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Abstract—To understand behaviors of natural and man-made
events, such as energy consumption of buildings, which ac-
counts for 40% of energy uses in the US, we deploy automated
monitoring devices to record periodic observations. However,
such experimental and observation data often contains prob-
lems and irregularities that have to be cleaned up before
analyses. Due to various conditions affecting sensor operations,
the communication channels, recording steps, or the recording
media, the recorded data might have missing values, errors, or
anomalous values. An effective way to clean up these problems
is to replace these missing values, errors and anomalous values
with expected values, a process generally known as imputation.
In this work, we survey commonly used missing value impu-
tation techniques and compare their performance on a set of
building monitoring data. To compare the different types of
sensor measurements with widely varying characteristics, we
use normalized root mean squared error (NRMSE) as the key
metric for the effectiveness of the imputation methods. We ad-
ditionally consider periodicity and run time when considering
comparing methods. Through extensive testing, we find that
for small gap sizes, up to 8 consecutive missing values, linear
interpolation performs the best; for larger gaps stretching up
to 48 consecutive missing values, K-nearest neighbors provides
the most accurate imputations; for even larger gaps, more
computational intensive methods, such as matrix factorization,
achieve the smallest NRMSE. Additionally, we observe that
these computationally intensive algorithms not only provide
accurate imputations for large gaps, but are also more robust
across all types of sensors.

Index Terms—Matrix factorization, interpolation, imputation,
building monitoring

1. Introduction

Time series data is a common form of data record-
ing, present across nearly all domains of research, from
economics to meteorology. This type of data proves to be
incredibly useful, with researchers performing analyses for
tasks such as pattern recognition, forecasting, and system
optimization; however, the results are highly dependent on
the reliability of the data and completeness of the informa-
tion.

A crucial application of time series analysis lies in
building performance analysis, with buildings accounting
for approximately 40% of the primary energy consumption
in the United States. With the advancement of Internet of
Things (IoT) and smart sensing and metering technologies,
the building operation, control, and maintenance process
is getting digitized; building environment (e.g., space air
temperature, humidity, CO2 concentration; outdoor weather
parameters including air temperature, humidity, solar irra-
diance, wind speed and direction), energy (e.g., electricity
and/or natural gas consumed by lighting, HVAC (heat-
ing, ventilation, and air conditioning), plug-in equipment,
service water heating), and operational data (e.g., from
building automation and control systems), in the form of
time series data, have been collected and saved. Building
performance diagnostics and improvements through data
analytics demonstrate a huge potential to improve occupant
satisfaction while reducing energy consumption and carbon
emissions in buildings. However, due to the sensor failures
and network disconnection, the time-series data collected
by the sensor networks in many buildings is inconsistent in
quality, resulting in noisy data with significant proportions
of missing values that hinder the building performance
analysis and improvements. Furthermore, due to the time
required to calibrate, reinstall and restore a sensor, the data
gap size, i.e., stretches of consecutive missing values, could
be up to several weeks in some circumstances.

Many applications need to deal with similar missing val-
ues and related data quality issues, and an effective approach
is to replace these missing or anomalous values with the
expected ones, a process generally known as imputation [1],
[2], [3], [4]. Based on the characteristics of the data and
the underlying application, what we expect the missing
values to be, i.e., exactly how to impute the values, will
be different. For example, a simple approach would be to
assume the missing values connect the nearest good mea-
surements through a linear function, which leads to linear
interpolation as an imputation method [3], [5]. In many
cases, where the measurements change slowly, this classic
approach is very effective. A question we need to investigate
is whether building energy data measurements are chang-
ing slow enough that this approach might actually work.
Similarly, there are many different imputation methods in
the published literature [1], [2], [3], [4]. The plethora of



imputation approaches poses the pressing question of which
methods are effective for building energy applications, and
the conditions in which these methods perform well.

In this work, we plan to examine most commonly used
imputation approaches for time series data including the
linear interpolation method mentioned above, and common
interpolation methods such as the cubic splines. In addition
to these univariate methods, we will also examine multi-
variate imputation methods, such as multiple imputations
via chained equations, matrix factorization, and K-nearest
neighbors, which have proven to be effective in a wide
variety of applications, e.g., electricity [6], genetics [7], and
vehicle safety [8]. Within the category of time-series data,
researchers have also found high accuracy imputation meth-
ods through expectation maximizing algorithms, as in the
case with multivariate meteorology data [9]. There are also
many techniques under various names such as recommender
systems and matrix completion techniques, which could be
considered imputation methods, that have been successfully
used in different applications [10], [11].

Despite various studies on missing value imputation
effectiveness across a wide variety of domains, there has
been little work on imputing missing values specific to
buildings’ time-series data, which contain unpredictable data
gaps at varying sizes. Building data exhibits some unique
characteristics that could be leveraged for missing data
imputation. For instance, building data is highly periodical
due to occupancy schedule and weather variation. Identi-
fying those patterns and behaviors through data-driven ap-
proach could significantly improve data imputation accuracy.
Common univariate time series imputation methods do not
leverage such characteristics and often produce inconsistent
results that deviate significantly from the actual measured
values. Furthermore, the use of multivariate methods across
different sensor recordings assumes specific relationships
between sensors, which may cause misleading results for
future work on the imputed dataset. Given these issues, it
becomes essential to find effective imputation methods that
only consider the data of a single sensor.

In this study, we empirically evaluate the effectiveness
of both univariate and multivariate imputation methods for a
single sensor’s recordings across different contexts of sensor
category, missing rates, and gap sizes. Univariate imputa-
tion methods include linear interpolation (LIN) and spline
interpolation (SPL), and multivariate imputation methods
include K-nearest neighbors (KNN), multiple imputations
via chained equations (MICE), iterative singular value de-
composition (SVD-EM), and matrix factorization (MF) via
stochastic gradient descent (SGD).

We select these methods due to their distinct approaches
to generating missing value imputations, from established,
simple interpolations generally used for time series to ma-
chine learning approaches developed for recommendation
systems. The two univariate methods use polynomials up
to degree 1 and 3 for linear and spline interpolation re-
spectively. KNN uses a weighted mean that considers sim-
ilarity among samples, and MICE uses multivariate linear
regression to generate its imputations. SVD-EM combines

a low-rank, orthogonal approximation with an expectation-
maximising procedure, and MF uses SGD, a simple yet
powerful machine learning algorithm. While no means a
comprehensive testing of all missing value imputation meth-
ods, the chosen methods provide a good indication of which
general imputation approach works best with building sensor
data, which naturally leads to further optimization by testing
more advanced methods with similar approaches.

For multivariate methods, we reorganize the structure
of a single sensor’s time series data into a matrix, using
the naturally occurring periodicity (weekly in this case) to
determine its dimensions to leverage the historical periodic
pattern for data imputation. In preliminary tests, which
tested row lengths in multiples of days, we saw that the most
accurate imputations are produced through reorganizing the
time series into weeks, the dimension that corresponds to
the periodicity present in the data.

To evaluate imputation performance, we consider impu-
tation accuracy with Normalized Root Mean Square Error
(NRMSE) [12] between imputed and masked values, visual
similarity of the imputations, and runtime. This version of
NRMSE measures the imputation error against the natural
variations in the original data and has a number of theoret-
ical advantages over other normalization approaches [13].

Key contributions of the work include:

• We systematically examine the options to reorganize
the data to best take advantage of the inherent struc-
ture in the building monitoring data to best utilize
the strengths of the well-known imputation methods.

• For a variety of imputation methods, we tested each
of them to determine the best parameters for optimal
performance.

• Through extensive testing, we determine that the best
imputation method is significantly affected by the
gaps. For gap sizes up to 8, the linear interpolation
produced the smallest NRMSE; for large gaps up
to 48, KNN was the most accurate; while for even
large gaps, MF is the most effective.

• While computationally expensive algorithms require
significantly longer runtimes, these methods not only
provide the most accurate imputations for large gaps,
but also demonstrate robustness across sensor cate-
gory, missing rate, and gap size.

• The findings in this study can be further applied to
other time series, as the methods in this study are
tested across both periodic and nonperiodic data. Un-
like common univariate methods, multivariate meth-
ods demonstrate the ability to accurately impute
missing values for both periodic and nonperiodic
data across large stretches of missing values.

2. Background

2.1. Dataset

The building energy data used in this study was collected
from Lawrence Berkeley National Laboratory (LBNL)’s



TABLE 1. SENSOR DATA INFORMATION BY CATEGORY

Category Sensor Type Description Number of Sensors Missing Rate

Electricity Consumption Data

mels S Miscellaneous electric load for the South Wing 1 0.35
lig S Lighting load for the South Wing 1 0.21
mels N Miscellaneous electric load for the North Wing 1 0.21
lig N Lighting load for the North Wing 0.98
hvac N Heating Ventilation and Air Conditioning load for the North Wing 1 0.11
hvac S Heating Ventilation and Air Conditioning load for the South Wing 1 0.11

HVAC Operation Data

hp hws temp Heat pump heating water supply temperature 1 0.19
rtu fltrd sa fr Roof Top Unit filtered supply air flow rate 4 0.20
rtu sa temp Roof Top Unit supply air temperature 4 0.20
zone fan spd Supply air fan speed of specified zone 44 0.15-0.45
zone hw valve Heating water valve position of specified zone 51 0.14-0.24

Temperature Data zone temp Zone temperature of exterior zone 51 0.14-0.24
cerc templogger Zone temperature of interior zone 16 0.07-0.13

Building 59, a four-floor office building that houses two
floors’ office spaces, NERSC computing facility, and me-
chanical equipment. The indoor conditions of the two-
floor office spaces are maintained through the four rooftop
units as part of the HVAC (Heating, Ventilation, and Air-
Conditioning) system. The collected dataset contains mea-
surements from 269 sensors over the timespan of two years,
from January 1st, 2018 to January 1st, 2020. At the sampling
rate of half-hour, we have 35,040 expected measurements
per sensor. Table 1 describes the specific categories, sensor
counts, and data missing rate.

Plots of sensors in Figure 1 in each of the categories
explicitly demonstrate key characteristics of this dataset
that determine how we evaluate the imputation errors. Sen-
sors measure different types of data and have significantly
different standard deviations across the two-year period:
temperature data tends to remain in a narrow range, while
other sensors vary significantly. Therefore, it becomes im-
perative to normalize results when comparing or averaging
across sensors. Within a sensor’s recordings, differences in
behavior between the first and second year, as shown by the
energy and HVAC operation data, are present.

A crucial consideration of missing value imputation is
the mechanism in which missing values occur within a
dataset [14], which determines whether missing value recov-
ery is possible. The three mechanisms of missingness are as
follows: Missing Completely at Random (MCAR), where
the likelihood of a data point being missing is unrelated to
the values of any variables, whether missing or observed,
Missing at Random (MAR), where the likelihood of a data
point being missing is unrelated to the missing values but
may be related to the observed values of other variables,
and Missing Not at Random (MNAR), which indicates that
the likelihood of a missing data point depends on the actual
value of this datapoint. In the case of MNAR, missing value
recovery is near impossible with the use of previous data,
and would provide inaccurate estimates with our method
choices.

The studied dataset demonstrates a MAR pattern. For
this dataset, missing values are not completely random, but
can be fully accounted by the time variable. The missing
rates in year 1 are significantly higher than year 2 (Figure
2) due to frequent commissioning work of the building in

Figure 1. Plots of Sensor Recordings By Category: the unit of energy is
kW, unit of temperature is degree Fahrenheit, unit of HVAC operation is
percentage

the first year. However, these missing values do not seem to
be related to the actual value of the missing data.

Naturally, a significant number of sensors demonstrate
periodicity. Some periodic sensors have high degrees of
autocorrelation with values that are apart by a multiple of
48 (number of recordings in a day), which indicate the
presence of cycles in multiples of days. Other periodic
sensors demonstrate significant correlations with values 336
(number of recordings in a week) apart, demonstrating
weekly cycles. The nonperiodic data demonstrates autocor-
relation properties that suggest its readings are near constant:
autocorrelation values up to 384 recordings apart remain
close to 1, as shown in Figure 3.

Given that the longest cycles in the data are weekly,
we plan to take advantage of the natural periodicity present
through reorganizing one-dimensional time series into a data
matrix. Please refer to Section 3.1 for further details.

2.2. Imputation Methods

The first step of the imputation process is to reformat the
data from a vector to a matrix, so that the periodical patterns
could be better leveraged. Then six different approaches
have been compared and applied to impute the data. The
following section introduces the general framework of each
imputation method. We note that these methods were chosen



Figure 2. Average Missing Rate Across All Sensors In Respect to Weeks

Figure 3. Autocorrelation Plots for a Single Sensor in Each Category

to stretch across various categories of imputation methods,
from simple linear fits to machine learning algorithms. We
will only describe basic implementation principles behind
those imputation methods in this section. For implementa-
tion details for all methods other than interpolation methods,
please refer to the fancyimpute python package documenta-
tion.

2.2.1. Linear Interpolation. Linear interpolation is a com-
monly used method to impute missing values. After flatten-
ing the reformatted data back to a vector, this method takes
the last value before the gap and first value after the gap
and linearly interpolates the missing values between them.

2.2.2. Spline Interpolation. Spline interpolation expands
upon interpolation approaches by using a polynomial of up
to degree 3 for an interval of missing values. It then chooses
polynomial pieces such that the results fit smoothly together,
resulting in a piecewise function for the data called a spline
[15].

2.2.3. K-Nearest Neighbor (KNN). KNN imputes values
using the weighted mean of the k most similar rows,
weighted by their similarity [16]. KNN is a generalization
of the classic linear interpolation and is widely used in
cases where relations among the dimensions of the data are
complex. Since the relation among the sensors are complex
and unknown as this time, we believe KNN is potentially
a good approach for imputation of building energy data. In

this study, we set k = 5 and use the Pearson correlation
coefficient r as the metric for similarity. Given the worst
case scenario where a pre-processed sensor only has 10
complete rows (refer to section 3.1), k = 5 maximally
allows for half of the most similar sensors to contribute to
the weighted mean. Furthermore, initial tests indicate that
increasing k results in marginal differences in both accuracy
and robustness of KNN.

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(1)

2.2.4. Multiple Imputations through Chained Equations
(MICE). MICE is a multivariate imputation method for
missing values. MICE was applied by Ruggles et al. to
fill in the missing values of grid-level electricity demand
data data [17]. Because the hourly electricity usage exhibit
similar daily patterns as many of the measurements in our
data set, we believe MICE is potentially a good technique
for imputing missing values in our use case. MICE generates
estimates from modeling each feature with missing values
as a function of other features [5]. Missing values are first
imputed using the mean of the column. In the following it-
erations, each column is set as the response variable sequen-
tially, with other columns forming the observed explanatory
variables. Missing values present in the set response variable
column are imputed through a multivariate linear regression
model. One sweep through each column is an iteration,
this method runs until a maximum number of iterations
is reached. We set the maximum number of iterations to
10; preliminary results indicate greater numbers of iteration
result in longer runtimes and minimal changes in NRMSE
scores.

2.2.5. Iterative Singular Value Decomposition (SVD-
EM). Expectation Maximization (EM) procedures stand
as a direct alternative to MICE due to making minimal
assumptions about the distribution of the underlying data
[18]. Rather than using a multivariate regression model,
with columns as distinct variables, SVD-EM extracts crucial
weekly trends through SVD, and further refines these trends
through the an EM procedure. With initial data analysis,
we know that periodic, weekly trends are present in the
sensor data, making SVD-EM a good approach for testing.
This imputation method first initializes the missing values
as the column means, similar to MICE. Then, rank-k SVD
approximation of the matrix re-imputes the missing values;
this procedure is terminated until a maximum number of it-
erations is reached, or there is minimal change in the matrix
with respect to its Frobenius norm. [19]. In this study, we
set k = 1, and maximum number of iterations to 1,000. For
this choice of rank, we choose rank-1 approximations due
to preliminary NRMSE results from testing across different
rank approximations across gap lengths, with missing rate
fixed at 0.4 and across all sensor categories (Figure 4). Note
that these results with rank approximation may be specific
to building energy data with prevalent periodic trends.



Figure 4. Average NRMSE Across Gap Size with Different SVD-EM Ranks

2.2.6. Matrix Factorization via Stochastic Gradient De-
scent (MF). Matrix Factorization was widely used to im-
pute missing data. For instance, Zhou et al. used Matrix
Factorization to recover missing traffic data [11]. MF works
based on the assumption that different days of measurements
(different rows of matrix) are generated from a shared
subspace, therefore the data matrix of different days can
be decomposed using a common factor [20]. MF is widely
used to develop a recommendation system based on the
assumption that the same customer would prefer products
with similar attributes [10]. MF decomposes the incomplete
matrix of sensor data into rank-k matrices W and H . W
and H are found by minimizing the difference between ap-
proximated values from rank-k matrix W ∗H and observed
values present in the sensor data matrix through stochastic
gradient descent [21]. The W ∗H matrix is then a complete
matrix, with all missing values filled. Figure 5 provides more
specifics on the stochastic gradient descent algorithm.

There are multiple MF methods, such as LU Matrix
Decomposition, QR Matrix Decomposition, Non-negative
Matrix Decomposition and etc. LU Matrix Decomposition
only works for square matrices, which is not the case in
this study. Other matrix decomposition methods impose
other limitations, such as orthogonality in QR decomposi-
tion, non-negativity in non-negative decomposition. We have
tested all common versions of matrix decomposition and
found the matrix factorization through SGD produced the
best answer for our data set.

In later tests, we will always use this matrix factorization
with SGD. We set k to be a full-rank approximation of the
sensor data matrix, with k = 336. Each step (learning rate)
is set to 0.001 with 10,000 epochs, and the sparsity penalties
for W and H are L1 and L2 respectively. We choose rank-
336 approximations with this method due to two distinct
reasons: low-rank approximations cause increases in runtime
(Table 2) and inconsistent results across sensor categories
(Figure 6). By testing for average NRMSE scores across
larger gap sizes, with a set missing rate of 0.4 for all sensor
categories, we see that full-rank approximations are more
robust, with acceptable runtimes.

Figure 5. Gradient Descent for Matrix Factorization

Figure 6. Average NRMSE Across Gap Size with Different SVD-EM Ranks

3. Experiment and Analysis

We examined imputation effectiveness both with vari-
able missing rates and gap sizes. While many common
studies focus on testing against only missing rates, build-
ing energy data differs in that many missing values occur
consecutively due to the time needed to re-calibrate, reinstall
and restore the sensors. As a result, gaps in the building data
are often much larger than 1, and therefore testing effective
imputation for large gaps that span up to a nearly a week
in length is necessary for this particular type of data. These
experiments were run on CORI, a Cray XC40 with a peak
performance of about 30 petaflops, at the National Energy
Research Scientific Computing Center.

3.1. Data Preprocessing

Given that many of the sensor recordings exhibit signif-
icantly different behavior between the two years, we split
the recordings for each sensor into two distinct recordings,
each representing a separate year.

For imputation methods other than linear and spline
interpolation, they require the data to be in a matrix form.
Therefore, we pre-process the year-long time series data
with the algorithm in Figure 7.

A single sensor, with recorded values y, is reshaped into
a Lxl matrix, with the dimensions of the matrix being deter-
mined by the time period in which we consider a single cycle

TABLE 2. AVERAGE RUNTIMES(S) FOR SINGLE SENSOR IMPUTATION,
MF RANK TESTINGG

1 2 4 16 168 336
10.3 8.81 8.92 8.09 7.96 6.18



Figure 7. Matrix Reorganization Method (figure obtained from [22])

(Figure 7). We set l = 336, indicating weeks as a single
observation/row as the default method for comparison in
order to capture weekly trends, such as differences between
weekdays and weekends. To test error with NRMSE, any
rows containing missing values are then removed from the
reorganized sensor data, resulting in a matrix containing
complete weeks for each sensor.

For testing across all methods, we only consider year-
long recordings that contain 10 complete rows after matrix
reorganization.

We have tested different time windows for the matrix
reorganization, ranging from a few days to many weeks.
Since we exclude rows with missing values from the cur-
rent tests, we have fewer rows when each row covers a
longer time window. While with a longer time window,
we anticipate to see more variety of patterns and therefore
potentially more accurate imputations. Tests show when the
time window is shorter than a week, we miss important
weekly patterns and the imputations suffer low accuracy.
While increasing time window to multiple weeks does not
actually increase imputation accuracy likely due to reduced
number of examples in the training data. In short, we use
one week as the default time window for data reorganization
throughout the remaining of this work.

3.2. Masking Algorithm

A masking algorithm was used to generate artificial
missing values from the pre-processed data of complete
daily recordings. This algorithm generates uniformly sized
gaps of a set length up to a certain proportion. For this study,
we test across gap lengths of 1, 4, 8, 12, 16, 24, 72, 120,
168, 216, 264, 312, and missing proportions 0.1, 0.2, 0.3,
and 0.4.

3.3. Comparison of Imputation Methods

The aforementioned imputation methods are evaluated
on the basis of Normalized Root Mean Square Error
(NRMSE), runtime, and graphical observation. Of these
evaluation criteria, we primarily focus on NRMSE scores
and graphical observation of the imputed values to determine
effectiveness. Runtimes, representative of the computational
resources required for the data imputation, are used to

distinguish optimal methods when given comparable error
scores and reasonable plots for the missing values.

3.3.1. Normalized Root Mean Square Error (NRMSE).
While Root Mean Square Error (RMSE) is commonly used
to compare missing value, normalization of RMSE is cru-
cial in this study. We have many measurements of in-door
temperatures. Since these measurements are for an office
building with well-regulated temperature, these temperature
values are very close to each other. In contrast, the variables
related to HVAC operation and electricity usage vary in
a much wider range. Additionally, the different types of
sensors are also measured in different units, which lead
to large variations among the measurement values. Further-
more, some measurements have a natural variation over time
as described before, while others remains nearly constant
through the duration of the study. Therefore, it is important
to normalize the error measures so as to not give some
variables more importance in the judging the effectiveness of
an imputation methods. There are variety of normalization
procedures in the literature. We have experimented with
normalizing the sensor measurements as well as normal-
izing the errors. Based on our observations as well as the
theoretical analyses from published literature [12], [13], we
have selected to normalize RMSE by the standard deviation
of the original data:

NRMSE =
1

σ

√√√√(
1

n
)

n∑
i=1

(yi − xi)2

Given that we test multiple sensors per category, we
consider average NRMSE of each category, and look at
the standard deviation of NRMSE to record performance
consistency. If the standard deviation of NRMSE is small,
then the imputation method performs consistently well on
different sensors of the same sensor type.

3.3.2. Visual Similarity. While error rates often give a
good basis to determining imputation effectiveness, it fails
to give a complete picture of how visually similar the
imputed data is. By plotting the imputed data, we can further
distinguish imputation methods with similar NRMSE scores
by examining how similar the imputed data is to the actual
recordings.

3.3.3. Runtime. Considered after two aforementioned cri-
teria, runtime roughly indicates the computational expense
of each method. With similar NRMSE and visual similar-
ity, methods with shorter runtimes are preferred. Gener-
ally, common univariate methods are expected to run very
quickly, while multivariate methods vary in computational
expense, making runtime a valid method to determine ef-
fective imputation approaches.

4. Results

We compared the six different imputation methods under
the context of different missing rates and gap sizes. For



missing rate testing, we fix the gap size to 48; for gap size
testing, we fix the missing rate to 0.4. By providing results
for each sensor category, we further distinguish category
specific results for imputation effectiveness.

4.1. Missing Rate Testing

Table 3 shows the average error of different sensor
types for each imputation method, which indicates accu-
racy. Across all sensor categories and missing rates, we
observe that multivariate methods provide the lowest im-
putation errors: KNN, MICE, SVD-EM, and MF. We not
only care about the NRMSE (in Table 3), but also the
standard deviation of NRMSE (in Table 4), as we hope
the imputation method has consistent performance across
different sensors of the same sensor type. As shown in Table
4, not only do these four methods (KNN, MICE, SVD-EM,
and MF)) produce the lowest average NRMSE scores, but
do so consistently by having lower standard deviations for
NRMSE in all categories.

4.2. Gap Size Testing

Compared to missing rate, variable gap sizes tell a
more interesting and complicated story of the imputation
effectiveness of different methods. Table 5 demonstrate
the average NRMSE scores obtained by testing imputation
methods against variable gap sizes, with a fixed missing rate
of 0.4. Again, despite stratifying by sensor type, imputation
effectiveness between the methods remain relatively similar.
Across all categories, we see that linear interpolation gener-
ally provides the smallest average NRMSE values if the gap
lengths are less than 8 (i.e., 4 hours). Between the gap size of
8 and 48, KNN and SVD-EM generally produce the lowest
average NRMSE scores. For gaps larger than 48, equivalent
to one day missing, MF and MICE provide the most accurate
results, with MF delivering a slightly lower NRMSE scores
on average. Figure 8 shows a summary of LIN, KNN, and
MF effectiveness across different gap sizes. By considering
the standard deviation of NRMSE scores obtained across all
categories, we see that low standard deviations occur with
lower NRMSE scores, demonstrating consistently accurate
imputation across all sensors.

4.3. Imputation Plots

While NRMSE values demonstrate the accuracy of the
imputation, plots of the imputed values also provide valu-
able information through visually comparing the imputation
results with actual data.

For gaps with less than 8 in length, as shown in figure 9,
we notice that both linear and spline interpolation provide
unrealistic imputations compared to the actual data; how-
ever, because the missing gap is small, these imputations do
not result in significant changes to the overall shape of the
recording across the year.

Figure 8. Average NRMSE with Respect to Gap Size

Figure 9. Imputed Values for 4-hour Gap

Figures 10 and 11 show that with larger gaps of 48 and
216 consecutive recordings, the two interpolation methods
provide unrealistic imputations to the dataset.

For all sizes of gaps, matrix methods KNN, MICE, SVD-
EM, and MF provide visually similar imputed values to the
actual dataset.

4.4. Consistency of Imputation Effectiveness

4.4.1. Robustness. Among the imputation methods, we find
MF and MICE to be the most robust methods under differ-
ent missing rates and gap sizes. Across the three sensor
categories, MF and MICE report average NRMSE increases
by only 0.09 and 0.07 respectively when the missing rate
increases from 0.1 to 0.4. This trend reemerges in gap
size testing: compared to other methods, the average in-
crease of NRMSE for MF and MICE are 0.04 and 0.25
respectively when gap sizes increase from 1 (0.5 hour)
to 312 (6.5 days). While all imputation methods perform
similarly across different sensor categories, MF and MICE
demonstrate robustness with respect to increasing gap sizes
and missing rates by averaging the smallest increases in
NRMSE among the other methods tested.

4.4.2. Runtime. Table 7 demonstrates the average runtime
of each imputation method in seconds. Notably, we observe



TABLE 3. AVERAGE NRMSE ACROSS MISSING PROPORTIONS

Method Electricity HVAC Operations Temperature
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

LIN 1.33 1.09 1.22 3.22 0.978 0.97 1.11 1.08 0.997 1.053 1.159 1.20
SPL 485 73.0 1040 6990 43.2 40.4 500 2160 155 1840 282 7660

KNN 0.698 0.803 0.837 0.846 0.655 0.736 0.801 0.834 0.605 0.645 0.678 1.60
MICE 0.903 0.930 0.927 0.961 0.975 0.993 0.985 0.971 0.688 0.747 0.780 0.828

SVD-EM 0.698 0.860 0.722 0.776 0.777 0.751 0.774 0.927 0.593 0.619 0.748 2.14
MF 0.747 0.815 0.830 0.847 0.824 0.829 0.842 0.883 0.745 0.803 0.832 0.861

TABLE 4. STANDARD DEVIATION OF NRMSE ACROSS MISSING PROPORTIOS

Method Electricity HVAC Operations Temperature
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

LIN 0.704 0.227 0.256 2.64 0.599 0.430 0.795 0.586 0.467 0.535 0.629 0.961
SPL 1070 147 12400 10900 232 240 3430 15800 434 14800 908 46000

KNN 0.163 0.102 0.136 0.108 0.324 0.269 0.500 0.413 0.166 0.164 0.113 3.39
MICE 0.129 0.111 0.165 0.162 0.446 0.349 0.291 0.262 0.171 0.139 0.096 0.088

SVD-EM 0.081 0.147 0.143 0.131 0.278 0.220 0.189 0.494 0.101 0.112 0.207 3.187
MF 0.140 0.138 0.204 0.173 0.328 0.232 0.218 0.232 0.145 0.138 0.123 0.115

TABLE 5. AVERAGE NRMSE ACROSS GAP SIZES

1 4 8 12 16 24 48 72 120 168 216 264 312
LIN 0.367 0.491 0.668 0.701 0.852 0.861 3.22 3.51 1.13 10.2 23.0 1.09 16.2
SPL 0.474 1.165 221 8.913 26.5 234 6990 66000 153 99700 3.90e+06 172000 80700

KNN 0.781 0.770 0.809 0.792 0.795 0.820 0.846 0.872 1.07 1.73 1.635 1.66 1.24
MICE 0.800 0.857 0.910 0.932 0.940 0.964 0.961 0.969 0.920 0.961 0.956 0.884 0.964

SVD-EM 0.690 0.697 0.712 0.714 0.728 0.758 0.723 0.773 1.02 1.04 0.981 1.42 1.49

Electricity

MF 0.980 0.925 0.920 0.920 0.896 0.914 0.847 0.899 0.924 0.891 0.859 0.880 0.887
LIN 0.208 0.391 0.534 0.640 0.720 0.818 1.08 0.992 1.26 1.76 2.64 2.60 2.36
SPL 0.225 0.624 5.46 10.9 93.4 488 2150 5630 361 830000 148000 4220 1.01e+06

KNN 0.656 0.667 0.710 0.730 0.743 0.744 0.834 0.973 1.65 2.84 2.42 2.77 2.73
MICE 0.945 0.858 0.844 0.886 0.911 0.957 0.970 0.979 0.948 0.945 0.962 0.930 0.882

SVD-EM 0.776 0.778 0.778 0.766 0.852 0.810 0.813 0.910 1.52 2.34 2.10 2.16 2.17
HVAC Operations

MF 0.814 0.826 0.833 0.835 0.850 0.848 0.883 0.866 0.861 0.873 0.836 0.868 0.850
LIN 0.118 0.248 0.409 0.486 0.627 0.713 1.20 1.34 3.76 1.17 2.38 5.33 6.56
SPL 0.118 0.642 3.32 11.6 74.9 6.22 7660 4960 4430 137000 12100 3.90e+06 2.48e+06

KNN 0.549 0.564 0.573 0.605 0.619 0.607 1.603 1.58 9.21 25.0 20.0 23.6 24.8
MICE 0.297 0.413 0.503 0.597 0.626 0.697 0.828 0.799 0.855 0.887 0.834 0.917 0.834

SVD-EM 0.563 0.574 0.594 0.597 0.606 0.652 0.855 5.14 11.4 23.2 20.3 23.6 24.1

Temperature

MF 0.762 0.772 0.806 0.817 0.810 0.823 0.861 0.844 0.885 0.893 0.824 0.847 0.899

TABLE 6. STANDARD DEVIATION OF NRMSE ACROSS MISSING PROPORTIONS

1 4 8 12 16 24 48 72 120 168 216 264 312

Electricity

LIN 0.143 0.114 0.080 0.099 0.178 0.117 2.64 3.75 0.145 7.60 24.2 0.140 18.8
SPL 0.213 0.510 485 10.8 17.7 278 10900 145000 181000 1.01e+06 7.16e+06 352000 1.80+06

KNN 0.127 0.113 0.110 0.081 0.095 0.092 0.108 0.145 0.255 0.653 0.655 0.722 0.457
MICE 0.126 0.126 0.156 0.157 0.173 0.126 0.162 0.184 0.172 0.267 0.239 0.151 0.206

SVD-EM 0.136 0.147 0.137 0.122 0.139 0.150 0.127 0.119 0.428 0.227 0.415 0.272 0.646
MF 0.140 0.177 0.160 0.175 0.174 0.138 0.173 0.131 0.146 0.111 0.148 0.190 0.154
LIN 0.118 0.154 0.194 0.222 0.257 0.254 0.586 0.391 1.77 3.16 8.39 10.2 10.8

HVAC Operations

SPL 0.154 0.673 32.1 80.270 562 3790 15800 53900 1500 6.50e+06 859000 257000 9.83e+06
KNN 0.224 0.230 0.223 0.235 0.226 0.241 0.413 1.04 2.57 4.63 3.41 4.66 3.97

MICE 0.874 0.403 0.261 0.271 0.248 0.261 0.262 0.286 0.244 0.252 0.292 0.251 0.249
SVD-EM 0.329 0.330 0.352 0.213 0.521 0.316 0.237 0.435 1.35 2.45 2.01 2.48 2.68

MF 0.195 0.187 0.198 0.190 0.189 0.195 0.232 0.210 0.209 0.230 0.216 0.217 0.232

Temperature

LIN 0.080 0.099 0.143 0.175 0.237 0.241 0.961 1.27 11.3 0.565 2.38 11.1 10.5
SPL 0.056 0.709 8.74 28.0 17.6 13.6 46000 9990 11300 356000 31000 1.58e+07 1.02e+07

KNN 0.104 0.128 0.086 0.155 0.096 0.093 3.390 2.74 7.75 10.0 7.02 7.75 8.37
MICE 0.091 0.114 0.102 0.109 0.082 0.094 0.088 0.080 0.112 0.144 0.067 0.158 0.111

SVD-EM 0.117 0.119 0.157 0.136 0.119 0.164 0.110 0.114 0.104 0.286 0.504 1.13 0.701
MF 0.103 0.0805 0.0968 0.0673 0.0792 0.098 0.115 0.112 0.116 0.083 0.100 0.133 0.162

TABLE 7. AVERAGE RUNTIMES(S) FOR SINGLE SENSOR IMPUTATION

LIN SPL KNN MICE SVD-EM MF
0.03 0.05 0.02 11.83 0.09 6.18



Figure 10. Imputed Values for 1-Day Gap

Figure 11. Imputed Values for 4.5-Day Gap

that the two most robust and best performing methods for
large missing rates and gap sizes, MICE and MF, require
significantly longer computation time. Given similar aver-
age NRMSE values and NRMSE standard deviations, MF
outperforms MICE with a 48% decrease in average runtime.
Furthermore, we are able to further differentiate KNN and
SVD-EM through runtime, as they provide similar average
NRMSE scores and realistic imputations. As compared to
SVD-EM, KNN reduces runtimes by 78%, making it the
optimal choice for imputing gaps within a day (gaps of size
48).

5. Conclusion

Data cleaning and gap filling is the prerequisite of
applying data analyses to enhance building performance. In
this study, we applied and compared six data imputation
techniques from the perspective of imputation errors, im-
putation shape, and computation time under the context of
building environment, energy and operational data. We find
LIN, KNN, and MF to be the most effective imputation
approaches for gap sizes within 4 hours, a day, and 6.5
days (gap sizes 8, 48, 312 respectively). For gap sizes of
4 hours, 1 day, and 6.5 days, LIN, KNN, and MF stand
out as the fastest methods that achieve realistic imputations

with minimal error, as indicated by the criterion of runtime,
imputation plots, and NRMSE.

By testing across different sensor categories, missing
rates, and gap sizes, we observe that the effectiveness of the
six imputation methods is most sensitive to the gap sizes
(the consecutive length of data that is missing). Common
univariate time series imputation methods work well when
the gap sizes are within 8 consecutive recordings; however,
they struggle with larger gaps due to their inability to
accurately fit periodic data. By reorganizing time series
into matrices, where each row represents a weekly cycle,
multivariate imputation methods can far more effectively
impute large gaps in the data. While computational expen-
sive algorithms such as MICE and MF require significantly
higher computational resources, these methods prove to be
the most robust: across different sensor categories, missing
rates, and gap sizes, MICE and MF consistently generate
imputations that have an average NRMSE of 1 standard
deviation for each sensor.

Future work lies in further optimizing the computational
expensive methods such as MF with the tuning of hyperpa-
rameters, constraints on layer weights, or rank optimization
to see reductions in both NRMSE and computational time.
Future work also includes further evaluation of these imput-
ing techniques using other building datasets.
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