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Multispectral analysis tools can increase utility of RGB color 
images in histology

Farzad Fereidouni1, Croix Griffin2, Austin Todd1, and Richard Levenson1

1Department of Pathology and Laboratory Medicine, University of California Davis, 4400 V Street, 
Sacramento, CA 95817, United States of America

2School of Veterinary Medicine, University of California Davis, 944 Garrod Drive, Davis, CA 
95616, United States of America

Abstract

Multispectral imaging (MSI) is increasingly finding application in the study and characterization 

of biological specimens. However, the methods typically used come with challenges on both the 

acquisition and the analysis front. MSI can be slow and photon-inefficient, leading to long imaging 

times and possible phototoxicity and photobleaching. The resulting datasets can be large and 

complex, prompting the development of a number of mathematical approaches for segmentation 

and signal unmixing. We show that under certain circumstances, just three spectral channels 

provided by standard color cameras, coupled with multispectral analysis tools, including a more 

recent spectral phasor approach, can efficiently provide useful insights. These findings are 

supported with a mathematical model relating spectral bandwidth and spectral channel number to 

achievable spectral accuracy. The utility of 3-band RGB and MSI analysis tools are demonstrated 

on images acquired using brightfield and fluorescence techniques, as well as a novel microscopy 

approach employing UV-surface excitation. Supervised linear unmixing, automated non-negative 

matrix factorization and phasor analysis tools all provide useful results, with phasors generating 

particularly helpful spectral display plots for sample exploration.
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1. Introduction

Multispectral imaging (MSI) initially became popular in the remote sensing community [1], 

and has in recent decades found multiple applications in biology and medicine, particularly 

when applied to microscopy. Benefits of MSI include enhanced detection of targets and 

improved signal-to-noise ratios because background (autofluorescent) signals can be 

spectrally unmixed from emissions arising from specific labels. MSI captures a spectrum of 

a signal at each pixel of an image and is applicable in transmission, reflectance and 

fluorescence modes. It is the higher-dimensional extension of familiar color (RGB) imaging, 
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which also captures spectral data (limited to three channels) at every pixel. For a recent 

review, see [2].

MSI is used to accomplish complex biomarker multiplexing in brightfield, and fluorescence 

images of tissue specimens [3, 4] as well as in vivo preclinical imaging [5]. It typically 

outperforms results obtainable using single band-pass filters, or simple color RGB sensors 

[2] viewed with simple tools. Autofluorescence, often viewed as an annoyance, can also be 

informative, as endogenous metabolites and macromolecules may generate useful signals in 

unstained specimens, both in vivo and ex vivo [6]. Clinically, dermatology is a field that has 

embraced MSI, along with other advanced optical techniques [7, 8]. Spectral imaging has 

also found application in intraoperative guidance for tissue viability (e.g. detecting 

oxygenation or perfusion) [9] or detection of biomarkers in surgical or endoscopic settings 

[10]. More general reviews of MSI and biomedical applications are available [11, 12]

The use of MSI comes with challenges. The instrumentation involved can be complex and 

expensive, and may employ tunable filters, or precisely controlled optical components such 

as those deployed in confocal microscopes [13]. MSI can also be inefficient in its use of 

light, requiring relatively longer exposure times than monochrome or simple color imaging 

methods. Such longer capture times reduce temporal resolution and may induce 

photobleaching or phototoxicity. Therefore, if it were possible to capture some of the 

discrimination power of MSI with more efficient capture methods, it could prove beneficial 

in terms of reduced complexity and increased speed [14, 15].

Managing and interpreting large multispectral data sets can also be difficult. Two basic tasks 

in working with such images include image classification of areas of interest, and signal 

unmixing, in which quantitative estimates of target abundances are arrived at. Classification 

relies on differences between spectra, and quantitation relies on mixing models which 

normally are assumed to be linear. (See the cited reviews for more complete discussion of 

spectral analysis tools.) Consequently, it is worth taking a look at what could be 

accomplished by combining easy-to-acquire 3-channel color images with analysis tools 

refined in the multispectral field.

Linear unmixing is one of the most widely utilized method, and can be used when the 

spectra of known species are available either from the dataset itself, via separate 

measurements, or obtained from the literature [16]. Relying on ‘known’ spectra can 

introduce errors into the analysis, as spectral properties can vary either due to environmental 

or other effects, or from variability introduced by the spectral measurement methods 

themselves. Analysis techniques based on prior knowledge will be less useful in cases in 

which characterization of accurate ‘end-member’ spectra may be imperfect. Numerous 

approaches have been developed to overcome this problem by applying constraints that 

allow for unmixing of the images with less a priori knowledge. Iterative minimum least-

square (MLS) methods, non-negative matrix factorization (NMF) [17], or methods based on 

principal component analyses are approaches that analyze spectral data without reliance on 

previously characterized spectra [18].
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A more recent development for exploring, as well as quantitatively analyzing, spectral data 

sets is a phasor-based approach. Phasors (a portmanteau of phase vector) found original 

application in the analysis of electrical circuits, telecommunications and other situations 

[19]. More recently, the technique was applied to biomedical imaging, initially in the 

analysis of fluorescence lifetime imaging microscopy [20, 21]. Extension of this method 

from the time to the spectral domain was subsequently demonstrated [22–24]. Advantages of 

the phasor approach include its ability to provide an easy-to-interpret graphical 

representation for visualization of the data in a 2D (or higher dimension if necessary) space. 

This happens as each spectrum is converted into a vector and shown as a single point on the 

resulting plot (figure 1). The superposition of spectra on a pixel level follows the vectorial 

summation rule of individual vectors on the phasor plot, providing a straightforward tool for 

both segmentation and unmixing of individual components. Phasors have been used in 

biomedical applications to distinguish different components in human skin in vivo [8], 

identifying specific RNA subspecies in live cells [23] and segmentation of cell 

compartments using Raman spectra [25], to name a few. This method is applicable when 

using as few as three spectral channels [22].

Comparison of MSI and RGB imaging for evaluation of HER2 status on breast cancer cells 

has been reported previously [26]. Here, we first provide a brief introduction to phasor 

analysis, illustrate its application to an information-rich remote sensing dataset, and show 

that reduction from >400 bands down to three bands preserves most of useful spectral 

features. We then model the accuracy of spectral imaging devices with different number of 

spectral bands in a wide-field imaging configuration. Finally, we examine use-cases of more 

relevance to microscopy: brightfield multiplexed imaging, a fluorescence image of mouse 

small intestine, and finally, an example of a new microscopy method employing short-

wavelength UV surface excitation. These examples are analyzed using the three different 

multispectral tools previously mentioned (MLS, NMF and phasors), and illustrate that 

considerable utility can be achieved from RGB images alone.

2. Materials and methods

2.1. Phasor analysis

Phasor analysis was performed using an ImageJ plugin developed by the first author, freely 

available at the website www.Spechron.com and fully described elsewhere [22]. In this 

method, the sine and cosine transformation of spectra are plotted on a two-dimensional 

scatter plot with the cosine transform on the horizontal axis and the sine transformation on 

the vertical axis. The spectrum peak position is encoded as points projected onto the unit 

circle, and bandwidth determines the radial distance from the center. Phasor plots of 

complex image data can be displayed using a density-mapped color look-up-table, as shown 

in figure 2. Phasor-based unmixing was compared with other established techniques for 

multispectral image analysis, including NMF and Nuance™ spectral image analysis 

software (PerkinElmer, Waltham, MA) which is based on MLS.
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2.2. Theoretical error analysis

Simulations were performed with Mathcad (PTC, Needham, MA 02494, USA). A Fisher 

information matrix [27] was used to analytically calculate the variance in measuring spectral 

width. Analysis was restricted to the most widely used MSI configuration in which spectral 

bands are acquired in a consecutive format either using tunable filters or bandpass filter 

wheels [28], while discarding light emitted in out-of-band wavelengths. Such techniques can 

be faster and optically simpler than point-scanning methods. Spectral bandwidths of the 

captured spectra and number and width of the instrument bandpass filters were then 

systematically varied and effects on accuracy of estimation of spectra determined. Assuming 

a Gaussian spectrum with spectral width σ, recorded with a system with k spectral channels 

and a total spectral detection range L, the collected photons per each spectral channel Ni are 

calculated by:

Ni = N0

iL
k

i + 1 L
k

e
− l − L/2 2

2σ2

= 2πσ
erf 2L

4kσ k − 2i + 2 − erf 2L
4kσ k − 2i

2 .

(1)

i is the index for the spectral channel and N0 is the number of photons arriving at the filter 

element. The total number of photons arriving at the sensor is calculated as above by 

replacing the integration limit from 0 to L. The probability of detecting photon Pi at each 

spectral channel is calculated by dividing the Ni over the total number of photons:

pi = N0
erf 2L

4kσ k − 2i + 2 − erf 2L
4kσ k − 2i

2erf 2L
4σ

. (2)

The calculation above assumes that the counts at all spectral channels are recorded 

simultaneously. However, in systems in which the spectrum is recorded in sequential mode, 

the exposure time of each channel is scaled inversely with k. In order to have a fair 

comparison between the systems with different number of spectral channels, all acquisitions 

should be accomplished within the same total exposure time. Thus, equation (2) needs to be 

corrected as follows:

pi =
N0
k

erf 2L
4kσ k − 2i + 2 − erf 2L

4kσ k − 2i

2erf 2L
4σ

. (3)
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Note that this parameter does not take into account the detector efficiency at different 

spectral channels and assumes that the sensitivity is equal over the whole spectral range.

The variance of estimate of spectral width is calculated by [27]:

var σ = 1
N0 i

1
pi

dpi
2

dσ

−1

. (4)

In order to investigate the sensitivity of the system and to compare different settings, a figure 

of merit F [29] was calculated. F does not depend on the number of detected photons and its 

magnitude is always larger than 1. Moreover, lower values of F correspond to higher 

sensitivities for spectral width measurements. F is defined as:

F = Δσ
σ

ΔN0
N0

. (5)

It is assumed that the Δσ/σ and ΔN0/N0 are governed by Poisson statistics. Therefore, we 

can rewrite F as:

F = var σ
σ N0 . (6)

Note that N0 is not the number of photons actually collected at the sensor, which may be a 

much smaller number. The required number of photons for a desired error is calculated as 

follows:

N0 = F2

desired error 2 . (7)

2.3. Microscopy approach employing UV-surface excitation (MUSE) and sample imaging

The description for the optical setup (MUSE) can be found elsewhere [30, 31]. Briefly, the 

setup comprises a custom-built wide-field microscope with a relatively deep UV (280 nm) 

excitation source that illuminates a stained sample in free-space oblique mode, avoiding the 

need for UV-transmissive optics. A 10× (NA 0.45) objective (Nikon, Japan) is employed for 

imaging. The images were recorded with a 9-MP scientific-grade color camera (Ximea, 

MD091CU-S5, Germany).

2.4. Histology examples

Brightfield: A conventionally processed human lymph node containing small metastatic 

cancer deposits was stained with an antibody targeted to AE1/AE3 cytokeratin, visualized 

with Fast Red chromogen, and CD3 cells were visualized with an anti-CD3 antibody and 
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DAB. Nuclei were counter stained with hematoxylin. The color image was obtained using a 

Nuance multispectral camera, and the resulting dataset was converted to an RGB image 

using a CIE-based color mapping.

Fluorescence: A mouse small intestine cryosection showing Paneth and goblet cells 

labeled with Alexa Fluor® 594 wheat germ agglutinin, and the microvillar brush border and 

smooth muscle layers labeled with Alexa Fluor® 488 phalloidin. Nuclei were labeled with 

DAPI. The specimen was excited with a 350/50 excitation filter coupled with a long-pass 

dichroic and 510 nm long-pass emission filter. A multispectral camera (Nuance, CRI) was 

used to collect the data and an RGB color image was synthesized using a typical RGB 

bandpass matrix.

MUSE thick-tissue microscopy: A specimen was obtained from the dermal component 

of a Patnaik grade III, Kiupel high-grade canine cutaneous mast cell tumor which had been 

stored in 10% buffered formalin for approximately six months. The tumor had been removed 

from a 6-year-old Great Dane and proved to be a poorly demarcated, infiltrative, moderately 

cellular mass comprised of small clusters and individual mast cells infiltrating the mid and 

deep dermis and panniculus. The tissue slice was faced by hand using a scalpel and stained 

with 0.04% aqueous berberine (berberine hemisulfate salt > = 95%, Sigma-Aldrich) titrated 

to pH 3.0 with citric acid for 5 min with occasional manual agitation. The sample was then 

rinsed in distilled water at 24 °C and pH 6.80 for 5 min and then directly placed onto a UV-

transparent stage on the MUSE system and imaged. A section of the same tumor was 

processed for regular histology and stained with toluidine blue to highlight the mast cells.

3. Results

3.1. Phasor plots at different spectral resolutions

Figure 1(A) shows the effect on phasor point location position for Gaussian spectra of 

varying their peak position from the first spectral channel to the last spectral channel and for 

different spectral band widths. Figure 1(B) demonstrates the spectral mixing concept on a 

phasor plot. Three pure spectra shown in red, green and blue in phasor space. The phasor 

transforms of all possible superposition of these spectra fall inside the triangle whose 

vertices are the phasor points of the pure spectra. As an example, the phasor vector from an 

equal contribution from all three pure spectra falls exactly in the middle of the triangle. 

Unmixing can be performed by measuring the area formed by the total phasor vector made 

by the other vertex as shown in the figure 1(B). Figures 1(C) and (D) show the same spectral 

modifications as in 1(A), but with the number of spectral channels binned to eight and three 

channels respectively. No significance change is observed when binning to eight channels 

but the phasor plot for a 3-spectral-channel system shows overlap between the sharp spectra 

measured close to the edge of spectral detection window. For many biological applications, 

this is of less importance, as most of the spectra shows large band widths and their phasors 

fall in the middle of the plot and thus are more easily distinguishable. Additional harmonics 

can be used to increase the spectral fidelity of the phasor transform, but in the present case, 

only the first harmonic is used [32].
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3.2. Spectral phasor analysis of remote sensing data

As an example of application of spectral phasor method for analysis of spectral data, we 

used a spectrally and spatially complex aerial scan of landscape located near San Joaquin, 

CA, downloaded from http://neondataskills.org/ [33]. The image was acquired using 426 

wavelength bands from 380 to 2510 nm.

The RGB reconstruction of the image was performed using data from visible wavelengths; 

roads, various forms of vegetation and soil are evident (figure 2(A)). The complex spectra 

reflected by different features are shown in figure 2(B) with the result of the phasor 

transformation of the entire spectral image demonstrated in figure 2(C). Pixels with similar 

spectral properties are collected in a same region on the phasor plot and forms clusters, with 

color stemming from a look-up table for pixel abundance across the phasor plot. Image 

segmentation can be accomplished by selecting phasor clusters—which then map back to 

the original image. Different features are clearly highlighted, as indicated. The reciprocal 

property of the phasor plot allows for straightforward segmentation without any a priori 
knowledge. By exploring additional clusters on the phasor plot it is possible to extract other 

features as well, such as the soil, specific types of vegetation, and walking paths (figures 

2(D)–(H)). Figure 2(I) shows a phasor plot in which the spectral data had been binned from 

>400 down to only three channels. Separations of clusters in 2(I) versus (C) show slight 

degradation (compare regions D and G, or F), but the 3-channel version preserves most of 

the discrimination power. This suggests that 3-channel imaging and unmixing may be useful 

in a variety of settings. In addition to segmentation, phasor clusters or scatter-plot vertices 

can also serve as inputs for spectral unmixing, as shown in [22].

3.3. Interrelationship of image content and spectral resolution with noise

Spectra of many fluorescent emitters in biological specimens are typically broad, with full-

width at half maximum (FWHM) in the range of 40 nm [34]. Consequently, it may be 

possible to collect spectral information using broader band passes are often used. Not 

infrequently, for example, users of tunable-filter-equipped systems collect wide-spectral 

range data sets with images stepped every 10 nm, simply because that is the default setting 

in systems such as the Nuance MSI system (PerkinElmer) (RL, personal observation). As 

shown below, such strategies greatly increase the number of photons required for low-noise 

unmixing. It is possible that simple 3-channel, broad-bandwidth detectors, such as simple 

color cameras, can be suitable in the limiting case where there are only three targets of 

interest.

Using the model described here, we sought the figure of merit for estimation of spectral 

width of spectra recorded in sequential mode for a total spectral acquisition window of 250 

nm. This is an important metric because correct estimates of end-member spectra are 

required for accurate unmixing. The number of spectral channels and the width of simple 

Gaussian spectra were varied and figure-of-merit curves were generated (figure 3). As can 

be seen, using larger numbers of spectral collection channels allows for accurate width 

estimation for narrow (<20 nm) spectra; however the figure of merit for detection of such a 

narrow spectrum worsens when using fewer detection channels, reflecting a need to collect 

more photons, and thus a requirement for longer acquisition times. On the other hand, when 
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the spectral band width of the signals is large (>40 nm) as is the case for many fluorescent 

dyes used in biological imaging, fewer channels and thus fewer photons are needed. This 

can be inferred from the lower figure of merit for spectral band widths larger than 40 nm. As 

can be seen, good accuracy can in fact be achieved with as few as three channels (for 

example, R, G, and B). Using equation (7) we estimate that this requires approximately 7× 

fewer photons than a system using 32 channels for correctly estimating a spectrum with 

FWHM of 60 nm. This large difference can be explained by the operation of two loss 

mechanisms: first, having more spectral channels means that narrower bandpass filters are 

deployed, thus discarding a greater percentage of total photons with each capture; second, 

increasing the number of recorded channels captured within a given exposure time 

necessarily reduces individual exposure times for each channel. While this analysis 

addresses sequential image capture mode, a Bayer-pattern-color sensor provides essentially 

the same photon economy and can be simpler, smaller and less expensive than alternative 

sensors. It should be noted that the case of Bayer (or other spatially interpolated spectral 

sensors), there is a trade-off between spectral and spatial resolution. As long as the pixels are 

pitched to capture the scene at better than Nyquist sampling rate, the impact on resolution 

and unmixing should be negligible, except perhaps in the case of sharp edges [35].

3.4. Imaging lymph node with metastatic cancer in brightfield mode

An RGB image of a lymph node with metastatic cancer deposits is shown in figure 4(A). 

Figure 4(B) shows the same image converted to absorbance (optical density) rather than 

transmittance, a data transformation required for effective spectral unmixing [36]. A phasor 

plot of the image (figure 4(C)) was generated using an ImageJ-based phasor plugin; its 

triangular shape indicates the presence of three major spectral components. By manually 

selecting the vertices on this plot for unmixing, three components with minimum overlap 

could be unmixed, as shown in figures 5(G)–(I). The image was also analyzed using two 

other approaches for unmixing: NMF [13] and supervised MLS using a ‘compute-pure-

spectra’ function available in Nuance software and originally described by Levenson and 

Mansfield [3]. In fact, all three of these methods are seeking the best estimates of end-

member spectra. The actual unmixing step for all of them uses a linear model after definition 

of appropriate end-member spectra. Unmixing results are largely similar for this relatively 

simple 3-color image.

3.5. Mouse intestine cryosection imaged with a fluorescence microscope

The color image resulting from an RGB distillation of an original spectral data set was 

analyzed using the three spectral tools employed in the previous example. The three 

unmixed images consist of the villus border (figure 5, left column), combination of nuclei 

(too small at this magnification to individually resolve) and autofluorescence (figure 5, 

center column), and Paneth and goblet cell mucins (figure 5, right column). The three RGB 

unmixing approaches yield generally similar results, with MLS apportioning more of the 

signal to the nuclei + AF central channel, NMF distributing more of the central channel 

signal to the other channels, and the phasor method appearing to split the difference. 

Spectral unmixing of the original multispectral data (not shown) provided results most 

similar to MLS, which is not surprising since the same software and compute-pure-spectrum 

methodology was used in both cases.
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3.6. Mast cell tumor imaged via MUSE

Finally, we applied the three different spectral analysis tools to an RGB-color image of a 

surgical resection specimen from a canine mast cell tumor stained with a single fluorescent 

dye, and subjectively compared the quality of the unmixing results. Unmixing fidelity is 

important, since both quantification of heparin content and assessment of nuclear size and 

shape are part of tumor grading. The standard stain for mast cell tumors after conventional 

histology processing is toluidine blue; this relies on the metachromasia of the dye [37] as 

heparin granules stain violet in contrast to the blue nuclei.

An image of a canine cutaneous mast cell tumor stained with berberine was captured using 

UV surface excitation microscopy (MUSE). Figure 6 indicates the resulting RGB image, 3-

band ‘spectra’ from three different regions of interest, and the phasor scatter plot. Berberine 

causes most of the specimen to fluoresce in green while the stained mast cell granules emit a 

yellow signal. The green-staining region, however, comprises two major components: nuclei 

and stroma that are difficult to resolve by eye. Figure 4(B) shows 3-channel spectra from 

manually selected stroma, nuclei and mast-cell cytoplasm regions and the phasor plot from 

the entire image is shown in figure 4(C).

As can be seen in figure 7, similar unmixing results were obtained with all three tools, but 

some significant differences can be discerned. The first row ((A)–(C)) shows the results of 

unmixing using supervised, manually computed pure spectra with Nuance spectral analysis 

software (MLS). Three components are separated but the signal from collagen and other 

stromal components in figure 7(A) includes substantial crosstalk contribution from nuclear 

components (see unmixed into (B)). This reflects imperfect estimation of spectral end-

members for the unmixing, which may be due to extensive spatial overlap of nuclei and 

stroma. Figure 7(C) shows stained mast cell granules, exhibiting minimal crosstalk from 

other channels.

The results from NMF are shown in figures 7(D)–5(F). While the stromal signals in figure 

7(D) do not show as much contamination with nuclear components as seen in figure 7(A), 

mast cell granule unmixing results in holes (highlighted by arrows) corresponding to regions 

of relatively intense mast-cell granule staining signals. Note the textured patterns in figures 

7(D) and (G) that reveal the presence of swirling collagen fibers not visible in the unmixed 

figure 7(A).

Finally, phasor analysis resulted in unmixing of components with minimum cross-talk. The 

stromal image contains little or no contamination from nuclear components. We still do see 

some contamination of the regions with high mast-cell granule signals, but less than seen 

with NMF. However, some stromal signals do appear in the nuclear channel in figure 5(H). 

Figure 5(I) demonstrates good delineation of the mast cell-granule signals. The lowest row 

in figure 5 shows details indicating that berberine metachromasia reflects binding to heparin 

and is generally seen to surround the nuclei, its expected location, mimicking the results 

seen with toluidine stain (figure 7(M)), shown in the brightfield mode.

Fereidouni et al. Page 9

J Opt. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Conclusion

High-resolution spectral imaging techniques can be appropriate for addressing signal 

detection in multiplexed, fluorescently labeled specimens. This is currently of great interest 

for characterizing immune-oncology-relevant phenotypes [38], as well as other situations in 

which fewer signals of interest may be present. We present evidence that much can be 

accomplished using simple RGB color sensors, accompanied by straightforward 

segmentation and/or unmixing methods. The ability to collect the image quickly, as 

compared to multiple band-sequential acquisitions, can reduce the possibility of 

phototoxicity and photobleaching, and shorten overall imaging times.

In biological unmixing situations, general tissue stains that bind across a whole specimen 

generate signals that may be mixed with widely present autofluorescence. It can be 

challenging to determine the accurate spectral end-members required for low-error unmixing 

into individual components and to separate useful signal from noise. In other words, 

reference spectra and unwanted noise may not be spectrally independent or known. The 

challenge is to extract these signals from the image itself.

A number of manual (supervised), semi-automated, and automated tools have been 

developed for such a task. We compared phasors to two commonly used methods. NMF, 

widely used in chemometrics, is an automated tool that automatically seeks end-members 

based in part on non-negativity constraints, reflecting the notion that mixture constituents 

cannot be present at concentrations lower than zero. Supervised spectral unmixing using the 

‘compute-pure spectra’ approach can generate end-member spectra in which spectra that are 

composed of more than one end-member are decomposed into pure estimates prior to 

unmixing. The phasor approach helps visualize the presence of different spectral 

components, and in favorable situations, the vertices generate end-member estimates that 

support accurate unmixing—up to three components from an RGB image. Compared to 

statistically-based tools such as principal component analysis, phasor plot shapes do not 

depend on spectral species abundance, only on actual spectral content, meaning that phasor-

determined clusters or end-members will be applicable to any image acquired under similar 

conditions, regardless of species abundance.

The mast cell tumor presented here stained with berberine and imaged using MUSE posed a 

challenging unmixing problem, as fluorescent signals were not spectrally distinct. The 

staining method is based on the use of berberine on standard histology sections combined 

with traditional fluorescence microscopy for the staining and quantification of heparin in 

mast cell granules [39, 40]. Berberine has four absorption peaks between 200 and 450 nm 

and one emission peak at 565 nm. This allowed the brilliant yellow–green cytoplasm and 

green nuclei of mast cells (and green nuclei of other cell types) that Enerback described on 

traditional fluorescence microscopy to be visible on thick tissue sections using MUSE-based 

UV-excitation at around 280 nm. Differential staining and phasor unmixing was able to 

demonstrate the shape and size of the mast cells and their nuclei, and could indicate tumor 

grade, an important feature that determines appropriate surgical management [37, 41].
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This report demonstrates that a strategy based on full color brightfield and fluorescence 

imaging, including MUSE, coupled with appropriate analysis and unmixing tools can 

provide a surprisingly simple and robust alternative to more complex multispectral 

approaches for rapid imaging and potentially intraoperative assessment. In the future, this 

general approach can be studied for suitability in a wide variety of clinical and research 

tissue imaging tasks.
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Figure 1. 
Phasor encoding of multiple Gaussian spectra with different peak positions and band widths. 

Each spectrum is converted into a point on a phasor plot. Changing the peak position moves 

the phasor position around a circle and changing the bandwidth moves the point radially. (B) 

Visualization of spectral mixing on a phasor plot. The black spectrum is the superposition of 

the red, green and blue spectra. Note that the its phasor position falls in the middle of the 

triangle formed by the phasor positions of the three pure spectra. The fractional intensities 

from these spectra αB, αG and αR are calculated by finding the area shown. (C), (D) The 

same spectral modifications as in (A), but with the number of spectral channels binned to 

eight and three channels, respectively.

Fereidouni et al. Page 13

J Opt. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(A) The RGB conversion from the visible bands. (B) Spectra of sand, road and vegetation 

(C) the phasor plot of the image and segmented areas (D) vegetation, (E) roads, (F) lanes, 

(G) vegetation and (H) walking paths. (I) The phasor plot of the image binned to three 

channels.

Fereidouni et al. Page 14

J Opt. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Figure of merit for estimation of spectral width with spectrographs with 3, 8, 16 and 32 

channels acquired in widefield scheme.

Fereidouni et al. Page 15

J Opt. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(A) Bright field image of Lymph node with metastatic cancer. (B) Converted optical density 

image. (C) Phasor plot of the image indicating presence of three components. Unmixing 

result for nuclei (D), (G), (J) cytokeratin (E), (H), (K) and CD3 (F), (I), (L) from MLS, NMF 

and phasor approach, respectively.
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Figure 5. 
(A) Fluorescence image of cryosectioned mouse small intestine. (B) Computed spectra after 

compute-pure-spectrum steps to estimate pure spectral components. (C) Phasor plot, 

indicating vertices reflecting spectral signatures of autofluorescenc, goblet cells and smooth 

muscle, villus border.
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Figure 6. 
RGB image of cutaneous mast cell tumors (B) overlapping spectra from stroma, nuclei and 

cytoplasm and (C) the corresponding phasor plot.
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Figure 7. 
Comparison of unmixing results from MLS ((A)–(C)), NMF ((D)–(F)) and phasor approach 

((G)–(I)). Yellow arrows on (D) and G) show the regions where the cross talk from nuclei is 

maximum. (J) and (K) are zoomed in images of the white rectangle from (H) and (I), 

respectively. (L) The overlay image of (J) and (K). (M) Image of same tissue processed 

through FFPE and stained with toluidine blue—note that granules and nuclei are similarly 

demonstrated.
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