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An Atlas of Variant Effects to understand 
the genome at nucleotide resolution
Douglas M. Fowler1,2,3*  , David J. Adams4  , Anna L. Gloyn5*  , William C. Hahn6,7, Debora S. Marks7,8  , 
Lara A. Muffley1  , James T. Neal7,9  , Frederick P. Roth10,11  , Alan F. Rubin12,13  , Lea M. Starita1,2,3   and 
Matthew E. Hurles4*   

Abstract 

Sequencing has revealed hundreds of millions of human genetic variants, and con-
tinued efforts will only add to this variant avalanche. Insufficient information exists to 
interpret the effects of most variants, limiting opportunities for precision medicine and 
comprehension of genome function. A solution lies in experimental assessment of the 
functional effect of variants, which can reveal their biological and clinical impact. How-
ever, variant effect assays have generally been undertaken reactively for individual vari-
ants only after and, in most cases long after, their first observation. Now, multiplexed 
assays of variant effect can characterise massive numbers of variants simultaneously, 
yielding variant effect maps that reveal the function of every possible single nucleotide 
change in a gene or regulatory element. Generating maps for every protein encoding 
gene and regulatory element in the human genome would create an ‘Atlas’ of variant 
effect maps and transform our understanding of genetics and usher in a new era of 
nucleotide-resolution functional knowledge of the genome. An Atlas would reveal 
the fundamental biology of the human genome, inform human evolution, empower 
the development and use of therapeutics and maximize the utility of genomics for 
diagnosing and treating disease. The Atlas of Variant Effects Alliance is an international 
collaborative group comprising hundreds of researchers, technologists and clinicians 
dedicated to realising an Atlas of Variant Effects to help deliver on the promise of 
genomics.

Keywords: Multiplexed assay of variant effect, Genome interpretation, Variant effect, 
Saturation mutagenesis, Functional genomics, Global alliance

Introduction
Two decades after sequencing the first human genome, millions of human exomes 
and genomes have been sequenced. Interpreting the effects of the hundreds of mil-
lions of variants thus discovered has become a central challenge for genomics. The 
genomes of the 8 billion people alive today collectively contain nearly all ~ 9 billion 
possible single nucleotide genetic variants compatible with life, as well as numerous 
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insertions, deletions and other types of variants [1, 2]. Moreover, within the trillions 
of cells of each individual, every possible single nucleotide genetic variant will have 
arisen through somatic mutation. The functional impact of genetic variants has pri-
marily been determined by asking if the variant co-occurs with a disease, disorder or 
other trait, an approach which has collectively characterised the functional impact 
of less than 1% of genetic variation. Moreover, our knowledge of variant effects is 
focused on the best-understood 1–2% of our DNA—the genes that encode proteins. 
For non-coding variation, the situation is even less certain, because the location of 
most known non-coding functional elements has only been recently identified [3]. 
Moreover, non-coding elements are not as highly conserved and their functions are 
often cell type and development stage specific [4].

Our lack of information about the effect of variation found through genetic testing or 
genome sequencing is the major barrier to the use of sequence information for diagnos-
ing genetic disease. This lack of information limits the effectiveness of genetic precision 
medicine and hinders our ability to understand genome function. Even when a variant in 
a well-annotated functional element is known to increase disease risk, the mechanism by 
which it does so is often unknown. A solution lies in our ability to assess the functional 
effect of variants using in vitro or cell-based assays, which can provide strong evidence 
to interpret their biological and clinical impact and can, in principle, be applied to any 
variant. However, owing to the resource- and time-intensive nature of traditional variant 
effect assays, they have generally been undertaken reactively for individual variants only 
after and, in most cases long after, the first observation of the variant. Now, multiplexed 
assays of variant effect (MAVEs) enable the generation of ‘variant effect maps’ charac-
terising aspects of the function of every possible single nucleotide change in a gene or 
functional element of interest. Because variant effect maps are comprehensive, they pro-
file all previously observed variants, as well as those that might be found in the future. 
Generating variant effect maps for every protein encoding gene and regulatory element 
in the human genome would create an ‘Atlas’ of variant effect maps that would transform 
our understanding of genetics by ushering in a new era of nucleotide-resolution func-
tional knowledge of the genome.

The generation of an Atlas of Variant Effects (AVE) would have major impact across 
multiple areas of basic and translational research and, importantly, for clinical care. 
Any effort to determine whether a variant alters function would be transformed by 
having an Atlas, including in the following high impact areas (Fig. 1):

• Precision genomic medicine. Variant effect maps of functional elements known 
to harbour disease-causing variation can drive more accurate, rapid and inexpen-
sive genetic diagnostic testing. Variant effect maps can also enhance our under-
standing of penetrance and variable expressivity and potentially even reveal com-
pensatory genetic perturbations. For a wide variety of genetically driven disorders, 
knowledge of disease risk variants allows screening within families or even popu-
lations for early detection and thus early intervention [5].

• Disease association studies. Just as targeted variant functional assays have 
assisted discovery and validation of associations between specific rare genetic 
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variants and disease risk, variant effect maps can enable this approach broadly, at 
scale [6, 7].

• Therapeutic development and pharmacogenetics. Variant effect maps can shed 
light on disease mechanisms and may identify novel potential targets for drugs 
or other therapeutics [8], help predict the safety and efficacy of modulating spe-
cific targets, reveal routes of resistance and identify patients likely to respond 
favourably in clinical trials. Variant effect maps of pharmacogenes, where genetic 
variation can influence the activity or metabolism of drugs, could reveal the opti-
mal dose for an individual or identify predispositions to adverse reactions. Vari-
ant effect maps could also enable the systematic study of genetic dose–response 
curves through functional and clinical correlations.

• Sequence/structure/function relationships. Understanding the relationship 
between sequence and function is fundamental to biology [9] and remains diffi-
cult to predict. Variant effect maps can illuminate this relationship, for example 
by improving or benchmarking computational variant effect prediction; reveal-
ing protein function, allostery or structure; and discerning the composition and 
mechanisms of regulatory elements [10–19].

• Evolutionary genetics. Differences in the biology of species, including those of 
commercial interest, is genomically encoded. Variant effect maps can highlight the 
subset of genetic differences between species that have functional consequences, 
probe inferred ancestral sequences [20] and improve phylogenetic inference [21–
23].

Fig. 1 Schematic representation of areas of high impact resulting from an Atlas of Variant Effects
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• Pathogen biology. Genetic variation in pathogen genomes influences key charac-
teristics of pathogen biology, including virulence, transmission, immune evasion and 
drug resistance. Variant effect maps can inform the surveillance of pathogen evo-
lution [24] and provide opportunities to respond more rapidly, as well as revealing 
drug resistance and immune evasion variants [25].

By comprehensively capturing the impact of variants in functional elements through-
out the genome, an Atlas of Variant Effects would accelerate and empower biological 
research, drug discovery and clinical practice. Systematic variant analysis, unbiased 
by allele frequency in any population, would empower equitable interpretation and 
reduce healthcare disparities [26]. Building and implementing a coherent Atlas of Vari-
ant Effects will necessarily be a collective endeavour, drawing together diverse expertise 
from different communities, including patients, patient advocates, researchers, clini-
cians, diagnostics companies and drug developers.

MAVEs can measure the effect of genetic variants at the scale necessary 
to compile an Atlas of Variant Effects
MAVEs are a rapidly growing family of methods that involve mutagenesis of a DNA-
encoded protein or regulatory element followed by a multiplexed assay for some aspect 
of function [9, 27–29]. High-throughput DNA sequencing is used to read out each vari-
ant’s effect in the assay (Fig.  2A). MAVEs encompass both assays of protein function, 
often called deep mutational scans, and of regulatory elements, often called massively 
parallel reporter assays. Early MAVEs were applied to small protein domains and short 
regulatory elements [14, 15, 30] generally querying single ‘sub-functions’ of an element 
such as promoter activity [14, 15], protein–ligand interactions [30–32] or stability [33, 
34]. Other early efforts focused on the ability of an element to perform its overall cel-
lular function in a cell-based growth assay [35]. Subsequently, MAVEs have been devel-
oped for a variety of functions and have been used to generate multiple variant effect 
maps examining different functions for the same element [9, 28, 36]. Now, MAVEs have 
been scaled up and optimised to enable routine application to entire genes, measur-
ing the relative functional impact of tens of thousands of variants in a single controlled 
experiment.

To date, variant effect maps have been generated for hundreds of functional elements 
encompassing over 11 million total variants (Fig.  2B). However, existing variant effect 
maps cover < 1% of the known clinically relevant human genome and are largely focused 
on single nucleotide variants, as these are the type of variants most often encountered in 
current human genome sequencing and clinical testing. No functional element has been 
mapped in a diverse panel of cell types or across developmental stages. However, even 
at this very early stage in the development of a comprehensive Atlas of Variant Effects, 
multiplexed variant functional data are proving to be powerful. In particular, variant 
effect maps are beginning to reshape how human variants found in clinical genetic test-
ing are interpreted and also to redefine our understanding of the mapping between DNA 
sequence and molecular, cellular and organismal phenotype.

The value of functional evidence for informing clinical variant interpretation is already 
well appreciated and has been incorporated within current professional guidelines for 
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genetic diagnosis that are used internationally [37, 38]. MAVE-derived variant func-
tional data has numerous advantages as compared to functional data derived from tra-
ditional, low-throughput assays. Unlike testing variants in small batches using different 
methods in different labs, MAVEs can determine the effects of thousands of variants 
simultaneously, not only improving reproducibility but allowing assessment of variants 
in the context of the functional effects of all of the variants in that gene, including the 
effects of known pathogenic and benign variants. Thus, MAVE-derived functional data 
can be used to eliminate many, if not most, of the uncertain, clinically observed variants 
in monogenic disease genes demonstrating the power of functional data to help deliver 
more definitive genetic test results to patients and clinicians [39–41].

Multiplexed variant functional data can also transform our understanding of how vari-
ants encode molecular and cellular function and how sequence dictates biological struc-
ture. For example, multiplexed measurements of variant abundance and ligand binding 

Fig. 2 A (top panel) MAVEs can measure a wide variety of protein and regulatory DNA functions, and they 
produce comprehensive variant effect maps representing the effects of nearly all possible nucleotide or 
amino acid variants in the scanned functional element. A variant effect map is shown for a small region 
of a protein-coding gene; each column in the map is a position in a gene and each row is an amino acid 
substitution. Tiles are coloured based on the measured effect of the variant. B (bottom panel) MAVEs have 
been applied to hundreds of functional elements and, collectively, ~ 11 million variant effect measurements 
have been made with MAVEs. Data available at 10.5281/zenodo.7662580
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in SH3 and PDZ domains, combined with a model, enabled a comprehensive accounting 
of allostery within each domain [16]. Multiplexed variant functional data can be used to 
validate proposed protein structures [17, 42] or, where variant combinations are assayed, 
even infer them de novo [12, 13]. Knowledge of the precise mechanism of variant effects 
opens the door for variant-guided therapies designed to ameliorate protein misfolding or 
aggregation, aberrant splicing and more.

Existing variant effect maps for human genes have been generated by a range of dif-
ferent technologies, from yeast complementation assays to CRISPR-based saturation 
genome editing in human cells. Each technology has specific advantages and disadvan-
tages. For example, yeast complementation assays are only applicable to a minority of 
human genes [43] and would not be appropriate for identifying some variant effects, 
such as those that affect functions beyond those needed for complementation or those 
that disrupt splicing. CRISPR-based saturation genome editing of an endogenous locus 
is costly and practical only for growth-based assays. Thus, no single technology can cur-
rently be used to generate maps of variant effects for all functional elements. Indeed, 
even within a single gene, multiple assays may be required to assess different pathophys-
iological mechanisms. Current MAVEs require appreciable effort, and the time and cost 
needed to develop new assays can be considerable. Moreover, some variant effects may 
only be well-modelled in terminally differentiated cell types or in multicellular systems 
or by assaying variant effects on complex phenotypes like cell morphology or transcrip-
tional state. Thus, the existing portfolio of MAVE technologies can be applied to a sub-
stantial fraction of the genome, but more technology development is required to achieve 
comprehensive coverage of genomic functional elements and to identify the mechanism 
by which most variants act.

The AVE Alliance provides international coordination to create, disseminate 
and implement an Atlas of Variant Effects
Compiling a complete Atlas of Variant Effects for all 20,000 human genes, not to men-
tion potentially hundreds of thousands of noncoding regulatory elements, will require 
an international collaborative effort involving thousands of researchers, clinicians and 
technologists. Comparing this initiative to some of the landmark genomic collaborative 
achievements of the past 30 years highlights some of the key challenges to be addressed. 
The Human Genome Project (HGP) required a small number of centres generating data 
at unprecedented scales, in a highly coordinated and centralised fashion. By contrast, the 
Protein Data Bank (PDB) contains structures for thousands of human proteins, gener-
ated by thousands of researchers, in a largely uncoordinated and decentralised fashion 
[44]. Despite their differences, both HGP and PDB succeeded in generating an endur-
ing and sustainable knowledge base and depended, crucially, on robust data standards, 
community-agreed quality metrics and centralised data deposition and dissemination. 
Moreover, a strong community ethos was essential for the development and adoption of 
these core standards and infrastructure. Some of the critical informatics infrastructure 
needed to support the AVE has already been developed, for example the MaveDB repos-
itory [45, 46], initial standards [47] for MAVE datasets and a MAVE project registry [48].

We envisage that the AVE will sit between the extremes exemplified by HGP and PDB, 
with a combination of a small number of centres generating variant effect maps at scale 
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using generalisable assays and a large number of laboratories generating small num-
bers of maps, using bespoke assays, leveraging their expertise in investigating particular 
genes and biological pathways. Integration of variant effect data for the same gene, gen-
erated using different MAVEs, will in some cases be required to achieve accurate and 
comprehensive characterisation of different functional effects [39, 49–52]. The computa-
tional prediction of variant effect maps using AI/ML methods will continue to improve 
and will leverage growing numbers of experimentally determined variant effect maps, 
analogous to the advances in computational prediction of protein structures based on 
thousands of experimentally determined protein structures (Fig. 3). With these expecta-
tions in mind, we can identify some of the key challenges that realising the AVE vision 
will face and some of the likely solutions on the critical path to success:

• Diverse expertise. Developing new experimental technologies that reflect the com-
plexity of biology and disease, scaling existing technologies, processing and manag-
ing complex data, and translating knowledge into clinical benefits requires a broad 
range of expertise, interests and competencies, working collaboratively. No one cen-
tre or community will be able to create the AVE in isolation. Technology develop-
ers, geneticists, cell biologists, protein scientists, data scientists, software engineers, 
clinicians will need to work together, aligned around a common vision, language and 
values.

• Technology development and scaling. Generating variant effect maps for all 20,000 
genes will require both the scaling of existing technologies that can be applied to 
many genes, and the development of new technologies that will extend coverage of 

Fig. 3 Stages of Atlas of Variant Effects completion
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MAVE-compatible assays to all functional elements. Moreover, new approaches will 
be needed to assess variant effects in more complex contexts, such as specific cell 
types or in development, and for more complex phenotypes, such as cell morphology 
and behaviour.

• Democratisation of technology. Completing the AVE will require a major expan-
sion in the numbers of researchers and organisations actively performing MAVEs. 
Readily accessible training materials, protocols, experimental resources (e.g. cell 
lines, libraries) and easy-to-use and flexible software will all be crucial, as will 
advocacy and support to facilitate researchers with expertise in informative assays 
to adopt MAVE technologies.

• Data standards and coordination. Data standards, community-agreed qual-
ity standards, centralised data deposition, open dissemination and a FAIR ethos 
[53] are all necessary but not sufficient for compiling the Atlas of Variant Effects. 
The existing informatics infrastructure needs to evolve, become integrated into 
the wider clinical and biological data ecosystem and be actively sustained for long 
term impact. Moreover, community-wide adoption of best practices with regard 
to data and meta-data deposition are critical for data integration.

• Ensuring trustworthy clinical adoption. The potential clinical impact of the Atlas 
of Variant Effects can only be achieved through rigorous and clinician-trusted 
integration into diagnostic workflows. Co-development of quality standards and 
guidelines with clinical communities will help to build trust, as will starting con-
servatively. Integration with existing clinical decision support software (e.g. DECI-
PHER [54]) and data resources (e.g. ClinVar [55]), as opposed to requiring diag-
nosticians to use new systems, will facilitate rapid adoption.

To achieve the AVE vision and tackle these challenges, an international group of 
diverse researchers, clinicians and diagnosticians established the Atlas of Variant 
Effects Alliance (www. varia nteff ect. org). The AVE Alliance currently has over 400 
members from over 100 institutions, located in 30 countries, united by the mission 
to bring the AVE into reality. The AVE Alliance is committed to Open Science and 
places diversity and inclusion at the heart of its activities. The AVE Alliance organ-
ises an annual meeting, the Mutational Scanning Symposium, and a monthly seminar 
series, the Variant Effect Seminar Series. To tackle the challenges identified above, 
AVE has established workstreams to:

• Develop, standardise and democratise experimental and computational technolo-
gies,

• Develop the infrastructure necessary to ingest, store and disseminate high quality 
FAIR data,

• Ensure that clinical benefits are realised,
• Expand, coordinate and sustain a diverse and motivated community.

The AVE Alliance provides a ‘front door’ for other organisations and initiatives to 
work with the diverse AVE community, from complementary large-scale national ini-
tiatives such as the NIH-funded Impact of Genomic Variants on Function (IGVF), as 

http://www.varianteffect.org
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well as research funders and commercial organisations who are keen to engage with 
the community as a whole. We welcome any and all readers who are interested in 
building and learning from the Atlas of Variant Effects to join the Alliance and get 
involved [56, 57].
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