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Using Single-trial EEG to Predict and Analyze Subsequent
Memory

Eunho Noha,*, Grit Herzmannb, Tim Curranb, and Virginia R. de Sac

aDepartment of Electrical and Computer Engineering, University of California, San Diego, 9500
Gilman Drive, La Jolla, California, 92093
bDepartment of Psychology and Neuroscience, University of Colorado Boulder
cDepartment of Cognitive Science, University of California, San Diego

Abstract
We show that it is possible to successfully predict subsequent memory performance based on
single-trial EEG activity before and during item presentation in the study phase. Two-class
classification was conducted to predict subsequently remembered vs. forgotten trials based on
subjects’ responses in the recognition phase. The overall accuracy across 18 subjects was 59.6 %
by combining pre- and during-stimulus information. The single-trial classification analysis
provides a dimensionality reduction method to project the high-dimensional EEG data onto a
discriminative space. These projections revealed novel findings in the pre- and during-stimulus
period related to levels of encoding. It was observed that the pre-stimulus information (specifically
oscillatory activity between 25–35Hz) −300 to 0 ms before stimulus presentation and during-
stimulus alpha (7–12 Hz) information between 1000–1400 ms after stimulus onset distinguished
between recollection and familiarity while the during-stimulus alpha information and temporal
information between 400–800 ms after stimulus onset mapped these two states to similar values.
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1. Introduction
Many studies have shown evidence of differences in the electroencephalography (EEG)
signals during learning of pictures or words that will later be remembered compared to items
that will be forgotten (Sanquist et al., 1980; Paller and Wagner, 2002). In addition to brain
activity during learning, many studies have found evidence that anticipatory activity
preceding the onset of a stimulus can contribute to subsequent episodic memory encoding
(Otten et al., 2006, 2010; Park and Rugg, 2010; Guderian et al., 2009; Fell et al., 2011).
These differences in brain activity between the subsequently remembered and forgotten
trials before or during stimulus presentation are often referred to as subsequent memory
effects or SMEs.
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The difference in event-related potential (ERP) to presentation of the subsequently
remembered and forgotten trials is known as difference due to memory (Dm) (Paller et al.,
1987). It is typically measured as a posterior positivity between 400 and 800 ms in the study
phase of a memory task (Paller and Wagner, 2002). However, the size and timing of the
effect varies depending on the paradigm of the experiment (Johnson, 1995).

Several studies have successfully demonstrated that brain oscillations in multiple EEG
frequency bands during encoding can distinguish between remembered and forgotten trials
(see Hanslmayr and Staudigl (2013) for a review). It was found that power increases for the
remembered items (positive spectral SMEs) typically occurred in the theta and high gamma
bands (Klimesch et al., 1996a; Sederberg et al., 2003; Staudigl and Hanslmayr, 2013) and
power decreases for the remembered items (negative spectral SMEs) typically occurred in
the alpha and low beta bands (Klimesch et al., 1996b; Hanslmayr et al., 2009, 2012) of the
EEG signal.

It has been recently shown that successful encoding also depends on anticipatory brain
activity before encoding elicited by presenting cues before each study item. Using an
incidental memory paradigm, Otten et al. (2006, 2010) showed that there is a significant
difference in the ERPs to cue presentation during the pre-stimulus period of the study phase
between the subsequently remembered and forgotten words. In a functional magnetic
resonance imaging (fMRI) study, Park and Rugg (2010) found significant differences in the
level of hippocampal BOLD activity during the cue-item interval between words with
subsequent memory contrasts. It has also been reported that anticipatory brain activity is not
only related to memory formation but reward anticipation, where differences in ERP and
theta power were only observed for words following high reward cues (Gruber and Otten,
2010; Gruber et al., 2013).

A number of studies have shown that subsequent memory can be predicted from pre-
stimulus spectral (oscillatory) activity without informative cues. This was identified by
analysing power in different frequency bands of the pre-stimulus brain activity (Guderian et
al., 2009; Fell et al., 2011). For instance, Guderian et al. (2009) used MEG to show that later
recalled words, as compared to later forgotten items, are associated with stronger pre-
stimulus increases in theta power (3–8 Hz) starting 200 ms before study item presentation (a
fixation-cross was presented 500 ms before each stimulus). In an intracranial EEG study,
Fell et al. (2011) found that the rhinal cortex and hippocampus show enhancement of pre-
stimulus theta power during the jittered inter-stimulus interval (ISI) for successful memory
formation. It was also found that this pre-stimulus effect extends from theta all the way up to
the beta range (up to 34 Hz) within the rhinal cortex.

Studies discussed above averaged over multiple trials to reveal the underlying SMEs.
However, pattern classification approaches on fMRI data have been successful in predicting
subsequent memory in single trials. Single trial prediction of subsequent recognition
performance has been demonstrated using multivoxel pattern analysis (MVPA) of fMRI data
during encoding of phonogram stimuli (Watanabe et al., 2011). Watanabe et al. (2011)
found that activity in the MTL (medial temporal lobe) acquired during encoding is
predictive of subsequent recognition performance. In a very recent fMRI study, Yoo et al.
(2012) monitored the activation in parahippocampal cortex (PHC) in real-time and presented
study items when subjects entered good or bad brain states for learning of novel scenes. The
brain states were determined by computing the pre-stimulus difference between the BOLD
signal activations in the parahippocampal place area (PPA) and reference ROI (region of
interest). They found that subsequent recognition memory was more accurate for items
presented when PPA activation was lower than the reference ROI activation by a subject-
specific threshold. The good/bad brain states defined by Yoo et al. (2012) are unlikely to
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reflect a general encoding-related state but rather a context specific encoding-related state
(good/bad brain state for encoding scenes in this case).

While single-trial classification results using fMRI are encouraging, there has not been any
research on single-trial analysis of SME using a more mobile and affordable recording
procedure such as EEG. Our study aims to identify the characteristics of the various SMEs
in pre- and during-stimulus EEG on a single trial basis. This can potentially be developed as
a practical system to predict preparedness for, and success of, memory encoding which
could be used to improve memory performance. By presenting stimuli at predicted optimal
memory encoding times (and repeating presentations when the during-stimulus classifier
deems them not likely to be well encoded) users may be able to learn material with fewer
presentations. With prolonged use of the system, users may become more aware of when
they are in, and how to get into, better states for remembering from the implicit feedback
provided by the timing and repetition of the presented items. This may eventually improve
the memory performance of the users even without the system.

Classification was conducted on remembered vs. forgotten trials by combining the pre- and
during-stimulus information in the EEG signal. Three separate classifiers were trained to
learn the spectral features of the pre-stimulus SME, temporal features of the during-stimulus
SME, and spectral features of the during-stimulus SME. The results from the individual
classifiers were then combined to predict subsequent memory in single trials. The single-
trial classification analysis can be considered as a non-linear dimensionality reduction
method to effectively project the high-dimensional EEG data onto a discriminative space.
These projections further revealed novel findings in the pre- and during-stimulus period
related to levels of encoding which would have been difficult to find by simply averaging
over the high-dimensional EEG data. The classifier scores (i.e. projections of the EEG
signals onto the discriminative space defined by the classifier) were grouped by the different
response options given in the recognition phase to examine the relationship between the
classifier scores and levels of encoding represented by subjects’ recognition confidence. In
order to better understand the brain activity underlying SMEs utilized by the classifiers,
temporal and spectral analyses were conducted on the EEG signals.

2. Materials and methods
EEG for the present study was previously recorded in 61 healthy right-handed males
(consisting of car experts and novices) during a visual memory task (Herzmann and Curran,
2011). In the study phases, subjects memorized pictures of birds and cars (in separate
blocks). In the recognition phases, participants had to discriminate these study items from
random distractors using a rating scale with 5 options (recollect, definitely familiar, maybe
familiar, maybe unfamiliar, and definitely unfamiliar). Timings of trials in the study and
recognition phases are given in Figure 1.

2.1. Participants
Subjects were right-handed males (age 18–29) who volunteered for paid participation in the
experiment. Out of the 61 subjects, 30 were self-reported car experts while none were bird
experts based on a self-report questionnaire. For the classification study, 18 subjects were
pre-selected from the group based on the criteria given below. Inclusion criteria were set up
to acquire a dataset with 1) a sufficient number of remembered/forgotten trials for classifier
training; 2) subjects who were attentive during the experiment based on their performance in
the memory task. Subjects who did not meet these criteria were excluded in a stepwise
manner. As a result, 18 subjects were pre-selected for analysis (10 subjects were car
experts).
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1. Subject’s behavioral performance

10 subjects who were not effectively participating in the given memory task were
discarded from further analysis. These subjects had behavioral performance lower
than 56.3% (50 % chance performance) were excluded. A response was considered
correct if they responded with old (recollect, definitely familiar, maybe familiar) to
a target item or new (maybe unfamiliar, definitely unfamiliar) to a distractor. Note
that the threshold 56.3% was calculated by subtracting the standard deviation from
the average of the behavioral accuracies of all 61 subjects.

2. Number of trials after rejection of trials with artifacts

33 subjects were excluded due to insufficient number of trials to train a reliable
classifier. Subjects that had less than 64 trials within each of the two classes after
trial rejection were excluded from further analysis to ensure the number of trials
available was equal to the number of electrodes in the worst case.

2.2. Stimulus presentation and EEG recording
The experiment was divided into 8 blocks consisting of a study and recognition phase.
Stimuli consisted of color photographs of cars and birds where cars were given in the odd
blocks and birds in the even blocks. The pictures were presented on a 17-inch flat-panel
LCD monitor (Apple Studio Display SP110, refresh rate 59 Hz) at a viewing distance of one
meter.

During the study phase, subjects were instructed to memorize forty target pictures. A
fixation cross appeared for 200 ms then a study item was shown for 2 seconds. The ISI
between the items in the study phase was 800 ms. After approximately 10 minutes, the
subjects were given a recognition test. In the recognition phase, targets learned in the study
phase had to be discriminated from forty new, unfamiliar distractors. A fixation cross
appeared for 200 ms then a study or distractor item was shown for 1.5 seconds. All items
were presented in random order. The participants had to decide without time limit if they
had seen the picture in the study phase or not using a rating scale with 5 options (recollect,
definitely familiar, maybe familiar, maybe unfamiliar, and definitely unfamiliar). Subjects
were asked to select recollect if they had a conscious recollection of learning the picture in
the study phase. If they did not recollect the stimulus, they were asked to give familiarity
ratings for it by pressing one of the keys that corresponded to one of the four options from
the rating scale. The order of stimuli and assignment of response buttons were kept constant
for all participants to ensure comparability of task demands.

EEG was recorded with a 128-channel Geodesic Sensor NetTM (HydroCel GSN 128 1.0,
Tucker, 1993) using an AC-coupled 128-channel, high-input impedance amplifier (200 MΩ,
Net AmpsTM, Electrical Geodesics Inc., Eugene, OR). Amplified analog voltages (0.1–100
Hz bandpass) were digitized at 250 Hz. Initial common reference was the vertex channel
(Cz). Individual sensor impedances were adjusted until the levels were lower than 50 kΩ.

2.3. Pre-processing
EEG epochs from the study phase of the experiment were extracted and recalculated to
average reference. Trials that included high noise were automatically discarded using the
rejkurt function in EEGLAB (Delorme and Makeig, 2004) which rejects trials based on the
kurtosis of each trial. Then each trial was manually inspected to exclude trials which showed
eye movement or muscle artifacts. An average of 40 trials were rejected for each subject. To
further remove eye movement artifacts, independent component analysis (infomax ICA)
(Hyvärinen et al., 2001; Makeig et al., 1996) was performed to identify and remove them.
The degrees of freedom of the EEG signal is reduced after removing eye movement
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components. A subset of 73 electrodes which is an approximate equivalent of the 10–20
system was selected for further analysis in order to reduce the dimensionality of the data set
and ensure a full rank covariance matrix for eigenvalue decomposition (for common spatial
patterns) even after removing independent components. The locations of the selected
electrodes are given in Figure 2.

2.4. Classification problem
The classification problem was set up as follows. First, trials that were presented in the study
phase were labelled according to the results of the recognition phase. There were two labels:
remembered (class 1) and forgotten (class 2). The remembered class consisted of trials
where the subjects pressed the button recollect and the forgotten class consisted of trials
where the subjects pressed buttons maybe unfamiliar and definitely unfamiliar. Trials with
definitely familiar or maybe familiar responses were not included in the remembered class to
maximize the difference in encoding strength between the classes (trials with maybe
unfamiliar were considered forgotten trials due to the limited number of trials with definitely
unfamiliar responses), but they were used to compare the classifier scores and the subjects
responses in the recognition phase (see Section 3.3). Sets of labelled examples were
acquired from the shaded areas (A) (−300 to 0 ms before stimulus presentation) and (B)
(400–800 and 1000–1400 ms after stimulus onset) of each trial in Figure 1. Note that
separate classification analysis on item type (car/bird) was omitted since the number of car/
bird items was insufficient to build a reliable classifier for most of the subjects.

Classifier performance was evaluated based on the number of trials considered for
classification. Chance level in a simple 2-class classification problem is not exactly 50%, but
50% with a confidence interval for a given p value depending on the number of trials. These
intervals were calculated using Wald intervals with adjustments for a small sample size
(Müller-Putz et al., 2008; Agresti and Caffo, 2000). This gives a much more accurate
interval for small samples compared to the ordinary Wald interval. The Wald interval is the
normal approximation of the binomial confidence interval.

2.5. Classification
Based on previous findings on pre-stimulus spectral SME that found power differences
between the remembered and forgotten items ranging from theta to the beta band (Fell et al.,
2011), linear classifiers were designed to learn the power differences (i.e. amplitude
differences) between the two classes in multiple subbands ranging from theta to low gamma
of the pre-stimulus EEG data. Common spatial patterns (CSPs) were used to learn spatial
filters which maximize the power difference between the two classes (Blankertz et al.,
2008). The CSP algorithm is designed to increase the discriminability by finding spatial
filters that maximize the power of the filtered signal while minimizing for the other class.
The 300 ms subsequence preceding the to-be-learned stimulus (portion noted as (A) in
Figure 1) was extracted from each trial before any pre-processing was performed to prevent
any temporal smearing from the signal during actual encoding. We used a total of 9
bandpass filters with pre-selected subbands to account for the wide range of frequency bands
associated with pre-stimulus SME. The subbands were selected based on well known
rhythmic activities of EEG signals between 4–40 Hz and overlapping frequencies in
between. The passband for each filter was 4–7 Hz (theta band), 6–10 Hz, 7–12 Hz (alpha
band), 10–15 Hz, 12–19 Hz (low beta band), 15–25 Hz, 19–30 Hz (high beta band), 25–35
Hz, 30–40 Hz (low gamma band). The overlapping frequencies were used to compensate for
individual differences in the EEG subbands (Doppelmayr et al., 1998) and timing of the pre-
stimulus SME. Subbands with informative patterns for subsequent memory prediction were
identified from the training set and only the classifiers corresponding to those informative
subbands were used to classify the validation set. The output of the pre-stimulus classifier
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(denoted as 0 ≤ pA ≤ 1) can be interpreted as the pre-stimulus classifier score of how good
the classifier deems the brain state for remembering pictures.

Two separate classifiers were designed to extract the temporal and spectral characteristics of
the during-stimulus period of the remembered/forgotten trials. Temporal features were
learned by exploiting the ERP differences (namely the Dm effect) between the two classes
in the spatio-temporal domain. The during-stimulus temporal classifier was trained to learn
these features of the EEG data between 400–800 ms after stimulus presentation from four
channel groups (CM centro medial, LPS left posterior superior, RPS right posterior superior,
and PM posterior-medial as given in Figure 2) where the Dm effect is known to be
prominent (Paller and Wagner, 2002). Significant spectral SME in the alpha band (7–12 Hz)
has been robustly observed in various memory experiments (Klimesch et al., 1996b;
Hanslmayr et al., 2009, 2012), hence spectral features were extracted (using the CSP
algorithm) by learning the spatial patterns that best distinguish the alpha power difference
between the two classes. The data suggested that the early and late alpha SME showed
considerably different patterns. Hence the during-stimulus spectral classifier learned the
power difference between the remembered and forgotten trials by combining the information
from the two separate time windows (400–800 ms and 1000–1400 ms after stimulus
presentation). The during-stimulus temporal and spectral classifier results were averaged to
determine the final output of the during-stimulus classifier (denoted as 0 ≤ pB ≤ 1) for a
given test trial. This value can be interpreted as the during-stimulus classifier score on the
success of the encoding process.

The scores pA and pB from the pre- and during-stimulus classifiers were averaged and
compared to the average score of the training set to determine the final label for a given test
trial. A given trial was classified as remembered if (pA + pB)/2 ≥ (mA + mB)/2 and forgotten
if (pA + pB)/2 < (mA + mB)/2 where mA and mB are the mean pre- and during-stimulus
classifier scores of the training set respectively. The classification accuracies for the pre- and
during- classifiers were evaluated by comparing pA to mA and pB to mB respectively. More
details on the classifier design can be found in Appendix A.1.

2.6. Temporal and spectral analyses
Temporal and spectral analyses were conducted in order to better understand the brain
activity differences that are available for use by the three classifiers. Even though some
channels were excluded from classification, all channels were considered here to reveal any
significant SME across subjects. Significant SMEs were identified by conducting a non-
parametric randomization test using cluster-based correction for multiple comparisons
(Maris and Oostenveld, 2007). First, the test statistic between the remembered and forgotten
trials was calculated for each sample (each time point for temporal analysis, each electrode
position for spatial analysis). Clusters were then identified by finding adjacent samples with
significant difference between the two conditions (p < 0.05). The cluster-level statistic was
calculated by summing up these differences for each cluster and selecting the cluster with
the maximum value. This result was compared to the cluster-based statistic of the
permutation distribution generated from 10,000 random within subject permutations of trial
labels (Maris and Oostenveld, 2007). In order to adjust for multiple tests across frequency
bands in the pre-stimulus period, significant cluster-level statistics in adjacent frequency
bands were summed and compared to the corresponding permutation distribution.
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3. Results
3.1. Classification accuracy

Table 1 gives the classification accuracies for all 18 subjects. By combining the pre- and
during-stimulus classifiers, the overall classification accuracy (calculated for all trials from
the 18 subjects) achieved 59.64% which is approximately a 2% increase from the individual
pre- and during-stimulus classifier results. The pre-stimulus and during-stimulus classifiers
each gave individual classification results significantly over chance (significantly over 50%
with p < .05) for 9 subjects with none going significantly below 50%. By combining the two
time periods, we were able to achieve significantly over chance results for 13 subjects out of
the 18 subjects. Significance level was calculated based on the total number of trials in the
cross-validation and left-out sets for each subject (Müller-Putz et al., 2008; Agresti and
Caffo, 2000) as described in Section 2.4.

Out of the 13 subjects with significantly over chance results, 8 subjects were self-reported
car experts. However, there were no significant differences in accuracy for any of the
classifiers between the two groups based on the Kruskal-Wallis test (pre-: p = 0.33, during-:
p = 0.79, combined: p = 0.92), which should not be surprising since memory for both birds
and cars was included in all analyses.

3.2. Temporal and spectral SME
Subsequent memory effects in the pre- and during-stimulus period were identified using
methods given in Section 2.6. Oscillatory power in the pre-stimulus period was examined
separately on 5 non-overlapping subbands (theta, alpha, low beta, high beta, and low
gamma). For a given subband, within-subject averages of the power difference between the
remembered and forgotten trials were calculated on all electrode positions. Afterwards,
electrode positions with significantly large power difference for a given subband were
identified by conducting a paired-sample t-test. This effect was adjusted for multiple
comparison using the cluster-based correction explained in Section 2.6. The pre-stimulus
period showed consistent positive spectral SME across subjects in the high beta (19–30 Hz)
and low gamma (30–40 Hz) bands in the parietal electrodes as given in Figure 3.

The temporal during-stimulus classifier performance depends on the size of the Dm in
channel groups CM, LPS, RPS, and PM within 400–800 ms. Time segments with significant
Dm effect across subjects were identified based on the cluster-based analysis. Subject-
specific ERPs were calculated for the two classes on all channel groups. Time points with
significantly large Dm were identified by conducting a paired-sample t-test on the ERPs (p <
0.05). Cluster-based correction was used to adjust for multiple comparison. Channel groups
LPS, RPS, and PM had significant Dm effects within this time segment as given in Figure 4.

Differences in alpha power between the remembered and forgotten trials were analyzed
separately in the two time windows used for the during-stimulus spectral classifier (400–800
and 1000–1400 ms after stimulus onset). For each time window, the alpha event related
desynchronization (ERD) (Pfurtscheller and Lopes da Silva, 1999) measurements for the
remembered and forgotten trials were calculated using EEG power relative to the average
power during the baseline period. Alpha power difference between the remembered and
forgotten trials was defined as the difference of the ERD measurements between the two
classes. For each subject, the average alpha power difference between the remembered and
forgotten trials was calculated on all electrode positions. These values were used in the same
manner as the pre-stimulus analysis to reveal clusters of channels that showed significant
difference between the two classes. The two time windows gave significantly different scalp
patterns as given in Figure 5. There was significantly stronger alpha desynchronization for
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the forgotten trials compared to the remembered trials (positive spectral SME) in the left
central area during the 400–800 ms window (p < 0.05); while there was significantly
stronger alpha desynchronization for the remembered trials (negative spectral SME) in the
posterior area during the 1000–1400 ms window (p < 0.05).

3.3. Classifier scores for all rating scale responses
We also examined the relationship between subjects’ responses and classifier scores. Even
though trials with maybe familiar and definitely familiar responses were excluded from the
previous analysis due to a desire to maximize difference in encoding strength, we can
acquire the classifier scores for these trials using the same classification procedure (see
Section Appendix A.1 for details). The classifier score is a projection of the high-
dimensional EEG data onto a 1-dimensional hyperplane which best discriminates between
the remembered and forgotten classes. These hyperplanes (or projections) are defined by the
features used by the different classifiers. Hence, it is possible to efficiently reveal underlying
factors related to subsequent memory from the EEG data by examining the scores given
from the different classifiers. This analysis was conducted on the combined classifier scores
as well as the three individual classifier (pre-, during-temporal, and during-spectral) scores.
Both analysis of variance (ANOVA) and the Kruskal-Wallis test were used to compare the
classifier scores from the recollect trial to the 4 other responses. Since both tests gave
similar results, we only report results based on the repeated measure ANOVA with
Bonferroni adjustment for multiple comparisons on different responses and classifiers. The
results are illustrated in Figure 6e.

For the combined classifier, recollect trials had mean score significantly different from all
other responses (p < 2 × 10−4). For the pre-stimulus classifier, trials with recollect responses
also had mean score significantly different from all other responses (p < 9 × 10−4). For the
during-stimulus temporal classifier, trials with recollect responses had mean score
significantly different from maybe familiar and all unfamiliar trials (p < 2 × 10−8). For the
during-stimulus spectral classifier, trials with recollect responses also had mean score
significantly different from maybe familiar and all unfamiliar trials (p < 4 × 10−5). These
results indicate that the pre-stimulus classifier gives significantly smaller scores to the
definitely familiar trials compared to the recollect group while the two during-stimulus
classifiers map the definitely familiar trials closer to the recollect trials.

Since the pre-stimulus classifier combines information from multiple bands, each subband
had to be isolated to examine how the different frequencies contributed to the difference in
classifier scores between the different responses. It was revealed that the recollect trials had
significantly larger mean score than the familiar trials between 25–35 Hz. This implies that
the pre-stimulus classifier’s ability to distinguish between recollect and definitely familiar
trials is carried mostly by information in the high beta and low gamma bands. All mean
scores and significant results from the ANOVA test are given in Table 2. Here, we only
adjusted for multiple comparisons across the 4 response options and not across the multiple
frequencies since the goal was to reveal underlying activities that may account for the effect
found in the pre-stimulus scores.

The during-stimulus spectral classifier combines information from two distinct time
windows (400–800 and 1000–1400 ms after stimulus onset). Hence, classifier scores were
recomputed using classifiers trained on individual windows. The classifier scores for the
early window (400–800 ms) showed similar values for the recollect and definitely familiar
trials. However, the classifier scores for the later window (1000–1400 ms) were significantly
different between the two responses (p = 3 × 10−4). All mean scores and significant results
from the ANOVA test are given in Table 3.
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4. Discussion
These results show that it is possible to successfully predict subsequent episodic memory
performance based on single-trial scalp EEG activity recorded before and during item
presentation. The prediction rate improved by 2%, by combining information from the pre-
and during-stimulus periods. However, many factors can influence whether a subject will
remember a stimulus, not all of which could be controlled in our study including how
intrinsically memorable the stimulus is and the subject’s brain state during the recognition
phase. These factors add noise to the trial labels which may lower classifier accuracy.

a. Combined: d-unfam (P < 5×10−20); m-unfam (P < 9×10−26); m-famil (P <
7×10−11); d-famil (P < 2 × 10−4).

b. Pre-stimulus: d-unfam (P < 8 ×10−11); m-unfam (P < 2 ×10−12); m-famil (P <
0.002); d-famil (P < 9 × 10−4).

c. During-stimulus temporal: d-unfam (P < 2 × 10−8); m-unfam (P < 5 × 10−12); m-
famil (P < 6 × 10−11).

d. During-stimulus spectral: d-unfam (P < 2 × 10−7); m-unfam (P < 2 × 10−10); m-
famil (P < 4 × 10−5).

e. The estimated means and the approximate 95 % confidence intervals of the
classifier scores (Hochberg and Tamhane, 1987) for all 5 response options (d-
unfam: definitely unfamiliar, m-unfam: maybe unfamiliar, m-famil: maybe familiar,
d-famil: definitely familiar, recollect). Responses with significantly different means
from the recollect trials are given with a star and the corresponding P-values are
given below the figure. All results are based on the ANOVA test with Bonferroni
adjustment for multiple comparisons.

There has not been any study that combines information from the pre- and during-stimulus
periods of the data to predict subsequent memory, but the two time periods have been used
to predict subsequent memory separately in two different fMRI studies. Watanabe et al.
(2011) showed that it is possible to predict subsequent memory with approximately 66 %
accuracy using fMRI data while subjects attend to the stimuli. Since EEG has lower spatial
resolution compared to fMRI a lower prediction rate might be expected (56.8 % accuracy for
the during-stimulus classifier). Also, it is difficult to separate out the brain signal prior to
and during encoding using fMRI due to the slowness of the vascular response. Hence, the
classifier may have incorporated information from the pre-stimulus as well as the during-
stimulus period. The proportion of subjects with significantly over chance results in our
study are comparable to that found by Watanabe et al. (2011) (6 out of 13 subjects1 for
Watanabe et al. (2011) and 13 out of 18 subjects for the current study).

Yoo et al. (2012) used the pre-stimulus period of the fMRI data to predict good/bad brain
states for learning novel scenes. Their predictions gave 48.8 % hit rate (percentage of
remembered items) during good brain states and 41.9 % hit rate (percentage of forgotten
items) during bad brain states. Though it is difficult to directly compare the results due to the
differences in the experiment paradigm and other settings such as recording technique,
online/offline2 setting etc., the results from the present study are numerically higher than the
results from Yoo et al. (2012). The average hit rate during the good brain states (trials with
pA over 0.5) of the pre-stimulus classifier was 56.5 % while the average hit rate during the

1This was computed by averaging over the main and confirmatory results given in Watanabe et al. (2011) with threshold for chance
performance at 66.1 % which was calculated using methods given in Agresti and Caffo (2000).
2We refer to a system as online when it interprets the data and predicts the receptiveness of a subject to stimuli in real-time. An offline
analysis uses data recorded from past experiments where subjects had no knowledge of the system’s predictions.
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bad brain states (trials with pA below 0.5) was 42.0 %. The hit rate of a random selection of
trials was 53.5 % across all subjects.

Table 5 shows how often each band was chosen for the pre-stimulus classifier. For example,
the first value 0.82 in the table indicates that for subject S03, frequency band 4–7 Hz gave
better than chance training error (and identified as informative) 82 % of the time over all
cross-validation folds. There are individual differences in the frequency bands utilized by
the pre-stimulus classifiers (Table 5). Subjects S26, S40 and S62 have no certain informative
band that has better than chance training error. This suggests that these subjects’ EEG data
could be too noisy for the pre-stimulus classifier to work properly or the pre-stimulus EEG
does not contain any useful information (Nijholt et al., 2008). Subjects S16, S20, S24, and
S26 have at least one subband that is selected 60 % of the time, but the pre-stimulus
accuracies are not significantly over chance. This suggests that the training set does not well
represent the entire data set for these subjects. This may be due to non-stationarity in the
data which may result in non-optimal CSP filters. A consistent cross-subject pre-stimulus
spectral SME was only observed in the high beta and low gamma bands (Figure 3).

Our data did not show the significant theta power difference observed in Guderian et al.
(2009). This may be due to the difference in timing of the pre-stimulus theta SME. Theta
difference may occur earlier in the current study due to difference in experiment set-up. Fell
et al. (2011) observed that power difference in the theta band occurred earlier in time than
the higher frequencies. Also, Fellner et al. (2013) demonstrated that pre-stimulus theta SME
occurred from −900 to −300 ms, but not immediately before stimulus onset. Hence if a
majority of the subjects showed theta enhancement in the remembered trials prior to −300
ms before stimuli presentation, the data would not show significant SME in the theta band
and only in the higher bands. The pre-stimulus SME observed in the higher frequencies
supports this hypothesis. One other possibility is that, due to the small number of theta
cycles possible in the 300 ms pre-stimulus window, the phase shifts may be confusable with
power differences making the power differences related to subsequent memory difficult to
detect.

Extra post-hoc spectral analysis in the during-stimulus window was conducted on additional
frequencies to verify whether spectral SME found in previous studies could be identified in
the current dataset. Analysis on the theta (4–7 Hz), low beta (12–19 Hz), and high gamma
(55–70 Hz) bands revealed that 1) the positive theta SME within the posterior area in the
200–600 ms window and 2) the negative low beta SME within the posterior area within the
800–1200 ms window were significant (p < 0.05) as given in Figure 6. These results agree
with findings in Hanslmayr et al. (2009, 2012). Single-trial analysis was conducted on the
theta (4–7 Hz), low beta (12–19 Hz) band features to confirm whether information in those
bands were classifiable. The overall classification results were 49.3 % for the theta band and
53.0 % for the low beta band. The during-stimulus theta classifier gave significantly lower
results than the two during-stimulus alpha classifiers based on the rank sum test (p = 0.001)
suggesting that the theta band features were not appropriate for single-trial classification.
The during-stimulus low beta classifier gave slightly lower accuracy than the two during-
stimulus alpha classifiers but the results were not significantly different (p = 0.87).
However, adding the low beta features to the classifier gave an overall accuracy of 59.03 %
which did not improve the overall classification results. The reason the theta SME did not
give useful features for single-trial analysis may be due to the early timing of the effect
(200–600 ms). The subjects’ responses to the stimulus itself may act as artifacts on a single-
trial basis, whereas this aspect of the brain activity is diminished when the SME is computed
on all available trials. Also the single-trial phase shifts may add noise to the power
estimation in the 400 ms window. The low beta band features may partially be present in the
late alpha band features (1000–1400 ms) due to the spectral/temporal proximity and spatial
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similarity (negative spectral SME in the posterior area) of the two features. This may explain
why the overall classification does not improve by including the beta band features in the
during-stimulus spectral classifier.

The alpha SME during 400–800 ms gave considerably different patterns from the alpha
SME during 1000–1400 ms (given in Figure 5). The negative SME in the posterior area
found between 1000–1400 ms is consistent with previous studies (Klimesch et al., 1996b;
Hanslmayr et al., 2009, 2012). The early positive alpha SME may be related to previous
findings which showed that high alpha power over task-irrelevant regions is important for
the participants to perform optimally in covert attention tasks (Händel et al., 2011; Haegens
et al., 2012). Thus, the early during-stimulus spectral classifier may be utilizing information
reflecting attention. The asymmetric alpha power difference between the remembered and
forgotten trials may be due to increased activity associated with the left hemisphere such as
subvocal speech (or internal thoughts) during the forgotten trials(Ehrlichman and Wiener,
1980) which could interfere with the visual encoding task.

The classifiers were originally trained to give high scores for the recollected trials and low
scores for the unfamiliar trials. However, the different classifiers showed interesting trends
on their classification of the untrained definitely familiar trials. The during-stimulus
temporal scores (Figure 6e (c)) and spectral scores from the 400–800 ms window (1st row in
Table 3) did not distinguish between the recollected and definitely familiar trials while the
pre-stimulus spectral scores between 25–35 Hz (8th row in Table 2) and the during-stimulus
spectral scores from the 1000–1400 ms window (2nd row in Table 3) gave significantly
lower scores to the definitely familiar trials than the recollected trials. Subsequent analyses
showed that the definitely familiar scores were significantly higher than the unfamiliar trials
for the first group of classifiers while there were no significant differences for the second
group as given in Table 4. Moreover, it was found that the definitely familiar scores given by
the first group were significantly higher than the second group (p < 10−7) (values in column
3 of Table 4). Thus, the familiarity judgments revealed that the different classifiers are
utilizing distinct neural processes for their classification of subsequent memory.

Recent research has raised doubts about the extent to which remember/familiar judgments
can be used to estimate separate recollection and familiarity processes rather than merely
reflecting confidence differences attributable to a single continuously varying memory
signal (Dunn, 2004; Rotello et al., 2005; Wixted and Stretch, 2004). The scores from the
first group of classifiers seem consistent with the continuous confidence perspective because
both of the high confidence “old” responses (definitely familiar and recollect) gave
significantly higher scores than the unfamiliar trials, but there were no significant
differences between definitely familiar and recollect trials. On the other hand, the second
group of classifiers showed a pattern that seem to differentiate only recollect responses from
all other responses (without being sensitive to gradations in confidence between the familiar
and unfamiliar trials). Thus, EEG differences in the −300 to 0 ms window (specifically
oscillatory activity between 25–35Hz) and alpha activity between 1000–1400 ms appear to
be differentiating subsequent familiarity from recollection in a manner that is not
synonymous with confidence, so may reflect aspects of encoding preparation and processes
that would differentiate these responses. For example, although contextual influences on
familiarity have been demonstrated (Addante et al., 2012; Elfman et al., 2008; Mollison and
Curran, 2012; Speer and Curran, 2007), contextual influences are widely regarded to be
stronger on recollection than familiarity (Davachi et al., 2001; Cansino et al., 2002;
Ranganath et al., 2004; Duarte et al., 2004; Summerfield and Mangels, 2005). Perhaps pre-
stimulus activity between 25–35 Hz is important for encoding contextual information, which
may include contextual information taken from the pre-stimulus period itself (e.g., whatever
the subject was thinking about prior to encoding). Also, during stimulus presentation, the
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brain activity may shift from encoding the stimulus early in the trial to also encoding the
contextual information in that period.

We cannot completely rule out the possibility that the pre-stimulus classifier may be using
the brain activity of the evoked response to the fixation-cross rather than the ongoing pre-
stimulus neural activities for classification. However the pre-stimulus ERP did not show any
significant difference between the remembered and forgotten trials. This decreases the
possibility that the evoked response from the fixation-cross holds any information that
discriminates between the two classes. In a follow-up study, the effects of these different
signals on classification results will be further investigated using an appropriate experiment
paradigm.

In summary, this study shows that pre- and during-stimulus EEG can be used to predict
subsequent memory performance. We discovered that the pre-stimulus classifier (especially
in frequencies around 25–35 Hz) using the −300-0 ms window and during-stimulus alpha
band classifier using the 1000–1400 ms window distinguished recollection from familiarity,
whereas the during-stimulus temporal and alpha band classifiers using the 400–800 ms did
not. These results suggest that 1) the brain activity before item presentation contributes to
how well context gets encoded with the upcoming item and 2) the brain activity during item
presentation initially focuses on item encoding then shifts to also encoding the contextual
information. Finally, these findings could provide an inexpensive and non-invasive way to
monitor learning preparedness to optimally determine the time to present a stimulus and
present the stimulus again at a later time point if the encoding process is unsuccessful.
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Appendix A. Appendix

Appendix A.1. Classifier training procedure
Depending on the performance (recollection rate) of each subject, the difference between the
number of trials for the remembered class and the forgotten class ranged from 1 to 82.
Rather than discarding subjects with unbalanced classes (Watanabe et al., 2011), enough
trials from the larger class were set aside from training as the left-out set to balance the
number of trials per class in the cross-validation set. Trials in the left-out set were evenly
distributed over time (epochs and blocks) to minimize the effect of drift or bias in the cross-
validation set. The cross-validation set was evaluated based on a balanced leave-two-out
cross-validation procedure where one example from each class is randomly selected and left
out of any training procedure as the validation set (to ensure they were not used in any
manner to train the classifier) while the remaining trials are used as the training set for each
fold. The left-out set was evaluated using the classifier trained from all trials in the cross-
validation set. This procedure allowed us to eliminate any effect from unbalanced classes
during classifier training while conducting classification on all available trials. The
classifiers to compute the classifier scores for trials with definitely familiar and maybe
familiar responses were also trained for each subject using all trials in the cross-validation
set.

Appendix A.1.1. Pre-stimulus classifier
Zero-phase filtering was used to extract desired subband signals while preserving the timing
of the features from the pre-stimulus period. Since a non-causal filter was used, the 300 ms
subsequence preceding the to-be-learned stimulus was extracted before filtering to prevent
any temporal smearing from the signal during actual encoding. 25 extra samples in the 100
ms period before the fixation cross were included to estimate a better covariance matrix for
CSP analysis. 20 tap zero-phase FIR filters were used to design the 9 bandpass filters (4–7
Hz, 6–10 Hz, 7–12 Hz, 10–15 Hz, 12–19 Hz, 15–25 Hz, 19–30 Hz, 25–35 Hz, 30–40 Hz).
Nine separate passband signals were generated for each trial through this procedure.

Separate classifiers were constructed using the training sets of the 9 subbands. For each
subband group, CSP filters were learned to extract features that maximally discriminate
between the remembered (class 1) and forgotten (class 2) trials. CSP is a supervised
dimensionality reduction algorithm commonly used for EEG classification. CSP utilizes the
covariance matrices of the two classes (estimated from the bandpass filtered EEG data) to
find spatial filters that maximize the variance of spatially filtered signals under one
condition while minimizing it for the other condition. The 73 channels of EEG data were
used to estimate the spatial filters. Three spatial filters were selected from each class
resulting in 6 filtered signals as in Blankertz et al. (2008). The log power was calculated by
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(A.1)

where si,t is the sample for time t from filtered signal i (i = 1, …, 6 and t = 1, .., T where T is
the number of samples within an example). This resulted in a 6 dimensional vector P̄ = [P1,
…, P6] for each trial.

The soft margin3 support vector classifier machine (ν-SVM) (Chang and Lin, 2001) with a
linear kernel was used to classify the 6 dimensional vectors. LIBSVM (Chang and Lin,
2011) was utilized for this part of the simulation. The parameter 0 ≤ ν ≤ 1 can be interpreted
as an upper bound on the proportion of margin errors and the lower bound on proportion of
support vectors. ν was selected based on a 4-fold cross-validation on the set {P̄} acquired
from the training set.

The training error for each subband group was calculated by conducting a balanced cross-
validation on the training set. Subband groups that gave better than chance (with p < 0.10)
training error were identified as informative. If none of the subbands gave better than chance
training error, all 9 subbands were selected. The decision of the pre-stimulus classifier for a
given trial in the validation or left-out set (pA) was determined by averaging over the scores
given by SVM classifiers from all informative subbands. This meta-classification approach
was used based on previous studies which found that meta-classification strategies generally
outperform single classifiers (Dornhege et al., 2004; Hammon and de Sa, 2007).

Appendix A.2. During-stimulus classifier
Different bandpass filters and spatial filters were used to extract features for the during-
stimulus temporal and spectral classifiers.

In order to learn the ERP patterns of the Dm effect, the baselined signal (baseline offset
corrected using −200 to 0 ms of each trial) was bandpass filtered between 0.1–5 Hz using a
40 tap zero-phase FIR filter. Based on previous research on the Dm, the 400–800 ms time
window and four channel groups were selected for evaluation (CM centro medial, LPS left
posterior superior, RPS right posterior superior, and PM posterior-medial as given in Figure
2). Mean amplitudes for each channel group were calculated by averaging over the channels
within each group. For each channel group, a 5-dimensional template for remembered/
forgotten trials were calculated. First, the ERP of the training set was calculated for each
class. The dimensionality of the ERP was reduced to 5 by averaging over 80 ms length non-
overlapping windows between 400–800 ms. Finally, templates from all channel groups were
concatenated to create a 20-dimensional template for remembered/forgotten trials. A soft
margin4 linear classifier using LDA (linear discriminant analysis) was trained based on
these templates and the dispersion of the training examples. LDA is a simple classifier
which is commonly used to classify ERP components (Blankertz et al., 2011).

In order to isolate the alpha band of the EEG signal, the baselined signal (baseline offset
corrected using −200 to 0 ms of each trial) was bandpass filtered between 7–12 Hz with a 40

3The soft margin SVM classifier for a two class classification problem gives a pair of scores (P1 and P2) corresponding to the
probability of potential class membership where P1 + P2 = 1. Here, we consider the output of the classifier to be P = P1 which
represents the probability an example is a remembered trial (classified as remembered if P ≥ 0.5 and forgotten if P < 0.5).
4The probability output for the soft margin LDA classifier was calibrated based on a permutation test with plug-in estimator of
Bayesian likelihood ratios for the standard homoscedastic Gaussian model (Dümbgen et al., 2008). As in the soft margin SVM
classifier, the classifier gives a pair of numbers (P1 and P2) corresponding to the probability of class membership. We consider the
output of the classifier to be P = P1 which represents the probability an example is a remembered trial.
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tap zero-phase FIR filter. The data were divided into two time windows (400–800 and 1000–
1400 ms after the cue). For each time window, 6 CSP filters (3 for each class) were learned
using the 73 channel EEG data and the log powers of the spatially filtered signals were
computed. The log power values were combined to acquire a 12 dimensional feature vector
for each trial. The soft margin ν-SVM with a linear kernel was used for classification. The
CSP procedure, log power calculation, and ν parameter selection followed the procedures
given in Appendix A.1.1.

The decision of the during-stimulus classifier (pB) was determined by averaging over the
scores given by the temporal and spectral classifiers.
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Figure 1.
Timing of the visual memory task. The two shaded areas of the study phase noted as (A) and
(B) are the pre- and during-stimulus periods considered in our analysis (colored in blue and
red respectively). The goal of the classifier is to predict whether the subject remembers a
given stimulus using the pre- and during-stimulus EEG of each presentation in the study
phase.
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Figure 2.
The GSN electrode locations with the 73 electrodes used for analysis are highlighted in
black. These electrode locations are an approximate equivalent of the 10–20 system. The
four channel groups are regions of interest used by the temporal during-stimulus classifier.
CM centro medial, LPS left posterior superior, RPS right posterior superior, PM posterior-
medial.
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Figure 3.
(a): Difference in high beta power between the remembered and forgotten trials between
−300-0 ms before stimulus presentation (log(μV2)). (b): Same topography as in (a) but
masked by the spatial pattern of the most significant cluster resulting from cluster-based
analysis across all subjects (p < 0.05). (c): Difference in low gamma power between the
remembered and forgotten trials between −300-0 ms before stimulus presentation. (d): Same
topography as in (c) but masked by the spatial pattern of the most significant cluster
resulting from cluster-based analysis across all subjects (p < 0.05).
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Figure 4.
Mean amplitudes for remembered/forgotten trials across channels groups CM, LPS, RPS,
and PM. Portions with significant effects resulting from cluster-based analysis are shaded in
gray (p < 0.01).
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Figure 5.
(a): Difference in alpha power between the remembered and forgotten trials between 400–
800 ms after stimulus onset (log(μV2)). (b): Same topography as in (a) but masked by the
spatial pattern of the most significant cluster resulting from cluster-based analysis across all
subjects (p < 0.05). (c): Difference in alpha power between the remembered and forgotten
trials between 1000–1400 ms after stimulus onset. (d): Same topography as in (c) but
masked by the spatial pattern of the most significant cluster resulting from cluster-based
analysis across all subjects (p < 0.05).
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Figure 6.
The estimated means and the approximate 95 % confidence intervals of the classifier scores
(Hochberg and Tamhane, 1987) for all 5 response options (d-unfam: definitely unfamiliar,
m-unfam: maybe unfamiliar, m-famil: maybe familiar, d-famil: definitely familiar,
recollect). Responses with significantly different means from the recollect trials are given
with a star and the corresponding p-values are given below the figure. All results are based
on the ANOVA test with Bonferroni adjustment for multiple comparisons.

Noh et al. Page 23

Neuroimage. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
(a): Difference in theta power between the remembered and forgotten trials between 200–
600 ms after stimulus onset (log(μV2)). (b): Same topography as in (a) but masked by the
spatial pattern of the most significant cluster resulting from cluster-based analysis across all
subjects (p < 0.05). (c): Difference in low beta power between the remembered and
forgotten trials between 800–1200 ms after stimulus onset. (d): Same topography as in (c)
but masked by the spatial pattern of the most significant cluster resulting from cluster-based
analysis across all subjects (p < 0.05).
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Table 1

Average classification accuracy from the pre-stimulus, during-stimulus, and pre-during combined classifiers.
Results significantly over chance (based on the number of trials used for classification) are given with their
corresponding p-values. The last column gives the number of trials from each class before dividing into cross-
validation and left-out sets (R: remembered/F: forgotten). Car experts and novices are noted as (E) and (N),
respectively. Overall accuracies given in the last row are the accuracies over all trials considered for
classification.

Subject Pre- (%) During- (%) Combined (%) # trials (R/F)

S03 (E) 58.85(p = 0.010) 59.81(p = 0.005) 61.72(p = 7 × 10−4) 144/65

S06 (E) 58.06(p = 0.011) 56.05 58.87(p = 0.005) 117/131

S10 (E) 55.82 52.21 59.04(p = 0.004) 104/145

S15 (N) 58.29(p = 0.022) 53.48 57.75(p = 0.033) 125/62

S16 (N) 52.00 60.00(p = 0.005) 56.00 112/88

S17 (E) 58.86(p = 0.018) 55.43 58.86(p = 0.018) 84/91

S20 (E) 57.25 57.97 60.87(p = 0.010) 71/67

S22 (N) 57.05 63.46(p = 7 × 10−4) 56.41 94/62

S24 (N) 55.80 60.14(p = 0.016) 62.32(p = 0.004) 68/70

S26 (E) 51.88 54.89 55.64 68/65

S40 (N) 52.66 51.21 54.11 75/132

S51 (E) 62.14(p = 2 × 10−4) 63.79(p = 2 × 10−5) 66.26(p = 4 × 10−7) 122/121

S52 (N) 57.80(p = 0.038) 63.58(p = 4 × 10−4) 71.10(p = 2 × 10−8) 90/83

S56 (E) 59.11(p = 0.009) 65.02(p = 2 × 10−5) 61.08(p = 0.002) 121/82

S57 (N) 61.96(p = 0.002) 55.83 64.42(p = 2 × 10−4) 94/69

S59 (E) 62.24(p = 2 × 10−4) 57.68(p = 0.016) 59.75(p = 0.003) 123/118

S61 (N) 56.47 53.53 58.82(p = 0.020) 85/85

S62 (E) 50.44 58.41(p = 0.011) 51.77 154/72

Overall 57.16 57.88 59.64
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