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Intensity-only inverse scattering with MUSIC

ARNOLD D. KIM * AND CHRYSOULA TSOGKA

Department of Applied Mathematics, University of California, Merced, 5200 North Lake Road, Merced, CA
95343
*adkim@ucmerced.edu

Abstract: We present a method for inverse scattering that relies on intensity-only measurements
of the scattered field on a single measurement plane. By collecting measurements from a suite of
experiments in which the sample is illuminated using different incident fields, we create sufficient
data diversity to overcome the limitations of the intensity-only measurements. We give an explicit
procedure which uses an algebraic relation called the polarization identity to convert intensity
measurements of scattered fields to interferometric measurements in which one of the scattered
fields serves as the reference. By adjusting the multiple signal classification (MUSIC) method
for these interferometric data, we effectively recover the location and shapes of multiple objects
contained in the imaging region. This method is effective and robust to noise as long as there is
sufficiently high data diversity and the fractional volume of the scattering objects is not too high.
We present image reconstructions for several three-dimensional examples with simulated data
computed using the Method of Fundamental Solutions that demonstrate the effectiveness of this
imaging method.
© 2019 Optical Society of America

1. Introduction

In inverse scattering one emits wave fields that are incident on a medium containing scattering
objects and seeks to reconstruct the location, shape, material properties, etc. of those scattering
objects from measurements of scattered fields. Imaging applications for inverse scattering
usually have essential limitations on these measurements. These limitations often lead to the
inverse scattering problem being mathematically underdetermined and ill-posed. In optics,
inverse scattering problems are inherently complicated because measurements are often limited
to intensities of the scattered field. As a result, those measurements do not possess the phase
information needed for commonly used imaging methods. Phase retrieval methods attempt to
recover this missing phase information from intensity measurements, e.g. see [1] and references
contained therein. Alternatively, one may take interferometric measurements using a known
reference field to obtain relative phase information that can be used to solve the inverse problem.
For example, Choi et al. [2] use aMach-Zehnder heterodyne interferometer to produce quantitative
phase images to image cells and multicellular organisms. Their imaging method is based on a
filtered back-projection algorithm and requires a phase unwrapping method to remove a 2π-phase
ambiguity.
There are several noteworthy works for intensity-only inverse scattering. Wolf [3] gives a

method for extracting the amplitude and phase of the scattered fields from holograms. Devaney [4]
and Maleki et al [5] use the Rytov approximation for scattering to derive a formula for the
propagation of the complex phase perturbation incurred by the weakly scattering obstacle. A
filtered back-projection method is used on that formula to recover the complex phase perturbation
from far-field measurements of the scattered field. Maleki et al. [6] compare this method
with a phase-retrieval method and showed that the phase-retrieval method performed better,
but required a priori information about the scattering object. Carney et al [7] make use of
the optical theorem to develop an intensity-only imaging method using extinguished power
measurements. Gbur and Wolf [8] describe an intensity-only diffraction tomography method
that requires two or more measurement planes separated by a known distance. Marengo et al [9]



modify the multiple signal classification (MUSIC) method for intensity-only measurements by
linearizing the problem with respect to a proxy source function that maintains the location and
shape of the scattering object. The challenge in using this method is that either one needs to
exhaustively search in a six-dimensional space which is computationally challenging or consider
a reduced, three-dimensional space at the expense of resolution and sensitivity to noise. D’Urso
et al. [10] describe an imaging method using intensity measurements of the total field based on
the contrast source-extended Born approximation. That approximation suggests a cost-function
to minimize for which they give an effective optimization method. By taking advantage of
the sparsity of the image Brady et al. [11] and Zhang et al. [12] obtain accurate images in
in-line digital holography. Tahir et al. [13] has extended those compressive holography results to
multiple scattering regimes. Chai et al. [14] and Pham et al. [15] formulate the intensity-only
imaging problem as a non-convex optimization problem which they then solve effectively using
sparsity-promoting methods. Tian and Waller [16] and Horstmeyer et al. [17] uses principles
from ptychography and diffraction tomography to reconstruct images of the complex index of
refraction based on the Born approximation. In contrast to those works, Ling et al. [18] have
develped a slice-based framework for three-dimensional microscopy which reduces the overall
number of measurements required for reconstruction.
We present a method to solve the inverse scattering problem that consists in determining the

location and shape of scattering objects using intensity-only measurements taken over a single
measurement plane. This study is limited to scalar waves and does not take into account the
polarization state of light. This imaging method is direct and therefore does not require phase
retrieval or any other iterative procedure. It is not restricted in the validity region of the Born or
Rytov approximations. As a result, this method can be used on high contrast scattering objects in
thick samples. In the examples considered here, we have accurately reconstructed the location
and shape of scattering objects whose sizes and separation distances from one another are on
the order of the wavelength and with a relative refractive index of 1.4. The resulting image is
reconstructed over the entire imaging region at once without the need for scanning or slicing of
the imaging region. Our results indicate that the resolution is on the order of the wavelength and
is the same along axes perpendicular and parallel to the measurement plane.

The key to this method lies in creating data diversity through a suite of experiments in which
the imaging region is illuminated using different incident fields. An explicit, algebraic relation,
called the polarization identity, is used to process intensity measurements of the scattered field.
The polarization identity has been used to study several intensity-only imaging problems [19–21].
Here, we use it to convert intensity measurements of the scattered field to interferometric
measurements in which one of the scattered fields acts as the reference. Despite the fact that this
reference scattered field is unknown, we show that the multiple signal classification (MUSIC)
method data can be formulated for these interferometric data without needing the modifications
used by Marengo et al. [9].
MUSIC is a direct sampling method that recovers the location and shape of the scattering

objects. Moscoso et al [22] give a rigorous mathematical analysis of the MUSIC algorithm.
Ammari et al. [23] have extended MUSIC to study subsurface imaging problems. Gruber et
al [24] demonstrated that MUSIC can be used beyond the Born linearization regime when
multiple scattering is considered. Chai et al [25] give an alternative method for imaging
strong point scatterers relying on sparsity promoting optimization. Ammari et al. [26] have
extended the theory of MUSIC to the full electromagnetic inverse scattering problem. This
work highlights inherent differences in the full electromagnetic scattering case from the scalar
wave approximation. Iakovleva et al. [27] applied this full electromagnetic theory to subsurface
imaging of an extended object. Chen [28] extended the intensity-only theory by Marengo et al. [9]
to the full electromagnetic scattering problem for point-like scatterers. Chen [29] extended this
theory to reconstruct extended objects in two dimensions by first applying the MUSIC method



and then using that result to solve a nonlinear least-squares problem.
In the examples we show here, we illuminate the imaging region, i.e., a cube of size

20λ × 20λ × 20λ, using plane waves at different angles of incidence similarly to how Carney et
al [7] have done. Varying the angle of incidence has been demonstrated to be practically feasible
in many imaging systems. Choi et al [2] have used a galvanometer-mounted tilting mirror to vary
the angle of illumination. Zheng et al. [30] introduced the use of an array of LEDs to create
source diversity that effectively illuminates the imaging region with plane waves with different
angles of incidence. However, the formulation described in Section 2 shows that the approach is
general and can incorporate any source diversity available.
The remainder of this paper is as follows. In Section 2 we introduce the polarization

identity and use it in an explicit procedure that converts intensity measurements to interferometric
measurements in which one of the scattered fields acts as the reference. We describe amodification
of the multiple signal classification (MUSIC) method that uses those interferometric data in
Section 3. In Section 4 we describe the specific problem used here to test this imaging method.
Additionally, we describe the Method of Fundamental Solutions used to simulate measurements.
We give several image reconstructions in Section 5 that demonstrate the effectiveness of this
imaging method. In Section 7 we give our conclusions.

2. The polarization identity

Consider two, complex numbers: z1 and z2. It follows that

|z1 + z2 |
2 = |z1 |

2 + |z2 |
2 + 2Re[z∗1z2], (1)

and
|z1 + iz2 |

2 = |z1 |
2 + |z2 |

2 + 2Im[z∗1z2], (2)

where i =
√
−1 denotes the imaginary constant, Re[·] denotes the real part of the expression,

Im[·] denotes the imaginary part of the expression, and z∗1 denotes the complex conjugate of z1.
By using Eqs. (1) and (2) to solve for z∗1z2 = Re[z∗1z2] + iIm[z∗1z2], we find that

z∗1z2 =
1
2

[
|z1 + z2 |

2 − |z1 |
2 − |z2 |

2] + i
1
2

[
|z1 + iz2 |

2 − |z1 |
2 − |z2 |

2] . (3)

Equation (3) is the scalar version of so-called polarization identity, which was established by
Jordan and von Neumann [31] to relate the inner product of two complex vectors to norms of
those vectors. Its name does not refer to the polarization state of an electromagnetic wave. The
key point here is that Eq. (3) provides an algebraic method for computing interferometric data
from a set of intensity measurements generated by a suite of experiments in which the imaging
region is illuminated by different incident fields. We explain this procedure below.

Let us denote the field scattered by a medium due to ui , the field incident on that medium. These
fields are related to one another according to us(r) = Lui(r) where L is the scattering operator
giving the linear mapping from ui to us evaluated at position r. Suppose that measurements
correspond to |us(r)|2. These measurements are limited since there is no phase information
available in them. However, suppose that we are able to introduce source diversity into the
problem. For example, suppose we are able to illuminate the medium with linear combinations
of M different, known incident fields, denoted by uim for m = 1, · · · ,M. Then we perform the
following suite of experiments.

1. Illuminate the medium with uim for m = 1, · · · ,M and measure |us
m(r)|2 = |Luim(r)|2 for

m = 1, · · · ,M .

2. Illuminate the medium with ui1 + uim for m = 2, · · · ,M and measure |us
1(r) + us

m(r)|2 =
|Lui1(r) + Luim(r)|2 for m = 2, · · · ,M .



3. Illuminate the medium with ui1 + iuim for m = 2, · · · ,M and measure |us
1(r) + ius

m(r)|2 =
|Lui1(r) + iLuim(r)|2 for m = 2, · · · ,M .

With these 3M − 2 measurements, we apply Eq. (3) and obtain

us
1
∗
(r)us

m(r) =
1
2

[
|us

1(r) + us
m(r)|2 − |us

1(r)|
2 − |us

m(r)|2
]

+ i
1
2

[
|us

1(r) + ius
m(r)|2 − |us

1(r)|
2 − |us

m(r)|2
]
, m = 2, · · · ,M . (4)

We introduce the M-vector b(r) defined as

b(r) =
(
us∗

1 (r)u
s
1(r),u

s∗
1 (r)u

s
2(r), · · · ,u

s∗
1 (r)u

s
M (r)

)
. (5)

The entries of b(r) correspond to interferometric measurements at a single position r with us
1

serving as the reference field. Now, suppose we collect these measurements at N measurement
positions denoted by rn for n = 1, · · · ,N . We now form the M × N matrix

B =
[
b(r1)

�� b(r2)
�� · · · �� b(rN )

]
, (6)

whose columns are b(rn) for n = 1, · · · ,N .
For the imaging method we discuss below, we use the data matrix B as measurements for

reconstructing images of a multiple scattering medium. Using the procedure described above,
we explicitly obtain B using 3M − 2 illuminations. At this point we have not specified exactly
what M incident fields are to be used. In fact, one can consider introducing any form of spatial,
angular, or wavelength diversity at the source plane and apply the procedure given above to
obtain a useful matrix B of interferometric measurements. In the results below, we consider
angular diversity introduced by illuminating the imaging region with plane waves propagating
with different angles of incidence.

This measurement procedure leverages the diversity created by using multiple illuminations
at the source plane to overcome the inherent limitations of intensity-only measurements. The
data contained in B correspond to unusual interferometric measurements because the reference
field, us

1(rn) for n = 1, · · · ,N , is not known. Nonetheless, we will show that B contains sufficient
information for reconstructing images. Because B is formed through the explicit algebraic
relation given in Eq. (3), this procedure represents a substantial simplification over other methods
that require phase retrieval.

3. Multiple signal classification (MUSIC) method

To reconstruct an image over an imaging region, we introduce a mesh that covers the imaging
region with the set of grid points, ρk for k = 1, · · · ,K . We then seek to recover a grid function,
Xk for k = 1, · · · ,K , whose entries are nonzero when the corresponding grid point lies inside a
scattering object and zero otherwise. In this framework, a scattering object is represented as the
collection of grid points that lie inside that object. When there are relatively few objects in the
imaging region, we expect that most of the grid function values Xk are zero so that X is sparse.
A mapping from Xk for k = 1, · · · ,K to the data matrix B defined in Eq. (6) is required for

reconstructing an image. Here, we consider a very simple model for this mapping in which
each of the grid points independently acts as a secondary point source. The grid function Xk

for k = 1, · · · ,K is then the collection of point source strengths associated with each of the grid
points, and the measurements correspond to the superposition of these K point sources. We
explain this model in detail below.



Suppose we illuminate the imaging region with incident field uim. The model we use for the
scattered field at rn is given by

us
m(rn) =

K∑
k=1

uim(ρk)G0(rn,ρk)Xk, (7)

with G0 denoting the free-space Green’s function,

G0(r,r′) =
eik0 |r−r′ |

4π |r − r′ |
, (8)

with wavenumber k0 = 2πn0/λ where n0 is the constant refractive index of the background
medium. This model gives us

m(rn) as a superposition of K secondary point sources proportional
to the m-th incident field on those points and the strength Xk . Consider the n-th column of B
given in Eq. (6),

bn = b(rn) = us∗
1 (rn)



us
1(rn)

us
2(rn)
...

us
M (rn)


, (9)

where we have factored out the reference scattered field as a scalar multiple. We find that the
model given by Eq. (7) for bn can be written as the linear system,

AΛnx = bn. (10)

Here, A is an M × K matrix with entries,

[A]mk = uim(ρk), (11)

Λn is a K × K diagonal matrix with diagonal entries,

[Λn]kk = us∗
1 (rn)G0(rn,ρk), (12)

and x is a K-vector whose entries are the unknowns Xk for k = 1, · · · ,K. Linear system (10)
falls into the framework of the multiple measurement vector problem analyzed by Moscoso et
al [22]. They show that MUSIC provides the exact support of x for Eq. (10) when the data are
noiseless and remains robust with respect to additive noise provided the diversity in the data is
high enough.
When we combine all N measurements, we obtain the matrix system,

A [Λ1x |Λ2x | · · · |ΛN x] = B, (13)

with B given in Eq. (6). This linear system has a special structure in which the unknown vector
x is multiplied by the N diagonal matrices Λn for n = 1, · · · ,N . According to the formulation
above, Λn contains the unknown multiplicative constant, us∗

1 (rn).
The model given in Eq. (7) leading to Eq. (13) is a linearized approximation of the direct

scattering problem. Therefore, its inversion provides only an approximate solution to the inverse
scattering problem. However, Beylkin [32, 33] has shown that the solution of the linearized
inverse scattering problem preserves discontinuities. It follows that the linearized problem is
sufficient for recovering the location and shape of the scattering objects which is why we use it
here.



In Eq. (13) each column of B is given as a linear combination of the columns of A. According
to Eq. (11), the columns of A are evaluations of the known incident fields on the grid points. It
follows from the special structure of the linear system given in Eq. (13) that our measurements
correspond to different linear combinations of the same columns of A since x is the same for each
of the measurements. Furthermore, because the vector x of grid function values is sparse, there
are only a small number of columns of A that contribute to the data. If we are able to determine
the span of those columns of A, we effectively determine those nonzero entries of x which, in
turn, give the location and shape of the scattering objects.
Our implementation of the multiple signal classification (MUSIC) method uses the fact that

measurements are linear combinations of the same columns of A. The span of those columns of
A is called the signal subspace. When we compute the singular value decomposition, B = UΣVH

where the superscript H denotes a conjugate transpose, the columns of U corresponding to the
significant singular values contained in the diagonal entries of Σ give an orthonormal basis for
the signal subspace. Let Ũ denote the matrix containing the columns of U corresponding to the
significant singular values. We introduce the matrix

P = IM − ŨŨH , (14)

with IM denoting the M × M identity matrix. The matrix P is a projection onto the subspace
orthogonal to that spanned by the columns of Ũ. When we apply P to the k-th column of A and
find that its length is small, then that column lies in the signal subspace. Let ηk = ‖Pak ‖ for
k = 1, · · · ,K with ak denoting the k-th column of A and let ηmin = min ηk . We form an image
by plotting

Ik =
ηmin
ηk

, k = 1, · · · ,K . (15)

The peaks of Ik correspond to the scattering objects. Note that the unknown constants, us∗
1 (rn)

for n = 1, · · · ,N , do not affect the signal subspace. Consequently, the imaging method does not
rely on their knowledge and that is why we can image with interferometric measurements with
respect to an unknown reference field.
To summarize the imaging method, we give the following procedure for forming images.

1. Compute the singular value decomposition, B = UΣVH and determine the significant
diagonal entries of Σ, denoted by σj , satisfying σj > δmaxj σj for j = 1, · · · ,min(M,N)
with δ denoting a user-defined tolerance.

2. Compute the projection P = IM − ŨŨH with Ũ denoting the columns of U associated
with the significant singular values determined in the 1st step.

3. Compute ηk = ‖Pak ‖ for k = 1, · · · ,K with ak denoting the k-th column of A, whose
entries are given in Eq. (11), and determine ηmin = mink ηk .

4. Plot the values of Ik = ηmin/ηk for k = 1, · · · ,K .

4. Simulating measurements

To test and evaluate the imaging method described above in Section 3, we consider a general,
three-dimensional imaging problem. We neglect polarization and consider scalar fields. This
problem provides a simple setting to evaluate the effectiveness of the imaging method. This
general imaging problem can be easily modified or extended to consider specific imaging systems.

4.1. Imaging system

Let z = −200λ denote the source plane and z = +200λ denote the measurement plane. The
imaging region is a 20λ × 20λ × 20λ cube centered at the origin which contains one or more



scattering objects. The background refractive index is n0 and the refractive index inside the
scattering objects is n1.
We illuminate the imaging region by plane waves of the form,

uim(r) = eik0 ŝ·r, m = 1, · · · ,M, (16)

with propagation direction ŝ. To introduce source diversity, we consider a mesh of 25 different
values of θ defined according to θi = iπ/26 for i = 1, · · · ,25 and 25 different values of ϕ defined
according to ϕj = 2π( j − 1)/25 for j = 1, · · · ,25, and set

ŝi j = (sin θi cos ϕj, sin θi sin ϕj,cos θi), i = 1, · · · ,25, j = 1, · · · ,25. (17)

Consequently, we have M = 625 different illuminating plane waves.
Measurements of the scattered field are collected on a 400λ × 400λ region of the measurement

plane, z = 200λ. The scattered field is sampled on this measurement region with an equi-spaced
mesh with mesh width ∆x = ∆y = 10λ. Consequently, we have N = 1681 scattered field
measurements for each illumination.

4.2. Forward problem

Suppose that Q scattering objects in the imaging region correspond to the disjoint regions Ωq for
q = 1, · · · ,Q with corresponding boundaries ∂Ωq for q = 1, · · · ,Q. Let Ω̄q = Ωq ∪ ∂Ωq and
let E = R3\

⋃Q
q=1 Ω̄q denote the exterior to all of the scattering objects. The refractive index

in E is n0 and the refractive index in Ωq is n1 for q = 1, · · · ,Q. We define the corresponding
wavenumbers: k0 = 2πn0/λ and k1 = 2πn1/λ. We seek the solution of the following system of
boundary-value problems for the scalar, time-harmonic wave equation,

(∇2 + k2
0)u

s = 0, in E, (18a)

(∇2 + k2
1)Uq = 0, in Ωq for q = 1, · · · ,Q, (18b)

Uq − us = ui on ∂Ωq for q = 1, · · · ,Q, (18c)
∂νUq − ∂νus = ∂νui on ∂Ωq for q = 1, · · · ,Q, (18d)

with ui denoting the incident field satisfying (18a) in the whole space. Here, ∂ν denotes the
derivative with respect to the unit normal ν for boundary ∂Ωq . Additionally, we require that us

satisfy appropriate radiation conditions so that only outgoing waves are considered.
To compute the solution of boundary-value problem (18), we use the Method of Fundamental

Solutions. This method was introduced by Mathon and Johnston [34]. It provides an accurate
and efficient computational method for solving the full scattering problem. The text by Wriedt et
al [35] provides an overview of this method and its applications to various problems.
The fundamental solution,

G j(r − r′) =
eik j |r−r′ |

4π |r − r′ |
, j = 0,1, (19)

satisfies
(∇2 + k2

j )G j(r − r′) = −δ(r − r′), j = 0,1, (20)

in the whole space along with outgoing radiation conditions as |r − r′ | → ∞. In other words,
it satisfies the time-harmonic wave equation with wavenumber k for all points in space except
r = r′.
Let rqp for p = 1, · · · ,P denote a set of points on ∂Ωq . We introduce the points,

rintqp = rqp + `νqp, p = 1, · · · ,P, (21)



where ` > 0 is a parameter whose value is to be specified, and νqp is the unit outward normal for
∂Ωq at rqp . These points lie outside of Ω̄q . Similarly, we introduce the points,

rsqp = rqp − `νqp, p = 1, · · · ,P. (22)

These points lie inside of Ωq . Using these points, we approximate the solution of boundary-value
problem (18) as

us(r) ≈
Q∑
q=1

P∑
p=1

csqpG0(r − rsqp), r ∈ E, (23a)

Uq(r) ≈
P∑

p=1
cintqpG1(r − rintqp), r ∈ Ωq, (23b)

with expansion coefficients, csqp and cintqp for q = 1, · · · ,Q and p = 1, · · · ,P to be determined.
Because Eq. (23a) is a sum of fundamental solutions, each satisfying Eq. (20), and because

the points rsqp ∈ Ωq for p = 1, · · · ,P, this approximation exactly satisfies Eq. (18a) for all r ∈ E .
Similarly, Eq. (23b) exactly satisfies Eq. (18b) for all r ∈ Ωq . All that remains is to require that
Eq. (23a) and Eq. (23b) satisfy boundary conditions (18c) and (18d), and appropriate radiation
conditions. Because each fundamental solution, G0, satisfies the outgoing radiation condition,
Eq. (23a) automatically satisfies the outgoing radiation condition. Thus, we need only to require
that Eqs. (23a) and (23b) satisfy boundary conditions (18c) and (18d) for q = 1, · · · ,Q. We
cannot require that Eqs. (23a) and (23b) satisfy the boundary conditions exactly. Instead, we
require that Eqs. (23a) and (23b) satisfy boundary conditions (18c) and (18d) on the P boundary
points, rqp for p = 1, · · · ,P. Doing so yields the 2QP equations,

P∑
p′=1

cintqp′G1(rqp − rintqp′) −

Q∑
q′=1

P∑
p′=1

csq′p′G0(rqp − rextq′p′) = ui(rqp),

q = 1, · · · ,Q, p = 1, · · · ,P, (24)

and

P∑
p′=1

cintqp′∂νG1(rqp − rintqp′) −

Q∑
q′=1

P∑
p′=1

csq′p′∂νG0(rqp − rextq′p′) = ∂νui(rqp),

q = 1, · · · ,Q, p = 1, · · · ,P, (25)

for the 2QP unknowns, csqp and cintqp for q = 1, · · · ,Q and p = 1, · · · ,P. Upon solution of
this linear system, we evaluate Eq. (23a) on the measurement plane to obtain our simulated
measurements.
The Method of Fundamental Solutions described above approximates the full boundary-

value problem for the wave equation with multiple scattering obstacles. It does not make any
approximations with regards to the scattering – it includes all orders of multiple scattering needed
for the problem. There are no assumptions on the refractive indices used or the shape of the
scattering objects besides some reasonable smoothness requirements for the boundaries. This
method only approximates the requirements that the fields satisfy boundary conditions which
depends on the number P of points used to sample each of the boundaries and the distance `
used. For the simulations used in the results below, we have chosen P = 512 and ` ≈ 0.1σg

with σg denoting the geometrical cross-section of the scattering object. With these choices of
user-defined parameters, we obtain less than 0.1% relative error made by this method to compute



the scattering cross-section by a single, spherical scattering object with radius a = 632 nm over
the visible spectrum compared to the analytical solution for this problem.

For a particular configuration of scattering objects, we compute the scattered field us
m for each

of the M = 625 incident plane waves given in Eq. (16) and evaluate those results at the points
rn for n = 1, · · · ,N on the measurement plane. We then use those results to form the matrix
B defined in Eq. (6). This B matrix is then used in the MUSIC imaging method described in
Section 3 to form reconstructions of those scattering objects.

Fig. 1. Spherical scattering object plotted in blue with radius a = 632 nm and relative
refractive index n1/n0 = 1.4 and an isosurface corresponding to Ik = 0.1 of the reconstructed
image plotted in red.

5. Results

We present results of images constructed using the MUSIC method described in Section 3 with
simulated measurements computed using the Method of Fundamental Solutions described in
Section 4. For all the results that follow, the wavelength is λ = 632 nm, the refractive index
of the background is n0 = 1 and the refractive index of the scattering objects is n1 = 1.4. We
illuminated the 20λ × 20λ × 20λ imaging region containing the scattering objects using M = 625
plane waves with different angles of incidence on the imaging region. We collect N = 1681
measurements over the 200λ × 200λ region of the measurement plane z = 200λ, sampling at
∆x = ∆y = 10λ.
In what follows, we show an isosurface of Ik for k = 1, · · · ,K given in Eq. (15) plotted over

the surface of the actual scattering object. To compute Ik using the procedure given at the end of
Section 3, we set the user-defined threshold in Step 1 to be δ = 10−8. Note that 0 ≤ Ik ≤ 1. We
find that the reconstructed images are quite accurate. In the examples that follow we plot the
isosurface corresponding to Ik = 0.1.
The Matlab codes used to generate all of the examples that follow are available in a GitHub

repository [36].

5.1. Reconstructing spherical objects

We first consider spherical scattering objects each with radius a = 632 nm and relative refractive
index of n1/n0 = 1.4. In Fig. 1 we show a single, spherical scattering object in blue and an
isosurface corresponding to Ik = 0.1 of the reconstructed image in red. This result shows that the
reconstruction accurately recovers the location and shape of the scattering object.



Fig. 2. Three spherical scattering objects plotted in blue, each with radius a = 632 nm and
relative refractive index n1/n0 = 1.4 and an isosurface corresponding to Ik = 0.1 of the
reconstructed image plotted in red.

Fig. 3. Eight spherical scattering objects plotted in blue, each with radius a = 632 nm and
relative refractive index n1/n0 = 1.4 and an isosurface corresponding to Ik = 0.1 of the
reconstructed image plotted in red.

To test the ability of the imaging method to recover multiple scattering objects, we plot in Fig. 2
an image reconstruction for three spheres, each with radius a = 632 nm and relative refractive
index n1/n0 = 1.4. The distance between each of the spheres is approximately 1.5λ. Thus, this
problem corresponds to high-contrast scattering objects on the order of the wavelength separated
by a distance that is on the order of the wavelength. It is a particularly challenging case since the
multiple scattering between these scattering objects is significant and complex. Nonetheless,
we find that the reconstructed image accurately recovers the locations and shapes of the three,
distinct scattering objects. We have found that when these same spheres are closer than this
distance, the reconstructed image will deteriorate and does not distinguish the three distinct
scattering objects from one another. However, when the relative refractive index is decreased, we
find that the reconstructed images do distinguish three, distinct scattering objects, and accurately
recover their locations and shapes.



To consider even more scattering objects, we show in Fig. 3 a reconstructed image of eight
spherical scatterers, each with radius a = 632 nm and relative refractive index n1/n0 = 1.4. Just
as with the single sphere and the three spheres results, we find that the imaging method accurately
recovers the locations and shapes of these scattering objects.

5.2. Reconstructing ellipsoidal objects

To test the imaging method on scattering objects that have a more complex shape than a sphere,
we consider an ellipsoid defined according to

x2

a2 +
y2

b2 +
z2

c2 = 1. (26)

In particular, the principal semi-axes of the ellipsoids we consider are a = 632 nm, b = 948 nm,
and c = 474 nm. An image reconstruction for this ellipsoidal scattering object with relative
refractive index n1/n0 = 1.4 is shown in Fig. 4. The actual ellipsoidal scattering object is plotted
in blue and the isosurface of the reconstructed image is plotted in red. This result shows that the
imaging method accurately recovers the location and shape of the ellipsoidal scattering object.

Fig. 4. An ellipsoidal scattering object plotted in blue with principal semi-axes: a = 632 nm,
b = 948 nm, and c = 474 nm, and relative refractive index n1/n0 = 1.4. The isosurface
corresponding to Ik = 0.1 of the reconstructed image plotted in red.

In Fig. 5 we plot the reconstructed image of eight ellipsoidal scattering objects. For this
result, we have randomly chosen the orientation for each ellipsoid. Here we take a = 500 nm,
b = 400 nm, and c = 300 nm, and relative refractive index n1/n0 = 1.4. The imaging method
accurately determines the location and shape of each of these eight scattering objects. There are
no imaging artifacts that appear in this reconstruction.

6. Practical considerations

We discuss several practical considerations of this imaging method.

• This method is for scalar waves and does not consider the vectorial nature of electromagnetic
waves. To apply MUSIC to problems that require the consideration of the polarization
state of scattered light, we must use the methods of Ammari et al. [26]. Nonetheless, these
scalar wave results give valuable insight into the problem and strongly indicate that it can
be extended to the full electromagnetic inverse scattering problem.



Fig. 5. Eight ellipsoidal scattering objects plotted in blue with principal semi-axes:
a = 500 nm, b = 400 nm, and c = 300 nm, and relative refractive index n1/n0 = 1.4. The
orientation of these ellipsoidal scattering objects have been chosen randomly. The isosurface
corresponding to Ik = 0.1 of the reconstructed image plotted in red.

• This imaging method only recovers the locations and shapes of the scattering objects.
It does not accurately recover quantitative information such as the complex refractive
index. However, using this imaging method as a first step followed by solving a nonlinear
least-squares problem similar to what Chen has done [29] is one possible strategy to extend
this method for quantitative imaging applications.

• This method uses the intensity of the scattered field and not the total field. Hence, it is
restricted to dark field measurements which is a current limitation.

• Sufficiently high diversity introduced at the source is crucial for the effectiveness of this
method. Far fewer sources with more noise and limited range will adversely affect the
reconstructed images.

• The measurement procedure given in Section 2 based on the polarization identity requires
controlling the phase of the incident field with sufficient accuracy which may not be
practically feasible. Nonetheless, this approach indicates that there may be alternative
methods for leveraging gains in source diversity to circumvent the need for phase-retrieval.

• The results shown above are for very sparse distributions of scattering objects. However,
the method is not limited to only these very sparse examples. The method is limited only
when the volume fraction of scatterers is so large that the number of nonzero entries of the
grid function Xk introduced in Section 3 becomes comparable to the total number of grid
points in the mesh of the imaging region.

7. Conclusions

We have presented a simple and effective inverse scattering method limited to intensity measure-
ments taken on a single measurement plane. By leveraging diversity created by adequate multiple
illuminations of the imaging region and using the explicit algebraic relation given by Eq. (3) we
convert intensity measurements to the interferometric measurements contained in the matrix
B defined in Eq. (6). The explicit procedure is given at the end of Section 2. We then apply
to this B matrix a modification of the MUSIC method as described in Section 3. This leads to



a simple imaging method that requires only some elementary linear algebra computations. It
is efficient because the image reconstruction is the result of a direct computation – there is no
iterative procedure to be done. There is no need for phase retrieval. Moreover, this method
reconstructs images over the entire imaging region simultaneously. There is no scanning or
slicing of the region required. This imaging method has no inherently different resolution on
axes perpendicular and parallel to the measurement plane. Provided that the model for the
measurements can be modified for a specific imaging system, this method is widely applicable to
a broad variety of settings.

By simulating three-dimensional scattering data using the Method of Fundamental Solutions
described in Section 4, we have tested this imaging method for a variety of scattering objects.
All of the sizes of the objects we have considered are on the order of the wavelength of the
illuminating fields. Additionally, when we considered multiple objects, the distances between
them were on the order of a wavelength. Finally, their refractive indices were substantially
different from the background. This situation is challenging because the multiple scattering by
these objects is complex and not subject to simplifying approximations.
In our reconstructions using these simulated data, we have found that the imaging method

presented here is remarkably effective at determining the location and shape of the scattering
objects. The method is general and easily extends to other problems. Because the imaging
method involves an elementary set of direct procedures with explicit formulas given at the end of
Section 3, it should be useful for a broad variety of intensity-only inverse scattering problems.
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