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cases provides new insights into the underlying biology
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Abstract

Bipolar disorder (BD) is a heritable mental illness with complex etiology. We performed a 

genome-wide association study (GWAS) of 41,917 BD cases and 371,549 controls of European 

ancestry, which identified 64 associated genomic loci. BD risk alleles were enriched in genes in 

synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of 

expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was 

found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics, and 

anesthetics. Integrating eQTL data implicated 15 genes robustly linked to BD via gene expression, 

encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of BD 

subtypes indicated high but imperfect genetic correlation between BD type I and II and identified 

additional associated loci. Together, these results advance our understanding of the biological 

etiology of BD, identify novel therapeutic leads, and prioritize genes for functional follow-up 

studies.
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Bipolar disorder (BD) is a complex mental disorder characterized by recurrent episodes of 

(hypo)mania and depression. It is a common condition affecting an estimated 40 to 50 

million people worldwide1. This, combined with the typical onset in young adulthood, an 

often chronic course, and increased risk of suicide2, make BD a major public health concern 

and a major cause of global disability1. Clinically, BD is classified into two main subtypes: 

bipolar I disorder, in which manic episodes typically alternate with depressive episodes, and 

bipolar II disorder, characterized by the occurrence of at least one hypomanic and one 

depressive episode3. These subtypes have a lifetime prevalence of ~1% each in the 

population4,5.

Family and molecular genetic studies provide convincing evidence that BD is a 

multifactorial disorder, with genetic and environmental factors contributing to its 

development6. On the basis of twin and family studies, the heritability of BD is estimated at 

60–85%7,8. Genome-wide association studies (GWAS)9–23 have led to valuable insights into 

the genetic etiology of BD. The largest such study has been conducted by the Psychiatric 

Genomics Consortium (PGC), in which genome-wide SNP data from 29,764 BD patients 

and 169,118 controls were analyzed and 30 genome-wide significant loci were identified 

(PGC2)24. SNP-based heritability (ℎSNP
2 ) estimation using the same data suggested that 

common genetic variants genome-wide explain ~20% of BD’s phenotypic variance24. 

Polygenic risk scores generated from the results of this study explained ~4% of phenotypic 

variance in independent samples. Across the genome, genetic associations with BD 

converged on specific biological pathways including regulation of insulin secretion25,26, 

retrograde endocannabinoid signaling24, glutamate receptor signaling27 and calcium channel 

activity9.

Despite this considerable progress, only a fraction of the genetic etiology of BD has been 

identified, and the specific biological mechanisms underlying the development of the 

disorder are still unknown. In the present study, we report the results of the third GWAS 

meta-analysis of the PGC Bipolar Disorder Working Group, comprising 41,917 individuals 

with BD and 371,549 controls. These results confirm and expand on many previously 

reported findings, identify novel therapeutic leads, and prioritize genes for functional follow-

up studies28,29. Thus, our results further illuminate the biological etiology of BD.

Results

GWAS results.

We conducted a GWAS meta-analysis of 57 BD cohorts collected in Europe, North America 

and Australia (Supplementary Table 1), totaling 41,917 BD cases and 371,549 controls of 

European descent (effective n = 101,962, see Online Methods). For 52 cohorts, individual-

level genotype and phenotype data were shared with the PGC and cases met international 

consensus criteria (DSM-IV, ICD-9 or ICD-10) for lifetime BD, established using structured 

diagnostic interviews, clinician-administered checklists or medical record review. BD 

GWAS summary statistics were received for five external cohorts (iPSYCH30, deCODE 

genetics31, Estonian Biobank32, Trøndelag Health Study (HUNT)33 and UK Biobank34), in 

which most cases were ascertained using ICD codes. The GWAS meta-analysis identified 64 
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independent loci associated with BD at genome-wide significance (P < 5 × 10−8) (Fig. 1, 

Table 1, and Supplementary Table 2). Using LD Score regression (LDSC)35, the ℎSNP
2  of 

BD was estimated to be 18.6% (s.e. = 0.008, P = 5.1 × 10−132) on the liability scale, 

assuming a BD population prevalence of 2%, and 15.6% (s.e. = 0.006, P = 5.0 × 10−132) 

assuming a population prevalence of 1% (Supplementary Table 3). The genomic inflation 

factor (λGC) was 1.38 and the LD Score regression (LDSC) intercept was 1.04 (s.e. = 0.01, 

P = 2.5 × 10−4) (Supplementary Fig. 1). While the intercept has frequently been used as an 

indicator of confounding from population stratification, it can rise above 1 with increased 

sample size and heritability. The attenuation ratio—(LDSC intercept - 1)/(mean of 

association chi-square statistics - 1)—which is not subject to these limitations, was 0.06 (s.e. 

= 0.02), indicating that the majority of inflation of the GWAS test statistics was due to 

polygenicity35,36. Of the 64 genome-wide significant loci, 33 are novel discoveries (i.e. loci 

not overlapping with any locus previously reported as genome-wide significant for BD). 

Novel loci include the major histocompatibility complex (MHC) and loci previously 

reaching genome-wide significance for other psychiatric disorders, including 10 for 

schizophrenia, 4 for major depression, and 3 for childhood-onset psychiatric disorders or 

problematic alcohol use (Table 1).

Enrichment analyses.

Genome-wide analyses using MAGMA37 indicated significant enrichment of BD 

associations in 161 genes (Supplementary Table 4) and 4 gene sets related to synaptic 

signaling (Supplementary Table 5). The BD association signal was enriched amongst genes 

expressed in different brain tissues (Supplementary Table 6), especially genes with high 

specificity of gene expression in neurons (both excitatory and inhibitory) versus other cell 

types, within cortical and subcortical brain regions in mice (Supplementary Fig. 2)38. In 

human brain samples, signal enrichment was also observed in hippocampal pyramidal 

neurons and interneurons of the prefrontal cortex and hippocampus, compared with other 

cell types (Supplementary Fig. 2).

In a gene-set analysis of the targets of individual drugs (from the Drug-Gene Interaction 

Database DGIdb v.239 and the Psychoactive Drug Screening Database Ki DB40), the targets 

of the calcium channel blockers mibefradil and nisoldipine were significantly enriched 

(Supplementary Table 7). Grouping drugs according to their Anatomical Therapeutic 

Chemical (ATC) classes41, there was significant enrichment in the targets of four broad drug 

classes (Supplementary Table 8): psycholeptics (drugs with a calming effect on behavior) 

(especially hypnotics and sedatives, antipsychotics and anxiolytics), calcium channel 

blockers, antiepileptics, and (general) anesthetics (Supplementary Table 8).

eQTL integrative analyses.

We conducted a transcriptome-wide association study (TWAS) using FUSION42 and eQTL 

data from the PsychENCODE Consortium (1,321 brain samples)43. BD-associated alleles 

significantly influenced expression of 77 genes in the brain (Supplementary Table 9 and 

Supplementary Fig. 3). These genes encompassed 40 distinct regions. We performed TWAS 

fine-mapping using FOCUS44 to model the correlation among the TWAS signals and 

prioritize the most likely causal gene(s) in each region. Within the 90%-credible set, FOCUS 

Mullins et al. Page 4

Nat Genet. Author manuscript; available in PMC 2021 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prioritized 22 genes with a posterior inclusion probability (PIP) > 0.9 (encompassing 20 

distinct regions) and 32 genes with a PIP > 0.7 (29 distinct regions) (Supplementary Table 

10).

We used summary data-based Mendelian randomization (SMR)45,46 to identify putative 

causal relationships between SNPs and BD via gene expression by integrating the BD 

GWAS results with brain eQTL summary statistics from the PsychENCODE43 Consortium 

and blood eQTL summary statistics from the eQTLGen Consortium (31,684 whole blood 

samples)47. The eQTLGen results represent the largest existing eQTL study and provide 

independent eQTL data. Of the 32 genes fine-mapped with PIP > 0.7, 15 were significantly 

associated with BD in the SMR analyses and passed the HEIDI (heterogeneity in dependent 

instruments) test45,46, suggesting that their effect on BD is mediated via gene expression in 

the brain and/or blood (Supplementary Table 11). The genes located in genome-wide 

significant loci are labeled in Figure 1. Other significant genes included HTR6, DCLK3, 

HAPLN4 and PACSIN2.

MHC locus.

Variants within and distal to the major histocompatibility complex (MHC) locus were 

associated with BD at genome-wide significance. The most highly associated SNP was 

rs13195402, 3.2 Mb distal to any HLA gene or the complement component 4 (C4) genes 

(Supplementary Fig. 4). Imputation of C4 alleles using SNP data uncovered no association 

between the five most common structural forms of the C4A/C4B locus (BS, AL, AL-BS, 

AL-BL, and AL-AL) and BD, either before or after conditioning on rs13195402 

(Supplementary Fig. 5). While genetically predicted C4A expression initially showed a 

weak association with BD, this association was non-significant after controlling for 

rs13195402 (Supplementary Fig. 6).

Polygenic risk scoring.

The performance of polygenic risk scores (PRS) based on these GWAS results was assessed 

by excluding cohorts in turn from the meta-analysis to create independent test samples. PRS 

explained ~4.57% of phenotypic variance in BD on the liability scale (at GWAS P-value 

threshold (PT) < 0.1, BD population prevalence 2%), based on the weighted mean R2 across 

cohorts (Fig. 2 and Supplementary Table 12). This corresponds to a weighted mean area 

under the curve (AUC) of 65%. Results per cohort and per wave of recruitment to the PGC 

are in Supplementary Tables 12 and 13 and Supplementary Figure 7. At PT < 0.1, 

individuals in the top 10% of BD PRS had an odds ratio of 3.5 (95% CI 1.7–7.3) of being 

affected with the disorder compared with individuals in the middle decile (based on the 

weighted mean OR across PGC cohorts), and an odds ratio of 9.3 (95% CI 1.7–49.3) 

compared with individuals in the lowest decile. The generalizability of PRS from this meta-

analysis was examined in several non-European cohorts. PRS explained up to 2.3% and 

1.9% of variance in BD in two East Asian samples, and 1.2% and 0.4% in two admixed 

African American samples (Fig. 2 and Supplementary Table 14). The variance explained by 

the PRS increased in every cohort with increasing sample size of the PGC BD European 

discovery sample (Supplementary Fig. 8 and Supplementary Table 14).

Mullins et al. Page 5

Nat Genet. Author manuscript; available in PMC 2021 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Genetic architecture of BD and other traits.

The genome-wide genetic correlation (rg) of BD with a range of diseases and traits was 

assessed on LD Hub48. After correction for multiple testing, BD showed significant rg with 

16 traits among 255 tested from published GWAS (Supplementary Table 15). Genetic 

correlation was positive with all psychiatric disorders assessed, particularly schizophrenia 

(rg = 0.68) and major depression (rg = 0.44), and to a lesser degree anorexia, attention 

deficit/hyperactivity disorder, and autism spectrum disorder (rg ≈ 0.2). We found evidence of 

positive rg between BD and smoking initiation, cigarettes per day, problematic alcohol use, 

and drinks per week (Fig. 3). BD was also positively genetically correlated with measures of 

sleep quality (daytime sleepiness, insomnia, sleep duration) (Fig. 3). Among 514 traits 

measured in the general population of the UK Biobank, there was significant rg between BD 

and many psychiatric-relevant traits or symptoms, dissatisfaction with interpersonal 

relationships, poorer overall health rating, and feelings of loneliness or isolation 

(Supplementary Table 16).

Bivariate gaussian mixture models were applied to the GWAS summary statistics for BD and 

other complex traits using the MiXeR tool49,50 to estimate the number of variants 

influencing each trait that explain 90% of ℎSNP
2  and their overlap between traits. MiXeR 

estimated that approximately 8.6 k (s.e. = 0.2 k) variants influence BD, which is similar to 

the estimate for schizophrenia (9.7 k, s.e. = 0.2 k) and somewhat lower than that for major 

depression (12.3 k, s.e. = 0.6 k) (Supplementary Table 17 and Supplementary Fig. 9). When 

considering the number of shared loci as a proportion of the total polygenicity of each trait, 

the vast majority of loci influencing BD were also estimated to influence major depression 

(97%) and schizophrenia (96%) (Supplementary Table 17 and Supplementary Fig. 9). 

Interestingly, within these shared components, the variants that influenced both BD and 

schizophrenia had high concordance in direction of effect (80%, s.e. = 2%), while the 

portion of concordant variants between BD and MDD was only 69% (s.e. = 1%) 

(Supplementary Table 17).

Genetic and causal relationships between BD and modifiable risk factors.

Ten traits associated with BD from clinical and epidemiological studies were investigated in 

detail for genetic and potentially causal relationships with BD via LDSC35, generalized 

summary statistics-based Mendelian randomization (GSMR)51, and bivariate gaussian 

mixture modeling49. BD has been strongly linked with sleep disturbances52, alcohol use53 

and smoking54, higher educational attainment55,56, and mood instability57. Most of these 

traits had modest but significant genetic correlations with BD (rg = −0.05–0.35) (Fig. 3). 

Examining the effects of these traits on BD via GSMR, smoking initiation was associated 

with BD, corresponding to an OR of 1.49 (95% CI 1.38–1.61) for developing the disorder (P 
= 1.74 × 10−22) (Fig. 3). Testing the effect of BD on the traits, BD was significantly 

associated with reduced likelihood of being a morning person and increased number of 

drinks per week (P < 1.47 × 10−3) (Fig. 3). Positive bi-directional relationships were 

identified between BD and longer sleep duration, problematic alcohol use, educational 

attainment (EA), and mood instability (Fig. 3). Notably, the instrumental variables for mood 

instability were selected from a GWAS conducted in the general population, excluding 
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individuals with psychiatric disorders58. For all of the aforementioned BD-trait 

relationships, the effect size estimates from GSMR were consistent with those calculated 

using the inverse variance weighted regression method, and there was no evidence of bias 

from horizontal pleiotropy. Full MR results are in Supplementary Tables 18 and 19. 

Bivariate gaussian mixture modeling using MiXeR indicated large proportions of variants 

influencing both BD and all other traits tested, particularly educational attainment, where 

approximately 98% of variants influencing BD were estimated to also influence EA. While 

cigarettes per day was a trait of interest, MiXeR could not model these data due to low 

polygenicity and heritability, and the effect of cigarettes per day on BD was inconsistent 

between MR methods, suggesting a violation of MR assumptions (Supplementary Tables 

18–20).

BD subtypes.

We conducted GWAS meta-analyses of bipolar I disorder (BD I) (25,060 cases, 449,978 

controls) and bipolar II disorder (BD II) (6,781 cases, 364,075 controls). The BD I analysis 

identified 44 genome-wide significant loci, 31 of which overlapped with genome-wide 

significant loci from the main BD GWAS (Table 1 and Supplementary Table 21). The 

remaining 13 genome-wide significant loci for BD I all had P < 4.0 × 10−5 in the main BD 

GWAS. One genome-wide significant locus was identified in the GWAS meta-analysis of 

BD II and had a P < 1.1 × 10−4 in the main GWAS of BD (Supplementary Table 21). The 

ℎSNP
2  estimates on the liability scale for BD I and BD II were 20.9% (s.e. = 0.009, P = 1.0 × 

10−111) and 11.6% (s.e. = 0.01, P = 3.9 × 10−15), respectively, assuming a 1% population 

prevalence of each subtype. These heritability values are significantly different from each 

other (P = 2.4 × 10−25, block jackknife). The genetic correlation between BD I and BD II 

was 0.85 (s.e. = 0.05, P = 2.88 × 10−54), which is significantly different from 1 (P = 1.6 × 

10−3). The genetic correlation of BD I with schizophrenia (rg = 0.66, s.e. = 0.02) was higher 

than that of BD II (rg = 0.54, s.e. = 0.05), whereas major depression was more strongly 

genetically correlated with BD II (rg = 0.66, s.e. = 0.05) than with BD I (rg = 0.34, s.e. = 

0.03) (Supplementary Table 22).

Discussion

In a GWAS of 41,917 BD cases, we identified 64 associated genomic loci, 33 of which are 

novel discoveries. With a 1.5-fold increase in effective sample size compared with the PGC2 

BD GWAS, this study more than doubled the number of associated loci, representing an 

inflection point in the rate of risk variant discovery. We observed consistent replication of 

known BD loci, including 28/30 loci from the PGC2 GWAS24 and several implicated by 

other BD GWAS15,16,17, including a study of East Asian cases59.

The 33 novel loci discovered here encompass genes of expected biological relevance to BD, 

such as the ion channels CACNB2 and KCNB1. Amongst the 64 BD loci, 17 have 

previously been implicated in GWAS of schizophrenia60, and seven in GWAS of major 

depression61, representing the first overlap of genome-wide significant loci between the 

mood disorders. For these genome-wide significant loci shared across disorders, 17/17 and 

5/7 of the BD index SNPs had the same direction of effect on schizophrenia and major 
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depression, respectively (Supplementary Table 23). More generally, 50/64 and 62/64 BD loci 

had a consistent direction of effect on major depression and schizophrenia, respectively, 

considerably greater than chance (P < 1 × 10−5, binomial test). Bivariate gaussian mixture 

modeling estimated that across the entire genome, almost all variants influencing BD also 

influence schizophrenia and major depression, albeit with variable effects62. SNPs in and 

around the MHC locus reached genome-wide significance for BD for the first time. 

However, unlike in schizophrenia, we found no influence of C4 structural alleles or gene 

expression63. Rather the association was driven by variation outside the classical MHC 

locus, with the index SNP (rs13195402) being a missense variant in BTN2A1, a brain-

expressed gene64 encoding a plasma membrane protein.

The genetic correlation of BD with other psychiatric disorders was consistent with previous 

reports65,66. Our results also corroborate previous genetic and clinical evidence of 

associations between BD and sleep disturbances67, problematic alcohol use68, and 

smoking69. While the genome-wide genetic correlations with these traits were modest (rg = 

−0.05–0.35), MiXeR estimated that, for all traits, more than 55% of trait-influencing 

variants also influence BD (Fig. 3). Taken together, these results point to shared biology as 

one possible explanation for the high prevalence of substance use in BD. However, 

excluding genetic variants associated with both traits, MR analyses suggested that smoking 

is also a putatively “causal” risk factor for BD, while BD has no effect on smoking, 

consistent with a previous report70. (We use the word “causal” with caution here as we 

consider MR an exploratory analysis to identify potentially modifiable risk factors that 

warrant more detailed investigations to understand their complex relationship with BD.) In 

contrast, MR indicated that BD had bi-directional “causal” relationships with problematic 

alcohol use, longer sleep duration, and mood instability. Insights into the relationship of 

such behavioral correlates with BD may have future impact on clinical decision making in 

the prophylaxis or management of the disorder. Higher educational attainment has 

previously been associated with BD in epidemiological studies55,56, while lower educational 

attainment has been associated with schizophrenia and major depression71,72. Here, 

educational attainment had a significant positive effect on risk of BD and vice versa. 

Interestingly, MiXeR estimated that almost all variants that influence BD also influence 

educational attainment. The substantial genetic overlap observed between BD and the other 

phenotypes suggests that many variants likely influence multiple phenotypes, which may be 

differentiated by phenotype-specific effect size distributions among the shared influencing 

variants.

The integration of eQTL data with our GWAS results yielded 15 high-confidence genes for 

which there was converging evidence that their association with BD is mediated via gene 

expression. Amongst these were HTR6, encoding a serotonin receptor targeted by 

antipsychotics and antidepressants73, and MCHR1 (melanin-concentrating hormone receptor 

1), encoding a target of the antipsychotic haloperidol73. We note that, for both of these 

genes, their top eQTLs have opposite directions of effect on gene expression in the brain and 

blood, possibly playing a role in the tissue-specific gene regulation influencing BD74. BD 

was associated with decreased expression of FURIN, a gene with a neurodevelopmental role 

that has already been the subject of functional genomics experiments in neuronal cells 

following its association with schizophrenia in GWAS75. The top association in our GWAS 

Mullins et al. Page 8

Nat Genet. Author manuscript; available in PMC 2021 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was in the TRANK1 locus on chromosome 3, which has previously been implicated in 

BD12,18,59. Although BD-associated SNPs in this locus are known to regulate TRANK1 
expression76, our eQTL analyses support a stronger but correlated regulation of DCLK3, 

located 87 kb upstream of TRANK143,77. Both FURIN and DCLK3 also encode druggable 

proteins (although they are not targets for any current psychiatric medications)73,78. These 

eQTL results provide promising BD candidate genes for functional follow-up experiments29. 

While several of these are in genome-wide significant loci, many are not the closest gene to 

the index SNP, highlighting the value of probing underlying molecular mechanisms to 

prioritize the most likely causal genes in the loci.

GWAS signals were enriched in the gene targets of existing BD pharmacological agents, 

such as antipsychotics, mood stabilizers, and antiepileptics. However, enrichment was also 

found in the targets of calcium channel blockers used to treat hypertension and GABA-

receptor targeting anesthetics (Supplementary Table 8). Calcium channel antagonists have 

long been investigated for the treatment of BD, without becoming an established therapeutic 

approach, and there is evidence that some antiepileptics have calcium channel-inhibiting 

effects79,80. These results underscore the opportunity for repurposing some classes of drugs, 

particularly calcium channel antagonists, as potential BD treatments81.

BD associations were enriched in gene sets involving neuronal parts and synaptic signaling. 

Neuronal and synaptic pathways have been described in cross-disorder GWAS of multiple 

psychiatric disorders including BD82–84. Dysregulation of such pathways has also been 

suggested by previous functional and animal studies85. Analysis of single-cell gene 

expression data revealed enrichment in genes with high specificity of gene expression in 

neurons (both excitatory and inhibitory) of many brain regions, in particular the cortex and 

hippocampus. These findings are similar to those reported in GWAS data of schizophrenia86 

and major depressive disorder38.

PRS for BD explained on average 4.57% of phenotypic variance (liability scale) across 

European cohorts, although this varied in different waves of the BD GWAS, ranging from 

6.6% in the PGC1 cohorts to 2.9% in the External biobank studies (Supplementary Fig. 7 

and Supplementary Table 12). These results are in line with the ℎSNP
2  of BD per wave, 

which ranged from 24.6% (s.e. =0.01) in PGC1 to 11.9% (s.e. = 0.01) in External studies 

(Supplementary Table 3). Some variability in ℎSNP
2  estimates may arise from the inclusion 

of cases from population biobanks, who may have more heterogeneous clinical presentations 

or less severe illness than BD patients ascertained via inpatient or outpatient psychiatric 

clinics. Across the waves of clinically ascertained samples within the PGC, ℎSNP
2  and the R2 

of PRS also varied, likely reflecting clinical and genetic heterogeneity in the type of BD 

cases ascertained; the PGC1 cohorts consisted mostly of BD I cases9, known to be the most 

heritable of the BD subtypes11,24, while later waves included more individuals with BD II24. 

Overall, the ℎSNP
2  of BD calculated from the meta-analysis summary statistics was 18% on 

the liability scale, a decrease of ~2% compared with the PGC2 GWAS24, which may be due 

to the addition of cohorts with lower ℎSNP
2  estimates and heterogeneity between cohorts 

(Supplementary Table 3). However, despite differences in ℎSNP
2  and R2 of PRS per wave, 
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the genetic correlation of BD between all waves was high (weighted mean rg = 0.94, s.e. = 

0.03), supporting our rationale for combining cases with different BD subtypes or 

ascertainment to increase power for discovery of risk variants. In Europeans, individuals in 

the top 10% of PRS had an OR of 3.5 for BD, compared with individuals with average PRS 

(middle decile), which translates into a modest absolute lifetime risk of the disorder (7% 

based on PRS alone). While PRS are invaluable tools in research settings, the current BD 

PRS lack sufficient power to separate individuals into clinically meaningful risk categories, 

and therefore have no clinical utility at present87,88. PRS from this European BD meta-

analysis yield higher R2 values in diverse ancestry samples than PRS based on any currently 

available BD GWAS within the same ancestry59. However, performance still greatly lags 

behind that in Europeans, with ~2% variance explained in East Asian samples and 

substantially less in admixed African American samples, likely due to differences in allele 

frequencies and LD structures, consistent with previous studies89,90. There is a pressing 

need for more and larger studies in other ancestry groups to ensure that any future clinical 

utility is broadly applicable. Exploiting the differences in LD structure between diverse 

ancestry samples will also assist in the fine-mapping of risk loci for BD.

Our analyses confirmed that BD is a highly polygenic disorder, with an estimated 8.6 k 

variants explaining 90% of its ℎSNP
2 . Hence, many more SNPs than those identified here are 

expected to account for the common variant architecture underlying BD. This GWAS marks 

an inflection point in risk variant discovery, and we expect that, from this point forward, the 

addition of more samples will lead to a dramatic increase in genetic findings. Nevertheless, 

fewer genome-wide significant loci have been identified in BD than in a schizophrenia 

GWAS of comparable sample size60. This may be due to the clinical and genetic 

heterogeneity that exists in BD.

Our GWAS of subtypes BD I and BD II identified additional associated loci. Consistent with 

previous findings24, our analysis showed that the two subtypes were highly but imperfectly 

genetically correlated (rg = 0.85), and that BD I is more genetically correlated with 

schizophrenia, while BD II has stronger genetic correlation with major depression. The 

subtypes are sufficiently similar to justify joint analysis as BD, but are not identical in their 

genetic composition, and as such contribute to the genetic heterogeneity of BD91. We 

identified 13 loci passing genome-wide significance for BD I, and one for BD II, which did 

not reach significance in the main BD GWAS, further illustrating the partially differing 

genetic composition of the two subtypes. Understanding the shared and distinct genetic 

components of BD subtypes and symptoms requires detailed phenotyping efforts in large 

cohorts and is an important area for future psychiatric genetics research.

In summary, these new data advance our understanding of the biological etiology of BD and 

prioritize a set of candidate genes for functional follow-up experiments. Several lines of 

evidence converge on the involvement of calcium channel signaling, providing a promising 

avenue for future therapeutic development.
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Methods

Sample description.

The meta-analysis sample comprises 57 cohorts collected in Europe, North America and 

Australia, totaling 41,917 BD cases and 371,549 controls of European descent 

(Supplementary Table 1). The total effective n, equivalent to an equal number of cases and 

controls in each cohort (4*ncases*ncontrols/(ncases + ncontrols)), is 101,962. For 52 cohorts, 

individual-level genotype and phenotype data were shared with the PGC. Cohorts have been 

added to the PGC in five waves (PGC19, PGC224, PGC PsychChip, PGC3 and External 

Studies); all cohorts from previous PGC BD GWAS were included. The source and 

inclusion/exclusion criteria for cases and controls for each cohort are described in the 

Supplementary Note. Cases were required to meet international consensus criteria (DSM-IV, 

ICD-9, or ICD-10) for a lifetime diagnosis of BD, established using structured diagnostic 

instruments from assessments by trained interviewers, clinician-administered checklists, or 

medical record review. In most cohorts, controls were screened for the absence of lifetime 

psychiatric disorders and randomly selected from the population. For five cohorts 

(iPSYCH30, deCODE genetics31, Estonian Biobank32, Trøndelag Health Study (HUNT)33 

and UK Biobank34), GWAS summary statistics for BD were shared with the PGC. In these 

cohorts, BD cases were ascertained using ICD codes or self-report during a nurse interview, 

and the majority of controls were screened for the absence of psychiatric disorders via ICD 

codes. Follow-up analyses included four non-European BD case-control cohorts, two from 

East Asia (Japan59 and Korea92), and two admixed African American cohorts22,93, providing 

a total of 5,847 cases and 65,588 controls. These BD cases were ascertained using 

international consensus criteria (DSM-IV)22,93 through psychiatric interviews 

(Supplementary Note).

Genotyping, quality control and imputation.

For 52 cohorts internal to the PGC, genotyping was performed following local protocols and 

genotypes were called using standard genotype calling softwares from commercial sources 

(Affymetrix and Illumina). Subsequently, standardized quality control, imputation and 

statistical analyses were performed centrally using RICOPILI (Rapid Imputation for 

COnsortias PIpeLIne) (version 2018_Nov_23.001)94, separately for each cohort. Briefly, the 

quality control parameters for retaining SNPs and subjects were: SNP missingness < 0.05 

(before sample removal), subject missingness < 0.02, autosomal heterozygosity deviation 

(Fhet < 0.2), SNP missingness < 0.02 (after sample removal), difference in SNP missingness 

between cases and controls < 0.02, SNP Hardy-Weinberg equilibrium (P > 10 × 10−10 in 

psychiatric cases and P > 10 × 10−6 in controls). Relatedness was calculated across cohorts 

using identity by descent and one of each pair of related individuals (pi_hat > 0.2) was 

excluded. Principal components (PCs) were generated using genotyped SNPs in each cohort 

separately using EIGENSTRAT v6.1.495. Based on visual inspection of plots of PCs for 

each dataset (which were all of European descent according to self-report/clinical data), we 

excluded samples to obtain more clearly homogeneous datasets. Genotype imputation was 

performed using the pre-phasing/ imputation stepwise approach implemented in Eagle 

v2.3.596 and Minimac397 to the Haplotype Reference Consortium (HRC) reference panel 

v1.098. Data on the X chromosome were available for 50 cohorts internal to the PGC and 
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one external cohort (HUNT), and the X chromosome was imputed to the HRC reference 

panel in males and females separately within each cohort. The five external cohorts were 

processed by the collaborating research teams using comparable procedures and imputed to 

the HRC or a custom reference panel as appropriate. Full details of the genotyping, quality 

control and imputation for each of these cohorts are available in the Supplementary Note. 

Identical individuals between PGC cohorts and the Estonian Biobank and UK Biobank 

cohorts were detected using genotype-based checksums (https://personal.broadinstitute.org/

sripke/share_links/zpXkV8INxUg9bayDpLToG4g58TMtjN_PGC_SCZ_w3.0718d.76) and 

removed from PGC cohorts.

Genome-wide association study.

For PGC cohorts, GWAS were conducted within each cohort using an additive logistic 

regression model in PLINK v1.9099, covarying for PCs 1–5 and any others as required. 

Association analyses of the X chromosome were conducted in males and females separately 

using the same procedures, with males coded as 0 or 2 for 0 or 1 copies of the reference 

allele. Results from males and females were then meta-analyzed within each cohort. For 

external cohorts, GWAS were conducted by the collaborating research teams using 

comparable procedures (Supplementary Note). To control test statistic inflation at SNPs with 

low minor allele frequency (MAF) in small cohorts, SNPs were retained only if cohort MAF 

was > 1% and minor allele count was > 10 in either cases or controls (whichever had smaller 

n). There was no evidence of stratification artifacts or uncontrolled inflation of test statistics 

in the results from any cohort (λGC = 0.97–1.05) (Supplementary Table 1). Meta-analysis of 

GWAS summary statistics was conducted using an inverse variance-weighted fixed effects 

model in METAL (version 2011-03-25)100 across 57 cohorts for the autosomes (41,917 BD 

cases and 371,549 controls) and 51 cohorts for the X chromosome (35,691 BD cases and 

96,731 controls). A genome-wide significant locus was defined as the region around a SNP 

with P < 5 × 10−8, with linkage disequilibrium (LD) r2 > 0.1, within a 3,000 kilobase (kb) 

window. Regional association plots and forest plots of the index SNP for all genome-wide 

significant loci are presented in Supplementary Data 1 and 2, respectively.

Overlap of loci with other psychiatric disorders.

Genome-wide significant loci for BD were assessed for overlap with genome-wide 

significant loci for other psychiatric disorders, using the largest available GWAS results for 

major depression61, schizophrenia60, attention deficit/hyperactivity disorder101, post-

traumatic stress disorder102, lifetime anxiety disorder103, Tourette’s Syndrome104, anorexia 

nervosa105, alcohol use disorder or problematic alcohol use68, autism spectrum disorder106, 

mood disorders91 and the cross-disorder GWAS of the Psychiatric Genomics Consortium66. 

The boundaries of the genome-wide significant loci were calculated in the original 

publications. Overlap of loci was calculated using bedtools v2.29.2107.

Enrichment analyses.

P values quantifying the degree of association of genes and gene sets with BD were 

calculated using MAGMA v1.0837, implemented in FUMA v1.3.6a64,108. Gene-based tests 

were performed for 19,576 genes (Bonferroni-corrected P-value threshold = 2.55 × 10−6). A 

total of 11,858 curated gene sets including at least 10 genes from MSigDB V7.0 were tested 
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for association with BD (Bonferroni-corrected P-value threshold = 4.22 × 10−6). 

Competitive gene-set tests were conducted correcting for gene size, variant density and LD 

within and between genes. Tissue-set enrichment analyses were also performed using 

MAGMA implemented in FUMA, to test for enrichment of association signal in genes 

expressed in 54 tissue types from GTEx V8 (Bonferroni-corrected P-value threshold = 9.26 

× 10−4)64,108.

For single-cell enrichment analyses, publicly available single-cell RNA-seq data were 

compiled from five studies of the adult human and mouse brain86,109–112. The mean 

expression for each gene in each cell type was computed from the single-cell expression data 

(if not provided). For the Zeisel dataset109, we used the mean expression at level 4 (39 cell 

types from 19 regions for the mouse nervous system). For the Saunders dataset110, we 

computed the mean expression of the different classes in each of the 9 different brain regions 

sampled (88 cell types in total). We filtered out any genes with non-unique names, genes not 

expressed in any cell types, non-protein coding genes, and, for mouse datasets, genes that 

had no expert curated 1:1 orthologs between mouse and human (Mouse Genome 

Informatics, The Jackson Laboratory, version 11/22/2016, http://www.informatics.jax.org/

downloads/reports/index.html#homology), resulting in 16,472 genes. Gene expression was 

then scaled to a total of 1 million UMIs (unique molecular identifiers) (or transcript per 

million (TPM)) for each cell type/tissue. Using a previously described method38, a metric of 

gene expression specificity was calculated by dividing the expression of each gene in each 

cell type by the total expression of that gene in all cell types, leading to values ranging from 

0 to 1 for each gene (0 meaning that the gene is not expressed in that cell type and 1 

meaning that all of the expression of the gene is in that cell type). We then selected the top 

10% most specific genes for each cell type/tissue for enrichment analysis. MAGMA v1.0837 

was used to test gene-set enrichment using GWAS summary statistics, covarying for gene 

size, gene density, mean sample size for tested SNPs per gene, the inverse of the minor allele 

counts per gene and the log of these metrics. We excluded any SNPs with INFO score < 0.6, 

with MAF < 1% or with estimated odds ratio > 25 or smaller than 1/25, as well as SNPs 

located in the MHC region (chr6:25–34 Mb). We set a window of 35 kb upstream to 10 kb 

downstream of the gene coordinates to compute gene-level association statistics and used the 

European reference panel from the phase 3 of the 1000 Genomes Project as the reference 

population113. We then used MAGMA to test whether the 10% most specific genes (with an 

expression of at least 1 TPM or 1 UMI per million) for each cell type/tissue were associated 

with BD. The P-value threshold for significance was P < 9.1 × 10−3, representing a 5% false 

discovery rate (FDR) across datasets.

Further gene-set analyses were performed restricted to genes targeted by drugs, assessing 

individual drugs and grouping drugs with similar actions. This approach has been described 

previously41. Gene-level and gene-set analyses were performed in MAGMA v1.0837. Gene 

boundaries were defined using build 37 reference data from the NCBI, available on the 

MAGMA website (https://ctg.cncr.nl/software/magma), extended 35 kb upstream and 10 kb 

downstream to include regulatory regions outside of the transcribed region. Gene-level 

association statistics were defined as the aggregate of the mean and the lowest variant-level 

P value within the gene boundary, converted to a Z-value. Gene sets were defined 

comprising the targets of each drug in the Drug-Gene Interaction database DGIdb v.239 and 
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in the Psychoactive Drug Screening Database Ki DB40, both downloaded in June 201641. 

Analyses were performed using competitive gene-set analyses in MAGMA. Results from the 

drug-set analysis were then grouped according to the Anatomical Therapeutic Chemical 

class of the drug41. Only drug classes with at least 10 valid drug gene sets within them were 

analyzed. Drug-class analysis was performed using enrichment curves. All drug gene sets 

were ranked by their association in the drug set analysis, and then for a given drug class an 

enrichment curve was drawn scoring a “hit” if the drug gene set was within the class, or a 

“miss” if it was outside of the class. The area under the curve was calculated, and a P-value 

for this calculated as the Wilcoxon Mann-Whitney test comparing drug gene sets within the 

class to drug gene sets outside of the class41. Multiple testing was controlled using a 

Bonferroni-corrected significance threshold of P < 5.60 × 10−5 for drug-set analysis and P < 

7.93 × 10−4 for drug-class analysis, accounting for 893 drug-sets and 63 drug classes tested.

eQTL integrative analysis.

A transcriptome-wide association study (TWAS) was conducted using the precomputed gene 

expression weights from PsychENCODE data (1,321 brain samples)43, available online with 

the FUSION software42. For genes with significant cis-SNP heritability (13,435 genes), 

FUSION software (vOct 1, 2019) was used to test whether SNPs influencing gene 

expression are also associated with BD (Bonferroni-corrected P-value threshold < 3.72 × 

10−6). For regions including a TWAS significant gene, TWAS fine-mapping of the region 

was conducted using FOCUS (fine-mapping of causal gene sets, v0.6.10)44. Regions were 

defined using the correlation matrix of predicted effects on gene expression around TWAS 

significant genes44. A posterior inclusion probability (PIP) was assigned to each gene for 

being causal for the observed TWAS association signal. Based on the PIP of each gene and a 

null model, whereby no gene in the region is causal for the TWAS signal, the 90%-credible 

gene set for each region was computed44.

Summary data-based Mendelian randomization (SMR) (v1.03)45,46 was applied to further 

investigate putative causal relationships between SNPs and BD via gene expression. SMR 

was performed using eQTL summary statistics from the eQTLGen (31,684 blood samples)47 

and PsychENCODE43 consortia. SMR analysis is limited to transcripts with at least one 

significant cis-eQTL (P < 5 × 10−8) in each dataset (15,610 in eQTLGen; 10,871 in 

PsychENCODE). The Bonferroni-corrected significance threshold was P < 3.20 × 10−6 and 

P < 4.60 × 10−6 for eQTLGen and PsychENCODE, respectively. The significance threshold 

for the HEIDI test (heterogeneity in dependent instruments) was PHEIDI ≥ 0.0146. While the 

results of TWAS and SMR indicate an association between BD and gene expression, a non-

significant HEIDI test additionally indicates either a direct causal role or a pleiotropic effect 

of the BD-associated SNPs on gene expression.

Complement component 4 (C4) imputation.

To investigate the major histocompatibility complex (MHC; chr6:24–34 Mb on hg19), the 

alleles of complement component 4 genes (C4A and C4B) were imputed in 47 PGC cohorts 

for which individual-level genotype data were accessible, totaling 32,749 BD cases and 

53,370 controls. The imputation reference panel comprised 2,530 reference haplotypes of 

MHC SNPs and C4 alleles, generated using a sample of 1,265 individuals with whole-
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genome sequence data, from the Genomic Psychiatry cohort114. Briefly, imputation of C4 as 

a multi-allelic variant was performed using Beagle v4.1115,116, using SNPs from the MHC 

region that were also in the haplotype reference panel. Within the Beagle pipeline, the 

reference panel was first converted to bref format. We used the conform-gt tool to perform 

strand-flipping and filtering of specific SNPs for which strand remained ambiguous. Beagle 

was run using default parameters with two key exceptions: we used the GRCh37 PLINK 

recombination map, and we set the output to include genotype probability (i.e., GP field in 

VCF) for correct downstream probabilistic estimation of C4A and C4B joint dosages. The 

output consisted of dosage estimates for each of the common C4 structural haplotypes for 

each individual. The five most common structural forms of the C4A/C4B locus (BS, AL, 

AL-BS, AL-BL, and AL-AL) could be inferred with reasonably high accuracy (generally 

0.70 < r2 < 1.00). The imputed C4 alleles were tested for association with BD in a joint 

logistic regression that included (i) terms for dosages of the five most common C4 structural 

haplotypes (AL-BS, AL-BL, AL-AL, BS, and AL), (ii) rs13195402 genotype (top lead SNP 

in the MHC) and (iii) PCs as per the GWAS. The genetically regulated expression of C4A 
was predicted from the imputed C4 alleles using a model previously described63. Predicted 

C4A expression was tested for association with BD in a joint logistic regression that 

included (i) predicted C4A expression, (ii) rs13195402 genotype (top lead SNP in the MHC) 

and (iii) PCs as per the GWAS.

Polygenic risk scoring.

PRS from our GWAS meta-analysis were tested for association with BD in individual 

cohorts, using a discovery GWAS where the target cohort was left out of the meta-analysis. 

Briefly, the GWAS results from each discovery GWAS were pruned for LD using the P-

value informed clumping method in PLINK v1.9099 (r2 0.1 within a 500-kb window) based 

on the LD structure of the HRC reference panel98. Subsets of SNPs were selected from the 

results below nine increasingly liberal P-value thresholds (PT) (5 × 10−8, 1 × 10−4, 1 × 10−3, 

0.01, 0.05, 0.1, 0.2, 0.5, 1). Sets of alleles, weighted by their log odds ratios from the 

discovery GWAS, were summed into PRS for each individual in the target datasets, using 

PLINK v1.90 implemented via RICOPILI94,99. PRS were tested for association with BD in 

the target dataset using logistic regression, covarying for PCs as per the GWAS in each 

cohort. PRS were tested in the external cohorts by the collaborating research teams using 

comparable procedures. The variance explained by the PRS (R2) was converted to the 

liability scale to account for the proportion of cases in each target dataset, using a BD 

population prevalence of 2% and 1%117. The weighted average R2 values were calculated 

using the effective n for each cohort. The odds ratios for BD for individuals in the top decile 

of PRS compared with those in the lowest decile and middle decile were calculated in the 52 

datasets internal to the PGC. To assess cross-ancestry performance, PRS generated from the 

meta-analysis results were tested for association with BD using similar methods in a 

Japanese sample59, a Korean sample92, and two admixed African American samples. Full 

details of the QC, imputation, and analysis of these samples are in the Supplementary Note.
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LD score regression.

LD Score regression (LDSC)35 was used to estimate the ℎSNP
2  of BD from GWAS summary 

statistics. ℎSNP
2  was converted to the liability scale, using a lifetime BD prevalence of 2% 

and 1%. LDSC bivariate genetic correlations attributable to genome-wide SNPs (rg) were 

estimated with 255 human diseases and traits from published GWAS and 514 GWAS of 

phenotypes in the UK Biobank from LD Hub48. Adjusting for the number of traits tested, 

the Bonferroni-corrected P-value thresholds were P < 1.96 × 10−4 and P < 9.73 × 10−5, 

respectively.

MiXeR.

We applied causal mixture models49,118 to the GWAS summary statistics, using MiXeR 

v1.3. MiXeR provides univariate estimates of the proportion of non-null SNPs 

(“polygenicity”) and the variance of effect sizes of non-null SNPs (“discoverability”) in each 

phenotype. For each SNP, i, univariate MiXeR models its additive genetic effect of allele 

substitution, βi, as a point-normal mixture, βi = 1 − π1 N 0, 0 + π1N 0,   σβ
2 , where π1 

represents the proportion of non-null SNPs (`polygenicity`) and σβ
2 represents variance of 

effect sizes of non-null SNPs (`discoverability`). Then, for each SNP, j, MiXeR incorporates 

LD information and allele frequencies for M = 9,997,231 SNPs extracted from 1000 

Genomes Phase 3 data to estimate the expected probability distribution of the signed test 

statistic, zj = δj + ϵj = N∑i Hirijβi + ϵj, where N is sample size, Hi indicates heterozygosity 

of i-th SNP, rij indicates allelic correlation between i-th and j-th SNPs, and ϵj N 0,   σ0
2  is 

the residual variance. Further, the three parameters, π1, σβ
2, σ0

2, are fitted by direct 

maximization of the likelihood function. The optimization is based on a set of approximately 

600,000 SNPs, obtained by selecting a random set of 2,000,000 SNPs with minor allele 

frequency of 5% or higher, followed by LD pruning procedure at LD r2 = 0.8 threshold. The 

random SNP selection and full optimization procedure are repeated 20 times to obtain mean 

and standard errors of model parameters. The log-likelihood figures show individual curves 

for each of the 20 runs, each shifted vertically so that best log-likelihood point is shown at 

zero ordinate.

The total number of trait influencing variants is estimated as Mπ1, where M = 9,997,231 

gives the number of SNPs in the reference panel. MiXeR Venn diagrams report the effective 

number of influencing variants, ηMπ_1, where η is a fixed number, η = 0.319, which gives 

the fraction of influencing variants contributing to 90% of trait’s heritability (with rationale 

for this adjustment being that the remaining 68.1% of influencing variants are small and 

cumulatively explain only 10% of trait’s heritability). Phenotypic variance explained on 

average by an influencing genetic variant is calculated as Hσβ
2, where H = 1

M ∑iHi = 0.2075

is the average heterozygosity across SNPs in the reference panel. Under the assumptions of 

the MiXeR model, SNP-heritability is then calculated as ℎSNP
2 = Mπ1 × Hσβ

2.

In the cross-trait analysis, MiXeR models additive genetic effects as a mixture of four 

components, representing null SNPs in both traits (π0); SNPs with a specific effect on the 
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first and on the second trait (π1 and π2, respectively); and SNPs with non-zero effect on 

both traits (π12). In the last component, MiXeR models variance-covariance matrix as 

Σ12 =
σ1

2 ρ12σ1σ2

ρ12σ1σ2 σ2
2  where ρ12 indicates correlation of effect sizes within the shared 

component, and σ1
2 and σ2

2 correspond to the discoverability parameter estimated in the 

univariate analysis of the two traits. These components are then plotted in Venn diagrams. 

After fitting parameters of the model, the Dice coefficient of polygenic overlap is then 

calculated as 
2π12

π1 + 2π12 + π2
, and genetic correlation is calculated as rg =

ρ12π12
π1 + π12 π2 + π12

. 

Fraction of influencing variants with concordant effect direction is calculated as twice the 

multivariate normal CDF at point (0, 0) for the bivariate normal distribution with zero mean 

and variance-covariance matrix Σ12. All code is available online (https://github.com/

precimed/mixer).

Mendelian randomization.

We selected 17 traits associated with BD in clinical or epidemiological studies for 

Mendelian randomization (MR) to dissect their relationship with BD (Supplementary Note). 

Bi-directional generalized summary statistics-based MR (GSMR)51 analyses were 

performed between BD and the traits of interest using GWAS summary statistics, 

implemented in GCTA software (v1.93.1f beta). The instrumental variables (IVs) were 

selected by a clumping procedure internal to the GSMR software with parameters: --gwas-
thresh 5e-8 --clump-r2 0.01. Traits with less than 10 IVs available were excluded from the 

GSMR analyses to avoid conducting underpowered tests51, resulting in 10 traits tested 

(Bonferroni-corrected P-value threshold < 2.5 × 10−3). The HEIDI-outlier test 

(heterogeneity in dependent instruments) was applied to test for horizontal pleiotropy 

(PHEIDI < 0.01)51. For comparison, the MR analyses were also performed using the inverse 

variance weighted regression method, implemented via the TwoSampleMR R package, using 

the IVs selected by GSMR119,120. To further investigate horizontal pleiotropy, the MR Egger 

intercept test was conducted using the TwoSampleMR package119,120 and MR-PRESSO 

software was used to perform the Global Test and Distortion Test121.

BD subtypes.

GWAS meta-analyses were conducted for BD I (25,060 cases, 449,978 controls from 55 

cohorts, effective n = 64,802) and BD II (6,781 cases, 364,075 controls from 31 cohorts, 

effective n = 22,560) (Supplementary Table 1) using the same procedures described for the 

main GWAS. BD subtypes were defined based on international consensus criteria (DSM-IV, 

ICD-9, or ICD-10), established using structured diagnostic instruments from assessments by 

trained interviewers, clinician-administered checklists or medical record review. In the 

external biobank cohorts, BD subtypes were defined using ICD codes (Supplementary 

Note). LDSC35 was used to estimate the ℎSNP
2  of each subtype, and the genetic correlation 

between the subtypes. The difference between the LDSC ℎSNP
2  estimates for BD I and BD II 

was tested for deviation from 0 using the block jackknife122. The LDSC genetic correlation 
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(rg) was tested for difference from 1 by calculating a chi-square statistic corresponding to the 

estimated rg as ((rg − 1)/ SE)2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Manhattan plot of genome-wide association meta-analysis of 41,917 bipolar disorder 
cases and 371,549 controls.
The x-axis shows genomic position (chromosomes 1–22 and X), and the y-axis shows 

statistical significance as −log10(P value). P values are two-sided and based on an inverse 

variance weighted fixed effects meta-analysis. The red line shows the genome-wide 

significance threshold (P < 5 × 10−8). SNPs in genome-wide significant loci are colored 

green for loci previously associated with bipolar disorder (BD) and yellow for novel 

associations from this study. The genes labeled are those prioritized by integrative eQTL 

analyses or notable genes in novel loci (MHC, CACNB2, KCNB1).
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Figure 2 |. Phenotypic variance in bipolar disorder explained by polygenic risk scores.
Variance explained is presented on the liability scale, assuming a 2% population prevalence 

of bipolar disorder. For European ancestries, the results shown are the weighted mean R2 

values across all 57 cohorts in the PGC3 meta-analysis, weighted by the effective n per 

cohort. The numbers of cases and controls are shown from left to right under the barplot for 

each study. GWAS PT, the color of the bars represents the P value threshold used to select 

SNPs from the discovery GWAS; GAIN-AA, Genetic Association Information Network 

African American cohort; AA-GPC, African American Genomic Psychiatry Cohort.
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Figure 3 |. Relationships between bipolar disorder and modifiable risk factors based on genetic 
correlations, generalized summary statistics-based Mendelian randomization, and bivariate 
gaussian mixture modeling.
Venn diagrams depict MiXeR results of the estimated number of influencing variants shared 

between bipolar disorder (BD) and each trait of interest (grey), unique to BD (blue) and 

unique to the trait of interest (orange). The number of influencing variants and standard error 

are shown in thousands. The size of the circles reflects the polygenicity of each trait, with 

larger circles corresponding to greater polygenicity. The estimated genetic correlation (rg) 

between BD and each trait of interest and standard error from LD Score regression is shown 

below the corresponding Venn diagram, with an accompanying scale (-1 to +1). The arrows 

above and below the Venn diagrams indicate the results of generalized summary statistics-

based Mendelian randomization (GSMR) of BD on the trait of interest, and the trait of 

interest on BD, respectively. The GSMR effect size and standard error is shown inside the 

corresponding arrow. Solid arrows indicate a significant relationship between the exposure 

and the outcome, after correction for multiple comparisons (P < 1.47 × 10−3), and dashed 

arrows indicate a non-significant relationship.
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Table 1 |

Genome-wide significant loci for bipolar disorder from meta-analysis of 41,917 cases and 371,549 controls

Locus CHR BP SNP P OR s.e.
A1/
A2

A1 freq 
in 

controls

Previous 
report^ 
for BD 

(citation)

Name for 
novel locus

+

Previous 
report^ for 
psychiatric 
disorders

1 1 61105668 rs2126180 1.6E-09 1.058 0.009
A/
G 0.457 LINC01748

2 1 163745389 rs10737496 7.2E-09 1.056 0.009 C/T 0.444 NUF2 CDG

3* 2 97416153 rs4619651 4.8E-11 1.068 0.010
G/
A 0.670

LMAN2L 
(PGC2) CDG

4 2 166152389 rs17183814 2.7E-08 1.108 0.019
G/
A 0.924

SCN2A 
(PGC2)

5 2 169481837 rs13417268 2.1E-08 1.064 0.011
C/
G 0.758 CERS6

6 2 193738336 rs2011302 4.3E-08 1.055 0.010
A/
T 0.377 PCGEM1 CDG

7 2 194437889 rs2719164 4.9E-08 1.053 0.010
A/
G 0.564

intergenic 
(PGC2) CDG

8* 3 36856030 rs9834970 6.6E-19 1.087 0.009 C/T 0.481
TRANK1 
(PGC2) SCZ, CDG

9* 3 52626443 rs2336147 3.6E-13 1.070 0.009 T/C 0.498
ITIH1 
(PGC2) SCZ, CDG

10 3 70488788 rs115694474 2.4E-08 1.068 0.012
T/
A 0.799 MDFIC2

11 3 107757060 rs696366 4.5E-08 1.053 0.009
C/
A 0.550

CD47 
(PGC2)

12* 4 123076007 rs112481526 1.9E-09 1.065 0.011
G/
A 0.256 KIAA1109 MD

13* 5 7542911 rs28565152 2.0E-09 1.070 0.011
A/
G 0.238

ADCY2 
(PGC2)

14* 5 78849505 rs6865469 1.7E-08 1.060 0.010
T/
G 0.274 HOMER1

15 5 80961069 rs6887473 8.8E-09 1.062 0.011
G/
A 0.739

SSBP2 
(PGC2)

16* 5 137712121 rs10043984 3.7E-08 1.062 0.011 T/C 0.236 KDM3B CDG

17 5 169289206 rs10866641 2.8E-11 1.065 0.009 T/C 0.575 DOCK2

18* 6 26463575 rs13195402 5.8E-15 1.146 0.018
G/
T 0.919 MHC

MD, SCZ, 
CDG, 
MOOD

19* 6 98565211 rs1487445 1.5E-15 1.078 0.009 T/C 0.487
POU3F2 
(PGC2) CDG

20 6 152793572 rs4331993 2.0E-08 1.056 0.010
A/
T 0.382

SYNE1 
(Green 
2013)

21* 6 166995260 rs10455979 4.2E-09 1.057 0.010
G/
C 0.500

RPS6KA2 
(PGC2)

22* 7 2020995 rs12668848 1.9E-09 1.059 0.010
G/
A 0.575

MAD1L1 
(Hou 2016, 
Ikeda 
2017)

MD, SCZ, 
CDG
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Locus CHR BP SNP P OR s.e.
A1/
A2

A1 freq 
in 

controls

Previous 
report^ 
for BD 

(citation)

Name for 
novel locus

+

Previous 
report^ for 
psychiatric 
disorders

23* 7 11871787 rs113779084 1.4E-13 1.079 0.010
A/
G 0.299

THSD7A 
(PGC2)

24* 7 21492589 rs6954854 5.9E-10 1.060 0.009
G/
A 0.425 SP4

25 7 24647222 rs12672003 2.7E-09 1.096 0.016
G/
A 0.113 MPP6

SCZ, CDG, 
MOOD

26 7 105043229 rs11764361 3.5E-09 1.063 0.010
A/
G 0.668

SRPK2 
(PGC2)

SCZ, ASD, 
CDG

27 7 131870597 rs6946056 3.7E-08 1.055 0.010
C/
A 0.623 PLXNA4

28 7 140676153 rs10255167 1.6E-08 1.068 0.012
A/
G 0.778

MRPS33 
(PGC2) CDG

29* 8 9763581 rs62489493 2.6E-11 1.094 0.014
G/
C 0.128 miR124–1

SCZ, ALC, 
ASD

30* 8 10226355 rs3088186 2.1E-08 1.058 0.010 T/C 0.287 MSRA
SCZ, ALC, 
ASD

31 8 34152492 rs2953928 6.3E-09 1.124 0.020
A/
G 0.067

RP1–
84O15.2 
(lincRNA)

SCZ, 
ADHD, 
CDG

32* 8 144993377 rs6992333 1.6E-09 1.062 0.010
G/
A 0.410 PLEC

33 9 37090538 rs10973201 2.5E-08 1.101 0.017 C/T 0.110 ZCCHC7
MD, CDG, 
MOOD

34* 9 141066490 rs62581014 2.8E-08 1.067 0.012 T/C 0.366 TUBBP5

35* 10 18751103 rs1998820 4.1E-08 1.087 0.015
T/
A 0.886 CACNB2 SCZ, CDG

36* 10 62322034 rs10994415 1.1E-11 1.125 0.017 C/T 0.082
ANK3 
(PGC2)

37 10 64525135 rs10761661 4.7E-08 1.053 0.009 T/C 0.472 ADO

38* 10 111648659 rs2273738 1.6E-11 1.096 0.014 T/C 0.135

ADD3 
(Charney 
2017, 
PGC2)

39* 11 61618608 rs174592 9.9E-14 1.074 0.010
G/
A 0.395

FADS2 
(PGC2)

MD, CDG, 
MOOD

40 11 64009879 rs4672 3.4E-09 1.107 0.017
A/
G 0.083 FKBP2

41* 11 65848738 rs475805 2.0E-09 1.070 0.011
A/
G 0.767

PACS1 
(PGC2)

42* 11 66324583 rs678397 5.5E-09 1.056 0.009 T/C 0.457
PC (PGC1, 
PGC2)

43* 11 70517927 rs12575685 1.2E-10 1.067 0.010
A/
G 0.327

SHANK2 
(PGC2) MD

44 11 79092527 rs12289486 3.3E-08 1.086 0.015 T/C 0.115
ODZ4 
(PGC1)

45* 12 2348844 rs11062170 1.9E-15 1.081 0.010
C/
G 0.333

CACNA1C 
(PGC2)

SCZ, CDG, 
MOOD

46 13 113869045 rs35306827 3.6E-09 1.068 0.011
G/
A 0.775 CUL4A
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Locus CHR BP SNP P OR s.e.
A1/
A2

A1 freq 
in 

controls

Previous 
report^ 
for BD 

(citation)

Name for 
novel locus

+

Previous 
report^ for 
psychiatric 
disorders

47 14 99719219 rs2693698 2.0E-08 1.055 0.009
G/
A 0.551 BCL11B SCZ, CDG

48* 15 38973793 rs35958438 3.8E-08 1.066 0.012
G/
A 0.772 C15orf53 CDG

49* 15 42904904 rs4447398 2.6E-09 1.086 0.014
A/
C 0.131

STARD9 
(PGC2)

50 15 83531774 rs62011709 1.4E-08 1.064 0.011
T/
A 0.747 HOMER2 SCZ

51* 15 85149575 rs748455 5.0E-11 1.070 0.010 T/C 0.719
ZNF592 
(PGC2) SCZ, CDG

52 15 91426560 rs4702 3.5E-09 1.059 0.010
G/
A 0.446 FURIN SCZ, CDG

53 16 9230816 rs28455634 2.6E-10 1.065 0.010
G/
A 0.620 C16orf72

54 16 9926348 rs7199910 1.7E-08 1.057 0.010
G/
T 0.312

GRIN2A 
(PGC2) SCZ, CDG

55 16 89632725 rs12932628 6.7E-09 1.058 0.010
T/
G 0.487 RPL13

56 17 1835482 rs4790841 3.1E-08 1.075 0.013 T/C 0.151 RTN4RL1

57 17 38129841 rs11870683 2.8E-08 1.059 0.010
T/
A 0.650

ERBB2 
(Hou 2016)

58 17 38220432 rs61554907 1.6E-08 1.091 0.015
T/
G 0.124

ERBB2 
(Hou 2016)

59* 17 42191893 rs228768 2.8E-10 1.067 0.010
G/
T 0.294

HDAC5 
(PGC2)

60* 20 43682551 rs67712855 4.2E-11 1.070 0.010
T/
G 0.687

STK4 
(PGC2)

61* 20 43944323 rs6032110 1.0E-09 1.059 0.009
A/
G 0.512

WFDC12 
(PGC2)

62* 20 48033127 rs237460 4.3E-09 1.057 0.009 T/C 0.412 KCNB1 CDG

63 20 60865815 rs13044225 8.5E-09 1.056 0.010
G/
A 0.440 OSBPL2

64 22 41153879 rs5758064 2.0E-08 1.054 0.009 T/C 0.523 SLC25A17

MD, SCZ, 
CDG, 
MOOD

CHR, chromosome; BP, GRCh37 base pair position; SNP, single nucleotide polymorphism; OR, odds ratio; s.e., standard error, A1, tested allele; 
A2, other allele; freq, frequency; BD, bipolar disorder; CDG, Cross-disorder GWAS of the Psychiatric Genomics Consortium; MD, major 
depression; SCZ, schizophrenia; MOOD, mood disorders; ASD, autism spectrum disorder; ALC, alcohol use disorder or problematic alcohol use; 
ADHD, attention deficit/hyperactivity disorder.

*
Locus overlaps with genome-wide significant locus for bipolar I disorder.

^
Previous report refers to previous association of a SNP in the locus with the psychiatric disorder at genome-wide significance. PGC1 = PMID 

21926972; PGC2 = PMID 31043756; Hou 2016 = PMID 27329760; Ikeda 2017 = PMID 28115744; Green 2013 = PMID 22565781; Charney 2017 
= PMID 28072414.

+
Novel loci are named using the nearest gene to the index SNP. P values are two-sided and based on an inverse variance weighted fixed effects 

meta-analysis.
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