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Abstract

Depressive pathology, which includes both heightened negative affect (e.g., anxiety) and

reduced positive affect (e.g., anhedonia), is known to be associated with sub-optimal deci-

sion-making, particularly in uncertain environments. Here, we use a computational

approach to quantify and disambiguate how individual differences in these affective mea-

sures specifically relate to different aspects of learning and decision-making in reward-

based choice behavior. Fifty-three individuals with a range of depressed mood completed a

two-armed bandit task, in which they choose between two arms with fixed but unknown

reward rates. The decision-making component, which chooses among options based on

current expectations about reward rates, is modeled by two different decision policies: a

learning-independent Win-stay/Lose-shift (WSLS) policy that ignores all previous experi-

ences except the last trial, and Softmax, which prefers the arm with the higher expected

reward. To model the learning component for the Softmax choice policy, we use a Bayesian

inference model, which updates estimated reward rates based on the observed history of

trial outcomes. Softmax with Bayesian learning better fits the behavior of 55% of the partici-

pants, while the others are better fit by a learning-independent WSLS strategy. Among Soft-

max “users”, those with higher anhedonia are less likely to choose the option estimated to

be most rewarding. Moreover, the Softmax parameter mediates the inverse relationship

between anhedonia and overall monetary gains. On the other hand, among WSLS “users”,

higher state anxiety correlates with increasingly better ability of WSLS, relative to Softmax,

to explain subjects’ trial-by-trial choices. In summary, there is significant variability among

individuals in their reward-based, exploratory decision-making, and this variability is at least

partly mediated in a very specific manner by affective attributes, such as hedonic tone and

state anxiety.
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Introduction

Effective reward-seeking behavior and decision-making typically require balancing actions

already known to have positive outcomes and exploration of new, less-travelled paths to get

potentially even better results. In real life, it is in such complex, uncertain environments that

individuals with depressed mood make sub-optimal decisions. Moreover, while depressed

mood is known to alter reward-based decision-making, the evidence is somewhat mixed and

suggests underlying complexity [1]. One possible source of complexity is the multi-dimen-

sional nature of this psychological state, with deficits in both negative emotionality (e.g., ele-

vated guilt, anxiety) and positive affect (decreased happiness, pleasure anticipation). Such

complexity is likely to account for a wide range depressive profiles and substantial individual

differences in their underlying cognitive alterations (e.g. type of processing deficit). A precise

quantification of how these distinct emotional attributes may differentially impact reward pro-

cessing is therefore important for both basic cognitive science and clinical research, as it may

improve the understanding, detection, classification, and treatment of many psychiatric condi-

tions with known deficits in reward-based decision-making.

In depressed individuals, anhedonia, i.e., reduced capacity to experience and anticipate

pleasure from life experiences, is associated with reduced positive affect ratings and weaker

neural responsiveness to rewarding stimuli such as positive social cues and money [2, 3]. It has

been noted that depressed individuals’ behavior is less modulated by reinforcement history in

reward learning paradigms [4]. Such reward hyposensitivity has been linked to attenuated

recruitment of reward-processing neural areas (e.g., ventral striatum, nucleus accumbens) and

reduced fronto-striatal connectivity [5, 6]. In contrast, negative affective states common in

depression, such as anxiety, appear to primarily increase sensitivity to and expectations of neg-

ative outcomes, including loss, punishments, and errors [7, 8]. Together, these findings suggest

that, within depressed mood, low hedonic tone may affect reward-seeking behavior by altering

reward sensitivity in choice behavior, or the learning of reward rates under uncertainty,

whereas high anxiety may specifically affect reaction to negative outcomes while having less

prominent overall effects on reward learning or decision-making.

Given the overlap of these cognitive functions in complex behavioral scenarios, we adopt a

mathematically precise Bayesian modeling framework to investigate learning and decision-

making behavior in individuals with a range of depressive severity, while they perform a

binary-choice version [9] of a classic exploratory decision-making paradigm known as a

multi-armed bandit task [10, 11]. Thus, in this study, we specifically focus on reward process-

ing and reward-based decision-making, as in traditional bandit paradigms with win or no-win

outcomes, rather than punishment or loss based decision-making. We previously suggested

that two separable computational components underlie human choice behavior in the bandit

task [12, 13]: a learning component, whereby one updates internal beliefs about unknowns in

the environment based on successive observations of outcomes, and a decision-making compo-
nent, whereby one selects an action based on those beliefs. Specifically, we quantify the learn-

ing and decision-making processes by using a Bayesian ideal observer model assuming

decision-makers continuously update their beliefs of the environment based on each new

observation (Dynamic Belief Model/DBM; [14]). DBM assumes that the observer assumes

environmental statistics to undergo discrete, unsignaled change-points at a typical timescale

(captured by a stability parameter), and therefore updates one’s beliefs about the environment

(e.g. reward rate) by exponentially forgetting past observations, as well as continually injecting

a fixed prior belief about the environment (since the hidden state is assumed to be re-drawn

from a fixed prior distribution whenever a change-point occurs) [14]. We note that the stabil-

ity parameter γ in the DBM controls the rate of exponential forgetting, which is related but not
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mathematically equivalent to the standard RL learning rate (14). Even though the true reward

rates in our task stay fixed throughout each game, we use DBM to model human learning due

to our prior findings that this is how subjects behave in a variety of behavioral tasks (12, 13,

14).

To model decision-making, we use two well-known and psychologically meaningful deci-

sion policies from the reinforcement learning (RL) literature: Win-Stay/Lose-Shift (WSLS)[9]

and Softmax[15, 16]. While WSLS is heuristic model, which does not rely on Bayesian (or any

other type of) learning, Softmax is coupled with DBM. Given findings reviewed above, and our

specific focus on reward-based decision-making (vs penalty-based decisions), we hypothesize

that individuals with higher anhedonia may specifically exhibit reduced reward sensitivity,

which should be reflected in the computational processes underlying reward processing/learn-

ing and associated decision-making, i.e., in their decision policy parameters. In contrast, we

did not expect any significant or strong relationship between decision policy parameters of

reward sensitivity and negative affect measures, such as state anxiety, or overall depression

severity. That is, depressed individuals with primarily heighted negative affect should not

show altered computational parameters of reward sensitivity. This is because, as reviewed

above, negative emotionality may more specifically modulate punishment processing and loss

avoidance (not assessed here) rather than reward-based decision-making.

Materials and methods

Participants and procedures

Fifty-three undergraduate students (71% female; mean age = 20.5, age range:18–26) partici-

pated in this study, which was approved by the UCSD Human Research Protections Program.

They signed up through the online UCSD SONA system, and then completed phone-screening

and an on-line Beck Depression Inventory (BDI-II; [17]). We recruited a target of 25% (1 our

of 4) of participants with no significant depression level (i.e., BDI-II score < 8), while the

remaining part of recruited participants were included on the basis of minimal depression

severity (i.e., BDI-II score > 8). Other inclusion criteria included a) being in good general

health on the basis of brief review of medical history, and b) sufficient proficiency in English to

understand and complete all study procedures. Exclusion criteria included: lifetime history of

psychotic, bipolar or obsessive-compulsive disorder, history of current alcohol or substance

dependence, recent history of (i.e., within last 6 months) or currently taking any antidepres-

sant or psychotropic medications (except occasional sleep aid). Qualified subjects completed

the experiment in the laboratory, which included a brief set of questionnaires and the Bandit

Task. Participants completed the State Anxiety Inventory (STAI; [18]), and the Snaith-Hamil-

ton Pleasure Scale (SHAPS; [19]), a measure of hedonic tone inversely related to anhedonia.

Participants were compensated by 2 course credits. BDI scores ranged from 0 (i.e., non-

depressed) to 54 (i.e., severely depressed range).

Bandit task

Participants completed 30 bandit games of 16 trials each on a computer. On each trial, partici-

pants were allotted one token and had to choose from among 2 lottery arms in which to place

the token. They then either received a 1-point reward (token turned green) or not (token

turned red) from the chosen arm. After placing all 16 tokens, participants saw a brief screen

with their total earned points in the game, and the next game began.

The reward probabilities (rates) were unknown to the participants except through experi-

enced outcomes; they were told that these rates are redrawn and set at the beginning of each

game. Thus, while our Bayesian learning model assumes that individuals believe that
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environmental statistics can undergo discrete, un-signaled changes without warning (see

below), the reward rates were actually fixed (but unknown), and there were no actual change

points in the present bandit task. Prior studies indeed suggest that individuals may still exhibit

sequential effects, a persistent tendency to form expectations about upcoming stimuli based on

only recent trials, which we have shown to be consistent with believing environmental statistics

to undergo discrete change-points [12, 14, 20]. In practice, the reward rates for the 60 arms (2

for each of the 30 games) were pre-sampled and randomized in order for each participant. To

generate the 60 reward rates, we sampled from a Beta distribution (α = β = 2), and then elimi-

nated pairs that differed by less than 0.1 in probability. We found in preliminary simulation

analyses that highly similar reward rates would lead to very noisy choice behavior that would

be hard to model with the number of trials in the task.

Participants were instructed to try to maximize the points earned over all trials and all

games. To additionally motivate the participants, we compensated them with a dollar amount

proportional to their total points earned across all games at the end of the experiment

(amounts paid ranged from $5 to $10; see Fig 1A for task details).

Modeling

We modeled trial-by-trial learning using a form of the hidden Markov model, the Dynamic

Belief Model (DBM), which assumes that the environmental statistics (i.e. reward rate for an

arm in this task) undergo un-signaled changes [12–14]. We modeled the decision component

using two decision policies: WSLS and Softmax.

Fig 1. A. 2-arm bandit task trial timeline. Participants completed 30 games, each with 16 trials. On each trial of each game, participants had

to assign one token (stacked horizontally at the top of the screen) to one of the two lottery arms. After placing each token, they either earned

1 point if the token turned green or zero points if the token turned red. Each trial lasted about 2s, including participants’ trial reaction time to

assign a token and a 500ms outcome phase shoeing the token color once assigned. At the end of each 16-trials game, participants saw a

brief screen (4s) with their total points earned in the game, and the next game followed. At the beginning of the task, participants were

instructed to try earning as many points as possible in the task. They were further told upfront they would be paid in proportion to their total

points earned in the game (actual paid amounts ranged from $5 to $10). Each trial decision and the arms reward rates were recorded. B.

DBM illustration and the generative equations. The reward rate of each arm are assumed to be independently drawn at the start of a game

from a Beta distribution q0 = Beta (α0, β0), fixed throughout the game, and with mean r = (α0)/(α0 + β0). DBM assumes that subjects believe

that the reward rate θ for any arm can reset on any trial with probability 1-γ, otherwise it is the same value as the last trial.

https://doi.org/10.1371/journal.pone.0186473.g001
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Dynamic belief model. The model assumes that on each game, the two arms have reward

rates, θm, m = 1 or 2, each independently generated from the generic Beta prior distribution

q0(θm) = Beta (α0, β0) with mean r = (α0)/(α0 + β0). DBM further assumes that the reward prob-

abilities for all arms can reset and be re-drawn from q0 on any trial with probability (1-γ),

where γ is the stability parameter, which embodies the assumption of non-stationarity in the

Dynamic Belief Model. Indeed, larger γ results in a more stable arm that changes reward rates

less frequently (γ = 1 is a special-case arm that never changes reward rate at all). We therefore

note that this modeling approach and the range of values we consider for the γ parameter

(here .25 to 1) affords us the ability to capture both some level of sequential effects in individu-

als’ learning (when γ< 1) and also the possibility of fixed-belief updating and no sequential

effects when γ = 1.

We use the notation qtm(θtm): = p(θtm|xt) to denote the posterior probability distribution

over the reward rate for the mth arm on the tth trial, denoted θt
m, given the observed sequence

of successes and failures from all previous trials, denoted xt: = (x1. . .xt). At any trial, the sub-

ject’s prior belief has a Markovian dependence on last trial’s posterior:

pðyt
m ¼ yjxt� 1Þ ¼ gqt� 1

m ðyÞ þ ð1 � gÞq0ðyÞ

To update the posterior after the current trial, for the chosen arm only (assuming it is the

mth arm), having observed the outcome Rtm (1 for a reward, 0 for no reward), the new poste-

rior distribution for the chosen arm can be computed via Bayes’ rule:

qtmðy
t
mÞ / PðRt

mjy
t
mÞpðy

t
mjx

t� 1Þ

whereas the posterior for the un-chosen arm is the same as the prior at the beginning of the

current trial (since there has been no new observation). We call the mean of the prior distribu-

tion, μt
m, the estimated reward rate for arm m (see Fig 1B). In the actual experimental design,

the reward rates were fixed. This is one possible, special case setting also captured by the DBM,

by assuming the probability of the reward rate changing on any trial is 0 (γ = 1), which we call

the Fixed Belief Model [12, 14]. However, we have seen in many other experimental settings

that subjects assume environmental statistics to be non-stationary even though they are truly

fixed [12, 14, 21, 22].

Decision policies. We consider two models from the cognitive science and reinforcement

learning literatures, previously shown to reliably capture human bandit choice [10, 23, 24]: the

learning-independent heuristic Win-stay, Lose-shift (WSLS) and the more sophisticated learn-

ing-dependent Softmax. Those two models further provide complementary decision policies

with respect to learning dependence and sophistication. Specifically, WSLS assumes that deci-

sion-maker chooses the same arm after obtaining a reward with probability γw, but shifts away

after a failure to reward with probability γl [9]. Thus, this model does not rely on any type of

learning (e.g., expectations/beliefs about the unknown bandit arm reward rates), but is a heu-

ristic model of its own. In contrast, the Softmax decision policy assumes that one chooses

among the options with probabilities related to the inferred reward rates of the respective

arms, but with a relationship that may depend on the individual [15]. Here, the choice proba-

bilities are assumed to be normalized polynomial functions of the estimated reward rates, with

polynomial parameter b, e.g. Pr(choosing arm 1) = μ1
b/(μ1

b +μ2
b), so that when b approaches

infinity, the maximally rewarding option is always chosen (maximizing), when b is 1, it is

matching [25], and when b is 0, the arms are chosen randomly (with equal probability). Thus,

Softmax is a learning-dependent decision model, which in the present study relies on individu-

als’ estimated reward rates (μ1 and μ2) inferred with our Bayesian learning model DBM.
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Model fitting strategy

To capture individual differences in both learning and decision-making, we estimate for each

individual his/her DBM stability parameter γ and decision policy parameters (γw, γl, b). How-

ever, we assume α0 = β0 = 2 in the prior distribution for DBM, instead of estimating them as

free parameters, because simulations indicate that given our experimental design and sample

size, we do not have sufficient statistical power to estimate α0 and β0 individually or even at the

group level; on the other hand, assuming fixed α0 and β0, even if subjects actually have different

α0 and β0, still yields relatively meaningful estimates of the other model parameters. The values

of α0 = β0 = 2 were selected based the simulation results showing that such setting maximizes

goodness of fit (i.e., R-squared) for linear regressions between inferred and true individual val-

ues of Softmax b parameters, as well as DBM γ. This is true in terms of peak R-squared value

and maximizing R-squared for the widest range of individual parameter values, thus optimiz-

ing model fit for the majority of study participants (see S1 Text).

We estimate the overall likelihood of each model (WSLS or DBM+Softmax), as well as all

model parameters for each model (fit on an individual subject basis), by maximizing the likeli-

hood function (i.e., Maximum Likelihood Estimation, MLE). For each individual, we select the

best model based on the minimum Bayesian Information Criteria (BIC), which is identical to

MLE here, since DBM+Softmax and WSLS both have 2 free parameters. We also compare

models using Bayes factor, defined as the ratio of model evidence (WSLS/Softmax), where

model evidence is the marginal likelihood of the data given a model after integrating the uncer-

tainty associated with the parameters of each model. Model fitting analyses and computations

were performed using Matlab software (R2014 version) [26].

To assess the relationship between the affective measures (BDI, Anhedonia scale, STAI/

State Anxiety) and each computational measure, we conduct five separate multiple linear

regression analyses, with the following dependent variables, respectively: the model usage ratio

and each model parameter (WSLS γw, WSLS γl, DBM γ, Softmax b). Predictors are entered in a

hierarchical fashion, the first set of predictors including the 3 affective measures, and the sec-

ond set including the interaction terms between the affective measures and model usage based

on BIC selection (WSLS or Softmax). Such interactive patterns are of interest since a relation-

ship between model parameter and affective measure may become manifest within a particular

type of strategic use rather than across multiple strategic preferences. Regression analyses were

performed using R statistical software (http://www.R-project.org [27]).

Results

Learning model

Similar to what we found in previous studies [14, 23, 28], participants had an average estimated

stability parameter γ of .83, SD = .23, suggesting they behave as though they believe the envi-

ronment is moderately stable, i.e., changing approximately once every 1/(1-γ) = 1/(1–0.83) =

5.9 trials. None of the affective measures were significantly related to γ (ps>.05).

Decision policy

We found that 24 participants (45%) were best fit by WSLS, whereas 29 participants (55%)

were better fit by a learning-dependent Softmax strategy. BIC and Bayes factor agreed on all

cases (for model fit performance estimates based per-trial likelihood, see S2 Text). In terms of

affective measures, there was a significant interaction between state anxiety and model usage

type on the degree of model evidence (WSLS/Softmax; Stand. B = +.59; t = 2.9, p = .005; Full

model R2 adjusted = .704). Specifically, a positive relationship between state anxiety and Bayes

Anhedonia and anxiety associated with biases in reward-based decision-making
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factor (WSLS/Softmax model evidence ratio) was observed in WSLS “users” (r = +.53, p =

.008), but this relationship was not statistically significant in Softmax “users” (r = +.26, p =

.158; see Fig 2). Other affective measures were not significantly related to the value of the Bayes

Factor for an individual.

For individual decision policy parameters, we found a significant interaction between anhe-

donia (reverse-coded SHAPS score) and model usage type on the Softmax parameter (b; Stand.

B = +2.08; t = 2.8, p = .007; Full model R2 adjusted = .292). Specifically, there was a negative rela-

tionship between anhedonia and Softmax b in Softmax “users” (r = -.52, p = .004), but no statis-

tically significant relationship in WSLS “users” (r = +.13, p = .568; see Fig 3). We did not find

any significant relationship between affective measures and WSLS parameters (γl or γw).

Relationship between model parameter and performance

Based on the above results in Softmax “users”, we investigated the relationship between the

Softmax b parameter, anhedonia, and task performance (i.e., total points earned). Specifically,

we assessed for any potential mediating role of the Softmax parameter in the relationship

between anhedonia and task performance. Using hierarchical regression analyses to assess for

Fig 2. Correlation between state anxiety and model evidence ratio for WSLS relative to Softmax, by model usage group.

WSLS = Win-Stay/Lose-Shift.

https://doi.org/10.1371/journal.pone.0186473.g002
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mediation [29], we observed that a higher Softmax b parameter was associated with more total

points earned (B = +.59,p = .006; R2 adjusted = .326). Another single predictor model showed

that anhedonia was negatively related to total points earned (B = -.38,p = .04; R2 adjusted =

.147). Importantly, adding b as a second predictor in this model removed the effect of anhedo-

nia (B = -.09,p>.05), leaving b as the only significant predictor of total earned points (B = +.53,

p = .01; R2 adjusted = .292), consistent with a full mediating role of this parameter in the nega-

tive impact of anhedonia on performance (see Fig 3B).

Discussion

In this study, we applied two decision-making models, including a learning-independent strat-

egy and a Bayesian learning dependent strategy, to human reward-based decisions in a bandit

task, to quantify the relationship between affect attributes and cognitive learning and decision

policy, in individuals with a range of depression severity. To model individuals’ beliefs updat-

ing, we used the Dynamic Belief Model (DBM), a Bayesian iterative inference model which

assumes the environment to undergo unsignaled and discrete changes [14]. We note that the

DBM formulation is related, though not mathematically equivalent, to a standard RL formula-

tion [11, 30, 31], in that the stability parameter γ in the DBM controls the exponential for-

getting (14), as does the learning parameter for incorporating the prediction error in a

standard RL approach (e.g. Q learning). However, DBM allows the prior to repeatedly exert an

influence, as opposed to only once at the beginning in typical model-free RL, and γ controls

the relative importance of this continual prior influence. In addition, DBM includes the no-

change case as a special case (stability parameter = 1), so it is possible for us to identify a sub-

ject as believing the reward rate to be fixed (and thus only incorporate the prior once at the

beginning) on an individual basis, if appropriate. Decision-making was modeled with two

well-established decision policies from the cognitive science and reinforcement learning litera-

ture: Win-stay/Lose-shift (WSLS) and Softmax. Interestingly, while the combination of DBM

learning and Softmax strategy provided the best model fit for a majority of individuals (55%),

a significant proportion of participants (45%) primarily relied on a WSLS strategy, a more

learning-independent, heuristic model. This is consistent with a growing literature suggesting

that WSLS behavior can sometimes prevail in exploratory reward-based decision tasks [32].

We found that, among individuals better fit with a Softmax policy, those reporting higher

levels of anhedonia exhibited lower reward sensitivity, as reflected by lower values of the

Fig 3. A. No significant correlation between Anhedonia and Softmax b parameter in WSLS “users”, r = +.13, ns. B. Left: Negative correlation

between anhedonia and Softmax parameter in Softmax “users”, r = -.52, p < .05; Right: Mediation analysis with hierarchical linear regression

models. Softmax b parameter was found to fully mediate the negative relationship between anhedonia and total points earned in the bandit task

(among Softmax “users”, n = 29).

https://doi.org/10.1371/journal.pone.0186473.g003
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Softmax parameter (b). This parameter can be thought of as an index of the importance of

reward in driving behavior. Specifically, when this parameter is large, the choice is driven

more by the current mean estimates of reward rate on the options; however, when this param-

eter is small, we cannot tell whether an individual is simply being noisy or foregoing immedi-

ate reward in order to maximize expected future cumulative reward. The negative relationship

between anhedonia and Softmax-based reward sensitivity is consistent with robust evidence of

reduced reward seeking and approach behavior in depressive pathology, including for social

cues, e.g., smiling human faces, [5, 33] and monetary rewards [3, 34]. A limitation of this find-

ing is that Softmax does not explicitly assess the relative value of future exploratory gain versus

immediate exploitative gain, but rather uses a single parameter to heuristically “loosen” up the

choice policy relative to the estimated reward rates of the given options. Consequently, this

policy model is insensitive to the number of trials left (i.e., horizon) relative to other models

such as Knowledge Gradient or the optimal policy, which would require significantly larger

datasets to do model selection and parameter estimation (12, 13). Thus, while our modeling

framework does not tell us what precise factors (e.g. reward insensitivity, pure noise, or strate-

gic maximization of longer-term reward attainment) drive high-anhedonia individuals to be

more stochastic and explore “more”, what it does show is that high-anhedonia individuals give

less direct weight to immediate reward in choice behavior. More generally, this finding corrob-

orates a role of decreased hedonic tone in biasing the selection and execution of reward-based

choice behavior [2, 3, 34, 35]. However, future studies are needed to tease apart the relation-

ship between anhedonia and other aspect of reward sensitivity (e.g., sensitivity to short-term

vs long-term rewards, including over time and practice with the task) or other factors (e.g.,

uncertainty, processing noise). For instance, while there is evidence of reduced neural repre-

sentation of reward prediction errors in depression, a recent study suggests this may only be

the case in a learning context, with no difference observed within non-exploratory task [36].

We also found that among those subjects whose choices are better captured by WSLS than

Softmax, this tendency to use a learning-independent WSLS strategy was positively correlated

with state anxiety. This relationship did not reach statistical significance in those primarily

using a Softmax strategy. This interaction pattern and absence of significant correlation in the

overall sample first suggests that anxiety may only relate weakly to strategic choice generally,

and that such computational construct may be better explained by other factors not measured

here (e.g., trait personality, genetics, etc). Secondly, within those individuals with a more

marked tendency to use a WSLS strategy, this strategic preference appears exaggerated among

those with higher state anxiety. In other words, state anxiety may only have a modulating effect

on the degree of reliance on such learning-independent strategy, rather then a direct effect on

selecting such strategy. Anxiety has more typically been associated with increased punishment

sensitivity and negative expectations [8], rather than altered reward responsiveness. However,

stress and trauma exposure have been linked to decreased reward responsiveness [4, 37],

which may promote a less sophisticated learning-intensive strategy during reward-based

exploratory decision-making. In addition, there is some evidence that physiological arousal, as

observed in states of higher anxiety, may reduce cognitive resources and negatively impact

executive control and goal-directed behavior [38], while promoting reliance on habitual/pre-

potent actions [39, 40]. Thus, one potential interpretation of our finding is that, higher anxiety

may interfere with reward-seeking behavior by promoting a simpler, reactive strategy with less

reliance on reward learning or prediction. Specifically, higher anxiety may be correlated with a

greater tendency to ignore learned reward information when unexpectedly faced with the

absence of reward). Another possible explanation for the observed relationship between state

anxiety and WSLS reliance is increased punishment sensitivity in more anxious individuals.

For instance, while the present paradigm does not explicitly include loss outcomes, the absence
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of reward when one is expecting can act as a negative/punishing outcome in a reward predic-

tion error sense. We note, however, that we did not observe any significant relationship

between the lose-shift (LS) parameter and affective measures, or between the LS parameter

and the model evidence ratio, in the present study, which could be due to low statistical power

rather than absence of such relationships. Future work, which explicitly includes gains and

losses in a bandit paradigm, combined with a modeling approach capturing both gain and loss

sensitivity/avoidance, for instance with distinct learning rates (see [41]), would allow us to test

this hypothesis. In this respect, we surmise that an incremental learning model, such as a stan-

dard Q-learning RL approach, may be particularly useful in providing additional insights on

the relationship between anxiety and learning horizon. However, we note that we did fit a stan-

dard RL model combined with a Softmax policy to the present data and, while we found it to

be statistically indistinguishable from the DBM+Softmax model in terms of predicting subject

choices (DBM: 69%, RL: 73%, p = 0.24), we were not able to replicate the observed relationship

between anxiety and WSLS/Softmax strategic preference (nor did we observe any relationship

between RL learning rate parameter and any of the other affective measures; see S3 Text). This

could be due to DBM and RL not being quite the same model, since in simulations that match

subjects’ actual experienced choices and outcomes, they only agreed with each other on 81% of

the trials in terms of which arm is more rewarding. It would be a fruitful direction for future

research to assess how RL and DBM are different and what type of experimental settings

would best differentiate them, which is beyond the scope of this study.

Despite the suggestion of impaired reward learning in depression in the literature [2–4], we

did not find any strong evidence of affective measures impacting Bayesian learning, at least in

terms of the parameter reflecting the rate of change in the reward environment, or equivalently

the effective memory window used to learn reward rates changes [12–14]. While this absence

of significant finding could be due to lack of statistical power, one possibility is that our sample

contained rather moderate severity of depression, while more severe depression and anhedo-

nia could impact learning. Another possibility is that depression impacts learning not via

expected rate of changing or the memory window, but rather via a baseline, pessimistic bias

that reward rates are generally low in the environment–our experimental design and sample

size did not allow us to assess this hypothesis directly. Both of these possibilities point to fruit-

ful directions of future research.

Using a Bayesian learning-based modeling framework of decision-making, we found that

anhedonia was associated with a lower reward-maximization bias, whereas state anxiety was

associated with higher reliance on a learning-independent Win-Stay/Lose-Shift strategy. Add-

ing to previous computational work linking depressed mood to altered exploratory decision-

making [42], our results provide complementary evidence that anhedonia and anxiety symp-

toms in depression may distinctly alter reward-seeking strategy independently of reward learn-

ing. Interestingly, depression severity (as measured by the BDI) was not significantly related to

any of the model parameters or policy usage measures. We suspect this may be due to the rela-

tively heterogeneous nature of such measure, which encompasses multiple symptoms of

depression (e.g., somatic, emotional, etc.) into one global indicator of clinical impairment, and

therefore be more weakly associated with decision-making computational parameters, relative

to more cognitively specific measures such as state anxiety and anhedonia.

In sum, by providing sophisticated representations of individuals’ internal beliefs and stra-

tegic computations, a computational approach can disentangle how various affective dimen-

sions distinctly bias learning and decision-making. These subtle alterations can in turn inform

the development of targeted behavioral interventions aiming to optimize decision-making in

order to improve mood.
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20. Harlé KM, Shenoy P, Stewart JL, Tapert SF, Angela JY, Paulus MP. Altered Neural Processing of the

Need to Stop in Young Adults at Risk for Stimulant Dependence. The Journal of neuroscience. 2014; 34

(13):4567–80. https://doi.org/10.1523/JNEUROSCI.2297-13.2014 PMID: 24672002

21. Ide JS, Shenoy P, Yu AJ, Li CS. Bayesian Prediction and Evaluation in the Anterior Cingulate Cortex

Journal of Neuroscience. 2013; 33(5): 2039–47. https://doi.org/10.1523/JNEUROSCI.2201-12.2013

PMID: 23365241

22. Yu AJ, Huang H. Maximizing masquerading as matching in human visual search choice behavior. Deci-

sion. 2014; 1(4):275.

23. Zhang S, Huang CH, Yu AJ, editors. Sequential effects: A Bayesian analysis of prior bias on reaction

time and behavioral choice. Proceedings of the 36th Annual Conference of the Cognitive Science Soci-

ety; 2014.
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