UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Assessing Transfer of a Complex Skill

Permalink
https://escholarship.org/uc/item/2zq3h06{

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Author
Katz, Irvin R.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2zq3h06f
https://escholarship.org
http://www.cdlib.org/

Assessing Transfer of a Complex Skill

Irvin R. Katz

Division of Cognitive and Instructional Science
Educational Testing Service
Princeton, NJ 08541

katz@clarity.princeton.edu

Abstract

While recent studies have demonstrated various ways
that transfer might be achieved in a domain, the
measures used to assess transfer rarely stray from time
and error data. This paper examines transfer in the
complex skill of computer programming in order to
explore more flexible and sensitive methods of
assessing transfer. In the experiment, subjects wrote
both a PASCAL and a LISP version of two
programming problems. Although a simple accuracy
measure provides evidence for knowledge transfer
between the two programming languages, measures
based on analyses of the task domain (i.e., partial-
credit accuracy, strategy use) provide much stronger
evidence. Curiously, these measures target different
subjects as exhibiting transfer, suggesting that more
than one type of knowledge may be available for
transfer.

Introduction!

Transfer is the phenomenon in which knowledge or skills
learned in one context affect the learning or performance of
another task. Not too long ago, an article on transfer
would start with an argument for why transfer might be
found between two domains and end with inconclusive
results (Gray & Orasanu, 1987). However, the recent
literature has seen a wave of studies demonstrating the
various ways that transfer can be achieved through careful
analysis of the task domains (e.g., Singley & Anderson,
1990).

While the methods used to achieve successful results
have progressed, there has been little change in the ways

I'This research was supported in part by a National Science
Foundation Graduate Fellowship and by Contract
MDA903-85-K-0343 from the Army Research Institute and
the Air Force Human Resources Laboratory. Preparation of
this manuscript was supported by a grant from the Japan
Society for the Promotion of Science. I thank John
Anderson, Jerry Feigenbaum, and Claudius Kessler for their
comments on various portions of this work.

775

that transfer is measured. In a typical experiment, subjects
receive training in one domain and then are asked to
perform tasks in another domain. Evidence for transfer is
reported when subjects perform the transfer task either faster
or more accurately than subjects without the benefit of
training. One reason for this use of time and error data
might be because transfer has been investigated in fairly
simple, structured domains (e.g., Tower of Hanoi: Smith,
1986; text editing: Polson, Muncher, & Engelbeck, 1986).
Those studies that use other measures of transfer, such as
subjects’ use of a particular problem-solving strategy, tend
to involve more complex domains like physics and algebra
(e.g., Bassok & Holyoak, 1989).

Unlike most studies of transfer, the motivating question
for this research is not "Does transfer occur?" but rather
"How should transfer be assessed?". This paper describes
an experiment investigating transfer of computer
programming knowledge. By wusing computer
programming as the task domain, we can explore a greater
variety of transfer measures than that possible in more
structured domains, Computer programming has the added
advantage that although it is a complex, semantically-rich
domain, it nevertheless has been intensively analyzed by
many researchers (Pennington, 1985). These prior analyses
form a basis for understanding how transfer might occur in
the computer programming domain.

Because the motivation for this work is an interest in the
nature of any knowledge transfer that might occur, the ideal
experimental task would be one in which the subjects are
likely to try and use previously generated knowledge. As
discussed by Gick & Holyoak (1987), when the surface
characteristics of two tasks are very similar, it is likely that
subjects will attempt to use information learned from one
task while solving the second task. Thus, in the
experiment, subjects were asked to write two versions of
the same programming problems, the versions differing
only in the required implementation language, PASCAL or
LISP.

Most models of programming skill would predict that
transfer should occur in this situation, When writing a
program, typically a programmer devises some initial
mental plan of how the program should work, then begins
implecmenting that plan. Through the process of coding the
program, difficulties with the plan may be uncovered,

mailto:katz@clarity.princeton.edu

requiring the plan to be refined or changed (Green, 1987).
The final result of this processing is not only a program,
but also the refined plan for writing the program, the latter
of which forms the programmer's mental representation of
the just-written program This representation is often
characterized as containing abstract knowledge independent
of the particular computer language used to implement the
program (Rist, 1989).

The programmer's representation serves as the starting
point for the implementation of the second version of the
program in the new language. The coding of the sccond
version proceeds as if this transferred information were the
initial plan developed specifically for the second version.
As a result, in coding the second version, transfer should
occur because the program's plan need not be generated
from scratch. This notion of transfer of planning
knowledge is supported by verbal protocol data (Katz,
1988). Subjects make less verbalizations referring to the
program plan while writing the second version of a
program, but produce an equal number of verbal statements
referring to the actual program code for both versions of a

program.

Method

Subjects. Subjects were 21 students who had just
completed a four week LISP mini-course. All subjects had
already known PASCAL before entering the LISP course.

Materials. Subjects were given two problems, called
Printnums and Addfract, and wrote a LISP and PASCAL
version of each problem. The Printnums problem was to
write a program that translates a given number between 1
and 999 into its corresponding words. Thus, if given
"115," the program should output "ONE HUNDRED
FIFTEEN." Subjects were provided with functions that
returned the appropriate units-, teens, or tens-word given a
digit (e.g., the tens-word function returned "FIFTY" when
given "5"). The Addfract problem was to write a program
that accepts two fractions in numerator-denominator form
and returns the reduced sum of the fractions, also in
numerator-denominator form. Thus, given "5 /6" and "7/
15" the program should return "13 / 10.” Preliminary
analyses revealed that these two problems are of
approximately equal difficulty.

Design. As stated above, all subjects wrote both LISP
and PASCAL versions of the two problems — four
programs total. The ordering of the actual problems
received was counter-balanced. Thus, when discussing the
results, the particular serial order of programs will not be
considered.2

2 An additional manipulation — whether or not subjects’
previous programs were available for reference — was
included in this experiment, but did not affect any of the
reported measures.

776

Procedure. After writing two simple warm-up programs
(one each in PASCAL and LISP), subjects were given the
first problem description. The programs were writlen using
a standard screen editor, and subjects were able to test their
programs whenever they wished. If a subject did not write
a working program within 30 minutes, the subject was
stopped and then given the instructions for the next
problem. Thus, at the most, the experiment lasted
approximately 2.5 hours, including the warm-up exercises.

Results and Discussion

While subjects overall had trouble writing perfectly
working programs (approximately 65% of the programs
written did not execute perfectly), by ignoring syntax errors
and mis-understandings of the problem descriptions, there is
evidence for knowledge transfer between programming
languages (Table 1). For the first version of the programs,
only 48% of the programs were correct. In contrast, 71%
of the second versions were correctly written, and this
interaction is significant by a chi-squared test (x2(1) =
494, p<.05). Clearly, subjects gained knowledge while
writing the first version of their programs that they could
apply in writing the second version.

Considering the closeness of the two tasks, however, it
is strange that so little transfer occurred. Only about one-
quarter of the subjects showed the expected accuracy
improvement. Overall accuracy might not be a particular
sensitive measure of transfer. We need more flexible
assessments of subject performance, ones that are based on
an analysis of the problem-solving tasks.

Correct Incorrect
First Version 20 22
Second Version 30 12

Table 1: Program accuracy

Partial Credit. Using a partial credit scheme for
scoring accuracy provides a more sensitive measure of
transfer. Thirty minutes turned out not to be enough time
for subjects to write a completely working program. Thus,
some of the programs written by subjects were incomplete
(i.e., missing some essential component(s) of a working
algorithm). However, if subjects reused their knowledge in
writing the second version of a program, then they should
have been able to progress further in writing the second
version than they did in writing the first. In other words,
they should have been able to "pick up where they left off"
writing the first version.

In order to judge the completeness of the programs, a
general algorithm was enumerated for each of the two
problems, Printnums and Addfract. As an example, the
Printnums algorithm is shown in Table 2. While there are

alternative algorithms for the problems, the other
algorithms include approximately the same pieces as the
ones enumerated, except in a different order. The parts of
the algorithm that the subject tried to achieve were recorded
for each subject's program. It was not nccessary for a
particular algorithm piece to be completely correct — the
important point is that the subject tried to achieve that
piece. This scoring of each program pair (first and second
versions) was done by a judge blind as to which of the two
programs in a pair was actually written first.

1. Get number

2. Is there a hundreds digit?

3. Calculate hundreds digit

4 Call units function with above value
5. Print/include result of (4)

6. Print/include "hundred”

7. Remove hundreds digit

8. Is there a separate tens digit?

9. Calculate tens digit

10. Call tens function with above value
11. Print/include result of (10)

12. Remove tens digit

13. Handle separator ("-")

14. Is the number a teen?

15. Call teens function on number
16. Print/include result of (15)

17. Is there a units digit?

18. Call units function on number
19. Print/include result of (18)

Table 2: Printnums algorithm

If subjects reused information, then those subjects who
wrote an incomplete program for the first version should
have written a second version including all the pieces of the
first version, plus some more. In contrast, a lack of
transfer would show as the two versions being incomplete
in different ways. For example, the two versions might
consist of different patterns of missing and implemented
algorithm pieces, or the second version may be more
incomplete than the first. Finally, if the two versions are
both complete, it is ambiguous as to whether or not
transfer has occurred.

As shown in Table 3, in 77% of the unambiguous cases
(i.e., excluding the "Both Fully Complete” column),
subjects' second version was more complete than the first
version, even though the two versions were written in
different computer languages. This result is a strong
indication of knowledge transfer; subjects used information
learned in the writing of the first version when writing their
second version of the program in a new language. By re-
using this knowledge, subjects built on work done
previously to produce a more complete program.

777

More Less Both Fully
Pgm. Name Complete Complete Complete
Printnums 11 3 7
Addfract 12 4 5

Table 3: Partial credit analysis

Strategy Use. Another method for assessing transfer
is to observe subjects' use of problem-solving strategies.
In the simplest case, possible strategies would include one
correct method for solving the problem and several incorrect
methods (e.g., "balance” vs. "switch" strategies in the
Missionaries-Cannibals problem and its isomorphs;
McDaniel & Schlager, 1990). In a complex domain such
as programming, there may be a number of strategies that
all lead to a correct solution. Each of these strategies
would result in programs with different overall
organizations. For investigating transfer of strategy use,
the problem Printnums was analyzed because subjects
solved this problem in two very different ways.

The first algorithm used to solved this problem is to
categorize the given number into one of a set of mutually
exclusive categories. For example, some subjects would
categorize the number as either a one, two, or three digit
number and then do the appropriate actions. The important
feature of this solution is that, at the top-level, control is
given to only one set of actions. Subjects usually
implemented this algorithm using a single, nested
conditional statement, so this algorithm will be referred to
as the "nested" condition structure.

The second solution involves breaking the number into
its component digits and performing appropriate actions for
each of the hundreds, tens (or teens), and units digits.
Control-flow might proceed where first a decision is made
about the hundreds digit, and different actions are performed
depending on whether or not that digit is zero (i.e., if a
hundreds digit exists). In either case, however, control
comes back together to handle the remaining two digits of
the number. The distinguishing characteristic of this
algorithm is the recombination of control. Subjects
usually implemented this algorithm using multiple,
separate conditional statements, so this algorithm will be
referred to as the "separate” condition structure.

For the analysis, each of the 21 pairs of programs
written by subjects was categorized as reflecting either a
nested or a separate algorithm, or as ambiguous. As
described above, the categorization of a program as nested
or separate is objective: if the program has a single, top-
level conditional statement, it is categorized as nested. If at
the top-level of the program there are more than one
conditional statements, the program is categorized as
separate. Ambiguous programs were so incomplete that a
distinction between the algorithms could not be made.

Two subjects wrote one ambiguous program apiece, and the
pairs of programs from these subjects were eliminated from
all further analyses, resulting in 19 pairs of programs.

The argument for transfer in this case goes as follows.
First one must demonstrate subjects’ preferences for the two
algorithms under normal circumstances. That is, without
having written another program previously, which
algorithm are subjects more likely to use? When wriling
the second version, transfer would be evident if, as a result
of writing the first version, subjects show a different
pattern of biases toward the two algorithms.

For the first versions of each program pair, there was an
effect of language on algorithm choice. As shown in Table
4, subjects programming in PASCAL showed a strong
tendency to use a separate condition structure while the
LISP subjects showed no such preference. Although the
PASCAL sub;ects bias is significantly different from
chance (x (1)=6.4, p<.025), the interaction is only
marginally significant (x2(1)=2.9, p<.10).

Nested Separate
PASCAL 1 9
LISP 4 5

Table 4: Condition structure choices in each
language (First Version)

As for performance on the second program, subjects
clearly preferred to use the same structure that they had used
on their previous program, even though that program was
written in a different language (Table 5). If no transfer had
occurred, the previously mentioned language-induced biases
would have been evident on the second program as well.
Instead, 14 subjects kept the same general algorithm on
both programs, whllc only 5 subjects switched to the other
algorithm type (x (1)=4.26, p<.05).

Second Version

First Version Nested Separate
Nested 4 1
Separate 4 10

Table 5: Condition structure choices for each
version

So far, we have seen evidence for significant levels of
transfer along two fronts, Subjects’ programs were more
complete on the second versions and the subjects tended to
use the same methods for implementing each version of

778

their programs. The measures based on analyses of the
programming problems, the partial credit and strategy use
transfer measures, provide much stronger and unambiguous
evidence of transfer as compared with a simple accuracy
measure.

Clearly subjects are generating knowledge while writing
their first versions that they are able to use in writing the
second versions of their programs. Thus, there should be a
perfect correlation between the two measures of transfer.
Subjects who re-use information should show transfer on
both measures while other subjects should show a lack of
transfer no matter how transfer is assessed.

As shown in Table 6, this simple model of transfer is
simply wrong; there is no evidence for inter-dependence
between the two measures of transfer. Approximately half
of the subjects who demonstrated accuracy transfer in the
partial credit scheme did not demonstrate strategy transfer
— even though the subjects wrote more complete programs
for their second versions, those programs did not always
reflect the same algorithm as was used on the first version.
The same is true for subjects who did not demonstrate
accuracy transfer. Finally, subjects who wrote fully
complete programs for both versions, and thus did not
provide evidence either for or against transfer, used the same
algorithm each time.

Algorithm used on
First vs Second Version

Same Different
More Complete 6 4
Less Complete 1 1
Both Fully 7 0

Complete

Table 6: Partial credit and strategy transfer

The two transfer measures do not correlate probably
because they are measuring different kinds of transfer.
When writing a program in one language, subjects use
knowledge previously generated while writing the same
program in another language, but that knowledge may
consist of more than one type of information. This is an
important result because most transfer studies attempt to
assess only one type of transferred information for a given
problem situation. What are the two sorts of knowledge
that are indicated here?

During programming, a programmer breaks the main
goal of the program into a set of less complex, more
manageable subgoals. Through this activity, a programmer
can focus on implementing just certain subgoals, which is
an easier task than trying to keep in mind all of the
requirements of the programming problem (Fisher, 1986).
Furthermore, these subgoals must be combined so as to

represent how the program works. For example, Kant &
Newell (1984) argue that the subgoals are organized in a
way representing the flow of data through the program.
Thus, the programmer's representation should consist of at
least two kinds of information: programming subgoals and
the way that those subgoals are organized. McDaniel &
Schlager (1990) note a similar distinction in their study of
a Missionaries-Cannibals isomorph. Solving that puzzle
involves knowing both the correct general strategy and the
particular moves needed to implement the steps (subgoals)
of the strategy.

These two types of program knowledge are separately
assessed by the partial credit and strategy use transfer
measures. Through the partial-credit measure, we assess
whether or not subjects transfer information about the
specific subgoals used in the first version of the problem.
The strategy mecasure shows whether or not subjects
transfer information about how subgoals are organized.
Thus, the assessment methods based on analyses of the task
domain demonstrated that more than one type of transfer
may occur in a single problem-solving situation.

References

Bassok, M., & Holyoak, K. J. 1989. Interdomain transfer
between isomorphic topics in algebra and physics. Journal
of Experimental Psychology: Learning, Memory, and
Cognition 15(1):153-166.

Ericsson, K. A., & Simon, H. A. 1984. Protocol
Analysis: Verbal Reports as Data. Cambridge, MA: MIT
Press.

Fisher, C. 1986. How do programmers program: Coping
with complexity. Unpublished manuscript, Department of
Psychology, Camnegie Mellon University.

Gick, M. L., & Holyoak, K. 1987. The cognitive basis of
knowledge transfer. In S. M, Cormier and J. D. Hagman
eds., Transfer of Learning: Contemporary Research and
Applications. New York, NY: Academic Press.

Gray, W. D., & Orasanu, J. M. 1987. Transfer of cognitive
skill. In S. M. Cormier and J. D. Hagman eds., Transfer
of Learning: Contemporary Research and Applications.
New York, NY: Academic Press.

Green, T. R. G. 1987. Parsing and gnisrap: A model of
device use. In G. M. Olson, S. Sheppard, and E. Soloway
eds., Empirical Studies of Programmers: Second
Workshop. Norwood, NJ: Ablex.

Kant, E., & Newell, A. 1984. Problem solving techniques
for the design of algorithms. Information Processing &
Management 20(1-2):97-118.

Katz, 1. R. 1988. Transfer of knowledge in programming.
Ph.D. dissertation, Department of Psychology, Carnegie
Mellon University.

779

McDaniel, M. A., & Schlager, M. S. 1990. Discover
learning and transfer of problem-solving skills. Cognition
and Instruction 7(2):129-159.

Pennington, N. 1985. Cognitive components of expertise
in computer programming: A review of the literature.
Psychological Documents 15(2702).

Polson, P.G., Muncher, E., & Engelbeck, G. 1986. A test
of the common elements theory of transfer. In Proceedings
of the CHI '86 Conference on Human Factors in
Computing Systems, 78-83. New York, NY: ACM,

Rist, R. 1989. Schema creation in programming.
Cognitive Science 13:389-414,

Singley, M. K., & Anderson, J. R. 1990. The Transfer of
Cognitive Skill. Cambridge, MA: Harvard University
Press.

Smith, S. B. 1986. Transfer of learning between Tower of
Hanoi isomorphs. Ph.D. dissertation, Department of
Psychology, Carnegie Mellon University.

	cogsci_1991_775-779

