranging from 1 to 12. QuasiRe-

comb, on the other hand, reconstructed 1343 viral sequence and was able to identify 1 out of 14

haplotypes from clonal sequencing. This haplotype had an estimated occurrence frequency of

0.8% from QuasiRecomb while it accounted for 7 out of 20 clones in clonal sequencing. It im-

plied that haplotype frequency estimation by QuasiRecomb was inaccurate and that a significant

amount of reconstructed haplotype by QuasiRecomb was false positive. QuasiRecomb can also

be run in a conservative mode, in which only major haplotypes were reconstructed. Under this

running mode, only 6 haplotypes were reconstructed and none of them overlapped with the 14
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Figure 5-3. Comparison of performance in quasispecies reconstruction with ShoRAH and

QuasiRecomb. A total of 20 randomly selected clones from the in vivo quasispecies population were

sequenced using traditional clonal sequencing. They represented 14 different haplotypes. Their edit

distances with the corresponding closest reconstructed viral sequences are shown. Edit distance

represents the minimum number of substitutions required to change one nucleotide sequence into the

other. The estimated fractions of closest reconstructed viral sequences for those 14 haplotypes are

displayed in the bottom. The estimated haplotype frequency is displayed in a gray background if there is a

complete match (edit distance = 0).
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haplotypes being clonal sequenced.

In contrast, 9 out of 14 haplotypes from clonal sequencing were included in the quasispecies

reconstructed by our tag linkage approach (Fig. 5-3). The most abundant haplotype from clonal

sequencing matched the most abundant reconstructed haplotype from tag linkage approach in

this region of interest. The other 8 identified haplotypes were estimated to have an occurrence

frequency from 0.002% to 0.02%. It highlighted the sensitivity and accuracy of our tag linkage

approach in reconstructing rare haplotypes. The missing five haplotypes were 1-3 edit distances

away from their respective closest viral sequence in the quasispecies reconstructed by our tag link-

age approach. Overall, tag linkage approach achieved a significant improvement over algorithmic-

based approaches in quasispecies reconstruction, both qualitatively and quantitatively.

Diversity comparison between in vivo and ex vivo HIV-1 quasispecies

We next examined the sequence diversity in both in vivo and ex vivo quasispecies populations.

The most frequent viral sequence represented 8.1% of the in vivo viral quasispecies, whereas the

most dominant viral sequence represented 32.5% of the ex vivo viral quasispecies (Fig. 5-4A). The

two most dominant viral sequences in the ex vivo sample comprised more than half of the total

viral quasispecies while the in vivo viral quasispecies was much more diverse. At the amino acid

level, 80% of the in vivo viral quasispecies were represented by four protein sequences, with a total

of 42 unique protein sequences in the population (Fig. 5-4B). In contrast, while only two protein

sequences represented 80% of the ex vivo viral quasispecies, there were 201 unique protein

sequences. A phylogenetic tree analysis demonstrated the effect of differential selection pressures

on viral quasispecies evolution from in vivo to ex vivo, in which two distinct sub-population clusters

could be observed (Fig. 5-4C-D).

Recombination pattern of HIV-1 quasispecies

HIV-1, as a diploid retrovirus, is capable of generating recombinant proviral transcript via a tem-

plate switching event during the reverse transcription step in the viral replication. It facilitates

further diversification for adaptation [2]. The depth and comprehensiveness of our data permit an
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Figure 5-4. Diversity of in vivo and ex vivo HIV-1 quasispecies. (A) The diversities for both the in vivo

and ex vivo viral quasispecies at the nucleotide level are reflected by the pie chart. The fractions of viral

quasispecies for the 10 highest frequency occurring viral sequences are shown. Each color code indicates

a range of occurrence frequency as indicated. (B) The diversities for both in vivo and ex vivo viral

quasispecies content on the protein level (aa. 139 to 507 on gag protein) are reflected by the pie chart.

The fractions of viral quasispecies for the 10 highest frequency occurring viral sequences are shown. (C) A

neighbor-joining phylogenetic tree depicting viral nucleotide sequences with occurrence frequencies above

0.05%. The occurrence frequency for each individual node is color coded as described in Fig. 5-4A. (D) A

small segment in the phylogenetic tree from Fig. 5-4C is selected. This segment is replotted along with

viral sequences with occurrence frequency form 0.001% to 0.05%, which are not included in Fig. 5-4C.
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investigation of this viral recombination, as a linkage disequilibrium pattern. Here, we employed

the r2 correlation to measure linkage disequilibrium. r2 was computed between 38 SNPs that had

an occurrence frequency above 0.1% in either the in vivo or ex vivo viral quasispecies (Fig. 5-5).

Several strong correlations (r2 > 0.5) were observed in both the in vivo and ex vivo viral quasis-

pecies. Nonetheless, the linkage disequilibrium was more pervasive and spanned a larger region

in the in vivo viral quasispecies than in the ex vivo viral quasispecies. From the in vivo viral quasis-

pecies, we observed two linkage disequilibrium blocks, a ∼200 nucleotide block from position 900

to 1100 and another from nucleotide position 1400 to 1600. The presence of two closely spaced

recombination nucleotide blocks suggests that there is a recombination hotspot between position

1100 to 1400, which is located at the p24 region of the gag gene. Another possibility is that certain

haplotypes provided a fitness advantage and were positively selected. Further characterization

would be needed to dissect the underlying mechanism.

Figure 5-5. Linkage disequilibrium for in vivo and ex vivo HIV-1 quasispecies. The linkage

disequilibrium was measured using r2 and computed between SNPs that had an occurrence frequency

above 0.1% in either the in vivo and ex vivo viral quasispecies. The stronger the association between two

SNPs, the larger value the r2 is.
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Figure 5-6. Technical Replicate for ex vivo viral quasispecies assembly. (A) The reproducibility was

assessed by Venn diagrams of the unique viral sequences in both replicates of the ex vivo viral

quasispecies reassembly. (B) Unique viral sequences were binned into a bin size of 0.25 at log10 scale.

The overlapping faction that was covered by replicate 2 were plotted against different bins. (C) The

fractions of viral quasispecies population content in replicate 1 that was covered by replicate 2 (Replicate

1) and in replicate 2 that was covered by replicate 1 (Replicate 2) are plotted as a bar chart. (D) The

diversity for replicate 2 at the nucleotide level is reflected by the pie chart. The fractions of viral

quasispecies for the 10 highest frequency occurring viral sequences are shown. Each color code indicates

a range of occurrence frequency as indicated. (E) The occurrence frequency of individual viral sequences

was compared between replicate 1 and replicate 2 at log10 scale. There exists a Pearson correlation of

0.87 at normal scale between two replicates.
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Reproducibility from a technical replicate

To assess the reproducibility, a technical replicate was performed for the ex vivo viral quasispecies

population (Fig. 5-1C-E). The technical replicate was repeated for all steps beginning at the stage

of generating amplicons of varying length (Fig. 5-1C) - a key step of our approach. Majority of

the viral sequences in the replicate (replicate 2) overlapped with the original data set (replicate 1)

(Fig. 5-6A). However, a significant fraction of viral sequences was covered by only one of the repli-

cates, but those represented a small fraction, ∼3% to 9%, of the viral quasispecies (Fig. 5-6B-C).

Viral sequences that were observed in only one of the two replicates typically had an occurrence

frequency < 0.01% (Fig. 5-6B). It suggests that the difference between replicates was due to

sampling limit, where viral sequences with a low occurrence were more likely to be unsampled

by one of the replicates. Replicate 2 covered 97% of the viral quasispecies in the first replicate,

whereas replicate 1 covered 91% of viral quasispecies in the second replicate (Fig. 5-6C). The ge-

netic composition of the viral quasispecies reconstructed from replicate 2 was comparable to that

of replicate 1 (Fig. 5-4A and 5-6D). Occurrence frequency for individual viral sequences exhibited

a correlation of 0.87 (Pearson correlation at normal scale) between replicates (Fig. 5-6E). These

results provided further validation of the tag linkage technique in both qualitative and quantitative

manners.
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5.4 DISCUSSION

With the advancement of sequencing technology, NGS continues to increase read length and

throughput. Nonetheless, the trade-off between read length and throughput still exists [25]. Se-

quencing platforms with long reads such as Pacific Bio and 454 pyrosequencing have a relatively

low throughput. NGS machines with higher throughput such as Illumina and SOLiD do not afford

long reads. Despite currently having the highest throughput, the short read length of Illumina cre-

ates a challenge in assembling reads into continuous long sequences.

This study describes an amplicon-based tag linkage approach to characterize viral quasispecies

population structures and provides a proof-of-concept example showing a very high detection

sensitivity. Unlike algorithm-based approaches, the accuracy of our amplicon-based molecular

tag approach is independent of viral quasispecies population diversity. In addition, it incorporates

an error correction step to identify NGS platform errors, resulting in a dramatic increase in the

sensitivity to detect rare haplotypes [21]. Algorithm-based approach for viral quasispecies re-

construction can usually handle 10 to 100 viral sequences at various statistical confidence. In

contrast, our tag linkage approach can reconstruct close to 1000 sequences with high confidence

as indicated by our replicates. It achieves a significant improvement in accuracy and sensitivity

from the algorithm-base approach [11–20].

The major limitation in our approach is the length of deduced sequence, which is restricted by

the upper limit of PCR (typically 10 kilobases). Another potential pitfall is PCR recombination.

In our protocol, we tried to minimize this artifact by using a high processivity and fidelity DNA

polymerase for PCR [26]. In addition, a long PCR extension time was used to ensure extension

completion of the amplicon to minimize PCR recombination [27]. Our technical replicate control

shows that a majority of the viral quasispecies population content (>90%) are captured in both

repetitions, including rare variants, indicating that any artifact by PCR recombination is minimal.

Additionally, the high correlation of occurrence frequency for individual viral sequences between

each replicate confirms reproducibility. Overall, our control experiments and concurrent analysis

validate the amplicon-based tag linkage approach as a highly sensitive methodology for viral qua-
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sispecies assembly.

By reconstructing individual sequences within the viral quasispecies, we are able to detect link-

age disequilibrium throughout the region of interest. Genome recombination is a frequent process

occurring intra-patient for diversification and adaptation [28–32]. Recombinant generation is a non-

random process as recombination coldspots and hotspots have been reported in HIV-1 [33–36].

In this study, we observed a more pervasive linkage disequilibrium in the in vivo viral quasispecies

compared to that of the ex vivo, suggesting that there may be genetic interactions within the link-

age disequilibrium block that are important for chronic infection. Alternatively, this observation

may also be attributed to a higher recombination frequency during ex vivo passaging due to an

increase in co-infection occurrence. We demonstrate the power of our tag linkage approach in

capturing linkage disequilibrium in a viral quasispecies, which can be further utilized to examine

genetic interactions and to identify functional residues.

Our technique provides a sensitive and accurate tool to study the evolutionary trajectory of viral

quasispecies. It permits the monitoring of a multi-drug resistance (MDR) viral sequence and epis-

tasis within viral quasispecies - an important factor in viral evolution and adaptation [37,38]. Highly

active antiretroviral therapy (HAART) therapy is a common treatment to suppress HIV progression

by utilizing a drug cocktail designed to target viral proteins at multiple essential stages of the vi-

ral life cycle. However, viral rebound can be caused by MDR HIV with extremely low occurrence

frequency [9,38–40]. In addition, as most drug resistant mutations compromise viral fitness, drug

resistant viruses often carry additional mutations to compensate for this fitness cost [6,10,41–43].

The tag linkage approach provides an important tool to survey the genetic makeup of viral quasis-

pecies and to estimate the risk of viral rebound and virulence by surveillance of pair-wise or even

higher-order genetic interactions between mutations.

Although this study is based on HIV quasispecies samples, tag linkage approach is not limited

to HIV and can potentially be applied to other viral quasispecies, such as hepatitis B virus (HBV),

hepatitis C virus (HCV) and influenza virus. For example, tag linkage approach can be applied

to study multi-drug resistance that are also found in naturally occurring HBV as in the case of
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HIV [44, 45]. This technique is also suitable for studying cis-elements that are prevalent in HCV

due to its intrinsic replication property [46]. In addition, tag linkage approach can be utilized to

examine permissive and compensatory mutations that are shown to be important in the evolution

of influenza virus [47–49].

This technique can also be extended beyond the monitoring of viral quasispecies. One application

is to examine the dynamics of CD4+ and CD8+ cells in the immune system during viral infection.

They have an active role in virus detection and clearance during both acute and chronic infec-

tion. During the establishment of persistent viral infections, the immune system co-evolves with

the virus [50]. A complex dynamic occurs between the heterogeneous immune populations and

the evolving viral quasispecies. The medical significance of this virus-host dynamic is highlighted

by a recent study describing the rise of a broadly neutralizing HIV-1 antibody from co-evolution

with acute phase virus [51]. The methodology we describe here offers the research community an

approach to understand the dynamic interplay between the host and virus in exquisite detail at the

population level.
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5.5 MATERIALS AND METHODS

Ethics statement

The study was approved by UCLA IRB. A chronically-infected HIV-1 patient without undergoing

antiretroviral therapy was recruited from the Los Angeles area and provided written informed con-

sent.

Subjects and specimen collection

Total peripheral blood mononuclear cells (PBMCs) were isolated from the patient’s whole blood

sample by standard Ficoll gradient. The plasma viral load at the time of collection was 130,234

viral copies/ml.

Recovery of virus from PBMCs and virus passaging

Ex vivo passaging was conducted as previously described [52]. Briefly, virus was passaged serially

in primary CD4+ T lymphocytes from an HIV-1-uninfected donor [53]. After each passage of ∼7

days, supernatant virus was collected, titered, and used to infect fresh cells with an MOI of 1.

DNA library preparation for tag linkage assembly

To extract the viral genomic DNA, cell pellets of 200,000 cells were resuspended in PBS and

genomic DNA was extracted using the DNeasy Tissue DNA Isolation Kit (Qiagen). DNA was

recovered by PCR using the primer set: 5’-GCG GAG GCT AGA AGG AGA GAG ATG G-3’ and

5’-CAT CAC CTG CCA TCT GTT TTC CAT A-3’. The forward Illumina sequencing priming site

was added to the 5’ end of the DNA sample by PCR using the primer set: 5’-AGA TCG GAA

GAG CGT CGT GTA GGG GCG GAG GCT AGA AGG AGA GAG ATG-3’ and 5’- GTT TAA CTT

TTG GGC CAT CCA TTC CTG GC-3’. Then, the constant region, a NotI restriction enzyme site

and a 13 nucleotide tag of random ‘N’ sequence was added to the 5’ end of the DNA sample

by another PCR using the primer set: 5’-ACA TAG ATA CTA TGC GGC CGC NNN NNN NNN

NNN NAG ATC GGA AGA GCG TCG TGT AGG G-3’ and 5’- GTT TAA CTT TTG GGC CAT CCA

TTC CTG GC-3’. The concentration of the tagged DNA sample was measured using NanoDrop
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1000 spectrophotometer (Thermo Fisher Scientific). This concentration was used as a reference

to calculate the dilution-fold in the subsequent complexity control step. In the complexity control

step, ∼300,000 copies of tagged DNA sample were used as the input for PCR using the primer set:

5’-CAC ATA GAT ACT ATG CGG CCG C-3’ and 5’-GTT TAA CTT TTG GGC CAT CCA TTC CTG

GC-3’. This complexity was calculated based on a ∼50-fold coverage for individual viral sequence

with 30 Gb expected sequencing output per viral quasispecies sample. This was followed by 12

PCR using the product of the complexity control step as template. Consecutive PCR pools should

have a different product size approximately corresponding to the sequencing read length minus 80

bp. From this step forward, the 12 pools were processed independently until sample combination

at the high-throughput sequencing step. The products were then subjected to double digestion

by NotI and XhoI. NotI and XhoI were chosen because they were not present in the consensus

sequence of the target DNA template region. A small insert, which could serve as the population

ID, was prepared by annealing 5’-GGC CCG ACG TAA CGA T-3’ and 5’-TCG AAT CGT TAC

GTC G-3’, each with a phosphate group attached at the 5’ end. One unit of T4 DNA ligase (Life

Technolgies) was used in each ligation reaction. The reaction condition followed manufacturer’s

instructions. All ligations were performed overnight at 20 ◦C in 100 uL total reaction volume. The

ligated products were used as the templates for PCR to add the 5’ flow cell adapters and the

reverse read Illumina sequencing priming site. The 3’ Illumina flow cell adapters were then added

by PCR using the primer set: 5’-AAT GAT ACG GCG ACC ACC G-3’ and 5’- CAA GCA GAA

GAC GGC ATA CGA GAT CGG TCT CGG CAT TCC TGC TGA ACC GCT CTT CCG-3’. The

resultant amplicons from all 12 pools were then mixed. High-throughput sequencing was done

by an Illumina HiSeq 2000 machine with an equivalent of 0.75 lane per sample and 2 x 100 bp

paired-end reads. All PCRs in this study were performed using KOD DNA polymerase with 1.5

mM MgSO4, 0.2 mM of each dNTP (dATP, dCTP, dGTP, and dTTP) and 0.4 uM of forward and

reverse primer. PCR extensions were performed with 50 seconds per kb at 68 ◦C. Annealing

temperature for a given PCR was 5 ◦C below the lowest melting temperature of the pair of primers.

All primers in this study were designed to target conserved regions within the quasispecies which

were determined by clonal sequencing of the sampled viral sequences. This sequencing library

preparation could potentially be adapted to study viral RNA using a reverse transcription primer

tag as decribed by Jabara et al [54]. Raw sequencing data have been submitted to the NIH Short
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Read Archive under accesion number: SRP032753.

Clonal sequencing

After recovering the DNA by PCR as described above, the amplicon was inserted into target p83-2

plasmid using In-Fusion kit (Clontech). Twenty clones were randomly selected and subjected to

capillary sequencing (Laragen).

Data analysis

Sequencing reads were mapped by BWA with 8 mismatches allowed [55]. Pair-end reads con-

taining two or more short inserts (barcodes) were discarded. Error-correction was performed as

described previously to distinguish true mutation from sequencing error [21]. The error-correction

step grouped all reads sharing the same tag and mapped to the same region into a read cluster

that was further conflated into a “error-free” read. As described in Kinde et al. [21], most reads

sharing the same tag should share the mutation pattern during mapping. In contrast, a sequenc-

ing error would have a low occurrence frequency within a read cluster and could be distinguished

from true mutations. Through this process, sequencing error would be corrected to generate an

“error-free” read. Read cluster with a size of <3 reads were discarded to increase the confi-

dence in generating an “error-free” read. Since intermolecular concatenation at the ligation was

observed, a mutation that existed in 45% of the reads within a conflated read cluster that also

shared the same tag was considered as a true mutation. The correlation between technical repli-

cates indicated that intermolecular concatenation did not pose a major barrier in the accuracy of

viral quasispecies assembly. Nonetheless, further application should adjust the ligation reaction

volume to decrease the intermolecular concatenation during ligation (circularization step). Next,

“error-free” reads that shared the same tag were assembled into a contiguous sequence, which

represented a single viral sequence. Data processing and analysis were conducted by custom

Python scripts. All scripts are available upon request.
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Phylogenetic tree construction

ClustalX was used to create the neighbor-joining phylogenetic tree [56]. The phylogenetic tree

was mid point-rooted and displayed by FigTree.

Linkage disequilibrium

We used the r2 correlation to quantify linkage disequilibrium between two SNPs. r2 was computed

as per convention. Briefly, r2 = (PAB - PA x PB)2/(PA x PB x (1 PA) x (1 PB)), where PAB

represented the occurrence frequency of viral sequences that carry both SNP A and SNP B; PA

represented the occurrence frequency of viral sequences that carry SNP A; PB represented the

occurrence frequency of viral sequences that carry SNP B.

DNA library preparation for error-free sequencing

Gag-pol region was PCR amplified using the primer set: 5’- GAC TAG CGG AGG CTA GAA GGA

GAG AG-3’ and 5’-CAT GTT CTT CTT GGG CCT TAT CTA TTC-3’. The resultant DNA product

was sheared to around 200 bp to 600 bp by sonication using the Sonic Dismembrator Model 100

(Fisher Scientific). Dismembrator was set to power level four and samples were pulsed three times

for 10 seconds. Samples were kept on ice for 45 seconds in between pulses. End repair and 3’

dA-tailing were performed respectively by end repair module and dA-tailing module (New England

BioLabs). The DNA product was then ligated to an Y-shape adaptor carrying a nine-nucleotide tag

of random ‘N’ sequence. As a result, each ligated product contained an 18-nucleotide tag, nine

from each of the 5’ and 3’ end. Y-shape adaptor was prepared by annealing two oligonucleotides:

5’-CGC GTA TCC ATG GCA NNN NNN NNN GCC AGA TCG GAA GAG CGG TTC AGC AGG AAT

GCC GAG-3’ and 5’-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT GGC-3’. Then, the

annealed product was treated with Klenow Fragment (New England BioLabs) and digested with

BciVI. An estimated copy of around 10 millions of ligated products were amplified by primer set:

5’-AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG-3’

and 5’-CAA GCA GAA GAC GGC ATA CGA GAT CGG TCT CGG CAT TCC TGC TGA ACC GCT

CTT CCG-3’. The resultant DNA product was submitted for 2 x 100 bp paired-end sequencing on

one lane of Illumina HiSeq 2500 machine.
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Quasispecies reconstruction by ShoRAH and QuasiRecomb

“Error-free” reads were generated as described above. Here, a mutation that existed in 95% of

the reads within a conflated read cluster that also shared the same tag was considered as a true

mutation. Reads were mapped by BWA with 8 mismatches allowed [55]. All reads were treated

as single end read. “Error-free” mapped reads were processed by ShoRAH version 0.6 with a

window size of 40, a window shift of 1 and default settings for other parameters [13]. Quasispecies

reconstruction by QuasiRecomb was performed by default setting [12]. Due to the huge memory

requirement of QuasiRecomb, 500,000 mapped reads were randomly sampled and processed.

Further increase the number of input reads generated memory error. To limit the false positive rate,

a refinement reconstruction was performed using ‘-refine’ option. We employed ‘-conservative’

option for high confidence haplotype reconstruction to identify major haplotypes.
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CHAPTER 6

PERSPECTIVES
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6.1 COUPLING HIGH-THROUGHPUT GENETICS WITH OTHER EXPERIMENTAL TOOLS

High-throughput genetics provided an excellent tool to identify genetic determinants responsible

for virus-host interaction. While my thesis has developed and demonstrate the usage of high-

throughput genetics in virus research, numerous potential applications have not yet been explored.

Here the interaction between virus and interferon system will be used as an example to discuss

potential strategies. Interferon (IFN) system, a major component of the innate immune system,

continues to be a popular field of research. The antagonistic action against IFN seems to be

universal across different viruses. It is known that many viruses have developed strategies to

counteract the IFN signalling system [1–7]. It is also evidenced that virus can counteract the an-

tiviral action of IFN-stimulated genes (ISG) by physical interaction [8–12].

To dissect the viral genetic determinants that interfere signalling pathway, a possible approach

is to combine high-throughput genetics with fluorescent reporters and cell sorting. For example,

a green fluorescent protein (GFP) reporter driven by IFN promoter can be used as a readout to

screen for mutation that lost the inhibition activity against IFN expression (Fig. 6-1A). Mutation

that retains the suppression activity again IFN expression would not turn the infected cells green,

whereas those mutation that lost the suppression activity would induce the GFP expression in the

infected cells. By applying cell sorting by flow cytometry, these two types of infected cells can be

physically separated (Fig. 6-1B). Those mutations that lost the suppression activity can thus be

isolated. Subsequently, their genotypes will be revealed by deep sequencing. In fact, the feasibility

of combining mutant library, reporter and cell sorting to identify mutation that lost the suppression

activity to IFN signalling pathway has been shown [13]. This strategy is generally applicable to

study the virus-host interaction in other signalling pathways that are interfered by virus.

To investigate the physical interaction between a viral protein and a host restriction factor (e.g.

ISG), a potential strategy is to combine high-throughput genetics with overexpression and knock-

out of the host restriction factor (Fig. 6-2). Mutation in the viral genetic determinant that inhibit the

host restriction factor would have different fitness effects on the virus depending on the expression

level of the host restriction factor. Since the viral determinant is only functionally important for
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Figure 6-1. Concept of differential profiling. The viral mutant library is passaged under different

condition. Control condition means there is no additional selection pressure besides replication capacity.

Each circle represents an individual viral particle. Different colors represent different genotypes (WT or

mutants). Genotype colored in green represents weak drug resistance mutation, which is moderately

enriched after passaging in the presence of drug. Genotype colored in cyan represents strong drug

resistance mutation, which is highly enriched after passaging in the presence of drug. Genotype colored in

yellow represents interferon sensitive mutation, which disappears from the mutant library after passaging

in the presence of interferon.
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replication when the host restriction factor is presence, mutation within the viral determinant would

impose a high fitness cost when the host restriction factor is expressed at a high level. In contrast,

mutation within the viral determinant would may not have any fitness cost when the host restriction

factor is absence. As a result, by comparing the fitness profile under different expression level of

the host restriction factor, the genetic determinant employed by the virus to suppress the antiviral

function of the host restriction factor would be revealed.

In the future, high-throughput genetics can be applied to identify critical viral residues that interplay

with other cellular and immune responses, such as apoptosis, autophagy, ER stress, cytokines, to

understand how the virus interact with different functional components of the host.

6.2 INVESTIGATING EPISTATIC EFFECT USING HIGH-THROUGHPUT GENETICS

Episatsis, which describes the difference in fitness effect of a mutation under different genetic

backgrounds, plays a critical role in viral evolution, such as drug resistance and immune es-

cape [14–18]. The mutational fitness landscapes in different genetic backgrounds can be obtained

by applying high-throughput genetics in different viral strains. By comparing the mutational fitness

landscapes in different viral strains, mutations that display a genetic-background-dependent fit-

ness can be identified (Fig. 6.3). Such information will also be highly valuable to the modeling of

evolutionary landscape and functional sequence space. When a sufficient number of fitness land-

scapes are obtained, it may even be possible to dissect the genetic relationship among residues

to comprehend the functional sequence space and the genotype-phenotype map.

As high-throughput genetic approaches continue to evolve, it might be possible to systematically

examine the fitness effect of high-order mutations, hence epistasis. In fact, recently our lab and

other groups have used high-throughput genetics to interrogate pairwise epistasis within a domain

of a model protein [19–21]. These studies not only quantify the fitness effect of individual single

amino acid substitutions, but also that of the double amino acid substitutions. It allows the quan-

tification of epistatic interaction between different mutations. Potentially, those approaches can be

adapted to viral system to examine pairwise epistatic landscape within a viral protein domain.

130



Figure 6-2. Coupling high-throughput genetics with gene knockout and gene overexpression. The

genetic interaction between the virus and a restriction host factor of interest is studied. The viral mutant

library is passaged under two conditions, namely overexpression of the host restriction factor and knockout

of the host restriction factor. Genotype colored in red carries a mutation at the key residue, which is

responsible for inhibiting the function of the restriction factor resistance mutation and is the genotype of

interest. This genotype of interest will have little, if any, fitness cost when the restriction factor is knocked

down in the host cells. However, when the restriction factor is overexpressed in the host cells, this

genotype of interest will be disappeared after passaging.
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Figure 6-3. Fitness profiling of two viral strains with different genetic backgrounds to identify

epistatic effect. Amino acid preference for each residue can be computed from fitness profiling [51]. By

comparing fitness profile of different genetic backgrounds, residue with a genotypic-dependent amino acid

preference will be identified.

6.3 CONCLUDING REMARKS

High-throughput genetics enables rapid identification of critical genetic elements, such as pro-

tein subdomains or nucleotide residues, across the genome under any specified growth con-

ditions. With the continued improvement of deep sequencing technologies and refinement of

high-throughput genetics, critical virological questions can be systematically answered by func-

tional genomics on viruses. Previous studies have shown that high-throughput genetics could

provide tremendous information that aids the identification of essential genetic elements on the

virus genome, and facilitates the understanding of viral evolution and virus-host interaction. High-

throughput genetics provide a new strategies in answering biological questions and will signifi-

cantly accelerate virus research.
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