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ARTICLE

Interplay of water and a supramolecular capsule
for catalysis of reductive elimination reaction
from gold
Valerie Vaissier Welborn1,2,3,6, Wan-Lu Li1,2,3 & Teresa Head-Gordon 1,2,3,4,5*

Supramolecular assemblies have gained tremendous attention due to their ability to catalyze

reactions with the efficiencies of natural enzymes. Using ab initio molecular dynamics, we

identify the origin of the catalysis by the supramolecular capsule Ga4L612− on the reductive

elimination reaction from gold complexes and assess their similarity to natural enzymes. By

comparing the free energies of the reactants and transition states for the catalyzed and

uncatalyzed reactions, we determine that an encapsulated water molecule generates electric

fields that contributes the most to the reduction in the activation free energy. Although this is

unlike the biomimetic scenario of catalysis through direct host-guest interactions, the electric

fields from the nanocage also supports the transition state to complete the reductive elim-

ination reaction with greater catalytic efficiency. However it is also shown that the nanocage

poorly organizes the interfacial water, which in turn creates electric fields that misalign with

the breaking bonds of the substrate, thus identifying new opportunities for catalytic design

improvements in nanocage assemblies.
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Inspired by the ultimate enzyme catalyst1,2, supramolecular
catalytic systems seek to be biomimetic3–5 for features such as
presence of an active site6 with optimized noncovalent inter-

actions with the substrate7, electrostatic preorganization that
eliminates the reorganization cost paid by the uncatalyzed
reaction8,9, as well as desolvation and dynamical effects that are
relevant for the complete catalytic cycle2,10,11. In turn, the weak
intermolecular interactions that govern supramolecular assem-
blies offer the undeniable advantage of easy functionalization,
reversibility, and fast self-assembly5,12,13 that overcome limita-
tions of a delicate and more difficult redesign of an enzyme
scaffold14. Supramolecular catalysts have the potential to revo-
lutionize the chemical industry by allowing simpler and more
flexible reaction pathways that offers lower cost, reduces the
creation of undesired by-products15–18, operates in a broad range
of conditions19,20, and is compatible with renewable and sus-
tainable man-made chemistry18,21.

Nanocapsule or cage-like supramolecular catalysts have attracted
a lot of attention due to their perceived similarities to enzymes and
their remarkable efficiencies3,10,11,18,22. Theoretical calculations
have become indispensable to thoroughly analyze the role of the
encapsulation during the catalytic process for reactions
including Diels-Alder23,24, ester hydrolysis25, decarboxylation
inside β-cyclodextrin26, and in the so-called softball complex27. The
catalytic mechanism of nanocage supramolecular systems have
been categorized as (i) encapsulation of a catalytic moiety, thereby
shielding the reaction from undesired bulk side reactions28 and (ii)
encapsulating only reactants and to rely on host–guest interactions
to promote the reaction as do enzymes28–30. What are thought to
be the most notable examples of the latter are the metal-ligand
assemblies M6L4 introduced by Fujita et al.,4,29,31 which can tune
the Diels-Alder reaction toward the formation of new products,
and the M4L6 assembly introduced by Raymond and co-workers
(Fig. 1, top), that catalyzes a number of reactions including Nazarov

cyclization of dienol substrates as well as aza-cope rearrangements
of cationic enammoniums, with enzymatic efficiencies4,22,32–34.

Relevant to this work, Ga4L612− has been proven to accelerate
the alkyl–alkyl reductive elimination from gold(III) complexes by
five order of magnitude in a methanol/water solvent mixture35,36.
Subsequent experimental studies have revealed that the nanocage
catalyzed reaction obeys Michaelis-Menten kinetics, and
demonstrating that the Ga4L612− capsule creates a micro-
environment that preferentially binds a cationic intermediate as
the substrate (Fig. 1, bottom)35,37. Our group has shown that the
total activation potential energy of the reaction from this cationic
intermediate is lowered by the electrostatic environment ema-
nating from the Ga4L612− system relative to that of a Si4L68−

capsule, which is consistent with catalytic trends observed
experimentally1. A recent study by Ujaque and co-workers have
proposed that the origin of the catalytic behavior in pure
methanol arises from two factors: (i) encapsulating the gold
complex inside the Ga4L612− nanocage and accounting for the
interaction and thermal terms of the overall process, and (ii)
removing explicit methanol microsolvation around the encapsu-
lated gold complex to get better fits within the cavity38. But what
has not yet been characterized is the aqueous solvent component
and its role in driving the catalytic effect.

Analysis of the reactivity of nanocage or nanoconfined
complexes by theoretical approaches can unravel many novel
physicochemical properties of the catalytic systems under con-
sideration39. More recent research has moved toward more sys-
tematically using explicit solvent under periodic boundary via ab
initio molecular dynamics (AIMD) for catalytic reactions, espe-
cially for organometallic systems40,41. Furthermore, the free
energy is an important missing factor in previous computational
studies of alkyl–alkyl reductive elimination from gold(III) com-
plexes in solution and in the metalloenzyme1. To illustrate, one of
the major factors in the cycloaddition reaction acceleration inside
a cucurbit[6]uril host is the reduction of the entropic component
of bringing reactants together at the reaction barrier42,43. Himo
and co-workers predicted that the dominant contributor to the
rate acceleration is the entropic effect along with destabilization
of the reactant in the presence of resorcinarene-based host44.
Although water has been shown experimentally to influence the
Ga4L612− nanocage’s ability to catalyze acid-, base-, and water-
mediated proton transfer33, the role of water has not been elu-
cidated for reactions that do not involve proton transfer.

Here we seek to quantify the reaction mechanism of the
Ga4L612− catalyzed alkyl–alkyl reductive elimination using ab
initio molecular dynamics (AIMD) of the nanocage in explicit
water solvent, and further analyzed with metadynamics and
committor analysis to determine the free energy surface. We find
that the interfacial water solvent surrounding the Ga4L612−

nanocapsule generates electric fields that oppose the catalytic
acceleration, unlike enzymes whose scaffold is evolutionary
designed to minimize the reorganization energy2,14. Furthermore
we find that the Ga4L612− nanocapsule is not in fact biomimetic
of an enzyme active site governed by host–guest interactions, but
rather that the nanocage creates a catalytic moiety- a primary
water molecule- that generates bond dipole-field interactions that
preferentially stabilize the transition state, thereby overcoming
the poor interfacial solvent organization to accelerate the
alkyl–alkyl reductive elimination reaction. Together, these results
have identified new biomimetic design strategies to increase the
catalytic power of supramolecular assemblies in the future.

Results
Free energy of alkyl–alkyl reductive elimination with and
without Ga4L612−. To rationalize the role of the nanocage
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Fig. 1 Supramolecular catalyst for reductive elimination from gold(III)
complexes. a Ga4L612– (L=N,N’-bis(2,3-dihydroxybenzoyl)-1,5-
diaminonaphtalene) tetrahedral assembly. b substrate trialkylphosphine
(dimethyl)gold iodide (P(CH3)3(CH3)2AuI) is in equilibrium with P
(CH3)3(CH3)2Au+, and the reaction occurring in the nanocage binds the
positively charged unhalogenated form as proposed in ref. 35 Color key:
carbon= gray, nitrogen= blue, hydrogen=white, oxygen= red, gallium=
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construct on the evolution of the reductive elimination, we
compare the reaction path of both the catalyzed and uncatalyzed
reactions using ab initio metadynamics and a frozen string
method to determine reactants, products, and transition states
(see Methods). To accelerate the exploration of the free energy
landscape, we picked two coordinates as collective variables and
calculate the free energy pathway in the reduced two-dimensional
space. In this study, our choice of (i) the distance between the
carbon atoms of the leaving methyl groups (methyl-methyl dis-
tance) and (ii) the coordination number between the leaving
carbons and the gold was found to yield a correct transition state
ensemble as subsequently confirmed with a committor analysis
using unconstrained AIMD trajectories in the complete higher
dimensional space of the reaction (see Methods).

The free energy barrier calculated from these minimum energy
paths is 37 and 33 kcal mol−1 (with (Supplementary Fig. 1) and
without iodide (Fig. 2), respectively) for the uncatalyzed reaction
and 24 kcal mol−1 for the catalyzed reaction. We note that for the
pre-equilibrium step (Fig. 1), the dominant species in aqueous
solution is the halogenated form, but the rate law for catalysis is
dependent on the unhalogenated substrate36. Using a simple
transition state theory (TST) relationship, expðΔGy=kbTÞ, this

would correspond to a rate acceleration of 3.3 × 107, in reasonable
agreement with 5.0 × 105 to 2.5 × 106 (depending on halide
ligand) that was determined experimentally36. The quantitative
values for the activation free energy may be limited by the TST
assumption, or perhaps the level of DFT theory, although the
more advanced range-separated hybrid version of the B97M-rV
functional complemented with a triple zeta basis set has been
well-validated on bulk water45,46, is likely to describe the catalytic
system accurately. Alternatively, it may also stem from the fact
that the original experiment was carried out in a methanol/water
mixture whereas we are considering pure water solvent. The
presence of less polarizable methanol molecules would diminish
the electrostatic interactions around the gold complex.

Origin of the catalytic power of Ga4L612−. To better understand
how the Ga4L612−nanocage provides a total of ~9 kcal mol−1

reduction in the activation energy barrier, we selected snapshots
characteristic of the reactant and transition states from the AIMD
trajectory (Fig. 2). Our group has previously analyzed the elec-
trostatic environment of enzyme active sites to show they create
large electric fields that are well-aligned with reactive bonds, and
act as an important contributor to transition state stabilization as
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Fig. 2 Free energy landscape obtained from ab initio metadynamics. The uncatalyzed reaction (a–c) describes the evolution of the unhalogenated
compound P(CH3)3(CH3)2Au+ in water. The catalyzed reaction (d–f) describes the evolution of the encapsulated cation P(CH3)3(CH3)2Au+ in water. As
an additional reference, we provide in Supporting Information the landscape for the cation P(CH3)3(CH3)2AuI in water in the absence of the cage
(Supplementary Fig. 1). Free energy surface in collective variable space of the a uncatalyzed and d catalyzed reaction. The catalytic water position for the
reactant state in b water and e the nanocage. The catalytic water position for the transition state in c water and f in the nanocage. Color key: carbon= gray,
phosphorous= orange, gold= yellow, hydrogen=white, oxygen= red.
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well as reactant state destabilization1,2. Therefore we calculated
the electrostatic part of the energy barrier by computing electric
fields from different system components, and their contributions
to the activation energy barrier. This helps to quantify the cata-
lytic role of the nanocage and encapsulated water molecule vs that
of the greater bulk water environment of the uncatalyzed
reaction.

To further quantify the effect of the electric fields, we estimated
the electrostatic free energy of stabilization of the transition state,
ΔGelec, defined as follows:

ΔGelec ¼
X

i

�0:048ðμiTS � Ei
TS � μiRS � Ei

RSÞ ð1Þ

where the summation is over the number of reactive bonds
considered, μiX is the bond dipole moment and Ei

X the electric
field in state X. Since both the magnitude and the orientation of
electric fields are of importance, we projected the fields onto the
two bonds that change the most during the reaction, identified as
the two gold-methyl bonds as shown in Table 1.

Discussion
When comparing the catalyzed to uncatalyzed reaction, we
see that the electrostatics alone provide ~5 kcal mol−1 of the
9 kcal mol−1 transition state stabilization. However, the nanocage
itself, although producing large electric fields consistent with its
high negative charge, plays a mixed role in the catalytic effect on
the carbon reductive elimination reaction from gold. We first
note that, unlike enzymes whose scaffold is evolutionary designed
to minimize the reorganization energy2,14, the nanocage poorly
organizes the interfacial/bulk water, which in turn creates electric
fields that misalign with the breaking bonds of the substrate
(Table 1). But relative to the uncatalyzed reaction, the nanocage
does contribute ~50% reduction in the activation free energy,
both directly through host–guest interactions, and indirectly
through partial reorganization of the interfacial water near (but
outside) the nanocage to be less detrimental to the reaction.

However, the remaining ~50% of the transition free energy
stabilization comes from a single complexed water encapsulated
with the reactants in the cage. In this context, the role of the
nanocage is to generate a microenvironment in which this

phenomenon is possible, which contrasts from previous spec-
ulations that put forward host–guest interactions as the main
catalytic process28–30. The nanocage does play another implicit
role for catalysis since the transition state structure is different in
the nanocage when compared to the bulk, and in turn contributes
to changes in the bond dipoles. In other words, the nanocage
increases the system’s sensitivity to the electric fields, although the
true catalytic effect comes from the isolated water molecule(s)
within the cage.

In conclusion, the theory presented here provides new insights
into the catalytic power of the cage-like supramolecular catalyst
Ga4L612−. For the alkyl–alkyl reductive elimination from gold(III)
complexes, we show here that the two traditional categories to
explain their catalytic process—i.e., cage-like compounds that
encapsulate a catalytic moiety and the ones that use host–guest
mechanisms—are actually not so easily separable. The Ga4L612−

nanocage both stabilizes the catalytic reactant through loss of a
halide ligand, and preconditions the transition state for greater
sensitivity to electric field projections onto the breaking carbon
bonds, but also hosts additional water molecules, of which one
complexed guest water serves as a strong catalytic player. At the
same time the interfacial water is found to be highly detrimental
to transition state stabilization, thereby identifying catalytic
design opportunities for supramolecular assemblies such as
Ga4L612− to further accelerate the reductive elimination reaction
from gold complexes.

Methods
DFT calculations. All calculations presented in this paper (geometry optimization,
molecular dynamics, metadynamics, and energy calculations) were performed with
Density Functional Theory (DFT) using the dispersion corrected meta-generalized
gradient approximation (GGA) functional B97M-rV47,48 in combination with a
DZVP basis set optimized for multigrid integration49 as implemented in the CP2K
software package50,51. In all cases, we used periodic boundary conditions, 5 grids
and a cutoff of 400 Ry.

Starting geometries. The starting geometry for the catalyzed reaction is the cation
gold complex encapsulated in the cage. This was built by positioning the vacuum
optimized cation geometry in the capsule minimizing the root-mean-square-
displacement (RMSD) with the X-ray structure of bis(trimethylphosphine) gold
cation in Ga4L612−. The overall structure was further optimized with DFT. The
starting geometry for the uncatalyzed reaction is the vacuum optimized gold

Table 1 Electric fields and free energies of reductive elimination reaction in the Ga4L612− capsule.

Electric fields E1/MV cm−1 E2/MV cm−1

Bulk water Complexed water Cage Bulk water Complexed water Cage

RS
Uncatalyzed reaction −21.49 59.73 N/A −12.75 −14.89 N/A
Catalyzed reaction −6.72 40.81 −0.21 −6.87 −7.97 −14.13

TS
Uncatalyzed reaction −4.55 9.63 N/A −15.81 −21.2 N/A
Catalyzed reaction −51.63 19.30 27.27 −31.37 22.27 9.95

ΔGelec ¼ P
i
�0:048ðμiTS � EiTS � μiRS � EiRSÞ

μ1RS μiRS μ1TS μ2TS Bulk water Complexed water Cage

Uncatalyzed reaction −6.15 −2.83 −1.26 3.67 10.58 −11.29 N/A
Catalyzed reaction −6.15 −2.83 2.05 0.71 9.02 −13.62 −1.04

The electric fields (E1 and E2, respectively) are given by the contribution from bulk water, a vicinal water, and from the nanocage for the reactant (RS) and transition state (TS) of the uncatalyzed and
catalyzed reaction. Positive fields are defined in the opposite direction of the flow of electrons and contribute to stabilizing electrostatic effects. The bond dipoles ðμ1RS ; μ2RS ; μ1TS ; μ2TSÞ were computed from
the partial charges on the gold and carbon atoms, and using the bond length dAu-Ci as shown in Supplementary Fig. 2 and Supplementary Table 1. The unit conversion factor for free energy ΔGelec from the
projected electric field on the bond dipole in kcal/mol is 0.048. Color key: carbon= gray, phosphorous= orange, gold= yellow, hydrogen=white, oxygen=red
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complex. Both of these structures were then solvated using Gromacs with a pre-
equilibrated water box of size 30 × 30 × 30 Å for the encapsulated gold complex and
19 × 19 × 19 Å for the reference reaction (without the cage). To maintain charge
neutrality, potassium counter ions were also included at the positions provided in
the X-ray resolved structure35 for the encapsulated system. We ran an additional
5 ps ab initio molecular dynamics simulation (298 K, 0.5 fs timestep) to further
equilibrate the structures.

Ab initio metadynamics. Using these equilibrated solvated structures, we then ran
well-tempered single walker metadynamics52,53 as implemented in the CP2K
package. To reduce the dimensions of the space to explore, we picked two collective
variables that best describe the evolution of the reaction: (i) the distance between
the carbon of the two leaving methyl groups and (ii) the coordination number
(CNC-Au) between the gold atom and the two carbons of the leaving methyl groups
defined as follows:

CNC�Au ¼
1
2

X

i2f1;2g

1�ðrCi�Au

R0
Þ8

1�ðrCi�Au

R0
Þ14 ð2Þ

Where rCi-Au (R0) is the instantaneous (equilibrium) distance between the gold and
carbon atoms. The choice of these coordinates was guided by our previous study
for which we computed the geometry in vacuum of the reactant, transition state
and product of the alkyl–alkyl reductive elimination reaction. It is also worth
noting that, given the nature of the system, other candidates for collective variables
(such as angles or dihedrals) would likely depend on either if not both the gold-
methyl coordination number or the methyl-methyl distance.

In this metadynamics scheme, Gaussian functions of height 0.005 Ha were
deposited at least every 30 steps (with a timestep of 0.5 fs) along the trajectory in
the reduced space. This introduces a history dependent bias that pushes the system
towards areas of the landscape that would otherwise be hard to reach (such as the
crossing between reactant and product wells). For both the catalyzed (with cage)
and uncatalyzed (without cage) reactions, this process was run until the barrier was
crossed at least three times, gathering over 50 ps of metadynamics. Free energy
surfaces were then created using the sub-program graph within the CP2K package.
This tool reads in the information about the added Gaussian functions, such as
position, height, and width, and compute the corresponding unbiased energy
landscape. From these, minimum energy paths were calculated using the zero
temperature string method of Maragliano et al54. The procedure was performed in
Matlab using a 30 point string and 3000 optimization steps.

To rationalize the role of the cage on the reduction of the reaction energy
barrier, a set of geometries representative of the reactant and transition states
were extracted. For the reactant state, we selected one structure every 10 fs of the
molecular dynamics trajectory for 2 ps (200 structures total). For the
transition state, we searched for a few snapshots within the metadynamics
trajectory that corresponded to the values of the collective variables identified as
transition state by the string method. We then tested and refined our choice by
performing a committer analysis until our selected geometries would fall in
both the reactant and product equilibrium well. For the catalyzed reaction, we
found three snapshots that displayed a 57% (43%) commitment to the
product (reactant) state. These were situated at (2.1, 0.35) in the collective
variable space, very close to the initial guess obtained by the string method
(2.1, 0.36). Similarly, for the uncatalyzed reaction, we found two snapshots that
displayed an early 38% (62%) commitment to the product (reactant) state, at
(2.6, 0.24) in the collective variable space compared to the initial guess of
(2.3,0.24). An ensemble was then generated by gathering all geometries that fell
within +/0.05 A in methyl-methyl distance and +/−0.005 in coordination
number to (2.1, 0.35) for the catalyzed and (2.6, 0.24) for the uncatalyzed
reaction. This represents about 45 geometries for each transition state ensemble
for complete committor analysis statistics, thereby confirming that the transition
state was reliably found.

Electric fields. The derivative of the electrostatic potential were obtained as direct
output of CP2K, and the electric field was then projected onto the two bonds of the
substrate that are most changed during the evolution of the reaction, namely the
two gold-carbon of the leaving methyl group bonds (see Table 1). The free energy
state functions were obtained from this electric field projection through a model of
the bond dipoles that were computed using the Density Derived Atomic Point
Charge (DDAPC)55 scheme that accounts for the multigrid integration of CP2K.
The charges, bond lengths and details of these calculations, are given in Supporting
Information.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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