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The solar dynamo begins near the surface

Geoffrey M. Vasil1 ✉, Daniel Lecoanet2,3, Kyle Augustson2,3, Keaton J. Burns4,5, Jeffrey S. Oishi6, 
Benjamin P. Brown7, Nicholas Brummell8 & Keith Julien9,10

The magnetic dynamo cycle of the Sun features a distinct pattern: a propagating 
region of sunspot emergence appears around 30° latitude and vanishes near the 
equator every 11 years (ref. 1). Moreover, longitudinal flows called torsional oscillations 
closely shadow sunspot migration, undoubtedly sharing a common cause2. Contrary 
to theories suggesting deep origins of these phenomena, helioseismology pinpoints 
low-latitude torsional oscillations to the outer 5–10% of the Sun, the near-surface 
shear layer3,4. Within this zone, inwardly increasing differential rotation coupled with 
a poloidal magnetic field strongly implicates the magneto-rotational instability5,6, 
prominent in accretion-disk theory and observed in laboratory experiments7. 
Together, these two facts prompt the general question: whether the solar dynamo is 
possibly a near-surface instability. Here we report strong affirmative evidence in stark 
contrast to traditional models8 focusing on the deeper tachocline. Simple analytic 
estimates show that the near-surface magneto-rotational instability better explains 
the spatiotemporal scales of the torsional oscillations and inferred subsurface 
magnetic field amplitudes9. State-of-the-art numerical simulations corroborate these 
estimates and reproduce hemispherical magnetic current helicity laws10. The dynamo 
resulting from a well-understood near-surface phenomenon improves prospects  
for accurate predictions of full magnetic cycles and space weather, affecting the 
electromagnetic infrastructure of Earth.

Key observations that any model must take into account include (1) the 
solar butterfly diagram, a decadal migration pattern of sunspot emer-
gence1,4 with strong latitude dependence; (2) the torsional oscillations 
constituting local rotation variations corresponding with magnetic 
activity2–4; (3) the poloidal field, an approximately 1 G photospheric field 
with a 1/4-cycle phase lag relative to sunspots11, and approximately 100 G 
subsurface amplitudes9; (4) the hemispherical helicity sign rule com-
prising an empirically observed negative current helicity in the northern 
hemisphere and positive current helicity in the south10; (5) the tacho-
cline at the base of the convection zone, the traditionally proposed 
seat of the solar dynamo; and (6) the near-surface-shear layer (NSSL) 
within the outer 5–10% of the Sun containing strong inwardly increasing 
angular velocity fostering the magneto-rotational instability (MRI).

Despite progress, prevailing theories have distinct limitations. Inter-
face dynamos (proposed within the tachocline8) preferentially gener-
ate high-latitude fields12 and produce severe shear disruptions13 that 
are not observed14. Mean-field dynamos offer qualitative insights but 
suffer from the absence of first principles15 and are contradicted by 
observed meridional circulations16. Global convection-zone models 
often misalign with important solar observations, require conditions 
diverging from solar reality17–19 and fail to provide a theoretical dynami-
cal understanding.

Borrowing from well-established ideas in accretion-disk physics5,6, 
we propose an alternative hypothesis that produces clear predictions 
and quantitatively matches key observations.

For electrically conducting plasma such as the Sun, the local axisym-
metric linear instability criterion for the MRI is5,6
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The system control parameters are the background poloidal mag-
netic field strength (B0 in cgs units), the atmospheric density (ρ0), 
the smallest non-trivial radial wavenumber that will fit in the domain 
(kr ≈ π/Hr, where Hr is a relevant layer depth or density-scale height), 
bulk rotation rate (Ω) and the differential rotation, or shear (S > 0 in the 
NSSL). An adiabatic density stratification holds to a good approxima-
tion within the solar convection zone, eliminating buoyancy modifica-
tions to the stability condition in equation (1).

The MRI is essential for generating turbulent angular momentum 
transport in magnetized astrophysical disks6. Previous work20 pos-
tulated the NSSL as the possible seat of the global dynamo without 
invoking the MRI. A kinematic dynamo study21 dismissed the relevance 
of NSSL but did not allow for full magnetohydrodynamic (MHD) insta-
bilities (such as the MRI). Modern breakthroughs in our understanding 
of large-scale MRI physics22,23 have not been applied in a solar context, 
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and local MRI studies of the Sun24 have considered only small scales. To 
our knowledge, no work has yet considered large-scale MRI dynamics 
relevant to the observed features of the global dynamo. We therefore 
describe here a potential MRI-driven solar dynamo cycle.

The start of the solar cycle is the period surrounding the sunspot 
minimum when there is no significant toroidal field above the equa-
tor and a maximal poloidal field below the photosphere. This con-
figuration is unstable to the axisymmetric MRI, which generates a 
dynamically active toroidal field in the outer convection zone. The 
observed torsional oscillations are the longitudinal flow perturba-
tions arising from the MRI. The relative energetics are consistent with 
nonlinear dynamo estimates (Methods). As the cycle progresses, the 
toroidal field can undergo several possible MHD instabilities contrib-
uting to poloidal-field regeneration, for example, the helical MRI, 
non-axis-symmetric MRI, the clamshell instability and several more, 
including a surface Babcock–Leighton process. We propose that the 
axisymmetric subsurface field and torsional oscillations constitute 
a nonlinear MRI travelling wave. The instability saturates by radial 
transport of (globally conserved) mean magnetic flux (B0) and angular 

momentum (Ω, S), which neutralize the instability criterion in equa-
tion (1) (Methods).

Empirical timescales of the torsional oscillations imply an approxi-
mate growth rate, γ, for the MRI and, therefore, a relevant poloidal 
field strength. To a good approximation, S ≈ Ω ≈ 2π/month in the NSSL 
(Fig. 1a–c). The early-phase torsional oscillations change on a timescale 
of 2–12 months, implying a growth rate of γ/Ω ≈ 0.01–0.1 (Methods). 
A modest growth rate and the regularity of the solar cycle over long 
intervals together suggest that the global dynamics operate in a mildly 
nonlinear regime. Altogether, we predict roughly ωA ≈ S ≈ Ω.

The torsional oscillation pattern shows an early-phase mode-like 
structure with an approximately 4:1 horizontal aspect ratio occupying 
a depth of roughly r/R⊙ ≈ 5%, or ⊙k R≈ 70r

−1 (Fig. 1d). Using equation (2), 
the approximate background Alfvén speed vA ≈ 200–2,000 cm s−1 ≈  
0.1–1.0 R⊙/year.

Alfvén-speed estimates required for MRI dynamics are consistent 
with observed internal magnetic field strengths. Measurements suggest 
100–200 G internal poloidal field9, agreeing with the above estimates 
using NSSL densities ρ0 ≈ 3 × 10−2 g cm−3 to 3 × 10−4 g cm−3. The same 
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Fig. 1 | Measured internal solar rotation profiles. a, Heliosesimic differential 
rotation profile, Ω(θ, r) using publicly available data from ref. 29. b,c, The 
respective latitudinal and radial shear gradients r θ Ω θ r∇∇sin( ) ( , ) computed by a 
non-uniform fourth-order centred finite-difference scheme. The latitudinal 
mean of tachocline shear is about 200 nHz and peak amplitudes are below 
about 350 nHz. Conversely, the near-surface shear averages about 400–600 nHz 
(with rapid variation in depth) and peak values average around 1,200 nHz.  
d, Helioseismic measurements of solar torsional oscillations. The red shows 

positive residual rotation rates and blue shows negative residual rotation rates 
after removing the 1996 annual mean of Ω(r, θ). Each slice shows the rotational 
perturbations 1, 2, 3 and 4 years after the approximate solar minimum. The 
notation ‘min+1yr – min’ means taking the profile at 1 year past solar minimum 
and subtracting the profile at solar minimum. The colour table saturates at 
±1 nHz, corresponding to about 400 cm s−1 surface flow amplitude. Further 
contour lines show 1 nHz increments within the saturated regions. Diagram in d 
reproduced with permission from figure 2 in ref. 3, AAAS.
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studies found roughly similar (300–1,000 G) internal toroidal field 
strength confined within the NSSL. Given solar-like input parameters, a 
detailed calculation shows that the MRI should operate with latitudinal 
field strengths up to about 1,000 G (Methods).

Background shear modification dominates the MRI saturation 
mechanism (Methods), roughly
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where Ω′ represents the dynamic changes in differential rotation. For 
S ≈ Ω ≈ ωA, |Ω′| ≈ 7 nHz, roughly consistent with the observed torsional 
oscillation amplitude (Fig. 1d).

We compute a suite of growing global perturbations using Dedalus25 
to model the initial phase of the solar cycle with quasi-realistic solar 
input parameters (Methods). Figure 2 shows representative solutions.

We find two distinct cases: (1) a fast branch with direct growth rates, 
γ, comparable to a priori estimates and (2) a slow branch with longer 
but relevant growth times and oscillation periods. The eigenmodes are 
confined to the NSSL, reaching from the surface to r/R⊙ ≈ 0.90–0.95, at 
which point the background shear becomes MRI stable.

For case 1, γ/Ω0 ≈ 6 × 10−2 (given Ω0 = 466 nHz) with corresponding 
e-folding time, te ≈ 60 days and no discernible oscillation frequency. 
The pattern comprises roughly one wave period between the equator 
and about 20° latitude, similar to the rotation perturbations seen in 
the torsional oscillations.

For case 2, γ/Ω0 ≈ 6 × 10−3 with te ≈ 600 days and oscillation frequency 
ω/Ω0 ≈ 7 × 10−3, corresponding to a period P ≈ 5 years. The pattern  
comprises roughly one wave period between the equator and about 
20°–30° latitude.

Apart from cases 1 and 2, we find 34 additional purely growing 
fast-branch modes, two additional oscillatory modes and one inter-
mediate exceptional mode (Extended Data Figs. 1–3).

Using the full numerical MHD eigenstates, we compute a system-
atic estimate for the saturation amplitude using quasi-linear theory  
(Methods): |Ω′| ≈ 6 nHz for case 1 and |Ω′| ≈ 3 nHz for case 2; both com-
parable to the observed torsional oscillation amplitude and the simple 
analytical estimates from equation (3). The true saturated state would 
comprise an interacting superposition of the full spectrum of modes.

Notably, the slow-branch current helicity, b bH ∇∇∝ ⋅ × , follows the 
hemispherical sign rule10, with < 0H  in the north and > 0H  in the south. 
The slow-branch modes seem to be rotationally constrained, consist-
ent with their low Rossby number26, providing a pathway for under-
standing the helicity sign rule.

Further helioseismic data analyses could test our predictions. The 
MRI would not operate if the poloidal field is too strong, nor would 
it explain the torsional oscillations if it is too weak. We predict cor-
relations between the flow perturbations and magnetic fields, which 
time-resolved measurements could test, constraining joint helioseismic 
inversions of flows and magnetic fields.

An MRI-driven dynamo may also explain the formation and cessation 
of occasional grand minima27 (for example, Maunder). As an essen-
tially nonlinear dynamo, the MRI is not a traditional kinematic dynamo 
starting from an infinitesimal seed field on each new cycle (Methods). 
Rather, a moderate poloidal field exists at the solar minimum, and the 
MRI processes it into a toroidal configuration. If the self-sustaining 
poloidal-to-toroidal regeneration sometimes happens imperfectly, 
then subsequent solar cycles could partially fizzle, leading to weak 
subsurface fields and few sunspots. Eventually, noise could push the 
system back onto its normal cyclic behaviour, as in the El Nino Southern 
Oscillation28.

Finally, our simulations intentionally contain reduced physics to 
isolate the MRI as an important agent in the dynamo process, filtering 
out large-scale baroclinic effects, small-scale convection and nonlinear 
dynamo feedback. Modelling strong turbulent processes is arduous: 
turbulence can simultaneously act as dissipation, drive large-scale 
flows such as the NSSL, produce mean electromotive forces and excite 
collective instabilities. Although sufficiently strong turbulent dissipa-
tion could eventually erase all large-scale dynamics, the mere presence 
of the solar torsional oscillations implies much can persist within the 
roiling background.
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Methods

Numerical calculations
We solve for the eigenstates of the linearized anelastic MHD equa-
tions30,31 in spherical-polar coordinates (r, θ, ϕ) = (radius, colati-
tude, longitude). Using R⊙ = 6.96 × 1010 cm for the solar radius, we 
simulate radii between r0 ≤ r ≤ r1 where r0/R⊙ = 0.89 and r1/R⊙ = 0.99. 
We place the top of the domain at 99% because several complicated 
processes quickly increase in importance between this region and 
the photosphere (for example, partial ionisation, radiative trans-
port and much stronger convection effects). We use the anelastic 
MHD equations in an adiabatic background to capture the effects 
of density stratification on the background Alfvén velocities (den-
sity varies by roughly a factor of 100 across the NSSL, causing about 
a factor of 10 change in Alfvén speed) and asymmetries in velocity 
structures introduced by the density stratification by ∇ ⋅ (ρu). A key 
aspect of the anelastic approximation is that all entropy perturba-
tions must be small, which is reasonable in the NSSL below 0.99R⊙. 
We do not use the fully compressible equations, as these linear insta-
bility modes do not have acoustic components. Future MRI studies 
incorporating buoyancy effects (for example, the deep MRI branches 
at high latitudes) should use a fully compressible (but low Mach  
number) model32.

Input background parameters. We include density stratification  
using a low-order polynomial approximation to the Model-S profile33. 
In units of g cm−3, with h = (r − r0)/(r1 − r0),

ρ α α h α h α h α h= − + − + , (4)0 0 1 2
2

3
3

4
4

α = 0.031256, (5)0

α = 0.053193, (6)1

α = 0.033703, (7)2

α = 0.023766, (8)3

α = 0.012326, (9)4

which fits the Model-S data to better than 1% within the computational 
domain. The density at h = 1 is ρ0 = 0.000326 compared with 0.031256 
at h = 0.

The density profile is close to an adiabatic polytrope with r−2 gravity 
and 5/3 adiabatic index. An adiabatic background implies that buoy-
ancy perturbations diffuse independently of the MHD and decouple 
from the system.

We use a low-degree polynomial fit to the observed NSSL differential 
rotation profile. For μ = cos(θ),

u eΩ r θ r θ= ( , ) sin( ) , (10)ϕ0

Ω r θ Ω R h μ( , ) = ( ) Θ( ), (11)0

where Ω0 = 466 nHz ≈ 2.92 × 10−6 s−1 and

R h h h h( ) = 1 + 0.02 − 0.01 − 0.03 , (12)2 3

μ μ μΘ( ) = 1 − 0.145 − 0.148 . (13)2 4

We use the angular fit from ref. 34. The radial approximation results 
from fitting the equatorial profile from ref. 29 shown in Fig. 1a. 
Below 60° latitude, the low-degree approximation agrees with the 

full empirical profile to within 1.25%. The high-latitude differen-
tial rotation profile is less constrained because of observational  
uncertainties.

We define the background magnetic field in terms of a vector  
potential,

∇∇= × , (14)0 0B A

B r
r θ=

( )
2

sin( ) , (15)ϕ0A e
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B r B r r r r( ) = (( / ) − ( / ) ) , (16)0 1
−3

1
2

and B0 = 90 G. The r−3 term represents a global dipole. The r2 term rep-
resents a field with a similar structure but containing electric current,
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The background field is in MHD force balance,

∇∇× = ( ⋅ ). (18)0 0 0 0J B A J

The MHD force balance generates magnetic pressure, which inevita-
bly produces entropy, s′, and enthalpy, h′, perturbations using

ρ
T s h
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and Γ3 is the third adiabatic index. However, the MRI is a weak-field 
instability, implying magnetic buoyancy and baroclinicity effects are 
subdominant. For the work presented here, we neglect the contribu-
tions of magnetism to entropy (magnetic buoyancy) and consider 
adiabatic motions. We expect this to be valid for MRI in the NSSL, but 
studies of MRI in the deep convection zone at high latitudes would 
need to incorporate these neglected effects.

We choose our particular magnetic field configuration rather than 
a pure dipole because the radial component r θ⋅ = ( )cos( )r 0 Be B  van-
ishes at r = r1. The poloidal field strength in the photosphere is about 
1 G, but measurements suggest sub-surface field strengths of about 
50–150 G (ref. 9). The near-surface field should exhibit a strong hori-
zontal (as opposed to radial) character. Magnetic pumping35 by surface 
granulation within the outer 1% of the solar envelope could account 
for filtering the outward radial field, with sunspot cores being promi-
nent exceptions.

We also test pure dipoles and fields with an approximately 5% dipole 
contribution, yielding similar results. Furthermore, we test that the 
poloidal field is stable to current-driven instabilities. Our chosen 
confined field also has the advantage that eθ ⋅ B0 is constant to within 
8% over r0 < r < r1. However, a pure dipole varies by about 37% across 
the domain. The RMS field amplitude is ∣B∣RMS ≈ 2B0 = 180 G, about 
25% larger than the maximum-reported inferred dipole equivalent9.  
However, projecting our field onto a dipole template gives an approxi-
mately 70 G equivalent at the r = r1 equator. Overall, the sub-surface 
field is the least constrained input to our calculations, the details of 
which change over several cycles.
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Model equations. Respectively, the linearized anelastic momentum, 
mass-continuity and magnetic induction equations are

ρ ϖ ν ρ∇∇ ∇∇(∂ + × + × + ) = ⋅ ( ) + × + × , (21)t0 0 0 0 0 0σu ω u ω u j B J b

ρ∇∇ ⋅ ( ) = 0, (22)0u

η ∇∇∂ − ∇ = × ( × + × ) , (23)t
2

0 0b b u b u B

where the traceless strain rate

∇∇ ∇∇ ∇∇= + ( ) −
2
3

⋅ . (24)σ u u u I⊤

To find eigenstates, ∂t → γ + iω, where γ is the real-valued growth rate, 
and ω is a real-valued oscillation frequency. The induction equation (23) 
automatically produces MRI solutions satisfying ∇ ⋅ b = 0.

Given the velocity perturbation, u, the vorticity ω = ∇ × u. Given the 
magnetic field (Gauss in cgs units), the current density perturbations 
j = ∇ × b/4π. At linear order, the Bernoulli function ϖ h= ⋅ + ′0u u , where 
h′ represents enthalpy perturbations26.

The velocity perturbations are impenetrable (ur = 0) and stress-free 
(σrθ = σrϕ = 0) at both boundaries. For the magnetic field, we enforce per-
fect conducting conditions at the inner boundary (br = ∂rbθ = ∂rbϕ = 0). At 
the outer boundary, we test three different choices in common usage, 
as different magnetic boundary conditions have different implications 
for magnetic helicity fluxes through the domain, and these can affect 
global dynamo outcomes36. Two choices with zero helicity flux are 
perfectly conducting and vacuum conditions, and we find only modest 
differences in the results. We also test a vertical field or open bound-
ary (that is, ∂rbr = bθ = bϕ = 0), which, although non-physical, explicitly 
allows a helicity flux. These open systems also had essentially the same 
results as the other two for growth rates and properties of eigenfunc-
tions. We conduct most of our experiments using perfectly conducting 
boundary conditions, which we prefer on the same physical grounds 
as the background field.

We set constant and kinematic viscous and magnetic diffusivity 
parameters ν = η = 10−6 in units where Ω0 = R⊙ = 1. The magnetic Prandtl 
number ν/η = Pm = 1 assumes equal transport of vectors by the turbu-
lent diffusivities. A more detailed analysis of the shear Reynolds num-
bers yields U L νRe = Rm = / ≈ 1,5000 0 , where U0 ≈ 5,000 cm s−1 is the 
maximum shear velocity jump across the NSSL and L0 ≈ 0.06R⊙ is the 
distance between minimum and maximum shear velocity (see section 
‘NSSL energetics and turbulence parameterization’ below).

We compute the following scalar-potential decompositions a  
posteriori,

u e eu
ρ

ρ ψ∇∇= +
1

× ( ), (25)ϕ ϕ ϕ
0

0

b a∇∇= + × ( ), (26)ϕ ϕ ϕ ϕb e e

where both the magnetic scalar potential, aϕ, and the streamfunction, 
ψ, vanish at both boundaries.

We, furthermore, compute the current helicity correlation relative 
to global RMS values,

=
⋅

. (27)
RMS RMS

b j
b j

H

There is no initial helicity in the background poloidal magnetic field,

A r θ∇∇ ∇∇= × ( ( , ) ) ⋅ ( × ) = 0.ϕ0 0 0 0⇒B e B B

Linear dynamical perturbations, b(r, θ), will locally align with the 
background field and current. However, because the eigenmodes 
are wave-like, these contributions vanish exactly when averaged over 
hemispheres.

∇∇ ∇∇⟨ ⋅ ( × )⟩ = ⟨ ⋅ ( × )⟩ = 0.0 0b B B b

The only possible hemispheric contributions arise when considering 
quadratic mode interactions,

∇∇⟨ ⋅ ( × )⟩ ≠ 0.b b

This order is the first for which we could expect a non-trivial signal.
Finally, we also solve the system using several different mathemati-

cally equivalent equation formulations (for example, using a magnetic 
vector potential b = ∇ × a, or dividing the momentum equations by ρ0). 
In all cases, we find excellent agreement in the converged solutions. We 
prefer this formulation because of satisfactory numerical conditioning 
as parameters become more extreme.

Computational considerations. The Dedalus code25 uses general ten-
sor calculus in spherical-polar coordinates using spin-weighted spheri-
cal harmonics in (θ, ϕ) (refs. 37,38). For the finite radial shell, the code 
uses a weighted generalized Chebyshev series with sparse representa-
tions for differentiation, radial geometric factors and non-constant 
coefficients (for example, ρ0(r)). As the background magnetic field and 
the differential rotation are axisymmetric and they contain only a few 
low-order separable terms in latitude and radius, these two-dimensional 
non-constant coefficients have a low-order representation in a joint 
expansion of spin-vector harmonics and Chebyshev polynomials. The 
result is a two-dimensional generalized non-Hermitian eigenvalue prob-
lem Ax = λBx, where x represents the full system spectral-space state 
vector. The matrices, A and B, are spectral-coefficient representations 
of the relevant linear differential and multiplication operators. Cases 
1 and 2 use 384 latitudinal and 64 radial modes (equivalently spatial 
points). The matrices A and B remain sparse, with respective fill factors 
of about 8 × 10−4 and 4 × 10−5.

The eigenvalues and eigenmodes presented here are converged to 
better than 1% relative absolute error (comparing 256 and 384 latitu-
dinal modes). We also use two simple heuristics for rejecting poorly 
converged solutions. First, because λ0 is complex valued, the resulting 
iterated solutions do not automatically respect Hermitian-conjugate 
symmetry, which we often find violated for spurious solutions. Second, 
the overall physical system is reflection symmetric about the equa-
tor, implying the solutions fall into symmetric and anti-symmetric 
classes. Preserving the desired parity is a useful diagnostic tool for 
rejecting solutions with mixtures of the two parities, which we check 
individually for each field quantity. The precise parameters and detailed 
implementation scripts are available at GitHub (https://github.com/
geoffvasil/nssl_mri).

Analytic and semi-analytic estimates
Local equatorial calculation. Our preliminary estimates of the maxi-
mum poloidal field strength involve solving a simplified equatorial 
model of the full perturbation equations, setting the diffusion param-
eters ν, η → 0. Using a Lagrangian displacement vector, ξ, in Eulerian 
coordinates

ξ ξ ξu u u∇∇ ∇∇= ∂ + ⋅ − ⋅ , (28)t 0 0

ξb B∇∇= × ( × ). (29)0

In local cylindrical coordinates near the equator (r, ϕ, z), we assume 
all perturbations are axis-symmetric and depend harmonically 
∝e k z ωti( − )z . The cylindrical assumption simplifies the analytical  
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calculations while allowing a transference of relevant quantities from 
the more comprehensive spherical model. That is, we assume a purely 
poloidal background field with the same radial form as the full spher-
ical computations, B0 = Bz(r)ez. We use the same radial density and 
angular rotation profiles, ignoring latitudinal dependence. The radial 
displacement, ξr, determines all other dynamical quantities,

ξ
ω Ω

ω k v
ξ= −

2i

−
, (30)ϕ

z
r2 2

A
2

ξ
k r ρ

rρ ξ

r
=

i d( )

d
(31)z

z

r

0

0

ϖ v
B
B

ξ
ω

k r ρ

rρ ξ

r
=

′
+

d( )

d
, (32)

z

z
r

z

r
A
2

2

2
0

0

where v r B r ρ r( ) = ( )/ 4π ( )zA 0
. The radial momentum equation gives a 

second-order two-point boundary-value problem for ξr(r). The result-
ing real-valued differential equation depends on ω2; the instability 
transitions directly from oscillations to exponential growth when ω = 0. 
We eliminate terms containing ξ r′( )r  with the Liouville transformation 
Ψ r r B r ξ r( ) = ( ) ( )z r . The system for the critical magnetic field reduces 
to a Schrödinger-type equation,

Ψ r k Ψ r V r Ψ r− ″( ) + ( ) + ( ) ( ) = 0, (33)z
2

with boundary conditions

Ψ r r Ψ r r( = ) = ( = ) = 0 (34)0 1

and potential,
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


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1 d
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Upper bound. The maximum background field strength occurs in 
the limit kz → 0. With fixed functional forms for Ω(r), ρ0(r), we suppose

B r B
r r

r r
( ) =

1 + 4( / )
5( / )

, (36)z 1
1

5

1
3

with B1 = Bz(r1) setting and overall amplitude and B1/ 1
2 serving as a gen-

eralized eigenvalue parameter. We solve the resulting system with 
Dedalus using both Chebyshev and Legendre series for 64, 128 and 256 
spectral modes, all yielding the same result, B1 = 1,070 G. The results 
are also insensitive to detailed changes in the functional form of the 
background profile.

Growth rate. We use a simplified formula for the MRI exponen-
tial growth, proportional to eγt, in a regime not extremely far above  
onset22. That is,

γ
α ω ΩS ω α

ω Ω
≈

(2 − (1 + ))
+ 4

, (37)2
2

A
2

A
2 2

A
2 2

where α = 2H/L ≈ 0.2–0.3 is the mode aspect ratio with latitudinal 
wavelength, L ≈ 20°–30°R⊙, and NSSL depth H ≈ 0.05R⊙. The main text 
defines all other parameters. In the NSSL, S ≈ Ω. Therefore, γ/Ω ≈ 0.1, 
when α ≈ 0.3 and ωA/Ω ≈ 1; and γ/Ω ≈ 0.01, when α ≈ 0.2 and ωA/Ω ≈ 0.1.

Saturation amplitude. We use non-dissipative quasi-linear theory22 to 
estimate the amplitude of the overall saturation. In a finite-thickness 

domain, the MRI saturates by transporting mean magnetic flux and  
angular momentum radially. Both quantities are (approximately) glob-
ally conserved; however, the instability shifts the magnetic flux inward 
and angular momentum outward, so the potential from equation (35) 
is positive everywhere in the domain.

Given the cylindrical radius, r, the local angular momentum and 
magnetic flux density

L ρ ru M ρ ra= , = . (38)ϕ ϕ0 0

The respective local flux transport

L L r b∇∇ ∇∇∂ + ⋅ ( ) = ⋅ ( ), (39)t ϕu b

uM M∇∇∂ + ⋅ ( ) = 0. (40)t

For quadratic-order feedback,

ρ r δu r b b ρ u u r b b ρ u u∂ ( ) = ∂ ( ( − )) + ∂ ( ( − )), (41)t ϕ r ϕ r ϕ r z ϕ z ϕ z0
2 2

0
2

0

ρ r δa r ρ a u r ρ a u∂ ( ) = − ∂ ( ) − ∂ ( ). (42)t ϕ r ϕ r z ϕ z0
2 2

0
2

0

For linear meridional perturbations,

u ψ u
rρ ψ

rρ
= − ∂ , =

∂ ( )
, (43)r z z

r 0

0

b a b
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r
= − ∂ , =
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. (44)r z ϕ z
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For the angular components,
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Using the linear balances, we time integrate to obtain the latitudinal- 
mean rotational and magnetic feedback,

LδΩ
r ρ

r ρ=
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∂ ( ) , (48)r3
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where angle brackets represent z averages and
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The dynamic shear and magnetic corrections,

δS r δΩ δB
r

rδA= − ∂ , =
1

∂ ( ). (52)r z r
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We derive an overall amplitude estimate by considering the  

functional

∫ V Ψ Ψ r∇∇= ( + )d , (53)2 2F

which results from integrating equation (33) with respect to Ψ*(r). The 
saturation condition is

F Fδ = − . (54)

The left-hand side includes all linear-order perturbations in the 
potential, δV, and wavefunction, δΨ, where
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All reference and perturbation quantities derive from the full sphere 
numerical eigenmode calculation. We translate to cylindrical coor-
dinates by approximating z averages with latitudinal θ averages. The 
spherical eigenmodes localize near the equator, and the NSSL thickness 
is only about 5% of the solar radius, justifying the cylindrical approxi-
mation in the amplitude estimate.

Empirically, the first δV term dominates the overall feedback cal-
culation, owing to the shear corrections δΩ r H∝ d /d ~ 1/ r

2. Isolating the 
shear effect produces the simple phenomenological formula in  
equation (3).

NSSL energetics and turbulence parameterization
We estimate that the order-of-magnitude energetics of the NSSL are 
consistent with the amplitudes of torsional oscillations. The torsional 
oscillations comprise |Ω′| ≈ 1 nHz rotational perturbation, relative to 
the Ω0 ≈ 466 nHz equatorial frame rotation rate. However, the NSSL 
contains ΔΩ ≈ 11 nHz mean rotational shear estimated from the func-
tional form in equations (10)–(13). In terms of velocities, the shear in the 
NSSL has a peak contrast of roughly U0 ≈ 5 × 103 cm s−1 across a length 
scale L0 ≈ 0.06R⊙. The relative amplitudes of the torsional oscillations 
to the NSSL background, |Ω′|/ΔΩ, are thus about 10%. Meanwhile, the 
radial and latitudinal global differential rotations have amplitudes of 
the order of about 100 nHz. The relative energies are approximately 
the squares of these, implying that the ΔKE of the torsional oscillations 
is about 0.01% to the differential rotation and about 1% to the NSSL. 
These rough estimates show that the NSSL and the differential rotation 
can provide ample energy reservoirs for driving an MRI dynamo, and 
the amplitude of the torsional oscillations is consistent with nonlinear 
responses seen in classical convection-zone dynamos17.

Vigorous hydrodynamic convective turbulence probably establishes 
the differential rotation of the NSSL. The large reservoir of shear in the 
solar interior plays the analogue part of gravity and Keplerian shear in 
accretion disks. The details of solar convection are neither well under-
stood nor well constrained by observations. There are indications, 
however, that the maintenance of the NSSL is separate from the solar 
cycle because neither the global differential rotation nor the NSSL 
shows substantial changes during the solar cycle other than in the 
torsional oscillations.

Strong dynamical turbulence in the outer layers of the Sun is an uncer-
tainty of our MRI dynamo framework, but scale separation gives hope 
for progress. From our linear instability calculations, the solar MRI 
operates relatively close to the onset and happens predominantly on 
large scales. If the fast turbulence of the outer layers of the Sun acts 

mainly as an enhanced dissipation, then the solar MRI should survive 
relatively unaffected. Treating scale-separated dynamics in this fashion 
has good precedent: large-scale baroclinic instability in the atmosphere 
of Earth gracefully ploughs through the vigorous moist tropospheric 
convection (thunderstorms). Scale-separated dynamics are particularly 
relevant because the MRI represents a type of essentially nonlinear 
dynamo, which cyclically reconfigures an existing magnetic field using 
kinetic energy as a catalyst. From previous work, it is clear that the deep 
solar convection zone can produce global-scale fields, but these fields 
generally have properties very different from the observed fields17. 
Essentially nonlinear MHD dynamos have analogues in pipe turbulence, 
and, similar to those systems, the self-sustaining process leads to an 
attractor in which the dynamo settles into a cyclic state independent 
of its beginnings.

A full nonlinear treatment of turbulence in the NSSL-MRI setting 
awaits future work. Here we adopt a simplified turbulence model using 
enhanced dissipation. To model the effects of turbulence, we assume 
that the viscous and magnetic diffusivities are enhanced such that the 
turbulent magnetic Prandtl number Pm = 1 (with no principle of turbu-
lence suggesting otherwise). The momentum and magnetic Reynolds 
numbers are Re = Rm ≈ 1.5 × 103. These values are vastly more dissipative 
than the microphysical properties of solar plasma (that is, Re ~ 1012), 
and the microphysical Pm ≪ 1, implying that Rm ≪ Re. The studies con-
ducted here find relative independence in the MRI on the choices of 
Re within a modest range. By contrast, other instabilities (for example, 
convection) depend strongly on Re. We compute sample simulations 
down to Re ≈ 50 with qualitatively similar results, although they match 
the observed patterns less well and require somewhat stronger back-
ground fields. Our adopted value of Re ≈ 1,500 strikes a good balance 
for an extremely under-constrained process. Our turbulent param-
eterizations also produce falsifiable predictions: our proposed MRI 
dynamo mechanism would face severe challenges if future helioseismic 
studies of the Sun suggest that the turbulent dissipation is much larger 
than expected (for example, if the effective Re ≪ 1). However, it is dif-
ficult to imagine how any nonlinear dynamics would happen in this  
scenario.

Data availability
The raw eigenfunction and eigenvalue data used to generate Fig. 2 can 
be found along with the analysis scripts at GitHub (https://github.com/
geoffvasil/nssl_mri)39.

Code availability
We use the Dedalus code and additional analysis tools written in Python, 
as noted and referenced in the Methods. Beyond the main Dedalus 
installation, all scripts are available at GitHub (https://github.com/
geoffvasil/nssl_mri)39.
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Extended Data Fig. 1 | Full diagram of complex-valued eigen-spectrum.  
The time dependence sends ∂t → γ + iω, with each real/imaginary component 
measured in terms of Ω0 = 466 nHz. The modes along the vertical axis appear  
to lie on a continuum, accumulating at a lower value. The isolate modes appear 

to be point spectra. The red circle represents the case (i) “fast branch” from the 
main text. The purple circle (with its complex conjugate) represent the case  
(ii) presented “slow branch”.



Extended Data Fig. 2 | The complete collection of “fast branch” modes. The growth rates correspond to the vertical axis of Extended Data Fig. 1. Each case 
contains no discernible oscillations. For completeness, we show (boxed in grey) the te = 60 day fast-branch case (i) presented in the main text Fig. 2(a).
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Extended Data Fig. 3 | The complete collection of “slow branch” modes.  
The growth rates correspond to the isolated spectrum in Extended Data Fig. 1. 
The upper-left image shows the point spectra along the vertical axis. The three 

other images show the isolated oscillatory modes, including the slow-branch 
case (ii) mode (boxed in grey) presented in the main text Fig. 2(b).
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