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ABSTRACT OF THE DISSERTATION 
 

Paradigms of Identifying and Quantifying Uncertainty and Information in Constructing a 
Cognition-Modeling Framework of Human-Machine Transportation Systems 

 
By 

 
Jiangbo Gabriel Yu 

 
Doctor of Philosophy in Civil Engineering 

 
 University of California, Irvine, 2018 

 
Professor R. Jayakrishnan, Chair 

 

This dissertation proposes a set of coherent cognition-based paradigms to allow greater sensitivity 

and adaptability to the emerging technologies and behavioral policies. These paradigms are derived 

from a cognition-based framework that explicates information source, medium, sensation, 

perception, and learning. The feasibility of the framework is demonstrated through an analytical 

example of multi-stakeholder decision processes and human-machine systems where the two types 

of entities can be incorporated into the same modeling scheme. Using the framework as guidance 

also reduces the challenges from information intractability and data redundancy of agent-based 

modeling practice.  

The first paradigm follows the strict definition of information in Information Theory and 

models it as the change of uncertainty, which is applied to quantifying traveler information for the 

evaluation of dynamic message boards that present various contents at candidate locations in Los 

Angeles traffic networks. 

The second paradigm is developed for a utility-based decision model under risk around the 

proposed concept, Elastic Surprise. This concept makes feasible the differentiation between 

probability misperception and perceived uncertainty. It is shown that conventional methods of 

decisions under risk such as Expected Utility Theory and Cumulative Prospect Theory are special 
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cases. In addition, a specific form of Elastic Surprise under particular assumption on human's 

cognition leads to Shannon's information entropy and, hence, connects with the first Paradigm. The 

method is tested in conjunction with the Cumulative Prospect Theory on travel time equivalency 

under risk in a survey study. The results show improvement in data fitting and output 

interpretability. 

Finally, guided by the framework, the paradigms are tested on a case study of multi-class 

multi-criteria dynamic traffic assignment where heterogeneous travelers' risk preference on travel 

time is explicitly modeled. The algorithm approaches the user equilibrium through a stochastic 

quasi-gradient projection-based algorithm that shows the improvement in computational efficiency 

and cognitive interpretability of the agents’ decision rules. The implication on policy and 

investment strategies for system improvement is also discussed. 
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CHAPTER 1  
INTRODUCTION 

 
“I can live with doubt and uncertainty and not knowing. I think it is much more interesting to 

live not knowing than to have answers that might be wrong.” 

--Richard Feynman 

As hinted in Dr. Feynman’s quote: (1) uncertainty implies multiple possible entities; (2) uncertainty 

has something to do with knowing (or not knowing); (3) uncertainty leads to something interesting.  

I do not have any intention to track the origin and evolution of the meaning of some 

keywords in this dissertation such as uncertainty, information, and risk, but it would be 

disrespectful if I failed to mention that not until Claud Shannon’s seminal paper published in 1949 

(Shannon, 1949), the word “information” only had a vague meaning and people only knew it has 

something to do with the word “knowledge”. Shannon mathematically proved the fundamental 

relationship between the perceived uncertainty and information, and since then, these two terms 

have strict definitions. However, in the field of transportation systems modeling and analysis, the 

terms such as information and uncertainty still have been used as near buzzwords that engineers 

and researchers treat them as self-defined and any attempt in public to strictly define them will be 

warned to be realistic. What is even more worrisome is the “exchangeability” of terms such as 

uncertainty and variability led by the unclear definition and lack of reflection.  

On the other hand, even without Shannon’s discovery, one can still understand their 

difference from basic principles. Suppose a system performs as y = sin(a ∙ 𝑡), where 𝑦 is the system 

output, 𝑡 is time, and 𝑎 is a parameter. We know that the system variability is between -1 and 1 

while the system has no uncertainty because the system’s state is entirely predictable. Therefore, in 

general, variability describes a system property while uncertainty describes how much information 
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an observer lacks. The diversity (haphazardness) of “definitions” for uncertainty has only resulted 

in a challenge of communication among researchers and analysts, and it would be constructive to 

bring some common ground for the discussion.  

It is still a debate on whether the increasing demand for a more fine-grained impact study of 

policy and investment decisions on human and machine behaviors should lead to a corresponding 

level of granularity in modeling practice. Most researchers and analysts in transportation have 

followed a track of the axiom of “rational” or “as if rational” that have already been sharply 

questioned by the field that initially proposed this idea -- economics. Recent development in 

cognitive science, mathematical psychology, and neuroscience have shed lights on the possibility of 

modeling humans as they are – a homeomorphic approach. Modeling practice could benefit when 

homeomorphic and paramorphic approach are selected based on their strengths rather than 

specific modeling philosophy imposed by a modeler. When we refuse to impose strong opinions, it 

is easy to find that any autonomous entities can also be modeled in a similar manner. If we also 

consider the continuously-improving understanding of human cognition and the rapid 

development of information storing and computation technologies, there is no reason to refuse the 

possibility of modeling a society at a more fundamental level. Therefore, when talking about 

cognition in this dissertation, it refers to an idea of capturing the underlying mechanism of 

behaviors rather than being content with approximating the revealed behaviors.  

The dissertation, in a way, documents my journey of studying human and machine’s 

cognition and behaviors. The journey started from the exploration of uncertainty and information, 

but later leads to a broader perspective on how to systemically approach various emerging 

technologies and business models. The framework at the beginning of the dissertation is proposed 

as a general principle, and the rest of the chapters are analogous to the bricks that lay one on top of 

another, culminating at an agent-based dynamic traffic assignment application that brings 

individual agents together. 
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Chapter 2 proposes a general cognition-based framework for modeling agents and their 

interactions with one another and with the physical environment. Also discussed in the chapter is 

the differentiation of information, uncertainty, risk, variability, and reliability and how they are 

modeled in this dissertation. To avoid the impression that the dissertation tries to propose a 

framework that somehow can be magically applied to various domains, it is important to mention 

that the framework is a result of an iterative effort and has experienced numerous major and minor 

modifications.  

Chapter 3 takes the concept that information can be modeled effectively as the change of 

uncertainty and applied to evaluating dynamic information provision strategies. The Elastic 

Surprise Theory (EST) is proposed in Chapter 4 for modeling human decision under risk as a 

specification of the decision-making submodule of the framework.  EST is shown to have cognitive 

implications and can be the bridging quantity connecting existing theories and methods. EST also 

bridges the gap between descriptive decision models and information theory and lays a theoretical 

foundation for Chapter 5 where heterogeneous travelers’ risk preference in route choice is 

modeled. 

Chapter 5 combines the previous chapters into an agent-based dynamic traffic assignment 

procedure in which cognitively-heterogeneous agents learn, perceive, and interact within the same 

traffic network. The three criteria in the study are travel time, toll, and travel time uncertainty. 

Travel time uncertainty is classified as an instance of “path-dependent link cost.” Individual agent’ 

strategy is derived from a Stochastic Gradient Projection-based searching for an optimal solution in 

a proposed time-augmented density-based objective function. Policy suggestions and future 

research are given based on the experiment.  

The paradigms are interrelated and coherent, providing exemplary specifications to the 

cognition-based framework proposed in Chapter 2. The sequence of Framework-Methodology-

Application mainly orders the chapters, but practically these chapters are relatively independent.  
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By modeling any autonomous entities under the same cognition-based framework, human-machine 

systems are analyzed in a theoretically sound and coherent manner. The discussion of the two 

intertwined topics – (1) modeling the cognition of autonomous entities and (2) how they deal with 

uncertainty and process information – transpires throughout the whole dissertation. On top of all 

the discussion is a crystal and sole vision of improving the modeling practice in this rapidly 

changing transportation market.  
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CHAPTER 2  
A COGNITION-BASED MODELING AND ANALYTICAL FRAMEWORK 

  

“A complex system that works is invariably found to have evolved from a simple system that 

worked. A complex system designed from scratch never works and cannot be patched up to 

make it work. You have to start over with a working simple system.” 

– John Gall 

Motivations 
 

Infrastructure systems are known complex. In addition to the large-scale and highly intertwined 

physical components, different types of influencers behave very differently, having different 

available information, preference, and socioeconomic and physical constraints. Although the 

emerging automation and communication technologies excite the general public, it only aggravates 

this modeling challenge. Wouldn’t it be ideal for modelers and educators if all the system 

influencers can be substantiated from a generic type regardless of what new technological and 

social development emerges next? This chapter proposes a framework that aims at unifying the 

modeling and analysis to allow a more comprehensive study of policy and investment impact on 

human and machine behaviors and greater adaptivity to various existing and hypothetical 

scenarios with policy nuance.  

In 2003, traffic engineers in the Chicago Department of Transportation painted the 

strapping with an increasingly dense manner when approaching a roadway turn (Figure 2.1). They 

found 36% fewer crashes in the six months after the lines were painted compared to the same 6-

month period of the year. The average speed is also significantly reduced. It seems that the 

phenomena will not be able to consider in a car-following scheme. On the other hand, it appears 

that the separate consideration of sensed and perceived information can gain greater modeling 
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flexibility. In this example, what drivers sense is the moving environment (including the change of 

the frequency of the lines on the pavement and the change of the “size” of the leading vehicles) 

while what drivers perceive is the speed. The separate treatment of sensation and perception, 

whether the observer being human or machine, is a crucial idea of the proposed framework in this 

chapter.  

 

Figure 2.1 The increasingly densed stripping deluded drivers that they are driving faster and, 
therefore, tend to reduce speed before a sharp left turn.  

Transportation modeling has been historically focusing on travelers-infrastructure 

interactions. This means that some key players such as policymakers, private stakeholders, traffic 

operators, and shippers, are missing. It is hardly arguable about the significance of these players, 

but a typical counterargument is that they are too complicated to consider or they can only be 

qualitatively studied on a case-by-case basis.  

The agent-based model proves powerful for analyzing and forecasting complex 

transportation systems, and yet, a flexible and coherent framework is still needed to allow a broad 

range of policies and emerging technologies to be integrated into the model by merely adjusting 

model parameters and agent properties rather than adding one extension after another. Agents in 

this chapter refer to any relevant autonomous entities that may or may not be collaborative. 
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Examples include individual travelers, traffic and transit operators, adaptive controllers, planners, 

longshoremen, and autonomous/connected vehicles.   

The proposed agent-based modeling and analysis framework, CognAgent, is built upon the 

underlying cognition rather than the revealed behavior to improve model interpretability and 

adaptability to unforeseen developments in societal and technological change. CognAgent provides 

overarching guidance flexible and theoretically sound enough to analyze, model, and forecast 

various phenomena within transportation systems. Specific contributions of the framework are as 

follows. First, the framework proposes the idea of using Space of Observables to facilitate the 

conceptual design, programming, and data management in a modeling process. This concept is 

substantiated as a module that converts and manages information from the physical interaction 

module to the type of information observable for each agent; these agents are only able to sense 

information available to them. Such setup also significantly eases the modularity and 

interpretability of a model. When modeling the reception of non-local information, the Space of 

Observables module, plays as an information manager that significantly improves the 

computational efficiency.  

Second, by differentiating sensation and perception, a model’s flexibility is significantly 

improved in dealing with various policy scenarios. Information is modeled in a way that might get 

lost or distorted in a noisy medium/channel and cognitive process. Foggy weather (for human and 

AI’s camera and radar) and magnetic interference (for V2V and V2I communication) are examples 

of a noisy channel. Sensing dysfunction includes but not limited to human vision impairment (color-

blindness and myopia) and AI’s camera and radar dysfunction). Prior beliefs, bias, habits, emotions, 

or perceptual dysfunctions such as dyslexia (to a dynamic message board) and neuronal 

degeneration could all lead to a perceptive shift. For entities with adaptive control or AI, processing 

information could be influence or impaired by factors such as coding errors, cyber-attack, and 
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problems from computation or storage. CognAgent degenerates into conventional behavior-based 

model under certain explicit assumptions on agents’ cognition.  

Third, the framework considers information as a “side product” of modeling uncertainty, 

which is consistent with the information theory (IT) proposed by Claud Shannon (1949). IT is built 

upon a strict mathematical formulation and quantifies information as the change of uncertainty 

given the source, the medium, and the recipient of the information. For a human agent, perception 

is category-based due to the characteristics of human perception such as grouping effect and 

cognitive limitation. The Information Processing submodule of the Cognition module sends newly 

perceived information and combines with prior knowledge to the decision-making submodule for 

the agent to decide whether and how to behave in the next time step. 

Next section reviews relevant literature and then introduces general framework and its 

specific components, following which are two analytical examples – one for human driving behavior 

and the other for multi-stakeholder transportation planning decisions. The following numerical 

case study of mixed-type traffic flow modeling demonstrates the advantage of using CognAgent. 

This example does not intend to predict the traffic condition in the autonomous vehicle era but to 

demonstrate the advantage of using CognAgent as a modeling and analytical framework. A 

conclusion is then drawn.  

Literature Review 
 

Agent-based modeling and analysis (ABMS) has been studied and applied in a variety of fields. 

Helbing (2012) provides a general review of agent-based models and gives an assertion on the 

potential of the ABMS to a better understanding of social and economic systems. Macal and North 

(2005) review applications of agent-based modeling and simulation (ABMS) in a variety of fields 

from natural science to finance. Railsback et al. (2006) reviews and compares five general agent-

based modeling frameworks such as NetLogo and MASON, and Railsback and Grimm (2011) 
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provides a practical introduction to agent-based (individual-based) modeling in general. The 

primer performed by Zhang et al. (2013) describes basic concepts, various methodologies, and 

recent progress in both general and transportation-specific applications. Typical modeling and 

analysis domains related to transportation systems include destination/mode/route choice, driving 

behaviors, traveler information update, land use and location choice, auto ownership, and activity.  

Various cognition models have been used in human-involved systems analysis. Assumptions-

Perceptions-Conclusions-Feelings-Behaviors (APCFB) model (Clawson, 1991) has been used in 

public and business administration to understand individual behaviors in organizations. Since the 

information flow within the model is clearly structured, insights can be drawn to propose 

prescriptions. A more homeomorphic approach is neural network models (Hertz, 2018) that seems 

becoming increasingly feasible for practice for the improved computational power and 

understanding of human cognition. Recently, quantum cognition modeling approach has been 

drawing attention. Although quantum mechanics (QM) is originated from microscopic physics, it is 

not so much about subatomic particles and fields as it is about the non-classical logical principles 

(Susskind and Friedman, 2014). A less rigorous analogy would be modern calculus – it was 

motivated by calculating the gravity of a large density-wise heterogeneous object, but it has become 

a general methodology with many applications out of physics. QM has been applied to fields such as 

human cognition, neuroscience, descriptive decision analysis, and finance, where the classical logic 

is challenging to explain and understand various phenomenon and paradoxes (Busemeyer and 

Bruza, 2012; Haven and Khrennikov, 2013). Some scientists and practitioners have been even 

searching for the underlying connection between quantum phenomena and consciousness. For 

example, the Orchestrated Objective Reduction (Orch-OR) hypothesizes that consciousness 

originated from a quantum process, objective reduction, that is orchestrated by microtubules 

(Hameroff and Penrose, 1996). Baker (1999) applies Quantum Cognition Models to the analysis of 

optic flow as a computational judgment model for a driver behavior study. Vitetta (2014) derives a 
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Quantum Utility Model from QM for modeling route choice behaviors. Busemeyers et al. (2009) 

replicated and extended interference of categorization phenomena found by Townsend et al. 

(2000). Franco (2009a) uses a simple quantum model to explain the conjunction fallacy proposed 

by Tversky and Kahneman (1983). Busemeyer and Bruza (2012) summarize their explorations on 

applying quantum probability theory to explain cognitive phenomena and provides their 

prospective outlook on quantum cognition and decision. 

Agent-based models can be classified into the domain-specific and the cross-domain, based 

on the problem scale. The development of domain-specific platforms has been mostly driven by 

new policies and regulations (Johnston, 2004) and have been implemented in a broad range of 

applications. Jayarkishnan et al. (1994) provide an evaluation model that incorporates the driver 

response to information and the corresponding impact on the network performance into an 

integrated simulation framework that simulates individual vehicle movements as macroscopic flow 

principles. Ben-akiva et al. (1998) propose a real-time dynamic traffic assignment model that 

provides traffic prediction and travel guidance to influence driving and route choice. Davidsson et 

al. (2005) provide a survey of agent-based approaches to transportation and traffic management. 

Bhat et al. (2004) introduce an activity-travel pattern simulator (CEMDAP) that takes input from 

land use, demography, activity system, and transportation performance attributes to produce daily 

activity and travel patterns for each household individual. Sun and Kondyli (2010) refer to the 

TCP/IP protocol in computer network communications and develop an algorithm to consider 

competitive and cooperative lane-changing behaviors. Chong et al. (2011) use a neural network 

model for studying human driving behaviors. Ma et al. (2017) integrate the modified social force 

model with behavior decision to simulate vehicle turnings under movement constraints. Xu et al. 

(2011) encapsulate a reference point as endogenous into prospect-based user equilibrium 

formulation and apply to a congestion pricing study. Hasan et al. (2010) propose a heterogeneous 

behavioral model to understand household-level hurricane evaluation. Kaihara (2003) formulates 
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an agent-based supply chain model as a discrete resource allocation problem under a dynamic 

environment. Tumer and Agogino (2007) use an air traffic flow simulator developed at NASA to test 

a multi-agent algorithm for traffic flow management. Chen and Zhan (2008) examine the 

effectiveness of different evacuation strategies using agent-based simulation with diverse 

information availabilities and strategies. Sun and Wu (2014) propose a generic crowd model to 

improve the flexibility of incorporating heterogeneous agent behaviors. Fagnant and Kockelman 

(2014) describe an agent-based model for shared autonomous vehicle operations under a grid-

based urban area without specifying the transportation network.  

A large body of literature suggests the importance of incorporating uncertainty and reliability 

into transportation systems analysis to improve modeling result. Studies related to uncertainty and 

information can be classified based on the source of the information, the medium, and the recipient. 

Salvucci et al. (2006) utilize ACT-R cognitive architecture to demonstrate the feasibility of modeling 

drivers as humans rather than “rule-based robots.” Bogers et al. (2005) propose a conceptual 

modeling framework modeling impact of advanced travel information service, habit, and learning 

impacts on route choice. Hamdar et al. (2008) base the prospect theory to explore and evaluate a 

driving model that incorporates the stochastic character of the driver’s cognitive process and 

impact of risk. Ben-Elia et al. (2008) conduct an experimental study on the combined effect of 

information and experiment on route choice decisions. Gao et al. (2011) consider the cognitive cost 

and limited cognitive capacity in route choice decisions. Liu et al. (2002) incorporate 

heterogeneous perceived travel time uncertainty and perception error into dynamic traffic 

assignment.  

Several attempts have been made in the field of traffic flow modeling for shared human-

AV/ACV facilities. Van Arem et al. (2006) use a microscopic traffic simulator to study the impacts of 

cooperative adaptive cruise control for a highway-merging scenario with a different number of 

lanes. Levin and Boyles (2015) propose a framework to explore potential effects of heterogeneous 
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autonomous vehicle ownership on trip, model, and route choice by combining conventional 

methods such the four-step model and the multi-criterion discrete choice model. Also developed is 

a multi-class cell transmission model and a car-following model, in which flow-density relationship 

is modeled as a function of reaction time. In their model, autonomous vehicles are effectively 

modeled as human drivers but with different reaction times and following distance preferences. 

Although cross-domain platforms, in a sense, can be viewed a combination of domain-specific 

applications, this integration is no trivial task and requires a vast effort for being able to track an 

arbitrarily-selected agent across different components within a simulation. TRANSIMS (Nagel et al., 

1999) provides an integrated set of tools for conducting activity-based regional transportation 

system analysis with input data of network inventory, demography, land use, and decision-making 

rules and output as a link-level measure of effectiveness. POLARIS (Auld et al., 2016) provides a 

cutting-edge software development kit and its modeling and computational framework 

encompasses inter-connected and feedback-involved components (e.g., activity planning and re-

planning). Within these components, persistent agents with learning capability are modeled with 

particular attention to the coding agility and computational scalability. Waddell et al. (2005) 

summarize the objectives and design of an open source platform, OPUS, that simulates land use, 

activity-based travel demand dynamics. Balmer et al. (2009) develop a microscopic traffic 

simulation tool MATSim-T as part of the research project, MATSim (an open source modeling 

framework for travel demand modeling, traffic simulation, and activity planning and re-planning). 

Salvini and Miller (2005) describe the development of an urban system microsimulation model 

with an intention to be sensitive to transportation, housing, and various urban policies. Arentze and 

Timmermans (2008) propose a theoretical framework to incorporate the dynamic interaction of 

social networks and activity-travel patterns in an integrated microscopic simulation. SimMobility 

(Ben-akiva, 2010) provides a “simulation platform with an integrated model of human and 

commercial activities, land use, transportation, environmental impacts, and energy use” as an 
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evaluation tool for information provision strategies for system users, operators, and managers in 

different time scales. Several paralleled evolvements of cross-domain agent-based models exist, and 

each has been putting effort on incorporating more domains while keeping its edge domains, while 

new types of modeling frameworks that attempt to cover unconventional domains, such as social 

networks and sharing economy, are emerging.  

Existing ABMS in transportation will continue in the foreseeable future acting as an effective 

method to build model sensitive to various policies, management strategies, and emerging 

technologies but are also encountering challenges (Zheng et al., 2013). The improvement and 

standardization of population synthesis process are still in the phase of discussion and exploration 

(Muller and Axhausen, 2010). ABM calibration and its integration with its “parent” system are 

recognized as two of the greatest challenges facing microscopic simulation; other challenges 

include but not limited to computational scalability, data accessibility, justification of complete 

profile of assumptions on how agents make decisions (Picascia et al., 2016).  

Framework 
 

In contrast with typical behavioral models that only specify rules for decision and physical 

interaction, the proposed framework conceptually consists of a one-direction loop of information 

flow with three fundamental components: physical interaction, space of observables, and cognition, 

as shown in Figure 2.2. The cognition module contains two general submodules: information 

processing and decision making. Agents share one single “physical environment” to interact and the 

interaction at a given time step is then converted to the observable information back to agents. 

Whether a piece of information is observable depends on the agent’s location, medium/channel, 

and the type of sensors. The agent then perceives/processes this newly sensed information 

combining with memories, habits, emotions, personalities. If the agent is an AI entity, the 

algorithms defined by its manufacturer should be specified or assumed. This setup not only 



14 
 

improves model/code readability by standardizing heterogeneous agents’ configuration but also 

facilitates the quality assurance of scripting and improves the efficiency of database management. 

 

 
Figure 2.2 The logical framework of CognAgent 

Let us use an example to explain how CognAgent improves the tractability of information 

dynamics in a simulation. Suppose that an agent hears (acoustically senses) from a radio on a 

severe accident on a road segment ahead. This radio report is further confirmed by a dynamic 

message board information (visionarily senses) through foggy weather and hence shorter sight 

distance and a higher likelihood of misreading. This posterior information suggests a longer-than-

usual travel time to go downtown. Though the driver’s current route to the destination only shares 

a portion of the route to go downtown, the newly updated information is sufficient for him to 

change his route decision. Due to the foggy weather, he also decides to drive slower. Traffic 

operator in the local traffic management center has sensors (loop detectors at several point 

locations, cameras, and related emergency calls) at finite locations, and only these locations are 

observable to the operator. The operator perceives the available traffic information combining with 

software support and his professional judgment to recognize the traffic conditions and decides 

among alternatives. Examples of traffic operator interacting with the environment include sending 

emergency vehicles, changing traffic control timing, and putting up new content on dynamic 

message boards. The above processes are naturally fitted into the CognAgent framework.  
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An iteration can be either short-term, long-term, or mixed. For example, a driver may update 

a perceived traffic condition every 1-2 seconds but only update perceived alternative routes’ travel 

times when non-recurrent events occur. In a model for land use-transportation interaction, a loop 

can be as long as multiple years. In an activity-based model with traffic assignment functionality, 

travelers may make adjustments to their schedules and route choices hourly while also plan for 

other decisions (e.g., location and auto ownership) on a longer timeframe. However, regardless of 

the loop length, all the agents share the same physical interaction module. The following 

subsections detail the three modules. 

 

Physical Interaction 
 
The module of physical interaction is the only module that all the agents share. Agents influence 

one another and the simulated environment through this module. Conventional discrete or agent-

based models such as mesoscopic and microscopic traffic simulators are applicable. This module 

combines the behaviors from agents at a time step with the system state in the previous time step 

to form a new system state.  

 

Space of Observables 
 
The module Space of Observable converts data obtained from physical interaction module to 

information observable by a given agent. As shown later in the case study, this seemingly redundant 

component greatly facilities data management, programming extendibility, and information 

transmission in noisy media. An observer receives information from the Space of Observables 

through a channel which may or may not have noise. Examples of a noisy channel include rainy and 

foggy weather and signal interference in telecommunication. 

The module determines whether an agent can observe certain information. Some of the 

factors are agent’s location, sensor types, and sensor quality, noisy channel. The module can be seen 

as a manager organizing information and mapping them from the simulated “physical reality” to an 
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observer. One computational advantage is that agents do not need to determine whether he/she/it 

can observe a certain event him/her/itself. For example, when an event occurs, the traditional 

method would compute from agent’s perspective, and each agent would determine whether to 

“use” the information about the even or not. But in CognAgent, the Space of Observables only 

assigns the information about the event to the relevant agents directly.  In microscopic traffic 

simulation, data held by the Space of Observables component keeps being updated and resemble a 

master list of the information that has the potential to be observed by an agent. In an integrated 

model of activity scheduling and dynamic traffic assignment, if a traveler did not travel nor consult 

traffic information on a given day, travel time information is unavailable to him/her/it and. Figure 

2.3 demonstrates how the module manages different types of information and only assigns 

information to the relevant agents. 

 

 
Figure 2.3 Conceptual Graph Demonstrating the Data Management Role of the “Space of 

Observable” Module in Human Driver-Only Traffic 

Cognition 
 
Cognition module is formed by two submodules -- information-processing and the decision. 

Information-processing submodule obtains (senses) information from the space of observables and 

processes (perceives) information combining with prior knowledge. The goal of the information 

processing submodule is to provide all the inputs required for decision making.  

Space of Observables at time 𝑡 

𝐴𝑔𝑒𝑛𝑡𝑖 
𝐶ℎ𝑎𝑛𝑛𝑒𝑙/𝑀𝑒𝑑𝑖𝑢𝑚 

𝐶ℎ𝑎𝑛𝑛𝑒𝑙/𝑀𝑒𝑑𝑖𝑢𝑚 
𝐴𝑔𝑒𝑛𝑡 𝑗 

Nearby Traffic Condition 

Radio/Traveler Information 
Weather 



17 
 

 Modern psychology and cognitive science recognize that there are, in effect, two modes of 

thinking (Evans, 2009). Mode 1 is intuitive and pattern-recognizing while Mode 2 is methodical and 

logical. Our brains usually “operate” on Mode 1, which is prone to be influenced by the memory, 

context, and emotion. Mode 2 is usually not triggered until unfamiliar, challenging, or stressing 

events emerge. However, Mode 2 might “exhaust” or “find” the problem too hard to justify the cost 

of attention that it reduces the effort to let the Mode 1 to use more heuristics. The cognition module 

in Figure 2.2 is a high-level abstraction, but it can be thought of as having two interacting 

procedures that share the two submodules, which one or how much each procedure is triggered 

depends on a variety of circumstances.  The level of details of specifying how to model the two 

modes explicitly is out of the scope of this dissertation.  

Information Processing Submodule: Sensation, Perception, and Memory 

 
An observer receives information from the Space of Observables through the medium that may or 

may not be capacity-limited and noisy. Sensation represents stimuli from the environment (e.g., 

human body converts stimuli into electrochemical signals to transmit the information in the 

nervous system) and perception is a higher brain function about interpreting events and objects in 

the world (Mayer, 2011). The sensed information is combined with factors such as memories, 

habits, bias, belief, emotion, and influence to form perceived information with cognitive cost and 

temporal delay.  

Perception is well-known as context- and category-dependent. For example, 17 min is just a 

number and does not mean anything to a traveler until it is perceived as travel time given a context 

with the specific origin, destination, type of the activity, and preferred arrival time.  

Cognitive cost is associated with information acquisition, sensing, storing, perceiving, and 

learning. Cognitive disparity among agents can be classified into sensation-related (e.g., color blind 

and hearing loss) and perception-related (e.g., dyslexia for reading dynamic message board). A 

general agent-based traffic model should be capable of considering travelers/drivers with sensing 
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challenge (e.g., cataract or myopic eyes, hearing disorder, and Eustachian tube disorder) and 

sensory limitation/failure on, say, an autonomous vehicle. Common variables include but not 

limited to age, gender, education, memory, personality, value, beliefs, psychological and cognitive 

disorders and dysfunctions, social and cultural context.  For autonomous/connected vehicles, 

factors include but not limited to processing speed, accuracy, and stability.   

An agent’s mental state evolves with newly obtained information that may have both short-

term and long-term effects. An agent may receive a piece of information in two general situations. 

In Situation I, the perceived information is not in the working memory (short-time memory), and, 

therefore, the agent needs to load the context information from long-term memory to understand 

the newly obtained information. In Situation II, the agent obtains the information when he is 

making relevant decisions. Situation II is highly context-dependent and prone to mis-interpret the 

information.  

Although any memory systems share similarities in encoding, storage, and retrieval, some 

functions of the memory system of human agents need special treatment to consider things like 

sensory memories, short-/long-term memories, and working memory.  Consideration of 

characteristics such as automatic and effortful processing, serial position effect (e.g., tendency to 

recall best the first and the last in a short sequence of items or events) could potentially improve 

the predictive power of an agent-based model.  

Decision Submodule 

 
Cognition module provides contextual and category-based information that an agent needs for 

deciding how to behave. When a modeler needs to consider the impact of uncertainty on a decision 

(e.g., route choice), the input requires a distribution of a percept (e.g., travel time) or a joint 

distribution of a set of percepts (e.g., travel time and monetary cost). This information is obtained 

from the information-processing submodule. When implementing conventional disaggregate travel 

demand models in this submodule, agents can make decisions based on information about the 
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choice attributes constrained by capacity (e.g., total number of seats in the vehicle), coupling 

(activities that require other agents), and destination (e.g., post office/bank/grocery opening hours, 

school time, work time, transit operation hours, etc.). Additionally, an agent can share information 

(as a decision) through physical interaction module with other agents. Note that an agent might 

decide not to behave and wait for more information before making decisions. 

It is important to clarify which agent makes which decision. In passenger transportation, 

most mode and route decisions are made with/without the aid of traveler information providers. In 

a likely future, travelers may only decide destination, preferred arrival time, and certain preference 

(e.g., avoid toll and willing to share ride) and the vehicle/AI (and the server in the management 

center) will do the rest. In the current global freight systems, there already exists a level of 

discretion by algorithms to optimize, and humans such as shippers and port/warehouse queuing 

list managers usually have little need to decide unless there’s major supply or demand changes, 

while truck drivers in minor route (e.g., distribution center to retail store, delivery and mailing 

service) have relatively high flexibility of route and sequence. Each agent imposes an adjustment on 

the physical interaction module by behaving (i.e., implementing the decision).  

 Although it has been a changing task to model creative solutions, this submodule could 

potentially incorporate this aspect. That is, even if a group of agents with the same cognitive 

characteristics and available information encounter the same situation, they might still form 

different choice set from which to choose. From a psychological perspective, the process of forming 

a choice set requires an iterative effort and, hence, interact heavily with the information-processing 

submodule. 

A behavior results from an individual or joint decision. For example, the selected route 

might be a decision made by an autonomous vehicle with the preference decision of the traveler 

and the guidance of command from the traffic management center.  
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Analytical Examples 
 

Human Driving Behavior 
 

A human agent senses and perceives to form a new understanding of the surroundings when 

driving. Factors such as experience and habits also influence this understanding. Figure 2.4 shows 

an example of analyzing this agent’s behavior cognitively. Conventional traffic simulator can be 

used in the physical interaction module. The module for the space of observables “translates” the 

results from the traffic simulator at each time step to information sensible by the agent. This 

module prepares the input for sensing and perceiving. When a driver perceives information such as 

distance from the leading vehicle under uncertainty (e.g., 0.3 confidence that the leading vehicle is 

50ft away and 0.7 confidence 60ft away), his/her risk preference might influence how he/she 

learns information. The updated distribution is then sent to the decision-making submodule for the 

agent to behave and interact with the physical environment. Different risk levels might also trigger 

different perception and decision mechanism.  

 

 
Figure 2.4 Example of analysing driver behaviour under uncertainty based on CognAgent 

The level of detail in modeling depends on the specific problem, scope, and information 

availability. Agents may or may not share the same information update and decision frequency. 
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However, it is important to clarify the underlying mechanism when simplifying the modeling 

approach. Cognitively, a driver estimates the distance from the leading vehicle by comparing the 

belief of the “actual” vehicle size with the perceived size of the leading vehicle to estimate speed by 

comparing the changing rate of the vehicle size. When perceived information arouses emotions 

such as stress, anxiety, and anger, the driver’s perception and decision style could change 

dramatically. A driver’s cognitive process may bypass the cortex (i.e., regular neural pathway via 

thalamus, sensory cortex, prefrontal cortex to amygdala) and directly send sensory input to the 

amygdala for an instant emotional reaction such as fear (LeDoux, 2003).  

Multi-stakeholder planning decision 
 

Behaviors of different levels of public agencies, competing/collaborating private entities (e.g., 

consulting firms and transportation network companies), research institutes, political constituents, 

and policy and regulations are indispensible components for studying transportation systems. 

Under CognAgent, each relevant autonomous entity has its own corresponding space of observables 

and information processing scheme. For example, the collective cognitive character of a public 

agency is formed by the cognition of individuals within it. Some key factors to consider when 

studying the planning decision-making process are how the information is obtained, collective bias, 

standard procedure, organizational cultural, innovation level, criteria (objectives), and risk 

preference. Historical records on how these entities made decisions and how effective these 

decisions were implemented can be used for calibration. Figure 2.5 shows an example of the 

analytical framework, which has the same structure as in Figure 2.4. 
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Figure 2.5 Example of analysing a stakeholder meeting on infrastructure investment based on 

CognAgent 

Numerical Feasibility Study – Human-ACV Mixed Flows 
 

Modeling human drivers and intelligent vehicle technologies have no fundamental difference under 

CognAgent. V2X communication also features “sensing” and “perceiving” functions. An operating 

autonomous vehicle senses surroundings using sensors such as radar and camera and perceives 

using algorithms set by manufacturers, constrained by regulatory rules and industrial standards. 

Limited sensor resolution and measurement accuracy might render uncertainty. Travelers and 

their vehicles form joint decision (if semi-automated) based on the combined the result of the 

processed information and historical data (may or may not be mis-remembered/stored) to make 

decisions such as acceleration, deceleration, lane change, and route adjustment.  

The concept of “space of observables” significantly simplifies the modeling effort in 

modeling and simulating heterogeneous ACVs when non-local information is significant. Figure 2.6 

uses a set of raster layers to illustrate this concept. Each location has its corresponding observable 

which is managed in a system of layers. An agent at a certain location can only sense information 

from his/her/its corresponding “column” of cells. Whether the information is received depends on 
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with radar turned off cannot sense information from the radar layer. Therefore, the coding within 

the module Space of Observables is only in charge of retrieving and converting information from 

the module of physical interaction and need not to concern whether there is an agent at a certain 

location. Some layers are exogenous (e.g., radio layer) while some are endogenous (e.g., vehicle 

collision.) Some layers have highly heterogeneous information among cells (e.g., traffic condition 

along a roadway) while others have very similar information among cells (e.g., traffic radio and 

weather).  

 
Figure 2.6 Coding “space of observables” as a raster-like database.  

Background  
 

A stretch of uninterrupted single-lane access-restricted straight roadway on level terrain is used to 

demonstrate the feasibility and advantage of the framework as a guidance of implementation in a 

traffic simulator. Although rules of ACV agents can be defined based on manufacturers, this case 

study categorizes agents regarding sensor type and risk preference. A general rule for ACV agents is 

to set objective to be staying in the middle of the leading and following vehicles by adjusting the 

acceleration/deceleration rate, while, in sparse traffic, ACV agents accelerate in their designed rates 

to the maximum safe speed until reaching the safe distance with the front vehicle. Scenarios with 

communication technology will be briefly discussed as an extension in the latter part of this section.  

Defining Agent Class 
 

Two classes of agents, human and ACVs, are inherited from the same parent class, CognAgent, in 

which methods for sensation, sense(), and perception, perceive(), are specified correspondingly. The 

𝑇 = 𝑡𝑘 
Road and Traffic Condition for Camera and Radar 

Dedicated Short-Rage Communication Layer 

Regular Radio Information for Driver 

External Sound Layer 

Message Board Info for Camera & Traveler 

Transportation Network 
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algorithm Part I (pseudo code consistent with python 3.x syntax) defines how properties and 

methods are defined in the parent class. Veh_state is a list that generates agent’s ID, original 

location, speed, acceleration; the list gets updated at each time step. The updated information is 

then stored in lookup_table for each agent. The algorithm part I utilizes methods from algorithm 

part III, PISOO, which is an object instantiated from the class that holds two main functions – (1) 

storing locations, speeds, and accelerations of all vehicles at the current simulation time step; and 

(2) providing output of what information can be potentially sensed by the corresponding agent. As 

can see, the method sense() sequentially triggers the perceive() and behave() method of its own 

instantiation.  

ALGORITHM PART I: PARENT CLASS DEFINITION FOR HUMAN AGENT CLASS 
AND INTELLIGENT VEHICLE CLASS 
CLASS COGNAGENT: 

INITIALIZE (VEH_INITIAL_STATE): 
    VEH_STATE = VEH_INITIAL_STATE  
METHOD SENSE(VEH_STATE.LOCATION, VEH_STATE.SENSORS): 
    RETURN SENSEINFO = PISOO_OBJ.QUERY(VEH_STATE.LOCATION, 

VEH_PROPERTY.SENSORS) 
METHOD PERCEIVE(SENSEDINFO, PRIORINFO): 
    RETURN PERCEIVEDINFO(SENSEDINFO, PRIORINFO) 
METHOD BEHAVE(PERCEIVEDINFO): 
    RETURN VEH_STATE = BEHAVIOR(PERCEIVEDINFO) 

 

Table 2.1 shows the type of information sensible by an agent. The camera is assumed to be 

used to sense distance, while radar can be used for both distance and speed. ACVs combine distance 

information from camera and radar with equal weights to form sensed information on distance (in 

foggy weather or at night, camera might have less weight). Human agent is assumed only able to 

use vision to sense and perceive the leading vehicle’s location and speed.  

Table 2.1 Sensing capability assumed in this paper on human and ACVs 
Information available for an agent to sense at location 𝒙 at time 𝒕 Human ACV 

Leading vehicle distance and speed     

Following vehicle distance and speed    

*Location and speed of immediate vehicles on the left & right lane(s)     

*Location and speed of immediate vehicles on the left & right lane(s) within view 
range 

    

DSRC within 1000𝑓𝑡 (FHWA recommended range, 2016)    

 *the example only considers single-lane plain terrain scenario. 
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Two-category perception is set on human drivers – the sensed information from the current 

time step and the sensed information 0.3-0.4 sec prior (uniformly distributed) to considering the 

sensory memory and error. The perception time is set to be 0.7-0.9 sec (uniformly distributed), and 

decision-to-behavior time is configured to be 1.0-1.3 sec (uniformly distributed). Therefore, the 

perception-reaction time (PRT) is 2.0-2.4 sec (uniformly distributed). Different types of delays are 

assumed independent with one another, and future study can incorporate their correlation. The 

perceived confidence for the current sensed information is randomly generated from the uniform 

distribution of 0.60 to 0.99 for each human agent. Newell’s car-following model is used for 

simulating human driving (Newell, 1961), the decision on acceleration/deceleration rate at each 

time step is set proportional to the speed difference to that of the leading vehicle at time step 𝑡 − 𝜏. 

The reaction time, 𝜏, is set consistent with PRT and the sensitivity indicator, 𝜆, is set uniformly 

distributed between 0.8 and 1.2 per second. The method behave(∙) implements the decision by 

updating its physical location constrained by the location of the leading vehicle. The risk preference 

is considered for ACV and human agents by adjusting the weights for the favorable and unfavorable 

outcome. The adjusted weight is defined as  

 𝜋𝑗 = 𝜋(𝑝𝑗) = 𝛽 ∙ 𝑝𝑗
𝛼 , 𝛼 > 0, 𝛽 > 0 (2.1) 

 

for the relatively favorable outcome, 𝑗, while the relatively unfavorable outcome is 1 − 𝜋(𝑝𝑗). In this 

case study, it is assumed that the lower the acceleration gap, the less favorable. When 0 < 𝛼 < 1, 

the human agent penalizes more on the riskier outcome, and therefore, risk-averse; when 𝛼 > 1, 

risk-prone; when 𝛼 = 1, risk-neutral. 𝛽 is a scaler set as unity in this case. The index, 𝑗, is ranked so 

that the closer to 1 the more preferred.  

The ACV agent driving rule is inspired by a simple principle – each ACV agent attempts to 

remain in the middle of the leading and the following vehicle in congested traffic and accelerate 

with comfortable rate to either the maximum speed or reaching the allowable distance to the front 



26 
 

vehicle in uncongested traffic. 𝑥𝑛+1 − 𝑥𝑛 and 𝑥𝑛 − 𝑥𝑛−1 represent the distances to the leading and 

following car, respectively. The rule can be described as 

𝑎𝑡
𝑛 = 𝑎(𝑠𝑡

𝑛−1, 𝑠𝑡
𝑛, 𝑠𝑡

𝑛+1,ℳ𝑡
𝑛)     (2.2) 

  

𝑠𝑡
𝑛 is a state vector containing information of location, speed, and acceleration of vehicle 𝑛 at time 𝑡. 

Following convention, human drivers are assumed to be only able to sense the location and speed 

of the front vehicle. ℳ𝑡
𝑛 is a perception map for the observer 𝑛 at time 𝑡 that converts the sensed to 

the perceived. ℳ𝑡
𝑛 is updated based on newly obtained information through a learning function 

f(∙). That is,  

ℳ𝑡+𝛿ℳ𝑡
𝑛

𝑛 = 𝑓(ℳ𝑡
𝑛, 𝑠𝑡

𝑛−1, 𝑠𝑡
𝑛, 𝑠𝑡

𝑛+1)     (2.3) 

Learning rate is assumed consistent with the simulation time interval, and therefore, agents 

update their information every time step. 

Detailed description for acceleration rate for each corresponding condition is given in Table 

2.2. ACV agents adjust the physical location and speed, given traffic system state 𝒔, via 

acceleration/deceleration which are 𝑎𝑚𝑖𝑙𝑑 = 3𝑓𝑡/𝑠
2, 𝑎𝑚𝑎𝑥 = 9𝑓𝑡/𝑠

2, 𝑑𝑚𝑖𝑙𝑑 = −4𝑓𝑡/𝑠
2, and 𝑑𝑚𝑎𝑥 =

−13.17𝑓𝑡/𝑠2 depending on the prevailing local traffic condition. ACV reaction time is uniformly 

distributed between 0.01 and 0.015 sec. 𝜖 is a perceptive threshold related to speed difference and 

linked with sensor quality and specific algorithm the manufacturer sets.  When the ACV perceives 

the difference between the speed of itself (𝑣) and the speed of the leading vehicle (𝑣𝑙) to be over 𝜖 

or below -𝜖, it considers this difference significant. 𝑒 is set to be 9 ft/sec. ACV agents are set with 

0.95 confidence on the sensed information at the current time step and 0.05 confidence on the 

historical processed result as a reflection of imperfect sensing and perceiving functions. 

Table 2.2 ACV Operation Rules (DSRC will be incorporated as an extension later) 

Any DSRC 
Warning?  

 Acceleration/Deceleration (ft/𝑠𝑒𝑐2) for 
different speeds relationships 

*Send 
DSRC 
Warning?  

Distance Criteria 
𝑥𝑛+1 − 𝑥𝑛  𝑥𝑛 − 𝑥𝑛−1  𝑣𝑙 − 𝑣 > 𝑒  |𝑣𝑙 − 𝑣| < 𝑒  𝑣𝑙 − 𝑣 < −𝜖  

No (0, 𝑠𝑚𝑖𝑛]  (0, 𝑠𝑚𝑖𝑛]  𝑑𝑚𝑖𝑙𝑑   𝑑𝑚𝑖𝑙𝑑    𝑑𝑚𝑎𝑥   N, N, Y 
(𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥]  𝑑𝑚𝑖𝑙𝑑   𝑑𝑚𝑖𝑙𝑑   𝑑𝑚𝑎𝑥   N, N, Y 
(𝑠𝑚𝑎𝑥,∞)  𝑑𝑚𝑖𝑙𝑑   𝑑𝑚𝑎𝑥   𝑑𝑚𝑎𝑥   N, Y, Y 

(𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥]  (0, 𝑠𝑚𝑖𝑛]  𝑎𝑚𝑎𝑥  𝑎𝑚𝑖𝑙𝑑  0  N, N, N 
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(𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥]  𝑎𝑚𝑖𝑙𝑑  0  𝑑𝑚𝑖𝑙𝑑   N, N, N 
(𝑠𝑚𝑎𝑥,∞)  𝑎𝑚𝑖𝑙𝑑  0  𝑑𝑚𝑎𝑥   N, N, Y 

(𝑠𝑚𝑎𝑥,∞]  (0, 𝑠𝑚𝑖𝑛]  𝑎𝑚𝑎𝑥  𝑎𝑚𝑎𝑥  0  N, N, N 
(𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥]  𝑎𝑚𝑖𝑙𝑑  𝑎𝑚𝑖𝑙𝑑  𝑎𝑚𝑖𝑙𝑑  N, N, N 
(𝑠𝑚𝑎𝑥,∞)  𝑎𝑚𝑖𝑙𝑑  𝑎𝑚𝑖𝑙𝑑  𝑎𝑚𝑖𝑙𝑑  N, N, N 

Yes (0, 𝑠𝑚𝑎𝑥]  - 𝑑𝑚𝑖𝑙𝑑   𝑑𝑚𝑎𝑥   𝑑𝑚𝑎𝑥   N, Y, Y 
 (𝑠𝑚𝑎𝑥,∞]  - 𝑑𝑚𝑖𝑙𝑑   𝑑𝑚𝑖𝑙𝑑   𝑑𝑚𝑎𝑥   N, N, Y 

*DSRC warning does not propagate in this case study and will leave as future extension. 
 

The two inherited child classes have a similar initialization procedure. Non-sharing 

properties such as agent types and available sensors are defined and initialized based on the 

specific child class. Algorithm Part II is the pseudo code of class definition for ACV and human 

agents. 

ALGORITHM PART II: HUMAN AGENT AND ACV AGENT CLASS 
INHERITED FROM COGNAGENT 
CLASS ACV(COGNAGENT): 

INITIALIZE (VEH_INITIAL_STATE): 
    PARENT.INITILIZE (VEH_INITIAL_STATE) 
    VEH_PROPERTY.AGENTTYPE = ‘ACV’ 
    VEH_PROPERTY.SENSORS= [‘CAMERA’, ‘RADAR’, ‘DSRC’] 
METHOD UPDATE(VEH_STATE): 
    SENSE(VEH_STATE.LOCATION, VEH_PROPERTY.SENSORS) 
    RETURN PRIORINFO.APPEND(VEH_STATE) 

CLASS HUMAN(COGNAGENT): 
INITIALIZE (VEH_INITIAL_STATE): 
    PARENT.INITILIZE (VEH_INITIAL_STATE) 
    VEH_PROPERTY.AGENTTYPE = ‘HUMAN’ 
    VEH_PROPERTY.SENSORS= [‘VISION’] 
METHOD UPDATE(): 
    PRIORINFO.APPEND(VEH_STATE)       
    RETURN PARENT.SENSE(VEH_STATE.LOCATION, 

VEH_PROPERTY.SENSORS) 
 

Defining PISOO Class 
 

Methods related to the physical interaction and the space of observables are jointly embedded into 

one class, PISOO. When an agent senses information from a space of observables, it calls the method 

updatePhyscialInteraction(∙) in a PISOO object, instantiated from its class. The PISSO object then 

searches lookup_datebase for what this agent could potentially sense. Whether the agent can 

process that information depends on the type and the quality of the sensors the agent features and 

the perceptive function. lookup_database stores all the vehicles’ physical information (in this 

example: location, speed, acceleration, vehicle length) and network conditions (e.g., relative 
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location with other agents) at the current time step in a simulation. Figure 2.7 shows an instance of 

an ACV agent inquiring and receiving “customized” information from the PISOO object.  

 

 

Figure 2.7 Example of an agent “inquiring” the instantiation of PISOO at time 𝑡. 

Similar to any simulation, finite time step could generate unrealistic traffic condition (e.g., the 

spacing between two vehicles is smaller than the length of the leading vehicle). Therefore, the 

algorithm also checks feasibility and constrains the update if necessary. This case study does not 

consider traffic accident, though there is no technical difficulty to incorporate it thanks to the 

flexibility of CognAgent. Algorithm Part III is the pseudo code of the class definition of PISOO based 

on Python 3.x syntax.  

ALGORITHM PART III: DEFINING PHYSICAL INTERACTION DATA BASED AND 
SPACE OF OBSERVABLE 
CLASS PISOO: 

INITIALIZE (INTIAL_TRAFFIC_CONDITION): 
    LOOKUP_DATABASE = INTIAL_TRAFFIC_CONITION 

    METHOD UPDATEPHYSICALINTERACTION(TRAFFIC CONDITION AT T+1): 
        FEASIBLILITY = CHECKFEASIBILITY (TRAFFIC CONDITION AT T+1) 
        UPDATE LOOKUP_DATABSE WITH TRAFFIC_CONDITION_AT_T+1:  
            IF FEASIBLITY==1:  
                RETURN TRAFFIC_CONDITION = UPDATE TRAFFIC_CONDITION_AT_T+1 
            ELSE:  
                FOR ∀ AGENTS: 
                    VEH[I].VEH_STATE = CONSTRAINED TRAFFIC_CONDITION_AT_TIME_T+1 
                    RETURN TRAFFIC_CONDITION = UPDATE CONSTRAINED 
TRAFFIC_CONDITION_AT_T+1 

METHOD QUERY(LOCATION, SENSORS): 
    INFOAVAILABLE = LOOKUP_DATABASE.LOOKUP(LOCATION) 

        RETURN INFORMATIONSENSABLE = INFOAVAILABLE.SENSORS(SENSORS) 
 

Agent Instantiation and Simulation 
 

TRAFFIC 

CONDITION 

PISOO Object 

Database storing network data, 

weather, and traffic condition 

Methods retrieving information 

from PISOO database based on 

agent’s queries 

 
Agent 𝑖 
 

“What can I sense now? I am at location 𝑥 and 

feature a radar and two cameras (front and back).” 

“There’s a leading vehicle 67ft away and a 

following vehicle 80ft away, both constant 

speeds. No DSRC detected” 
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50 agents are instantiated from either the human class and the ACV class. The ratio of the two types 

of agents depends on the market penetration (MP) rate. Both classes are inherited from CognAgent 

class and yet have their own properties and methods. The location is randomly generated and 

tagged with sequential IDs while making sure minimum distance, 40ft, is maintained. The speed of 

the most leading vehicle is set at 100𝑓𝑡/𝑠. The initial speeds of the following vehicles are randomly 

generated from a log-normal distribution with the average being the speed of the corresponding 

leading vehicle and the standard deviation being 23 𝑓𝑡/𝑠. This initial setting is for testing the traffic 

performance for different MPs of AVCs in the mixed traffic. Figure 2.8 shows the initial (fixed) 

setting of the traffic to allow comparable sensitivity tests.  

 
Figure 2.8 Vehicle locations and speeds at 𝑡 = 0 

When an agent is instantiated, the method, Initialize(∙), is called so that veh_inital_state is 

saved into the agent object as the agent’s initial state (i.e., vehicle location, speed, and acceleration). 

The priorInfo in this example is set as the historical vehicle states. Information such as habits, bias, 

and (for human agents) can also be incorporated. An agent’s cognition (sense, perceive, and 

behave) is triggered by calling the method update(∙) in Algorithm Part II. Since most of the process 

is handled in the objects themselves, the simulation becomes simply calling the update method 

within each agent object. At each time step (0.01sec), Algorithm Part IV calls the PISOO object and 

each agent updates itself. 

ALGORITHM PART IV: SIMULATION 
PISOO_OBJ = PISOO() 
FOR T IN RANGE(0, TIMESPAN, STEPSIZE): 
 FOR I IN VEH_ID: 
  VEH[I].UPDATE() 
      PISOO_OBJ. UPDATEPHYSICALINTERACTION() 
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Figure 2.9 shows the sensitivity analysis of MP at different time steps. All the simulations share the 

same initial traffic condition by setting a fixed random seed.  

 
Figure 2.9 Y-axis (bottom to top): 0, 0.3, 0.5, 0.7, 1.0 MP Rate (red triangles are human drivers; blue 

dots are ACV). X-axis (left to right): 𝑡 = 300𝑠. The appendix shows the complete figure. 

In the rule and parameter settings in this numerical example, even a low market 

penetration of autonomous vehicles will have a significant impact on the performance of the traffic 

flow. Although the human drivers tend to generate similar velocities at a faster rate (speed limit is 

set as 100ft/sec), they tend to waste the space when the leading vehicle is far. On the other hand, 

ACV tends to generate different brackets of speeds (speed limit is set as 120ft/sec) and tend to 

rapidly “catching up with the front vehicle.” The higher the MP of the ACVs, the faster it seems to 

converge the speed and produces “platoon” (the frontest vehicle, 50th, is set to 100ft/sec). In the 

scenario with full MP, a set of stable platoons are formed in the 300sec as shown in figure 2.10.  

  
Figure 2.10 t=0,120s,300s (y-axis are set to 20000ft to all the three plots for comparability) 

Under this setup, the traffic flow with a high percentage of human agents quickly starts 

oscillating, while the traffic flow composed of a large percentage of AV agents tend to have 

smoother acceleration/deceleration and do not overreact to various traffic conditions. For more 

details, please see Appendix A.  

Density, Market Penetration, and Risk Preference Sensitivity Test  
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The impact of various market penetration rates and traffic density are tested. Figure 2.11 shows the 

traffic flow at different density level when most agents are humans at different phases of the 

simulation. Shock waves and speed drop at 5 min appears when the density is heavy.  

 

    
Figure 2.11 The trajectories (upper) and speed profile (lower) while 5% MP and 5-min simulation 

horizon; number of vehicle is set as 100, 200, and 300, respectively. 

Similarly, Figure 2.12 and Figure 2.13 shows the trajectory and speed profile when MP is 

50% and 100%, respectively. The shocking waves are “observed” even when only half of the 

vehicles are AVs. Speed-wise, although the traffic stability decreases when traffic density rises, the 

traffic speed does not severely “cascade” When all the vehicles are AVs, vehicles quickly form 

platoons with little shocking waves. Speed-wise, the traffic stability is also improved and has a 

faster rate to reach steady traffic state. 

 

 
Figure 2.12 50% MP and 5-min simulation horizon; veh = 100, 200, 300 
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Figure 2.13 100% MP and 5-min simulation horizon; veh = 100, 200, 300 

Three major observations from the test are: (1) with the MP rate increasing, both the limit 

speed of stability and the average speed in congested condition increases; (2) the improvement 

from MP=0 to MP=0.5 is significantly greater than that from MP=0.5 to MP=1.0; (3) given a non-

zero MP, the speed drop is less significant in the part of the congested region closer to 𝜌𝑐  than that 

of the further part. I generalize this trend as a proposal of a 3-dimensional density-speed 

relationship for future use of measuring traffic conditions and estimating FD in a mix-flow traffic 

with several parameters (Figure 2.14 and 2.15). Different MPs render different 𝜌𝑐 , though the 

specific value depends on the driving rule and driving technology of the AVs. Traffic stability 

generally improves with the increased MP. Although autonomous vehicles have the potential to 

increase the maximum speed, the specific impact largely depends on regulation and public 

acceptance on the vehicle control parameters.  

 
Figure 2.14 Hypothetical 𝑣𝑐 region in 𝑀𝑃-𝜌𝑐  space and hypothetical 𝑣-𝜌𝑐  relationship based on the 

experimental results. 
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`  

Figure 2.15 Hypothetical MP-𝑣-𝜌 relationship based on the experimental results. 

Table 2.3 presents the travel distance (as a reflection of mobility impact) for different MP 

with heterogeneous risk-preference among human agents. Figure 2.16 shows the cumulative 

distance of total agent travel distance for different MP rates and human agents’ risk preferences. 

Under this setup, scenarios with a higher percentage of human agents have a higher vehicle mile 

traveled (VMT) in the first 30-60 sec but, in a longer time horizon, AVs prevail. The risk preference 

has notable impact but the direction of impact replies on the specific traffic condition and MP. 

Table 2.3 Average travel distance (mobility) in 30, 60, 120, 300sec with different risk-preference 
(𝛼) for human agents. 

 
 
𝛼distribution Travel distance marginal gain (ft) Cumulative Travel Distance (ft) 

MP -. 9  0  1.2  30sec 60sec 120sec 300sec 30sec 60sec 120sec 300sec 

0 .1 .3 .6 2841.90 2998.74 6000.03 17996.90 2841.90 5840.64 11840.67 29837.57 
 .6 .3 .1 2029.24 2670.08 5462.95 18290.07 2425.00 6087.09 12270.64 29726.91 
 .2 .6 .2 3385.03 3404.08 5555.84 18132.29 2029.30 5378.33 10455.67 30088.87 
.3 .1 .3 .6 3009.89 3167.45 6587.97 19642.93 3009.89 6177.34 12765.31 32408.24 
 .6 .3 .1 3670.97 2809.51 6713.06 18730.95 3225.81 5333.37 12682.78 31668.50 
 .2 .6 .2 3361.18 2975.87 7208.92 19737.65 3010.58 6452.00 12142.12 32360.85 
.5 .1 .3 .6 3010.82 3156.42 6530.29 19563.58 3010.82 6167.24 12697.53 32261.11 
 .6 .3 .1 2921.58 3778.35 7025.43 19689.42 2845.24 6632.97 12364.90 33048.45 
 .2 .6 .2 2821.66 3474.96 6324.79 19339.24 2300.98 6868.57 12446.92 31771.62 
.7 .1 .3 .6 2988.02 3124.24 6485.37 20292.39 2988.02 6112.26 12597.63 32890.02 
 .6 .3 .1 2819.54 3259.12 6380.63 20491.17 2422.40 6034.19 12115.19 32447.75 
 .2 .6 .2 3601.65 3320.33 6222.52 20088.01 3330.38 5489.78 12488.59 33100.22 
.9 .1 .3 .6 2984.32 3146.42 6612.36 20593.26 2984.32 6130.74 12743.10 33336.36 
 .6 .3 .1 2339.41 3422.56 6739.54 20289.60 3410.40 6200.22 12829.80 33581.62 
 .2 .6 .2 3034.90 3202.70 6508.64 20292.75 2866.59 6179.64 13059.86 33243.79 
1.0 - - - 3016.85 3209.62 6753.75 20819.98 3016.85 6226.47 12980.22 33800.20 
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Figure 2.16 Market penetration and mobility in different market penetration rates (300 sec 

horizon) with different dominant risk preference.  

Highlighted Features 
 

This section demonstrates three of the important capabilities of CognAgent, which differentiates 

itself from the conventional behavioral agent-based models. A model built on the proposed 

framework “collapses” into more behavioral agent-based model given certain assumptions on 

agent’s sensation, perception, and decision rules.  In addition to the advantages of modeling agents 

from cognition’s perspective (rather than revealed behavior’s), applying the module Space of 

Observable” improves computational efforts and post-simulation analysis capability since 

information source, channel/medium, and recipients are clearly specified and organized in one 

single place. One thing worth emphasizing is that CognAgent models information as the change of 

uncertainty and modeling risk becomes a “side-product” of modeling information dynamics when 

specifications about agents’ risk preferences are identified. 

Considering autonomous vehicles from different manufacturers, sensors, and processing algorithms  

 

The agent-based model in the example can produce individual vehicle’s trajectories by different 

manufacturers. Let us take an impact study of manufacture/model/sensor type composition as an 

example: Type A (heavily relies on computer vision/camera), Type B (relies on radar/Lidar), and 
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Type C (puts equal decision weights (and risk-averse) on both types of equipment). Under foggy 

weather, Type A is assumed having 0.71 sensing distance than that of Type B. Because of the risk-

aversion setting in Type C, it uses the radar under foggy weather to determine if any immediate 

deceleration (i.e., being conservative in unfavorable situation) from the leading vehicle. Table 1.4 

compares the trajectories of a fleet of vehicles equipped with different sensor (manufacture/model) 

types following varies distributions. How the sensed information is processed (perceived) and 

utilized for making decisions (behaving) remain unchanged. Since autonomous vehicles do not 

over-react, there is not significant traffic shocking wave, and the vehicles tend to form platoon 

groups.  

Table 2.4 System Performance Comparison Given Different Vehicle Type Composition over Type A, 
Type B, and Type C Autonomous Vehicles (Random Seed 3) during the simulation 0 to 30,000 steps 
(0.01sec/step) and in the road stretch from 0 to 35,000 ft. x-axis is the distance and y-axis is 
simulation step in the plots of vehicle trajectories. 

 (80%, 10%, 10%) (10%, 80%, 10%) (10%, 10%, 80%) 
Trajectory 
Visualization 

   
VMT (ft.) 2.04e+4 2.07e+4 2.05e+4 
VHT (sec.) 2.34e+2 2.43e+2 2.41e+2 
VMT/VHT 
(ft./sec.) 

84.7  85.1  84.9 

 

Table 2.4 shows that, in the given foggy weather, Type A-dominated traffic produces lower VMT 

and lower average speed due to due to shorter sensing distance. Type B-dominated vehicle, on the 

other hand, produces the highest average speed.  

Consideration of human agents with varying cognitive limitation for equity and ADA assessment 

 

Human’s cognitive limitation/bias/disability can be classified into two types: sensory and 

perceptive. Examples of sensory limitation/bias/disability are nearsightedness, cataract, hearing 

loss, while examples of perceptive limitation/bias/disability are short-term/working memory 
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dysfunction and varying levels of auditory and visual dyslexia. Modeling sensory dysfunction is 

handled by PISOO to determine whether to “push” certain information from the source to the agent. 

This section focuses on the perceptive limitation/bias/disability. The module Space of Observables 

“scans” the module Physical Interaction. The module Space of Observables then determines 

whether a certain condition can be sensed by each agent based on the medium (e.g., weather) and 

corresponding agent’s sensor capabilities. Since only perceiving capability is varied, there is no 

need to adjust any setting in the module Space of Observables.  

Table 2.5 shows the trajectories of human-driving vehicle fleets. Note that this human 

driver is assumed having no sensing problem (i.e., same as other human drivers) and only having 

the perceptive challenge of understanding the suggested speed from the (dynamic) message board. 

This human agent only adjusts speed based on surrounding traffic situation and his/her driving 

preference.  

Table 2.5 The trajectories of the 400 simulated vehicles with and without sever dyslexia when 
he/she sense the message board’s speed recommendation (81 ft/sec (55 mph)) at the beginning of 
the simulation. In addition, 5% are randomly selected to miss the information 

 (100%, 0%, 0%) (92.5%, 0.5%, 7%) (88.5%, 1.5%, 10%) 
Trajectory 
Visualization 

   
VMT (ft.) 2.01e+4 1.99e+4 1.97e+4 
VHT (sec.) 2.45e+2 2.46e+2 2.49e+2 
VMT/VHT 
(ft./sec.) 

82.0 80.9 79.1 

 

Feasibility and Advantage 
 

This case study is conducted by treating the two seemingly different types of vehicles in the same 

object-oriented programming framework. Each agent, regardless of its type, is an instantiation of a 

parent class that includes attributes such as current state (location, speed, etc.) and methods of 

sensing, perceiving, and update. Sensing and perceiving are clearly separated to not only improve 

the potential of model sophistication (or resolution in terms of modeling cognitive functions) but 
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also model performance. The case study includes a simple scenario with 50 vehicles with a given 

random spacing and speed to test the impact of different market penetrations. A simulation results 

shows a nonlinear trend of less impact from shocking wave with the increase of AV market 

penetration – a shocking wave is nearly eliminated with when market penetration of AVs is around 

30%. Intuitively, this can be punitively understood as that when 1 every 4 cars is AV, shocking wave 

that caused by human overreaction can be “cushioned” by AVs. Exploring further, a hypothetical 3-

dimensional fundamental diagram (the 3rd dimension being market penetration) is proposed. This 

proposed fundamental diagram not only captures the increase of capacity and free flow speed in 

the “uncongested regime” but also the “cushion” benefits from increasing AVs market penetration 

that leads to less likelihood of speed drop with increase of traffic density. 

Computational Efficiency 
 

Since each vehicle only checks the state of the leading vehicle in the traditional car-following model, 

the computational benefit of having the module of space of observable is not significant. However, 

when agents can detect non-local information such as traffic radio or vehicle-to-vehicle 

communication, each agent “scans” the entire database during a simulation step without a manager 

(PISOO) to streamline the process. PISOO, the instantiation of the module Space of Observable, 

determines if a piece of information can be sensed, and this process iterates over every single agent 

during a time step. Though each agent may record, say, a deceleration event by itself, the same 

event was recorded multiple times by different agents that witnessed it. Another example is the 

foggy weather and limited cellular connection (for traffic information). Without PISOO, each agent 

has to either set the “detectable” range by itself or directly check the location, speed, and 

acceleration rate of the leading vehicle before determining if the information can be used for 

decision making. PISOO, however, “pushes” the information to agents and agents can only make 

decisions based on prior knowledge and newly obtained information “pushed” by PISOO.  
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Although it is conceptually clear how PISOO can streamline computation and data 

management, I demonstrate through a V2V example, in which the DSRC only serves as an 

emergency warning (without broadcasting from one vehicle to another). Suppose a scenario of a 

full market penetration, the 35th vehicle suddenly decelerates with 15ft/sec from 35th sec due to a 

mysterious reason. The vehicle sent a warning message to the vehicles within 1000ft behind 

(information propagation from one vehicle to another is not considered) as the DSRC coverage 

constraint (the U.S., Department of Transportation, 2016.) The space of observables for DSRC 

information is modeled as “continuous.” That is, each agent will inquiry the DSRC information layer 

and check if it is within the range of warning message if any. In a complex scenario with a 

significant amount of DSRC interactions and large network, it is recommended to set raster-based 

DSRC layer to reduce the computational effort. In addition to all the properties and methods in the 

previous object-oriented programming algorithms, physical interaction module stores method that 

gives two outputs -- whether there is DSRC warning at the current location and what the content is. 

The information from the layers of camera sensors, DSRC, and driver’s vision forms the sensed 

information as the input for perception.  

Under this setting, the ACVs shows rapid response and safety improvement potential with 

DSRC application – the speed and location change over the time horizon is shown in Figure 2.17 and 

Figure 2.18, respectively. The DSRC warning is sent solely from the accident vehicle with 1000ft 

coverage. Allowing propagation but no overreaction of DSRC message could further meditate the 

risk. 

 
Figure 2.17 Vehicle speed in the DSRC accident warning scenario (100% MP). 𝑡 =

30𝑠, 60𝑠, 120𝑠, 300𝑠 
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Figure 2.18 Vehicle location in the DSRC accident warning scenario (100% MP). 𝑡 =

30𝑠, 60𝑠, 120𝑠, 300𝑠 

Figure 2.19 shows the comparison of computational effort. When vehicle only senses the 

immediate adjacent (local) traffic, simulation time are similar, and PISOO does not show significant 

benefit. However, when each agent needs to process system-wide information (non-local), PISOO 

significantly improves the computational effort. The simulation tests are run on Computer 

configuration: Intel® Core™ i5-6200U CPU $ 2.30GHz 2.40 GHz, RAM 8.00GB (7.78 usable), 64-bit 

OS with a 64-based processor. 

 
Figure 2.19 Computational effort comparison among different modeling needs and numbers of 

agents 

Conclusion 
 

The paper proposes a unifying framework to model and analyze complex transportation 

phenomena in a cognitively consistent manner. Comparing to models focusing on approximating 

revealed behaviors, CognAgent adopts a homeomorphic perspective and explicitly considers 

heterogeneous agents’ sensation, perception, and decision making. The framework also enhances 

modeling flexibility and generality, simplifies programming practice, reduces data management 

efforts, and improves results’ interpretability. A model guided by the framework is sensitive to 

agent’s sensor type, information availability, and information processing methods, and therefore, 
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capable of considering broader policy scenarios such as equity issue among travelers with visual 

and auditory impairment.  

Modeling uncertainty and modeling information are equivalent under CognAgent. The 

uncertainty for a certain percept (e.g., travel time) is the state of lacking the information on this 

percept, and information can be quantified by measuring the change of the perceived uncertainty. 

To model uncertainty and information, the source of information, the channel/medium, and the 

recipient needs be clearly identified. Any statement on uncertainty and information that does not 

clarify these three core components is meaningless. The distribution of category-based outcomes 

generated from the perception sub-module is fed into the decision-making sub-module to produce 

decision under uncertainty/risk. Heterogeneous agents interact with one another through behaving 

in the physical interaction module.  

The numerical example demonstrates the framework’s flexibility and computational 

efficiency and the potential of considering broader and more fine-grained environmental and policy 

scenarios.  
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CHAPTER 3  
QUANTIFYING INFORMATION AS CHANGE OF PERCEIVED UNCERTAINTY 

 

"Information is the resolution of uncertainty." 

–Claude Shannon 

Background and Literature Review 
 

A abstract statement such as “information is the resolution of uncertainty” can be explained 

through a concrete example. If one can differentiate all six possible outcomes of a dice, this person 

obtains more information than a person who can only differentiate odd (i.e., 1, 3, 5) from even 

outcomes (i.e., 2, 4, 6). Another way to put it is that a person who expects one of the six equally-

likely outcomes would obtain more information from a rolling dice than a person who expects one 

of the two equally likely outcomes from the same rolling dice. In effect, information can be 

quantified as the change in uncertainty perceived by an observer and therefore can share the same 

unit of measurements, such as bit, nat, and qubit. Indeed, uncertainty can be quantified as the 

amount of information needed to reduce uncertainty to zero. A common example includes that one 

needs 1 bit of information to know the result of a flipping-coin experiment when the prior is non-

informative (i.e., fair game).  

In general economics and transportation economics, uncertainty and information are 

commonly modeled through their revealed effect. For example, expected utility theory and prospect 

theory are two classic methods to describe decision under risk or uncertainty. Chorus et al. (2013) 

present a formulation of information acquisition that uses search theory to evaluate the value of 

information and then proposed in a subsequent paper a discrete-choice model of traveler response 

to information. Levinson (2003) studies the value of advanced traveler information systems for 

route choice. Using other measures such as variance- and percentile-related methods to 
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approximate uncertainty and change of uncertainty are theoretically less sound but demonstrate 

strong practical adoption and empirical value.  

Common information types in transportation modeling make implicit assumptions on 

information sources and transmission media such as mobile application, dynamic message boards, 

radio, and weather. Xuan and Kanafani (2014) compare various aggregate analysis methodologies 

for evaluating accident messages from changeable message signs (CMS). The phase of analyzing or 

modeling the cognition characteristics of the travelers is skipped, and the correlation between 

driver’s diversion behavior and the types of messages are estimated. Xiong et al. (2015) go one step 

further and model traveler’s en-route diversion behavior based on Bayesian rules, combining it 

with stated-preference (SP) driving simulator data and recalibrating it using Bluetooth-based field 

data. Gao et al. (2016) summarize the related study achievements from a survey conducted in the 

Beijing area with a specially designed questionnaire that takes into account the services of traffic 

information provision. Kopitch and Saphores (2011) study whether Changeable Message Signs 

about congestion, incidents, roadway zones, speed limits, and Amber alert would influence the 

number of secondary incidents. Chorus et al. (2009) present a formal model of travelers’ 

compliance with “personalized” and “non-personalized” advice that is based on predicted travel 

time. Chorus et al. (2007) propose a theoretical model of travel information by integrating notions 

of Bayesian update and a regret-based framework of travel choice for studying the use and effects 

of transit information among car drivers. Gao et al. (2011) explicitly considered the information 

acquisition constrained by “cognitive cost.” Bruijin and Leijten (2007) proposed the concept of 

contested knowledge and its effect on traveler decision making. Jha et al. (1988) adopt a Bayesian 

perception update model, for day-to-day travel choice dynamics to incorporate information 

provision, but this approach lacks theoretical support from cognitive science since it essentially 

approximates perceived travel time uncertainty through travel time variation. Mitsakis et al. (2015) 

propose an integrated framework that incorporates real-time ATIS in a large-scale dynamic traffic 
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assignment model and applies to the network of Thessaloniki, Greece. In addition to conventional 

Bayesian-based and Markov Chain information update, a quantum-based approach has been also 

discussed. For example, Asano et al. (2012) update probability based on linear algebra, the von 

Neumann–Lüders projection postulate, Born’s rule, and the quantum representation of the state 

space of a composite system by the tensor product to generalize the classical Bayesian inference. 

The proposed paradigm is consistent with the current consensus in information theory, 

communication, and cognitive science. Under a strict definition of uncertainty proposed and proved 

by Claude Shannon (1949), three fundamental components of any constructive discussion on 

information have to be explicitly identified – source, medium/channel, and recipient. When a 

recipient is a human, his or her sensation and perception are critical in understanding how much he 

or she learns from the newly observed information. Norwich (1993) studies how information 

affects sensed and perceived uncertainty within a consistent framework. In this chapter, I quantify 

the information that effectively changed the perceived travel time distribution, not the amount of 

information received by sense organs.  

In practice, the proposed paradigm can be first applied to incorporate information 

provision scheme in travel demand modeling. Then the result can be an input for evaluating 

advanced traffic information and management systems (Jayarkshnan, 1993) and incorporating 

uncertainty and reliability into traffic simulation and transportation planning models (Liu, 2004). 

Similar principles can be extended to measure system uncertainty when observers are entities such 

as system operators, planners, and decision-makers. It is worth emphasizing that uncertainty 

measure is a subjective ex ante concept and may or may not be “accurate.” Ben-Elia, et al. (2013) 

investigate the impact of various types of traveler information accuracy on route choice via 

designed experiment and show valuable insights, though the difference between actual objective 

information accuracy (objective) and the perceived subjective information accuracy was not 

entirely clarified.  
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The rest of the paper presents the general methodology, which is followed by a numerical 

example that quantifies information provision to evaluate the effectiveness of various alternatives 

of a dynamic message board. 

Methodology 
 

Suppose a traveler 𝑛 is in mental state 𝚽𝑡,𝑙
n  right before perceives travel time information at time 𝑡 

at physical location 𝑙. 𝚽𝑡,𝑙
n  is an abstract construct and contains all the necessary information 

relevant to the study. Supposing that a piece of information is sensed, the traveler updates the 

sensed distribution and constructs the perceived distribution correspondingly. The category 

settings are flexible, but here it is postulated to be related to preferred arrival time (PAT), traveler’s 

characteristics, frequency, and trip purpose. There are multiple methods to update perceived 

information and the decision of which method to use depends on the assumptions of the modelers 

and data availability. Once the new perceived distribution is formed, information entropy can be 

calculated and compared with the prior information entropy. In this chapter, we use Shannon’s 

definition, though Von Neuman’s quantum information theory may be more general by not 

assuming there is no “interference” among each cognitive category/group. The amount of effective 

information provided by the traveler information systems is the change of the information entropy. 

Using Shannon’s information entropy definition, we have, 

𝑄(𝚯|𝚽𝑡,𝑙𝑡
n ) = Δ𝐻𝑡+𝜏,𝑙𝑡+𝜏

𝑛 = 𝐻𝑡+𝜏,𝑙𝑡+𝜏
𝑛 −𝐻𝑡,𝑙𝑡

𝑛 = ∑ 𝑝𝑗,𝑡+𝜏
𝑛 log𝑏

1

𝑝𝑗,𝑡+𝜏
𝑛

𝑗∈𝐽|𝚽𝑡+𝜏,𝑙𝑡+𝜏
n

− ∑ 𝑝𝑗,𝑡
𝑛 log𝑏

1

𝑝𝑗,𝑡
𝑛

𝑗∈𝐽|𝚽𝑡,𝑙𝑡
n

 (3.1) 

 
where, 𝑄(∙) is a function quantifying information, 𝚯, obtained by observer 𝑛 and is calculated by 

measuring the change of information entropy with a base of 𝑏 (when 𝑏 = 2, the unit would be Bit). 

𝚽𝑡,𝑙𝑡
n  and 𝚽𝑡+𝜏,𝑙𝑡+𝜏

n  represent the observer’s mental state before and after the observation. Since the 

location of 𝑛 might change after 𝜏, the location is denoted as a function of time. Perceived category 

set 𝐽 is determined based on the perceptive categorization assumption, given the observer’s mental 
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state. In this chapter, category set is set unchanged to simplify the study but the formulation can be 

flexible when 𝐽 is a function of 𝚯 and 𝚽𝑡,𝑙𝑡
n . That is, the newly observable information given the 

mental state when the observer is perceiving 𝚯 might change the category set. It is possible that the 

quantified information is positive, unchanged, or negative (when the observer becomes even more 

confused), depending on the combined effect of prior information and the information obtained. 

Here the external information transmission channel/medium is not discussed for simplification 

purpose. However, the common effects of noisy channel/medium are the longer sight distance and 

misperception such as mistakenly reading 17 min as 12 min. 

Some might notice that using the change of the uncertainty to quantify information might 

render zero as long as the perceived distribution is updated “symmetrically.” This can be responded 

in two points. First, “effective information” refers to the information that causes the perceived 

uncertainty to change. When the prior entropy and the posterior entropy are the same, it really 

implies that the traveler’s perceived uncertainty level is unchanged. For example, before receiving 

the information, a traveler might think a travel time distribution of a certain route to be {0.8: 

16min; 0.2: 25 min} while after receiving the information, the traveler’s becomes {0.8: 16min; 0.2: 

25 min}. In both cases, the traveler has low uncertainty, though in the first distribution the traveler 

is quite certain he/she will arrive in 16 min while in the second distribution the traveler is quite 

certain he/she will arrive in 25 min. Second, dynamically, when the interval is small, the “process” 

of the transition is captured during the process and the reason the overall change of uncertainty is 

zero is that the traveler first experiences a reduction of uncertainty but later he/she receives 

conflicting information that causes confusion (and therefore, increased uncertainty), and vice versa. 

The two distributions, though same in entropy, may differ in expected value, which can be captured 

by various diversion measures such as Kullback-Leibler divergence.  

Why is it so important to incorporate grouping effect of human perception in the proposed 

method? In other words, why it is emphasized that only a limited number of discrete events 
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simultaneously can be perceived due to limited brain capacity? Let us express the entropy 

formulation in the terms of probability density as follows. 

−∑ 𝑝(𝑥𝑗)Δ𝑥 log(𝑝(𝑥𝑗)Δ𝑥)
𝑗

= −∑ 𝑝(𝑥𝑗) log 𝑝(
𝑗

𝑥𝑗) − (∑ 𝑝(𝑥𝑗)Δ𝑥
𝑗

) logΔ𝑥 (3.2) 

 

where we use 𝑥 to represent one possible outcome. But now, when we limit the number of 

perceived outcomes, we have 

𝐻 = −∫𝑝(𝑥) log 𝑝(𝑥) 𝑑𝑥

𝕩

− lim
Δ𝑥→0

log Δ𝑥        (3.3)  

 
where 𝑝(𝑥) is the density distribution of 𝑥 ∈ 𝕩 when an observer is able to perceive infinitely small 

differences. The second term makes the whole formulation approaching infinite, which violates the 

limited capacity of perception. Therefore, it is necessary to transform travel time into categories 

such as “arriving late,” “arriving on-time,” relative to the preferred arrival time (PAT).  

Which scheme of information update (learning) to use has significant influence on the 

overall results of the quantified information. The prior distribution can be obtained by historical 

information or a general consensus from the modeling experts about travelers’ perceptive 

characteristics. The posterior distribution is obtained based on certain learning mechanisms given 

each observer’s mental state. Comparing different schemes of information update  is out of the 

scope of this dissertation. But it is important to point out the two important categories of the 

schemes that are widely used in practice – one is based on weighted experience; the other is 

Bayesian. The two methods are essentially equivalent (i.e., information can be treated as weighted 

experience or “fictitious previous observations”) as shown by Poirier (1995), but they in practice 

vary greatly in parameters, computer coding, and computational efficiency/feasibility.  

The first type estimates the distribution by attaching various weights to historical 

experiences and information. That is, experiences are treated as data points with various weights in 

the formation, shown below, 
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𝜓𝒕+𝝉
𝑛 (𝑇𝑇) = 𝜓𝒕+𝝉

𝑛 (𝑇𝑇|𝒕𝒕𝑡
𝑛, 𝜓𝒕

𝑛(𝑇𝑇))                                       (3.4) 
 
where, 𝜓𝒕+𝝉

𝑛 (∙) is the perceived travel time distribution by 𝑛 at time t + τ. 𝐭𝐭t
𝑛 is the newly perceived 

travel time, an instantiation of 𝚯 in this example. 𝐭𝐭t
𝑛 contains link-based travel time perceived by 𝑛. 

For a Bayesian update, the posterior can be formulated as below: 

𝜓𝒕+𝝉
𝑛 (𝑇𝑇) ∝ 𝜓𝒕

𝑛(𝑇𝑇) ∙ 𝑓𝑡
𝑛(𝑡𝑡)           (3.5) 

where 𝑓𝑡
𝑛(𝑡𝑡) is the perceived distribution of travel time by 𝑛 without associating or comparing 

with ex-ante travel time distribution. Traveler information updates traveler’s prior travel time 

distribution and this process can be justified, in a way, by treating the information as an equivalent 

“fictitious sample” and through the “likelihood principle” that the information in the “samples” is 

stored in the likelihood function. Here 𝑇𝑇 is just a general travel time and it can be segment-level, 

route-level, or network-level, depending on the specific context. 

By assuming the unimodal perceived travel time distribution, a point estimate can be 

obtained by searching for the “peak” of the posterior distribution. This can be formulated as 

 
argmax
𝑡𝑡1,𝑡𝑡2,…,,𝑡𝑡L

𝜓𝑡
𝑛(𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝐿)         (3.6) 

 
Subject to:  
 

𝑡𝑡𝑚1
+ 𝑡𝑡𝑚2

+⋯+ 𝑡𝑡𝑚𝑘
+ 𝜖𝑛 = 𝜃𝑚, ∀𝜃𝑚 ∈ 𝚯       (3.7) 

 

∫ 𝜓𝑡
𝑛(𝑇𝑇)𝑑𝑇𝑇

+∞

0
= 1         (3.8) 

 
Here, 𝜖𝑛 is a random variable and depends on the perceptive characteristics of the observer. If an 

observer fully believes the information, 𝜖𝑛 = 0, or else, 𝜖 can be a random variable following a given 

distribution. Link 𝑚2,…,𝑚𝑘 are 𝑘 links whose travel time information get updated using the 

inference from the provided information 𝚯. The inferred link travel time forms route 𝑚’s travel 

time 𝜃𝑚. Equation (8) says to guaranty that the perceived travel time distribution is normalizable.  

It is possible that travelers/shippers use not only historical information but also predicted 

information. Modelers can assume that the traveler’s predicted distribution is a map of historical 
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information, currently given traveler information, and some characteristics of the traveler 

him/herself. In the following example, a non-collaborative traffic network is used where individuals 

do not share information with one another nor predict travel time – the only two influencers on the 

perceived travel time distribution is the historical information and newly perceived information. 

Numerical Example 
 

Suppose that we are interested in the amount of information that a proposed dynamic message 

board (DMB) can provide. This proposed project has 12 alternatives (3 variations on location, 

shown in Figure 3.1, and 4 content variations) on I-110 northbound near-downtown Los Angeles, 

California. Users are classified into six types to be consistent with the Southern California 

Association of Governments’ 2016 RTP model Year 2016 Scenario 3 Setting 7 -- drive alone (DA), 2-

person occupancy-vehicle (HOV2), 3-r-more-person occupancy vehicle (HOV3+), light-duty truck 

(LT), medium-duty truck (MT), and heavy-duty truck (HT). Also identified are the information on 

trip destinations classified into 6 user classes – Santa Monica, Normandie, Hollywood/Chinatown, 

Downtown Los Angeles, and East Los Angeles, shown in Figure 3.1. Preferred arrival times (PATs) 

are used for setting categories and assumed to be 1.2 of the duration of historical average travel. A 

sounder estimation can be obtained departure time choice or activity-based model, if available. 

Listed below are some fictitious instances: 

 Traveler #1: DA, going downtown, 3-category perception (arriving on-time, late, early), 

regular commuter 

 Traveler #2: HOV2, going downtown, 2-category perception (arriving before PAT, arriving 

after PAT), irregular commuter 

 Traveler #3: DA, going to Hollywood, 2-category, first-time user 

 Traveler #4: MT, going to East Los Angeles, 3-category, regular commuter 
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The idea of quantifying network-wide information provision comes from measuring the 

amount of information received by each individual that belongs to his/her user class and 

aggregating individuals based on the known composition of user classes. The demand data is 

obtained from SCAG to obtain the vehicle type and trip direction split and use PeMS data to obtain 

the dynamic profile of the traffic which is used to distribute the hourly traffic flow into 5-min 

intervals at the study location. The observed dynamic link speeds are also obtained PeMS. We are 

interested in measuring the effectiveness of information provision in different scenarios regarding 

the content and location. The sight distance is unchanged in the candidate locations.  

 

 
Figure 3.1 Destination Groups in Subarea Analysis (Left) and the study network (right). The blue 

nodes on the left indicates the candidate location of the proposed DMB. 

The destination distributions and traffic composition of the 6 user classes are obtained from 

select/critical link analysis on SCAG RTP16 model Year 2016 Scenario 3 setting 7. The results for 

AM peak are shown in Table 3.1.  

Table 3.1 Trip destination split percentage at the study location  
AM Peak Santa Monica 

(D1) 
Normandie 
Ave (D2) 

Hollywood 
(D3) 

Downtown LA 
(D4) 

East LA 
(D5) 

DA 0.2% 5.3% 56.2% 22.7% 15.6% 

HOV2 0.6% 5.9% 56.4% 17.2% 19.9% 

HOV3+ 0.5% 10.2% 53.7% 21.4% 14.2% 

LT 1.0% 8.9% 57.8% 18.2% 14.2% 

MT 1.1% 8.9% 57.4% 19.9% 12.8% 

HT 0.8% 9.9% 58.8% 18.2% 12.4% 

Total 0.3% 6.4% 55.8% 21.8% 15.7% 
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The total of 27,018 trips are shown from the select link analysis and the split factor of the 

six user classes are 68.31%, 9.67%, 19.05%, 0.84%, 0.68%, and 1.45%, respectively. The 

destination split is used as the initial solution for the calibration process in TransModeler. This 

destination split is further adjusted along with 5-min interval to fit the PeMS count data.  

The dynamic traffic counts on workdays of March 1-28, 2017, 7:00-8:00 am was collected 

from detector stations of the Performance Evaluation and Measurement System, PeMS. Loop 

detector’s data was only used when reliability indicator was over 80%. The removed “unhealthy” 

data was linearly interpolated using the adjacent days. March 29 (Wednesday) is the study day that 

the DMB information provision strategy is tested on.  Figure 3.2 shows an example of the 

fluctuation of the aggregate 5-min interval flow in a selected period.  Due to lack of further temporal 

details of the user class and destination split, the splitting factors in Table 3.1 are used for all the 

study time intervals. 

 
Figure 3.2 Dynamic Flow Rate Sample (veh/5-min) from 6:30am – 8:30am, Monday March 9, 2017 

(Red) and Thursday March 23, 2017 (Blue) 

Based on the methodology described in the previous section, four concrete steps to measure 

uncertainty were developed as: (1) specify the study period, user type (traffic composition), and 

DMB content and location; (2) calculate entropy at time step 𝑡 prior to perceiving new travel time 

information at that time step; (3) update perceived travel time distribution based on the prior 

distribution and the newly perceived information. (4) calculating change of uncertainty for each 

user and aggregate.  
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Fitted joint distribution for each user is developed based on historical link travel times. 

Here I assume a kernel distribution conditioned on non-negativity. When assuming unimodal, a 

point estimate is approximated using a modified line search. Note that the estimate is selected 

based on the maximum value of probability density rather than the expected value to be consistent 

with typical Bayesian point estimation approach. For demonstration, information update follows a 

Bayesian scheme, though other methods can also be incorporated. There was no particular 

cognitive consideration using this method. Note that when the provided information is not direct, 

only the relevant information is updated. For example, when a traveler going to Santa Monica direct 

perceives the travel time information about the travel time to downtown, the information is 

conditioning only on the relevant links with the link travel time correlation considered. Perceived 

correlation is considered in the update.  

Below is an example for three travelers from 3 different user classes (DA, HOV2, MT), who 

arrive at the study location within the same time interval, with the given information of 12 min and 

14 min for route 1 (to downtown LA). The Drive-Alone (DA) class of drivers are assumed to 

commute every Monday-Thursday, the HOV2 drivers are assumed to commute every Monday-

Wednesday, and each DMB message is set equivalent to 1.5 experiences in information update, and 

the MT is assumed to commute every Monday-Friday.  

Again, the user classes are set without considering the trip/activity purpose even though it 

is convenient to incorporate it when such data becomes available. The study can be extended in the 

future to study the possibility that trucks set the categories based on factors such as fleet operators’ 

preference, business and service types, nature and value of the freight inventory if appropriate 

freight demand model can be obtained. The categorization in this examples uses 𝛼𝑛 ∙ 𝑡�̅�, where 𝛼𝑛 =

1.2, ∀𝑛 is a nonnegative coefficient assigned to traveler 𝑛 which is typically assumed to be greater 

or equal to 1.   
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Travelers might also “opt out,” ignore, or simply miss the information. This can be 

considered in the information update procedure, by either converting information into a weighted 

equivalent experience (when weight is 0, traveler/truck driver does not consider this information) 

or by utilizing models and methods from cognitive science. Here the information is assumed simple 

enough that the observers can fully understand it with no mistakes or misperception (i.e., no 

cognitive cost). For modeling phenomenon of noisy channel/medium (e.g., foggy weather or 

visual/hearing impairment), one can treat a constant travel time information as a random variable 

with stochastic error term or refer to formal cognitive models in this issue.  

Figure 3.3, 3.4, and 3.5 show examples of the empirical travel time distributions from the 

freeway observations (blue histogram) at a segment near the proposed DMB location and the fitted 

distributions. The fitted distributions are used as perceived prior distribution for travelers. The x-

axis shows travel times and the y-axis shows the frequency (count). The distributions for a selected 

time interval are also shown. Figure 3.6 shows the dynamic profile of four selected user class 

segmented based on their destination in the study period when the DMB shows travel time to 

downtown. 

 
Figure 3.3 The histograms show Santa Monica Direction (Drive-Alone (DA) before and after the 

information provision. The red line is the fitted kernel distribution based on experience and newly 
provided information. 

 
Figure 3.4 The histograms show 2-Passegner High Occupancy Vehicles (HOV2) before and after the 
information provision. The red line is the fitted kernel distribution based on experience and newly 

provided information. 
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Figure 3.5 The histograms show Median-Duty Truck (MT). The red line is the fitted kernel 

distribution based on experience and newly provided information. 

 

 
Figure 3.6 Comparing Information Entropy (unit: bits) without (left) and with (right) providing 

Information through Dynamic Massage Board (5-minute Interval). The five rows are for the traffic 
to the five destinations (D1-D5). The four selected user classes are: DA (Green), HOV2 (Orange), 

HOV3 (Blue), and MT (Red). 

Through visualization, we can have a general understanding of the effectiveness of the DMV 

content on different user classes dynamically. For example, the content has low effectiveness 

around 7:20-7:50 for travelers going to Chinatown/Hollywood direction. This seems 

counterintuitive because routes to Santa Monica or Normandie direction share fewer links with the 

route to downtown LA. One explanation is that the perceived travel time on rest of the links of these 

two directions is more correlated with the travel time to downtown than with travel times on links 

to Chinatown/Hollywood direction. Therefore, travel time information to downtown provides more 

information to Santa Monica and Normandie direction than to Chinatown/Hollywood direction.  

By calculating the change of uncertainty for users in different classes, the amount of 

information provided by the dynamic message board can be calculated. Table 3.2 shows the change 

of information entropy for each user class and each time interval on the study day. The content 
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shows the predicted travel time from the location of the DMB to downtown Los Angeles. The total 

information provision is calculated over all six user classes.  

Table 3.2 Change of Information Entropy (Uncertainty) for 15-min time interval and each user 
class classified by vehicle type and destination (D1-D5). 

  Time Interval 
𝜏1−14 

Time 
Interval 
𝜏15−29 

Time Interval 
𝜏30−44 

Time Interval 
𝜏45−59 

Total Information 
(Bits) 

D1 DA -0.1885 0.2974 0.3894 0.5884 6211.983 
HOV2 -0.2706 0.3916 0.4946 0.6584 1333.63 
HOV3+ -0.2333 0.4058 0.5826 0.7624 1883.496 
LT -0.1323 0.3474 0.6407 0.8319 148.4674 
MT -0.1323 0.3474 0.6047 0.8319 169.942 
HT -0.1323 0.3474 0.6047 0.8319 685.6373 

D2 DA -0.0476 0.3650 0.0686 0.4189 6000.786 
HOV2 -0.0919 0.5673 0.2024 0.5301 1656.712 
HOV3+ -0.0778 0.3966 0.3836 0.6977 2293.446 
LT -0.0296 0.2976 0.0543 0.0021 36.654 
MT -0.0296 0.2976 0.0323 0.0075 40.51377 
HT -0.0296 0.2976 0.0127 0.0082 152.6086 

D3 DA -0.1885 0.2974 0.3894 0.5884 38533.89 
HOV2 -0.2706 0.3916 0.4946 0.6584 7440.07 
HOV3+ -0.2333 0.4058 0.5826 0.7624 9895.657 
LT -0.1323 0.3474 0.6047 0.8319 763.6152 
MT -0.1323 0.3474 0.6047 0.8319 893.9846 
HT -0.1323 0.3474 0.6047 0.8319 3606.874 

D4 DA 0.4976 0.5725 0.5791 0.7317 48556.28 
HOV2 0.4024 0.6786 0.5920 0.7822 9149.612 
HOV3+ 0.2114 0.8139 0.6224 0.8518 10945.11 
LT 0.1487 0.8493 0.7608 0.0044 548.0299 
MT 0.1487 0.8493 0.7608 0.0105 643.7723 
HT 0.1487 0.8493 0.7608 0.0005 2582.939 

D5 DA 0.4565 0.3765 0.3649 0.6625 86440.72 
HOV2 0.5786 0.4121 0.4942 0.7324 18940.81 
HOV3+ 0.6407 0.5447 0.6707 0.8136 26933.74 
LT 0.5108 0.6191 0.7340 0.0021 1336.483 
MT 0.5018 0.6191 0.7340 0.0072 

1561.039 
HT 0.5018 0.6191 0.7340 0.0003 

6275.593 
Total 
Information 
(Bits) 

 
 40246 86073 72538 96805 

 
295662.1 

 
 

Table 3.2 shows that the DMB provides a total of 29566.21 Bits (around 288.73KB) between 

7-8am. Information about the non-recurrent congestion is a positive contributor to the reduction of 

the perceived uncertainty. These are considered an advantage of the methodology used in this 
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chapter because the information provision considers observers’ perception rather than only the 

traffic conditions. It is worth noticing that traveler might perceive more uncertainty, though the 

updated distribution (posterior) might be better reflecting the actual traffic situation. In another 

word, traveler information could raise a traveler’s perceived uncertainty, though an updated (more 

“flat”) distribution reflects better the actual traffic conditions. For example, when a traveler thinks a 

certain route will take him 5 minutes for certain, a piece of information showing a prediction of 10 

minutes may cause the traveler feels confused if he/she puts similar weights on his belief and the 

new formation. This situation could increase the traveler’s perceived uncertainty, though new 

perceived travel time distribution might reflect the actual travel time better. Separating the role of 

information as the change of uncertainty from the concepts such as information accuracy and 

reliability provides potentials to explicitly incorporate criteria in existing decision support systems 

without overlapping consideration. Also, since the distribution is updated differently in different 

user classes, different degrees of misperception among users can also be considered.  

The result of installing DMB at the Location 2 has already shown previously. Now, let’s test 

different content alternatives on all the candidate locations. Four candidate contents are: 

1. Travel time to Downtown Los Angeles 

2. Travel time to Santa Monica 

3. Travel time to Downtown Los Angeles from 7:00-7:29 and travel time to Santa Monica from 

7:30-7:59 

4. Travel time to Santa Monica from 7:00-7:29 and travel time to Downtown Los Angeles from 

7:30-7:59 

Table 3.3 summarizes information provision from the DMB installed at one of three 

candidate locations identified previously. 
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Table 3.3 Summary of effective information provision (Kilobytes) for different DMB installation 
locations and different strategies. 

DMB Location Content 1 Content 2 Content 3 Content 4 
Link 1 291.12 228.70 307.01 191.12 
Link 2 288.73 225.12 303.97 189.66 
Link 3 286.53 222.45 298.74 183.93 

 
 

Though link 1, 2, and 3 are close, it is noticeable that earlier information (i.e., Location 3) 

provision tends to be more effective. This minor margin of advantage accumulates, and if work days 

have similar dynamic traffic composition and flow, the benefit could become significant. However, a 

tradeoff should be considered since the earlier the information provided the lower the accuracy it 

could be. Content 1 provides more information than content 2 might be caused by a higher 

proportion of travelers going downtown than going to Santa Monica direction. On the other hand, 

different contents result in significant change regarding the change of distribution. Two main 

factors are suspected to contribute to the outperformance of using content 3. First, most commuter 

trips to Santa Monica direction might have preferred arrival time being between 7:30 am and 9:00 

am. Therefore, a higher proportion of travelers going to Santa Monica pass through the study link in 

the first half of the study hour. Second, commuters to downtown might have similar preferred 

arrival time between 7:30 am and 8:00 am. But since it only takes around 15-20 min to arrive 

downtown from the DMB location, a higher proportion of travelers going to downtown pass 

through the study link in the second half of the study hour.  

The above further leads our interest to the role of trip purpose, trip frequency, and 

departure time in the effectiveness of information provision. When travelers are not familiar with 

the travel time on the selected route, his/her perceived travel time might be “flatter,” and therefore, 

any information provision might generate substantial uncertainty change, and hence, uncertainty 

reduction. Although travel frequency can be obtained in the future from an activity-based model 

(SCAG is scheduled to release around 2020), this chapter assumes all the travelers are regular 

commuters. 
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Due to the lack of information on PAT and related information on setting cognitive 

categories, I assume that a traveler’s preferred arrival time is 1.2 times larger than the perceived 

average travel time at each location and time point. In this case study, I only set two categories, 

though it is possible to set a different number of categories for various users based on their 

cognitive characteristics (e.g., brain capacity, etc.), the purpose of the trip, etc. For example, for a 

senior, he/she might perceive fewer categories (especially for unimportant trips) while a mid-age 

for purpose of commute might perceive more. However, it should be noted that human has a 

limited cognitive capacity and can only simultaneously perceive limited number of cognitive 

categories or possible outcomes.  

In addition to the cognitive category settings, parameters such as how users are classified, 

how historical data are used, and how trip purposes are defined could also have an influence on the 

final results and conclusions. A more comprehensive analysis is needed for more efficient/effective 

resources allocation to improve modeling quality. Analysis for the sensitivity of change of 

parameter settings would be helpful for enhancing the efficiency of project budget allocation. 

The change of uncertainty captures how uncertain about travel time travelers perceive 

before and after the information provision. When traveler changes the travel time distribution from 

{0.3, 0.7} to {0.7, 0.3}, this method generates zero entropy since the traveler experiences no 

uncertainty change, though the information is provided to change the traveler’s perceived average 

travel time. If analysts or decision makers are interested in capturing this part of the information, 

formulation (2.1) can be replaced by methods such as Kullback-Leibler divergence.  

One step further, information might even be negative when the received information 

conflicts with the observable’s previous belief and causes the observable to feel more confused. 

Also, information provision quantification procedure shows sensitivity to which destination’s travel 

time is shown. For instance, there’s a significant change of perceived uncertainty by the newly 

provided information for users with downtown as the destination (DMB shows travel time 
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information on traveling to downtown as well); however, does not vary much for users going to 

other destinations. This can be understood using conditional entropy, and the more different of two 

routes of going to different destinations, the less sharing information the DMB can provide. 

Therefore, which destination’s travel time to show as content makes a difference. It could be a 

valuable practice to change information type based on traffic composition. For example, suppose it 

is given that the majority of traffic flows is going to downtown in morning peak hour, the predictive 

travel time shown on DMB should be given with destination as downtown while at night, same 

location, the predictive travel time on DMB should be given with destination as Santa Monica, to 

maximize information provision. However, it is also worth noticing that maximizing information 

provision might favor certain segments of a market and, therefore, might raise equity concerns.  

Although information update in this example follows a Bayesian method, more specific 

models that consider specific cognitive characteristics can be incorporated thanks to the individual-

based information quantification process. For example, some observers might have sensing 

challenge (e.g., myopia and cataract) or perceptive challenge (e.g., dyslexia), and they will update 

information in different manners, if update at all.  

Conclusion 
 

This chapter proposes to use the change of uncertainty as information quantification measure. That 

is, information is quantified by the difference between the entropy before and after the information 

provision. This proposal applies to measure perceived information on travel time and can be 

extended to more general settings when three fundamental elements are specified: information 

source and content, noisy channel/medium, and sensation and perception of the information 

recipient. The proposed method is cognition-based and consistent with the information theory.  

 One major application is to study the network-wide impact of information provision and 

evaluate the effectiveness of various information provision strategies. In addition to demonstrating 
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the feasibility, the numerical example shows that the effectiveness of information provision is 

sensitive to the dynamic content as well as the location. Specifically, to which destination travel 

time information shows on a dynamic message board should be dependent on the destination 

distribution of the dynamic traffic composition. When most traffic in the first half hour is heading to 

destination A while the second half hour is heading to destination B, the content should be adjusted 

correspondingly. I also recognize that maximizing information provision is not the ultimate 

purpose and should only be used as one criterion in the decision-making process. When the 

objective of providing information is to, say, “nudge” the traffic pattern closer to system optimum 

or improve information equity, the criterion of selecting from alternatives would be different.  

Studying the impact of information provision on mode and route decisions can be an 

immediate extension of the proposed paradigm. A further step can be quantifying the effects of 

information provision on the of activity schedules and other travelers’ perceived uncertainty under 

multi-medium channel. Also of interest are the equity impact of information provision on people 

with sensory or perceptive impairment. Other factors that worth exploring may include age, 

gender, mental health, and personality.  
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CHAPTER 4  
ELASTIC SURPRISE THEORY FOR DECISION UNDER RISK 

 

“My colleagues, they study artificial intelligence; me, I study natural stupidity.” 

–Amos Tversky 

Introduction 
 

Conventional methods have made significant accomplishments in predicting human preference. 

These methods usually tend to be behavior-based, meaning they highly depend on arithmetic 

operations to match the observables while emphasizing less on their cognitive foundation and 

implication. The aim of modeling behaviors under risk in a more fundamental level makes it 

necessary to develop a more homeomorphic approach while maintaining the connection with the 

conventional paramorphic approaches and their practical edge.  

In this chapter, I follow the convention in decision science field and classify decision under 

risk as a type of decision under uncertainty where probabilities are given or known, following 

conventional terminology. Perceived risk is determined by the simultaneous existence of possible 

events perceived by an observer. Suppose that a traveler perceives linear utility function for a 

route’s travel time to be 𝛼 min with full confidence. The question now is: does the traveler perceive 

the same event under 80% confidence be bigger, equal, or smaller? Realizing the difference 

between the ex ante and ex post utility of a payoff event leads to our interest in measuring the gap, 

which, in this chapter, is explained by the Elastic Surprise (ES). 

Major contributions of this chapter are as follows. First, the proposed method unifies 

conventional methods in modeling decision under risk by specifying their underlying cognitive 

assumptions, so that modelers would have a consistent guidance of which model to choose. The 

relations among some common methods such as the Expected Utility Theory (EUT), the Cumulative 

Prospect Theory (CPT), and the Mean-Variance Method (MV) are explained under one single 
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framework. Non-compensatory methods such as the Elimination-By-Aspects (Tversky, 1972) is also 

applicable when ES is considered as an attribute. Second, the proposed method directly connects 

with the Information Theory (IT). In fact, the utility of a prospect equates the corresponding 

perceived information entropy when an observer has no preference towards the perceived possible 

outcomes. Appendix C verifies and discuss that information entropy is a unique measure of 

uncertainty to satisfy three basic conditions – continuity, monotonicity, and compound equivalency 

if probabilities are represented in reals. For strict proof, see Shannon (1949). Third, that EUT 

generates paradoxes is in part explained by the indifferentiation between a possible outcome’s 

utility under risk and utility under certainty, and a revised version (REUT) is proposed to quantify 

the discrepancy between these two utility functions. REUT, unlike the original EUT, avoids the 

paradox caused by rescaling and convexity dependency between utility assessed by the probability-

equivalency approach and the certainty-equivalency approach. Fourth, the proposed differentiation 

between risk and misperception improves a model’s interpretability. The paper proposes to deal 

with misperception and risk in a relatively separate manner. It is worth emphasizing that the 

proposed method is not creating additional issues. Instead, it only brings explicit some used-to-be 

implicit assumptions on observers’ cognition, and the framework “collapses” into conventional 

methods when certain assumptions about cognition are made.  

Decision under risk in decision science community commonly refers to a decision context 

where probabilities are given, while decision under uncertainty is a broader case where probability 

may or may not be given. However, semantically speaking, decision under risk should involve at 

least one unfavorable outcome. Indeed, when a decision involves many possible outcomes but all of 

them are perceived favorable, it is hardly a decision under risk (Fischoff, et al., 1984). This chapter 

puts efforts on consistency with the conventional definition of risk and of uncertainty in decision 

science; however, due to a different definition on uncertainty in IT, the term, uncertainty, may also 

involve specific probabilities in a discussion related to entropy. 



62 
 

The next two sections review related literature and propose additional challenges using 

conventional methods. Then the key concept of this chapter, Elastic Surprise (ES), is defined. How 

ES is incorporated into a utility function is also discussed. The logarithmic form of ES is studied as a 

relatively independent section for its normative nature and the relationship with entropy. 

Following the discussion on the logarithmic form of ES is the analysis of the cognitive and 

behavioral implications from using certain ES functional forms. They are oriented to the 

applications and findings of using ES to study various existing models including EUT, MV method, 

and CPT. The numerical study provides a concrete example of incorporating ES into the existing 

method (CPT) on studying traveler route choice under risk.  

Literature Review 
 

A large body of literature has been from different fields has been proposing and assessing various 

EU and non-EU frameworks. Wakker (2010) provides a compressive survey on the connections 

among conventional methods and the evolution from EU to CPT. De Palma et al. (2008) provides a 

review on using conventional additive utility model and categorizes them into the EU and non-EU 

framework for further discussion in discrete choice in static and dynamic contexts for travel 

behavior analysis. Non-additive decision-making models include but not limited to elimination-by-

aspects (e.g., Tversky, 1972) and decision tree/random forest method in machine learning (e.g., 

Myles et al., 2004).  

EUT was initially proposed by Bernoulli in 1738 as a normative model and was developed 

by von Neumann and Morgenstern (1945) to model human decision under risk and uncertainty. 

Therefore, it comes as no surprise that when studied closely, challenges arise. Researchers such as 

Allais (1953a) and Ellsberg (1963) propose paradoxes and questioned its underlying axioms. 

Methods such as prospect theory (PT, Kahneman and Tversky, 1979), anticipated utility (Quiggin, 

1982), and dual theory (Yaari, 1987) can be viewed as expected utility methods with subjective 
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value functions and subjective weights. One well-known issue is the violation of stochastic 

dominance when some researchers attempted to incorporate subjective probabilities/weights as a 

nonlinear transformation of given probabilities (Handa, 1977). Camerer (1989) tests several 

generalized utility theories and finds that prospect theory can explain most of the data through 

experiments. The CPT, proposed by Tversky and Kahneman in 1992, advances PT by introducing 

Quiggin’s rank dependence (Quiggin, 1982) to resolve the issue of violating stochastic dominance 

while keeps concepts such as framing effect, loss aversion, and likelihood insensitivity.  

Despite that experimental violations of betweenness axiom and nonlinearity in perceived 

probability are observed, many theorists are still reluctant to forsake them as a key behavioral 

foundation (Camerer and Ho, 1994). Although the rank-dependent weighting function resolves a 

theoretical problem of stochastic dominance, the weighting function is only improved to be 

sensitive to the rank rather than the continuous change of prospect(s) (Tversky and Kahneman, 

1992). Becker and Sarin (1987) propose the Lottery Dependent Expected Utility (LDEU) through a 

specific parameter sensitive to a given lottery but not the specific location on that lottery. Daniels 

and Keller (1990) compare the LDEU and the EUT and found an improved prediction in choices 

among risky options but not so in using probability or certainty equivalent indifference judgments. 

Another direction is through studies on quantifying surprise for understanding the nonlinear 

characteristics of the weighting function. Atkinson (1957) proposes to capture hedonic intensity 

through a linear function of (1 − 𝑝). Brandstätter et al. (2002) extend this construal as a surprise 

function and propose to account for the nonlinearity of the weighting function using the notion of 

elation and disappointment, and yet, it is not addressed how elation (disappointment) emerges in a 

choice with only unfavorable (favorable) outcomes.  

A large body of evidence suggests the significant impact of risk and reliability in human 

decisions in transportation systems (e.g., Small et al., 2005; Brownstone and Small, 2005). This 

concern leads to efforts on capturing risk preference on decisions in transportation systems such as 



64 
 

route and departure time choice by travelers and shippers. Noland and Small (1995) examine the 

impact of travel time variability on departure time choice. Ramos et al. (2014) provide a review of 

the developments in EUT, PT, and Regret Theory (RT) for modeling traveler behavior under 

uncertain travel time. Chow et al. (2010) use a genetic algorithm to estimate CPT parameters for 

selection of high-occupancy-vehicle lane. Lo et al. (2005) use MV-based method to capture risk 

preference. Boyles et al. (2010) account for the impact of day-to-day travel time variation on route 

decision using the MV-based model in determining congestion pricing strategy.  

More on Scale and Convexity Paradox in Existing Methods  
 

The literature review in the previous section mentions some commonly recognized paradoxes and 

problems against existing methods, especially EUT. This section, more paradoxes, and challenges 

are proposed for existing methods, including the heavy dependence on the curvature of the value 

function and inseparability between misperception and risk aversion in the cumulative prospect 

theory (CPT). 

First, there is a caveat in using the convexity of a utility function to identify risk preference. 

In EUT, risk aversion is equivalent to the concavity of the utility function (𝑢′′ < 0). However, 

suppose that we conducted a survey with choices under certainty and estimated a convex utility 

function. Now, if we do another survey about decisions under risk, should we adjust this convex 

function that we estimated in the first place if the two surveys reveal different utility function? 

Which one is correct? Besides, measure unit matters in the convexity the utility function revealed 

by a survey. For instance, suppose we use two utility scales (one in 𝕋, the other in √𝕋
3

) for the 

payoff 𝑥. When using the first scale, we obtain u = x2; while using the other scale, we obtain u = x
2

3. 

One is strictly convex, and the other is strictly concave. Therefore, the convexity of utility function 

itself does not capture the essence of risk preference. CPT in this aspect clearly differentiates loss 

aversion and risk aversion.  
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Although methods such as CPT can be used to describe some of the paradoxes and approach 

issues such as framing effect and risk aversion, it made no difference than methods such as EUT in 

principle due to the indifferentiation between misperception and risk (it is noted that the risk loss 

is captured partially by concave value function and partially by the nonlinear cumulative weighting 

function). Suppose that a choice maker was framed in a way that the post-misperceived 

probabilities and reference point become that in the Allais paradox. The same issue arises as does 

in EUT.  

Last, a common misunderstanding is that a choice maker based on the CPT overestimates 

small probabilities. This is not necessarily the case. Suppose a choice maker has a decision that has 

three possible outcomes: -50, -20, 30, relative to the reference 0, with the probability 0.20, 0.10, and 

0.70. According to the CPT, the weights of the three outcomes would become 0.26, 0.07, and 0.53 

base on the estimates by Tversky and Kahneman (1992). That is, the second outcome, though has 

small probability, is underestimated rather than overestimated. Situations like this suggest that 

either this overestimation bias is not universally the case, or there could be additional factors 

underneath the revealed weighting function. In this chapter, I in effect propose that there are two 

underling factors that contribute to the revealed nonlinear decision weights – probability 

misperception and elastic surprise.  

Elastic Surprise (ES)  
 

In this section, I introduce a few formal notations and then introduce the concept of Elastic Surprise 

(ES). I denote state space as 𝑺 for states of nature where 𝑠𝑖 ∈ 𝑺 is the 𝑖th state. All the elements 

within 𝑺 are perceived as exhaustive and mutually exclusive. A choice maker has no impact, 

whatsoever, on the probabilities of any states to occur. Any subsets of 𝑺 are called events, 

commonly notated as 𝐸𝛼 , where 𝛼 is the index of a specific event. When 𝐸𝛼  and 𝐸𝛾 are 

complementary, 𝐸𝛾 is equivalent to 𝐸𝛼
𝑐  and 𝐸𝛼  is equivalent to 𝐸𝛾

𝑐. If 𝐸𝛼 ≻ (or ≽) 𝐸𝛾, we say 𝐸𝛼  is 
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preferable (or weakly preferable) to 𝐸𝛾. If 𝐸𝛼 ≺ (or ≼) 𝐸𝛾, We say 𝐸𝛾 is preferable (or weakly 

preferable) to 𝐸𝛼 . 

A Prospect is a function that maps an event to an outcome (Wakker, 2011). A prospect 

represents a course of actions in the prospect set 𝚲 in a decision context and maps all possible 

states to real numbers. Note that a prospect contains more meaning than a choice. For example, a 

person might choose an option A, but the prospect associated with option A not only contains the 

meaning of choosing A but also contains a correspondence of all possible outcomes. If prospect 𝑥 ∈

𝚲 is presented as a tuple (𝑥1, 𝑥2,…,𝑥𝑖, … , 𝑥𝐼) and prospect 𝑦 ∈ 𝚲 is presented as (𝑦1, 𝑦2,…,𝑦𝑖 , . . , 𝑦𝐼), 

where 𝑖 ∈ 𝕀 is an index of a possible event in the set 𝕀, 𝐼 = 𝐶𝑎𝑟𝑑(𝕁), we can write preference 

(𝑥1, 𝑥2,…,𝑥𝑖, … , 𝑥𝐼) ≽ (or ≻) (𝑦1, 𝑦2,…,𝑦𝑖 , . . , 𝑦𝐼)as 𝑥 ≽ (or ≻)𝑦.When we want to explicitly clarify 

the associated events, we can write the tuple as (𝐸1: 𝑥1, 𝐸2: 𝑥2, … , 𝐸𝑖: 𝑥𝑖, … , 𝐸𝐼: 𝑥𝐼). The appendix I 

shows that, for multiple prospects under consideration, one can always find a number 𝑛 such that 

all the prospects have the same 𝑛 events set up by allowing empty sets. The function 𝑉(∙) maps a 

prospect to a real number so that the relative preference can be compared numerically among 

prospects. 𝑉(∙) is often called certainty equivalent (CE) under the EUT.  

A lottery, 𝐿, is a complete set of feasible combination of probabilities of all possible outcome 

(𝑝1, … , 𝑝𝐽) with 𝑝𝑗 ≥ 0 ∀𝑗 ∈ 𝕁, 𝐽 = 𝐶𝑎𝑟𝑑(𝕁), and ∑ 𝑝𝑗𝑗 = 1, where 𝑝𝑗  is presented probability of 

outcome 𝑗 to occur. We use 𝜙𝑗 to map 𝑝𝑗  to the corresponding post-misperceived probability. 𝜙𝑗 

has specific cognitive interpretation and is different than the decision weight, 𝜋𝑗, used in the 

prospect theory.  

Function 𝑢(𝑥, 𝐸𝑖) maps a specific prospect 𝑥, event 𝐸𝑖 , and 𝐸𝑖 ’s associated decision weight to 

a real number so that the numerical relationship among all possible combinations represents 

relative preferences. 𝑢(𝑥, 𝐸𝑖) is different than 𝑥𝑖 since 𝑥𝑖 might not reflect the perceived value of the 

event 𝑖 for the particular choice maker. For example, 𝑥1 = $10 and 𝑥2 = $20, the choice maker does 

not necessarily value 𝐸2 twice as much as value 𝐸1 given 𝑥. This chapter discusses cases where the 
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probabilities of events are given or known by the choice maker, and therefore, 𝑢(𝑥𝑖, 𝐸𝑖) and 

𝑢(𝑥𝑖, 𝜙𝑖) mean the same. When a choice maker puts decision weight on each possible outcome with 

their corresponding probabilities, 𝑢(𝑥𝑖, 𝜙𝑖) equates 𝑢(𝑥𝑖, 𝑝𝑖). When 𝜙𝑖 = 1,𝜙𝑗 = 0, ∀𝑗 ≠ 𝑖, the 

decision is perceived to be made under certainty for event 𝑖. We keep the convention by naming 

this utility Bernoulli utility and denote it 𝑢(𝑥𝑖, 1), or simply 𝑢𝑖. As can see, the ex ante utility, 

𝑢(𝑥𝑖, 𝜙𝑖), and ex post utility, 𝑢(𝑥𝑖, 1) are clearly differentiated. We denote the joint utility 𝑈 =

𝑈(𝑥, 𝐸1𝐸2…𝐸𝑗…𝐸𝐽) to represent the utility of prospect 𝑥 before the choice maker knows which 

event occurs. When no confusion occurs, we write 𝑈(𝑥, 𝐸1𝐸2…𝐸𝑗 …𝐸𝐽) as 𝑈(𝑥) or 𝑈.  

Elastic Surprise (ES) of an event measures the amplitude of “feeling surprised” when this 

event happens. Concretely, when perceived probability is unity, there perceives no surprise. On the 

other hand, if the perceived probability approaches 0, the surprise shall generally increase. Instead 

of weighing the “sure-to-happen” utility of the perceived outcomes 𝑢(𝑥𝑗, 1), we can incorporate the 

utility of the ES to explain the gap between 𝑢(𝑥𝑗, 1) and 𝑢(𝑥𝑗, 𝜙𝑖). Indeed, perceived utilities with 

and without certainty are different even if referring to the same event. To simplify the notation, the 

utility of a possible outcome is always anchored on the reference, 𝑢0 = 0, so that 𝑢(𝑥𝑗, 1) − 𝑢0 =

𝑢(𝑥𝑗, 1).  

We denote𝑆(𝜙𝑗) as the ES function. 𝑆(𝜙𝑗) or, simply 𝑆𝑗, generally decreases over (0,1]. 

Indeed, when an event is perceived as very likely (𝜙𝑗 approaches 1), the observer will not be so 

surprised when it happens. Similarly, when the observer perceives the outcome nearly impossible 

(𝜙𝑗 approaches 0), the observer will be very surprised when it happens. We can also associate ES 

function with more specific emotions or with neural stimulation, but we leave them as two 

interpretations among many. In non-compensatory choice models, ES can be treated as an attribute 

for evaluating an outcome. The paper focuses on the additive utility method. 
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 Let an operator 𝛽𝑗 associated with the outcome 𝑗 act on the ES function associated with 𝐸𝑗  

to have 𝑢𝑠(𝜙𝑗), so 𝑆(𝜙𝑗)can be scaled to that of 𝑢(𝑥, 𝜙𝑗). That is, 

𝑢𝑠(𝜙𝑗) = 𝛽𝑗 ∙ 𝑆(𝜙𝑗) (4.1) 

One can then obtain the total perceived utility of a prospect. Note that an ES function is fixed for all 

outcomes to simplify the analysis, though this assumption can be relaxed. The specification of 𝛽𝑗 

can be obtained through stated and revealed preference data, and a numerical example is shown in 

a later section.  

By the proposition of additivity and linearity under independence axiom, one can form the 

additive utility with the expectation form as 

𝑈 =∑𝜙𝑗𝑈𝑗
𝑗∈𝕁

=∑𝜙𝑗𝑢(𝑥𝑗 , 𝜙𝑗)

𝑗∈𝕁

, ∀𝑗 ∈ 𝕁 (4.2) 

where  

𝑈𝑗 = 𝑢(𝑥𝑗 , 𝜙𝑖) = 𝑢(𝑥𝑗 , 1) + 𝑢
𝑠(𝜙𝑗) = 𝑢𝑗 + 𝑢𝑗

𝑠. (4.3) 

𝑈is the ex-ante utility of 𝑥 on 𝐿. When no confusion arises, 𝑢𝑗
𝑠 is denoted as 𝑢𝑠(𝜙𝑗).  

Logarithmic ES Function and Information Entropy 
 

This section discusses a specific form of ES function, logarithmic ES (L-ES) function and explain why 

this is a natural benchmark for studying other ES functions. Probabilities are not transformed to the 

misperceived ones to allow our focus on the ES function itself. L-ES has some intriguing and 

cognitively implicative properties that will be further discussed in Section 6. Let L-ES function be 

𝑆(𝑝𝑗) = log𝑏
1

𝑝𝑗
+ 𝐶𝑗 (4.4) 

where 𝑏 is the base that captures the scale of the L-ES function, and 𝐶𝑗 is a constant. 𝐶𝑗 = 0 since 

when 𝑝𝑗 = 1 the L-ES function is 0. The L-ES with different bases and scalers are plotted in Figure 

4.1. 
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Figure 4.1 The left graph shows the logarithm of 1/p where p = (0,1] with base 2, e, and 10. The 

right graph shows different natural logarithm of 1/p by varying the scaler 

Expanding 𝑈 linearly with L-ES for prospect 𝑥 and combining (1),  

∑ 𝑝𝑗(𝑢𝑗 + 𝑢𝑗
𝑠)𝑗 =E(𝑢) + 𝐸(𝑢𝑠) (4.5) 

where  𝐸(𝑢) = ∑ 𝑝𝑗𝑢𝑗𝑗  and 𝐸(𝑢𝑠) = ∑ 𝑝𝑗𝑢𝑗
𝑠

𝑗 = ∑ 𝑝𝑗𝛽𝑗 logb
1

𝑝𝑗
𝑗 , ∀𝑗 ∈ 𝕁.  

How does the formulation capture risk preference? To answer this question, let’s study the 

effect of 𝛽𝑗 on 𝑢𝑗
𝑠 and 𝑈𝑗 . Suppose the “sure-to-happen” utility 𝑢j is measurable. If 𝑈𝑗  is larger than 

𝑢𝑗, the choice maker overestimates the actual gain or underestimate the actual loss of 𝑥𝑗. We say 

that this choice maker is risk-prone for 𝑥𝑗. If the revealed utility for this outcome, 𝑈𝑗 , is larger than 

𝑢𝑗, the choice maker underestimates the actual gain or overestimates the actual loss of 𝑥𝑗, and we 

say that this choice maker is risk-averse for 𝑥𝑗. If the revealed utility for this outcome, 𝑈𝑗 , equates 

𝑢𝑗, the choice maker perceives the actual gain or loss of the 𝑥𝑗, and we say the choice maker risk-

neutral for 𝑥𝑗. We can describe the above statement mathematically by let 

𝑈𝑗 = 𝑢𝑗 + 𝛽𝑗 ∙ logb
1

𝑝𝑗
,     𝛽𝑗 = {

𝑘1, 𝑥𝑗 ≻ 𝑥0
0, 𝑥𝑗 ∼ 𝑥0
𝑘2, 𝑥𝑗 ≺ 𝑥0

 (4.6) 

where 𝑥0 is the reference (or anchor) and 𝑘𝑗 ∈ ℝ, 𝑗 ∈ 𝕁. When 𝑥𝑗 is favorable (𝑥𝑗 ≻ 𝑥0), 𝑘1 > 0 

renders risk-prone and 𝑘1 < 0  renders risk-averse for 𝑥𝑗. On the other hand, when 𝑥𝑗is 

unfavorable (𝑥𝑗 ≺ 𝑥0), 𝑘2 > 0 renders risk-prone and 𝑘2 < 0 renders risk-averse for 𝑥𝑗. When 

people have different risk preferences for different possible outcomes, the overall utility, 𝑈, with 

respect to the expectation of 𝑢𝑗 (Bernoulli utilities), depends on the relationship of 𝑘1 and 𝑘2 and 
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specific location on 𝐿. this complication is illustrated in Figure 4.2 with different combinations of 𝑘1 

and 𝑘2 in a gamble (𝑝1: 3, 𝑝2: −3). When 𝑘1 > 0 and 𝑘2 > 0, 𝑈 is systematically larger than 

𝐸(𝑢).This suggests that the choice maker perceives uncertainty as a positive factor, and therefore, 

reveals as risk-prone. When 𝑘1 < 0 and 𝑘2 < 0, 𝑈 is systematically lower than 𝐸(𝑢).This suggests 

that the choice maker perceives uncertainty as a negative factor, and therefore, reveals as risk-

prone. When 𝑘1 ∙ 𝑘2 < 0, the formulation reveals risk-prone on one side while risk-averse on the 

other, depending on the “dominant” 𝑘𝑗 at the specific location of 𝐿. 

 
Figure 4.2 The left shows the effect of different combinations of 𝑘1 and 𝑘2 (𝑘1 ∙ 𝑘2 > 0) on 𝑈; the 
middle shows the effect of different combinations of 𝑘1 > 0 and 𝑘2 < 0 on 𝑈; The right shows the 

effect different combinations of 𝑘1 < 0 and 𝑘2 > 0 on 𝑈 

Note that the two types of risk preference (one for 𝑈 and the other for 𝑈𝑗) should be clearly 

specified before any meaningful discussion. For example, an observer might be risk-prone to the 

favorable outcomes (i.e., overestimating its potential gain) and risk-prone to the unfavorable 

outcomes (i.e., overestimating its potential loss) and the overall revealed choice behavior might be 

risk-prone, risk-averse, or risk-neutral. This suggests that ES can be used to consider more complex 

situations where choice maker reveals different risk preference on different locations on a lottery. 

This flexibility will be shown in the case studies.  

Now, let’s explore a scenario where all outcomes are perceived to be favorable or 

unfavorable comparing to the subjective reference. That is, 𝛽1=𝛽2 = ⋯ = 𝛽𝑗 = ⋯ = 𝛽𝐽 = 𝛽. Let’s 

take it into (4.5) to have  

𝑈 = 𝐸(𝑢) + 𝛽 ∙ 𝐻 (4.7) 
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where 𝐻 = ∑ 𝑝𝑗 log𝑏
1

𝑝𝑗

𝐽
𝑗=1 , ∀𝑗 ∈ 𝕁 is known as Shannon’s information entropy.  

Let’s pause it here. (4.7) shows that the information entropy can be viewed as the 

expectation of L-ES and the utility of a prospect can be interpreted as the combination of the 

expected Bernoulli utility and the utility associated with the risk when the observer has no 

preference over the possible outcomes. In other words, the expectation of L-ES can be used to 

quantify perceived uncertainty when 𝑈 only considers the elastic surprise. Appendix II proves that 

when three basic conditions are required, information entropy is the unique uncertainty measure. 

L-ES becomes, therefore, a natural benchmark to determine whether a given ES function 

overestimates or underestimates uncertainty. Figure 4.3 plots the multiplication of the probability 

and the ES function, which can be interpreted as the perceived uncertainty on 𝐿. When probability 

approaches zero or one, the uncertainty approaches zero because the observer perceives the 

outcome as a sure-thing. Uncertainty is maximized when the observer perceives the outcomes 

equally likely. Due to the constraint ∑ 𝑝𝑗𝑗 = 1, the curve for 𝑝 ∙ logb (
1

𝑝
) loses a degree of freedom 

and is skewed towards the y-axis.  

  
Figure 4.3 The left shows 𝑝 ∙ 𝑆(𝑝). The right shows entropy 𝐻 over a bi-outcome lottery 

There are two implications from this analysis. First, when uncertainty is not perceived 

consistently with L-ES function, the choice maker fails to evaluate uncertainty objectively if the 

three basic conditions in Appendix II are required and, therefore, over/under-estimating risk is 

unavoidable. Second, the amount of information received by an observer can be measured by the 
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change of the perceived entropy. Therefore, L-ES function is a natural pivot to study other types of 

ES functions.  

Table 4.1, as a demonstration, shows other candidate ES functions and their corresponding 

impact on 𝑈. We use the constant 𝛽 so that we can focus on the effect of different forms of ES 

functions.  

Table 4.1 Selected surprise functions and their corresponding linear transformation to utility 
𝑆(∙)  General Shape 𝑈 Property 

1 − 𝑝𝑗
𝑛 

 

 

𝐸(𝑢) + 𝛽∑ 𝑝𝑗(1 − 𝑝𝑗
𝑛)

𝐽

𝑗=1
 

= 𝐸(𝑢𝑗) + 𝛽(1 − 𝑝1
𝑛+1 −⋯− 𝑝𝐽

𝑛+1) 

Since 𝑝𝑗
𝑛 ≤ 𝑝𝑗 when 𝑛 ≥ 1, 𝑈 is formed by a 

“hyper-sphere” around the hyperplane 𝐸(𝑢𝑗) 

on 𝐿. When 𝑛 = 0, 𝑈 is risk netural. When 𝑛 =
1, 𝑈 measures uncertainty using Gini-Simpson 
index. When 𝑛 → +∞, 𝑈 takes risk as a 
constant 
 

(
1

𝑝𝑗
)

𝑚

− 1 

 

 

𝐸(𝑢) + 𝛽∑ 𝑝𝑗 ((
1

𝑝𝑗
)

𝑚

− 1)
𝐽

𝑗=1
 

When 𝑚 = 1, the second term becomes 𝛽 ∙
(𝐽 − 1). This uncertainty measurement is only 
related to the number of perceived outcomes. 
When 𝑚 > 0, it is essentially ES function 1 −
𝑝𝑗
𝑛  when 𝑛 < 0. 

tan(𝜋(1 − 𝑝𝑗)) 

 

𝐸(𝑢) + 

𝛽∑ 𝑝𝑗 tan(𝜋(1 − 𝑝𝑗))
𝐽

𝑗=1
 

This is a legit ES because 𝑆′(𝑝) < 0 
and lim

𝑝→0+
𝑝 ∙ tan(𝜋(1 − 𝑝)) = 0.  

Properties and Cognitive Implication  
 

This section discusses some interesting properties and revealed implications when limiting the 

perceived probability in an ES function to zero or increasing the number of perceived possible 

outcomes. Then, we discuss a potential theoretical issue critical to many theorists.  

Limit at 𝟎+ 
 

We have discussed the property of ES, in which the closer the 𝑝𝑗  to unity the more certain the 

observer perceives 𝐸𝑗  to occur (i.e., low uncertainty); similarly, the closer the 𝑝𝑗  to 0, the more 

certain the observer perceives 𝐸𝑗  to not to occur (i.e., low uncertainty as well). In the example of 

limiting property of 𝑝 log𝑏
1

𝑝
 where 𝑝 approaches 0, “0 ∙ ∞” condition emerges. The rate of 

𝑝𝑗 

𝑆(𝑝𝑗)  

𝑝𝑗  

𝑆(𝑝𝑗)  

𝑝𝑗  

𝑆(𝑝𝑗)  



73 
 

approaching 0 and the rate of approaching +∞ can be compared for log𝑏
1

𝑝
, 𝑏 > 0 using the 

L’Hospital’s Rule. Since lim
𝑝→0+

𝑝 logb
1

𝑝
= lim
𝑝→0+

𝑝′

((log𝑏(
1

𝑝
))
−1
)
′ → 0, b > 0, the form of expectation of ES is 

closed. 

Recognizing that human only perceives and evaluates a limited number of discrete events 

simultaneously due to brain’s capacity (Miller, 1956) necessitates the consideration of grouping 

effect. An appropriate homeomorphic model should be capable of capturing the situation where an 

increasing number of events leads to a heavier burden on perception. Unfortunately, this is 

commonly omitted in the existing methods. In fact, many methods treat the capability of 

considering continuous random events as an advantage. In contrast, the conventionally implicit 

assumption on infinite power of perception becomes explicit using the ES-based method. Take L-ES 

as an example and expand (4.5) as 

−∑ 𝑝(𝛼𝑗)Δ𝛼 log(𝑝(𝛼𝑗)Δα)
𝑗

= −∑ 𝑝(𝛼𝑗) log(𝑝( 𝛼𝑗))
𝑗

− (∑ 𝑝(𝛼𝑗)Δα
𝑗

) logΔα (4.8) 

and when limit the number of perceived outcomes,  

𝐻 = − ∫ log(𝑓(𝛼)) 𝑑𝐹(𝛼)

𝛼∈ℝ

− lim
Δα→0

log Δα (4.9) 

where 𝑓(𝛼) and 𝐹(𝛼) are the probability density function and the cumulative density function, 

respectively, of the payoff 𝛼 when an observer could perceive infinitely number of events 

simultaneously. The second term of (4.9) causes the whole formulation to approach infinity, which 

violates the limited nature of cognitive capability. In other words, the weights associated with the 

ES increase nonlinearly with the number of perceived outcomes. Attenuating weights might not 

reflect the weights a choice maker assigns, and therefore, the number of perceivable events should 

be carefully determined.  

 I have made similar discussion in the assumptive caveat on an observer’s cognition in 

Chapter 3 (formulation (3.2) and (3.3)). It is important to notice that this seemingly repetitive work 
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comes from two different foundation and starting point. In Chapter 3, the assumption of observer’s 

cognition when using Shannon’s information entropy to quantify perceived information is 

discussed, while, in this chapter, the same conclusion is reached when studying the underlying 

cognitive assumption on L-ES function.  

Rationality, Stochastic Dominance, and Trade-off Consistency 
 

Figure 4.4 shows the impact of different 𝛽 on 𝑈. Since, 𝛽 is a constant for the two possible outcomes 

in (𝑝1: −5, 𝑝2: 3), regardless of the preference on different outcomes, the overall convexity is not 

influenced by the location on 𝐿. That is, when 𝛽 > 0, the curve 𝑈 is concave, and when 𝛽 < 0, the 

curve 𝑈 is convex. When 𝛽 = 0, the perceiver is risk-neutral.  

 
Figure 4.4 Relationship of 𝑈 and 𝐸(𝑢) on the two-outcome lottery with a range of 𝛽 that captures 

risk-preference with the potential trade-off inconsistency. 

For normative models founded on rationality axiom, 𝛽 should not render the case of 

𝑚𝑖𝑛{𝑢1, 𝑢2} ≤ 𝐸(𝑢) + 𝐸(𝑢
𝑠) – how could one ever prefer losing $5 for sure than only having 50% 

chance of losing $5 and another 50% chance of gaining $3? This type of constraint is sometimes 

referred to as first-order stochastic dominance – moving probability mass to the less favorable 

outcome should strictly worsen this prospect. However, the condition 𝑚𝑖𝑛{𝑢1, 𝑢2} ≤ 𝐸(𝑢) + 𝛽 ∙ 𝐻 

requires 𝛽 to infinitely approach 0. This is because 𝐻 “drags down”𝑢1 more severely than the effect 

of “pulling up” by 𝑢(𝑥2) when 𝑝1 approaches 1 regardless of how close the negative 𝛽 is to 0. 

Similarly, 𝐻 “pulls up” 𝑢2 more severely than the effect of “dragging down” by 𝑢(𝑥2) when 𝑝2 

approaches 1 regardless of how close the positive 𝛽 to 0. The assumption that an observer can 

perceive infinite surprise in L-ES function form is the culprit. Three of the possible ways to avoid 
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this issue are (1) choosing reasonable ES that contains certain upper threshold, (2) using nonlinear 

scaler 𝛽 to compensate the effect caused by large ES, or (3) a combination of (1) and (2). I do not 

argue that this normative assumption must be true in a descriptive model, but it is important to be 

aware that the form and scale of an ES function could have a significant implication on behavioral 

assumptions of a descriptive model.  

Trade-off consistency in a broad sense refers to a decision where improving an outcome in a 

prospect improves the favorability of this prospect. In a simple scenario where 𝛽1=𝛽2 = ⋯ = 𝛽𝑗 =

⋯ = 𝛽𝐽 = 𝛽, this consistency is automatically satisfied as long as 𝑢𝑗 strictly increases with 𝑥𝑗. In a 

case where 𝛽 and ES are outcome-specific, trade-off consistency needs to be closely examined to 

avoid violating the trade-off consistency (if this consistency is assumed necessary.)  

EUT and Its Revision 
 

Under the EUT, utility on 𝐿 and utility on sure-amount are termed as von-Neumann-Morgenstern 

(v.N-M) expected utility and Bernoulli utility, respectively. The v.N-M utility is the expectation of 

sure-amount utilities. In other words, the EUT assumes that a choice maker values utility of 𝑗 under 

certainty the same as the utility of 𝑗 under uncertainty.  

The EUT determines the risk preference by comparing their expected (Bernoulli) utility 

with the utility of certainty equivalent (CE). Historical and newly proposed drawbacks of using this 

relation to capture risk preference are reviewed in Section 2 and 3. I revise the EUT and name it 

Revised Expected Utility Theory (REUT) by differentiating 𝑈𝑗  and 𝑢𝑗, so that risk preference is 

determined based on the relationship between 𝑈 and 𝐸(𝑢𝑗). For instance, in (𝑝1𝑥1𝑝2𝑥2), if 𝑈 <

𝑝1𝑢1 + 𝑝2𝑢2, the choice maker is risk-averse. The gap between 𝑈 and 𝐸(𝑢) is explained by E(𝑢𝑠). In 

other words, 𝑢𝑗 is “freed” from the mission of capturing the risk preference. 
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With 𝑢𝑗, 𝐸(𝑢), 𝑈𝑗 , and 𝑈 differentiated, one can use two different criteria for determining 

risk preference: the expected payoff and the expected utility. The relationship is summarized in 

Table 4.2.  

Table 4.2 Risk preference regarding expected payoff and expected utility in REUT. 
 Regarding utility of expected 

payoff  
Regarding expected Bernoulli 
utility 

Risk-Prone 𝑈 > 𝑢(𝐸(𝑥), 1) 𝑈 > 𝐸(𝑢) 
Risk-Neutral 𝑈 = 𝑢(𝐸(𝑥), 1) 𝑈 = 𝐸(𝑢) 
Risk-Averse 𝑈 < 𝑢(𝐸(𝑥), 1) 𝑈 < 𝐸(𝑢) 

 

Figure 4.5 illustrates the concepts by comparing 𝑢𝑗, 𝐸(𝑢), 𝑈𝑗 , and 𝑈 in different scenarios. 𝐸(𝑥) =

∑ 𝑝𝑖𝑥𝑖𝑖=1,2  is the expectation of the pay-offs for the prospect 𝑥. Also shown is their relationship with 

CE and the survey “error” when using the Bernoulli utility, 𝑢(𝐸(𝑥), 1), to capture the effect of  𝑈 =

𝑢(𝐸(𝑥), 𝑝). Although rare, it is indeed possible for 𝑈to overlap with 𝑢(𝐸(𝑥), 1). In this case, the gap 

between 𝑢(𝐸(𝑥), 1) and 𝐸(𝑢(𝑥, 1)) is the the same as that between 𝑈 and 𝐸(𝑢(𝑥, 1)). In fact, this is 

the only case where REUT and EUT are equivalent.  

  
Figure 4.5 In both cases, the choice maker behaves risk-averse regarding the utility of expected 

pay-off since 𝑈 < 𝑢(𝐸(𝑥), 1). The left behaves risk-prone and the right behaves risk-averse, 
regarding the expected utility since  𝑈 > 𝐸(𝑢(𝑥),1).   

By differentiating 𝑈 and 𝑢(𝐸(𝑥), 1), modeling choice maker’s risk preference has greater 

flexibility. Figure 3.6 shows two more complex cases where risk preference changes on 𝐿. In terms 

of expected utility, the choice maker on left behaves risk-prone since 𝑈 > 𝑢(𝐸(𝑥), 1). In terms of the 

utility of expected payoffs, however, it behaves risk-prone when close to 𝑥1 and risk-averse when 

𝐸(𝑢) 

𝑥1 𝑥2 𝑥 𝐸(𝑥) 

𝑢(𝐸(𝑥), 1) 

𝑈 
𝐸(𝑢𝑠) 

“Survey Error” 

𝐶𝐸 𝑥0 

𝐸(𝑢) 

𝑥1 𝑥2 𝑥 𝐸(𝑥) 

𝑢(𝐸(𝑥), 1) 

𝑈 
−𝐸(𝑢𝑠) 

“Survey Error” 

𝐶𝐸 𝑥0 
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close to 𝑥2. The choice maker on right behaves risk-prone in terms of expected utility since 𝑈 >

𝑢(𝐸(𝑥), 1). In terms of the utility of expected payoffs, however, it behaves risk-prone when close to 

𝑥1 and risk-averse when close to 𝑥2. 

 
Figure 4.6 Examples of changing risk preference on 𝐿.  

Not only the differentiation of 𝑢𝑗, 𝐸(𝑢), 𝑈𝑗 , and 𝑈 resolves conventional issues in EUT and 

paradoxes caused by the dependence of the curvature of 𝑢(𝑥), it also allows the change of risk 

preference over a given 𝐿. Although it is possible that 𝑈 “overlaps” with 𝑢(𝐸(𝑥), 1) or 𝐸(𝑢), the risk-

prone (risk-averse) behavior is caused by the relative relationship between 𝑢(𝐶𝐸, 1) and 𝑈, not the 

convexity of 𝑢(𝐸(𝑥), 1).  

Note that the introduction of ES modifies the meaning of some commonly used inequalities 

in EUT. For example, the Jensen’s inequality, ∫𝑢(𝛼)𝑑𝐹(𝛼) ≤ 𝑢(∫𝛼𝑑𝐹(𝛼)), would only suggest the 

concavity of the Bernoulli utility function and no more no less. Even if ∫𝑢(𝛼)𝑑𝐹(𝛼) ≤

𝑢(∫𝛼𝑑𝐹(𝛼) , 1), 𝑈 could still be greater than 𝑢(∫𝛼𝑑𝐹(𝛼), 1), and therefore, risk-prone regarding 

the expected payoff. This way, the change of utility unit and scale does not influence the risk 

preference in REUT. 

Reference Dependency and Relationship with CPT 
 

This section studies the effect of reference/framing conditions on ES and the overall preference. I 

assume no misperception in this section. First, suppose (𝑝1𝑥1𝑝2𝑥2) and ES is defined as 

𝐸(𝑢) 

𝑥1 𝑥2 𝑥 𝐸(𝑥) 

𝑢(𝐸(𝑥), 1) 
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𝐸(𝑢𝑠) 

“Survey Error” 

𝐶𝐸 

𝐸(𝑢) 
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𝑆(𝑝𝑗; 𝑘𝑗) = (
1

𝑝𝑘𝑗
− 1),𝑘𝑗 = {

𝑘+, 𝑥𝑗 ≽ 𝑥0
𝑘−, 𝑥𝑗 ≺ 𝑥0

 (4.10) 

The corresponding Bernoulli utility 𝑢(𝑥𝑗, 1) is used to scale the ES so that  

𝑢(𝑥𝑗 , 𝑝𝑗) = 𝑢(𝑥𝑗 , 1) ∙ (1 + 𝑆(𝑝𝑗; 𝑘𝑗)) (4.11) 

Note that the scaler for the ES in (14) is proportional to the corresponding outcome’s Bernoulli 

utility. The test of a range of reference from 𝑥0 = −3 to 5 is plotted in Figure 4.7 for scenario (0, 8), 

(-3, 5), and (-8, 0) with parameter 𝑘+ and 𝑘− to be (-, 0.1), (1.9, 1.1),  (0.1, -), respectively. The result 

from CPT for comparison is also plotted. 

 
Figure 4.7 Comparing the effect of reference-dependence using proposed method with that in CPT. 

X-axis is the expected payoff. 

Although using ES within utility function generates similar results to that from CPT when 

reference is set to have both favorable and unfavorable events, there is a significant difference 

when the reference approaches -3 or 5. That is, certain framing effect might lead the ES function 

generates distinct results than that from CPT. This discrepancy leads to a curiosity of what kind of 

ES function is “embedded” in CPT.  

When 𝜋(𝑝𝑗) ∙ 𝑣𝑗 in CPT is numerically the same as 𝜙(𝑝𝑗) ∙ 𝑢(𝑥𝑗, 𝑝𝑗), there exists a numerical 

equivalency. Keeping the value function as, 

𝑣(𝑥) = {
𝑥𝛼

+
, 𝑥 ≥ 0

−𝜆(−𝑥)𝛼
−
, 𝑥 < 0

  (4.12) 

By equating 𝜋 and 𝑝 ∙ (1 + 𝑆(𝑝)),   

𝑆(𝑝) =
𝑝𝛿−1

(𝑝𝛿 + (1 − 𝑝)𝛿)1/𝛿
− 1 (4.13) 
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The weighting function with various 𝛿 and the corresponding ES function with and without 

probability misperception is plotted in Figure 3.8.  

  
Figure 4.8 Left: CPT weighting function; Right: equivalent ES function for 𝛿 

Figure 4.8 shows that negative surprise occurs when there exists a probability 

misperception (𝛿 ≠ 1). How to interpret the positive surprise and negative surprise? On the other 

hand, this clearly verifies the so-called fourfold pattern of risk attitudes, which can be explained in 

CPT by the interplay of over/underweighting of small probabilities and convexity of value 

functions: “when gains have moderate probabilities and losses have low probabilities, choice maker 

behaves as risk-averse because the losses tend to be overestimated (positive region in the right plot 

of Figure 4.8) and the gains tend to be underestimated (negative region in the right plot of Figure 

4.8); when losses have moderate probabilities and gains have small probabilities, choice maker 

behaves as risk-prone because the gains tend to be overestimated and the losses tend to be 

underestimated.” (Scholten and Read, 2014). What’s more, a choice maker might overestimate gain 

(loss) and underestimate loss (gain) and reveals risk-seeking, risk-neutral, or risk-aversion when 

the risk preference over favorable (unfavorable) event has a larger overall effect.  

On the other hand, we know that zero surprise suggests that the observer would experience 

no surprise when the corresponding outcome happens; one way to interpret the positive and the 

negative surprise is through emotions: the observer would tend to take the outcome with moderate 

or large probability “for granted” and take the outcome with low probability as “doomed-to-

happen.” 
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The positive and negative surprise can also be explained the effect of probability 

misperception. Indeed, by adjusting 𝑘, we may also achieve the same numerical property when 𝑆(∙) 

is strictly decreasing. For example, when 𝜙(𝑝) = 𝑤(𝑝) ∙ 𝑝𝑘, 𝑆(𝑝) is simply (10) and non-negative. 

Therefore, 𝜙(∙) and 𝑆(∙) could have more than one possible combination to generate the same 

overall weighting function. This inseparability between probability misperception and ES will be 

further discussed in Section 11.  

Similar dissection applies to the situation with more than two events. In (𝐸1𝑥1𝐸2𝑥2𝐸3𝑥3) 

and 𝑥3 ≻ 𝑥2 ≻ 𝑥0 ≻ 𝑥1, we have 

𝜋2
+ = 𝑤+(𝑝2 + 𝑝3) − 𝑤

+(𝑝3) (4.14) 

in which, 

𝑤+ (∑𝑝𝑖
𝑖≥𝑗

; 𝛿) =
(∑ 𝑝𝑖𝑖≥𝑗 )

𝛿

((∑ 𝑝𝑖𝑖≥𝑗 )
𝛿
+ (1 − ∑ 𝑝𝑖𝑖≥𝑗 )

𝛿
)
1/𝛿

 (4.15) 

Figure 4.9 shows the surface and the contour of the surprise function of 𝜋2
+𝑢(𝑥2) over 𝑝2 and 𝑝3, 

where 𝑢(𝑥2) = 2 is the Bernoulli utility of payoff 𝑥2 with the preference 𝑥0 = 0. 

 
Figure 4.9 Left: 𝜋2

+ (z-axis) in a three-outcome decision, where 𝑋1 ≼ 0 ≼ 𝑋2 ≼ 𝑋3; Right: the 
contour of 𝜋2

+ 

Let’s define the Compound Weighting (CW) Function as the CPT weighting function 

consisted of ES function that that 𝜋 = 𝑝(𝑆 + 1). 𝑆2 =
𝜋2
+

𝑝2
− 1 is plotted in Figure 4.10. Note that 𝑆2 

contains an interaction between 𝐸2 and 𝐸3. In other words, the decision weight for 𝐸2 considers 

both the probability for 𝐸2 and that for 𝐸3. 
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Figure 4.10 𝑆2 over 𝑝2 and 𝑝3 derived from a 3-outcome decision based on the Cumulative 

Prospect Theory  

One might argue that instead of CW function from 𝑝, why not 𝜙? Indeed, if 𝑤 is treated as 

the misperceived cumulative probability, the ES could be a function of the post-misperceived 

probability rather than the pre-misperceived one. The only reason that 𝑝 is used in this section 

rather than 𝜙 is to isolate the potential nonlinear effect of the misperception to allow the focus on 

the effect of ES.  

Three Perspectives  
 

The connection of ES and categorical perception with EUT and CPT has been discussed in the 

previous section. With the revision on reference and addition of appropriate ES function on REUT 

makes it essentially equivalent to CPT in principle. Figure 4.11 illustrates this claim.  

 

Figure 4.11 The Revised EUT (REUT) and CPT can be derived from incorporating ES differently.  

𝑈 =∑𝑝𝑗(𝑢𝑗 + 𝑢𝑗
𝑠)

𝑗

 

𝑈𝑌 =∑𝑝𝑗𝑢𝑗(1 + 𝑆𝑗)

𝑗

 

Scaling 

 

𝑈 =∑𝑝𝑗 ∙ (𝑢𝑗(1 + 𝑆𝑗))

𝑗

 

 

𝑈 =∑(𝑝𝑗 ∙ (1 + 𝑆𝑗)) ∙ 𝑢𝑗
𝑗

 

Perspective 1: REUT Perspective 2: CPT  

𝑈 =∑(𝜙𝑗 ∙ (1 + 𝑆𝑗)) ∙ 𝑢𝑗
𝑗

 

Perspective 3: 
CPT with ES and misperception 
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Note that 𝛹𝑗 = 𝜙𝑗 ∙ (1 + 𝑆𝑗) in Perspective 2 and Perspective 3 should be differentiated 

from 𝜋𝑗 in CPT, though the overall effect may be the same. 𝜋𝑗 in CPT has no explicit cognitive 

construal, while 𝛹𝑗 are specifically referring to the combined effect of the (probability) 

misperception and the ES. Despite the explicitness of 𝛹𝑗 , differentiating the effect of the ES and that 

of 𝜙𝑗 encounters the identification issue since only the revealed effect of 𝛹𝑗 is observable through 

experiment, which requires assumptions on the cognition in practice. 

ES in Mean-Variance (MV) Method 
 

What is the underlying ES function in the Mean-Variance method? For its popularity in finance and 

traveler choice modeling, I choose to discuss MV method as an example to demonstrate the unifying 

nature of ES. In MV, uncertainty is captured by historical variation measured by variance 𝑉𝑎𝑟(𝑇𝑇). 

Suppose a general cost function 𝐺𝐶 is defined as 

𝑡�̅� + 𝛽 ∙ 𝑉𝑎𝑟(𝑇𝑇) = 𝑡�̅� + 𝛽 ∙ ∑ 𝑝𝑖(𝑡𝑡𝑖 − 𝑡�̅�)
2

𝑖=1,2

 (4.16) 

where 𝑡𝑡1 and 𝑡𝑡2 are possible realizations of the travel time random variable 𝑇𝑇 with distribution 

(𝑝1: 𝑡𝑡1; 𝑝2: 𝑡𝑡2) and perceived mean travel time 𝑡�̅�; 𝛽 is a scaler. Since ∑ 𝑝𝑖(𝑡𝑡𝑖 − 𝑡�̅�)
2

𝑖=1,2  can be 

written as 𝑝1(𝑝2𝑡𝑡1 − 𝑝2𝑡𝑡2)
2 + 𝑝2(𝑝1𝑡𝑡2 − 𝑝1𝑡𝑡1)

2, (4.16) can be decomposed as 

𝑝1[𝑡𝑡1 + 𝛽𝐾2𝑝2
2] + 𝑝2[𝑡𝑡2 + 𝛽𝐾2𝑝1

2] = ∑ 𝑝𝑖[𝑡𝑡𝑖 + 𝛽𝐾2𝑆(𝑝𝑖)]

𝑖=1,2

 (4.17) 

where 𝛽𝐾2 = 𝛽 ∙ 𝐾
2 = 𝛽 ∙ (𝑡𝑡1 − 𝑡𝑡2)

2, a constant in the given decision context. Since 𝑝1 + 𝑝2 = 1, 

we have 𝑆(𝑝) = (1 − 𝑝)2. Figure 4.12 shows the implicitly embedded ES function, the relationship 

between 𝐾 and 𝛽𝐾2 , the relationship between 𝑝 and 𝛽𝐾2(1 − 𝑝)
2, and the relationship between 𝑇𝑇̅̅̅̅  

and GC for different scalers given that 𝑡𝑡1 = 7𝑚𝑖𝑛 and 𝑡𝑡2 = 12𝑚𝑖𝑛. 
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Figure 4.12  (a) The implicitly embedded ES function. (b) 𝐾 versus 𝛽𝐾2 . (c) 𝑝 versus 𝛽𝐾2(1 − 𝑝)

2. 
(d) The  𝑇𝑇̅̅̅̅  versus GC given different scalers 𝛽. 

The scaler, 𝛽, needs to be tuned to avoid violating the rationality assumption which has 

been rarely examined in historical MV model estimation processes. For instance, if 𝑗 is the most 

preferable event in the prospect 𝑥, any location on the lottery should be worse (in terms of 𝑈) than 

the general cost/disutility of 𝑗 under certainty. In (d), the case of 𝛽 = −3, 𝛽𝐾2 = −7.5 and the case 

of 𝛽 = 0.3, 𝛽𝐾2 = 7.5 apparently violates the rationality assumption. Note that one key 

characteristic of a MV-based model is that the parameter used to convert surprise to the same scale 

with the general cost is a function of𝑡𝑡2 − 𝑡𝑡1; therefore, it is possible to determine 𝛽 to obtain a 

model applicable to a range of decision contexts without violating the rationality assumption. This 

role of 𝛽𝐾2  is similar to using scaler sensitive to the magnitude of 𝑢𝑗. 

A similar analytical approach can be applied to multiple-outcome cases and related 

approaches such as mean-deviation models and quantile-index models, though the transformed 

formulation might not be closed.  

Empirical Study on Route Choice under Risk 
 

Recalled that EST connects with CPT since the weighting function can be understood as an ES 

function that has both a positive and a negative region or that has one (original) monotonic ES 

function affected by a probability misperception. This section uses an empirical study to 

demonstrate how to use a strictly decreasing ES function in conjunction with CPT to improve model 

interpretability and predictions. This section adjusts CPT to explicitly incorporate misperception 
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and ES. We also estimate the parameters based on a stated-preference survey and examine the 

impact of adjusting CPT to incorporate ES on capturing revealed behavior under travel time risk.  

The survey was conducted among 91 participants (67 undergraduates and 24 graduates) 

from the University of California, Irvine. The participants were randomly grouped into two for 

reducing the test length. ES function 𝑆(𝑝; 𝑘−) =
1

𝑝𝑘
− − 1, is selected for its convenient form of the 

CW function, 𝑤∗. That is,  

𝑤∗ = 𝑤 ∙ (1 + 𝑆(𝑝; 𝑘−)) =
𝑝𝛿𝑢𝑝

−

(𝑝𝛿𝑑𝑜𝑤𝑛
−

+ (1 − 𝑝)𝛿𝑑𝑜𝑤𝑛
−

)
1/𝛿𝑑𝑜𝑤𝑛

−  (4.18) 

where δdown = δ and δup = 𝛿𝑑𝑜𝑤𝑛 − 𝑘
−. Note that 𝑤𝑗 has the same form as does in CPT but δ only 

captures misperception. Consistent with CPT, the superscript + and – denotes favorable and 

unfavorable outcomes, respectively. Since the reference is set as 0, positive travel time is perceived 

as a loss. Let’s define the ratio of splitting parameter for the ES from 𝛿𝑢𝑝
−  as 𝜃 and define 𝛿𝑑𝑜𝑤𝑛

− = 𝜃 ∙

𝛿𝑢𝑝
−  and 𝑘− = −(1 − 𝜃) ∙ 𝛿𝑑𝑜𝑤𝑛

− . 𝑤∗ with various 𝜃 is plotted in Figure 4.13 with fixed 𝛿𝑢𝑝
−  as 0.69 to 

be comparable with CPT. 

 
Figure 4.13 Effect of different splitting factor 𝜃 on the shape of misperception 𝜋, ES Function, and 

the Compound Weighting Function 𝜋∗ 

Since varying 𝜃 has no impact on the CW function, one immediate question is what portion 

of 𝛿 + 𝑘− “belongs to” misperception and what portion “belongs to” the ES? Since only the revealed 

decision weight is observable, the effect caused by misperception and that by ES are inseparable. 

However, theorists who are hesitant to forsake some properties in the CPT can set 𝛿− = 𝛿𝑢𝑝
− =

𝛿𝑑𝑜𝑤𝑛
−  so that (18) becomes 
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𝑤∗ =
𝑝𝛿

−−𝑘−

(𝑝𝛿
−
+ (1 − 𝑝)𝛿

−)1/𝛿−
 (4.19) 

Figure 4.14 shows the effect of 𝑘− on different 𝛿−s. As expected, the formulation is equivalent to 

CPT when 𝑘− = 0. Scenarios of 𝑘 < 0 are included since the scaler for ES may not be the same as 

the Bernoulli utility with respect to the reference.  

 
Figure 4.14 Effect of 𝑘 on 𝜋∗ given different 𝛿−. 

The value function follows the loss side of (4.12), and the reference point is set to be the 

event with the smaller travel time. In addition to travel time, factors such as the importance of 

activity, departure time, and comfort level may also have impacts on how a traveler evaluates 

alternatives. More specifically, a participant would, say, departure 15 min earlier than the start of 

the activity if he knows the travel time to work could be following distribution (15min: 0.7, 25min: 

0.3), while another participant would departure 25 min earlier with the same perceived 

distribution. The first participant is risk-prone since the penalty of being 25min is low (e.g., grocery 

shopping) while the second participant is risk-averse since the penalty of being late is significant 

(e.g., work). To mitigate this type of ambiguity, the survey participants were told that all the 

answers should be based on their typical experience of commuting. Table 4.3 shows the expected 

and median travel time in the survey for varied decision context. Table 4.4 summarizes the mean 

travel time equivalent and sample standard deviation from the survey.  

Table 4.3 Mean and median travel time and event probabilities in the survey (in minutes) 
Event Expected travel time for various probabilities of 

the second event (not given to participants) 
Median of travel time certainty equivalent given 

various probabilities of the second event 
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9 

15 25 16.00 17.50 20.00 22.50 24.00 16 17 19 20 22 

15 30 16.50 18.75 22.50 26.25 28.50 17 19 22 24 27 
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30 45 31.50 33.75 37.50 41.25 43.50 32 33 35 35 44 

30 50 32.00 35.00 40.00 45.00 48.00 32 34 39 41 48 

40 50 41.00 42.50 45.00 47.50 49.00 43 44 44 45 48 
40 60 42.00 45.00 50.00 55.00 58.00 44 45 47 52 57 

 

Table 4.4 Mean travel time and standard deviation (sample) from the survey (in minutes) 
Event Mean of travel time equivalent for various 

probabilities of the second event 
Sample standard deviation of travel time certainty 
equivalent for various probabilities of the second 

event 
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9 

15 25 15.90 16.34 19.05 18.54 23.90 0.96 0.92 0.74 1.22 0.46 
15 30 16.66 18.83 22.64 23.60 27.66 0.30 0.48 2.18 1.65 0.81 
30 45 31.79 33.97 36.03 38.35 42.79 0.57 1.01 1.17 1.46 0.57 
30 50 31.25 32.50 39.39 43.27 46.25 2.06 0.36 0.40 0.66 2.06 
40 50 42.40 44.65 43.71 46.23 44.40 0.42 1.21 0.89 1.58 1.42 
40 60 43.22 45.44 47.26 53.73 43.22 1.31 1.01 1.47 1.18 0.91 

 
 

Parameter estimation uses the generalized reduced gradient algorithm. 𝛿− = 0.79, 𝑘 =

0.09, 𝛼− = 0.92, and 𝜆 = 1.94 with a mean squared error (MSE) 2.89. Without incorporating 𝑘−1, 

the MSE is 3.03. During the estimation, 
𝑛−1

𝑛−𝑝𝑘
≈ 0.034 and 

𝑛−1

𝑛−𝑝𝑐
≈ 0.022, where 𝑛 is the sample size, 

𝑝𝑐  is the number of parameters in the model without 𝑘− and 𝑝𝑘 is the number of parameters in the 

model with positive 𝑘−, respectively. Therefore, the Adjusted 𝑅2 for the model with and without 

incorporating 𝑘−1 are 0.767 and 0.784, respectively. No significant outliers are identified based on 

Cook’s distance. The CW function is verified to be monotonically increasing under this specification. 

Although the goodness-of-fit analysis is not significantly improved, the model with the 

consideration of elastic surprise (i.e., consider misperception and uncertainty in a relatively 

separate manner) endows more explicit cognitive interpretation to the results. It would be worth-

well to explore other forms of ES function.  

The estimate reveals the change of risk preference over 𝐿 remains some similarity to that in 

the original CPT (𝛿−= 0.69, 𝑘− = 0, 𝛼−=0.88, 𝜆 = 2.25) derived from a monetary survey. However, 

the participants in this example, averagely, reveal less significant probability misperceptions 

because of the higher 𝛼−. On the other hand, the value function is less concave (𝛼− is closer than 

unity) because part of the concavity is considered by the ES. The estimated the ES function, 
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misperception, and CW function are plotted in Figure 4.15 and a comparison is made with that from 

the original CPT. Note that a moderate probability is also shown underweighted but not as dramatic 

as that in CPT. 

 
Figure 4.15 Left: Estimated ES Function. Middle: Weighting function for misperception and 

compound effect of both misperception and ES. Right: new value function comparing to the original 
one (without considering ES) 

In this study, the reference is set as the event with the smaller travel time. However, it is 

likely that the reference is set differently for different travelers and decision contexts (e.g. the type 

and importance of the activity to participate in). Mixed-type decision scenario increases the number 

of parameters, and I leave the study of different anchor settings to future work. Although 𝑘− in the 

estimation is only sensitive to the favorability (relative to the anchor) of each event, the degree of 

favorability of events can also be considered by setting 𝑘− sensitive to the specific rank in prospects 

with two or more outcomes. 

Conclusion 
 

This chapter proposes a unifying approach for incorporating risk preference by considering the 

different types of Elastic Surprise functions and their scaling factors of possible outcomes. This 

approach bridges the existing methods such as Information Theory, Expected Utility Theory, 

Cumulative Prospect Theory, and Mean-Variance Theory, and non-additive attribute-based 

theories. Categorical perception and cognitive limitation becomes a natural derivative with certain 

behavioral foundations such as stochastic dominance and trade-off consistency.  
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Utilizing ES functional shows high flexibility and some common existing methods such as 

EUT and CPT can be treated as special cases with certain explicit assumptions on choice makers’ 

cognitive characteristics. Therefore, the proposed method can be used as a guide for understanding 

the assumptions the used to be hidden. The difference between misperception and ES is discussed 

and the identification issue in estimation is recognized. Due to the common confusion of 

misperception and perceived uncertainty, conventional methods typically rely on transforming 

probability and Bernoulli utility to match with revealed choice behavior. This confusion leads to 

biasedness in estimation and result interpretation. This chapter demystifies this confusion using ES 

to explain paradoxes and issues.  

The empirical study demonstrates the application of incorporating ES in route choice 

modeling that improves data fitting and result interpretability. The result reveals a lottery-sensitive 

preference and hypothesizes that this partially explains the inconsistency among existing research 

about traveler’s risk preference. In addition to extending the application to decisions under 

ambiguity and uncertainty, a specific formulation with strict proof to connect with behavior 

foundations sensitive to decision context shall further strengthen the proposed method. 
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CHAPTER 5  
MULTICLASS, MULTICRITERIA DYNAMIC TRAFFIC ASSIGNMENT WITH 

PATH-DEPENDENT LINK COST AND ENTROPY-BASED RISK PREFERENCE 
 
 

“We can’t control systems or figure them out. But we can dance with them!” 

– Donella Meadows 

Introduction 
 

Dynamic Traffic Assignment (DTA), in short, is a process of allocating traffic onto a time-space 

network with given physical constraints, usually aimed at dynamic user equilibrium (DUE) or 

dynamic social optimum (DSO). DTA has a broad range of applications in conventional 

transportation systems operation and planning as well as in understanding the impact of new 

strategies and emerging technologies. Peeta and Ziliaskopoulos (2001) briefly review the 

foundations of DTA, the status at the time, the challenges, and the opportunities. They also 

categorize existing methods into those based on mathematical programming, optimal control, 

variational-inequalities, and simulation. The bi-level optimization method proposed by 

Jayakrishnan et al. (1995) perhaps does not fall in any of those categories as it analytically embeds 

a simulation within a strict mathematical programming formulation. Jayakrishnan et al. (1994) 

proposes a static traffic assignment procedure using gradient project method and proves greater 

convergence efficiency. This method was further developed by Yang and Jayakrishnan (2012) that 

combines the concept of a static user equilibrium formulation transformed from Beckman’s 

formulation with a traffic simulator to practically achieve DUE with a single-user class and path-

independent link cost(s). DTA models typically capture traffic dynamics utilizing flow-cost 

(macroscopic), density-speed (mesoscopic), or driving behaviors (microscopic) relationships. 

Transportation system users have diverse attributes, behaviors, and impacts on the system. 

Yang and Huang (2012) identify two situations for naming a traffic assignment problem multi-class 
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– heterogeneous driving behaviors and heterogeneous route choice. Heterogeneous route choice 

behaviors and driving behaviors are typically considered with random-parameter models 

(Washington et al. 2010) and stochasticity-incorporated traffic simulators (Lu et al. 2010), 

respectively. A system user could evaluate alternatives based on multiple objectives/criteria. For 

example, a traveler could be interested in saving time, money, and mileage all at the same time. 

When one criterion cannot be further improved without worsening the other, trade-offs have to be 

made. One common modeling approach is to use additive utility-based compensatory methods 

(with/without random term) and to assume decision makers as disutility minimizers. 

Transportation systems commonly have significant variability and uncertainty. Liu et al. 

(2004) classify the sources of this stochasticity to be either from the demand side or the supply 

side. Several researchers have found that average travel time and monetary cost are not sufficient 

to explain travelers’ decision. Risk preference contributes to travelers’ departure time, mode, and 

route decisions as well (de Palma and Picard, 2005). Therefore, capturing multi-criteria decision-

making with risk-preference in dynamic traffic assignment could further improve modeling results. 

Travel time uncertainty/reliability has been commonly incorporated into decision models either 

explicitly or implicitly. Explicit methods commonly use measures of variability (ex-post) such as 

variance, standard deviation, and percentiles, to approximate the effect caused by 

uncertainty/reliability (ex-ante), while implicit methods typically transform utility and probability 

without directly quantifying uncertainty/reliability itself. Ramos et al. (2014) review the state-of-

the-art of applying utility theory, prospect theory, and regret theory to investigate travelers’ 

behavior under travel time uncertainty.   

Emphasizing on practicality, this chapter proposes a density-based formulation for multi-

class multi-criteria dynamic user equilibrium with path-dependent link costs (MMDUE-MP), 

following it with a Stochastic Quasi-Gradient Projection (SQGP) solution scheme that uses a traffic 

simulator. The criteria considered in the discussion and the case-study are travel time (link-
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additive), monetary cost (non-additive), and travel time uncertainty (path-dependent). An 

information entropy-based uncertainty measure is proposed due to concerns on using conventional 

measures such as variability and reliability. The case study shows stochastic but efficient 

convergence, demonstrates the ability of SQGP to bypass local optima and exemplifies the 

significant impact of using both path-independent and path-dependent link cost to forecast traffic 

pattern and toll revenue. Modeling travel time uncertainty as path-dependent link cost rather than 

non-additive cost also allows strict objective function and tractable analytical form.  

The following sections review relevant literature and clarify some basic concepts and 

terminologies important to this chapter. Then the formulation (traffic density-based) and a 

simulation-based solution (based on GP algorithm) are introduced. A case study and conclusions 

immediately follow. 

Literature Review 
 

There have been many attempts on solving bi-/multi-criteria shortest path problem with costs that 

are not sensitive to users’ paths (Climaco and Martins, 1982; Mote et al., 1991; Martins, 1984; 

Skriver and Andersen, 2000). Chen et al. (2011) categorize travel costs into link-based, origin-

based, and path-based, and they propose a solution algorithm for finding reliability-based shortest 

paths. However, the path travel time variance is calculated based on the summation of link travel 

time variances without considering typical correlation among adjacent links.  

Multi-class multi-criteria static and dynamic traffic user equilibrium with only path-

independent cost have been studied along with the development of bi-/multi-criteria shortest path 

algorithms. Yang et al. (2004) extend the Beckman’s static traffic user equilibrium formulation to 

incorporate heterogeneous users and multiple criteria. Tan et al. (2014) examine the Pareto 

efficiency of various reliability-based traffic equilibria and the risk-taking behavior of travelers. 

Bliemer et al. (2003) propose a quasi-variational inequality formulation for multi-class dynamic 
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traffic assignment. Zhang et al. (2013) use a Probit-based model to consider the perception error 

for heterogeneous users’ two possible criteria (average travel time and toll) for making route 

choice decisions. Huang et al. (2007) use a Logit-based model to capture the stochastic traffic 

equilibrium as well.  

There have been pioneering research efforts that attempted to incorporate perceived 

reliability into dynamic traffic assignment with heterogeneous users. Jiang et al. (2011) propose an 

algorithm for minimizing a general cost gap function, combining previous research on bi-criterion 

traffic assignment, inequality formulations and solutions, path-restricted multi-class DUE solution 

methods, and the Column Generation-based DUE algorithm. They even apply it to a metropolitan 

network to demonstrate the feasibility. However, several points are worth attention. First, it might 

be more appropriate to name the standard deviation of travel times (regressed using average travel 

time and travel distance) as an indicator of travel time unreliability rather than reliability. Second, 

reliability-based measures (even if scaled by travel distance) commonly have a high correlation 

with travel time, and therefore, their estimation could be inefficient and even cause 

multicollinearity. Third, such a reliability measure does not consider specific route conditions such 

as the local street and freeway portions that a path goes through, which could be a contributing 

factor to the relatively low regression performance indices. Fourth, since the cost function uses 

travel time reliability with a positive coefficient, the formulation does not capture the travelers’ 

common risk-prone behavior. Although some studies showed that a constant risk coefficient would 

work, this could be because survey participants adjusted their departure time to maintain some 

degree of reliability. Fifth, since network skimming is performed after the network reaches path-

restricted DUE at a given outer-loop iteration, it could be less likely to find a new path, and 

therefore, the solution could be easily “trapped” in a local optimum, despite the oscillations being 

less. Last, the process does not “drop” any paths that are, in later iterations, found to be unlikely to 

be used, and therefore, the data storage becomes increasingly burdensome. Previous papers that 
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consider uncertainty and reliability lack the consideration of travelers’ preferred arrival times 

(PAT) and the activity chains.  

As shown by Carey (1992), regular homogeneous-user single-criteria DTA is nonconvex. 

Adding heterogeneous users and different types of perceived cost only further complicate the 

convexity of the objective function. Therefore, it is necessary to develop a method that can bypass 

local minima and improve convergence. 

Important Concepts  
 

Before moving on to the multi-class multi-criteria DUE formulation, several concepts are worth 

being clarified.  

Path-dependent Link Cost 
 

The word “multi-criteria” in this chapter means two folds. First, the general cost is a combination of 

two or more criteria (e.g., travel time, monetary cost, and travel time uncertainty). Second, some 

link costs are path-independent (e.g., average travel time and zone-based toll), while some are path-

dependent (variance of path travel time with high correlated link travel times). Though the result of 

summing path-dependent link costs resembles “non-additive path cost,” it is different, in that the 

impedance of each link can be explicitly stated by conditioning it on the given path, which yields a 

strict objective function in a tractable analytical form. 

Here is an example of path-dependent link cost. Suppose that links 1, 2, 3 in the network as 

in Figure 5.1 have average travel times of 5.0, 4.2, and 9.0 (all eastbound), and that the travel times 

on the three links have a covariance matrix [−
2 −0.5 0.3
0.5 1.5 −0.2
0.3 −0.2 3

]. The average travel time over L1 

and L3 would be 𝑇𝑇̅̅̅̅ 𝐿1+𝐿3 = 5 + 9 = 14 and on L2 and L3 would be 𝑇𝑇̅̅̅̅ 𝐿2+𝐿3 = 4.2 + 9 = 13.2. For 

variance, 𝜎𝐿1
2 = 2, 𝜎𝐿2

2 = 1.5, while 𝜎𝐿1+𝐿3
2 = 𝜎𝐿1

2 + 𝜎𝐿3
2 + 2𝜎𝐿1,𝐿3 = 2 + 3 + 2 ∙ 0.3 = 5.6, 𝜎𝐿2+𝐿3

2 =

1.5 + 3 − 2 ∙ 0.2 = 4.3, which means the increase of variance for travelers from L1 is 3.6, while it is 
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2.8for travelers from L2. The path-dependency in this example is due to the travel time covariance 

among links. Now, suppose that link 3 is a tolled link. A correct optimization of the toll for reducing 

travel time variability for both requires information not only on the toll link itself for different users 

but also on the’ predecessor links (Link 1 and 2) and successor links (Link 4 and 5) on the users’ 

own paths. One immediate implication is that studying the willingness-to-pay for travel time 

reliability improvement should consider more than just users’ travel time distribution on the toll 

segments.  

Similarly, the eastbound variance-based cost on L4 (or L5) depends on whether the traveler 

comes through L1 and L3 or through L2 and L3. Note that two travelers might not experience the 

same travel times on L3 when they entered link 1 and 2 at the same time due to different link travel 

times. 

 
Figure 5.1 Example of path-dependent link-additive cost 

Uncertainty, Reliability, Risk, and Variability 
 

Definitions of uncertainty, reliability, risk, and variability have not been clearly set in the field of 

transportation modeling, and they are often used interchangeably. In this chapter, the state of 

uncertainty associated with a set of perceived alternatives is strictly quantified, as per Information 

Theory, as the amount of information needed to eliminate the current perceived uncertainty for a 

percept (e.g., travel time) or a set of percepts (e.g., as occurs while driving on a road on a foggy day). 

Possible interpretations of a percept (or a set of percepts) must be simultaneously in the observer’s 

mind for him/her to perceive uncertainty. Reliability is defined as the perceived probability of 

favorable outcome(s), and risk is defined as the expected value of the unfavorable outcome(s). 

Different from reliability and risk, variability is ex-post. For instance, a bus service that alternates 

1 

3 

2 

4 

5 
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between 10 minutes and 30 minutes in headway based on a schedule, has high variability but no 

uncertainty for a regular commuter, if there is no non-recurring delay. 

Suppose a traveler believes {On-time: 0.4; Late: 0.6} his/her perceived reliability to be 

proportional to the probability of being on time (favorable outcome), and his/her perceived risk to 

be proportional to the expected travel time of being late (unfavorable outcome). However, this 

probability distribution has the same uncertainty as that in {On-time: 0.6; Late: 0.4}. If an observer 

perceives these two distributions to have different uncertainty, the outcome setting does not match 

that of the observer and should be adjusted by the modeler. Using measures such as variance and 

standard deviation essentially assumes that the observer can differentiate between any two events 

(no matter how similar they are) and can store an infinite number of events simultaneously in 

his/her/its brain (i.e., infinite brain capacity). Understanding how a traveler perceives has indeed 

been a challenge, but it does not mean that this issue should be avoided if improving the modeling 

of users’ behavior is the goal. Table 5.1 shows the definition of variability, uncertainty, reliability, 

and risk used in this chapter, along with their common measures. Note that using strict definitions 

of these four terms does not generate any new issue – it only makes explicit the assumptions that 

used to be implicit and assists constructive discussion among modelers. 

Table 5.1 Clarifying definitions of variability, uncertainty, reliability, and risk. 
 Ex-ante or 

Ex-post? 
Interpretation Common Measure 

Variability Ex-post The quality of being subject to variation or 
lacking uniformity 

Variance (Standard Deviation) of the 
sample or the population, Percentile, 
diversity index, etc. 

Uncertainty Ex-ante A state of doubt of which perceived outcome 
will happen 

Entropy 

Reliability Ex-ante The degree of confidence about the 
favorably-perceived outcome to happen 

Probability of favorably-perceived 
outcome 

Risk Ex-ante Positively related to both the confidence and 
the disutility of the unfavorably-perceived 
outcome(s)  

Expected cost/disutility of the 
unfavorably-perceived outcome(s). 

Entropy-based Measure of Perceived Uncertainty 
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How do we measure uncertainty? There have been many attempts to measure uncertainty and 

reliability and to incorporate them into general cost functions. This chapter uses the strict 

definition of uncertainty as in Information Theory, in that it is quantified by the amount of 

information needed for an observer to be certain about a percept or compound percepts. Claude 

Shannon (1949) names 𝐻 = ∑ 𝑝𝑗log(
1

𝑝𝑗
)𝑗  as information entropy (where 𝑝𝑗  is the probability of the 

category 𝑗 to happen) and mathematically demonstrates that if an uncertainty measure that 

satisfies three basic conditions, 𝐻 is the only appropriate measure. In the case of a traveler, 

information for the traveler’s percept (e.g., travel time) can be measured by the change or 

divergence of the perceived uncertainty for that percept. This chapter focuses on travel time 

uncertainty, though it can be extended to multiple percepts (e.g., the perceived uncertainty of the 

composite space of travel time, monetary cost, and comfort level). Using uncertainty rather than 

reliability-/variability-based measures can also capture risk-preference conveniently without 

issues of correlation with average travel time. Figure 5.2 shows an example, where the traveler 

perceives low uncertainty in both cases – on the left, he/she is quite certain to be on-time, while on 

the right, he/she is quite certain to be late. The traveler prefers the left over the right due to its 

lower average travel time. Thus, unlike using reliability or variation as the criterion in the cost 

function, common high correlation with average travel time can be avoided and the Value-of-

Uncertainty (VOU) can be estimated efficiently without bias. Note that some modelers categorize 

decision with (subjective) probability as decision under risk. I refer to this as “under uncertainty” 

instead of “under risk” to be consistent with the convention of Information Theory.  

 
Figure 5.2 Example of a traveler’s category-based perceived travel time distribution 

Prospect 

Probability 

Prospect 

Probability 

On-time Late 

0.9 

0.1 

On-time Late 

0.9 
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In a case where a traveler uses two criteria (travel time and travel time uncertainty), one 

can obtain the general cost (or disutility), 𝐺𝐶 = 𝑇𝑇̅̅̅̅ + 𝛽 ∙ 𝐻, by assuming utility additivity. 𝛽 can be 

set to 𝜆 ∙ 𝑇𝑇̅̅̅̅  to scale the entropy to the same unit of the general cost, where 𝜆 is a constant for the 

traveler. In Chapter 4, this entropy-based general cost formulation is viewed as a special case of a 

disutility function with elastic surprise considered for each possible outcome.  

In Figure 5.3, the x-axis represents the average travel time 𝑇𝑇̅̅̅̅  (minute), while the general 

cost (minute) is 𝑇𝑇̅̅̅̅ ∙ (1 + 𝛽 ∙ 𝐻) on the y-axis. The left graph shows that when 𝛽 > 0, the traveler 

makes a risk-averse decision. The right side shows that when 𝛽 < 0, the traveler makes a risk-

prone decision. This is because when 𝛽 > 0 (𝛽 < 0), the traveler values uncertainty as a positive 

(negative) factor. When 𝛽 = 0, the traveler is risk-neutral and the formulation “collapses” into just 

average travel time. Uncertainties in both cases are maximized at 𝑇𝑇̅̅̅̅ = 18.5𝑚𝑖𝑛. Note that this 

example only measures the cost/disutility change caused by uncertainty. Other factors such as 

misperception could also affect how a decision maker weighs the cost/disutility of an alternative. 

 
Figure 5.3 Travel Time (x-axis) vs. General Cost with Risk Preference (y-axis). The left is risk-

averse and the right risk-prone. 

Factors that influence how travelers set the cognitive categories need more study. In this 

chapter, the Preferred Arrive Time (PAT) of the traveler’s activity is used as the main factor. This 

not only eases the modeling effort and post-analysis interpretation but also creates a natural 

interface between uncertainty-incorporated DTA and Activity-based models (ABM). Travel time 

distribution is approximated using empirical evidence. Other factors that may influence the cost of 

the perceived uncertainty, such as departure time and the weights in the general cost function, are 
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assumed to be user-specific and exogenous. Figure 5.4 shows the importance of PAT to perceived 

uncertainty: a traveler perceives the same travel time distribution (i.e. the posterior distribution 

after updating the memory with newly observed information) in both cases, but the traveler on the 

right perceives higher uncertainty than the one on the left due to their different PATs. As might be 

expected, the perceived uncertainty could still have a high impact on the left-side scenario if this 

traveler imposes a greater weight on the perceived uncertainty in his/her/its “general cost 

function.” 

 
Figure 5.4 Influence of preferred arrival time and travel time distribution on perceived 

uncertainty. 

One possibility that is worth further investigation is the use of the logarithmic form of the 

term log(
1

𝑝𝑗
) in the entropy-based uncertainty measure. This term measures the reduction of the 

amount of perceived uncertainty (for a given percept) for an observer if the outcome j happens. 

However, perceived magnitude might not be in a logarithmic manner, especially when the 

corresponding outcome is perceived with small probability. That is, log(
1

𝑝𝑗
) approaching infinity 

when pj approaches zero may be unrealistic. Therefore, a modified form might be needed to better 

capture the observer’s cognition.  

It is important to realize that travelers typically “adjust” their travel time risk (or reliability) 

by making decisions on departure time, mode, and route together to reduce perceived disutility. 

The weight associated with uncertainty may vary depending on the importance of the activity of the 

traveler.  A traveler might also leave earlier than the optimal departure time for the activity due to 

the time constraints on the following activities. Therefore, departure time, trip purpose, and even 

Travel Time 

Probability Density 

PAT 
Travel Time 

Probability Density 
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the schedule of the entire day should be incorporated in future work to fully capture the effect of 

perceived uncertainty in a traveler’s decision. 

Single-Class Single-Criterion DUE Formulation 
 

This section first introduces some notations that are used in a single-class density-based 

formulation with only path-independent link cost (average travel time). The following list contains 

notations that will be used in the rest of the chapter.  

𝑎: directed link 𝑎 ∈ 𝐴, where 𝐴 is the set of directional links in the time-dependent 

network, 𝐺, under study.  

𝐿𝑎:  the length of link 𝑎.  

𝑥𝑎:  a point location 𝑥 distance away from the entrance of link 𝑎 

𝑡:  moment 𝑡 ∈ 𝑇, where T is the temporal planning horizon 

𝜏:  departure time moment 𝜏 

𝜌𝑥𝑎,𝑡:  density at location 𝑥𝑎 at time 𝑡, so that 𝜌𝑥𝑎,𝑡𝑑𝑥 is the number of vehicles at segment 

[𝑥, 𝑥 + 𝑑𝑥] at time moment t. 

𝜌𝑟𝑠𝜏:  density at the origin 𝑟 departing at time moment 𝜏 and going to destination 𝑠. 

𝜌𝑟𝑠𝜏𝑘: density at the origin 𝑟 departing at time moment 𝜏 going to destination 𝑠 and using 

path 𝑘 in the path set 𝐾𝑟𝑠𝜏. 𝜌𝑟𝑠𝑘𝜏d𝑥 is the amount of traffic generated at the origin from 

r to s through 𝑘 during [𝜏, 𝜏 + 𝑑𝜏). Figure 5.5 shows the trajectory of 𝜌𝑟𝑠𝑘𝜏𝑑𝑥 in the 

time-space. 

𝑐𝑥𝑎,𝑡(𝜌): cost rate at location 𝑥 at time 𝑡. 𝐶𝑥𝑎,𝑡(𝜌) = 𝑐𝑥𝑎,𝑡(𝜌)𝑑𝑥𝑑𝑡 is the cost (travel 

impedance) when traffic passes through space-time (𝑥𝑎 , 𝑡). When it considers the 

nonlocal traffic condition when it is a function for systemwide state vector 𝝆. 

𝑔(∙):  traffic generation (dissipation) rate (unit: vehicle/time/length).  
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𝛿𝑟𝑠𝜏𝑘
𝑥𝑎𝑡 : the proportion of traffic departures from 𝑟 to 𝑠 through 𝑘 during 𝜏 and at space time 

(𝑥𝑎 , 𝑡) 

 

An objective function along with the constraints can be formulated as 

min𝑍 = ∫∑∫ ∫ 𝑐𝑥𝑎,𝑡(𝜔)𝑑𝜔𝑑𝑥𝑑𝑡

𝜌𝑥𝑎,𝑡

0

𝐿𝑎

0𝑎𝑡

 
 

(5.1) 

Subject to:  

∑ 𝜌𝑟𝑠𝜏𝑘𝑘∈𝐾𝑟𝑠𝜏 = 𝜌𝑟𝑠𝜏 ,∀𝑟, 𝑠, 𝑘, 𝜏 

 
(5.2) 

𝜌𝑥𝑎,𝑡 = ∑ 𝜌𝑟𝑠𝜏𝑘𝛿𝑟𝑠𝜏𝑘
𝑥𝑎𝑡

𝑟𝑠𝜏𝑘 , where 𝛿𝑟𝑠𝜏𝑘
𝑥𝑎𝑡 = [0,1], ∀𝑎, 𝑥𝑎 , 𝑡 

 
 

(5.3) 

∑ 𝛿𝑟𝑠𝜏𝑘
𝑥𝑎,𝑡

𝑥𝑎 = 1, ∀𝑡, 𝑟, 𝑠, 𝜏, 𝑘 

 

(5.4) 

𝜌𝑥𝑎,𝑡 ∈ [0, 𝜌𝑥𝑎𝑡
𝑗𝑎𝑚

],∀𝑥𝑎 , 𝑡 

 

(5.5) 

𝜕𝜌𝑥𝑎,𝑡

𝜕𝑡
+
𝜕 (𝜌𝑥𝑎,𝑡𝑣𝑥𝑎,𝑡(𝜌𝑥𝑎,𝑡))

𝜕𝑥𝑎
= 𝑔(𝑥𝑎 , 𝑡) 

 

(5.6) 

 
Figure 5.5 The cost of the trajectory of an infinitely small portion of traffic load passing through 

𝑑𝑥𝑑𝑡 is 𝑐(𝜌𝑥,𝑡)𝑑𝑥𝑑𝑡 

Since the constraint (5.2) refers to density, 𝛿𝑟𝑠𝜏𝑘
𝑥𝑎𝑡  is not binary but continuous between 0 and 

1. However, when referring to the same “chunk” of traffic, all the 𝛿𝑟𝑠𝜏𝑘
𝑥𝑎𝑡  that associated with this 

“chunk” of traffic at a given time step should always add up to 1 (i.e., the constraint (5.4).)  For 

example, suppose there are five vehicles appeared on the starting road segment of a route at time 𝑡, 

Δ𝑥Δ𝑡 

𝑡 

 𝑥𝑘 

Trajectory of 𝜌𝑟𝑠𝜏𝑘𝑑𝑥 (departs during [𝜏,𝜏 + 𝑑𝜏]) 
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at time 𝑡 + Δ𝑡, three vehicles are only the road segment 𝐿1 and two vehicles are on the road 

segment 𝐿2, then 𝛿𝑟𝑠𝜏𝑘
𝐿1(𝑡+Δ𝑡) = 0.6 and 𝛿𝑟𝑠𝜏𝑘

𝐿2(𝑡+Δ𝑡) = 0.4.  

Other constraints on traffic characteristics such as state continuity and the maximum of 

non-negative speed are also critical but can be inherently considered in a traffic simulator, and are 

therefore not specified in the formulation. Figure 5.5 shows an example of a trajectory of a small 

“chunk” of traffic on path 𝑘 at post-mile 𝑥𝑘. When this “chunk” is infinitely small, an integration of 

density over the whole time-space would be the traffic itself.  

Supposing that 𝑐(∙) is continuous in [0, +∞], monotonically increasing, and first-order 

differentiable, we would have 

𝜕𝑍

𝜕𝜌𝑟𝑠𝜏𝑘
=

𝑑𝑍

𝑑𝜌𝑥𝑎,𝑡
∙
𝜕𝜌𝑥𝑎,𝑡

𝜕𝜌𝑟𝑠𝜏𝑘
= 𝐶𝑟𝑠𝜏𝑘 

(5.6) 

The second-order derivative of Z on 𝜌𝑟𝑠𝜏𝑘 is  

𝜕2𝑍

𝜕𝜌(𝑟𝑠𝜏𝑘)𝑖𝜕𝜌(𝑟𝑠𝜏𝑘)𝑗
= ∫∑∫

𝜕𝑐𝑥𝑎,𝑡(𝜌𝑥𝑎,𝑡)

𝜕𝜌𝑥𝑎,𝑡

𝐿𝑎

0𝑎

𝛿(𝑟𝑠𝜏𝑘)𝑖
𝑥𝑎𝑡

𝑡

𝛿(𝑟𝑠𝜏𝑘)𝑗
𝑥𝑎𝑡 𝑑𝑥𝑑𝑡, ∀𝑖, 𝑗 

(5.7) 

where (𝑟𝑠𝑘𝜏)𝑖 is the 𝑖𝑡ℎ 𝑟𝑠𝜏𝑘 combination. The formulation (1) has unique optimum when the 

Hessian matrix with element (𝑖, 𝑗) as 
𝜕2𝑍

𝜕𝜌(𝑟𝑠𝜏𝑘)𝑖
𝜕𝜌(𝑟𝑠𝜏𝑘)𝑗

 is greater than zero.  

Given the convex cost function, one can set up the Lagrangian for the problem as 𝐿 = 𝑍 +

∑ 𝜆𝑟𝑠𝜏(𝜌𝑟𝑠𝜏𝑟𝑠𝜏 − ∑ 𝜌𝑟𝑠𝜏𝑘𝑘∈𝐾𝑟𝑠𝜏 ) and 
𝜕𝐿

𝜕𝜌𝑟𝑠𝜏𝑘
=

𝜕𝑍

𝜕𝜌𝑟𝑠𝜏𝑘
− 𝜆𝑟𝑠𝜏 = 𝐶𝑟𝑠𝜏𝑘 − 𝜆𝑟𝑠𝜏, ∀𝑟, 𝑠, 𝜏. The corresponding 

Karush-Kuhn-Tucker conditions, at optimum where 𝜌𝑟𝑠𝜏𝑘 = 𝜌𝑟𝑠𝜏𝑘
∗ , become: if 𝜌𝑟𝑠𝜏𝑘

∗ = 0, then 

𝜕𝐿

𝜕𝜌𝑟𝑠𝜏𝑘
≥ 0; if 𝜌𝑟𝑠𝜏𝑘

∗ ≥ 0, then 
𝜕𝐿

𝜕𝜌𝑟𝑠𝜏𝑘
= 0. This is equivalent to: 

𝐶𝑟𝑠𝜏𝑘 > 𝜆𝑟𝑠𝜏
∗ , ∀𝑟, 𝑠, 𝜏, 𝑘, when 𝜌𝑟𝑠𝜏𝑘

∗ = 0, 

𝐶𝑟𝑠𝜏𝑘 = 𝜆𝑟𝑠𝜏
∗ , ∀𝑟, 𝑠, 𝜏, 𝑘, when 𝜌𝑟𝑠𝜏𝑘

∗ > 0. 
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Therefore, the solution satisfies Wardrop’s first principle in the dynamic case. Although 𝑐(∙), as a 

function of density, is convex, the Hession matrix might not be strictly positive. Therefore, the 

formulation might not be strictly convex, and uniqueness can of course not be guaranteed.  

The speed-density relationship to use depends on the modeler’s assumptions. A simple 

continuum relation relationship (𝑣 = 𝑣(𝜌)), a higher order continuum relationship, or a selected 

traffic simulator can be used as alternatives for establishing this relationship. Also dependent on 

the modeler’s assumption is the “First-In First-Out (FIFO)” requirement. Although typical DTA 

practice prefers a model to satisfy FIFO, the formulation is adjustable to reflect better actual traffic 

conditions. In a case where the cost is not only a function of the local density but also density in 

other locations (e.g., drivers or autonomous/connected vehicles determine their 

speed/acceleration based on non-local traffic conditions), 𝐶(∙) can be a function of 𝝆, where 𝝆 is a 

density state vector that stores density information (available to this observer) throughout the 

network under study.  

Multi-Class Multi-Criteria Extension With Path-Dependent Link Cost 
 

Since perceived travel time uncertainty can be considered as a path-dependent link cost, the single-

criterion single-class formulation described given previously can be extended.  

 

min 𝑍 = ∫∑∫ [ ∫ 𝑡�̅�𝑥𝑎,𝑡(𝜔)𝑑𝜔

𝜌𝑥𝑎,𝑡

0

+ ∑ 𝜌𝑟𝑠𝜏𝑘𝑚𝛿𝑟𝑠𝜏𝑘
𝑥𝑎𝑡 (𝜋𝐶,𝑇𝑇̅̅ ̅̅

𝑚 ∙ 𝑐𝑥𝑎,𝑡
𝑇𝑜𝑙𝑙 + 𝜋𝐻,𝑇𝑇̅̅ ̅̅

𝑚 ∙ ℎ𝑥𝑎,𝑡
𝑟𝑠𝜏𝑘𝑚)

∀𝑟𝑠𝜏𝑘𝑚

] 𝑑𝑥𝑑𝑡

𝐿𝑎

0𝑎𝑡

 

 

(5.8) 
 

ℎ is the “entropy rate” so that 𝐻𝑥𝑡
𝑟𝑠𝜏𝑘𝑚 = ∫ ∫ ℎ𝑥𝑡

𝑟𝑠𝜏𝑘𝑚(�̃�, �̃�)𝑑�̃�𝑑�̃�
𝑥𝑡

. User class 𝑚 ∈ 𝑀𝑘𝑟𝑠𝜏 or 𝑀 depends 

on whether 𝑚 considers path-dependent link costs. 𝜋𝐶,𝑇𝑇̅̅ ̅̅
𝑚 =

𝛽𝐶
𝑚

𝛽
𝑇𝑇̅̅ ̅̅
𝑚  and 𝜋𝐻,𝑇𝑇̅̅ ̅̅

𝑚 =
𝛽𝐻
𝑚

𝛽
𝑇𝑇̅̅ ̅̅
𝑚 , and they scale 

monetary cost and entropy cost to that of travel time. 𝛽𝑇𝑇̅̅ ̅̅
𝑚 , 𝛽𝐶

𝑚, and 𝛽𝑈
𝑚 are the coefficients in the 

linear general cost function.  Constraints are similar to that in the single-class case except that each 

constraint should be user class-based.  One can prove that the optimal solution of 𝑍 satisfies DUE. 



103 
 

DSO can be obtained easily by replacing the cost functions with their first-order derivatives (i.e. 

their marginal cost functions). 

Travel time is modeled as an endogenous variable in the formulation, while the monetary 

and uncertainty costs are modeled to be exogenous. In cases where there is a relationship between 

endogenous and exogenous variables (e.g., adaptive tolling scheme), an iterative process can adjust 

the exogenous variables based on the feedback from the resultant endogenous variables.  

Stochastic Gradient Project Based Solution 
 

Combining constraint set (10) and (11), we can obtain a transformed and dimensionally-reduced 

objective function that includes the traffic densities on links of only the non-shortest paths (non-

SPs) by recognizing that 𝜌𝑥𝑎,𝑡 = ∑ (𝜌𝑟𝑠𝜏�̃�𝑚𝛿𝑟𝑠𝜏�̃�
𝑥𝑎,𝑡 )𝑟𝑠𝜏�̃�𝑚 + ∑ 𝜌𝑟𝑠𝜏�̅�𝑚𝛿𝑟𝑠𝜏�̅�

𝑥𝑎,𝑡
𝑟𝑠𝜏𝑚  and 𝜌𝑟𝑠𝜏�̅�𝑚 = 𝜌𝑟𝑠𝜏𝑚 −

∑ 𝜌𝑟𝑠𝜏�̃�𝑚�̃�∈�̃�𝑟𝑠𝜏𝑚
, where �̃� ∈ �̃�𝑟𝑠𝜏 is one of the non-SP and �̅� = �̅�𝑟𝑠𝜏𝑚 is the shortest path (SP) given 

𝑟𝑠𝜏𝑚.  

Transforming the original objective function 𝑍(𝝆𝒙𝒂,𝒕) to �̃�(𝝆𝒓𝒔𝝉�̃�𝒎), the first-order 

derivatives (Jacobian) with respect to density 𝜌𝑟𝑠𝜏�̃�𝑚 becomes 

𝜕�̃�

𝜕𝜌𝑟𝑠𝜏�̃�𝑚
=

𝜕�̃�

𝜕𝜌𝑥𝑎,𝑡
∙
𝜕𝜌𝑥𝑎,𝑡

𝜕𝜌𝑟𝑠𝜏�̃�𝑚
= 𝐺𝐶𝑟𝑠𝜏�̃�𝑚 − 𝐺𝐶𝑟𝑠𝜏�̅�𝑚, ∀𝑟, 𝑠, �̃� ∈ �̃�𝑟𝑠𝜏 , �̅� = �̅�𝑟𝑠𝜏𝑚 

(5.9) 

Let 𝑆 be the second-order derivative (Hessian) of the objective function. The element, 

𝑆(𝑟𝑠𝜏�̃�𝑚)𝑖(𝑟𝑠𝜏�̃�𝑚)𝑗 , therefore, is 

𝜕2𝑍

𝜕𝜌(𝑟𝑠𝜏�̃�𝑚)𝑖𝜕𝜌(𝑟𝑠𝜏�̃�𝑚)𝑗
= ∫∑∫

𝑡𝑡𝑎(𝜌𝑥𝑎,𝑡)

𝜕𝜌𝑥𝑎,𝑡
(𝛿
(𝑟𝑠𝜏�̃�)𝑖

𝑥𝑎,𝑡 − 𝛿(𝑟𝑠𝜏�̅�)𝑖
𝑥𝑎,𝑡 ) (𝛿

(𝑟𝑠𝜏�̃�)𝑗

𝑥𝑎,𝑡 − 𝛿(𝑟𝑠𝜏�̅�)𝑗
𝑥𝑎,𝑡 ) 𝑑𝑥𝑑𝑡

𝐿𝑎

0𝑎𝑡

, ∀𝑖, 𝑗 ∈ 𝐼 (5.10) 

Set 𝐼 stores all the possible 𝑟𝑠𝜏𝑘𝑚 combinations. According to (5.10), we can calculate the 

element (𝑖,𝑗) of the Hessian matrix by summing all the Θ𝑖,𝑗
𝑥𝑎,𝑡 ∙

𝑡𝑡𝑎(𝜌𝑥𝑎,𝑡)

𝜕𝜌𝑥𝑎,𝑡
, where Θ𝑖,𝑗

𝑥𝑎,𝑡 = (𝛿
(𝑟𝑠𝜏�̃�)𝑖

𝑥𝑎,𝑡 −
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𝛿
(𝑟𝑠𝜏�̅�)𝑖

𝑥𝑎,𝑡 ) (𝛿
(𝑟𝑠𝜏�̃�)𝑗

𝑥𝑎,𝑡 − 𝛿
(𝑟𝑠𝜏�̅�)𝑗

𝑥𝑎,𝑡 ) equals to -1, 0, or 1 depending on the relationship of (𝑟𝑠𝜏�̃�)𝑖, , (𝑟𝑠𝜏�̅�)𝑖, 

(𝑟𝑠𝜏�̃�)𝑗, and (𝑟𝑠𝜏�̅�)𝑗 with (𝑥𝑎 , 𝑡). These relationships are shown in Table 5.2.  

Table 5.2 Relationship of (𝑟𝑠𝜏�̃�)𝑖, (𝑟𝑠𝜏�̅�)𝑖, (𝑟𝑠𝜏�̃�)𝑗, and (𝑟𝑠𝜏�̅�)𝑗 to (𝑥𝑎 , 𝑡) for deciding Θ𝑖,𝑗
𝑥𝑎,𝑡 

according to (5.10) 
 (𝑟𝑠𝜏�̃�)𝑖 (𝑟𝑠𝜏�̅�)𝑖 (𝑟𝑠𝜏�̃�)𝑗  (𝑟𝑠𝜏�̅�)𝑗  Θ𝑖,𝑗

𝑥𝑎,𝑡 

On (𝑥𝑎 , 𝑡)? 

Yes No Yes No 
1 

No Yes No Yes 

Yes No No Yes 
-1 

No Yes Yes No 

The rest 12 relationships 0 

 

Summarizing (5.10) and Table 5.2, the element, 𝑆(𝑟𝑠𝜏�̃�𝑚)
𝑖
(𝑟𝑠𝜏�̃�𝑚)

𝑗
, or 𝑆𝑖𝑗, in the second-order 

derivative (Hessian) of the objective function, is determined by the addition of positive or negative 

marginal link travel time conditioning on the following conditions: the coefficient is 1 when the link 

is on (𝑟𝑠𝜏�̃�)
𝑖
 and (𝑟𝑠𝜏�̃�)

𝑗
 but not on their corresponding shortest path(s); the coefficient is also 1 

when the link is on (𝑟𝑠𝜏�̅�)
𝑖
 and (𝑟𝑠𝜏�̅�)

𝑗
 but not on their corresponding non-shortest path(s); the 

coefficient is -1 when the link is on (𝑟𝑠𝜏�̃�)
𝑖
 and (𝑟𝑠𝜏�̅�)

𝑗
 but on neither (𝑟𝑠𝜏�̅�)

𝑖
 nor (𝑟𝑠𝜏�̃�)

𝑗
; the 

coefficient is -1 when the link is on (𝑟𝑠𝜏�̅�)
𝑖
 and (𝑟𝑠𝜏�̃�)

𝑗
 but on neither (𝑟𝑠𝜏�̃�)

𝑖
 nor (𝑟𝑠𝜏�̅�)

𝑗
; the 

coefficient is 0 in any other case. 𝑆𝑖𝑖 (or 𝑆�̃�) is 𝑖th diagonal element of the Hessian matrix. Note that 

two routes have to be both spatially and temporally on a location to be considered overlapping at 

this location.  

One special case is when 𝑖=𝑗 (i.e., 𝑠𝑖,𝑖 = ∫ ∑ ∫
𝑡𝑡𝑎(𝜌𝑥𝑎,𝑡)

𝜕𝜌𝑥𝑎,𝑡
(𝛿
(𝑟𝑠𝜏�̃�)𝑖

𝑥𝑎,𝑡 − 𝛿
(𝑟𝑠𝜏�̅�)𝑖

𝑥𝑎,𝑡 )
2𝐿𝑎

0𝑎𝑡
), so that Θ𝑖,𝑖

𝑥𝑎,𝑡 =

1  when either (𝑟𝑠𝜏�̃�)
𝑖
 or (𝑟𝑠𝜏�̅�)

𝑖
 is on (𝑥𝑎 , 𝑡) but not both; otherwise, Θ𝑖,𝑖

𝑥𝑎,𝑡 = 0.  

Since the Hessian matrix might not be strictly positive, the objective function is not 

necessarily convex. However, one can still utilize the gradient with certain mechanisms to search 
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for the global optimum without being “trapped” into the local one. As can see, existing methods that 

use (5.9) as the main objective runs the risk of “converging” at a reflection point. 

Projection is the step in which the path loads that are negative is made zero after the 

gradient-based update, with the vehicles then placed in the corresponding SPs to satisfy non-

negative demand constraints. In mesoscopic/macroscopic simulation-based methods, however, 

traffic is formed with individual vehicles, and therefore, the non-negativity constraint for “traffic 

load” is automatically satisfied. I propose a method that stochastically switches vehicles from their 

non-SPs to their corresponding SPs. Suppose there are 𝑁�̃�
𝑛 vehicles on the non-SP given 𝑟, 𝑠, 𝜏,𝑚, in 

the iteration 𝑛. 𝑝�̃�→�̅�
𝑛  is the proportion to be switched from the non-SP, �̃�, to the SP, �̅�. The “traffic 

load” of the next iteration can be estimated as 𝑁�̃�
𝑛+1 = 𝑁�̃�

𝑛 − 𝑝�̃�→�̅�
𝑛 ∙ 𝑁�̃�

𝑛 = 𝑁�̃�
𝑛 −

𝛼𝑛

𝑆
�̃�
𝑛 (𝐺𝐶�̃�𝑛 − 𝐺𝐶�̅�𝑛). 

Therefore,  

𝑝�̃�→�̅�
𝑛 =

𝛼𝑛

𝑆�̃�
𝑛 ∙ 𝑁�̃�

𝑛 (𝐺𝐶�̃�𝑛 − 𝐺𝐶�̅�𝑛) (5.11) 

Since 0 ≤ 𝑝�̃�→�̅�
𝑛 ≤ 1, the non-negativity constraint, max {0, 𝑁�̃�

𝑛 −
𝛼𝑛

𝑆
�̃�
𝑛 (𝐺𝐶�̃�𝑛 − 𝐺𝐶�̅�𝑛)}, for a traffic 

simulator is almost trivial. 𝑝�̃�→�̅�
𝑛  can be interpreted as the probability of adjusting a vehicle’s 

current non-SP to the SP in a simulation.  

An example might be helpful to understand the derived result above intuitively. Suppose 

there are two rooms of the same size. Three people are in Room A and two in Room B. Although 

Room A is more crowded than Room B (𝐺𝐶𝐴 > 𝐺𝐶𝐵), none in room A wants to go to Room B 

unilaterally due to the high elasticity of the crowd level of the two rooms. That is, if a person in 

Room A moves to Room B, Room B will then become more crowded (𝐺𝐶𝐴 < 𝐺𝐶𝐵).  

Case Study 
 

The State Route 91 (SR-91) is a major east-west freeway located in Southern California (Figure 5.6). 

It currently runs from Vermont Ave. in Gardena (just west of the interchange with the I-110), east 
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to City of Riverside at the junction with SR-60), and I-215. The segment from the interchange with 

SR-55 to the Riverside County line is the 91 Express lanes – a ten-mile (16km) high-occupancy toll 

road. All the tolls are collected using an open-road tolling system, with each vehicle required to 

carry a FasTrak transponder.  

 

 
Figure 5.6 Relative location of the SR-91 HOT Facility to City of Los Angeles and City of Irvine. 

(Source: MapQuest.com) 

The network is built based on data from the Southern California Association of Governments’ RTP 

2016 model (scenario 3) and the Inventory Database of the California Department of 

Transportation (Caltrans). For the study area, the static OD matrices for different user classes are 

obtained based on the identification of 17 gateways, 286 internal zones, and 3 special generators 

(John Wayne Airport and two amusement parks) of the Southern California Association of 

Governments’ RTP 2016 model. To obtain the time-dependent OD demand, the resultant AM peak 

period OD demand is split based on 5-min PeMS data from 6:45-8:15 am, April 12 (Tuesday), 2016. 

The ramp metering data is obtained from the Caltrans. The toll scheme was obtained from the SR-

91 Express Lanes official website (on April 12, 2016). The SR-91 Express Lanes system uses a 

variable pricing scheme based on the time of day. 15-min “warm-up” and “cool-down” simulations 

are performed before and after the study period, and the time-dependent OD matrices are 

estimated to capture the count at 5-min aggregation level between 7-8am. 
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Figure 5.7 The Model Network. The upper left shows the entire model network; the upper right 
shows the west end of the SR91 HOT facility; the lower left shows the east end of the SR91 HOT 

facility; The lower right shows the interchange area of the SR91 and N Weir Canyon Road. 

Vehicles are classified based on whether travelers possess real-time traffic information, 

occupancies of the vehicles (Drive Alone (DA) and HOV), and serving purposes (passenger vehicles 

and trucks). Informed-HOV and Uninformed-HOV have 60% to be risk-prone (𝛽𝐻 = 1.25), 25% 

risk-averse (𝛽𝐻 = −2.12), and 15% risk-neutral (𝛽𝐻 = 0). Informed-DA and Uninformed-DA have 

80% to be risk-prone, 15% risk-averse, and 5% risk-neutral. Informed-Truck and Uninformed-

Truck have 20% to be risk-prone, 70% risk-averse, and 10% risk-neutral. Value-of-Time (VOT) of 

$11.5/hour is used as 𝛽𝑐 for passenger and $24.5/hour to convert toll to time. A linear additive 

general cost function is used. In this case study, the category is set based on two prospects: arriving 

by or before the PAT and arriving later than the PAT. Due to lack of PAT information, the PAT is set 

as 𝛼𝑚 ∙ 𝑇𝑇̅̅̅̅ , ∀𝑚. In this case study, 𝛼𝑚 = 𝛼 = 1.2, ∀𝑚. 

Finding the first-order derivative of the objective function (the cost gap between non-SP 

and the SP) is relatively convenient to obtain, and yet obtaining the “second-order derivative” 

requires recognizing that a vehicle’s “path” is in time-space. With this understanding, one can 

obtain the marginal path cost in every position along the trajectory by evaluating the marginal 
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change of the cost from a marginal increase of the density without considering the overlapping 

segments with the corresponding SP. In this case study, the second-order derivative at link-level is 

approximated using Triangular Fundamental Diagram (TFD), though it is also feasible (though 

more complex) to incorporate higher-order speed-density relationships.  Within the congested 

regime of the TFD (at a given link and time interval), the marginal cost for the vehicles that depart 

in time interval 𝜏 from 𝑟 to 𝑠 through path �̃� can be approximated by evaluating the speed changes 

in terms of the marginal density changes. Within the uncongested regime of the TFD, the cost is not 

sensitive to the change of the density, as the speed is constant. The second-order derivative then 

can be obtained by summing the marginal costs on links that are either on the non-shortest 

trajectory or the shortest trajectory but not on both. An example is illustrated in Figure 5.8. 

 
Figure 5.8 Approximating the (partial) second-order derivative of a traveler’s general cost along 

the trajectory. 

The TFD parameters in the case study are set based on the calibration result from a 

previous work (Dervisoglu, 2015). The capacities of the freeway links and local road links are 

2200veh/hr/lane and 1300 veh/hr/ln, respectively. The discontinuity caused by local traffic signal 

and ramp metering is not considered in this case study. 
𝜌𝑐

𝜌𝑗
 is set to be 0.19 (𝜌𝑐  is the density when 

the traffic flow reaches capacity and 𝜌𝑗  is the jam density). For a fundamental diagram that 

considers lane-changing, refer to Jin (2010). Trajectory data from simulations are used to obtain 
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densities on links or sub-links at given time intervals. To maintain computational efficiency, the 

Hessian matrix is approximated with its diagonal elements. 

The process of “switching trips” in this case study is essentially a “trip table adjustment” 

procedure with the aid of the trajectory data. To prevent the algorithm from being “trapped” at 

local optimum, the step size is set relatively large in the first iterations than later ones. A brief 

flowchart is shown in Figure 5.9.  A sample from the trip table is shown in Table 5.3. A Path ID will 

be adjusted to that of its corresponding shortest path ID if the vehicle is selected.  

The simulation-based mesoscopic dynamic assignment was performed on TransModeler 4.0 

on a machine with Intel Core™ i7-4770 CPU with 3.40GHz, 8.00GB 64-bit operating system.  

 

 
Figure 5.9 Flow-chart of the GP solution adaptive to the case study 

STEP 0: Initialization 

Settings: Network, Centroids, Control, Time-dependent Multi-class OD Demand 

STEP 1: Multi-class Bi-criterion (average travel time and toll)  

Simulation-based (Mesoscopic) DTA  

 

STEP 2: Obtain Resultant Trip Table, Path Sets,  

Trajectories, Link Cost 

STEP 3: Tri-criterion Trip Path Adjustment in the Trip Table  

based on 𝑝�̃�→�̅�
𝑛 =

𝛼𝑛

𝑆𝑘
𝑛∙�̃�𝑛

(𝐺𝐶�̃�𝑛 − 𝐺𝐶�̅�𝑛) 

STEP 7: Converged? STEP 6: Path Sets Changed?  

No 

STOP 

Yes 

STEP 5: (Mesoscopic) Traffic Simulation 

Using Modified Trip Table with Unfixed Path Selection 

STEP 4: Maximum Iteration Reached? 

Yes No 

No 

Yes 
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Table 5.3 Sample trip table used in the algorithm 
Vehicle 
ID 

OriID DesID Vehicle 
Type 

𝛽𝐶  … Path 
ID 

Departure 
Time 

Expected 
Arrival 
Time 

Actual 
Arrival 
Time 

Toll 
($) 

10375 3 7 SOV 3.71 … 6 36549 36649 36651 -- 
10376 3 6 HOV2 2.44 … 12 36552 36601 36603 -- 
10377 2 5 HOV3+ 2.39 … 4 36555 36597 36588 1.5 
10378 1 7 SOV 3.71 … 15 36561 36613 36616 2.4 
… … … … … … … … … … … 

Results Discussion 
 

Two user-oriented convergence criteria are used in this case study: the average and the standard 

deviation of the general cost gap between the cost of the current path and the corresponding SP. 

That is, 𝑅𝑀𝐸𝐴𝑁 =
𝐺𝐶−𝐺𝐶�̅�̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐺𝐶̅̅ ̅̅ �̅�
 and 𝑅𝑆𝑇𝐷𝐸𝑉 =

√𝑉𝑎𝑟(𝐺𝐶−𝐺𝐶�̅�)

𝐺𝐶̅̅ ̅̅ �̅�
 in the planning horizon (temporal and spatial), 

where 𝐺𝐶 is treated as a random variable, each realization is that of each user, and 𝐺𝐶�̅�  is the 

corresponding SP. The convergence criteria is based on both 𝑅𝑀𝐸𝐴𝑁 and 𝑅𝑆𝑇𝐷𝐸𝑉 being low. Figure 

5.10 shows  𝑅𝑀𝐸𝐴𝑁 and 𝑅𝑆𝑇𝐷𝐸𝑉 at each iteration when only consider the first order derivative of the 

objective function (0.3 as the step size). Figure 5.11 shows  𝑅𝑀𝐸𝐴𝑁 and 𝑅𝑆𝑇𝐷𝐸𝑉 at each iteration 

when considering both the first order derivative and the second order derivative (only the diagonal 

elements of the Hessian matrix) of the objective function. The results show a superior 

converngence tendency when the second order derivative is considered. Notice that the 

consideration of second-order derivative does not cause significant computational effort for the 

following two reasons. First, the most computationally-heavy tasks (network skimming and path 

storage) are already performed for calculating the first-order derivative. Second, the case study 

approximates 𝑆𝑖𝑖 at the link-level when the users entering the study link – the traffic density is 

calculated as the total vehicles on the study link (when the users entering the link) divided by the 

multiplication of the total link length and the number of lanes.  

Setting the criteria 𝑅𝑆𝑇𝐷𝐸𝑉  is for avoiding the occasion where a high variation exists in 

different travelers’ general cost gap between the SPs and the non-SPs. The stochasticity of 
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projecting vehicles, simulating driving behaviors, and trading-off between reducing “average gap” 

and “gap variation” in the simulation all contribute to the non-monotonic convergence.   

 
Figure 5.10 Convergence test for both the 𝑅𝑀𝐸𝐴𝑁 and the 𝑅𝑆𝑇𝐷𝐸𝑉 when only considers the first 

order derivative of the objective function. 

 
Figure 5.11 Convergence test for both the 𝑅𝑀𝐸𝐴𝑁 and the 𝑅𝑆𝑇𝐷𝐸𝑉 when consider the first-order and 

the second-order derivative of the objective function.  

Toll revenue forecast under a bi-criterion DUE is $3142.2002, while $2867.8243 it is for a 

tri-criterion DTA that incorporates travel time uncertainty (1.5% HOV facility usage violation is 

assumed, and neither fines nor enforcement effectiveness is considered). A set of different 

combinations of coefficients are used, and they produce similar convergence effects; this could be 

caused by the relatively small size of the network used.  

Figure 5.12 shows the “route adjustment” over iterations for three randomly-selected users 

from different classes, occupancies, OD pairs, departure times, and preferred arrival times (their 

attributes are shown in Table 5.4). The x-axis is the sequence of iteration while the y-axis the gap 
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for both the bi-criterion and tri-criterion cost gaps. Bi-criterion cost gaps generally increase over 

the iterations while tri-criterion cost gaps decrease. However, it is possible that the SP based on the 

bi-criterion and on the tri-criterion are the same (user 13782). Risk-averse users (e.g., user 10077) 

unsurprisingly tend to use HOT lanes since average travel time reduction and uncertainty reduction 

can be achieved simultaneously by the increase of monetary cost. On the other hand, analyzing and 

predicting route choice is relatively more challenging when the objectives are conflicting, i.e., 

reducing average travel time and reducing uncertainty simultaneously. This is the case for risk-

prone users (e.g., user 13782 and user 23192) because their decisions are highly related to the 

probability of arriving earlier than the PAT in the alternative route (i.e., HOT lanes). Records on  the 

cost gap and path switching over the iterations are shown in Table 5.5. 

 
Figure 5.12 Bi-criterion and tri-criterion gap over iterations for user 10077, 13782, and 23192 

Table 5.4 User attributes for 10077, 13782, and 23192 
User ID Origin Destination Dep 

Time 
User 
Class 

Vehicle 
Type 

𝛽𝑇𝑇̅̅ ̅̅  𝛽𝐶  𝛽𝐻 
 

Risk 
preference 

10077 Entrance 1 Exist 6 7:03 2 SOV 1 3.70 1.51 Averse 
13782 Entrance 1 Exist 6 7:18 2 HOV2 1 2.44 -1.43 Prone 
23192 Entrance 4 Exist 6 7:47 1 SOV 1 3.70 -1.68 Prone 

 

Table 5.5 Path switch over the iterations for user 10077, 13782, and 23192 
User 10077 

Iteration 
Bi-criterion Tri-criterion 

Current 
Path ID 

SP-bi ID SP-tri ID Switch? 

0 0.00 6.26 7 7 6 No 

1 4.45 6.57 7 6 6 Yes 

2 7.21 5.39 6 5 7 Yes 

3 0.00 0.00 7 7 7 No 

4 6.58 0.00 7 6 7 No 
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5 7.49 2.44 7 5 6 Yes 

6 6.81 0.00 6 5 6 -- 

User 13782 
Iteration 

Bi-criterion Tri-criterion 
Current 
Path ID 

SP-bi ID SP-tri ID Switch? 

0 0.00 0.00 6 6 6 No 

1 3.47 3.55 6 5 7 Yes 

2 2.61 0.00 7 6 7 No 

3 13.99 4.74 7 6 6 No 

4 7.58 3.20 7 6 6 Yes 

5 0.00 0.00 6 6 6 No 

6 0.00 0.00 6 6 6 -- 

User 23192 
Iteration 

Bi-criterion Tri-criterion 
Current 
Path ID 

SP-bi ID SP-tri ID Switch? 

0 0.00 19.65 11 11 15 Yes 

1 8.45 0.00 15 11 15 No 

2 12.21 14.39 15 14 14 Yes 

3 0.00 15.17 14 14 11 No 

4 0.00 9.25 14 14 15 No 

5 0.00 1.37 14 14 15 Yes 

6 9.72 0.00 15 14 15 -- 

 
 

Although travel time uncertainty and toll are treated as exogenous, it can be accommodated 

as endogenous variables by setting an “outer loop” to feed the forecast traffic pattern back to the 

exogenous variables in the “inner loop.” Variability measures can be easily incorporated similarly to 

entropy-based methods if variability is preferred as uncertainty proxy.  

Modeling heterogeneous users with discrete random distribution has its advantage. First, It 

is more convenient to capture the correlation among different parameters in large scale simulation, 

secondly, users are indeed discrete in reality.  

To consider the stochasticity of the parameters in the simulation (including the driving 

behavior parameters) and obtain higher confidence on the assignment results, a batch run is 

recommended. Step size 𝛼𝑛 in the gradient projection algorithm could be set flexible so as to avoid 

local optima. One can evaluate DSO conditions by replacing users’ general cost functions with their 

marginal general cost functions. Although it is a common practice to use linear forms for the 

perceived general cost, there could be more realistic forms that capture the interaction among 

different criteria.  
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Conclusion and Future Direction 
 

This chapter proposes an entropy-based method to consider the perception of uncertainty and 

provides a formulation based on traffic density for multi-class dynamic user equilibrium with path-

dependent link costs and risk preference. A GP-based solution procedure is tailored for utilizing a 

microscopic traffic simulator that provides traffic densities via vehicle trajectory outputs. The case 

study demonstrates the convergence efficiency of using a stochastic quasi-gradient projection 

method. The “path-switching behavior” for each user over interactions is set in a way to efficiently 

approaching DUE, and therefore, it does not necessarily contain a behavioral foundation. The 

scheme considers additive, non-additive, and path-dependent link costs in the dynamic assignment 

process, even while using approximated Hessian matrices. 

The gradient-based solution explains that using “gap function” is its special case and using 

“gap function” as the main objective leads to the risk of “converging” at a reflection point. Therefore, 

the second-order derivative of the objective function should be considered. Since the gradients 

apply to individual vehicles stochastically, the error is “noisier” than that of the regular gradient 

projection. However, this stochasticity gives the algorithm the potential to “escape” from local 

minima, especially when computing in a batch mode. Implementing adjustable step size further 

strengthens the algorithm’s ability in avoiding local optima.  

The GP-based solution scheme has two computational advantages over other existing 

methods: (1) There is no “hidden loop” in each step -- the algorithm only requires reaching bi-

criterion DUE in the initialization phase and the rest of the procedures are only one-loop 

simulations, during which travelers are set to have various abilities and information availability to 

adjust their path. (2) The algorithm “drops” very unlikely path(s) in each iteration helps save 

memory and speed up the computing speed. These findings are consistent with that in a 

computational study examining several static path-based traffic assignment algorithms (23). A 

future study in a larger non-corridor network will be useful to verify the algorithm’s ability to 
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generate realistic path sets. The case study intentionally selected a “corridor-shaped” network so 

that paths can be enumerated to check whether the result contains reasonable path sets. 

Several important points are worth emphasizing: (1) variation, uncertainty, risk, and 

reliability are different, and should not be used interchangeably. (2) A tolling scheme that attempts 

to consider the reduction of impact on variation and uncertainty change should consider different 

users’ whole paths (especially predecessor links) rather than only the tolling segments. (3) 

Uncertainty and reliability are highly related to travelers’ and shippers’ departure time choices and 

preferred arrival times/time windows, depending on the attitude toward and the importance of 

each activity and time budget. (4) Despite the goal of reaching dynamic user equilibrium, it does not 

postulate that there exists any form of DUE in reality. The SQGP-based MDUE-MP solution only 

gives a suggestion of how the traffic pattern could be given certain prior information and initial 

condition. The system-optimal versions of the scheme with marginal costs have more relevance in 

practical control in traffic networks.  

There are at least four important future research directions: development of an efficient and 

effective path-cost-based shortest path algorithm, effective calibration based on both aggregate 

(e.g., detector station data) and disaggregate data (e.g., sentiment and physical trajectory data) for 

large networks, research on how to set cognitive categories for travelers and shippers, and an 

integration of  activity-based models (ABM) and dynamic traffic assignment (DTA) through the 

category-based uncertainty modeling method proposed in this chapter.  
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CHAPTER 6 CONCLUSION 
 
 

“Governing a country is like frying a small fish. You spoil it with too much poking.” 

– Lao Zi 

The quote from Lao Zi’s Tao De Ching points out a critical principle about how to deal with complex 

transportation systems. Modern transportation systems have developed to such a complexity that 

hardly anyone is able to claim they understand how exactly the systems are functioning due to 

limited cognitive capacity and effective information availability (for both human and machine.) The 

ignorance of ignorance leads to the danger that one uses “gut feelings” or “common sense” when 

trying to improve the systems. For instance, a decision maker might not be aware that he/she does 

not know enough about the systems to make decisions. Indeed, in practice, it is not uncommon for a 

decision maker to use a model to only “verify” what he/she thinks, and when the model result does 

not match with what he/she anticipates, the model must be wrong. On the other hand, although a 

humbler attitude towards a “bottom-up” modeling approach to support the decision is indeed 

essential, more valid and theoretically sound assumptions are also desired.  

The proposed homeomorphic framework is essentially a feedback system that explicitly 

considers information sources, channels/media, and recipients with heterogeneous sensation, 

perception, learning, and decision-making schemes. It not only targets its modeling output to match 

the reality but also its underlying processes. These recipients learn from the newly-acquired 

information and incorporate it with prior information to form posterior information for deciding 

and behaving. Different recipients interact through behaviors, and a new loop begins. Since any 

information transmission within systems can be modeled in this fashion, modeling autonomous 

entities such as humans and artificial intelligence becomes unified. The case study is shown how 

the framework can be used as a guide for object-oriented programming when considering mixed-

flow traffic of human drivers and autonomous/connected vehicles.  
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The cognition-based modeling framework, CognAgent, demonstrates a flexible and robust 

methodology for researchers and modelers interested in modeling scenarios that involves 

information dynamics, Four fundamental components within the framework are physical 

interaction, space of observables, information processing (for sensing, perceiving, and learning), 

and decision making. An agent’s behavior generated from its decision-making submodule interacts 

with other agents’ behaviors in the physical interaction module to form a feedback loop. The size of 

time step depends on the modeling scale and problem need. The case studies from Chapter 2 shows 

how the framework helps improve interpretability and computational efficiency of an agent-based 

model through explicating the underlying cognitive mechanisms rather than only focusing on 

approximating the revealed behaviors. This transition from a paramorphic to a homeomorphic 

approach makes explicit the underlying assumptions about how behaviors are made and fosters the 

development of the rest of the dissertation.  

The framework is followed by two major paradigms as further substantiation of its 

cognition module. The first paradigm (Chapter 3) proceeds in the idea of separating sensation and 

perception in the cognitive process of judgment so that the perceived information can be quantified 

as the change of perceived uncertainty. The case study shows that the location, content, and the 

change of content over time of the travel time information provision has a non-negligible impact on 

the change of travelers’ perceived travel time uncertainty (and, hence, route decisions) in urban 

traffic networks. What’s more, it is suggested that activity schedules and trip purposes also 

influence how travelers learn and utilize the provided information.  

The second paradigm (Chapter 4) can be viewed as a specification of the Decision-Making 

submodule of the framework. The core concept, Elastic Surprise (ES), bridges existing theories for 

describing decisions under risk and information theory. ES also has a concrete cognitive 

implication, which makes it ideal to incorporate into existing cognition-based models. Applying ES 

to CPT improves the goodness of fit and has explicit cognitive assumptions about a decision maker. 
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Probability misperception and ES are identified as two distinct but interrelated factors, the 

combination of which leads to the nonlinearity of weighing potential outcomes. A specific deviation 

of considering ES in a utility-based decision model under risk bridges this paradigm with the 

information entropy; when an ES function is assumed to be logarithmic and a decision maker 

assigns the same weight to the perceived possible outcomes, the overall utility of a choice is 

proportional to the information entropy. This, in a way, justifies the theory since when a rational 

observer only perceives the level of chaos of a system and has no preference among the possible 

outcomes, entropy should be equivalent to the utility (or disutility) of this level of chaos. Since a 

decision maker may not use logarithmic surprise function, a paradox arises. On the other hand, it 

also implies that a system operator/engineer/planner can avoid bias and inconsistent decisions by 

(implicitly) evaluating uncertainty using a non-logarithmic ES measure. The case study on the 

perceived certainty equivalent of travel time shows that jointly using CPT and EST could improve 

data fitting and feature more specific cognitive interpretation.  

Chapter 5 applies the ideas from previous chapters to studying complex transportation 

network dynamics, in which heterogeneous travelers make route decisions based on multiple 

criteria under risk. I propose to use path-dependent link cost instead of conventional non-additive 

cost to allow a multi-criteria multi-class density-based formulation under perceived travel time 

uncertainty for dynamic user equilibrium. The case study is demonstrated through the equilibrium 

is approximated through a Stochastic Gradient Projection algorithm. The results show that the toll 

pricing study should consider not only travel time variability on toll segments but entire paths of 

the travelers. The calibration of the general entropy-based cost function for route choice uses PeMS 

data (i.e., the aggregated revealed preference data), while the calibration of the utility function for 

travel time equivalency in Chapter 4 is performed on EST-Augmented CPT function using survey 

data. Although the two models are derived from the same theory and individually checked for their 
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reasonability, closer studies could be conducted on their relationship by taking into account the 

effect of survey mode and instrument.   

There are two perspectives to intuitively understand the stochastic gradient projection-

based algorithm proposed to solve the multi-criteria multi-class dynamic user equilibrium. First, 

the algorithm provides an optimization process for a nonlinear objective function with nonlinear 

constraints. Second, different from regular agent-based models that have known decision rules, the 

algorithm for this agent-based model has the known goal state of a system but unknown decision 

rules. The proposed algorithm, in a way, can be thought of as a procedure to find this unknown 

decision rule so that agents behave as if they collectively achieve this system performance as 

efficiently as possible.  

Since decision makers are an integral part of the transportation systems, they should be 

part of the modeling practice to describe and predict the systems’ behaviors better. This 

dissertation shows that modeling complex systems at a more fundamental level about humans (e.g., 

travelers, planners, traffic operators, and shippers) and emerging autonomous entities can be 

achieved systematically and coherently. Transportation systems have constantly been “interrupted” 

by emerging business models and technologies, and the modelers and analysts in both practice and 

academia have been prone to either modify (sometimes dramatically) the modeling framework or 

adding one extension over another. “Modeling based on the problem” indeed has its advantage, but 

it also causes a model to lack extendability and adaptability to new business models, travel options, 

and emerging technologies. The proposed framework studies the revealed behavior from the 

underlying cognitive mechanics has greater adaptable since a new scenario is considered by 

“adjusting the parameters.”  

The dissertation can be extended to multiple directions. The generality of the framework 

can be further tested in more scenarios and cognitive models. The paradigms can be applied to 

scenarios that involve cooperative games such as ridesharing and joint decision among 
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autonomous vehicles and human drivers. The proposed ES-based method can also be studied on 

the relationship with more recently emerging methods in cognitive and decision science. Modeling 

decision and behaviors of planners, traffic operators, policymakers, and other entities that heavily 

influence the network performance but rarely considered in conventional transportation system 

models might be also of interest.  

With the improving understanding of human cognition and computational advancement in 

big data processing, the shift from the behavior-based methods to cognition-based methods has 

become promising. This shift may become increasingly useful when considering a society full of 

emerging technologies, new business models, and seemingly nuanced adjustment of choice context 

and regulatory strategies. Cognition-based models provide a promising modeling and analytical 

option.  



121 
 

APPENDICES 

Appendix A  

As a complement of Figure 1.9, the graphs below show traffic condition at different time step given 

different MP. Y-axis: 0, 0.3, 0.5, 0.7, 0.9, 1.0 MP Rate (red triangles are human drivers; blue dots are 

ACV). X-axis (left to right): 𝑡 = 30𝑠, 60𝑠, 120𝑠, 300𝑠 
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Appendix B 

This appendix proves that that when there perceive 𝑚 states of nature in a decision, one can always 

set up the same 𝑛 (𝑛 ≤ 𝑚) events in each prospect under consideration. 

Proof. Since the states of nature can be represented in a set {𝑠1, 𝑠2, … , 𝑠𝑚}. Let prospect 𝑥 contain 𝑙 events 

and prospect y contain k events. The 𝑙 events in 𝑥 and 𝑘 events in 𝑦 can always be partitioned in a way 

that when a state occurs in the 𝑗𝑡ℎ event in 𝑥, it would also happen in the same event set if y was chosen, 

allowing empty event set.  

Appendix C  

This appendix verify and discusses that information entropy is the unique uncertainty measure that 

satisfies three basic conditions in real number realm. For strict proof, see Shannon (1949) 

Proof. Suppose that there exists at least one uncertainty measure such that 𝑓: 𝜹 → ℝ+, where 𝜹 is J-

dimension vector and each element 𝛿𝑗 ∈ [0,1], 𝑗 ∈ 𝕁, 𝐶𝑎𝑟𝑑(𝕁) = 𝐽. 𝕁 is the set for all the perceived 

possible states of the observable. 𝑷 = (𝑝1, 𝑝2, … , 𝑝𝑗 , … 𝑝𝐽) are the probability set for each possible state 𝑗. 

When the probability of one state is unity, 𝑓 equates 0 for certainty. 𝑓 shall be always greater than 0 in 

any other cases. The following are three basic conditions for the uncertainty measure 𝑓 to satisfy: 

(1) 𝑓(𝑃) is a continuous function and 𝑝𝑗 ∈ [0,1]  and ∑ 𝑝𝑗 = 1𝑗 , ∀𝑗 ∈ 𝕁 

(2) 𝑓(
1

𝐽
,
1

𝐽
, … ,

1

𝐽
) is a monotonically increasing function of 𝐽 

(3) 𝑓(𝑃) = 𝑓(𝑃𝐴) + ∑𝑝𝐴𝑚𝑓(𝑃𝐵|𝐴𝑚), in which, C is the original experiment with probability 

distribution 𝑃, and A and B are two sequential measurements of the experiment C. 𝑃𝐴 =

(𝑝𝐴1 , 𝑝𝐴2 , … 𝑝𝐴𝑚 …𝑝𝐴𝑀) and 𝑃𝐵|𝐴𝑚 = (𝑝𝐵1|𝐴𝑚 , 𝑝𝐵2|𝐴𝑚 , … 𝑝𝐵𝑛|𝐴𝑚 , … 𝑝𝐵𝑁|𝐴𝑚), respectively. 

The condition (3) means that the uncertainty of a system should be the same regardless of the sequence of 

measuring it. Since A and B are two sequential steps that form the same distribution of C, the tensor 

product of 𝑃𝐴 and 𝑃𝐵|𝐴𝑚 (i.e., 𝑃𝐴⨂𝑃𝐵|𝐴𝑚) have the same support of that of 𝑃𝐶 with element of 𝑃𝐴⨂𝑃𝐵|𝐴 to 

be 𝑝𝐴𝑚 ∙ 𝑝𝐵𝑛|𝐴𝑚, 𝑚, 𝑛 ∈ ℕ+. One can always find 𝑚 and 𝑛 so that 𝑛 is not a function of 𝐴𝑚 (see 

Appendix I for proof). Let’s write P as matrix format and let the element (𝑚, 𝑛) to be 𝑝𝑚,𝑛 = 𝑝𝐴𝑚𝐵𝑛, and 

the expected value for the uncertainty of B given 𝐴𝑚 would be  

𝑓(𝑃𝐵|𝐴𝑚) =∑𝑝𝐴𝑚 ∙ 𝑓(𝑃𝐵|𝐴𝑚)

𝑚

 

And therefore 



123 
 

𝑓(𝑃) = 𝑓(𝑃𝐴) +∑𝑝𝐴𝑚 ∙ 𝑓(𝑃𝐵|𝐴𝑚)

𝑚

 

Now consider a particular case where both events in 𝐴 and events in 𝐵|𝐴𝑚 are equally likely (i.e., 

𝑝 = 𝑝𝑗 , ∀𝑗 ∈ 𝐽 and 𝑝𝐴,𝑘 = 𝑝𝐴, ∀𝑘), so that 𝑃𝐴 = (𝑝𝐴1 , 𝑝𝐴2 , … , 𝑝𝐴𝑚 … , 𝑝𝐴𝑀) = (𝑝𝐴, 𝑝𝐴, … , 𝑝𝐴), and 

𝑃𝐵|𝐴𝑚 = (𝑝𝐵1|𝐴𝑚 , 𝑝𝐵2|𝐴𝑚 , … , 𝑝𝐵𝑛|𝐴𝑚 … , 𝑝𝐵𝑁|𝐴𝑚) = (𝑝𝐵|𝐴𝑚 , 𝑝𝐵|𝐴𝑚 , … , 𝑝𝐵|𝐴𝑚). This also means that 𝑃 =

(𝑝1, 𝑝2, … , 𝑝𝑀𝑁) = (𝑝𝑀𝑁, 𝑝𝑀𝑁…𝑝𝑀𝑁).  Without loss of generality, one can also write 𝑃𝐴 and 𝑃𝐵|𝐴𝑚 as a 

tuple (
1

𝑀
,
1

𝑀
, … ,

1

𝑀
) and a tuple (

1

𝑁
,
1

𝑁
, … ,

1

𝑁
), respectively. Plug the tuples into the formulation for 𝑓(𝑃), 

we have 

𝑓(𝑃) = 𝑓(𝑃𝐴) + 𝑀 ∙
1

𝑀
∙ 𝑓(𝑃𝐵|𝐴𝑚) = 𝑓(𝑃𝐴) + 𝑓(𝑃𝐵|𝐴𝑚) 

where 𝑃 = (
1

𝑀𝑁
,
1

𝑀𝑁
, … ,

1

𝑀𝑁⏟        
𝑀𝑁

), 𝑃𝐴 = (
1

𝑀
,
1

𝑀
, … ,

1

𝑀⏟      
𝑀

), 𝑃𝐵|𝐴𝑚 = (
1

𝑁
,
1

𝑁
, … ,

1

𝑁⏟      
𝑁

). 

Let 𝑔(𝑥) = 𝑓(
1

𝑥
,
1

𝑥
, … ,

1

𝑥⏟      
𝑥

). Since the equation above shows that 𝑔(𝑀𝑁) = 𝑔(𝑀) + 𝑔(𝑁), and 

Aczél and Daróczy (1977) proves that, when 𝑔(∙) is continuous and 𝑥 is a positive real number, the only 

solution for 𝑔(𝑥) is 𝑐 ∙ 𝑙𝑜𝑔𝑏(𝑥) for some constant c. Therefore, we have 

𝑔(𝑀𝑁) = 𝑓(
1

𝑀𝑁
,
1

𝑀𝑁
,… ,

1

𝑀𝑁⏟          
𝑀𝑁

) = 𝑐 ∙ 𝑙𝑜𝑔𝑏𝑀𝑁 

where 𝑏 > 0 and c is an arbitrary real constant. One can verify by plugging it back to the formulation in 

condition (3) so that 

𝑐 ∙ 𝑙𝑜𝑔𝑏𝑀𝑁 = 𝑐 ∙ log𝑏𝑀 + 𝑐 ∙ log𝑏 𝑁 = 𝑐 ∙ 𝑓 (
1

𝑀
,
1

𝑀
,… ,

1

𝑀⏟        
𝑀

)+ 𝑐 ∙ 𝑓 (
1

𝑁
,
1

𝑁
,… ,

1

𝑁⏟      
𝑁

) 

Since the function form 𝑐 ∙ log(𝑥) is unique in satisfying a special case of the condition (3), this is 

the only candidate that has the potential to satisfy condition (3). Generalizing 𝑙𝑜𝑔𝑏𝑀𝑁 to log𝑏 𝑄 by not 

assuming 𝑃𝐴 is uniformly distributed (𝑃𝐵|𝐴𝑚 keeps being uniformly distributed with 𝑛 events). 𝑄 =

∑ 𝑁𝑚𝑚 , where 𝑁𝑚 is the number of equally likely event given the event𝐴𝑀. we have 

𝑓(𝑃𝐴) = 𝑐 ∙ 𝑙𝑜𝑔𝑏 𝑄 −∑ 𝑝𝐴𝑚 ∙ 𝑐 ∙ 𝑙𝑜𝑔𝑏 𝑁𝑚
𝑚

= 𝑐 ∙∑ 𝑝𝐴𝑚 ∙ 𝑙𝑜𝑔𝑏
𝑄

𝑁𝑚𝑚
 

http://www.ams.org/mathscinet/search/author.html?authorName=Aczel%2C%20J.
http://www.ams.org/mathscinet/search/author.html?authorName=Daroczy%2C%20Z.
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Since 
𝑁𝑚

𝑄
= 𝑝𝐴𝑚,  

𝑓(𝑃𝐴) = 𝑐 ∙∑ 𝑝𝐴𝑚 ∙ 𝑙𝑜𝑔𝑏
1

𝑝𝐴𝑚𝑚
 

The scaling factor can be removed without loss of generality to have 

𝑓(𝑃) =∑ 𝑝𝑤 ∙ 𝑙𝑜𝑔𝑏
1

𝑝𝑤𝑤
= −∑ 𝑝𝑤 ∙ 𝑙𝑜𝑔𝑏 𝑝𝑤

𝑤
, ∀𝑤 ∈ {1,2,… ,𝑚𝑛} 

Condition (1) and (2) are also easily tested since the formulation is a basic combination of 

elementary functions. The first derivative of 𝑓(𝑃) is, 

𝜕𝑓(𝑃)

𝜕𝑝𝑤
= log𝑏

1

𝑝𝑤
+
𝑝𝑤
2

ln 𝑏
> 0, 𝑝𝑤 ∈ [0,1] 

Therefore 𝑓(𝑃) is not only continuous but also strictly monotonically increasing. Any other 

uncertainty measure with probabilities being in real number space is bound to produce paradoxes. 
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