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LEARNING INTERNAL REPRESENTATIONS FROM GRAY-SCALE IMAGES:
AN EXAMPLE OF EXTENSIONAL PROGRAMMING

Garrison W, Cottrell
Institute for Cogntive Science
University of California, San Diego

Paul Munro
Department of Information Science
University of Pittsburgh

David Zipser
Institute for Cogntive Science
University of California, San Diego

ABSTRACT

The recent development of powerful learning algorithms for parallel distributed networks has made it pos-
sible to program computation in a new way. These new techniques allow us to program massively parallel net-
works by example rather than by algorithm. This kind of extensional programming is especially useful when
there are no known techniques for solving a problem. This is often the case with the computations associated
with basic cognitive processes such as vision and audition. In this paper we apply the technique to the problem
of learning an efficient internal representation of image information directly from a gray-scale image. We com-
pare the results of this to the engineering version of this problem, i.e., image compression. Our results demon-
strate that a very simple learning method learns internal representations that are nearly as efficient as those
developed by the best known techniques in image compression. Thus we have a technique whereby neuron-like
networks can self-organize to form a compact representation of a visual environment,
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INTRODUCTION

The recent development of powerful leaming algorithms for parallel distributed networks has made it pos-
sible to program computation in a new way. These new techniques allow us to program massively parallel net-
works by example rather than by algorithm. This kind of extensional programming is especially useful when
there are no known techniques for solving a problem. This is often the case with the computations associated
with basic cognitive processes such as vision and audition. In this paper we apply the technique to the problem
of learning an efficient internal representation of image information directly from a gray-scale image. We com-
pare the results of this to the engineering version of this problem, i.e., image compression. Our results demon-
strate that a very simple learning method learns internal representations that are nearly as efficient as those
developed by the best known techniques in image compression. Thus we have a technique whereby neuron-like
networks can self-organize to form a compact representation of a visual environment.

The technique we employ is known as back propagation, developed by Rumelhart, Hinton, and Williams
(1986). While we will not go into the details of it here, back propagation can be considered a generalization of
the perceptron leaming procedure for multilayer nonlinear networks of neuron-like computing elements. Train-
ing the network consists of repeated presentations of input-output pairs representing the function to be learned.
The learmning algorithm operates by adjusting the weights between the elements of the network in such a way as
to reduce the overall error in the output. In many cases, the network finds a solution to the problem that was
unknown in advance to the user. In doing so, it develops its own internal representation of the input that is use-
ful for solving the problem. It is often difficult to analyze this representation because many units are involved
and the representations are highly distributed over the set of internal units. A subgoal of the present research is
to make a first step towards unraveling the nature of these representations by applying the learning mechanism
to a domain where the types of useful representations have been well studied,

Another aspect of this work is that the representation of images in an efficient format by neuron-like com-
puting elements may give us clues to the way such information is represented in actual neural tissue. The leamn-
ing procedure itself is not particularly biologically plausible, but the mechanisms it discovers for solving prob-
lems are (Zipser, in press). Whether or not there is anything like back propagation in the brain, we learn some-
thing about how the brain could solve problems from the "neural” solutions it discovers. Such information could
be useful in guiding neurobiologists in their observations of cell firings during cognitive tasks.
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Encoder Networks

The problem of finding an efficient internal representation of an environment is called the encoder prob-
lem." In PDP networks using back propagation, this problem is solved by giving a network the problem of per-
forming an identity mapping over some set of inputs. The network is constrained to perform this mapping
through a narrow channel of the network, forcing it to develop an efficient encoding in that channel. There are
two interesting aspects to this: (a) the network is developing a compact representation of its "environment"; and
(b) although the algorithm used was developed as a supervised learning scheme, in this case the learning can be
regarded as unsupervised—since the training signal is the same as the input, the system self-organizes to encode
the environment.

A network appropriate for performing this task in the image domain is shown in Figure 1. It consists of
an 8x8 input patch, corresponding to a two-dimensional patch of an image, that is completely connected to six-
teen hidden units, the "narrow channel" through which the patch of image must be transmitted. These hidden
units are completely connected to an 8x8 output patch, where the image is reconstructed.

PROCEDURE

We trained the above network with a digitized image of the Intelligent Systems Group (ISG) at UCSD
(Figure 2). A digitized image is an MxN light intensity function f(x, y), where x and y correspond to the spatial
coordinates within the image, and f(x, y) is a light intensity value from 0 to 255. One element of f(x, y) is
often referred to as a pixel, for picture element. Thus the original image has eight bits of information for each
pixel. However, there is a great deal of redundancy in this information. Neighboring pixel values will tend to
be highly correlated. If the network can capture this redundancy, it can represent the image more compactly.

We trained our network by randomly sampling 8x8 patches of this image, converting the gray level value
linearly to the range [0,1].2 These values form the input to the network. Activation passes through the net, and
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Figure 1. The network used in most of our examples.

! Ackley, Hinton, and Sejnowski (1985) were the first to demonstrate a learning algorithm for PDP networks that could solve the encoder
problem.

2 We used the usual sigmoidal activation function, with the output range scaled to [-1,1]. Since this function only asymptotically achieves the

end values, it is easier for a unit to achieve values in the middle of the range. Hence converting the gray scale values to the range [0,.85]
works better on this problem. We show results from the [0,1] conversion for historical reasons.
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Figure 2. The original image of the Intelligent Systems Group (ISG) at UCSD.

activation of the output patch is obtained. This is compared with the input value, error is propagated back
through the network, and the weights are updated according to the back propagation algorithm. We used an ini-
tial learning rate of .25 (no momentum), and trained the network on 100,000 patches of the image. Then the
learning rate was lowered to .01 and the network was trained for an additional 50,000 iterations.

The result of this training is a "patch compressor." A reproduction of the image can be obtained by sys-
tematically applying this patch compressor across the original image, reconstructing a (nonoverlapping) patch at
a time. In this way, the entire image is passed through the narrow channel of the hidden units, and we can view
the reconstructed image to get an idea of the fidelity of the representation obtained by the hidden units.

In order to compare our results to that of image compression techniques, it is necessary to obtain a com-
parable measure of the number of bits used to represent the image. Image compression is measured by the
number of bits transmitted per pixel of the reproduced image. In our case this corresponds to:

(bits [hidden unit output )x(# hidden units)
# of pixels reproduced

bits Ipixel =

We must quantize (round off to a fixed number of values) the outputs of the hidden units in order to use this
formula. For example, if we round off to 32 different output values, then this corresponds to five bits per hid-
den unit output. In the following examples, we used a uniform quantizer—the rounded-off values are equally
spaced between [-1,1]. We could have done better (in terms of resulting error) by quantizing in ranges where
the hidden unit outputs spend most of their time.

Finally, we need an objective fidelity criterion to measure how close the reconstructed image is to the ori-
ginal. The standard measure used is the mean square error normalized with respect to the squared intensity of
the image. If g(x, y) is the reproduced image, then the error is given by

e(x,y)=gxy)flx,y).
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the mean-square error is given by

M-1N-1
MSE = —— 3 Yelxy).
M'N x=0 y=0

and the normalized MSE with respect to the average squared intensity of the image is given by

MSE
M-1N-1

T 2 3. y)

xz=0 y=0

NMSE =

This is what we will use, expressed in percent.

RESULTS

The problem is to develop an efficient representation of the information in a digitized image. The net-
work of Figure 1 does this by processing repeated presentations of samples of the visual environment (the image
in Figure 2), using back propagation to correct the internal representation. The result is that the image can be
represented with very little loss of information with 1 bit/pixel, representing an eight-fold compression of the
information in the image. Also, the same representation does a good job of reproducing several images the net-
work was not trained on.

Some reconstructions of the ISG image are shown in Figure 3. In Figure 3A five bits of hidden unit out-
put were used, representing 1.25 bits/pixel. The most noticeable degradation from the original image is that the
stripes on the shirt of the seated gentleman (Don Norman) are gone. This is not noticeably different from the
result if we do not quantize the hidden units. On the other hand, reducing the output levels by another bit (16
values) more noticeably degrades the image (Figure 3B).

It turns out we can recover the shirt stripes if we use more hidden units, but compression suffers. Figure
4A is a reconstruction using 32 hidden units, with 16 output values each. This represents a compression of 2
bits/pixel. Higher compression can be obtained by using fewer hidden units, but the result is less satisfying.
Figure 4B shows the results of using a network with 8 hidden units and 32 output values, resulting in .625
bits/pixel. More examples exploring the space of numbers of hidden units vs. numbers of quantization levels
can be found in (Cottrell, Munro, & Zipser, in press).

How good a representation is this for images other than the training image? We naively expected that
perhaps a network could be trained that would work well for all images, justifying the expense of the initial
training. This is a somewhat misplaced dream, given that our network learns, in some sense, the statistics of the
image it is trained on, and different images have different statistics. However, it may work well for a class of
images. It turns out that it does a good job of reproducing some images that it wasn’t trained on. Two of the
images we tested it on and their reproductions are shown in Figure 5. We expect that it would not work well
for images with very different statistics, such as text, but have not had a chance to try it on such images yet.

The Internal Representation

What is the internal representation at the hidden unit layer? Figure 6 shows the internal representation for
eight hidden units. Each row corresponds to one hidden unit. Figure 6A shows the weight matrix for each of
eight hidden units thresholded at various levels, one hidden unit per row. The center column, representing a
threshold of 0, identifies which weights are negative and which positive. This gives an idea of the kind of pat-
tern that excites each hidden unit the most. Figure 6B shows the output patch driven by each hidden unit alone.
Again, each row corresponds to one hidden unit, and the columns correspond to different levels of activation
from the hidden unit. The right-hand column thus corresponds to the output weights from that hidden unit. One
obvious thing to note here is that the hidden units try to reproduce what they “"see." Figure 6C shows the same
information as 6B, in a gray scale image (6B is a thresholded version of 6C).
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Figure 3. Quantization effects. A: 5 bits, 1.25 bits/pixel, NMSE 0.474%. B: 4 bits, 1 bitpixel, NMSE 0.676%.
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B: The reproduced im-

ts, four bits of quantized levels, 2 bits/pixel, NMSE 0.625%.
sulting in .625 bits/pixel, NMSE 1.182%.

Figure 4. A: The reproduced image using 32 hidden uni
age using eight hidden units, 32 quantizer levels, re
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Figure 5. Two images (on this page and next) reproduced by the network trained on the image in Figure 2. A: The Symbolics Graphics
group. B: Reproduced image, using six bits of quantized values, 1.5 bits/pixel, NMSE 1.267%.
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Figure 5. C: Cadillac. D: Reproduced Cadillac, 1.5 bits/pixel, NMSE 0.764%.

What do these weights represent? We don’t have an analytic answer to this question. However, we can
compare the network’s solution to a standard technique, the Principal Components Transform (PCT), to get an
idea of what it does.

First we set up some correspondences between our network and the usual image compression system. The
first step in a transform encoding system is to multiply the patch vector by a matrix to obtain less correlated
coefficients:

y=Ax.

The y;’s are sent through a channel in a coded form, and at the other end they are transformed back into image
space. The reconstructed image is the inverse transform

x=Aly.

It is the form of A that determines the type of transform. In the principal components transform, the rows of A
are the eigenvectors of the covariance matrix of the x patch vector. This corresponds to setting up a new coor-
dinate system with axes along the directions of maximum variance, and sending the coordinates in this new sys-
tem. Then the inverse matrix converts back into image coordinates. For a principal components transform, this
inverse matrix is just the transpose of A. What is often done in this case is to just send the coordinates along
the first k dimensions—the ones with highest variance. What this means is that the coefficients themselves (the
coordinates along these high-variance axes) also have variance that is high for the first coordinate and that
monotonically decreases.

The analog in our network is that A is the weight matrix between the input and hidden unit layers, with
each row of A comresponding to the input weights on one hidden unit, and each hidden unit output a semilinear
version of y;. Similarly, the weight matrix between the hidden units and the output patch corresponds to A~

Now, we can begin to understand what the network does. First, observation has shown that during
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Figure 6. The internal representation. A: The weight matrices from the input paich to eight hidden units, thresholded from —.75 to +.75.
The middle column (zero threshold) shows the "canonical" feature responded to by that hidden unit. B: The output patch driven by each hid-
den unit at different output values from —1 to 1. C: The same picture as (B) on a color monitor.

reconstruction of an image, the hidden unit outputs are mostly in the linear range of the activation function. So
the network makes little use of the nonlinearity. Second, note that Figure 6 shows that the network also uses the

transpose of the input weights as the output weights.

Finally, notice that the final image can be regarded as a linear combination of basis images: one for each
coefficient (or hidden unit output). For comparison purposes, Figure 7 shows the basis images from the princi-
pal components transform for a picture of a cameraman (from Gonzales & Wintz, 1977). Figure 6B, the last
column, shows the same thing for eight units of our network. Unlike the principal components transform, there

is no obvious way to order the basis images.

This is reflected in the variances of the hidden units’ outputs: They are all about equal (to 0.1) and the
amount of error in the output accounted for by each one is of comparable size. Back propagation has spread the
error relatively evenly across the hidden units. In the principal components transform, the "hidden units" would
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Figure 7. The set of Hotelling basis images for a particular image. (From Gonzales & Wintz, 1977. Reprinted by permission.)

b

have monotonically decreasing variance, and the variance typically falls off very quickly, so that they differ by
orders of magnitude. Our conjecture at this point is that the hidden units span the space of the first several prin-
cipal components, but are rotated so that each can have about equal variance.

DISCUSSION

This study has produced results that have implications for both connectionist networks and image
compression. T 2se are discussed and summarized below.

Implications for Connectionist Networks

Extensional Programming

The major result of this study is that a relatively straightforward application of the back-propagation learn-
ing procedure to a problem that has been studied for many years results in near state-of-the-art performance.
The key point is that this performance was obtained not by programming a connectionist solution to the prob-
lem, but by the process of extensional programming. In this procedure, many examples of the desired behavior
are presented and the network must program itself to achieve the behavior. This suggests that other problems,
where solutions are not known in advance, may be solved by back propagation.

A major problem with this technique is determining post hoc how the network solved the problem. In our
case, we have some pieces of the answer, mainly because image compression is a well-studied problem. Hence
we have some idea what to look for, if not an analytical solution. By comparison of our network to the tech-
niques of image compression, we can gain insight into the solution found. However, this will not be the case in
general. The importance of back propagation is that whether we know how to solve the problem or not, whether
we know of an algorithm for the solution or not, back propagation will in most cases find a solution to the map-
ping simply from examples of the input-output patterns.

Another key point is that the network self-organizes to represent its environment. This is discussed else-
where with relation to answering the question of how meaning might be grounded in perception (Chauvin, 1986;
Cottrell, 1987).
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Linear Networks

There is currently a bias in the connectionist community, shared by the authors of this article, against
linear networks. This is partly due to the assumption that "interesting" problems must require nonlinearity for
their solution. While the results were not reported here, we found that a linear version of the network produced
results compatible with the nonlinear version. Since identity mapping is a linear problem this is not too surpris-
ing. However, it is useful to check whether nonlinearity is necessary for a particular problem. If not, the elimi-
nation of evaluating the logistic function can lead to more efficient solutions. If both approaches appear viable,
comparison of the two can lead to a better understanding of nonlinear solutions, since the linear network lends
itself to analysis much more readily than the nonlinear one (Williams, 1985). This approach needs to be carried
further in future work.

Internal Representations

One of the typical ways to speak of the solutions discovered by back propagation learning is to say that
the network discovers regularities in the input, This paper adds at least a new vocabulary for discussing the
kinds of regularities discovered in the case of autocoding. We can look at the variance of the hidden units as
indicative of their usefulness in the resulting solution. It may not be the case that hidden units span the princi-
pal subspace of the covariance matrix, that is, the space spanned by a PCT solution, but it is possible that the
hidden units are finding the best approximation to this within the constraint that the logistic function imposes of
a limited range on the coefficients. If this turns out to be true, then we may speak of the hidden units as finding
at least an analog of the principal subspace and as discovering useful axes of covariance of the input.

Implications for Image Compression

A major result of this work is the application of a new way of minizing mean square error to a real-world
problem that shows it is competitive with PCT. This new technique has several possible advantages over PCT
and other current techniques. These need confirmation by further investigation.

One advantage is the relatively equal distribution of error among all of the coefficients. This should lead
to a reduction in the effects of channel errors. In PCT and other techniques that approximate it, channel errors
that affect the coefficients with high variance can result in a patch that is dominated by the corresponding basis
image. The relatively equal contributions of each basis image in the network solution should mitigate these
effects. In particular, we know in advance what range the value should be in, and if a coefficient is suspected
of being in error, an acceptable restoration of the patch can probably be effected by simply eliminating that
coefficient or replacing it with its average value.

Second, because of the fixed range of the coefficients, problems with "tracking" the coefficients by an
adaptive quantizer is mitigated. Adaptive quantizers try to follow coefficients as they change, changing the
quantization as the coefficients shift. They can "lose track." In our system, we know in advance the range of
the coefficients, which should make this less of a problem.

Third, the ability of our network to generalize to novel images is striking. The performance of the linear
network is especially encouraging in this regard. This requires some qualification. First, it is likely that this
generalization does not apply to images with very different statistics, such as text. Second, we are not aware of
work in this area investigating the ability of PCT to generalize to images other than the "training" image.
Further work should compare these techniques.

CONCLUSIONS

The major result of this work is in demonstrating the efficacy of current connnectionist techniques for pro-
gramming by example, rather than algorithm. We have termed this extensional programming. The results here
suggest that this technique is a powerful one. Its naive application to a problem of current interest among
engineers resulted in respectable performance compared to current methods.
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However, back propagation is not a panacea—it brings new problems of its own. Designing a connection-
ist representation of the input (and output for nonautocoding problems) is itself an art. The representation must
contain enough information to license solution of the problem, without providing so much that the solution is
trivial. However, Hinton (1986) has shown that at least in some domains, back propagation can even design the
input representation simply from the occurrence of a token in context.

The results of this study suggest that one useful approach to problems for which no algorithm is known, or
for which no parallel algorithm is known, is to use connectionist representations of the problem and allow the
network to discover the program itself. Analysis of the the programs thus discovered may aid in our understand-
ing of the problem and lead to methods for doing the programming ourselves. A variety of problems that cogni-
tive science is concerned with are of this character—the input-output behavior is known, but the algorithm is
not. With extensional programming we can begin to investigate algorithms that we did not invent ourselves.
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