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Mobile devices generate an enormous amount of data traffic to satisfy their computing and

communications needs. To meet these demands, mobile network operators frequently need

to expand their capacity, which entails significant capital costs and increased energy con-

sumption. Motivated by this, we seek to develop cooperative systems that will bring higher

communications speeds and larger computing power to mobile devices without relying on

mobile network infrastructure.

In recent years, unmanned aerial vehicle (UAV) technology has garnered interest for its

potential use as a communications enabler. Swarms of UAVs can be deployed as temporary

relays to meet short term but high intensity communication demands from mobile users.

UAV swarms can coordinate their placement to improve the capacity on the fronthaul link

between users and UAVs. Algorithms for optimal placement often rely on the knowledge

of channel gain across space. Hence, we developed deep learning methods for channel gain

prediction across space based on measurements collected by the UAVs and 3D maps of the

environment. In line with this, we also developed methods to design UAV flying paths for

optimal measurement collection such that the accuracy of channel gain prediction is maxi-
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mized under constraints on the distance traveled by the UAVs. Additionally, we develop a

reinforcement-learning based approach that controls a UAV to directly improve the fronthaul

link without relying on channel gain knowledge across space.

With the proliferation of intelligent vehicles, there is an increasing number of computa-

tionally demanding computer applications appearing in vehicular environments. Providing

the computational resources to meet the demands of such applications is a critical problem.

In this work, we consider a cooperative computing paradigm between intelligent vehicles of

similar computing power to enable emerging vehicular applications. Vehicles cooperate with

each other over vehicle-to-vehicle networks to form vehicular micro clouds that can complete

computationally intensive tasks without relying on cloud or edge computing. We devel-

oped optimized resource assignment and scheduling algorithms that efficiently use vehicular

computing resources for computation in emerging vehicular applications. Our proposed ap-

proaches adapt to link quality changes between vehicles and prevent congestion in vehicular

networks, even in the presence of incumbent interference.
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CHAPTER 1

Introduction

1.1 Motivation

The increasing volume of smart devices and IoT modules is generating an enormous amount

of data traffic to satisfy computing and communications needs, putting an additional burden

on existing network infrastructure. Mobile network operators frequently need to expand

the number of active base stations to satisfy the increasing user demand. However, deploy-

ment of more base stations entails significant capital cost and increases energy consumption.

Motivated by this, we seek to develop cooperative systems that will bring higher communi-

cations speeds and larger computing power to mobile devices without relying on expansion

of network infrastructure.

Unmanned aerial vehicles (UAVs) or drones have received widespread attention in mili-

tary and, more recently, civilian applications. Their mobility and low cost of operation makes

them suitable for many civilian purposes, such as package delivery, environment mapping

and emergency assistance [Ins22].

In recent years, UAV technology has garnered interest from the wireless communications

industry and the academic community for their potential use as communication enablers

[MSB19b]. UAVs as communications enablers can be used to meet the requirements of 5G

and future communications systems in challenging scenarios. In particular, UAV swarms

can be effective due to their ability to serve as relays for many users simultaneously and also

coordinate their operation to improve the capacity on the fronthaul side (the link between

1



users and UAVs) and backhaul side (the link between UAVs and the core network). Use

case scenarios include replacing damaged base stations and events that can increase traffic

intensity in certain areas, such as concerts, mass gatherings and traffic jams. In such cases,

UAVs are faster to deploy and are more economic than fixed infrastructure. Additionally,

UAVs can be used to provide coverage to areas with sporadic traffic such as remote areas

with occasional activity or IoT networks that have occasional traffic that they need to offload

to the core network. To meet the data rate demands of modern mobile devices, it is essential

to optimize the placement of UAVs to maximize the capacity of fronthaul and backhaul links.

With the proliferation of intelligent vehicles, there is an increasing number of computa-

tionally demanding computer applications appearing in vehicular environments. Providing

the computational resources to meet the demands of such applications is a critical problem.

Mobile devices with limited resources have often relied on mobile network infrastructure to of-

fload complex computation to cloud or edge servers with more powerful computing resources.

The main difference between cloud and edge computing is the proximity of the servers to

mobile users, with cloud servers being located on the Internet, whereas edge servers are

located closer to the users and perform various tasks in conjunction with cloud data centers.

However, computational offloading to the cloud or edge can face significant difficulties due to

reliance on wireless infrastructure, such as high latency and low coverage, which makes them

unsuitable for delay-sensitive applications. There is a growing number of intelligent vehicles

on the road, each of which has an increasingly rich amount of computational resources as

well as the sensing and communication capabilities. These vehicles can cooperate with each

other over vehicle-to-vehicle (V2V) networks to from vehicular micro clouds (MCs) [HJD17].

Vehicles in a MC can cooperatively perform computationally intensive tasks to minimize or

fully remove the need to offload to cloud or edge servers. However, vehicular computing

resources are smaller than those available to cloud or edge servers, therefore it is necessary

to effectively manage them to maximize their utility. Furthermore, computational offloading

over V2V channels has a unique set of challenges such as fluctuating link capacities and
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distributed channel access, which must be addressed to enable cooperative computing.

1.2 Challenges and objectives

1.2.1 UAW Swarms for Communications

We focus on improving the fronthaul capacity, which depends on the signal-to-noise ratio

(SNR) between ground users and the UAVs. Hence, by optimized placement of UAVs we

can improve the SNR and thereby the capacity.

Spatial channel gain prediction Most state-of-the-art solutions for optimal placement

of UAVs rely on analytical models of the channel, since analytical models are computationally

and mathematically simple while keeping satisfactory accuracy. However, they are accurate

only on average across a predefined set of propagation environments for which the models

were developed. The rigid format of analytical models does not allow adaptation to the

specific environments they are applied to. We address the limitations of algorithms previously

developed for this task by proposing a new deep learning-based channel prediction algorithm.

Our approach adapts to the environment by relying on the knowledge of the 3D map of the

propagation environment and on measurements collected by the UAV. Complimentary to this

approach, it is necessary to collect informative measurements of the channel gain between

users and UAVs across space. Due to energy and time constraints, UAVs are constrained

in how much distance they can cover. Therefore, it is necessary to optimally design their

trajectories to collect most informative measurements of the channel gain under constraints

on the length of their trajectories.

Simultaneous channel gain learning and placement optimization The traversal

of UAVs to collect measurements for channel gain prediction can lead them to a placement

that is far away away from a placement that maximizes the capacity of the fronthaul links.

After collecting sufficient measurements for channel gain prediction, the UAVs may still

need to traverse a significant distance to optimize the capacity. Hence, there is a need to

3



develop approaches for control of UAVs that enable them to simultaneously learn the channel

gain across space while simultaneously moving them towards a placement that improves the

capacity of the fronthaul links.

1.2.2 Cooperative Computing in Vehicular Micro Clouds

We aim to develop and analyze systems for cooperative computing in a vehicular MC to

support emerging computationally-intensive and delay-constrained applications such as co-

operative perception [CZX22], augmented reality, driving assistance and navigation.

Resource management and task scheduling for cooperative computing To

enable cooperative computing in a vehicular micro cloud for support of emerging applications,

we need to address the following challenges. First, we need to develop approaches for optimal

use of computing resources and task scheduling in the micro cloud. We assume that the

V2V communication is achieved with hardware from one of the IEEE 802.11 standards.

Due to the their mobility, achievable data rates between vehicles fluctuate constantly. Our

resource assignment and scheduling framework must therefore adapt to the current and future

achievable data rates between vehicles. Furthermore, when performing task scheduling it is

essential to not exceed the capacity limits of the wireless channel and cause congestion, which

can severely delay the delivery of offloaded tasks.

Hybrid cooperative and edge computing Cooperative computing in a vehicular

micro cloud can be combined with edge computing to further improve the quality of service

of vehicular applications. We assume that communication between edge servers and vehicles

is accomplished using cellular networks. In the hybrid computing case, it is also necessary to

devise methods for resource assignment and task scheduling under the additional challenges

of computational offloading via cellular networks. Furthermore, it is of interest to determine

in which scenarios does hybrid offloading offer benefits compared to cooperative or edge

computing.
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1.3 Contributions

1.3.1 UAW Swarms for Communications

Spatial channel gain prediction We developed novel active prediction approaches which

consist of both methods for UAV path planning for optimal measurement collection and

methods for prediction of channel gain across space based on the collected measurements.

First, we developed an active deep learning channel gain prediction approach that relies on

measurements collected by multiple UAVs and a 3D map of the environment, but does not

rely on ground user location. The developed approach consists of a deep learning prediction

method that also provide probabilistic channel gain prediction across space and a deep

reinforcement learning method that designs UAV paths for measurement collection under

constraints on the lengths of their trajectories. Second, we developed an active channel gain

prediction algorithm using multiple UAVs based on Kriging spatial interpolation. While

Kriging interpolation has been extensively used for channel gain prediction, no methods for

measurement collection using multiple UAVs have been proposed. This method is suitable

for channel gain prediction when the ground user location is available and a 3D map of the

environment is not. Furthermore, this method does not require extensive training compared

to our proposed deep learning active prediction approach.

Simultaneous channel gain learning and placement optimization Assuming that

each UAV is associated to serve a single ground user, we developed a deep reinforcement

learning approach that controls the UAV to collect channel measurements while simultane-

ously moving it towards improving the capacity of the fronthaul link. The proposed algorithm

relies on the knowledge of 3D map of environment and does not need the knowledge of the

user location. Deep reinforcement learning allows us to use 3D maps alongside channel gain

measurements to predict the optimal direction of motion to maximize the fronthaul capacity

under constraints on maximum traversed distance by the UAV.
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1.3.2 Cooperative Computing in Vehicular Micro Clouds

Resource management and task scheduling We first develop approaches based on

mixed integer linear programming for assignment of computing resources such that the qual-

ity of service of vehicular applications is maximized. The proposed algorithms adapt to

the changes in communication links due to vehicular mobility. Moreover, assuming that

wireless technology from a 802.11 communication standard is used by vehicles, the proposed

resource assignment and scheduling approaches ensure that channel congestion does not oc-

cur due to task offloading between the vehicles. Based on our mixed integer programming

solutions, we also develop approximate resource assignment and scheduling methods that

run in polynomial time and are feasible to use in more challenging cases such as when the

number of vehicles participating in cooperative computing is high. Finally, given optimal

resource assignment and scheduling methods, we provide answers on what are the feasible

gains of cooperative computing compared to non-cooperative computing in terms of quality

of service and as a function of different factors including computing task features, traffic

characteristics, vehicular computing resources and incumbent wireless transmitter activity.

Hybrid cooperative and edge computing We develop a resource assignment and

scheduling algorithm for hybrid processing of computing tasks for cooperative perception

that maximizes the rate at which frames are processed, while ensuring that results are

delivered within a deadline and also meeting cellular and V2V communication constraints.

This approach is developed under simplified models of vehicle-to-vehicle communications

compared to the methods we described in the previous paragraph. Using this approach,

we quantify the benefits of hybrid computing for cooperative perception and compare them

against edge and cooperative computing.

1.4 Thesis organization

The rest of this thesis is organized as follows:
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• Chapter 2: We present our active prediction approaches for prediction of channel gain

across space. This chapter is based on [KC23], which is an extension of the work

published in [KHC21].

• Chapter 3: We present our reinforcement learning based approach for simultaneous

channel gain learning and UAV placement optimization. This chapter is a based on

our previous publication in [KHC19].

• Chapter 4: We present our work on cooperative computing in vehicular micro clouds

for support of emerging vehicular applications. This chapter is based on [KLH23].

• Chapter 5: We present our resource assignment and scheduling algorithm for hybrid

computing of tasks in cooperative perception. This chapter is based on our previous

publication in [KMH20].

• Chapter 6: We summarize the research contributions and outline future research di-

rections.
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CHAPTER 2

Spatial Channel Gain Prediction Using a Swarm of

Unmanned Aerial Vehicles

Prediction of wireless CG across space is a necessary tool for many important wireless net-

work design problems. In this chapter, we develop prediction methods that use environment-

specific features, namely building maps and CG measurements, to achieve a high prediction

accuracy. We assume that measurements are collected using a swarm of coordinated un-

manned aerial vehicles (UAVs). We develop novel active prediction approaches which consist

of both methods for UAV path planning for optimal measurement collection and methods

for prediction of CG across space based on the collected measurements. We propose two

active prediction approaches based on DL and Kriging interpolation. The first approach

does not rely on the location of the transmitter and utilizes 3D maps to compensate for

the lack of it. We utilize DL to incorporate 3D maps into prediction and reinforcement

learning for optimal path planning for the UAVs based on DL prediction. The second active

prediction approach is based on Kriging interpolation, which requires known transmitter

location and cannot utilize 3D maps. We train and evaluate the two proposed approaches in

a ray-tracing-based channel simulator. Using simulations, we demonstrate the importance

of active prediction compared to prediction based on randomly collected measurements of

channel gain. Furthermore, we show that using DL and 3D maps, we can achieve high pre-

diction accuracy even without knowing the transmitter location. We also demonstrate the

importance of coordinated path planning for active prediction when using multiples UAVs

compared to UAVs collecting measurements independently in a greedy manner.

8



2.1 Introduction

The use of unmanned aerial vehicles (UAVs) as communication enablers has received a

lot of attention in recent years, in part, due to their ability to optimize their placement

in order to increase CG to the ground devices they are serving [MSB19a]. Algorithms

for optimal placement often rely on the knowledge of the CG across space, which can be

obtained via direct measurements or via some type of predictive model. Prediction of the

CG across space is also necessary for other important wireless network design problems

such as wireless network infrastructure planning [WXC07], network resource allocation and

spectrum sharing [ARV12].

Commonly used statistical approaches for CG prediction rely on the assumption that

the channel can be modeled based on features that are not environment-specific, such as

distance between radio devices, altitude of radio devices and others. Some examples of

statistical UAV communications channel models are provided in [KCZ18]. The advantage of

using statistical models for spatial channel prediction lies in their computational simplicity

and in their suitability for mathematical analysis. However, such prediction approaches lack

the ability to adapt to a given environment which limits the accuracy of their prediction.

The key reason for this is that the local environment blockage and scattering may cause the

channel to sharply differ from the predictions drawn from simple statistical features such as

distance and altitude.

In order to circumvent the limitations of statistical approaches, methods that utilize en-

vironment adaptive features such as 3D maps or CG measurements can be utilized. These

approaches have the advantage of adapting to the propagation characteristics of the current

environment. An example of such methods for predicting the wireless channel is ray-tracing.

Ray-tracing can be used to accurately simulate the wireless channel for a specific environ-

ment. However, it has the disadvantages of requiring a precise 3D map of the environment,

exact transmitter location and is highly computationally complex. An alternative set of
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methods for environment adaptive spatial prediction are spatial interpolation methods often

used in geostatistics, such as Kriging interpolation and inverse distance weighting. These

methods can be used to predict the CG across an area of interest given a set of sparse

measurements [AAG11].

However, majority of current research on environment adaptive CG prediction based on

measurements does not consider the methods according to which measurements are collected.

For applications such as UAV-enabled communications, it is possible to utilize one or multiple

UAVs to collect CG measurements for CG prediction. For other applications such as network

planning, it is also possible to use UAVs or other types of vehicles to collect measurements.

The design of paths according to which measurements are collected can significantly influence

the accuracy of predicted CG. Despite their potential importance, methods for path planning

for measurement collection have scarcely been considered in the prior literature. Therefore,

the first goal of this chapter is to develop CG prediction approaches that include methods

for measurement collection, which we refer to as active CG prediction.

Additionally, spatial interpolation algorithms and ray-tracing CG prediction methods

rely on exact transmitter location knowledge. Obtaining the exact transmitter location

may not always be possible for several reasons: GPS operation is not always reliable in

urban environments, the transmitter equipment may not have localization capabilities, or

the transmitter location cannot be shared due to privacy or security reasons. Hence, our

second goal is to develop active CG prediction approaches that can operate without the

knowledge of the exact transmitter location. At the same time, we seek to achieve higher

or similar level of accuracy using our location-free CG prediction methods compared to

traditional spatial interpolation methods, which rely on known transmitter location.

Guided by these objectives, we propose two new active channel gain prediction solutions.

Our contributions can be summarized as follows:

• First, we developed an active DL CG prediction approach that relies on measurements
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collected by multiple UAVs and a 3D map of the environment, but does not rely on

transmitter location. The 3D maps enable highly accurate CG prediction compared to

spatial interpolation using only measurements and without transmitter location. The

developed approach consists of a DL prediction method that provides probabilistic

CG prediction across space and a deep RL based method that designs UAV paths for

measurement collection for multiple UAVs based on the DL predictions. This active

approach is trained and evaluated in a ray-tracing-based wireless channel simulator.

• Second, we developed an active CG prediction algorithm using multiple UAVs based on

Kriging spatial interpolation. While Kriging interpolation has been extensively used

for CG prediction, no methods for active prediction using multiple UAVs have been

proposed. This method is suitable for CG prediction when the transmitter location is

available and a 3D map of the environment is not. Furthermore, this method does not

require extensive training compared to our proposed DL active prediction approach.

We also evaluated the proposed active Kriging prediction approach in a ray-tracing-

based simulator.

The chapter is organized as follows. In Sec. 2.2, we review and compare our work to the

existing literature. In Sec. 2.3, we provide a detailed description of the targeted application

scenarios and the modeling assumptions. In Sec. 2.4, we introduce the proposed active DL

CG prediction approach. In sections 2.5 and 2.6, we go into more details on its two main

components: probabilistic channel gain prediction and reinforcement learning path planner.

In Sec. 2.7 we introduce and explain the Kriging based active prediction approach. In Sec.

2.8, we describe the simulation environment, benchmarks and obtained simulation results.

Finally, in Sec. 2.9, we summarize the findings of the chapter.
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2.2 Related Work

The most common approaches for channel prediction are adopted from the field of spatial

interpolation [AAG11,CBS18,HB12,BJF16]. Among the interpolation methods, the most

commonly used ones are inverse distance weighting (IDW), gradient plus inverse distance

squared (GIDS) and Kriging interpolation. Algorithms based on Kriging interpolation rely

on the location of the transmitter, while IDW or GIDS based algorithms normally do not,

which comes at the cost of lower prediction accuracy compared to Kriging. Other stand-

alone approaches based on Gaussian modeling of shadowing component of CG were proposed

in [LKG17] and [MM12], but these approaches also rely on knowing the transmitter location.

More recently, in [ZFW20], thin plate splines (TPS) interpolation method and coupled block-

term tensor decomposition methods were used for CG prediction. These methods also do not

rely on transmitter location. However, the spatial interpolation based approaches in [AAG11,

CBS18,HB12,BJF16] and in [LKG17,MM12,ZFW20] do not consider optimal measurement

collection methods. Furthermore, these methods are not able to incorporate complex inputs

such as topography maps or building maps into their prediction.

DL based approaches have been developed for spatial gain prediction. These approaches

are usually developed to outperform spatial interpolation methods in terms of prediction

accuracy or to outperform ray tracing approaches in terms of computational complexity,

such as in [LYK21,KSS23], where spatial gain prediction is performed assuming a known 3D

map of the environment and location of the transmitter. In [HXS20], generative adversarial

neural networks are used for spatial prediction based on measurements, while the authors

in [TR20] use deep completion auto-encoders for the same task. The approaches in [HXS20]

and [TR20] do not assume to know the user location. In our prior work [KHC21], we also

utilized 3D maps and signal strength measurements for probabilistic CG prediction using

DL and this chapter builds upon that work. However, like the approaches in [HXS20,TR20],

we have not explored optimal CG measurement collection strategies.
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Optimal measurement collection methods for spatial CG prediction have rarely been

considered in the prior literature. In [AMB22], the authors consider the problem of cellular

base station gain prediction based on crowd-sourced measurements from end-user devices.

In this case, the objective is to devise a strategy for optimal selection and utilization of

crowd-sourced measurements but not to directly control where the measurements are col-

lected. Optimal path planning for measurement collection using UAVs has been considered

in [SRC22]. However, in this work, path planning for measurement collection using only a

single UAV is considered and machine-learning-based path planning is not considered. Given

that the UAV technology is currently mature and widely accessible, it is reasonable to deploy

swarms of UAVs for CG prediction for one or more transmitters. Therefore, we develop path

planning methods for multiple coordinated UAVs. Furthermore, it is necessary to consider

learning-based methods for path planning for measurement collection due to the recent inter-

est in deep-learning-based CG predictors. Since deep neural networks are black box models,

it is difficult to design optimal analytical approaches for path planning, hence learning-based

approaches can be used to better accomplish this task. In [LLW23], reinforcement learning

was applied for path planning for measurement collection for TPS interpolation. However,

this approach was developed for control of a single UAV, so it would not be applicable to

coordinated control of multiple UAVs. Furthermore, since it was trained and evaluated for

prediction based on TPS interpolation, it is not clear if it would extend to DL CG prediction

approaches.

2.3 System model and objectives

2.3.1 Environment and transmitters

We consider a rectangular urban area of interest (AoI) of width w, length l and height h, for

which we have a database of major buildings and objects that can be used to construct a 3D

map of the environment, which is denoted by M. We discretize the AoI into a uniformly-
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Table 2.1: A summary of important notation used in the chapter and their meanings.

Variables/Parameters
Environment and transmitters

l, w, h Dimensions of the AoI
M 3D Map of the AoI
d Grid spacing
Q Discrete set of locations in AoI
qj A location in Q
hp Altitude where CG is predicted
QP Set of locations in Q where CG is predicted
xk Vector of CGs at locationsQP for transmitter k
z Binary vector denoting outdoor locations inQP

UAV swarm and CG measurements
N Number of UAVs

hUAV Altitude where UAVs are moving
t Time index
Pt Locations of all UAVs at time t
pt,n Location of UAV n at time t
Vt1:t2 Set of locations visited by UAVs between t1 and t2
yk,t1:t2 Vector of CG measurements collected from t1 to t2
T Number of steps UAVs move to collect measurements
U Number of possible motion actions per UAV
ut Vector of motion actions of all N UAVs at time t

Reinforcement learning
S Set of states in an MDP
A Set of actions in an MDP
st State in an MDP
at Action in an MDP
r Reward function in an MDP
γ Discount factor in an MDP
π Policy function in an MDP
ϵ Exploration probability
M Multi-step learning length
τDQN Target update period
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spaced 3D grid of locations Q =
{
q1, . . . ,q|Q|

}
with spacing d. Each location qj ∈ Q is

coordinate vector qj = [qj,x, qj,y, qj,z]
T . The number of locations in Q is |Q| = l

d
× w

d
× h

d
.

Throughout this chapter, we assume that the goal is to estimate the CG in the AoI for

a single transmitter k. The transmitter is assumed to be stationary with a location wTX .

The location wTX could be known or unknown, and we will propose approaches that will

handle both of these cases. Furthermore, we assume that CG is predicted for a set of points

in QP =
{
q̃1, . . . , q̃|QP |

}
⊂ Q, which have an altitude hP . The number of locations in QP is

|QP | = l
d
× w

d
. For the purposes of this chapter, the CG is predicted for a constant altitude

to reduce the training time and computational complexity of the presented CG prediction

algorithms. However, in applications such as UAV communications, for example, 3D CG

prediction may be necessary. Therefore, the active CG prediction algorithms that will be

presented in later sections can naturally be extended to 3D.

The time-averaged narrow-band CG in logarithmic scale for a particular transmitter k can

be modeled as a function of space ψk(·). The CG function ψk(·) evaluated across locations

QP for user k are stacked into a vector xk ∈ R|QP |. We further define a utility binary vector

variable z ∈ Z|QP |
2 , where ZR

2 denotes the set of all binary integer vectors of size R. [z]j = 0

if the location q̃j ∈ QP is obstructed by a building, i.e. it is indoor, and [z]j = 1 otherwise.

2.3.2 UAV swarm and channel gain measurements

We assume that N UAVs are deployed to predict the CG in the AoI. We also assume that

these UAVs are constrained to move and collect CG measurements at a constant altitude

hUAV. This assumption is made for the purposes of this chapter, to reduce the training

time and computational complexity of the presented path planning algorithms. However, in

practice, the UAVs would have the ability to move vertically depending on the local flight

regulations. Therefore, the path planning algorithms that we will discuss in later sections

can be extended to 3D mobility.
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Furthermore, let us denote the placement of UAVs at time t, rounded to the nearest grid

point in Q, by Pt ∈ QN
UAV. Similarly, we denote the location of each individual UAV, n,

by pt,n ∈ QUAV ⊂ Q. We ignore UAV localization errors in our system model. Moreover,

we assume that the control of UAVs can be centralized and performed at one of the UAVs

or at a nearby edge server. This also implies that UAVs can communicate within the UAV

swarm, either directly or through message relaying within the swarm.

We assume that, as UAVs move, they estimate the CG for the transmitter k via the use

of pilot signals. We assume that time is discretized into time steps, where in each time step,

UAVs move by a certain distance and estimate the CG at new locations. The set of new

locations that have been visited by at least one UAV between time t1 and up to and including

time t2 is denoted by Vt1:t2 =
{
v1, . . . ,v|Vt1:t2 |

}
. At these locations, the set of measurements

of CG are obtained via some measurement model yk,t1:t2 = C(Vt1:t2 ,xk). Here, we denote the

set of CG measurements obtained at locations Vt1:t2 by yk,t1:t2 . In this chapter, we assume a

perfect CG measurement model, where yk,t1:t2 measurements are equal to the true channel

gains at Vt1:t2 , which we denote by xk,t1:t2 . The main variables and parameters introduced

in this section are summarized in Table 2.1. Some of the parameters and variables in Table

2.1 are introduced in later sections.

2.3.3 Objectives

The main objective of this chapter is to devise active methods for prediction of CG xk, as

illustrated in Fig. 2.1. We seek to develop methods that adapt to the local environment

using two kinds of input features: (1) measurements yk,1:t collected by the UAVs up to time

time t; (2) 3D map M of the AoI. Given that we seek to develop approaches for prediction of

xk that rely on CG measurements, optimally controlling the UAVs to collect measurements

that provide maximum amount of information about xk is just as important as optimally

utilizing the measurements to predict xk. Therefore, we seek to develop active CG prediction

approaches that consist of methods for control of UAVs to collect measurements and methods
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that can predict xk.

2.4 Deep Learning Based Active Channel Gain Prediction

In this section, we explain our DL based approach for active CG prediction. Our proposed

approach consists of two key parts: a deep-learning algorithm to provide a posterior prob-

ability prediction of xk, p(xk | yk,1:t,M), and a multi-agent deep reinforcement learning

algorithm to control the UAVs to collect measurements based on p(xk | yk,1:t,M), 3D map

M and UAV locations. We propose an iterative procedure where in each time slot, the UAVs

move and measure the CG at new locations. At the end of each time slot, the measurements

from all UAVs are combined to update p(xk | yk,1:t,M).

The posterior p(xk | yk,1:t,M) represents the belief on what the true CG xk is and it is

used in two ways in our proposed approach. First, the predicted CG can be obtained as x̂k =∫
xk

xkp(xk | yk,1:t,M). Second, the posterior distribution p(xk | yk,1:t,M) is used to estimate

the uncertainty Var(x̂k) of predicted CG. While the posterior probability p(xk | yk,1:t,M)

can be used to estimate the uncertainty of CG prediction across space, optimally collecting

measurements to feed into the DL model is still a challenging problem. For example, it

may not be optimal to simply move UAVs towards locations with high CG uncertainty.

This is the case because it is not possible to determine how a deep neural network uses the

input measurements to arrive at the final prediction, which is why deep neural networks are

often referred to as black box models. Furthermore, it is not clear how can multiple UAVs

coordinate their movement to optimally collect CG measurements. Therefore, we utilize

reinforcement learning to learn optimal path planning algorithms for UAVs that will result

in optimal set of CG measurements being collected.

We assume that the UAVs are allotted a fixed number of steps T to estimate xk. However,

an alternative approach is possible where UAVs can perform early stopping of measurement

collection and CG prediction based on the posterior probability p(xk | yk,1:t,M).
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Figure 2.1: Active CG prediction using multiple UAVs

The proposed active DL CG approach is illustrated in Fig. 2.2 and its two main com-

ponents are explained in sections 2.5 and 2.6. Our proposed DL approach for probabilistic

CG prediction is explained in Sec. 2.5 and our proposed reinforcement learning approach

for path planning for measurement collection is explained in Sec. 2.6.

2.5 Deep learning based probabilistic channel gain predictor

The purpose of the proposed DL CG predictor is to output a posterior distribution p(xk |

yk,1:t,M) given measurements yk,1:t collected by the UAVs and a 3D map M of the AoI.

Deep neural networks are known to be universal function approximators, which is why we

use their capabilities to learn the complicated relationship between the 3D map M, CG

measurements yk,1:t and the CG xk. To design and train the predictor, we must select a

probability distribution that will be used as the posterior p(xk | yk,1:t,M). We selected the

Gaussian distribution as the posterior p(xk | yk,1:t,M) = N (µk,Σk) due to its similarity to

the Gudmundons model of channel gain shadowing [Gud91] and because it performed the best

in terms of prediction accuracy amongst the alternatives that we tried. Two DNN models

are used to predict the mean µk and covariance Σk, which uniquely define the Gaussian

posterior p(xk | yk,1:t,M) = N (µk,Σk). Furthermore, we restrict the covariance matrix

Σk to be diagonal to simplify the training loss function, which reduces the computational

complexity during training and improves the training convergence rate.
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The two deep neural networks that learn the mappings from (yk,1:t,M) to µk and Σk, are

denoted as µθ(yk,1:t,M) and Σθ(yk,1:t,M), respectively. The parameters of the two DNNs

are denoted by θ.

The loss function is based on maximizing the log-likelihood of having observed the train-

ing dataset given a Gaussian distribution:

L(θ) = 1

2D

D∑
i=1

(∆
(i)
k )TΣθ(y

(i)
k,1:t,M

(i))−1∆
(i)
k +

1

2D

D∑
i=1

log
(
(z

(i)
k )Tdiag

(
Σθ(y

(i)
k,1:t,M

(i))
))
(2.1)

where D is the number of training samples. In Eq. 2.1, we used a substitute variable

∆
(i)
k =

(
µθ(y

(i)
k,1:t,M)− x

(i)
k

)
⊙ z

(i)
k . The loss function considers only outdoor coordinates

through the use of zk in the expression. The variable zk must be known for training but not

for prediction during deployment. We minimize the loss function in Eq. 2.1 to optimize the

parameters of the deep neural networks: θ = argminθ L(θ).

2.5.1 Deep neural network design

We use a convolutional neural network architecture for deep neural networks µθ(yk,1:t,M) and

Σθ(yk,1:t,M). Convolutional neural networks are suitable for task of spatial CG prediction

because convolutional neural network layers consist of spatial filters that enforce a local

connectivity pattern between neurons of adjacent layers. This architecture ensures that

the learned filters produce the strongest response to spatially local CG measurements. The

particular convolutional neural network architecture that we used was U-Net as illustrated in

Fig. 2.2, which was first used for image segmentation problems [RFB15]. U-Net architecture

is particularly suitable for CG prediction due to skip connections, shown in Fig. 2.2, which

enable 3D map and CGmeasurements to be passed to the final layers without information loss

due to encoding. To use convolutional neural networks for this problem, we convert the inputs

(yk,1:t,M) into matrices that can be processed by convolutional neural networks, as shown in
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Figure 2.2: The proposed active DL CG prediction approach consists of two main compo-
nents: DL probabilistic predictor and a RL path planner. The predictor outputs mean and
variance of the posterior distribution of the CG, µθ(M,yk,1:t) and Σθ(M,yk,1:t), given the
channel gain measurements yk,1:t and a 3D map M. UAV path planning is based on on rein-
forcement learning. Each UAV uses a DQN to predict the value of an action in a particular
state and then select the optimal action accordingly. The DQN inputs are locations of the
UAVs, µθ(M,yk,1:t) and Σθ(M,yk,1:t).

Fig. 2.2. First, the 3D mapM is converted into a tensor M̃ ∈ R l
d
×w

d , where each entry
[
M̃
]
i,j

is equal to the building or terrain height at coordinates (id, jd). Next, the measurements

collected up to time t are converted into a matrix Ỹk,1:t ∈ R l
d
×w

d , where each entry
[
Ỹk,1:t

]
i,j

is equal to the CG measurement at coordinates (id, jd, hUAV), if (id, jd, hUAV) ∈ V1:t, and is

equal to cL, otherwise. cL is a padding value that is set to a value outside of the reasonable

range of CG values. The outputs of µθ(yk,1:t,M) and Σθ(yk,1:t,M) are also matrices of

form R l
d
×w

d , which are transformed into a vector R|QP | and a diagonal matrix R|QP |×|QP |,

respectively.
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2.6 Deep reinforcement learning for optimal measurement collec-

tion

In this section, we describe our RL approach for control of UAVs to optimally collect CG

measurements, which is part of our active CG prediction framework, as illustrated in Fig.

2.2.

2.6.1 Path planning problem formulation

We formulate the trajectory design problem as a sequential decision making problem. At each

time step t, the path planning controller will define an action ut. The action ut specifies the

next displacement for each of the N UAVs. We limit the number of possible displacements

to U = 4, where each displacement is of length d and along one of the horizontal directions.

Therefore, the motion actions are discrete and number of feasible motion actions across

the entire UAV swarm is UN . We define the rules according to which UAVs move using a

transition function Pt+1 = T (Pt,ut), which defines the positions of UAVs at time t+1, Pt+1,

given the positions of UAVs at time t, Pt, and motion action ut. The action at time step t

is constrained to ut ∈ G(Pt) due to buildings and other obstacles. The function G(Pt) can

be used to capture other constraints on motion of UAVs such as no-fly zones.

Given the above notation, we can define the trajectory design as an optimization problem:

max
u1,...,uT

1

|QP |
||µθ(yk,1:T+1,M)− xk||22 (P1)

s.t. Pt+1 = T (Pt,ut),ut ∈ G(Pt)

where the objective function is the mean square error (MSE) of the CG prediction after T

time steps. This is a challenging problem to solve because we cannot predict how the motion

actions u1, . . . ,uT will influence the MSE. Therefore, we turn to reinforcement learning to
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learn the relationship between u1, . . . ,uT and the MSE 1
|QP | ||µθ(yk,1:T+1,M)− xk||22, to solve

for optimal actions u1, . . . ,uT .

2.6.2 Reinforcement learning background

Reinforcement learning is a branch of machine learning that is concerned with making se-

quences of decisions. It can be applied to problems that can be casted as a Markov decision

process (MDP). A Markov decision process (MDP) is defined by a tuple {S,A, P, r}, where

S is a set of states, A is a set of actions, P is the transition probability function from state

s to s′ ∈ S after action a ∈ A is performed, r is the reward obtained after a is executed in

state s. An action space A can be a discrete or a continuous set.

A policy π : S → A is a function that maps a state s ∈ S into an action a ∈ A. With

some abuse of notation, we also use variable t to denote the time-step in the MDP. Thus,

at time t, the agent observes the state st, then based on a specific policy π, it takes action

at = π (st). Consequently, a new state st+1 will be reached with probability P (st+1 | st, at)

and a reward rt will be received. The observed information from the environment, the reward

rt and st+1 are used to improve the policy. This process is repeated until the optimal policy

is reached. We use ρπ (st) and ρπ (st, at) to denote the state and state-action probability

distributions induced by a policy π.

The objective function in reinforcement learning is normally the expected sum of rewards∑
t E(st,at)∼ρπ [r (st, at)] , where γ is the discount factor. Reinforcement learning methods can

broadly be classified into two categories: policy learning and Q-learning. In policy learning

methods, the goal is to directly learn the optimal policy function π. In Q-learning methods,

the goal is to learn the Q-value functionQ(s, a) = E(st,at)∼ρπ [
∑∞

t=0 γ
tr (st, at) | s0 = s, a0 = a]

, which defines the expected reward in a state s, after taking the action a. Based on the

Q-value function, the optimal policy is then π(s) = argmaxa Q(s, a). Deep Q-learning is an

extension to the Q-learning paradigm whereby a deep neural network is used to approximate
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Q(s, a).

2.6.3 Path planning as a Markov decision process

Next, we convert the path planning problem described in Sec. 2.6.1 into an MDP. Based

on the problem formulation (P1), if we were to define the MDP such that the entire UAV

swarm is considered a single agent, the size of the action space would grow exponentially

with the number of UAVs. While such MDP formulation would be suitable for solving the

path planning problem (P1), for a large number of UAVs, the size of the actions space

would prevent effective training of reinforcement learning policies. Therefore, we focus on

decentralized control where each UAV will act as an independent agent, while treating the

rest of the UAVs as part of the environment. Even though their control is decentralized in

our approach, the UAVs within the swarm are still cooperative and share the same common

goal stated in the objective function in (P1). Therefore, our problem can be formulated as a

multi-agent reinforcement learning problem and the respective MDP formulation is explained

next.

2.6.3.1 State space

Since the state of the environment is not fully observable, a set of observations replaces the

role of the state in our MDP formulation.

In multi-agent reinforcement learning, the input observations often consist of observation

related to the environment and messages emitted by other agents that assist the agents in

collaboratively achieving the common goal. One of the main challenges related to multi-agent

reinforcement learning is designing or learning communication protocols between the agents

[Foe18]. In our approach, we do not aim to learn the messages to be passed between the

agents but instead utilize the deep-learning CG predictor to enable cooperation between the

UAVs. The DL predictor processes the information collected by the UAVs, namely the CG
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measurements collected by the UAVs and their locations, and outputs features µθ(yk,1:t,M)

and Σθ(yk,1:t,M). The features µθ(yk,1:t,M) and Σθ(yk,1:t,M) are part of the observation s
(n)
t

observed by UAV n at time t. Additionally, each UAV n observes its own current location,

location of other UAVs in the swarm, and a 3D map of the environment M. In summary,

the observation for UAV n at time t is s
(n)
t = (µθ(yk,1:t,M),Σθ(yk,1:t,M),M,Pt,pt,n).

2.6.3.2 Action space

Since the control of the UAVs is distributed, the action a
(n)
t dictates the motion of the UAV

n at time t. Each action maps to one of the U the possible displacements defined in Sec.

2.6.1.

2.6.3.3 Reward

The reward function is designed to maximize the objective function in (P1) and the agents

receive the reward r
(n)
t at time t. The agent receives a reward r(n)(t) = ree

(n)(t) when

1 ≤ t < T . e(n)(t) is equal to 1 if the UAV n visits a new location at time t and is 0

otherwise. The exploration reward is useful during training to ensure that UAVs don’t visit

the same location multiple times. At t = T , the reward is based on the prediction error,

r
(n)
t = −rr ||µθ(yk,1:T+1,M)− xk||2. The constants re and rr were empirically selected during

training.

2.6.4 Deep Q-learning algorithm

The deep Q-learning algorithm that we developed to solve the MDP described in the pre-

vious section is based on the DQN algorithm [MKS13]. In DQN, the Q-value function is

approximated by a neural network Qω, with parameters ω. An estimate of the true Q-value

at time t, Qt, can be obtained by using a single sample estimate of the Bellman backup
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operator

T̂ Qt = rt +max
at+1

γQω(st+1, at+1) (2.3)

This is called a single sample estimate because only the reward rt at the current time instant

t is used to approximate the infinite horizon Q-value function.

In order to train Qω to approximate Q, the following minimization is done over sample

data,

minimize
ω

∑
t

∣∣∣∣∣∣T̂ Qt −Qω(st, at)
∣∣∣∣∣∣2 (2.4)

In the DQN algorithm, the training and the interaction of the agent with the environment

happen in parallel. As the agent gathers experience, samples of that experience are stored

and the minimization in the Eq. 2.4 is done periodically, every τL steps, by randomly

sampling a batch of BL recorded samples and applying gradient descent. This is referred

to as experience replay. Each sample is a tuple (st, at, rt, st+1) and these are stored in the

replay buffer.

The agent interacts with the environment following the ϵ-greedy policy, where at any

time t the agent either takes a random action at probability ϵ or the Q-value optimal action

argmaxat
Qω(st, at) at probability (1 − ϵ). In the implementation of DQN, there is an

additional Qω, called the target Q-network. The target Q-network is used in the Bellman

backup operator but it is not directly optimized over. Instead, its parameters are copied

from the main Q-network at period τDQN . The target Q-network is included to improve the

stability during training.

Since its original inception, several modifications of the original DQN algorithm have been

shown to improve performance over a variety of tasks. In this chapter, we apply two of such

modifications we found to be useful on our problem: multi-step learning and distributional

RL [BDM17]. In multi-step learning, Bellman backup operator in Eq. 2.3 is extended to
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include reward samples from M consecutive steps:

T̂ Qt =
M−1∑
m=0

γmrt+m +max
at+M

γMQω(st+M , at+M) (2.5)

In distributional RL, the DQN is trained to predict a discrete distribution of Q-values on

a discrete support v, where v is vector with Na atoms. To accomplish this, the DQN is

modified to have Na × U outputs. Furthermore, the loss functions in Eq. 2.4 is replaced

by a loss function that ensures that the predicted distribution closely matches the actual

distribution of returns, the details of which are omitted for brevity.

2.6.5 Multi-agent deep Q-learning for measurement collection using multiple

UAVs

We extended the DQN algorithm to multiple agents in the following way. First, all of the

agents or UAVs share the same DQN network Qω with identical parameters ω, but each agent

acts differently due to different input observations. The policy is trained in a centralized

way, where the training samples from all agents are collected and fed to a centralized replay

buffer, which is used to train the common policy Qω. Similarly to the single-agent DQN,

each agent retains a copy of the main DQN Qω to collect training samples and these copies

are periodically synced with main DQN Qω. Overall, the changes we had made to the single-

agent DQN algorithm are minimal because we use the deep-learning CG predictor to process

information collected by the UAVs and extract features which are relevant for maximizing

the reward obtained. These shared input features facilitate collaboration. Furthermore,

since all of the agent Q-networks share the same parameters there is an indirect knowledge

transfer in the parameter space between the agents, which also enables collaboration.
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2.6.6 Deep Q-network design

We used a combination of convolutional and fully-connected layers for the design of our DQN.

Convolutional neural networks are suitable for this task because the outputs µθ(yk,1:t,M)

and Σθ(yk,1:t,M) provided by deep learning predictors are matrices as shown in Fig. 2.2.

Similarly, the location information Pt and pt,n can be converted into binary matrices, with

non-zero entries corresponding to locations of the UAVs. Using convolutional layers, we can

efficiently extract lower dimensional features from the inputs, which are utilized by fully-

connected layers for Q-value prediction. The last layer has Na×U outputs, which correspond

to distributional prediction of Q-value.

2.7 Active channel prediction based on Kriging interpolation

Kriging interpolation has been extensively used for CG prediction. However, no methods for

active prediction approaches based on Kriging interpolation using multiple UAVs have been

proposed in prior literature. While our DL active prediction approach can accomplish CG

prediction without transmitter location, traditional interpolation methods such as Kriging

remain useful when transmitter location is available. Moreover, the Kriging method has the

advantage of not requiring extensive training compared to DL approaches and is therefore

easier to deploy. Hence, in this section, we develop an active CG prediction algorithm using

multiple UAVs based on Kriging spatial interpolation.

2.7.1 Kriging interpolation for channel gain prediction

Kriging interpolation is an equivalent method to Gaussian process regression (GPR), which

is a widely used method for interpolation, classification, supervised learning, and active

learning [Ras03]. GPR constructs a probabilistic prediction of a partially observed function

(of time and/or space) assuming this function is a realization of a Gaussian process (GP).
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In statistical models of the CG, time-averaged CG ψk(qj) at location qj is split into two

components, ψk(qj) = ψk,PL(qj) + ψk,SH(qj), where ψk,PL is the path loss due to free space

attenuation and ψk,SH(qj) is the loss due to shadowing. ψk,PL(qj) can be predicted knowing

the antenna radiation pattern and separation of the receiver and the transmitter. On the

other hand, ψk,SH(qj) is often modeled as a Gaussian random variable with exponentially

decaying spatial correlation according to the Gudmundson model [Gud91]. Accordingly,

Kriging interpolation or GPR can be used to predict ψk,SH(qj), while the ψk,PL(qj) compo-

nent can be obtained knowing the distance of location qj to the transmitter.

Using Kriging interpolation, we aim to predict the shadowing gain x̃k,1:t at unvisited

locations QP\V1:t. Then, we can obtain the CG at locations QP\V1:t by adding x̃k,1:t to

the estimated free-space path loss gain. In simple Kriging, the data is modeled as a GP

with a zero mean and a prescribed form of the stationary covariance function (also known as

kernel). This modelling is compatible with the Gudmundson shadowing model, therefore we

will utilize simple Kriging as the foundation of our active prediction approach. The path-loss

ψk,PL(qj) is estimated using the model:

ψk,PL(qj) = α− β log
(
||qj −wTX ||2

)
(2.6)

where the constants α and β are estimated from CG data by minimizing the mean square

error loss.

The kernel defines the shadowing gain cross-covariance between two locations qi and qj:

k(qi,qj) = Cov (ψk,SH(qi), ψk,SH(qj)) . The kernel we used is based on the Gudmundson

model:

k(qi,qj) = ϕ exp

(
− ||qi − qj||2

δ

)
, (2.7)

where ϕ and δ are positive constants that are estimated from CG data via negative log-

likelihood minimization. The kernel k(qi,qj) is isotropic, i.e. cross-covariance only depends

on distance between qi and qj, but not on the specific values of qi and qj. Given that
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UAVs have visited a set of locations V1:t up to time t, a vector ỹk,1:t of shadowing gain

measurements will be obtained. The shadowing gain measurements ỹk,1:t are obtained by

subtracting the estimated free-space path-loss gain obtained using Eq. 2.6 from yk,1:t.

The covariance matrix of the observed shadowing gains ỹk,1:t is denoted by Σv,v =

Cov (ỹk,1:t, ỹk,1:t). The matrix ỹk,1:t can be obtained using the kernel as follows:

Σv,v =


k(v1,v1) · · · k(v1,v|V1:t|)

...
. . .

...

k(v|V1:t|,v1) · · · k(v|V1:t|,v|V1:t|)

 . (2.8)

Furthermore, we introduce a matrix Σv,p, which denotes the cross-covariance of the shad-

owing gains between measured locations and prediction locations: Σv,p = Cov (ỹk,1:t, x̃k,1:t).

The cross-covariance matrix Σv,p can be obtained using the shadowing kernel in Eq. 2.7.

Finally, we define the covariance matrix Σp,p of shadowing gain at predicted locations:

Σp,p = Cov (x̃k, x̃k).

Using the matrices Σv,v and Σv,p, and assuming that the shadowing gain is a zero-mean

GP, we can predict x̃k,1:t given ỹk,1:t as follows:

µ̃k,1:t = ΣT
v,pΣ

−1
v,vỹk,1:t (2.9)

Similarly, we can calculate the conditional covariance of the predicted shadowing gains given

ỹk,1:t as:

Σ̃k,1:t = Σp,p −ΣT
v,pΣ

−1
v,vΣv,p (2.10)

The predicted covariance Σ̃k,1:t depends on Σv,v, Σv,p and Σp,p, which are only dependent

on the visited locations V1:t and unvisited locations QP\V1:t (see for example the definition

of Σv,v in Eq. 2.8). Therefore, Σ̃k,1:t only depends on the selection of the explored locations

and not the observed measurements ỹk,1:t.
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2.7.2 Optimal path planning for measurement collection

Next, we develop optimal path planning methods for CG measurement collection. The goal

of optimal path planning remains to minimize the MSE 1
|QP | ||µ̃k,1:T+1 − x̃k,1:T+1||22. This

problem could also be solved using RL. However, since Kriging interpolation unlike DL

prediction is not a data-driven method, we aim to develop optimal path planning methods

which also do not rely on large data for this approach. The MSE is not useful for UAV path

design since it is unknown to the UAVs. Instead, other criteria that are found to strongly

correlate to minimizing the mean square error are utilized for sensing of GPs, such as the

entropy of ỹk,1:T+1 [KSG08]. Since ỹk,1:T+1 has a Gaussian distribution, this entropy can be

calculated as:

H(ỹk,1:T+1) =
|V1:T+1|

2
log(2πe) +

1

2
log |Σv,v| (2.11)

The purpose of the metric in Eq. 2.11 can be explained as follows. Using the chain rule for en-

tropy, H(x̃k,1:T+1, ỹk,1:T+1) = H(x̃k,1:T+1 | ỹk,1:T+1) +H(ỹk,1:T+1). Since H(x̃k,1:T+1, ỹk,1:T+1)

is a constant as a function of measured locations, by maximizing H(ỹk,1:T+1), the conditional

entropy H(x̃k,1:T+1 | ỹk,1:T+1) is minimized and so is |Σ̃k,1:t|.

Based on the entropy metric in Eq. 2.11, we can formulate the path planning problem

as:

max
u1,...,uT

H(ỹk,1:T+1) s.t. Pt+1 = T (Pt,ut),ut ∈ G(Pt) (P2)

The problem (P2) is known to be NP-hard and can only be optimally solved using an

exhaustive algorithm. However, the number of possible paths exponentially increases with T

and N , so an exhaustive approach becomes intractable for real-time applications. Therefore,

it is necessary to develop a suboptimal tracktable heuristic.

We utilize the derivation in [LDK11] to recast the problem (P2) into a deterministic

MDP. Let us denote the measurements collected by the UAVs at time i as ỹk,i. Then,
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using the chain rule for entropy, we can rewrite the entropy of the shadowing gains at

measured locations as: H(ỹk,1:T+1) = H(ỹk,1) +
∑T

t=1H(ỹk,t+1 | ỹk,1:t). By approximating

H(ỹk,t+1 | ỹk,1:t) by an upper bound H(ỹk,t+1 | ỹk,t), we can simplify our objective function

to be

H(ỹk,1:T+1) ≈ H(ỹk,1) +
T∑
t=1

H(ỹk,t+1 | ỹk,t) (2.13)

Then, the new optimization problem based on the approximation in Eq. 2.13 is:

max
u1,...,uT

T∑
t=1

H(ỹk,t+1 | ỹk,t) (P3)

s.t. Pt+1 = T (Pt,ut),ut ∈ G(Pt)

where we have omitted the term H(ỹk,1) from the objective function since it does not de-

pend on u1, . . . ,uT . This objective function leads to paths with actions such that entropy

of locations explored at time t + 1 given the shadowing gain measurements at time t is

maximized.

The problem (P3) can be converted into a deterministic MDP, where the state at time t

is simply st = Pt and the action is at = ut. The reward function at time t is defined as:

r(Pt,ut) =


H(ỹk,t+1 | ỹk,t) ut ∈ G(Pt)

−∞ o.w.

(2.15)

where the negative infinity reward is assigned if an illegal action is taken at time t. To solve

this MDP, we can apply the value iteration algorithm. Let Vπ(Pt) be the value function

that defines the sum future reward when acting according to a certain policy π starting from

some state Pt. Let V ∗(Pt) be the value function obtained using an optimal policy π∗ that

31



yields the maximum Vπ(Pt):

V ∗(Pt) = max
ut,...,uT

T∑
t=1

r(Pt,ut) (2.16)

We can express the optimal value using a recurrent relation as:

V ∗(Pt) = max
ut

(r(Pt,ut) + V ∗(T (Pt,ut))) (2.17)

Since V ∗(Pt) can be expressed using a recurrent relation, we can then use forward value

iteration to solve for V ∗(P1) and optimal u1, . . . ,uT [LaV06, p. 48].

2.7.3 Computational complexity of path planning

The main source of computational load in the proposed active sensing approach is the forward

value iteration, which is used to solve for V ∗(P1). Forward value iteration will have a

complexity O
(
TUN

(
lw
d2

)N)
, where UN is the size of the action space and

(
lw
d2

)N
is the size

of the state space.

2.8 Results

2.8.1 Simulation environment

In this section, we describe the details of wireless channel simulation and the set of environ-

ments generated to train and test the proposed algorithms.

The main tool used for wireless channel simulation was ray tracing. Ray tracing is a

channel propagation modeling tool that provides estimates of channel gain, angle of ar-

rival/departure, and time delays by numerically solving Maxwell’s equations in far-field

propagation conditions [YI15]. A ray-tracing software takes in the 3D map of the environ-

ment, along with other parameters, such as transmission frequency, transmitter location,
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Figure 2.3: Heat maps of randomly generated urban environments. The colors corresponds
to building heights.
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and material properties of environment objects to trace the radio propagation paths and cal-

culate the channel state at the desired points. The particular ray tracing software we used

was Wireless Insite. To limit the ray-tracing computation time, we constrain the maximum

number of reflections per a propagation ray to 3 and the maximum number of diffractions

per ray to 1.

In order to create an expansive set of environments, we used a handcrafted script to

randomly generate Manhattan-grid-like urban environments. We simulate a square shaped

area of dimensions 486m × 486m. The generation procedure starts by dividing the area

into city blocks with random widths and length. The number of blocks per each dimension

is 5, with a total of 25 blocks in the environment. Then, open spaces and rectangular-

base buildings with random dimensions are added within those blocks. Some examples of

randomly generated environments are shown in Fig. 2.3. In total, we generated 300 urban

environments. In each environment, we placed transmitters uniformly spaced at 97.2m

apart, which equates to 25 transmitter positions per environment. However, if a randomly

generated transmitter location was indoor, it was removed from simulated environments.

For each transmitter location, Wireless InSite was used to calculate the channel gain values

over a 3D grid of points spaced at 4 m apart and at altitudes ranging from 10 m to 30

m, over the entire width and length of the environment. The calculations were ran for a

carrier frequency of 5 GHz. The dataset will be provided upon request to the authors.

The outputs from Wireless InSite were then processed in Python and used for simulations.

During training and testing, we crop the size of the simulated environment to a space with a

footprint of size 384m× 384m with a random center within the original 486m× 486m area.

This data augmentation was performed to add more diversity into the original data set and

to add randomness to the transmitter locations.
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Table 2.2: Architecture of the deep neural networks used for channel gain prediction.

CG prediction U-Net
Layer In 1 2 3 4
Out. size 96× 96 96× 96 48× 48 48× 48 24× 24
Channels in 16 16 32 32
Type Conv. Conv. Conv. Conv. Conv.
Layer 5 6 7 8 9
Out. size 24× 24 12× 12 12× 12 6× 6 4608
Channels 64 64 128 128
Type Conv. Conv. Conv. Conv. Dense
Layer 10 11 12 13 14
Out. size 12× 12 24× 24 48× 48 96× 96 96× 96
Channels 128 64 32 16 1
Skip connect. 8 7 5 3 1
Type Deconv. Deconv. Deconv. Deconv. Conv.

Table 2.3: Architecture of the deep neural networks used as DQNs.

DQN
Layer In 1 2 3
Out. size 96× 96 48× 48 24× 24 16× 16
Channel in 64 128 256
Filter size 4 4 2
Type Conv. Conv. Conv. Conv.
Layer 4 5 6 7
Out. size 512 256 40 160
Type Dense Dense Dense Dense

Table 2.4: Training parameters for CG predictor and DQN

CG predictor training parameters DQN training parameters
Description Parameter Description Parameter
Learning rate 10−3 Learning rate 10−5

Adam param. β1 = 0.9 Exploration ε = 0.03
Adam param. β2 = 0.999 Replay buffer 6× 106

Adam param. ϵ̂ = 10−6 Batch size 256
Random walk param. p = 0.8 Target update τDQN = 1000

Batch size 160 Learning steps M = 5
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2.8.2 Training of DL channel gain predictor

Next, we describe the training details of the channel gain predictor proposed in Sec. 2.5. The

data generated in 75 out of 300 city environments was used to train the predictor, while the

data from 25 environments was used to validate the dataset. We refer to the former portion of

the dataset as T1 and to the latter as T2. We used the Adam optimizer to minimize the loss

function in Eq. 2.1 [KB14]. We found that training performance was highly dependent on the

selection of the Adam parameters, which are shown in Table 2.4, along with other relevant

training parameters. We used the same notation for Adam parameters as in the original

chapter [KB14]. In order to train the predictor, we randomly generated measurement inputs

yk,1:t. During training, we assume measurements are obtained using a random waypoint

motion model. We use a random trajectory to emulate measurement collection by UAVs

on some planned paths. A random waypoint trajectory for a UAV is obtained as follows.

At time t, each UAV takes independent random motion actions at probability 1 − p, and

at probability p, the previous motion action is repeated by the UAV. The path length per

UAV is random and uniformly distributed between 50 and 300 steps. Furthermore, we train

separate DL models depending on the number of UAVs N collecting the measurements.

The architecture of the U-Nets used for µθ(yk,1:t,M) and Σθ(yk,1:t,M) is shown in Table

2.2. The architecture consists of a series of convolutional layers or convolutional plus max-

pooling layers to encode the inputs. The size of the output of each layer is shown in the table.

Each layer outputs a number of channels which is equal to the number of convolutional filters

in the layer. The convolutional filter size was 4× 4, with stride size 1. A dense layer follows

after the encoding layers. After, there is a sequence of layers that perform upsampling and

convolution, which we refer to as deconvolution layers. The inputs of each deconvolution

layer are concatenated with outputs of one of the encoding layers using skip connections.

The skip connections are denoted in the table. The final layer is a convolutional layer which

also uses skip connections. We used the ReLU activation function for µθ(yk,1:t,M) and tanh

activation for Σθ(yk,1:t,M). We found that using tanh activation for Σθ(yk,1:t,M) leads to
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better performance than when using ReLU.

2.8.3 Training of DQN policies

In this subsection, we describe the training details of the DQN policies for UAV control

proposed in Sec. 2.6. The data generated in 170 out of 300 city environments was used to

train the algorithm while the data from 30 out of 300 environments was used to test the RL

policy. We refer to the former portion of the dataset as T3 and to the latter as T4.

We use the ϵ-greedy policy for exploration, however the agent’s random actions are

steered. Namely, the agent never takes a random action that would lead to it leaving the

map or colliding with a building. The value of ϵ is shown in Table 2.4. We also ensure that

the agent never leaves the map or collides with a building when taking actions according to

the DQN or when moving randomly.

The neural network architecture for DQNs is shown in Table 2.3. The DQNs consist

of a series of convolutional layers with strides of size 4 or 2. The output size, the number

of channels and filter size are shown in the Table 2.3. The final layers of DQN are fully

connected. The activation function used was ReLU.

2.8.4 Benchmarks

Next, we explain the benchmark algorithms that we will compare our proposed approaches

to.

2.8.4.1 Greedy active DL prediction

The first benchmark is based on the CG predictor that we introduced in Sec. 2.5. The paths

are designed to move the UAVs through the locations of maximum variance as predicted

by Σθ(yk,1:t,M). The intuition behind this approach is to collect new measurements in

the locations where the predicted error is the largest. This also limits this approach to
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scenarios where hP = hUAV. Since the variance prediction Σθ(yk,1:t,M) is continuously

updated by measurements obtained by the UAVs, the planned paths also need to be updated

periodically over the course of time 1 ≤ t < T . In the first Tstart = 20 steps, the UAVs move

randomly since Σθ(yk,1:t,M) is unreliable for the purposes of path planning. Afterwards,

UAV trajectories are updated every Tplan = 40 steps. Let us denote the predicted covariance

matrix for the set of locations X by [Σθ(yk,1:t,M)]X . Then, the paths for the UAVs at time

t1 can calculated by solving the optimization problem:

max
ut1 ,...,uT

Tr
(
[Σθ(yk,1:T+1,M)]Vt1:T+1

)
(P4)

s.t. Pt+1 = T (Pt,ut),ut ∈ G(Pt)

As with problem (P3), we convert this problem into an MDP. In order to maximize the

objective function in (P4), it is necessary to keep track of the locations visited by the UAVs

to avoid repeated visits. This can be achieved by defining the state st to include all locations

visited up to time t. However, in this case, the size of the state space would be too large

for efficient computation of optimal paths. Instead, we ensure that UAVs do not perform

repeated visits by appropriately designing the reward function. The reward function at time

t is defined as:

r(Pt,ut) =


Tr
(
[Σθ(yk,1:t+1,M)]Vt:t+1

)
ut ∈ G∗(Pt,Pt1)

−∞ o.w.

(2.19)

where the function G∗(Pt,Pt1) ensures that no illegal actions are taken and also that the

UAVs are moving away from their respective starting locations. The latter is necessary to

ensure that UAVs are not visiting the same location multiple times. The state at time t is

defined as st = Pt and the action is at = ut. Given this MDP definition, we can calculate the

UAV paths using value iteration (Eq. 2.17). Furthermore, due to the nature of the reward

function, forward value iteration can be applied independently per UAV.
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We will use this benchmark to compare against our proposed active DL CG prediction

approach, since it is also transmitter location free and uses 3D maps. The disadvantage of

this benchmark compared to the proposed active DL approach is that the greedy objective

function in (P4) can lead to multiple UAVs exploring locations in close proximity of one

another if these locations have high variance as predicted by Σθ(yk,1:t,M). Furthermore,

as discussed in Sec. 2.6, since DNNs are black-box models, collecting the measurements in

regions of highest predicted variance may not minimize the final prediction error.

The main source of computational load in this benchmark is the forward value iteration,

which has a computational complexity O
(
NTU

(
lw
d2

))
.

2.8.4.2 Greedy active Kriging prediction

The second benchmark is based on the Kriging predictor explained in Sec. 2.7.1. Similar to

our previous benchmark, the paths are designed to move the UAVs through the locations of

maximum variance as predicted by Σ̃k,1:t in Eq. 2.10.

max
ut1 ,...,uT

Tr

([
Σ̃k,1:T+1

]
Vt1:T+1

)
(P5)

s.t. Pt+1 = T (Pt,ut),ut ∈ G(Pt)

The path calculation is performed using forward value iteration in the same way as in the

previous benchmark. We will use this benchmark to compare against our proposed active

Kriging CG prediction approach, since it also requires transmitter location to be known.

This benchmark has the disadvantage that it can lead to multiple UAVs exploring similar

regions due to the greedy objective function in (P5).
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2.8.4.3 Random waypoints with DL prediction approach

In this benchmark approach, UAVs move according to the random waypoints strategy and

prediction is done using our proposed DL predictor, as explained in Sec. 2.5. The purpose

of this approach is to evaluate the importance of optimal path planning for CG prediction.

We will use this benchmark to quantitatively compare against our proposed active DL CG

prediction approach. Furthermore, we will use it to evaluate the accuracy of the CG predictor

for various scenarios in the absence of optimized path planning.

2.8.4.4 Random waypoints with Kriging prediction approach

In this benchmark approach, UAVs move according to the random waypoints strategy and

prediction is done using Kriging prediction, explained in Sec. 2.7.1. We will use this approach

as a benchmark to compare against our proposed active Kriging prediction approach. Fur-

thermore, we will use it to evaluate the accuracy of Kriging prediction for various scenarios

in the absence of optimized path planning.

2.8.5 Evaluation of the deep learning channel gain predictor

First, we evaluate the performance of the probabilistic DL CG predictor without optimized

path planning and use random-waypoints UAV motion with p = 0.8 for measurement col-

lection. There are N = 3 UAVs collecting the measurements. The starting location of the

UAVs is randomized within a randomly placed 40m ×40m rectangle. This simulates a UAV

swarm being deployed from a common starting area. We use the RMSE as the metric to

evaluate the accuracy of CG prediction. We only evaluate the accuracy at unvisited loca-

tions QP\V1:T , since the accuracy at visited locations is perfect due to the assumption of

noiseless measurements. We define a utility binary vector variable z̃ ∈ Z|QP |
2 , where [z̃]j = 0

if the location q̃j ∈ QP is obstructed by a building or if it is in V1:T , and [z̃]j = 1 otherwise.

Then, the RMSE is defined as:
√

1
||z̃||1∆

T
k diag (z̃)∆k. We show the RMSE as a function of
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number of steps T per UAV in Fig. 2.4 on T4 dataset. We compare our DL CG predictor

against Kriging interpolation and a 3D-map-blind predictor. The 3D-map-blind approach is

identical to our proposed DL approach except it does not use 3D maps as an input. We eval-

uate the prediction methods for different prediction altitudes hP . First, we can observe that

the 3D-map-blind approach performs significantly worse compared to the proposed approach

for hP = 10 m, which is why we do not evaluate it for other altitudes. This implies that

our proposed approach successfully uses 3D maps for prediction and also that 3D maps are

particularly useful when transmitter location is unknown. Furthermore, the proposed DL

CG approach performs significantly better than Kriging interpolation, even though Kriging

interpolation relies on transmitter location. This is achieved through the use of 3D maps

and deep learning for CG prediction. The gap between Kriging interpolation and the pro-

posed DL CG predictor decreases with increasing hP . This is likely due to the fact that at

higher altitudes, the channel gain is easier to predict due to line-of-sight channel being more

common between receiver and transmitter.

Next, we evaluate the accuracy of the DL CG predictor as a function of CG after T = 200

steps per UAV. In Fig. 2.5, red bars correspond to the RMSE for different CG value bins.

There are 16 CG bins in the figure between -240 dB and -80 dB. The figure is obtained by

grouping all of the locations in T4 environments based on their corresponding CG bin and

then taking the RMSE in each group. From the figure, we observe that the prediction RMSE

is lower for higher CG values. This likely occurs because there are more training points for

higher CG values in the training data, which skews the accuracy of the predictor towards

higher CG values. We also evaluate the accuracy of variance prediction Σθ(yk,1:T ,M). We in-

troduce a goodness of fit metric which is equal to the log of average ratio of the square predic-

tion error over the predicted variance at any location j: logEj

[(
[∆k]

2
j

)
/ ([Σθ(yk,1:t,M)]j,j)

]
.

The goodness of fit value should be ideally close to 0, which would happen if variance pre-

diction is equal to the observed error. Low absolute value of goodness of fit is necessary for

the output Σθ(yk,1:T ,M) to be useful for the proposed path planning algorithms. The blue
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Figure 2.4: RMSE of CG prediction for different prediction altitudes hP and different number
of moved steps per UAV T . The measurements are collected on random UAV paths using 3
UAVs.

bars in Fig. 2.5 correspond to the goodness of fit values for different CG bins. The absolute

values of goodness of fit are close to 0 across all CG bins and are generally positive, which

indicates that the predicted variance is on average lower than the actual error. Overall, the

absolute value of goodness of fit is lower for lower CG values, where the RMSE is also high.

2.8.6 Computational delay of proposed active channel gain prediction approaches

We evaluate the proposed active prediction approaches in terms of path planning compute

delay measured in seconds for N = 2 and N = 3 (Fig. 2.6). The results are obtained on a

workstation with a AMD Ryzen Threadripper PRO 5975WX 32-Core CPU and an NVIDIA

GeForce RTX 3090 GPU. The GPUs were used for execution of neural networks whenever

applicable. The active prediction approaches were implemented in Python. Path planning

was accelerated by transforming various path-planning operations such as forward value it-

eration into array or matrix operations using NumPy library. Tensorflow library was used

for implementation of DL components. The greedy Kriging and DL approach have iden-

tical computational delay since the path planning algorithms have identical computational
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Figure 2.5: RMSE and goodness of fit of DL CG predictor for different CG values.

complexity. The path planning delay for the proposed DL approach is due to the delay

of the RL policy DNN, so it is dependent on the size of the DNN and the GPU used for

execution. On our workstation, the proposed DL approach is significantly faster than the

greedy approaches. The highest delay approach is the proposed Kriging approach, whose

complexity scales exponentially with N . Given our Python implementation and capabilities

of our workstation, running the proposed Kriging approach for N > 3 is not feasible. The

complexity of path-planning of this approach could be reduced by down-sampling the AoI

Q to reduce the state space size or by dividing the UAV swarm into clusters of UAVs whose

path planning is performed independently. However, this is beyond the scope of this chapter

and so we limit the evaluation of the proposed Kriging approach to N ≤ 3.

2.8.7 Evaluation of proposed active channel gain prediction approaches

Next, we evaluate the performance of the proposed active prediction approaches in terms

of the prediction RMSE and compare them to the benchmarks described in Sec. 2.8.4. In

Fig. 2.7, we display the results for three coordinated UAVs for hP = 10m. The starting

location of the UAVs is randomized within a randomly placed 40m ×40m rectangle. The
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Figure 2.6: Compute delay of path planning for proposed active prediction approaches for
different numbers of UAVs N .

proposed active DL CG prediction approach and the proposed active Kriging approach out-

perform their greedy and random waypoints benchmarks. We can observe a significant gap

in RMSE between proposed approaches and their random waypoints benchmarks, which

demonstrates the importance of optimal path planning for measurement collection. The

proposed active Kriging approach also outperforms the greedy Kriging benchmark. The gap

exists because the proposed active Kriging approach design paths that maximize the joint

entropy of measured CGs instead of independently moving the UAVs towards locations with

highest predicted variance. For similar reasons, the proposed active DL prediction approach

that relies on RL for path planning outperforms the greedy DL benchmark. Furthermore,

greedy measurement collection may not be optimal for DL-based predictors since we do not

know how a deep neural network predicts channel gain, therefore RL-based measurement

collection can have an advantage over greedy measurement collection. Overall, the proposed

active DL prediction method performs better than the proposed active Kriging prediction

method in terms of RMSE. However, both proposed methods have practical advantages.

Kriging-based active prediction has the advantage of not requiring extensive training data

and 3D map knowledge, while the proposed DL approach does not require the knowledge of
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transmitter location and provides higher accuracy.

We also evaluate the proposed algorithms and the benchmarks for scenarios when the

starting locations of the UAVs are randomized across the entire AoI. This can for example

simulate the case when UAVs have been previously deployed to complete different tasks and

have moved far apart before commencing collection of CG measurements. These results

are shown in Fig. 2.8. We can see that the RMSE across all approaches decreases, which

occurs because the UAVs are more spread out across the AoI. Moreover, the gap between

the proposed approaches and greedy benchmarks decreases due to UAVs being more likely

to move in non-overlapping areas since their starting locations are far apart. In Fig. 2.9, we

show the results for 5 UAVs with starting locations randomized within a randomly placed

40m ×40m rectangle. The RMSE across all approaches decreases compared to the results

with 3 UAVs. Moreover, the gap between the proposed active DL prediction approach and

its greedy benchmark decreases compared to the scenario with 3 UAVs. This indicates that

for DL prediction, coordination is less important for a larger number of UAVs.

2.9 Summary

In this chapter, we developed methods for prediction of CG that use environment-specific

features such as building maps and CG measurements to achieve a high level of prediction

accuracy. We assume that measurements are collected using a swarm of coordinated UAVs.

We developed two active prediction approaches based on DL and Kriging interpolation.

We trained and evaluated the two proposed approaches in a ray-tracing-based channel gain

simulator. Using channel simulations based on the ray-tracing approach, we demonstrated

the importance of active prediction compared to prediction based on randomly collected

measurements of channel gain. Furthermore, we showed that using DL and 3D maps, we

can achieve high prediction accuracy even without knowing the transmitter location. We

also demonstrated the importance of coordinated path planning for active prediction when
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Figure 2.7: Prediction RMSE for three
UAVs for the proposed approaches and
the benchmarks. The starting location
of the UAVs is randomized within a ran-
domly placed 40m ×40m rectangle.
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Figure 2.8: Prediction RMSE for three
UAVs for the proposed approaches and
the benchmarks. The starting location of
the UAVs is randomized within the entire
AoI.

40 60 80 100 120 140 160 180 200
T (Number of steps per UAV)

12

14

16

18

20

22

24

RM
SE

 (d
B)

Greedy Kriging approach
Greedy DL approach
Random waypoints DL approach
Proposed DL approach
Random waypoints Kriging approach

Figure 2.9: Prediction RMSE for five
UAVs for the proposed approaches and
the benchmarks. The starting location
of the UAVs is randomized within a ran-
domly placed 40m ×40m rectangle.
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using multiples UAVs compared to UAVs collecting measurements independently in a greedy

manner.
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CHAPTER 3

UAV Access Point Placement for Connectivity to a

User with Unknown Location Using Deep RL

In recent years, unmanned aerial vehicles (UAVs) have been considered for telecommunica-

tions purposes as relays, caches, or IoT data collectors. In addition to being easy to deploy,

their maneuverability allows them to adjust their location to optimize the capacity of the

link to the user equipment on the ground or of the link to the basestation. The majority

of the previous work that analyzes the optimal placement of such a UAV makes at least

one of two assumptions: the channel can be predicted using a simple model or the locations

of the users on the ground are known. In this chapter, we use deep reinforcement learn-

ing (deep RL) to optimally place a UAV serving a ground user in an urban environment,

without the previous knowledge of the channel or user location. Our algorithm relies on

signal-to-interference-plus-noise ratio (SINR) measurements and a 3D map of the topology

to account for blockage and scatterers. Furthermore, it is designed to operate in any urban

environment. Results in conditions simulated by a ray tracing software show that with the

constraint on the maximum number of iterations our algorithm has a 90% success rate in

converging to a target SINR.

3.1 Introduction

Due to their high mobility and low cost, unmanned aerial vehicles (UAVs) have found their

way to many applications in recent years, including package delivery, law enforcement,
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search and rescue, etc. Following this trend, UAVs are getting an increased attention in

the telecommunications sector. Deploying UAVs as aerial basestations has recently emerged

as an idea to respond to high localized traffic demands in the next-generation cellular net-

works [LC17,WXZ18,MSB16]. Using UAVs in such way provides the opportunity to exploit

their agility of motion to improve the air-to-ground link capacity by optimal air placement.

UAVs can also be utilized for data harvesting in IoT or as data caches and in these applica-

tions it is also important to maximize the air-to-ground capacity by optimal placement.

In this chapter, we are interested in optimizing the capacity of the channel between the

UAV and a ground user in an urban environment. This is a challenging problem considering

that the environment between the UAV and the ground equipment can be abundant in

scatterers and therefore hard to account for analytically and numerically. Nevertheless, the

said problem has been addressed in literature before, under different assumptions. In most

cases, however, the solutions are based on the assumptions that the ground user locations

are known and that the wireless channel can be predicted with a simple model.

The problem of a UAV relay placement has been considered mostly for line-of-sight

(LOS) channels. In [WRC18,JZC12,ZZL16] transmit power and placement of a UAV relay

are jointly optimized. However, the authors’ solutions apply only to a LOS propagation

channel, which makes this approach less applicable in the environments with scattering

and obstacles, such as cities. Furthermore, all of [WRC18, JZC12, ZZL16] assume that the

locations of the users and channel propagation characteristics are known. In [MM17], a

method for optimizing the location of a ground unmanned vehicle is proposed. The approach

relies on user location and assumes a fading channel. The algorithm predicts the channel

quality across the entire map from a small number of measurements and then using stochastic

dynamic programming an unmanned vehicle is optimally routed. While this paper considers

ground vehicles, it is relevant to our work since their approach can apply to aerial vehicles

flying at a fixed altitude.

In addition to statistical models, some of the previous approaches have also utilized
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topology maps. The work in [LOC16] considers a UAV swarm that relays communication

between users on the ground in an urban environment. The approach relies on known

user locations and topology maps to perform swarm particle optimization of placement.

Works [CG17, EGG18a, EGG18b] utilize 3D topology maps to help UAV placement opti-

mization. Additionally, [CG17] uses a statistical channel model and the user location to

perform optimization. While [EGG18a] does rely on user locations, it does not need to know

the channel model parameters as these are learned. The algorithm in [EGG18b] simultane-

ously learns user locations and parameters, but as a result, the approach has an extensive

learning phase.

Seeking to develop an exploration algorithm that performs learning and placement op-

timization simultaneously we turned to reinforcement learning. Reinforcement learning has

been previously applied to similar problems. [LLC18] uses table-based Q-learning for opti-

mal placement of aerial basestations with the knowledge of user locations. However, since

the inputs to this algorithm are only user and UAV locations, it cannot perform outside of

the environment it has been trained on. Similarly, [CEG19] uses received signal strength

at the UAV and the UAV location to track indoor users with a shallow Q-learning algo-

rithm. However, the paper only considers two indoor scenarios and the training and testing

dataset are the same. Therefore, it is not clear whether the algorithm could perform in a

new environment.

We address the problem of optimal UAV placement assuming that the user location is not

known. Algorithms that rely on statistical models of the channel may fail to generalize to

all environments since the local topology can significantly differ from statistical predictions.

To that end, we use deep reinforcement learning to obtain a model-free algorithm for UAV

positioning. The proposed algorithm relies on the knowledge of local topology and does not

require the knowledge of the user location. Deep reinforcement learning allows us to take a

high-dimensional input that is the topology map and use it alongside SINR measurements

collected on the trajectory of the UAV to predict the optimal direction of motion. We
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test our performance in a realistic environment that emulates the wireless channel using a

ray-tracing software. Furthermore, the training and the testing dataset are different.

The rest of this chapter is organized as follows. In Section 3.2 we introduce the rele-

vant reinforcement learning background, define our problem and describe how reinforcement

learning can be used to tackle it. In Section 3.3, we describe the simulation environment.

Sections 3.4 and 3.5 are dedicated to results and conclusions, respectively.

3.2 UAV Placement using Q-learning

In this section, we first introduce the necessary background in reinforcement learning in part

3.2.1. Next, in subsection 3.2.2, we formulate our problem as a partially observable Markov

decision process (PO-MDP) and in subsection 3.2.3 we discuss how we apply Q-learning to

this PO-MDP.

3.2.1 Reinforcement learning background

Reinforcement learning (RL) is the branch of machine learning that is concerned with making

sequences of decisions. It is mainly concerned with problems that can be casted as a Markov

decision process (MDP). In an MDP, an agent A is situated in an environment E . At each

timestep t, the agent is in a state st and takes an action at, it receives a reward rt while

moving into the state st+1. In a partially observable MDP (PO-MDP), the full knowledge

of the state of the environment is not known to the agent and in that case it will only have

access to an observation of the state. This observation then replaces the function of the state

in the reinforcement learning algorithms.

The objective function in reinforcement learning is often the expectation of the discounted

reward, E
∑∞

t=0 γ
trt, where γ is the discount factor. Reinforcement learning methods can

broadly be classified into two categories: policy learning and Q-learning. In policy learning

methods, the goal is to learn the optimal policy function that defines π(a|s), which is the
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probability of taking the action a in the state s. The policy is often deterministic and in

that case π(a|s) defines a single action in each state. In Q-learning methods, the goal is to

learn the Q-value function

Q(s, a) = E[
∞∑
t=0

γtrt|s0 = s, a0 = a],

that defines the expected reward in a state s, after taking the action a. If the Q-value function

is known, the optimal action in a state s is then argmaxa Q(s, a). Deep Q-learning is an

extension to the Q-learning paradigm that uses deep learning models, such as convolutional

neural networks and recurrent neural networks to approximate Q(s, a). Furthermore, Q-

learning is a model-free reinforcement learning technique, meaning that it does not rely on

known dynamics of the system.

One of the first deep Q-learning algorithms was proposed by Deepmind and was suc-

cessfully demonstrated on Atari video games [MKS13]. The algorithm was named the deep

Q-network (DQN) algorithm. In it, the Q-value function is parametrized by a neural network

Qθ, with parameters θ. An estimate of the true Q-value at time t, Qt, can be obtained by

using a single sample estimate of the Bellman backup operator

T̂ Qt = rt +max
at+1

γQθ(st+1, at+1) (3.1)

This is called a single sample estimate because only the reward rt at the current time instant

t is used to approximate the infinite horizon Q-value function.

In order to approximate Q by Qθ the following minimization is done over sample data,

minimize
θ

∑
t

∣∣∣∣∣∣T̂ Qt −Qθ(st, at)
∣∣∣∣∣∣2 (3.2)

In the DQN algorithm, the training and the interaction of the agent with the environment

happen in parallel. As the agent gathers experience, samples of that experience are stored
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and the minimization in the Equation 3.2 is done periodically, every τL steps, by randomly

sampling a batch of BL recorded samples and applying gradient descent. This is referred to

as experience replay. Samples are arrays of data (st, at, rt, st+1) and these are stored in the

replay buffer.

The agent interacts with the environment following the ϵ-greedy policy, where at any

time t the agent either takes a random action at probability ϵ or the Q-value optimal action

argmaxa Qθ(s, a) at probability (1− ϵ). Over the course of the training, the value of epsilon

decreases from 1 to 0. In the implementation of DQN, there is an additional Qθ, called the

target Q-network. The target Q-network is used in the Bellman backup operator but it is

not optimized over. Instead, it is periodically copied from the main Q-network. The target

Q-network is included to improve the stability during training.

The original vanilla DQN algorithm has been improved upon over the years. The two

expansions that we will use are double Q-learning [VGS16] and dueling networks [WSH15].

For the sake of brevity we omit the details of these algorithms and the reader is referred to

the cited works for more information.

3.2.2 UAV placement problem as a PO-MDP

We now formulate the UAV placement problem as PO-MDP. We consider the scenario of a

UAV located in an urban environment communicating to a radio device on the ground. The

area topology is such that LOS connection to the ground user is not always possible, and

the communication will often occur over non-line-of-sight paths. At time zero, the UAV and

the ground device are located at random positions and the goal of the UAV is to adjust its

position so as to increase the SINR at the UAV. We assume that the UAV receives some

signal power from the user on the ground to begin with. The UAV moves until an SINR

threshold is reached or until maximum time for optimization expires.

In the following, we describe the mechanics according to which the UAV moves around.
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Since exploring the entire 3D space is a complex task, we restrict the motion of the UAV to

the horizontal plane and assume that its altitude is kept constant. We do this as a relaxation

but it is worth pointing out that the optimal position for a UAV will often be at the lowest

allowed altitude since this brings it closest to the ground user. The UAV can only move

around buildings or fly above buildings that are below its altitude and it makes adjustments

in its position at discrete time steps. We restrict the directions of the motion of the UAV

to the four orthogonal horizontal directions and the motion step size dS is fixed. We impose

this constraint because Q-learning lends itself better to tasks with a discrete set of actions.

With these restrictions on the motion, the UAV effectively moves in a uniform plane grid

space that spans the environment.

We assume that the UAV location is known. Furthermore, the UAV has access to a 3D

map of the environment that maps all the buildings, which can be drawn from a database.

3D maps of major urban areas are generally available and easy to acquire. We also make

the assumptions that the channel is slow fading and that the user location does not change

significantly over the course of optimization. Furthermore, we assume that there is a sufficient

backhaul capacity between the UAV and the core basestation, so we only focus on optimizing

the capacity between the UAV and the ground device.

3.2.2.1 Observation space

Since the full state of the system in which the UAV operates is not available, the agent in

our algorithm relies on two types of observations of the environment to drive its decision

making. The first type of observation is the 3D map of the local area. The local area in our

case is a square area of side lO centered at the current location of the UAV. The 3D map

information is compressed into a 2D array representation, where each entry represents a grid

point in the local area and the value of each entry corresponds to the height of the terrain

at that point relative to the UAV altitude. We use heights relative to the UAV altitude to

make the algorithm adjustable to different starting UAV flying heights.
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Figure 3.1: Example observation for an agent moving according to a random exploration
policy. Note that the SINR values of areas that are obstructed and therefore unreachable
are set to a very low value (-150 dB), while the areas that have not yet been visited are set
to a very high value outside of the possible range of SINR values (50 dB).

The second type of observation that the agent uses are the SINR measurements at previ-

ously visited locations in the local area. These are also stored in a 2D array with grid point

locations matching the locations of the grid points in the topology observation. The value

of each entry is the measured SINR value. To complete the array, we populate the entries

with unknown SINR values with a high value PH outside of the regular range. Furthermore,

the points that are blocked by buildings and cannot be visited are populated with low values

PL outside of the span of possible SINR values. With successful training, the algorithm will

learn the significance of PH and PL. Example observations are shown in Figure 3.1.

3.2.2.2 Action space

Since the action is the motion of the UAV at each time step, it can take on the values (0,

dS), (0, -dS), (dS, 0), (-dS,0), where each vector represents the displacement in the x- and

y-coordinates.

3.2.2.3 Reward

The UAV receives a reward equal to the difference between the SINR in the next state and

the SINR in the current state. This incentivizes the agent to move towards higher SINR.
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Figure 3.2: Neural network model used as the Q-network.

Furthermore, we assign a constant exploration reward cE which the agent receives for visiting

a new location. We empirically established that an exploration reward incentivizes the agent

to explore further away from its starting location, which results in better performance. The

reward is mathematically expressed as

rt = SINRt+1 − SINRt + cEδ
E
t ,

where δEt is an indicator function activated when the UAV visits a new location.

3.2.3 Deep Q-learning implementation

With our problem casted as a PO-MDP, we can apply the deep Q-learning algorithm. For

our application, we utilize double Q-learning [VGS16] and dueling networks [WSH15] ex-

tensions to the base DQN algorithm. The choice of the neural network model used as the

Q-network depends on the application and therefore it needs to be carefully selected for op-

timal performance. The neural network model we used is shown in Figure 3.2. At the input,

there are two 2D arrays, corresponding to the SINR and topology observations described in

the previous subsection. As displayed, we use 3 convolutional layers with varying number of

filters and with each layer having a different filter size. There are two fully connected layers,

with the final layer output corresponding to the Q-value for each of the possible actions.

We use ReLU as the activation function after each layer prior to the last layer. The layer
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enabling the dueling networks extension is located before the final layer, however we do not

show it in the figure for clearer presentation. Additionally, we used batch normalization

and dropout with probability pD to accelerate the training of the neural network and for

regularization purposes.

3.3 Simulation environment

We use two separate environments for the training and the testing of our algorithm, shown

in Figure 3.3 and Figure 3.4, respectively. Both spaces are meant to resemble a typical

medium-elevation urban area.

In order to create realistic conditions to train our Deep RL model, we used a ray-tracing

software called Wireless InSite [rem] to emulate the wireless channel. For a given user on

the ground we measure the SINR across a uniform grid of points at a fixed height that

corresponds to the UAV flying altitude. The grid points are separated by 4 meters and

they span the entire environment. The UAV altitude is set to 10 meters. To generate the

training data, the user radio was placed at 27 locations uniformly spanning the training

environment, while for the testing data we placed the user at 25 different locations in the

testing environment. The numbers were decided such that user locations uniformly cover the

entire space, while still taking a feasible amount of time to make calculations for in the ray

tracing software. The users transmit a narrow-band signal of 20 dBm power using a frequency

of 800 MHz. We introduce a Gaussian noise and a Gaussian background interference across

the space with the average combined power of -104 dBm. Half-wave dipole antennas with

vertical orientation are used at the user and the UAV.

The SINR measurements were then exported and used to build a training and a testing

environment in software that the DQN algorithm can interact with. At each realization or

episode of the environment we use the SINR measurements for a random user location and

the UAV is placed at a random location on the grid. The locations that the UAV can visit
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Figure 3.3: The training urban environment. Approximate size: 550x500 m.

Figure 3.4: The testing urban environment. Approximate size: 400x500 m.

correspond to the ones where SINR measurements were recorded. The episode finishes if the

UAV reaches the required SINR or the maximum number of steps that the UAV can take is

exceeded.

3.4 Results

In the first part of this section we describe the details of the training of our algorithm and

demonstrate that it learns how to move the UAV in order to increase SINR. In the second

part, we validate the performance of the algorithm in the testing environment and compare

it to a genie algorithm in terms of steps made until convergence to the required SINR.
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Figure 3.5: The training results for the proposed model and blind model that does not rely
on topology information.

3.4.1 Training

We train the DQN algorithm in the training environment described in the previous section.

The maximum number of steps during an episode tMAX was set to 800 and the target SINR

PT , was set to 5 dB. When deploying the UAV on the map we ensure that it is not placed

in a dead zone with no signal reception, as this would be outside of our problem statement.

In the ray-tracing simulator, these regions occur when there are no direct or reflected paths

that can reach the UAV. For regularization purposes, we rotate the coordinate system of the

map by a random multiple of 90◦ every training episode. This ensures that the algorithm

does not become biased towards moving in any particular direction over the course of the

training.

We use the ϵ-greedy policy for exploration, however the agent’s random actions are

steered. Namely, the agent never takes a random action that would lead to it leaving the

map or colliding with a building. Furthermore, the agent repeats the action it has taken

in the previous step at probability 0.4ϵ and takes any random allowed action at probability

0.6ϵ. The repeated movements lead to the agent exploring a larger area through random

59



walk in the early training stage, instead of staying confined to the local space around the

starting location. The optimal action argmaxa Qθ(s, a) is taken at probability 1 − ϵ. We

also ensure that the agent never leaves the map or collides with a building when taking

actions according to the DQN. This is done by choosing an action that gives the highest

Q-value while still being a legal movement in the environment. As the UAV moves around,

its experience samples are stored in a replay buffer that can store up to 5× 105 samples and

when this limit is reached the oldest samples are thrown out to make space for the new ones.

The parameter values used for the training of the DQN algorithm are shown in Table

3.1. They were selected after tuning for best performance. During minimization we employ

gradient clipping and also anneal the learning rate. The width and length of the observation

is 61 grid points or 244 m. The movement step size dS was 4 m.

The training results are shown in Figure 3.5. To keep track of the progress of training, we

measure the average SINR increase from the SINR at the start of the episode to the SINR

at the end of the episode, over the most recent 100 episodes.

To demonstrate the benefits of using 3D maps we evaluate a DQN algorithm that doesn’t

rely on the 3D map but is otherwise identical to our proposed algorithm. We refer to this

algorithm as the ‘blind’ algorithm. The blind algorithm only has a 2D SINR array as an

input and the regions blocked by buildings are not populated by PL but instead left as PH .

Table 3.1: DQN parameter values used in training

Description Parameter

Exploration reward cE = 1.2

Discount factor γ = 0.99

Training batch size BL = 20

Training interval τL = 3

Dropout probability pD = 0.4
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In training, we use the same parameter settings for the blind and the proposed algorithm.

Furthermore, we include an upper bound on the mean SINR increase in the training

stage. It is calculated by taking the average of the SINR differences between the SINR at

all possible starting UAV locations and PT , for all user locations. This is an upper bound

on the mean performance across a large number of episodes.

The results in Fig. 3.5 show that the learning capacity of our proposed algorithm is larger

than that of the blind algorithm. The intuitive explanation for this is that the algorithm with

the knowledge of the topology is more efficient in exploring the space because it can eliminate

obstructed areas and because the building knowledge combined with SINR measurements

can give it indication where to move to find better SINR. The performance curves are noisy

due to the nature of training through experience replay and due to the fact that over a 100

episodes the algorithm only experiences a subset of the training environment, which makes

the difficulty vary as some user locations are harder to find optimal paths for than others.

3.4.2 Testing

In the testing stage, the algorithm is placed in an entirely new environment and relies only

on the trained neural network Qθ to guide the movement of the UAV. We use the copy of

Qθ that had the highest performance during training. We also introduce a small amount of

randomness in decision making, which we found to lead to a better performance. The agent

takes a random action at probability 0.096. The value of PT for the testing case was again

set to 5 dB and the maximum number of steps tMAX was reduced to 500, since the testing

environment is smaller than the training environment.

In Fig. 3.6, we show a number of trajectories of the UAV moving according to our

algorithm, where the target SINR was reached in less than tMAX steps. The upper figure

shows the building height relative to the UAV altitude and the lower figure shows the heatmap

of the SINR across the map. The user location is the same in each episode, and we place the
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Figure 3.6: Successful trajectories of the UAV moving according to our algorithm. The upper
figure shows the building height relative to the UAV altitude and the lower figure shows the
heatmap of the SINR across the map. The green triangle markers represent the starting
positions of the UAV. The blue marker represents the location of the user on the ground.

UAV at random locations. We can see that the algorithm is capable of following the direction

that leads it to improving the SINR and it is also capable of correcting itself when realizing

that the current direction of motion is not leading it to better SINR. In the instances where

the UAV loops around its location, we can infer that the algorithm explores several path

options before settling on the one it deems optimal. Buildings are avoided by the algorithm

and it can be inferred that the algorithm eliminates path options because of them. An

evidence for the latter is that the UAV tends to move parallel to the building edges, for

example.

Finally, we analyze the performance of our algorithm over many realizations. To get a

reference on how fast our algorithm converges to an optimal point we used a genie algo-

rithm for optimal placement. The genie algorithm has a complete knowledge of the SINR

distribution and building topology, and uses dynamic programming to find the shortest path
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Figure 3.7: The CDF of the number of steps until convergence to the sufficient SINR for the
proposed approach, the blind approach and the genie algorithm.

to a location with sufficient SINR. We run the proposed and the blind algorithm for 1000

realizations across the entire testing data set over different user positions. The results for

the number of steps made until convergence to the sufficient SINR for all three algorithms

are shown in Fig. 3.7. The median number of steps until convergence for the proposed

algorithm is 44 and 69 for the blind algorithm. Furthermore, the proposed algorithm is 90%

successful in under tMAX steps compared to 66% of the blind algorithm. Therefore, we show

that the knowledge of topology map assists our algorithm even in a novel environment. The

median number of steps required for the genie algorithm is 14. The difference in the number

of steps required relative to the proposed algorithm is due to the fact that our algorithm

has to explore the space to find good SINR since it does not where the points with sufficient

SINR are a priori.
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3.5 Summary

In this chapter, we used deep reinforcement learning methods to optimize the placement of a

UAV communicating to the user on the ground. We consider the case where the ground user

location is not known and use topology data to replace statistical models of the channel.

We were able to achieve 90% success rate in moving the UAV to a location that has a

sufficient SINR within a limited number of steps. Moreover, our reinforcement learning

approach stands out in that it can be applied in any urban environment. Our future work

will focus on the scenario where the ground user is moving over the course of optimization.

Furthermore, we will explore how the deep reinforcement learning techniques can be used

to simultaneously optimize the locations of multiple UAVs serving multiple users on the

ground.
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CHAPTER 4

Cooperative Computing in Vehicular Micro Clouds for

Emerging Vehicular Applications

We consider the use of vehicular cooperative computing to support sensing-based computationally-

intensive and delay-constrained vehicular applications such as cooperative perception, aug-

mented reality and platooning, which have been recently proposed to improve the driving

safety and efficiency by fusing sensing data from multiple vehicles. To enable such computa-

tionally demanding applications, intelligent vehicles have traditionally relied on independent

processing using on-board computers, which requires expensive computing hardware. Cloud

computing or edge computing can be used to offload the computing load, but these solutions

suffer from low-coverage and high latency. A group of intelligent vehicles can collaborate

using 802.11 vehicle-to-vehicle (V2V) communication to form a VMC and operate as vir-

tual edge servers, which can be used to complete computationally intensive tasks without

requiring powerful onboard hardware and without relying on cloud/edge computing. We

develop resource assignment and scheduling (RAS) methods to optimally allocate vehicular

computing resources and schedule computing tasks for cooperative computing of the consid-

ered applications. Our proposed RAS methods are resilient to rapid changes in achievable

data rates between vehicles, which occur due to vehicular mobility. Furthermore, when per-

forming scheduling, the proposed methods ensure that the capacity limits are not exceeded,

which can cause congestion and tasks not being delivered. Finally, the proposed methods are

computationally efficient and can be used in real-time. In a realistic simulated environment,

we evaluate the benefits of cooperative computing compared to independent computing using
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our RAS methods under factors such as task features, traffic characteristics and incumbent

interference. The simulation results also demonstrate the importance of accurate congestion

control and data rate prediction for reliable cooperative computing.

4.1 Introduction

In this work, we focus on the use case of cooperative computing to support sensing-based

computationally-intensive and delay-constrained vehicular applications such as cooperative

perception, augmented reality, driving assistance and navigation. The common character-

istics that the considered vehicular applications share are that their computing tasks are

repeatedly processed at a certain rate and the input data for the tasks is based on the sen-

sor data collected by the vehicles. For example, cooperative perception is a delay-sensitive

application where sensor data from multiple vehicles is regularly pooled and processed to

expand the field of view of the vehicles. The processing to combine the pooled data has a

significant computational load.

To enable computationally demanding applications, intelligent vehicles have tradition-

ally relied on independent processing using on-board computers. However, independent

processing is cost inefficient since powerful hardware is required to meet the joint comput-

ing demand of all computationally demanding applications that may be active at the same

time at a single car. Furthermore, independent processing prohibits deployment of novel

applications on older generations of vehicles since they may not have sufficient computing

capabilities to support them. Cloud computing [AFG10] or edge computing [SCZ16] are

possible solutions, in which networked servers are accessed using wireless communications to

satisfy the computational requirements. Generally, the main difference between cloud and

edge computing is the proximity of the servers to the end users, with cloud servers being

located on the Internet, whereas edge servers are located closer to the end users and perform

various tasks in conjunction with cloud data centers. Communications with cloud or edge
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servers heavily rely on wireless and underlying backbone networks, which can suffer from

potentially large end-to-end latency, limited capacity and low coverage. This makes cloud

and edge computing unsuitable for delay-sensitive vehicular applications.

Cooperative computing using VMCs addresses the described limitations of indepen-

dent processing and cloud/edge computing for sensing-based computationally-demanding

and delay-sensitive applications. A group of intelligent vehicles with advanced compu-

tation and communication abilities can collaborate using V2V communication to form a

VMC, which offers data processing, data storage and communication services as virtual edge

servers [HJD17]. The vehicular computing resources of the MC can be used to jointly process

computationally intensive tasks.

In this work, we develop resource assignment and scheduling methods to determine how

to assign vehicular computing resources and decide the quality of service (QoS) for tasks that

will be scheduled for cooperative computing. The QoS determines the task processing rate

and the computational complexity of each task, which are not predetermined for the con-

sidered applications, but instead can be increased with more available computing resources.

For example, consider cooperative perception based on LIDAR frames. Increasing the QoS

could mean increasing the resolution of LIDAR frames, which would be more desirable for

accurate cooperative perception, but this will increase the computational complexity per

each processed frame. Similarly, in cooperative perception, higher QoS can imply a higher

frame rate which is more desirable but it also increases task processing rate. The objective

function that we aim to maximize is the sum QoS across all tasks.

There are multiple challenges in achieving optimal resource assignment and scheduling

for cooperative computing in VMCs. Delivery of tasks for cooperative computing and their

input data occurs wirelessly between vehicles. Due to high mobility, achievable data rates

between vehicles change rapidly, which impacts the task transmission delay and task delivery

success. When scheduling tasks it is necessary to account for these rapid changes to meet the

delay constraints of the considered applications and prevent task loss. This makes resource
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assignment and scheduling for vehicular cooperative computing more challenging compared

to cooperative computing in stationary networks. We focus on V2V networking with hard-

ware from one of the IEEE 802.11 standards. In IEEE 802.11 standards, channel access is

coordinated between vehicles using 802.11 Distributed Coordination Function (DCF). When

performing scheduling it is essential to not exceed the capacity limits imposed by the DCF

and cause congestion, which can severely delay the delivery of tasks and their input data.

Finally, since resource assignment and scheduling will occur repeatedly in the VMC, these

methods must have a computational complexity low enough to run in real time.

We make the following contributions in this paper:

• We develop two resource assignment and scheduling approaches based on mixed-integer

linear programming (MILP). The first introduced approach has a lower computational

complexity but is less accurate in preventing channel congestion. The second approach

has a higher computational complexity but is more reliable in preventing channel con-

gestion. Both proposed resource algorithms adapt to the changes in achievable data

rates between the vehicles.

• The complexity of both MILP approaches scales exponentially with factors such as the

number vehicles participating in cooperative computing, so they may not be feasible

to run in real time in all circumstances. For these scenarios, we develop approximate

resource assignment methods that run in polynomial time.

• To account for data rate fluctuations, in our resource assignment and scheduling frame-

work we utilize approaches for prediction of data rate between vehicles. Furthermore,

using the data rate prediction methods, we extend our resource assignment and schedul-

ing approaches to dynamically adjust the assignment and scheduling update frequency

based on the mobility of vehicles.

• We quantify feasible gains of cooperative computing compared to non-cooperative com-

puting in terms of QoS and as a function of different factors including computing task
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features, traffic characteristics, vehicular computing resources and incumbent wire-

less transmitter activity. The presented results are for cooperative computing based

on vehicles utilizing IEEE 802.11p standard with a MAC layer that was adapted to

closely resemble 802.11 WiFi standards. This makes the conclusions that we make

using our simulation results applicable to 802.11 WiFi standards. Vehicular commu-

nication is simulated using VEINS simulator [SGD11] for vehicular networks, which

provides accurate modelling of IEEE 802.11p MAC and PHY layer. Traffic simulations

are conducted using the SUMO simulator for vehicular urban mobility [LBB18].

The rest of this paper is organized as follows. In Sec. 4.2 we review the related work and

compare our work against existing approaches. In Sec. 4.3, we explain the models of VMCs,

cooperative computing and communications. In Sec. 4.4 we introduce a generic resource

assignment problem, which will be used to develop two different approaches for resource

assignment with congestion control in sections 4.5 and 4.6. In Sec. 4.7 we discuss methods

for achievable data rate prediction and in Sec. 4.8 we develop methods for control of resource

assignment duration. In Sec. 4.9 we present the main results of our approaches and in Sec.

4.10 we summarize the conclusions.

4.2 Related work

Generally, we can distinguish the current work on computational offloading for vehicular

applications based on where the computing takes place. Most distributed computing ap-

proaches assume that tasks are offloaded to edge or cloud servers [CJL15, SLT21, FLW17,

CCM23,NZW20, ZLG19]. Some works have considered joint offloading to both nearby ve-

hicles and edge/cloud servers [ZCM19, ZPX18, ZTW19, CWY22, QHC23, KMH20, SGS19,

BBG21,WLZ22]. In our work, we focus on cooperative computing and, therefore, task of-

floading occurs exclusively within a VMCs. Moreover, all vehicles jointly coordinate to utilize

the computing and communication resources within a VMC.
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Offloading to edge/cloud servers is different from cooperative computing within a VMC

for several reasons. First, edge/cloud servers have much higher computational capacities than

vehicles but are less abundant. Second, they are usually connected to vehicles via cellular

networks. In cellular networks, vehicles can offload their tasks to servers in orthogonal

resource blocks allotted by the cellular base station. Therefore, task offloading is generally

not limited by network capacity constraints and transmissions from different vehicles can

be treated as independent. In a VMC based on a 802.11 standard, tasks are transmitted

between vehicles on a shared channel, therefore task offloading is limited by the capacity

constraints of the channel. Furthermore, channel access is dictated by the DCF, which

makes throughput prediction more challenging than in cellular networks due to contention

on the channel.

Next, we discuss current research on vehicle-to-vehicle computational offloading based

on the way these approaches model the communications channel. Accurate modeling of

the communications is necessary to account for the loss of scheduled tasks due to either

inadequate links between vehicles or queue congestion at vehicles. While some prior works

have addressed the unique characteristics of the vehicular 802.11 PHY layer for purposes

of task offloading [SLT21, ZPX18, ZTW19], no current works have considered the unique

characteristics of both 802.11 MAC and PHY layer for these purposes. The unique as-

pects of the PHY layer are vehicular mobility, which makes the channel highly variable,

and propagation characteristics, which influence the path loss [VBT15]. The MAC layer

characteristics are specified by the 802.11 standard in use, however common features are

operation in unlicensed bands and distributed contention-based channel access. Modelling

the impact of DCF on the throughput experienced by the vehicles has not been adequately

addressed in prior works for purposes of cooperative computing. In most research, the im-

pact of contention on achievable throughput is not considered at all [BBG21,KMH20]. On

the other hand, in some papers contention is modeled as a constant reduction in achievable

data rates and defined by the number of nearby vehicles and their transmission probabil-
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ities [ZLG19,WLZ22, ZTW19]. However, since multiple vehicles participate in cooperative

computing, the number of active vehicles and their transmission probabilities depends on

how task offloading is scheduled. Therefore, the impact of channel contention cannot be

treated as independent of task offloading decisions. We incorporate accurate models of the

DCF into our approach and consider how contention between task traffic flows will impact

the maximum number of tasks that can be offloaded in the VMC.

Second, majority of current vehicular distributed computing papers adopt a task model

that assumes a fixed and predetermined number of tasks that are then allocated to vehi-

cles/servers for processing [CJL15,SLT21,FLW17]. However, for sensing-based applications

such as cooperative perception, we assume that their QoS can be improved by additional

compute resources available through cooperative computing. For example, experimental im-

plementation studies of cooperative perception systems report that a major bottleneck in

the frame rate at which cooperative perception systems can operate is the vehicular compu-

tational power [QAB18]. A similar consideration has been made in papers on task offloading

for visual-based driving assistance systems [ZPX18,ZCM19], where task arrival rate was pre-

determined, but the complexity of each task adapts to the amount of computing resources

available. The main difference between our paper and [ZPX18,ZCM19] is that we also aim

to address the unique characteristics of 802.11 MAC and PHY with regards to cooperative

computing.

4.3 System model

In this section, we describe the models of cooperative computing and communications in a

VMC. The table of important parameters and variables introduce in this section is included

in Table 4.1.
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Figure 4.1: Cooperative computing in a vehicular micro cloud for sensing-based vehicular
application.

4.3.1 Vehicular micro cloud model

The cars in the micro cloud with sensing capabilities that collect sensor data which is used

as the input for computing tasks are called senders. The set of all sender cars in the VMC

is denoted by S. We define a set of worker cars W that can process cooperative computing

tasks. The cars that take on the role of workers have computing resources available that

can be used for processing of tasks. The cars in the micro cloud that are interested in and

receive the outputs of the computed tasks are called the receivers and denoted by R. The

sets S, W and R can be overlapping, i.e., the cars may have multiple roles from amongst

the sender, receiver and worker role at the same time. The roles are illustrated in Fig. 4.1.

Furthermore, senders, workers and receivers, together with other V2V capable cars form a

stationary VMC. A stationary VMC is formed by cars that are present in particular fixed

geographical area [HSH17]. The cars can enter and exit the area at any time and therefore

the set of vehicles in VMC changes over time. One vehicle is elected to be a leader whose

main functions are to coordinate other vehicles in running an application such as cooperative

perception, driving assistance systems, storage and retrieval of data from the cloud.
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4.3.2 Task streams model

Each computing task is part of a stream of tasks indexed by k that are generated at one or

more senders. A particular vehicular application can consist of one or more task streams.

The senders for each task stream are denoted by s ∈ Sk. Each task stream has Qk possible

QoS levels: 1, . . . , Qk. Without the loss of generality, let us assume that Qk = Q ∀k. We

use the binary variable qk,l ∀k, l to denote the QoS level, where qk,l = 1 if the task stream

is served at QoS level l and 0 otherwise. Since a task stream can only be served at one

particular level,
∑

l qk,l = 1 ∀k. The variables qk,l ∀k, l will be utilized in the problem

formulation in Sec. 4.4. The task rate at quality of service l is rk,l, task input data size

is bk,l and task computing load is ck,l. Parameters rk,l, bk,l and ck,l are non-decreasing with

respect to l. Each task has a maximum delay tolerance τk. The delay is measured from the

instance when a task is generated until the task is processed and its outputs are delivered

to the receivers. Rk is the set of receiver cars that are interested in receiving the output of

the processed tasks of task stream k. To simplify our analysis, we assume that the output

data size is negligible compared to the input data size and ignore its overhead.

4.3.3 Task stream model applied to cooperative perception

We explain how our task streams would apply to cooperative perception as the example

application, illustrated in Fig. 4.1. Cooperative vehicular perception systems seek to expand

a vehicle’s field of view by enabling cars to share the data from their environment perception

sensors via wireless communication and thereby allowing vehicles to achieve a global view

of the traffic environment [COV22]. We focus on cooperative perception systems based on

raw sensor data sharing [CTY19], often referred to as early fusion cooperative perception.

Experimental implementation studies of cooperative perception systems report that a major

bottleneck in the frame rate at which cooperative perception systems can operate is the

vehicular computational power [QAB18]. In traditional cooperative perception systems,
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computation is done independently at each vehicle. Using cooperative computing, computing

workload can be split amongst multiple vehicle workers, who process sensor frames and then

deliver the outputs of their processing to other interested vehicles, Rk. Computing workload

is split between workers such that each worker will process a portion of the tasks in the task

stream. Cooperative computing can then enable applications such as cooperative perception

to operate at a higher QoS, which translates to higher rk,l, ck,l or bk,l.

Cooperative perception tasks will have multiple sender vehicles s ∈ Sk of input data.

Depending on the type of sensor data, there are different types of computing tasks that

might need to be performed. For example, on 3D data, generated by radar or LIDAR,

processing would include object detection and localization. The data size of the sensor

frames would correspond to bk,l, computational processing of the sensor frames would have

a load ck,l and frame rate would be equivalent to rk,l. The set Sk contains cars that have

sensing capabilities such as LIDAR or radar. The outputs of sensor data processing are

normally locations and bounding boxes of the objects in the environment. Tasks have a

delay tolerance τk, past which the information contained in the sensor data is out of date

with the environment.

4.3.4 Computing model

The total amount of shareable compute power per worker is fw CPU cycles per second.

Each worker w will have a separate queue per each task stream k it processes, which will be

allocated xk,w,l ∈ [0, 1] share of the worker’s computing power if the QoS level of k is l. Since

a task stream k can only operate at one QoS level l, a particular worker w cannot allocate

resources to multiple QoS levels l for some k, i.e xk,w,l1 > 0 ∧ xk,w,l2 > 0 =⇒ l1 = l2. For

simplicity, we assume that cooperative computing operations will not be memory constrained

on the vehicles, although that extension would be feasible in our resource assignment and

scheduling framework. The per-task and per-worker computing delay at QoS l is tck,w,l =

ck,l
fwxk,w,l

. Each worker will process zk,w,l tasks per second of the task stream, which is upper
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bounded by the allocated resources zk,w,l ≤ ⌊fwxk,w,l

ck,l
⌋. The sum rate across all workers must

meet the task stream processing rate:
∑

w zk,w,l = qk,lrk,l. This joint processing of the task

stream is what enables a higher QoS compared to non-cooperative computing.

4.3.5 Communications model

We assume that all senders and workers are capable of V2V communication and are using

the hardware from an IEEE 802.11 standard. The IEEE 802.11p standard is the 802.11

standard developed specifically for vehicular communications [MDW12], but modern vehicles

are frequently equipped with Wi-Fi hardware which could also be used for inter-vehicle

communications. Since the vehicles will be networking in ad-hoc mode without a central

access point, channel contention is achieved using the 802.11 DCF. Specifically, we assume

that the Enhanced Distributed Channel Acccess (EDCA) mechanism for contention is used,

which was introduced in 802.11e standard [KRS17] and has been present in all subsequent

802.11 standards. The EDCA is based on the DCF and supports multi-priority traffic.

4.3.5.1 Overview of the EDCA Mechanism

The EDCA mechanism defines different access categories (ACs), e.g. Voice-VO, Video-VI,

Best effort-BE, and Background-BK. Each AC has a queue independently contending for

transmission with its own parameters. Let TAIFS denote the duration of the AIFS, i.e.,

the idle period after a busy period. In the EDCA mechanism, if a channel is sensed idle

when a packet arrives at an AC queue in a station and keeps idle for TAIFS , the packet will

be transmitted. Otherwise, if the channel is sensed busy, the station will first start up a

backoff counter with the initial value set to one randomly selected from [0, CW ]. During

the backoff period, if the channel is sensed busy, the backoff counter will be frozen at the

current value. After the channel becomes idle and keeps idle for TAIFS , the counter will be

decremented by 1. When the backoff counter becomes zero, the packet will be transmitted.
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If the station does not receive an acknowledgment (ACK) packet in a given time, the packet

will be retransmitted. At each retransmission, the value of CW will first be doubled, and

then a new backoff procedure is initiated. The CW can be increased up to a maximum value

CWmax.

4.3.5.2 Task transmission delay model

In order for a task from stream k to be computed at worker w, task input data must be

delivered from the all senders Sk. This will be coordinated by the leader vehicle. Input data

at QoS l provided by each sender will have a bit size bk,l. We assume that transmission frame

size is equal across all vehicles and equal to Dtx bits and the minimum back-off window per

sender is Ws. Each transmitted frame has an overhead of Dh bits as part of the frame. If

the input data size bk,l is greater than the payload of a single frame Dtx − Dh, then input

data will be split across b̂k,l = ⌈ bk,l
Dtx−Dh

⌉ frames. The links between senders and workers have

an achievable data rate Bs,w in bits per second. The maximum bandwidth is the data rate

at which a sender can reliably transmit to the worker once it gains access to the channel

and is a function of the SNR between them. Therefore, transmission duration for a single

task is b̂k,lLs,w, where Ls,w = Dtx

Bs,w
. Task computation at worker w starts when input data

from all senders Sk is delivered, therefore the total expected transmission delay per task is

ttxk,w,l =
∑

s∈Sk
b̂k,lLs,w.

4.3.5.3 Channel capacity

The amount of tasks that can be offloaded is limited due to capacity limits of the channel.

Channel capacity can be further limited by incumbent transmissions occurring on the same

channel that can be represented as a set of active flows I. Incumbent transmissions can occur

due to other cars in the micro cloud transmitting data unrelated to cooperative computing

or due to roadside devices utilizing the channel. We currently focus only on interference
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from other devices with 802.11 hardware. Such incumbent interference can be expected in

both 802.11p and WiFi based vehicular networking. Each incumbent flow i ∈ I has a frame

transmission rate z̃i, an average per frame transmission duration L̃i and a minimum backoff

window W̃i. Each sender will receive a portion of the channel time, which we refer to as

the service time Ys ∈ [0, 1]. Ys depends on the sender’s own activity and activity of all

other nodes on the channel. Any node in 802.11 networks may also have multiple traffic

flows in different AC queues, which can be treated as their own independent flows. If the

sender throughput demand
∑

l

∑
w zk,w,lb̂k,lLs,w exceeds Ys, congestion occurs at the sender

and task transmission delay will drastically increase due to a large queuing delay. Therefore,

for successful cooperative computing, it is necessary to avoid congestion at all of the senders

by ensuring Ys ≥
∑

l

∑
w zk,w,lb̂k,lLs,w ∀k,∀s ∈ Sk. Prediction of Ys is challenging due to

complex interactions between senders’ flows and other transmissions on the channel. We will

consider two different approaches for congestion control as part of our resource assignment

and scheduling algorithm.

4.3.5.4 Achievable data rate model

The achievable data rate Bs,w between sender s and worker w is primarily dependent to

signal-to-noise ratio SNRs,w between them. Given a particular SNRs,w between a sender and

a worker, the senders will apply a modulation and coding scheme (MCS) such that reliable

transmission can take place. The MCS will determine the achievable data rate Bs,w in bps.

The achievable data rate Bs,w between sender s and worker w is related to signal-to-noise

ratio SNRs,w between them. Given a particular SNRs,w, the senders will apply a MCS such

that reliable transmission can take place. The MCS will determine the achievable data rate

Bs,w in bps. For example, in the 802.11p protocol, there are 8 possible MCSs with the

following respective data rates: 3 Mbps, 4.5 Mbps, 6 Mbps, 9 Mbps, 12 Mbps, 18 Mbps,

24 Mbps and 27 Mbps. We denote the set of data rates by B, which will depend on the

utilized IEEE 802.11 standard. Newer IEEE 802.11 standards support multiple input multi
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output (MIMO) communications, for which the transmission rate is not selected simply based

on the SNR, but also based on other channel-quality indicators. For simplicity, however, we

will focus on standards where reliable data rate prediction is achievable based on SNR only.

Let the distance between a sender s and a worker w be ds,w. Furthermore, we assume

that the height of the antenna placement at a vehicle i is known and we denote it by hi.

We assume line-of-sight conditions and use the two-ray interference model to predict the

large-scale path-loss characteristics. This model was experimentally validated for line-of-

sight vehicular communications [SD11]. The expression for path loss in log-scale is given

by:

Pl(ds,w) = 20 log

(
4π
d

λ

∣∣1 + Γ⊥e
iφ
∣∣−1
)
, substituting

φ = 2π
dlos − dref

λ
,Γ⊥ =

sin θi −
√
ϵr − cos2 θi

sin θi +
√
ϵr − cos2 θi

dlos =
√
d2s,w + (ht − hr)2, dref =

√
d2s,w + (ht + hr)

2

sin θi = (ht + hr) /dref , cos θi = ds,w/dref .

(4.1)

The constant λ is the wavelength corresponding to the channel center frequency. For more

accurate path loss modelling, geometry-based modelling approaches could be applied such as

ray-tracing models or simplified ray-tracing models [SEG11]. Small scale fading is normally

captured as additive noise to large-scale fading Pl(ds,w), with some well-known distribution

such as Gaussian, Weibull or Nakagami [VBT15]. However, for simplicity, we exclude such

modelling from our system model and the approach. Let Pt, Gt, Gr and N0 be transmitted

power, transmitter gain, receiver gain and noise power in dB, then the SNR between sender

s and worker w is SNRs,w = Pt +Gt +Gr − Pl(ds,w)−N0. Proposed methods for prediction

of Bs,w and SNRs,w in VMCs will be discussed in Sec. 4.7.

In the next section, we formulate the resource assignment and scheduling problem for

cooperative computing of task streams in sensing-based vehicular applications.
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Table 4.1: Important notation used in the paper and their meanings.

Variables/Parameters
Vehicular micro cloud

w Worker index
W Set of workers
fw Computing power at worker w
s Sender index
ds,w Distance between s and w

Task streams
k Task stream index
l QoS level
Sk Set of senders in task stream k
qk,l QoS assignment variables
rk,l Task stream rate at QoS level l
ck,l Compute load at QoS level l
bk,l Input data size at QoS level l
τk Task delay tolerance l

Computing and communications
xk,w,l Compute resources assigned by w to process k at QoS l
zk,w,l Processing rate at w of tasks k at QoS l (tasks per sec.)
CIDLE Average idle time on the channel
Bs,w Achievable data rate between s and w (bps)
Ls,w Transmission duration of a single frame between s and w

b̂k,l Number of frames per task of task stream k at QoS l
ttxk,w,l Transmission delay of a single task at w of tasks k at QoS l

Incumbent flows
i Incumbent flow index

L̃i Frame duration
z̃i Frame rate

4.4 Resource assignment and scheduling for cooperative comput-

ing

In our framework, resource assignment and scheduling is executed periodically at a Tassign

time interval to meet the changes in computing demands and computing resources in the

micro-cloud. Let us assume that Tassign is a fixed parameter at this point. We will discuss

extensions to adaptively select Tassign in Sec. 4.8.

Resource assignment and scheduling is performed at the leader vehicle that holds the

information about computing demands and computing resources in the VMC. Our main

objective is to maximize the sum QoS value across all task streams in the VMC
∑

k,l lqk,l,

where l is the QoS level. The main optimization variables are computing resource assignment
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xk,w,l ∀k, w, l, scheduled QoS qk,l ∀k, l and processing rate zk,w,l ∀k, w, l.

Given certain scheduled QoS qk,l ∀k, l and zk,w,l ∀k, w, l, queue congestion may occur at

one or more senders. The set of viable qk,l ∀k, l and zk,w,l ∀k, w, l can be represented by a

set of constraints:

gi(z1,1,1, . . . , zK,W,L, q1,1, . . . , qK,L) ≤ 0 ∀i ∈ {1, . . . , G} (C1.1)

Where functions gi(·) are some abstract, potentially non-convex functions of qk,l ∀k, l and

zk,w,l ∀k, w, l.

We formulate the resource assignment and scheduling problem as a mixed-integer pro-

gramming (MIP) problem:

max
xk,w,l,zk,w,l,qk,l

∑
k,l

lqk,l (P1)

s.t. (C1.1)

ck,l
fwxk,w,l

+ ttxk,w,l ≤ τk if xk,w,l > 0, ∀k, w, l (C1.2)∑
w

zk,w,l = qk,lrk,l ∀k, l (C1.3)

zk,w,l ≤
fwxk,w,l

ck,l
∀k, w, l (C1.4)

xk,w,l ≥ 0 ∀k, w, l (C1.5)∑
l

∑
k

xk,w,l ≤ 1 ∀w (C1.6)

∑
l

qk,l ≤ 1 ∀k (C1.7)

qk,l ∈ {0, 1} ∀k, l (C1.8)

zk,w,l ∈ {0, 1, 2, . . . , rk,l} ∀k, w, l (C1.9)
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The achievable
∑

k,l lqk,l is limited by the computation and communication constraints.

Constraints (C1.3) guarantee that the total task computing rate across workers meets the

QoS rate. Constraints (C1.2) ensure that the sum of the computing delay and the task

transmission delay ttxk,w,l is smaller than the maximum task processing delay τk. Constraints

(C1.4) limit the task computing rate per vehicle to be upper bounded based on the allocated

compute resources. Constraints (C1.6) are the capacity constraint on computing resources

per vehicle. Constraints (C1.5), (C1.7), (C1.8) and (C1.9) impose feasible values on the

optimization variables. Finally, the set of constraints (C1.1) ensures that the sender queues

will not become congested when offloading tasks.

There are several challenges in solving the problem (P1). The first challenge lies in

developing methods for prediction of congestion and formulating the predicted set of viable

qk,l ∀k, l and zk,w,l ∀k, w, l as a set of constraints that will replace (C1.1). The second is

prediction of the delay ttxk,w,l, which relies on knowing the achievable data rates Bs,w between

senders and workers. Finally, given that we can predict Bs,w ∀s, w and we have developed

methods for congestion prevention, we must develop methods to solve the problem (P1)

optimally and efficiently or seek approximate solutions that can quickly obtain a suboptimal

yet feasible solutions.

Resource assignment and scheduling determines how many tasks will be processed by

each worker over the next Tassign seconds, which is given by Tassignzk,w,l ∀k, w, l. However,

this still does not determine which specific tasks in the task stream will be processed by

which specific workers. We refer to this as the task assignment. The specific assignment

matters since inefficient assignment may cause a queuing delay at one or more workers. The

assignment of tasks to workers is performed using a round-robin heuristic policy, which we

found to minimize queuing at the workers. Since this assignment is not the main focus of

this paper, we will postpone the description of the policy until Sec. 4.9.

In sections 4.5 and 4.6, we introduce two congestion control approaches and formulate

them as two different sets of constraints that will replace (C1.1) in (P1). Based on the
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congestion control approaches used, we will obtain two different resource assignment and

scheduling approaches.

4.5 resource assignment and scheduling with bottleneck conges-

tion control

In this section, we present a method for congestion control that can be implemented as a

single linear integer constraint that replaces (C1.1) in (P1). We then formulate the resulting

optimization problem as an MILP problem and solve it using branch and bound methods to

obtain a solution for resource assignment and scheduling in Sec. 4.5.2. The complexity of

branch and bound approaches scales exponentially with the number vehicles participating

in cooperative computing and the number of task streams, so they may not be feasible to

run in real time when the number of vehicles participating in cooperative computing is high.

For these scenarios, we develop an approximate resource assignment methods that runs in

polynomial time. in Sec. 4.5.3.

4.5.1 Congestion control constraints

In the absence of transmissions due to cooperative computing, we assume that the channel

may still be utilized by incumbent devices. Specifically, the channel will be occupied by

incumbent transmissions for a portion of the time that we refer to use as the busy time

and idle for a portion of the time that we refer to as the idle time, which is denoted by

CIDLE ∈ [0, 1]. We make a simplifying assumption that due to the size of the VMC all vehicles

are in the interference range of the incumbent devices, therefore the idle time observed by all

the vehicles in the VMC is the same. We propose the following congestion control approach.

If the total load on the channel due to offloaded tasks exceeds the idle time CIDLE, then this

model predicts that at least one of the senders will be congested. Congestion can then be
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avoided by meeting the following constraint:

∑
k

∑
l

∑
s∈Sk

∑
w ̸=s

zk,w,lb̂k,lLs,w ≤ CIDLE (C2.1)

For this approach, it is necessary to predict the achievable data rates between vehicles Bs,w

in order to predict Ls,w. Moreover, it is necessary to estimate CIDLE. To obtain CIDLE, idle

time is independently estimated by each vehicle in the micro cloud. Then, the average of

idle times observed at each vehicle is used as the estimate for CIDLE.

Since this congestion control approach can be represented using a single linear constraint,

it is easy to implement into resource assignment and scheduling, as we will demonstrate in

the following section. However, it may not be always be accurate for prediction of conges-

tion. This is because it does not capture the effects of contention for the channel between

computational offloading flows and incumbent flows, but instead treats them as indepen-

dent from each other. Furthermore, as more computational offloading flows are added, the

channel contention between them reduces the efficiency of the DCF.

4.5.2 Exact solution methods

First, we derive an approach based on MILP that optimally solves the resulting resource

assignment and scheduling problem. In this congestion control approach, the constraint

(C2.1) replaces the set of constraints (C1.1). The constraint is linear with integer optimiza-

tion variables and this is the case for most other constraints in the resulting problem. The

only exception are the constraints (C1.2), which are non-convex. These can be reformu-

lated as linear integer constraints. We can replace the constraints (C1.2) by the following

constraints.
ck,l
fw

+ xk,w,lt
tx
k,w,l ≤ xk,w,lτk + (1− xbk,w,l)

ck,l
fw
∀k, w, l (C2.2)

xk,w,l ≤ xbk,w,l ∀k, w, l (C2.3)
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xbk,w,l ∈ {0, 1} ∀k, w, l (C2.4)

In the above constraints, we created a set of auxiliary integer optimization variables xbk,w,l ∀k, w, l.

The optimization problem we arrive at then is:

max
xk,w,l,zk,w,l,qk,l,x

b
k,l

∑
k,l

lqk,l (P2)

s.t. (C1.3) to (C1.9), (C2.1) to (C2.4)

This is now an MILP problem, which can be solved using solvers that are based on branch-

and-bound methods [Wol20]. While such approaches will provide us with an optimal solution,

they may not always be efficient enough to execute in real-time because their complexity

is exponential in the worst case. The number of variables and constraints scales with the

number of workers and task streams. When the number of workers and task streams is large,

we can expect that solving the problem using exact methods may be infeasible. Therefore,

for such cases, we will seek approximate methods and use the exact solution methods to

quantify the upper bounds on the gains of cooperative computing.

4.5.3 Approximate solution methods

Even though the problem (P2) is an MILP problem, some MILP problems can still be

optimally solved in polynomial time. In this section, we will show that the problem (P2) is

NP-hard, which tells us that the optimal solution can indeed only be found in exponential

time and motivates us to look for approximate methods.

Theorem 1. The problem (P2) to find the optimal computing resource assignment and

scheduling such that sum QoS is maximized is NP-hard.

Proof. The key idea of the proof is to find a representative NP-hard problem that can be

reduced to a special case of our problem. We will consider the following special case of (P2).
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First, we assume that the number of levels across all task streams is Qk = 1. In that case,

we can drop the subscript l from all the parameters and variables that have it in (P2). Next,

let the rate across all task streams be rk = 1. Furthermore, we introduce a parameter αk,w =

ck
fw(τk−ttxk,w)

, which is equal to the minimum amount of computing resources xk,w that need to

be allocated such that the delay constraints (C2.1) to (C2.4) are met. Under the assumption

that rk = 1, when a worker is assigned to task stream k, the minimum amount of computing

resources xk,w that have to be invested to satisfy the constraint (C1.4) are βk,w = ck
fw
. One

can select the input parameters of (P2) such that βk,w ≥ αk,w ∀k, w. In this special case, the

delay constraints can be ignored, because we know they will not be the binding constraints.

Since delay constraints are ignored, we can exclude the variables xk,w∀k, w xbk,w∀k, w from

optimization and model computing capacity constraints as
∑

k zk,w
ck
fw
≤ 1 ∀w. The special

case of (P2) that we described is summarized below:

max
zk,w,qk

∑
k

lqk (SP2)

∑
w

zk,w = qk,l ∀k∑
k

∑
s∈Sk

∑
w ̸=s

zk,wb̂kLs,w ≤ CIDLE (SP2.1)

∑
k

zk,w
ck
fw
≤ 1 ∀w (SP2.2)

qk ∈ {0, 1} ∀k

zk,w ∈ {0, 1} ∀k, w

The problem (SP2) is an example of multi-resource bottleneck generalized assignment prob-

lem (GAP) which is known to be NP-hard [KA12]. In multi-resource bottleneck GAP there

is a set of tasks (task streams in (SP2)), set of agents (workers in (SP2)), and a set of re-

sources ( ck
fw

in (SP2)) used by the agents to perform these tasks. Each task must be assigned

to one agent. The total amount of resources used by an agent cannot exceed the amount
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of resource available to it (constraint SP2.2). Furthermore, total weighted load across all

agents cannot exceed a certain threshold (constraint SP2.1).

Since (SP2) is the special case of the problem (P2) and we demonstrated that it is NP-

hard, then the problem (P2) is also NP-hard.

Next, we describe an approximate solution method for solving (P2). The proposed ap-

proximate approach is based on an altered continuous relaxation of (P2):

max
xk,w,l,zk,w,l,qk,l

∑
k,l

lqk,l (P3)

s.t. (C1.3) to (C1.7), (C2.1)

zk,w,l ≥ 0 ∀k, w, l (C3.1)

qk,l ≥ qlbk,l ∀k, l (C3.2)

qk,l ≤ qubk,l ∀k, l (C3.3)

xk,w,l ≥ xlbk,w,l ∀k, w, l (C3.4)

xk,w,l ≤ xubk,w,l ∀k, w, l (C3.5)

The problem (P3) is a linear programming (LP) problem but it is not a direct continuous

relaxation of (P2), which would be obtained by simply replacing the constraints (C1.8)

and (C1.9) by constraint (C3.1) and (C3.2). Initially, qlbk,l = 0 ∀k, l, xlbk,w,l = 0 ∀k, w, l,

xubk,w,l = 1 ∀k, w, l and qubk,l = 1 ∀k, l. In (P3) we also remove the delay constraints (C2.3)

and (C2.4). Furthermore, we added constraints (C3.4) and (C3.5) which will be utilized to

ensure that the delay constraints are not violated. The proposed approximate method will

repeatedly solve the problem (P3) and use the obtained continuous solutions for xk,w,l, zk,w,l,

qk,l to solve for resource assignment and scheduling.

The proposed approximate solution algorithm is summarized in Algorithm 1. In line 1, we

obtain an initial continuous solution. Then, in the main loop we perform greedy exploration

over qk,l ∀k, l and solve for xk,w,l ∀k, w, l and zk,w,l ∀k, w, l. At the start of each loop we select
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Algorithm 1: Approximate solution algorithm for (P2)

Input: l, fw, αk,w,l, ck,l, rk,l, CIDLE ∀k, w, l
Output: xk,w,l, zk,w,l, qk,l ∀k, w, l

1 xlbk,w,l ← 0 ∀k, w, l; xubk,w,l ← 1 ∀k, w, l
2 qubk,l ← 1 ∀k, l; qlbk,l ← 0 ∀k, l
3 Solve (P3) to obtain xk,w,l, zk,w,l, qk,l ∀k, w, l
4 while

∑
k

∑
l q

lb
k,l ≤ K do

5 k̂, l̂ = argmaxk,l l s.t. q
ub
k,l = 1 and qlbk,l = 0

6 qlb
k̂,l̂
← 1; qub

k̂,l
← 0 ∀l ̸= l̂

7 Select V ⊂ W with V highest xk̂,w,l̂ and such that
(
1−

∑
k ̸=k̂

∑
l xk,w,l

)
≥ αk̂,w,l̂

8 xlb
k̂,w,l̂
← αk̂,w,l̂ ∀w ∈ V

9 xub
k̂,w,l̂
← 0 ∀w ∈ W \ V

10 if (P3) is feasible then

11 Solve (P3) to update xk,w,l, zk,w,l, qk,l ∀k, w, l
12 else

13 qlb
k̂,l̂
← 0; qub

k̂,l̂
← 0; qub

k̂,l
← 1 ∀l ̸= l̂

14 xlb
k̂,w,l̂
← 0 ∀w ∈ V

15 end

16 end

17 Perform randomized rounding on zk,w,l ∀k, w, l while meeting the constraints of (P3)

a pair (k̂, l̂) with highest l, under the constraints qubk,l = 1 and qlbk,l = 0. The constraints limit

selection to (k, l) pairs that have not been explored before and task streams whose QoS has

not been determined yet. In line 6, the algorithm assigns the QoS for task stream k̂ to be l̂.

In line 7, the algorithm selects V workers that will be assigned to task stream k̂. However,

workers are not necessarily fully assigned to task stream k̂ and may be shared with other

task streams. The worker assignment step is necessary to ensure that delay constraints will

be met. When selecting workers, the algorithms chooses the ones that have at least αk,w,l

resources available. This is necessary to ensure that the worker will have sufficient computing

resources available to meet the delay constraints (C2.2), (C2.3) and (C2.4). Among such

workers, up to V workers with highest xk,w,l values are selected. Therefore, we use the

current solution for xk,w,l ∀k, w, l to guide the assignment of workers. The parameter V was
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selected empirically to maximize the final
∑

k,l lqk,l across various tested scenarios. In line 8,

for the workers that were assigned, the algorithm sets a lower bound on xk̂,w,l̂ to ensure delay

constraints are met, while all others workers are excluded from processing the task stream

k̂ in line 9. In line 10, the algorithm checks if the problem (P3) can be solved with updated

values for qlbk,l, x
lb
k,w,l, x

ub
k,w,l, q

ub
k,l ∀k, w, l. If so, the resource assignment and scheduling solution

is updated in line 11. Otherwise, in line 13, we reset the QoS assignment for task stream k̂

and ensure that the pair (k̂, l̂) will not be explored again in the future loops. In line 14, we

release the workers from processing (k̂, l̂) if a solution was not feasible. The loop proceeds

until all task streams are assigned to some QoS level.

At the end of the loop, we will obtain a feasible integer assignment for qk,l ∀k, l in (P3)

and a feasible assignment for xk,w,l ∀k, w, l in (P3). However, the solution zk,w,l ∀k, w, l

is not integer, even though it is feasible in (P3). Accordingly, the algorithm will per-

form randomized rounding on zk,w,l ∀k, w, l, while keeping qk,l ∀k, l fixed. With probability

min (µ(zk,w,l − ⌊zk,w,l⌋), 1), zk,w,l is rounded up, otherwise zk,w,l is rounded down. The pa-

rameter µ ≥ 1 was selected empirically to maximize the final
∑

k,l lqk,l. If rounding zk,w,l up,

it is possible that xk,w,l will need to be increased to meet the constraint (C1.4). However,

rounding up of zk,w,l is performed only if the constraints (C1.6) and (C2.1) are not violated.

After performing rounding on zk,w,l ∀k, w, l, the constraint (C1.3) may not be met for some

task streams. For these task streams, zk,w,l may need to be lowered for some workers if

the total task computing rate is too high (
∑

w zk,w,l > qk,lrk,l). If the total task computing

rate is too low for some task streams (
∑

w zk,w,l < qk,lrk,l), then QoS must be lowered until∑
w zk,w,l ≥ qk,lrk,l. Lowering the QoS will not violate any of the other constraints since we

assume that if l1 < l2, then ck,l1 ≤ ck,l2 , bk,l1 ≤ bk,l2 and rk,l1 ≤ rk,l2 . Next, we discuss the

characteristics of Algorithm 1. A solution qk,l ∀k, l, xk,w,l ∀k, w, l and zk,w,l ∀k, w, l obtained

with Algorithm 1 is a feasible solution for (P2). This is because any feasible solution of (P3)

with integer qk,l ∀k, l and zk,w,l ∀k, w, l and with appropriate xubk,w,l, x
lb
k,w,l ∀k, w, l is feasible

in (P2). xubk,w,l ∀k, w, l and xlbk,w,l ∀k, w, l are appropriately assigned in Algorithm 1 to meet
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the delay constraints (C2.1) to (C2.4). Furthermore, Algorithm 1 has a polynomial time

complexity because in the worst case it solves the LP problem (P3) (KL+ 1) times. The

Algorithm 1 is not guaranteed to obtain the optimal solution for (P2), however it tends to

produce solutions that lead to high
∑

k,l lqk,l because of the greedy approach to assigning

QoS (lines 5 and 6) and the proposed strategy of assigning workers to task streams (line 7).

The performance of Algorithm 1 will be evaluated through extensive simulations.

4.6 Resource assignment and scheduling with per-flow congestion

control

In this section, we present an alternative resource assignment and scheduling method based

on a more accurate model of congestion, which addresses the drawbacks of the congestion

model presented in Sec. 4.5. While the resource assignment and scheduling method we will

present is more reliable in preventing congestion, it is computationally more complex and

requires more information about incumbent interference parameters. We first develop an

approach for resource assignment and scheduling based on MILP in Sec. 4.6.2 and then

propose approximate methods in Sec. 4.6.3

4.6.1 Congestion control constraints

The proposed congestion control constraints are based on a throughput prediction approach

for 802.11 networks based on EDCA that was introduced in [YK07]. The approach is based

on modeling channel contention as a Markov process. The model assumes that all active

nodes can be in two states: saturated and non-saturated. A saturated node always has

backlogged packets while a non-saturated node often has an empty queue. We denote the

set of all saturated nodes byN1 and the set of non-saturated nodes byN2. In order to explain

the model more easily, we temporarily exclude the incumbent flows from the analysis. We

introduce a set of variables ẑs =
∑

l

∑
w ̸=s zk,w,lb̂k,l ∀k,∀s ∈ Sk which denote the frame
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transmission rate per sender and a set of variables L̂s ∀k, ∀s ∈ Sk which denote the average

frame transmission duration from the sender to all of the workers. L̂s is defined as:

L̂s =

∑
l

∑
w zk,w,lLs,w∑

l

∑
w zk,w,l

∀k,∀s ∈ Sk. (4.6)

Let δ̂s be a binary variable equal to 1 if ẑs > 0, and 0 otherwise. Then, following the approach

in [YK07], we define a variable called congestion level:

η (N1,N2) =

∑
s∈N1

δ̂sL̂s/Ws

1−
∑

s∈N2
ẑsL̂s/Ccap

. (4.7)

where Ccap denotes the maximum total service time in a fully saturated network:
∑

s Ys ≤

Ccap. The value of Ccap is normally set to 0.9 and tends to be constant regardless of the

number of flows and their characteristics. If a sender s is saturated, i.e. s ∈ N1, then s will

obtain a service time Ys =
L̂sCcap

η(N1,N2)Ws
. Otherwise, if a sender s is not saturated, it will receive

a service time equal to its demand: Ys = ẑsL̂s. In the latter case, the sender queues will not

be congested which is the outcome that we want for successful cooperative computing. This

prediction relies on knowing the sets N1 and N2. To solve for N1 and N2, we can rely on

the fact that when a valid solution for N1 and N2 has been found ẑsL̂s ≥ L̂sCcap

η(N1,N2)Ws
∀s ∈ N1

and ẑsL̂s <
L̂sCcap

η(N1,N2)Ws
∀s ∈ N2. The following approach was proposed in [YK07] to solve for

N1 and N2. First, the flows are sorted based on ẑsWs from highest to lowest. Initially, all

senders are placed in N2. Then, starting from the highest ẑsWs sender, we sequentially add

senders into N1, until ẑsL̂s ≥ L̂sCcap

η(N1,N2)Ws
∀s ∈ N1 and ẑsL̂s <

L̂sCcap

η(N1,N2)Ws
∀s ∈ N2. At that

point, the solution for N1 and N2 is found. It is straightforward to add incumbent flows into

the approach we just described, as they would be treated identically as the sender flows. We

will denote the set of saturated incumbent flows by N3 and the unsaturated set by N4.

The desired outcome for cooperative computing is for no senders to be saturated, since

this will prevent queue congestion. In other words, the set N1 should be empty. However,
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implementing the throughput prediction method from [YK07] as a set of constraints in (P1)

is challenging because this method is based on flows with predetermined rates, whereas the

purpose of (P1) is to solve for the rate values. Instead, we propose the following strategy

to ensure that the set N1 will be empty. If none of the senders are saturated, then there

is no valid solution for N1 and N2 such that there are senders in N1. To ensure this, we

set ẑsL̂s <
L̂sCcap

η(N1,N2,N3,N4)Ws
∃s ∈ N1, regardless of the set N1 being chosen. Let the set N

be the set of all possible combinations for (N1,N2,N3,N4). Then, for each combination

(N1,N2,N3,N4), we add the set of constraints ẑsL̂s <
L̂sCcap

η(N1,N2,N1,N2)Ws
∀s ∈ N1 into (P1),

out of which only one must be met. After inserting the expression for η (N1,N2,N3,N4),

this inequality is written as:

ẑsWs

Ccap

<
1−

∑
j∈N2

ẑjL̂j/Ccap −
∑

i∈N4
z̃iL̃i/Ccap∑

j∈N1
δ̂jL̂j/Wj +

∑
i∈N3

L̃i/W̃i

(4.8)

The number of constraints of the type in Eq. 4.8 that needs to be added to (P1) are O(2|S|+I).

Therefore, this approach is not suitable in circumstances with a large number of senders or

incumbent flows because the computational complexity of solving (P1) may be too high

for real-time operation. In the following sections, we will develop exact and approximate

solution methods for solving for resource assignment and scheduling with these congestion

constraints.

4.6.2 Exact solution methods

In the previous section, we showed that the set of constraints that must be added to (P1)

is of the type given in Eq. 4.8. This equation contains the variable L̂s, which was defined

in Eq. 4.6. However, the expression in Eq. 4.6 cannot be represented as a linear integer

constraint, which is important for formulating this problem as an MILP. We wish to for-

mulate the resource assignment and scheduling problem as an MILP because the solvers for

these problems are well developed and on average have lower than exponential computa-
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tional complexity. First, we will replace the variables L̂s with static parameters L̄s, which

are defined as follows:

L̄s =

∑
w 1(Bs,w>0)Ls,w∑

w 1(Bs,w>0)

∀k,∀s ∈ Sk. (4.9)

1Q is a function that outputs 1 if the logical expression Q is true, and 0 otherwise. Hence,

the average frame transmission duration at sender s, L̂s, is approximated as the average

duration of a single frame transmission to all workers for which the expected achievable data

rate from sender s is non-zero.

The expression in Eq. 4.8 also cannot be formulated as a linear integer constraint due

to the quadratic summation term ẑsWs

Ccap

(∑
j∈N1

δ̂jL̂j/Wj

)
. We will use the big-M method to

convert the expression intro a linear integer constraint:

ẑsWs

Ccap

(∑
j∈N1

L̄j/Wj +
∑
i∈N3

L̃i/W̃i

)
≤ 1−

∑
j∈N2

ẑjL̄j/Ccap −
∑
i∈N4

z̃iL̃i/Ccap +
∑
j∈N1

(1− δ̂j)M

∀ (N1,N2,N3,N4) ∈ N , ∃s ∈ N1 (C4.1)

ẑs =
∑
l

∑
w ̸=s

zk,w,lb̂k,l ∀k,∀s ∈ Sk (C4.2)

The constant M is chosen appropriately such that the constraint is guaranteed to become

non-binding when any of the senders in N1 are not active, i.e. when δ̂j = 0. We can now

formulate resource assignment and scheduling as an MILP problem based on the advanced

congestion constraints as:

max
xk,w,l,zk,w,l,qk,l,x

b
k,l,zs

∑
k,l

lqk,l (P4)

s.t. (C1.3) to (C1.9), (C2.2) to (C2.4)

(C4.1) and (C4.2)
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Similar to problem (P2), this problem can be solved using solvers based on branch-and-

bound methods. While such approaches will provide us with an optimal solution, they may

not always be efficient enough to execute in real-time because their complexity is exponential

in the worst case. Therefore, for such cases, we will seek approximate methods and use the

exact solution methods to quantify the upper bounds on the gains of cooperative computing.

4.6.3 Approximate solution methods

Since the problem (P4) is similar to (P2), we can expect that it is also NP-hard. For the

sake of brevity, we omit the whole proof and only explain the basic idea behind proving

this. Using the same strategy as in Theorem 1, it can be shown that GAP is reducible to a

special case of this problem. The only difference between (P4) and (P2) are the congestion

constraints (C4.1) and (C4.2). However, a special case can be selected that has the following

properties: L̄s

Ccap
≪ 1 ∀s and L̃i

Ccap
≪ 1 ∀i, which guarantees that the constraints (C4.1)

are not binding and can be omitted from the special case. Then, the proof would follow in

a similar manner as the proof of Theorem 1. Since the problem (P4) is NP-hard, we are

motivated to look for approximate solution methods.

The approximation approach that we will propose is based on utilizing the solution ob-

tained for (P2) and lowering the QoS per task stream until we meet the congestion constraints

described in Sec. 4.6.1. This method is based on the fact the problems (P2) and (P4) only

differ in their congestion constraints. Furthermore, this approach is based on the assump-

tion that if l1 < l2, then ck,l1 ≤ ck,l2 , bk,l1 ≤ bk,l2 and rk,l1 ≤ rk,l2 . Therefore, if QoS of a

task stream is lowered starting from a feasible solution, then only constraints that can be

potentially violated in (P2) are (C1.3).

The proposed way of accomplishing this is summarized in Algorithm 2. In line 1, the

algorithm first obtains a solution for (P2) using the exact or approximate methods described

in Sec. 4.5. We can expect that the exact solution of (P2) will be faster to obtain using

MILP methods than the exact solution of (P4) if the number of senders |S| is high, since
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that determines the number of constraints in (C4.1). Otherwise, approximate methods for

solving (P2) can be used as the starting point. Then, in the main loop, we first introduce

temporary variables z̃k,w,l, q̃k,l ∀k, w, l, which will be used to store a solution for each task

stream such that QoS level is lowered by 1. Then, in the inner loop we obtain a solution

for task processing rate z̃k,w,l ∀k, w, l per worker that supports the lowered q̃k,l ∀k, l. The

solution is obtained in line 7, where the algorithm determines the positive reduction in

task processing rate per vehicle ∆w∀w that will also minimize the cumulative transmission

duration on the channel
∑

s∈Sk̂

∑
w ̸=s(zk̂,w,l − ∆w)b̂k̂,l̂−1Ls,w. This minimization problem in

line 7 can be solved by minimizing task processing rate in the order of the workers with the

highest Ls,w. Cumulative transmission duration is correlated with congestion, so minimizing

it makes it more likely that the constraints (C4.1) and (C4.2) are met at the end of the

loop. Then, after solving for z̃k,w,l ∀k, w, l, we lover the QoS by one level for the task stream

k̃ (selected in line 11) such that cumulative transmission duration on the channel will be

minimized. The main loop continues until the constraints (C4.1) and (C4.2) are met.

Since Algorithm 2 updates the solution of (P2) in a manner such that the constraints of

(P2) are not violated, while meeting the constraints (C4.1) and (C4.2), the obtained solution

is also feasible in (P4). The Algorithm 2 complexity is determined by the complexity of the

solution method used to obtain a starting solution in line 1, which can be exponential if

MILP is used and polynomial if Algorithm 1 is used. The solution obtained using Algorithm

1 is not optimal, but since the starting solution obtained in line 1 maximizes sum QoS, the

output solution can be expected to have a high objective value. The gaps between Algorithm

2 and exact solutions methods developed in the previous section will be quantified through

extensive simulations.
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Algorithm 2: Approximate solution algorithm for (P4)

Input: l, fw, αk,w,l, ck,l, rk,l, CIDLE ∀k, w, l
Output: xk,w,l, zk,w,l, qk,l ∀k, w, l

1 Solve (P2) to obtain xk,w,l, zk,w,l, qk,l ∀k, w, l ;
2 while constraints (C4.1) and (C4.2) are not met do

3 z̃k,w,l ← 0 ∀k, w, l;
4 q̃k,l ← 0 ∀k, w, l;
5 for k̂ ∈ 1, . . . , K do

6 l̂← argmaxl qk̂,l;

7 ∆1, . . . ,∆W = argmin∆1,...,∆W

∑
s∈Sk̂

∑
w ̸=s(zk̂,w,l −∆w)b̂k̂,l̂−1Ls,w s.t.∑

w(zk̂,w,l̂−1 −∆w) = rk̂,l̂−1;

8 z̃k̂,w,l̂−1 ← zk̂,w,l̂ −∆w ∀w;
9 q̃k̂,w,l̂−1 ← 1;

10 end

11 k̃ ← argmaxk
∑

s∈Sk̂

∑
l

∑
w ̸=s(zk̂,w,l − z̃k̂,w,l)b̂k̂,lLs,w;

12 zk̃,w,l ← z̃k̂,w,l∀l, w ;

13 qk̃,l ← q̃k̂,l∀l ;
14 end

4.7 Achievable data rate prediction

Resource assignment and scheduling methods introduced in sections 4.5 and 4.6 rely on the

knowledge of Bs,w ∀s, w. In this section, we address the methods for prediction of Bs,w.

First, let us assume that we have a possibly imperfect prediction of SNR from time t = 0

when an assignment is performed to time t = Tassign when the assignment is updated again.

Let the SNR prediction as a function of time be denoted by γs,w(t). We can assume that an

adaptive modulation mechanism is implemented at the senders, which detects the changes in

the SNR to adjust the MCS. However, we assume that the senders will have a more accurate

knowledge of the SNR at time t when selecting MCS compared to the prediction γs,w(t) used

for resource assignment and scheduling. This is because a sender s can continuously update

its estimate of the SNR to worker w based on messages exchanged with each other. On the

other hand, the prediction γs,w(t) relies on information up time t = 0. Next, let us assume
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that we have a model PSR(SNR, Dtx, b), which provides us with the expected frame decoding

probability as a function of frame size Dtx, SNR and the modulation datarate b. The model

PSR(SNR, Dtx, b) is specific to the physical layer in a particular IEEE 802.11 standard. For

example, frame decoding probability models for physical layer based on orthogonal frequency

division multiplexing (OFDM), used in 802.11p and other 802.11 standards, can be found

in [Mil03]. Furthermore, let pSR be the target frame decoding probability. The achievable

data rate is calculated using the following expression:

Bs,w = min
t∈[0,Tassign]

(
max
b∈B

(
1PSR(γs,w(t),Dtx,b)≥pSRb

))
. (4.11)

Therefore, achievable data rate is calculated as the minimum reliable instantaneous data

rate from t = 0 to t = Tassign based on the predicted SNR γs,w(t) and in the absence of other

transmissions. We take the minimum over [0, Tassign] to ensure that at no point during the

period [0, Tassign], the task transmission delay will exceed the value expected during resource

assignment.

The main challenge in achievable data rate prediction is obtaining an accurate predic-

tion of γs,w(t). Developing methods for prediction of γs,w(t) is not the main focus of this

paper. Instead, we will rely on existing approaches to predict connectivity between vehicles

and compare them in terms of reliability for the purposes of our cooperative computing

framework.

4.7.0.1 Beaconing SNR prediction

The first approach is a beaconing-based approach that has been utilized and analyzed in

many instances for vehicular networking and safety applications [SJS14]. The vehicles in

the micro cloud transmit beaconing messages every Tb seconds. Tb is typically in the range

between 0.1 s and 1 s. For simplicity, we assume that the size of the beaconing messages

is small enough that it does not interfere with cooperative computing transmissions. Each
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vehicle keeps track of the received beacons and if a sender s has not received a beacon from

worker w in the past Td seconds, then they are assumed to be disconnected. Otherwise, the

SNR extracted from the most recent message between s and w prior to t = 0 is used as the

predicted SNR for the next Tassign seconds. The SNR information collected at each vehicle

about its neighbors can then be relayed to the leader vehicle in the VMC. This makes the

prediction for γs,w(t) static, which may not be accurate enough in scenarios with fast moving

vehicles where the SNR rapidly changes in the time period [0, Tassign].

4.7.0.2 Deadreckoning SNR prediction

An alternative approach that has been utilized in the past is based on dead reckoning,

whereby future vehicle locations are predicted based on their past locations and their veloc-

ities. The predicted vehicle locations are utilized in combinations with channel modelling to

predict the SNR [ZTW19]. The distance between a sender and a worker changes as a func-

tion of time ds,w(t). We assume that the vehicles are periodically disseminating basic safety

messages at period Tb, which include the current location pi of a vehicle i and its velocity

vi. Position and velocity information extracted from the basic safety messages can then be

relayed to the leader vehicle in the VMC. Let ∆ti be the age in seconds of the last safety mes-

sage transmitted by vehicle i at time t = 0. The estimated distance between a sender s and a

worker w obtained using dead reckoning is d̂s,w(t) = ||(ps+vs(∆ts+t))−(pw+vw(∆tw+t))||2.

Then, using the model for path loss and SNR models in Sec. 4.3.5.4, the SNR can be pre-

dicted using the dead reckoning separations d̂s,w(t).

4.8 Resource assignment and scheduling duration adaptation

By using methods for SNR prediction, we can predict how the achievable data rates between

vehicles will change over time. This was necessary to account for changes in the achievable

data rate between vehicles between each resource assignment and scheduling, since it is done
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periodically. SNR prediction can be achieved with the dead reckoning method for SNR

prediction that we described in Sec. 4.7, for example. Next, we show how by using the SNR

prediction methods it is possible to adaptively select the duration of a resource assignment

and scheduling Tassign.

Ideally, Tassign should be as large as possible to reduce the computing overhead of finding

the optimal resource assignment and scheduling and to reduce the overhead of transmitting

the information needed for resource assignment and scheduling and cooperative computing

in the VMC. However, increasing Tassign should not come at the expense of decreasing the

QoS of task streams.

We formulate this problem as follows. Let us assume that Tassign can be selected from a

discrete set of A values T = {T (1)
assign, . . . , T

(A)
assign}. Depending on selected T

(a)
assign, the achievable

data rate between two vehicles is denoted by Bs,w,a, which can be obtained using Eq. 4.11.

Let ttxk,w,l,a be the task transmission duration if the assignment duration is T
(a)
assign, t

tx
k,w,l,a =∑

s∈Sk
b̂k,l

Dtx

Bs,w,a
. Then, we can extend the problem (P1) to include adaptation of assignment

duration as follows:

max
va,xk,w,l,zk,w,l,qk,l

∑
k,l

lqk,l + ϵ
∑
a

T
(a)
assign

T
(A)
assign

va (P5)

s.t. (C1.2) to (C1.9)

ck,l
fwxk,w,l

+ ttxk,w,l,a ≤ τk

if (xk,w,l > 0 ∧ va = 1) ∀k, w, l, a (C5.1)∑
a

va = 1 (C5.2)

va ∈ {0, 1} ∀a (C5.3)

In (P5), we have introduced a set of binary variables va ∀a. va = 1 if the resource assignment

and scheduling duration that is selected is T
(a)
assign, and 0 otherwise. The objective function
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has an additional term ϵ
∑

a

T
(a)
assign

T
(A)
assign

va that incentivizes larger assignment duration. We set

ϵ < 1 to ensure that increasing the duration of resource assignment and scheduling never

comes at the expense of decreasing the sum QoS.

We described how assignment duration adaption can be incorporated into to the generic

resource assignment and scheduling problem (P1). The same extension can be applied to the

resource assignment and scheduling problems (P2) and (P4). The exact solution methods to

solve (P2) and (P4) are based on these problems being MILP problems, hence the addition

of resource adaptation into (P2) or (P4) should not change this. This can be accomplished

using the big-M method. First, let us show how the delay constraints (C2.2) should be

updated:

ck,l
fw

+ xk,w,lt
tx
k,w,l,a ≤ xk,w,lτk + (1 − xbk,w,l)

ck,l
fw

+ M1(1 − va) ∀k, w, l, a (C2.2*)

where the constant M1 is large enough to ensure that the a delay constraint will not be

binding unless va = 1. The same procedure can be applied to the other constraints in (P2)

and (P4) that depend on the achievable data rate: (C2.1) and (C4.1). For the sake of brevity,

we omit the full explanation.

We next describe how to adapt Algorithms 1 and 2, for approximately solving (P2) and

(P4) respectively, to determine the optimal resource assignment and scheduling duration as

well as resource assignment and scheduling. We utilize the fact that these algorithms are

computationally inexpensive and run them for each resource duration in {T (1)
assign, . . . , T

(A)
assign}

independently to obtain A solutions for xk,w,l, zk,w,l, qk,l. Then, we can evaluate each solution

with respect to the objective function in (P5) and select the optimal resource assignment

and scheduling and its duration.
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Figure 4.2: Simulated intersection where VMC is formed by the cars entering within its
radius.

4.9 Results

4.9.1 Simulation environment

We evaluate our approaches in VMCs based on IEEE 802.11p standard. We chose IEEE

802.11p standard due to the availability of well developed vehicular networking simulators

for this standard. Our simulation framework that utilizes Veins vehicular networking simu-

lator [SEB19] and a custom Python-based simulator on top of Veins that runs cooperative

computing applications and the resource assignment and scheduling algorithm. The MAC

layer of IEEE 802.11p has some notable differences compared to 802.11 WiFi standards,

which include channel switching between control and service channels, lack of acknowledge-

ment messages and lower data rates due to channel bandwidths being 10 MHz (compared to

20 MHz in WiFi) [ES12]. To make the conclusions obtained from our results applicable to

802.11 WiFi standards, we enabled acknowledgements and disabled channel switching in the

simulations. Veins vehicular networking simulator utilizes SUMO simulator that provides

realistic simulations of urban vehicular mobility [BBE11]. Each Monte Carlo iteration lasts

100 seconds. Both incumbent and cooperative computing traffic utilize frame size of 10 Kb

100



and priority category AC BK. The definitions of priority categories in 802.11p can be found

in [ES12]. We implemented adaptive MCS selection in Veins, which relies on perfect knowl-

edge of the SNR between transmitters and receivers. We use ideal an MCS selection scheme

to exclude the effects of imperfect MCS on the results. Retransmissions were enabled on the

MAC layer and up to 4 retransmissions of a frame are allowed if frame errors occur.

Using the SUMO simulation framework, we simulate a 6 by 6 Manhattan grid where

each block is 100 m long. An VMC is formed by vehicles that are within 80 meters from

the center of one of the inner intersections in the Manhattan grid. However, if a vehicles is

assigned to process a task stream it may continue to do so even after leaving the VMC, so

long as it remains connected to the senders. All cars in the VMC can act as workers and

all have equal computing capabilities. The intersection is shown in Fig 4.3. We generate

three different traffic scenarios with three different traffic densities in the Manhattan grid.

Namely, the number of cars in the grid is set to 200, 100 and 50. The average number of

cars in the VMC in each of these scenarios is shown in Fig. 4.3. Since the average speed of

vehicles is linked to the traffic density, we also show the average speed in the VMC in Fig.

4.3.

Four static incumbent nodes are randomly placed in the VMC radius as controlled sources

of incumbent interference. Two incumbents act as transmitters and two act as receivers.

Simulated incumbent devices are used to emulate interference that would normally occur

due to other vehicles or roadside devices utilizing the channel. The incumbent frame rate is

varied across different simulation results between 0 and 80 frames per second. The average

portion of the time on the channel occupied by the incumbents prior to any cooperative

computing taking place is shown in Fig. 4.4. The MCS of incumbent transmissions is static

and set to 6 Mbps.

Next, we describe the characteristics of application task streams. Each task stream only

has one sender, i.e. |Sk| = 1. Any car that enters the VMC is assigned to be a sender at

probability 0.2. Each task stream has 6 QoS levels, which are related to the task processing
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rate rk,l. The task input data size bk,l and compute load ck,l are constant across task stream

QoS levels. Alternative task stream definitions are possible, where QoS is linked to bk,l or ck,l

but we do not consider those in the simulation results. Two types of task streams with two

kinds of input data will be considered: image data processing with bk,l = 1 Mb and radar

point cloud data with bk,l = 0.2 Mb. For image data processing processing, rates are defined

as rk,l = 5l ∀l = 1, . . . , 6 and for point cloud processing the rates are rk,l = 10l ∀l = 1, . . . , 6.

We set lower task rates per QoS level for image data processing since high task rates would

not be feasible due to channel capacity constraints of 802.11p. These types of input data

appear in applications such as cooperative perception or augmented reality. In practice,

image data size may exceed 1 Mb without compression but due to the limitations of the

802.11p PHY layer data rates, we restrict ourselves to this size. The maximum latency per

task is set to τk = 0.5 s. Instead of varying ck,l and fw separately across simulations, it

is sufficient to vary their ratio fw
ck,l

because these parameters always appear as a ratio in

expressions for compute delay and computing rate (see Sec. 4.3.4). The resource assignment

and scheduling duration is set to Tassign = 1 s, unless stated otherwise.
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4.9.2 Resource assignment and scheduling approaches

We consider the following approaches for cooperative computing of task streams:

• Non-cooperative computing: All task streams are processed at the receivers. This

approach serves as a benchmark to quantify the benefits of cooperative computing

compared to independent task processing.

• MAC 1: This is the short-hand name that we use for resource assignment and schedul-

ing approach explained in Sec. 4.5.2.

• MAC 2: This is the assignment approach explained in Sec. 4.6.2.

• MAC 1 Approx: This is the approach explained in Sec. 4.5.3 and is a polynomial

time approximation of MAC 1 approach. For the parameters in Algorithm 1, we set

V = 2|W|/K and µ = 2.

• MAC 2 Approx: This is the approach explained in Sec. 4.6.3 and is a polynomial

time approximation of MAC 2 approach. We use the solution obtained using MAC 1

Approx as the starting point in Algorithm 2.

The purpose of the latter four approaches is to quantify the benefits of cooperative com-

puting. Furthermore, these approaches have different levels of computational complexity

and need different levels of information about incumbent interference. MAC 1 Approx and

MAC 2 Approx are the fastest since they run in polynomial time. MAC 1 and MAC 2 are

slower since they rely on MILP solvers, but MAC 1 is expected to be faster than MAC 2

because it has significantly fewer constraints. MAC 1 and MAC 1 Approx only need to know

CIDLE to operate, whereas MAC 2 and MAC 2 Approx need to know detailed parameters of

incumbent interference, as explained in Sec. 4.6.
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4.9.3 Task assignment

Resource assignment and scheduling methods determines how many tasks will be processed

by each worker over the next Tassign seconds, which is given by Tassignzk,w,l ∀k, w, l. However,

this still does not determine which specific tasks in the task stream will be processed by

which specific workers. We use a round-robin assignment algorithm that we empirically

established to minimize the queuing delays at the workers. Note that each worker w will

have a separate queue per each task stream k it processes, which will be allocated xk,w,l share

of the worker’s computing power if the QoS level of k is l. The assignment policy operates

as follows. Per each resource assignment and scheduling, the round-robin algorithm loops

over each of the workers that had been sorted randomly and assigns each of the Tassignrk,l

tasks to one worker per loop unless that worker has already been assigned Tassignzk,w,l tasks.

The looping over workers ends once all Tassignrk,l tasks have been assigned.

4.9.4 Gains of cooperative computing under different resource assignment and

scheduling approaches

Next, we evaluate all approaches in terms of obtained QoS and their congestion control

capabilities. First, we present results for point cloud processing across different levels of

incumbent interference in Fig. 4.5 and with fw
ck,l

= 10. For this set of results, the SNR

predictions γs,w(t) are error-free. This is accomplished by doing a mock run before each

Monte Carlo iteration and recording the SNR values between vehicles over time. We do this

to remove the effects of incorrect SNR prediction on task loss.

The average QoS results shown in Fig. 4.5 correspond to the average scheduled QoS per

task stream in the VMC. For all proposed resource assignment and scheduling algorithms,

there is an increase in QoS compared to the non-cooperative benchmark, which maps to a

higher task processing rate per stream. However, even though a task stream may be as-

signed a particular QoS level during resource assignment and scheduling, that level may not
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Figure 4.5: Results for point cloud processing for different resource assignment and schedul-
ing approaches and under different levels of incumbent activity.

be supported by the wireless channel. Indeed, this is what we observe with MAC 1 and

MAC 1 Approx approaches in the task transmission delay results. For higher incumbent

rates, these approaches cause congestion at one or more senders which is reflected in large

task transmission delay. On the other hand, when resource assignment and scheduling is per-

formed using MAC 2 and MAC 2 Approx approaches, the task delay remains approximately

constant because these approaches have more accurate congestion control mechanisms.

In our simulations, we declare any task that is not processed within the deadline τk as

lost. The cumulative task processing rate of tasks processed before the deadline is shown

in Fig. 4.5, along with the percentage of lost tasks. Note that a small percentage of tasks

are lost even with MAC 2 and MAC 2 Approx approaches, which occurs due to collisions

on the wireless channel instead of congestion. Such loss could be minimized by introducing

redundancies into task transmissions, however this is beyond the scope of this paper.
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Figure 4.6: Results for image processing for different resource assignment and scheduling
approaches and under different levels of incumbent activity.

Furthermore, the approximate methods MAC 1 Approx and MAC 2 Approx perform

very similarly to their exact counterparts in terms of QoS and congestion control accuracy.

This is valuable since these methods have a polynomial time complexity and can therefore

be reliably used as a substitute for their exact counterpart when the number of workers and

task streams is large.

Next, in Fig. 4.6, we show results for image processing with fw
ck,l

= 5. For these results,

we scale the ratio fw
ck,l

down to 5 to match the lower task rates rk,l of the image processing

tasks. First, we observe that due to larger input data size, the QoS gains relative to the

non-cooperative benchmark are smaller compared to processing of point cloud data. This

occurs because fewer tasks can be transmitted over the channel due to capacity constraints.

Overall, we notice similar trends as in Fig. 4.5. The approaches MAC 1 and MAC 1 Approx

are more greedy in scheduling task streams however their congestion control accuracy is only

reliable in absence of incumbent interference. Nevertheless, these approaches remain useful

as part of MAC 2 Approx algorithm, where they provide the initial solution.

Next, in Fig. 4.7, we present results for point cloud processing across the three traffic

scenarios with fw
ck,l

= 10. The incumbent rates are set to 40 frames per second. First, we

can observe that the average QoS per task stream remains steady across traffic scenarios,

but the total number of processed task decreases from left to right. This occurs because
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Figure 4.7: Results for point cloud processing for different resource assignment and schedul-
ing approaches in different traffic scenarios.

due to a decrease in traffic density from left to right, the number of task streams or the

computing demand decreases. However, the computing resources available per task stream

remain similar which is why the average QoS does not change from left to right. The

loss rate decreases from left to right because the channel is less utilized so collisions and

congestion are less likely to occur. Finally, in Fig. 4.7 we also show the time taken on

average for each resource assignment and scheduling algorithm to arrive at a solution. These

results are obtained on a workstation with a AMD Ryzen Threadripper PRO 5975WX 32-

Core CPU. The solution time decreases from left to right since the number of workers and

task streams decreases. Furthermore, as expected, approaches MAC 2 and MAC 1 have a

higher complexity than the polynomial-time algorithms MAC 1 Approx and MAC 2 Approx.

However, it is important to highlight that these results are dependent on the workstation

hardware and also on the parameters of the resource assignment and scheduling problem.
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Figure 4.8: Results for image processing for different achievable data rate prediction methods
when Tassign = 1 s.

4.9.5 Evaluation of achievable data rate prediction methods

Next, we compare the approaches for achievable data rate prediction introduced in Sec.

4.7 against achievable data rate prediction based on perfectly known SNR. The results are

shown in figures 4.8 and 4.9, where Tassign = 1 s and Tassign = 5 s, respectively. We vary

Tassign since achievable data rate prediction becomes more challenging with higher Tassign due

to the need to predict the SNR further into the future. We also run simulations in different

traffic scenario in figures 4.8 and 4.9 because the vehicle speed increases with lower density,

which also makes the achievable data rate prediction more challenging. For these results the

incumbent rates are 0 and the resource assignment and scheduling method used was MAC

2, which is chosen to minimize the loss due to congestion.

For Tassign = 1 s, both beaconing and dead reckoning methods perform similarly to the

ideal case with perfectly known SNR, which is labeled as MAC 2 in the figures. However, the

task loss is slightly higher when using beaconing, because this approach does not perform

well in scenarios with fast moving vehicles. For Tassign = 5 s, the beaconing method becomes

inadequate, which is evident as in the task loss results in Fig. 4.9. This occurs because over

longer Tassign vehicles move significantly and SNR values obtained using beaconing become

outdated. On the other hand, the dead reckoning method performs well even for longer

Tassign.

108



321
Traffic scenario

0.0

0.5

1.0

1.5

2.0

Av
er
ea

ge
 Q

oS

Beaconing SNR - MAC 2
Deadreckoning SNR - MAC 2
MAC 2
Non-cooperative

321
Traffic scenario

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ta
sk

s 
lo

st
 (%

)

Figure 4.9: Results for image processing for different achievable data rate prediction methods
when Tassign = 5 s.

4.9.6 Adaptation of resource assignment and scheduling duration

For all the presented results so far, Tassign was a predetermined parameter. However, using

the methods described in Sec. 4.8, Tassign can be adaptively selected based on the state of

the VMC. The results with adaptive Tassign selection and with point cloud task streams are

shown in Fig. 4.10. To obtain these results, we use T = {1, 2, . . . , 10} and use all three SNR

prediction approaches discussed so far. Since the incumbent rates are set to 0, we use MAC 1

approach for resource assignment and scheduling. First, we observe that the average selected

Tassign is roughly constant across different traffic scenario. This is somewhat surprising since

the average vehicle speed increases from left to right, so it would be expected that Tassign

should decrease. This can be explained by the fact that resource assignment and scheduling

algorithm can match workers and senders that are moving in the same direction, so resource

assignment and scheduling remains valid for a longer period of time. Furthermore, the total

processing rate remains the same as in Fig. 4.7, where shorter Tassign = 1s was used, which

means computing resources remain efficiently used. This is not the case for assignment based

on beaconing since a significant number of tasks are lost due to inaccurate SNR prediction.
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Figure 4.10: Results for point cloud processing in different traffic scenarios with adaptive
selection resource assignment and scheduling duration Tassign.

4.10 Summary

In this work, we focus on the use case of cooperative computing to support sensing-based

computationally-intensive and delay-constrained vehicular applications such as cooperative

perception, augmented reality, driving assistance and navigation. To this end, we develop

resource assignment and scheduling methods that will maximize the QoS for computing

applications given the available vehicles in the VMC. Our proposed approaches adapt to

link quality changes between vehicles and prevent congestion on 802.11 channels even in

the presence of incumbent interference. The proposed approaches or their approximate

alternatives have a low computational complexity such that they can be used in real-time.

Furthermore, the approaches adapt to mobility of vehicles to control the frequency of resource

assignment and scheduling updates. The proposed approaches are evaluated in realistic

simulators of vehicular networking based on IEEE 802.11p standard with a MAC layer that

was adapted to closely match 802.11 WiFi standards. This makes the conclusions that

we make using our simulation results applicable to 802.11 WiFi standards. The simulation

results demonstrate the importance of accurate congestion prediction for reliable cooperative

computing. This is most notable in presence of incumbent transmissions, which can originate

from other vehicles in the micro cloud or due to roadside devices. We further validate the
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performance of our methods in different traffic scenarios and demonstrate consistent gains

in QoS compared to non-cooperative computing. Next, we evaluated two practical methods

for prediction of SNR between vehicles in terms of their viability for use in cooperative

computing. Using these SNR prediction methods we show how our approach can be extended

to adaptively control the resource assignment and scheduling update frequency.
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CHAPTER 5

Hybrid Vehicular and Cloud Distributed Computing:

A Case for Cooperative Perception

In this work, we propose the use of hybrid offloading of computing tasks simultaneously

to edge servers (vertical offloading) via LTE communication and to nearby cars (horizon-

tal offloading) via V2V communication, in order to increase the rate at which tasks are

processed compared to local processing. Our main contribution is an optimized resource

assignment and scheduling framework for hybrid offloading of computing tasks. The frame-

work optimally utilizes the computational resources in the edge and in the micro cloud, while

taking into account communication constraints and task requirements. While cooperative

perception is the primary use case of our framework, the framework is applicable to other

cooperative vehicular applications with high computing demand and significant transmission

overhead. The framework is tested in a simulated environment built on top of car traces and

communication rates exported from the Veins vehicular networking simulator. We observe a

significant increase in the processing rate of cooperative perception sensor frames when hy-

brid offloading with optimized resource assignment is adopted. Furthermore, the processing

rate increases with V2V connectivity as more computing tasks can be offloaded horizontally.

5.1 Introduction

Cooperative vehicular perception systems seek to expand a vehicle’s field of view by enabling

cars to share the data from their environment perception sensors via wireless communication
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and thereby allowing vehicles to achieve a global view of the traffic environment. However,

granted a high speed wireless communication channel, experimental implementation studies

of cooperative perception systems report that the main bottleneck in the frame rate at which

cooperative perception systems can operate is the vehicular computational power [QAB18].

Cooperative perception and similar computationally demanding and time-sensitive ve-

hicular applications can benefit from additional computing power. Edge computing is a

promising paradigm where computing resources are placed in close proximity of end users,

which are usually mobile. Vehicles can offload some of the computational tasks to edge

servers which they can reach via an LTE connection. The results of the processed tasks are

then be sent back from the edge servers to the interested cars on the road. We refer to this

type of offloading as vertical offloading. The vehicle cloudification framework, a paradigm

that involves forming virtual cloud servers from vehicles in proximity of each other on the

road, can enable horizontal offloading. In horizontal offloading, the computing resources and

the coordination of the vehicular micro cloud can be utilized for task offloading via V2V

communication. The feasibility of forming stable vehicular micro clouds on the road has

been confirmed in [HJD17].

In addition to the rate at which sensor frames are processed, there are other considera-

tions that need to be made when it comes to cooperative perception systems. Firstly, the

processing delay of a frame must not be too long, otherwise the processing results would be

out of date relative to the actual state of the traffic environment. When offloading tasks,

the processing delay includes data frame transmission delay and computing delay. Secondly,

we need to assume that there is a limit on the amount of data that can be transmitted over

the cellular and V2V links. For the cellular data exchange, the practical reason for this is

that there is normally a monetary cost related to the utilization of the cellular link and that

there might also be a limit on how much the cellular providers will allow the network to be

loaded by the transmission of vehicular perception data, since it could negatively impact the

quality of service for other cellular users. Likewise, there is a practical limit on how much
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data transfer can occur over V2V links, since the data transfer of cooperative perception

data could cause congestion and disrupt other services that rely on the shared V2V channel.

Approaches to offloading of vehicular computing tasks to the edge or to the nearby cars

have been proposed in the literature before. A framework for task allocation in horizontal

offloading was proposed in [HUH19]. However, in this work, the delay due to transmission

of the computing task data has not been considered, therefore this particular framework

cannot be applied on cooperative perception or other computing tasks that would have a large

transmission overhead when offloaded. Another comprehensive framework for task offloading

was developed in [FLW17]. While [FLW17] considers the data transfer of computing tasks,

it focuses only on horizontal task offloading. A mechanism for both horizontal and vertical

task offloading was proposed in [ZPX18]. While the system proposed in [ZPX18] could in

theory be applied to cooperative perception or other data intensive computing tasks, it does

not give any consideration to cellular/V2V traffic overhead limitations.

In this chapter, we propose hybrid horizontal and vertical offloading of time-sensitive

cooperative perception computing tasks with the goal of increasing the rate at which these

tasks are processed. We design a resource allocation and task scheduling algorithm that

maximizes the rate at which tasks are processed, while considering the limits on the amount

of data that can be transferred, the delay constraints and the rate at which data frames can

be transmitted.

The rest of this chapter is organized as follows. In Section 5.2, we describe the model of

the system that we assume in the development of our algorithm. The Section 5.3 outlines

our design goals and the details of the proposed algorithm. In the Section 5.4 we report the

main results from the testing of our approach via simulation. The Section 5.5 provides the

main conclusions of this work.
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Figure 5.1: Overview of the system model.

5.2 System model

In this section, we describe the model of vehicular micro cloud and edge computing resources

and the model of computing tasks for cooperative perception used in the remainder of this

chapter.

5.2.1 Vehicular and edge computing resources

We consider a segment of a road or an intersection occupied by a set of cars C, as illustrated

in Fig. 5.1. A subset of cars S ∈ C act as senders sharing their sensor data with other vehicles

on the road. Each sender has a receiver set of cars Rs ∈ C, ∀s ∈ S, interested in the data

from the senders. We assume that all senders and receivers are V2V capable. Furthermore,

the senders and receivers, together with other V2V capable cars form a stationary vehicular

micro cloud C ′. A stationary micro cloud is formed by cars that are present in particular

fixed geographical area [HSH17]. The cars can enter and exit the area at any time and

therefore the set C ′ changes over time. On the other hand, the set of edge servers is constant

over time.

Senders and receivers can connect to a set of edge servers B via LTE connection through

the nearby base stations (BSs). While we assume that all cars have cellular communications

capability, only a fraction of the vehicles is capable of V2V communication, based on the

current trends in car industry.
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We define a set of worker nodes W ∈ B ∪ C ′ that can be utilized for offloading of the

processing of perception frames from the senders. The cars that take on the role of workers

have computing resources available that can be used for processing of cooperative perception

frames. We assume that there exist some form of incentive mechanism or agreement between

car manufacturers that would lead to sharing of computing resources and sensor data between

cars. The sets S, W and R1, ...,R|S| can be overlapping, i.e., the cars may have multiple

roles from amongst the sender, receiver and worker role at the same time.

We denote the computational power, measured in Hz, of a node i (either a car or an edge

server) as Fi. Furthermore, we denote the communication rate between two nodes, i and j, as

Ri,j. We use an indicator variable DLTE
i,j ∈ {0, 1}, that is equal to 1 if communication between

nodes i and j is cellular, i.e. one node of the nodes is a car and other is an edge server.

Another indicator variable, DV2V
i,j ∈ {0, 1}, is used to capture whether the communication

between the nodes i and j is V2V, i.e., both of the nodes are vehicles. Only DV2V
i,j or only

DLTE
i,j can be equal to 1 for any given pair of nodes.

5.2.2 Computing tasks for cooperative perception

A cooperative perception system relies on a variety of computing tasks that need to be

performed before the sensor data from the senders can become useful to the receivers. De-

pending on the type of the sensor data, there are different types of computing tasks that

might need to be performed. For example, on 3D data, generated by radar or lidar, fea-

ture extraction and localization needs to be performed using simultaneous localization and

mapping (SLAM) algorithms at either the sender (the source of sensor data) or receiver cars

(cars interested in the information provided by the sender). For image data, the computing

tasks include feature detection and perspective transformation. We describe a computing

task l by a tuple of parameters Sl = {dl, cl, sl,Rl, tl, τl}, where:

• dl is the data size of the sensor frame to be processed
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• cl is the computational load measured in CPU cycles per second

• sl is the source sender of the task

• Rl is the set of receiver nodes that are interested in receiving the output of the task

• tl is the time instance when the sensor frame is captured

• τl is the maximum delay. The delay is measured from tl until the task is processed and

its output delivered to the receiver

We assume that every task l belongs to a particular task type (TT) k ∈ {1, ..., K} that has a

unique set of parametersAk = {dk, ck, sk,Rk, τk}. Therefore, for every task l, {dl, cl, sl,Rl, τl} ∈

{Ak : k = 1, ..., K}. For example, a TT can be feature extraction on a 3D point cloud com-

ing from a particular sender sk, with a delay tolerance τk, input frame size dl and a receiver

set Rk. Computationally demanding tasks can create a bottleneck in how many frames

per second can be processed and shared between the sender and receiver cars. Assuming

that computation is the bottleneck, the senders will generate sensor frames at the rate at

which they can be processed. The sensor generation rate determines a TT arrival rate, and

therefore task arrival time.

5.3 Proposed framework

In this section, we propose an optimization framework for offloading of vehicular computing

tasks to the edge and the vehicular micro cloud.

At the beginning of each period, there is a demand for completion of certain set of TTs,

{Ak : k = 1, ..., K}. We maximize the number of tasks/frames of all TTs that are processed

over the next period T . Our algorithm is a two step algorithm. In the first step, we assign the

computation resources {Fw : w ∈ W} and communication resources {Ri,j : i, j ∈ C∪B, i ̸= j}

to particular TTs. The resource assignment determines how many tasks of each TT will be
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processed at each individual worker. Assuming that computation is the bottleneck, the

senders will generate data frames to meet the achieved processing rate. In the second stage,

we schedule data frame/task generation and assign where each task is processed since several

workers may be processing the tasks of the same type.

The optimization is done in a centralized manner. We assume that one of the cars in the

vehicular micro cloud, potentially the micro cloud leader, or one of the edge servers performs

the resource assignment and task scheduling based on the knowledge of communication rates

Ri,j and computing powers Fi of cars and edge servers. Since the state of a traffic scenario

changes over time, the offloading decisions need to be updated periodically. Our algorithm

is applied periodically at interval T to obtain the resource assignment and scheduling, which

is then shared with all nodes.

5.3.1 Resource assignment

We pose the resource assignment problem as a non-linear optimization problem and then

approximate it as a mixed integer linear optimization problem.

In the resource assignment stage, we solve for three optimization variables:

• Xk,w ∈ [0, 1] ∀k, w, that determines the share of computing resources allocated by each

worker w for completion of tasks of type k

• Y LTE
s,k,w ∈ [0, 1] ∀s, k, w, that determines the share of time resources the sender s will

spend on the transmission of data frames of TT k to worker w via cellular network

• Y V2V
s,k,w ∈ [0, 1], that, similarly to Y LTE

s,k,w, determines the allocation of V2V communication

resources.

The delay of processing a task of a certain type k needs to be less than τk. We assume

that only two types of delay are significant: the delay of transmitting the data frame to the

worker if a task computation is offloaded and the delay of task processing. The data size of
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the task output is assumed to be negligible. The maximum rate of transmission between a

sender of TT k, sk, and a worker wk is Rsk,w. However, given that the sender only spends

a fraction of time, Ysk,k,w, transmitting that particular TT to worker w, the effective rate of

transmission is Rsk,wYsk,k,w. The delay of transmitting a data frame of a task of type k to

worker w is dk
Rsk,wYsk,k,w

. The delay of processing a task at worker w is ck
FwXk,w

, where FwXk,w

is the effective computing rate of a TT k at w. We define the resource assignment problem

as a non-linear program:

max
Xk,w,Y LTE

s,k,w,Y V2V
s,k,w

∑
k

∑
w

⌊
TFwXk,w

ck

⌋
(P1)

s.t. dk

⌊
TFwXk,w

ck

⌋
≤ TRsk,w

(
DLTE

sk,w
Y LTE
sk,k,w

+DV 2V
sk,w

Y V 2V
sk,k,w

)
(C1)∑

k

∑
w

DLTE
sk,w

dk

⌊
TFwXk,w

ck

⌋
≤ ULTET (C2)

∑
k

∑
w

DV 2V
sk,w

dk

⌊
FwXk,w

ck

⌋
≤ UV2VT (C3)

dk
Rsk,wY

V 2V
sk,k,w

+
ck

FwXk,w

≤ τk if Xk,w ̸= 0 and DV 2V
sk,w

= 1 (C4)

dk
Rsk,wY

LTE
sk,k,w

+
ck

FwXk,w

≤ τk if Xk,w ̸= 0 and DLTE
sk,w

= 1 (C5)∑
k

Xk,w ≤ 1,
∑
w

∑
k

Y LTE
sk,k,w

≤ 1,
∑
w

∑
k

Y V 2V
sk,k,w

≤ 1 (C6, C7, C8)

The objective function counts the total number of tasks or data frames that will be

processed over the current period T . The floor function ⌊·⌋ rounds its argument down to the

nearest integer, since only the whole number of tasks that are processed is important.

The Constraint (C1) is applied per each TT k and it limits the rate at which data frames

can be transmitted by the effective communication rate Rsk,wY
LTE
sk,k,w

if the communication

is cellular or the rate Rsk,wY
V 2V
sk,k,w

if the communication is V2V. The Constraint (C2) limits

the amount of data transmitted through the cellular network by an upper bound ULTET

and the Constraint (C3) limits the amount of data transmitted through V2V by an uppper
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bound UV2VT . The parameters ULTE and UV2V are defined by the operator of the system

to precisely limit the amount of LTE and V2V traffic.

The constraints (C4) and (C5), applied per each TT k, are the delay constraints and they

only need to be satisfied for workers w that process tasks of type k, i.e., Xk,w ̸= 0. The delay

constraint (C4) applies to data frames that are transmitted via V2V communication and the

delay constraint (C5) applies to transmissions that occur over cellular. The Constraint (C6)

is applied per each worker and ensures that shares of all computing resources per worker

add up to one. Similarly, the constraints (C7) and (C8) are applied per each unique sender

s and they ensure that the shares of transmission time per sender add up to 1.

To the best of authors’ knowledge, the optimization problem we arrive at cannot be

readily solved by any standard optimization techniques, therefore we linearize it by making

the necessary approximations. Once the optimization problem is linearized, it can be readily

solved by using any mixed integer linear programming solver.

Linearization of the optimization problem

A non-linear expression that appears several times in our problem formulation is
⌊
TFwXk,w

ck

⌋
.

To approximate this expression by a linear function, we introduce an integer variable Vk,w ∈

Z+. We add two additional constraint sets:

Vk,w ≤
TFwXk,w

ck

TFwXk,w

ck
− 0.999 ≤ Vk,w

We then replace the expression
⌊
TFwXk,w

ck

⌋
by the variable Vk,w everywhere in problem for-

mulation.

Next, we linearize the delay constraints (C4) and (C5). We introduce a set of helper

constants α(n) = n/N , for n = 0, ..., N , where N is a positive integer hyperparameter. We
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also introduce a set of helper binary variables U
(n)
k,w ∈ Z2, ∀n, k, w. To simplify the exposition,

we only show how one of the delay constraints can be linearized. To accomplish our goal,

we introduce the following constraints that will replace the delay constraint

(
1− U (n)

k,w

)
− α(n)τk

Fw

ck
Xk,w ≤ 0 ∀n

(
1− U (n)

k,w

)
−
(
1− α(n)

)
τk
Rsk,w

dk
Y LTE
sk,k,w

≤ 0 ∀n

U
(1)
k,w + U

(2)
k,w + · · ·+ U

(N)
k,w ≤ N − I(Xk,w > 0)

where I(Xk,w > 0) is the indicator function equal to 1 if Xk,w > 0 and 0 otherwise. This

indicator function can easily be linearized using the same approach as with the expression⌊
TFwXk,w

ck

⌋
. The greater the value of hyperparameter N selected, the more accurate our

approximation becomes.

5.3.2 Task scheduling

The resource assignment determines how many tasks will be processed by each worker over

the current period T . Given Xk,w, the number of tasks of type k processed by worker w

is Mk,w =
⌊
TFwXk,w

ck

⌋
and the total number of tasks of type k that will be processed is

Lk =
∑

wMk,w. Given that workers can process Lk tasks of a particular TT k and assuming

that that the computation is the bottleneck, the arrival rate of sensor frames and, hence,

the tasks will meet the processing rate. Expressed mathematically, the arrival times of tasks

l = 1, ..., Lk are tl = (tl−1)T
Lk

. The assignment of tasks to workers is performed using a

heuristic policy. We use a round-robin assignment algorithm that we empirically established

to minimize the queuing delays in transmission queue at the sender and the processing queue

at the worker. Let Zl,w ∈ Z2 be an assignment variable equal to 1 if the task l is assigned

to worker w and 0 otherwise. The heuristic round robin assignment policy is described

in the pseudo-code below: The policy is applied per each TT separately. The algorithm
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Algorithm 3: Round-robin task assignment for a TT k

Result: Zl,w

1 Zl,w ← 0 ∀w ∈ W ,∀l = 1, ..., Lk

2 Mk,w ←
⌊
TFwXk,w

ck

⌋
∀w ∈ W

3 Lk ←
∑

wMk,w

4 l← 0
5 while l < Lk do
6 for w ∈ W do
7 if Mk,w ̸= 0 then
8 Zl,w ← 1
9 Mk,w ←Mk,w − 1

10 l← l + 1

11 end

12 end

13 end

continuously loops over each of the workers that are sorted randomly and assigns each of the

Lk tasks to one worker in each loop iteration unless that worker has already been assigned

Mk,w tasks. The looping over workers ends once all Lk tasks have been assigned.

5.4 Simulation results

In this section, we analyze the performance of the proposed approach for horizontal and

vertical computing offloading for cooperative perception in a simulated traffic environment.

We simulate an intersection in the Luxembourg SUMO traffic (LuST) scenario [CFE15].

The simulated intersection is located at 49°36’34.7”N, 6°07’09.7”E and the micro cloud area

radius is 150 m. We assume that all V2V capable cars that enter the circular area become

members of the vehicular micro cloud. The traffic is simulated for one hour between 8 AM

and 9 AM.

A share ηS of cars in the micro cloud are randomly selected to be senders and a share ηR

are randomly selected to be receivers. All the cars in the micro cloud, including the senders,

together with one edge server form the set of workers.
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The cars communicate to each other via DSRC V2V communication while the com-

munication to the edge server is done via LTE. In our simulations, we model the LTE

and V2V communication links as pipes with some rate Ri,j. In the LUST scenario, using

Veins [SGD10], we simulate the cars broadcasting beaconing signals via DSRC three times

per second, which we use to estimate the signal to noise plus interference ratio (SINR) be-

tween cars in the area. The SINR is mapped to DSRC communication rates based on the

mappings reported in [JCD08]. The LTE communication rate to the edge server is modeled

as a Gaussian random variable N (µR, σR). We assume that the knowledge of the commu-

nication rates Ri,j is available to the node that calculates the optimal resource assignment.

In practice, these values would need to be obtained via some distributed or centralized rate

prediction algorithm

The computing power Fi of sender cars is µ
(1)
C . From the remaining cars in the micro

cloud, 70% also have the computing power µ
(1)
C while the remainder of the cars have the

computing power µ
(2)
C , where µ

(2)
C > µ

(1)
C . The computation power µ

(2)
C corresponds to high-

end vehicles that have abundant computation power compared to regular vehicles. Finally,

the computing power of the edge server is µ
(3)
C . We assume that all nodes report their

computing power to the node in charge of performing resource assignment.

We assume that there is one TT per sender per each optimization period and that all of

the TTs have the parameters dk, ck and τk in common. We obtain a reference for the values

of these parameters from some reported traces of computer vision computing tasks [KRS17].

The simulations are performed for two generic types of computing tasks, one representing

image processing tasks such as edge detection, and one representing radar point cloud pro-

cessing tasks such as a SLAM operation. The point cloud type has a higher computational

load ck than the image type but a lower data size dk. The maximum latency τk for sensor

frame processing can not be too high as the positions of the vehicles on the road change

rapidly. The values of parameters used in simulations are given in Tables I and II.

As a benchmark for our resource assignment algorithm, we use random resource assign-
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Table 5.1: Computing and communications resources and parameters used in simulations

Parameter Value Parameter Value

T 1 s ηS 0.2

[µ
(1)
C , µ

(2)
C , µ

(3)
C ] [1 5 10] GHz ηR 0.2

µR 50 Mb/s UV2V ∞
σR 5 Mb/s ULTE 24 Mb/s

Table 5.2: Parameter of image and point cloud processing tasks used in simulations

Parameter ck dk τk

Image 1E9 20 KB 0.6 s

Point cloud 2E8 400 KB 0.6 s

ment. With random resource assignment, all senders are assigned to process their own TTs

and each of the remaining workers and the edge servers are randomly assigned to a TT

at maximum capacity. The transmission resources Ysk,k,w at each sender are equally split

across the workers that process its TTs. Naturally, with this random assignment approach

we cannot guarantee that the constraints (C1-C5) will be satisfied.

5.4.1 Image processing

We first analyze and compare the offloading approaches for image processing tasks. The

performance metric is the number of tasks per second per sender that are processed within

the allowed latency τk. The results are shown in Fig. 5.2. with a limit ULTE = 24 MB/s on

the amount of LTE transmissions and without any limit on LTE traffic.

The LTE uplink limit can restrict the number of tasks that can be offloaded to the edge

over a period T . The results in Fig. 5.2a demonstrate what the performance may look like

if the uplink limit becomes the bottleneck. Vertical offloading does not provide a significant

benefit in terms of the processing rate. However, horizontal offloading with the help of

vertical offloading (hybrid offloading) can still double the processing rate compared to the

124



0.0 0.2 0.4 0.6 0.8 1.0
V2V penetration

0

1

2

3

4

5

6

7

Pr
oc

es
si

ng
 ra

te
 (t

as
ks

/s
/s

en
de

r)

Hybrid
Hybrid random
Vertical
No offloading

(a) With LTE cap

0.0 0.2 0.4 0.6 0.8 1.0
V2V penetration

0

2

4

6

8

10

12

Pr
oc

es
si
ng

 ra
te
 (t
as

ks
/s
/s
en

de
r)

Hybrid
Hybrid random
Vertical
No offloading

(b) Without LTE cap

Figure 5.2: The processing rate of image tasks.

case of no offloading. The number of tasks processed by horizontal offloading is unaffected

by the LTE cap but it does depend on the V2V penetration defined as the share of cars

other than senders and receivers that are equipped for V2V communication and hence able

to serve as workers. Without an LTE data transmission limit, vertical offloading doubles the

processing rate on its own. However, this scenario is unrealistic as it does not recognize the

financial cost that can be incurred due to LTE upload.

We observe that with hybrid offloading and random assignment the system resources are

underutilized, and the performance only slightly increases with higher penetration. When

tasks are offloaded to randomly selected vehicles, the communication rate to the selected

vehicles may not always be sufficient to deliver the frames fast enough and so less frames are

successfully processed. However, we should note that this is not a one-to-one comparison

to our algorithm since with random assignment the uplink limit constraint is not always

satisfied, which is why with no V2V penetration the random assignment seemingly performs

better in Fig. 2a.

We also analyze how offloading affects the average delay of the processing of the frames.

The results are shown in Fig. 5.3 for the case with an LTE traffic limit. The delay consists

of transmission delay to the processor, if a task is offloaded, and the compute delay at the
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Figure 5.3: The average processing delay, which consists of transmit and computing delay,
for image tasks. The transmit delay is represented by the dotted line.

processor. We assume that the transmission delay of the output results is negligible. The

average transmission delay of hybrid offloading is higher than that of vertical offloading

because a DSRC connection, which is utilized for horizontal offloading, has a lower rate than

an LTE connection. The transmission delay increases with V2V penetration since larger

share of tasks is offloaded horizontally therefore the average transmission delay is larger. The

average compute delay (the transmission delay subtracted from the total delay) moderately

decreases with V2V penetration since some tasks are being offloaded to the high-end vehicles.

Overall, offloading image tasks is only suitable in the scenarios where it is acceptable to incur

an additional processing delay in order to achieve a higher rate. With random assignment,

the transmission delay is very significant because data frames spend extensive amount of

time in the transmission queue since the transmission rate cannot satisfy the scheduled rate.

5.4.2 Point cloud processing

The processing rate for point cloud tasks is shown in Fig. 5.4. Since the data size of point

cloud frames is small, the LTE traffic is already below the cap that we set, and it does

not have an impact on the processing rate. Vertical offloading increases the processing rate

by around 100% in our scenario. Since the transmission overhead is smaller than that of
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cloud tasks.
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Figure 5.5: The average processing delay,
which consists of transmit and computing de-
lay, for point cloud tasks.

image tasks, large gains are possible thanks to horizontal offloading and, overall, multiple-

fold gain is obtained with hybrid offloading. Point cloud tasks lend themselves much better

to offloading compared to image tasks. This is further supported by the delay profiles shown

in Fig. 5.5. Since the compute load of point cloud tasks is significantly larger than that of

the image tasks, their processing delay can be significantly reduced by offloading them to

more powerful processors. Indeed, we observe a significant decrease in the processing delay

with both vertical and hybrid offloading in Fig. 5.5. due to offloading to the edge server

and to the powerful high-end cars. Overall, offloading of point cloud tasks increases the

processing rate while decreasing the processing delay.

5.5 Summary

In vehicular computing-intensive applications, the task processing rate can be increased by

offloading the computing to the local edge servers (vertical offloading) and to the nearby

cars (horizontal offloading). We develop an optimized resource assignment and scheduling

algorithm for hybrid offloading of computing tasks for cooperative perception that maximizes

the rate at which frames are processed, while ensuring that results are delivered within a

deadline and also constraining the cellular and V2V communication overhead. The algorithm
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is tested in a simulated environment based on the LUST traffic scenario and Veins vehicular

network simulator. We observe a significant increase in the processing rate of sensor frames

when using hybrid offloading compared to the no offloading case or the case with only vertical

offloading.
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CHAPTER 6

Conclusion

6.1 Summary of Contributions

In this dissertation, we developed cooperative systems and methods that can bring higher

communications speeds and larger computing power to mobile devices without relying on

expansion of network infrastructure.

In Chapter 2, we developed methods for prediction of channel gain that use environment-

specific features, including building maps and channel gain measurements to achieve a high

level of prediction accuracy. We assume that measurements are collected using a swarm of

coordinated UAVs. We developed two active prediction approaches based on deep learning

and Kriging interpolation. We trained and evaluated the two proposed approaches in a ray-

tracing-based channel gain simulator. Using channel simulations based on the ray-tracing

approach, we demonstrated the importance of active prediction compared to prediction based

on randomly collected measurements of channel gain. Furthermore, we showed that using

deep learning and 3D maps, we can achieve high prediction accuracy compared to the bench-

marks even without knowing the transmitter location. We also demonstrated the importance

of coordinated path planning for active prediction when using multiples UAVs compared to

UAVs collecting measurements independently in a greedy manner.

In Chapter 3, we used deep reinforcement learning methods to optimize the placement of a

UAV communicating to the user on the ground. We consider the case where the ground user

location is not known and use topology data to replace statistical models of the channel.
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We were able to achieve a high success rate in moving the UAV to a location that has

a sufficient SINR with limits on UAV traversal distance and starting from a randomized

location. Moreover, our reinforcement learning approach stands out in that it can be applied

in previously unexplored urban environment.

In Chapter 4, we considered a cooperative computing paradigm between intelligent ve-

hicles of similar computing power to enable emerging vehicular applications. To this end,

we developed resource assignment methods that will maximize the quality of service for

computing applications given the available vehicles in the micro cloud. Our proposed ap-

proaches adapt to link quality changes between vehicles and prevent congestion on 802.11

channels even in the presence of incumbent interference. Furthermore, the approaches adapt

to mobility of vehicles to control the frequency of resource assignment updates. The pro-

posed approaches are evaluated in realistic simulators of vehicular networking based on IEEE

802.11p standard. The simulation results demonstrate the importance of accurate congestion

prediction for reliable cooperative computing. This is most notable in presence of incumbent

devices. We further validate the performance of our methods in different traffic scenarios and

demonstrate consistent gains in quality of service compared to non-cooperative computing.

Next, we evaluated two practical methods for prediction of SNR between vehicles in terms

of their viability for use in cooperative computing. Using these SNR prediction methods

we show how our approach can be extended to adaptively control the resource assignment

update frequency.

In Chapter 5, we showed how for vehicular computing-intensive applications, the task

processing rate can be increased by offloading the computing to the local edge servers (vertical

offloading) and to the nearby cars (horizontal offloading). We develop an optimized resource

assignment and scheduling algorithm for hybrid offloading of computing tasks for cooperative

perception that maximizes the rate at which frames are processed. The algorithm is tested

in a simulated environment based on the LUST traffic scenario and Veins vehicular network

simulator. We quantified the increases in the processing rate of sensor frames when using
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hybrid offloading compared to the case with no vertical offloading or the case with only

vertical offloading.

6.2 Future Work

In Chapter 2, we assumed that the location of the ground user is completely unknown for

our deep learning based approaches, however it would also be practical to consider scenarios

where the ground device is partially localized. The location of the ground user and its

uncertainty could be incorporated as an input into the deep learning channel gain prediction

algorithm. Prediction and measurement collection in our deep learning approaches was

constrained to a 2D plane for simplicity, however a 3D proof of concept of these approaches

would be valuable. Furthermore, future studies could focus on experimental validation of

the developed active prediction approaches.

In Chapter 3, we focused on the scenarios where the ground user is not moving over the

course of UAV exploration and placement optimization. To capture the mobility of ground

users, recurrent neural networks can be utilized, which can use sequential measurements

to implicitly predict future changes in the channel gain across space. To accomplish this,

recurrent neural networks can be used as building blocks for deep reinforcement learning

models. Furthermore, in this chapter we assumed that every UAV is assigned to serve a

single user. Future work should explore how deep reinforcement learning techniques can be

used to simultaneously optimize the locations of multiple UAVs serving multiple users on

the ground.

In Chapter 4, the utility in cooperative computing was defined as either the task pro-

cessing rate allocated to a task stream or the computational complexity at which tasks in

the task stream are scheduled to be processed. However, alternative utility metrics are also

relevant, such as task processing delay or energy consumption. The 802.11 PHY layer model

used in our approach can be updated to incorporate newer advances in this technology, such
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as multiple-input and multiple-output (MIMO) communications. These advances can po-

tentially improve the performance of vehicular cooperative computing frameworks. Similar

extensions could be applied to our work in Chapter 5. Furthermore, the methods in Chapter

5 can be improved by utilizing the approaches for congestion control in vehicular networks

developed in Chapter 4.
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