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Abstract

Re-excision rates for breast cancer lumpectomy procedures are currently nearly 25% due to 

surgeons relying on inaccurate or incomplete methods of evaluating specimen margins. The 

objective of this study was to determine if cancer could be automatically detected in breast 

specimens from mastectomy and lumpectomy procedures by a classification algorithm that 

incorporated parameters derived from fluorescence lifetime imaging (FLIm). This study generated 

a database of co-registered histologic sections and FLIm data from breast cancer specimens 

(N=20) and a support vector machine (SVM) classification algorithm able to automatically detect 

cancerous, fibrous, and adipose breast tissue. Classification accuracies were greater than 97% for 

automated detection of cancerous, fibrous, and adipose tissue from breast cancer specimens. The 

classification worked equally well for specimens scanned by hand or with a mechanical stage, 

demonstrating that the system could be used during surgery or on excised specimens. The ability 

of this technique to simply discriminate between cancerous and normal breast tissue, in particular 

to distinguish fibrous breast tissue from tumor, which is notoriously challenging for optical 

techniques, leads to the conclusion that FLIm has great potential to assess breast cancer margins. 

Identification of positive margins before waiting for complete histologic analysis could 

significantly reduce breast cancer re-excision rates.

Introduction

Recent statistics indicate that breast cancer is the leading cause of cancer-related death and 

the 2nd most diagnosed cancer for women in the United States and is the most common 

cancer in women worldwide (Fitzmaurice et al., 2016). Currently, an American woman has a 

1 in 9 chance of developing breast cancer during her lifetime (Fitzmaurice et al., 2016). 

Breast-conserving surgery (lumpectomy) followed by radiation is the standard-of-care 

surgical intervention for early-stage cancer and is as effective as mastectomy in many cases 

(O’Kelly Priddy et al., 2015). From a 2009 study, 37.9% of 1459 lumpectomy procedures 
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resulted in positive margins (Morrow et al., 2009) and 50% of reoperations due to positive 

margin findings did not find residual tumor (Azu et al., 2010). Additionally, positive margins 

are correlated with a significant increase in ipsilateral breast tumor regional recurrence 

(Houssami et al., 2014) and reoperation is associated with greater physical and emotional 

trauma to the patient, a higher incidence of complications, and poorer cosmetic outcomes (St 

John et al., 2017). The most accurate methods to assess tumor margins are cytology and 

frozen sections, both of which require significant time and cost and thus are not commonly 

performed (St John et al., 2017). A fast, cost-effective and accurate way to assess breast 

cancer margins intraoperatively or immediately following resection is in high demand.

Optical techniques provide a means to non-destructively probe tissue composition, making 

them safe for intraoperative use. Studies have been done to determine the capability of 

several optical techniques to potentially diagnose breast cancer specimens. This includes 

diffuse reflectance spectroscopy (DRS) (de Boer et al., 2016; Brown et al., 2010; Keller et 
al., 2010), diffuse optical spectroscopy (DOS) (Nichols et al., 2017), Raman spectroscopy 

(Kong et al., 2014), fluorescence spectroscopy (Keller et al., 2010), optical coherence 

tomography (OCT) (Nguyen et al., 2009; Zysk et al., 2015; Erickson-Bhatt et al., 2015), 

optical coherence micro-elastography (Allen et al., 2016), autofluorescence lifetime 

microscopy (Sharma et al., 2012), and photoacoustic microscopy (Wong et al., 2017). 

Moreover, few of these have been used to assess margins intraoperatively (i.e. DRS, DOS, 

and OCT), but none have been widely adopted into regular clinical practice due to inherent 

limitations. For example, while fibrous tissue will appear more uniform with OCT than 

tumor (Erickson-Bhatt et al., 2015), OCT still has limited ability to distinguish between 

cancerous and fibrous breast tissue due to potentially similar structural features of these 

tissue types (Nguyen et al., 2009). Also, while a careful study of normal and cancerous 

breast tissue has been performed with DRS (Kennedy et al., 2016), an automated method to 

distinguish cancer based on DRS measurements has not been demonstrated. Furthermore, a 

recent meta-analysis of intraoperative margin assessment techniques showed that optical 

techniques will need to be both improved in accuracy for cancer detection and more 

convenient and cost-effective before they will be accepted by the wider clinical community 

(St John et al., 2017). Additionally, new work is being done to achieve pathology-like 

images through staining resected samples and performing optical imaging; for instance light-

sheet microscopy (Glaser et al., 2017) and fluorescence imaging (Davis et al., 2013). These 

show great promise for identifying tumor margins, but in comparison to other optical 

techniques, have the drawback of requiring tissue staining prior to imaging.

Taking advantage of the autofluorescence properties of breast tissue, earlier studies have 

shown that fluorescence intensity-based spectroscopy techniques enable detection of breast 

cancer with good sensitivity and specificity (85% and 96%, respectively) (Keller et al., 
2010). Time-resolved (lifetime) fluorescence spectroscopy techniques can improve these 

statistics by providing an additional means to analyze tissue autofluorescence by separating 

tissue fluorophores with overlapping fluorescence intensity parameters but distinct 

fluorescence lifetimes. Such techniques, however, have only been sparsely explored for 

diagnosis of breast cancer (Sharma et al., 2012; Gorpas et al., 2015). Endogenous 

fluorophores distinguishable by fluorescence lifetime techniques and relevant to breast 
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cancer detection include adipose tissue, collagen fibers, nicotinamide adenine dinucleotide 

(NADH) and flavin adenine dinucleotide (FAD).

While the potential diagnostic capabilities of fluorescence lifetime techniques have been 

demonstrated in pre-clinical studies, many challenges exist for clinical translation including 

complex instrumentation, time-consuming data analysis, and a lack of ability for clinicians 

to simply obtain fluorescence lifetime data and quickly display conclusive diagnostic 

information. Recent advances in fluorescence lifetime imaging (FLIm) instrumentation with 

a fast and compact scanning fiber-based system (Yankelevich et al., 2014; Ma et al., 2015) 

enable acquisition of FLIm images either during surgery or on excised specimens, in real-

time as the FLIm fiber optic is scanned over the tissue via hand scanning or with an 

automated mechanical stage. The system is housed in a compact cart that can be transported 

easily to operating or pathology rooms. The goals of this study were to demonstrate: 1) the 

ability of this compact system to acquire data from breast specimens in scenarios that mimic 

the intraoperative setting, which would require hand scanning during surgery or a 

mechanical stage for scanning excised specimens; and 2) the accuracy of a classification 

algorithm that employs optical parameters derived from FLIm measurements to 

automatically output diagnostic information about breast specimens as independently 

validated with histology. Our findings show that this FLIm technique may be a contender for 

reducing breast cancer re-excision rates due to its ability to accurately and quickly 

distinguish cancer from normal tissue in a manner that could identify positive margins 

intraoperatively either during surgery or on resected tissue specimens.

Methods

Breast specimens.

Tissue specimens (N=20) from breast cancer patients (N=14 total: N=4 lumpectomies, N=10 

mastectomies) were imaged within an hour of resection. Multiple pieces of tissue were 

imaged from N=5 of the total patients, which is why there are N=20 specimens, but only 

N=14 patients. All patients provided informed consent. See table 1 for a summary of patient 

information. The University of California Davis Health System Institutional Review Board 

approved this study.

Imaging protocol.

The tissue was assessed by a pathologist and regions thought to contain tumor were cut into 

sizes that could be fit in a single tissue processing cassette (~20 mm × 20 mm × 4–5 mm), 

with slight irregularities in the overall shape to assist with later co-registration between 

histology and FLIm data. Ink was used to mark the edges of the specimen and to assist with 

co-registration. The samples were placed on an imaging stage and scanned with the FLIm 

fiber optic either manually by hand or automatically by a mechanical stage to mimic how 

this system could be used either during surgery or following surgery on excised tissue 

specimens, respectively. High-resolution white-light images as well as the video stream of 

the scanning were also acquired (see videos 1 and 2). The fluorescence lifetime values 

derived from FLIm measurements were augmented with the video stream of the tissue for 

visualization during imaging and saved for further analysis. The FLIm system and the 
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process to augment the video stream are described below. Following imaging, specimens 

were placed in formalin and processed routinely for histologic analysis.

Histology.

Tissue sections were cut parallel to the imaging plane, thus each histologic section 

corresponded to one entire field of view of a FLIm dataset. The sections were stained with 

hematoxylin and eosin (H&E) and scanned with an Aperio Digital Pathology Slide Scanner 

(Leica Biosystems). The pathologist (M.D.) traced regions of fibrous tissue, normal ducts 

and lobules, fat, invasive cancer and ductal carcinoma in situ (DCIS) using Aperio 

ImageScope (Leica Biosystems). The FLIm interrogation depth is ~300 μm (Ghosh et al., 
2001; Palmer et al., 2006) and the depth of a single histologic tissue section was 4 μm. To 

determine how much the breast tissue composition changed within the 300 μm depth, in N=2 

cases multiple 4 μm sections were cut within the 300 μm imaged volume. Matlab (The 

Mathworks, Inc.) software was used for selecting regions of interest in the FLIm images and 

for image analysis.

Region of Interest Selection.

Pathologist tracings from the histology sections were exported from the Aperio software and 

co-registered with the white light images of the breast tissue, using the shape of the tissue 

sections and ink as fiducial markers. Regions of interest (ROIs) were drawn within the 

tracings, with a 0.5 mm margin to account for errors in co-registration. See fig1.

FLIm system.

The imaging setup consisted of a prototype point scanning FLIm instrumentation and an 

aiming beam module (Gorpas et al., 2016b). The aiming beam detection scheme allowed the 

FLIm images to be reconstructed from the scanning point measurements in real time. The 

FLIm system is based on a pulse-sampling fluorescence lifetime measurement technique and 

has been described previously (Yankelevich et al., 2014; Gorpas et al., 2016b). Fluorescence 

excitation was produced with a micro Q-switched laser frequency tripled to 355 nm with a 2 

KHz repetition rate (Teem Photonics™, France). The resulting fluorescence emission from 

the tissue specimens was sequentially spectrally resolved into four channels: 390/40 nm 

(channel 1), 466/40 nm (channel 2), 542/50 nm (channel 3), and 629/53 nm (channel 4) 

(Yankelevich et al., 2014). Each channel was connected to an optical fiber of varying length 

that allowed all 4 signals generated from a single laser pulse to arrive sequentially at distinct 

time points at the detector, a single microchannel plate photomultiplier tube (MCP-PMT, 

R3809U-50, Hamamatsu, 45 ps FWHM). The signals were then increased by an RF 

amplifier (AM-1607–3000, 3 GHz bandwidth, Miteq, USA) and temporally resolved (80 ps 

intervals) by a high sampling frequency digitizer (PXIe-5185, National Instruments, 12.5 

GS/s sampling rate). A continuous-wave solid state laser (450 nm, 50 mW, World Star Tech, 

Canada) coupled into the second channel allowed the aiming beam (power ~ 3 mW) to be 

projected onto the tissue in the same location as the fluorescence excitation beam. An 

external camera (Point Grey Chameleon3 1.3 MP Color USB3 Vision with Fujinon 

HF9HA-1B 2/3” 9mm lens) recorded the entire specimen, including the aiming beam, 

during the scanning procedure. The video images were converted to the HSV color space 

and the blue aiming beam was segmented by thresholding the hue channel, providing co-
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registration between the FLIm measurements and the video of the tissue. Once the location 

of the aiming beam is determined, the FLIm data acquired from that location was augmented 

in real time with the video display of the scanning procedure. Thus as the tissue was 

scanned, an image of the FLIm data was reconstructed within the video stream of the tissue 

visualized on the FLIm system computer monitor, creating an augmented view of the tissue 

overlayed with the FLIm values.(Gorpas et al., 2016a) This can be observed in fig1, fig2 and 

videos 1 and 2.

FLIm parameters.

Following the acquisition of the fluorescence decay signal, constrained least-squares 

deconvolution based on the Laguerre expansion method was performed to determine the 

fluorescence response of the tissue (Liu et al., 2012). From the deconvolved fluorescence 

decay, the average lifetimes and intensity ratios were derived. The average lifetime is the 

average amount of time a fluorophore spends in the excited state. The probability 

distribution of detected photons is obtained by normalizing the deconvolved fluorescence 

intensity decay. The average lifetime is then defined as the expected value of this distribution 

(Lakowicz, 1999). Intensity ratios were computed by taking the ratio of the fluorescence 

intensity at each channel divided by the sum of all four intensity channels.

Statistics.

Support vector machines (SVM) with a RBF kernel (Chang and Lin, 2011) were used to 

classify FLIm data into three groups based on training from histology: adipose, fibrous and 

cancerous. The feature vector included average fluorescence lifetime from channels 1, 2, 3 

and 4. Multiclass classification was realized through the “one-against-one” strategy (Hsu 

and Lin, 2002). The cancerous regions included both invasive cancer and ductal carcinoma 

in situ. Sensitivity, specificity, positive predictive value and negative predictive value were 

calculated with leave one out cross-validation. This involved sequentially leaving data from 

a single patient out of the training set, then testing the classification accuracy on that single 

patient for all patients. Since multiple specimens were imaged for N=5 patients, the leave 

one out cross-validation was performed per patient rather than per specimen. The leave one 

out cross-validation was performed twice, first with the numbers of pixels per group in the 

training set imbalanced and next with balanced numbers between groups. The numbers of 

pixels per group were forced to be balanced by randomly sampling by randomly sampling 

31 pixels per group from each sample, the size of the smallest group per sample in the 

dataset (Chawla et al., 2004). Average fluorescence lifetime values are presented as mean ± 

standard deviation. To remove dependence between pixels, the median from each patient 

from each group was used as the outcome variable and a non-parametric Kruskal-Wallis test 

was performed to determine statistical significance between groups because the data was not 

normally distributed, as determined with a Kolmogorov-Smirnov test. Post-hoc Mann–

Whitney U-tests were performed to determine the p values for the outcome variables 

(median values) from each set of groups. Image analysis, classification and statistical 

analyses were performed using MATLAB (The Mathworks, Inc.). The classification 

algorithm and results (Tables 2 and 3) only included data from a 0.5 mm border within the 

pathologist tracings of the histology. Data that was scanned by hand was thresholded to 

remove artifacts that occur at the edges of the specimen (see fig2). The classification 
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algorithm was validated for the ROIs carefully co-registered with histology, however 

classification was also performed for all pixels acquired for each specimen (fig1C and 

fig2D).

Results

See videos 1 and 2 for a demonstration of data being recorded and simultaneously displayed 

on the video feed of samples imaged by hand and by the automated stage, respectively. 

Regions of interest were selected from each of the specimens for a total of N=14,688 pixels 

associated with fibrous tissue, N=67,465 associated with cancerous tissue and N=24,311 

associated with adipose tissue. Average spatial resolution was approximately 60 points/mm2.

Average fluorescence lifetime.

The mean average lifetime values for each spectral detection channel from within 0.5 mm 

borders of the pathologist tracings on the FLIm images co-registered with histology (fig3) 

were computed. Average fluorescence lifetime from detection channel 1 identifies fibrous 

regions with the highest values and adipose with lowest values. For spectral channels 2, 3 

and 4 the lifetimes from adipose are highest, fibrous in the middle and cancer the lowest. 

Fig1 and fig2 demonstrate representative examples. The Kruskal-Wallis test found that the 

fluorescence lifetimes were significantly different (p<0.001). Additionally, the rank sum test, 

found that the differences in all detection channels between all groups were statistically 

significantly different (p<0.001) for all groups excluding fibrous compared to cancer in 

channel 1 (p=0.64).

Classification results.

The sensitivity, specificity, positive and negative predictive values for discriminating 

between adipose, cancerous and fibrous tissue are summarized in table 2. When groups were 

forced to be balanced by randomly sampling N=31 points per group per sample, the results 

were slightly different, as summarized in table 3. The SVMs for lifetime values of each set 

of groups (adipose vs. fibrous, adipose vs. cancer, fibrous vs. cancer) and scatter plots of the 

fluorescence lifetime data can be seen in fig4.

Histology co-registration.

The pathologist (M.D.) compared histology sections from 3 levels within the 300 μm imaged 

region and found that the breast tissue did not vary significantly in these N=2 samples to 

warrant cutting multiple levels from each sample. Thus for the remaining N=18 samples, the 

first complete section from the paraffin block was used to interpret the results of the entire 

300 μm imaged volume.

Discussion

This study demonstrates that spectroscopic features derived from FLIm images are capable 

of being used to distinguish between adipose, fibrous and cancerous regions in breast 

specimens from women undergoing lumpectomies and mastectomies. The system is 

compatible with intraoperative applications. It allows for hand scanning the surgical bed 
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with a fiber optic or automatic scanning of resected ex vivo tissue specimens on a 

mechanical stage. Fluorescence lifetime information is displayed as the scanning is 

conducted and a classification algorithm was developed to automate distinction between 

these three tissue types. The classification algorithm worked equally well for data acquired 

via hand scanning and automated stage scanning. The classification is able to be performed 

fast enough that it could be implemented in real time as the measurements are acquired, 

which shows the potential of this technology as an intraoperative tool either during surgery 

or on resected specimens for tumor margins assessment.

The ability of this FLIm technique to distinguish between breast tissue types is due to the 

endogenous fluorescence of the fluorophores that comprise those tissues, specifically: fat 

cells, collagen fibers, NADH and FAD. Adipose tissue is connective tissue predominantly 

composed of fat cells. From our histologic co-registration, we see that the adipose tissue 

tends to fluoresce with long lifetimes at the longer wavelengths detected in spectral channels 

2, 3 and 4 of the FLIm apparatus (fig3), as is consistent with previous studies of adipose 

tissue fluorescence (Datta et al., 2015; Swatland, 1987). Fibrous tissue is composed of 

bundles of collagen fibers, and fluoresces with a lifetime longer than cancer, but shorter than 

adipose tissue, based on our histologic co-registration (fig3). Importantly, this FLIm 

technique can clearly distinguish between fibrous and cancer, unlike some other optical 

techniques (fig3, fig4B). Cancer cells have altered NADH and FAD metabolism in 

comparison to normal tissue according to the Warburg theory (Druzhkova et al., 2016). Free 

NADH and bound FAD have relatively short lifetimes and fluoresce predominantly in the 

wavelengths detected by channels 2, 3 and 4, which may explain the shorter lifetimes of 

cancerous breast tissue in these channels, though we cannot determine NADH and FAD 

presence with histologic methods (Skala et al., 2007). While the trends in fluorescence 

lifetime detected in spectral channel 1 were also statistically significant, channels 2, 3, and 4 

exhibit the greatest amount of separation between groups.

The margin of healthy tissue around the lumpectomy specimens necessary for negative 

margins has been controversial. As recently as 2013, standard of care required breast cancer 

margins to be 1–2 mm in depth, depending on the cancer type and surgeon. However, recent 

studies demonstrated that a “no ink on tumor” margin for lumpectomy specimens leads to 

patient outcomes equivalent to those from the previous 1–2 mm guideline (Moran et al., 
2014). The “no ink on tumor” guideline defines negative cancer margins as occurring when 

there are no tumor cells touching the ink used to mark the entire lumpectomy specimen. The 

355 nm FLIm imaging system excitation light penetrates approximately 300 microns into 

the breast tissue and thus will identify cancer cells right at the surface, in the same region as 

the “no ink on tumor” guideline suggests. Thus this FLIm system can probe the same region 

of tissue important for determining margin status based on current clinical guidelines.

The scanning speed of the FLIm system can be varied based on parameters input to the 

mechanical stage or by the person performing the hand scanning. Two representative speeds 

can be seen in videos 1 and 2. While mechanical stage scanning is slower in this case, the 

resolution is higher in comparison to the hand scanning, which is faster but with lower 

resolution. Thus we anticipate hand scanning would be performed to identify positive 

margins in the operating room or frozen section room immediately following tissue resection 
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and mechanical stage scanning would be reserved for cases where higher resolution is 

necessary, such as if in the future it is determined that FLIm can be used to study specifics of 

cancer type as well as positive or negative margins. However, the limiting factor of the slow 

mechanical stage scanning was the stage itself; with an improved stage, the FLIm system 

would be capable of operating at much faster speeds that could allow for the higher 

resolution scans to be obtained from both the operating room and frozen section room.

We acknowledge that a limitation to this study is the fact that only small regions of tissue 

within the traced outlines of each tissue type were included in the classification analysis (see 

fig1F and fig2A). This study design was used to reduce errors caused by co-registration 

between the FLIm data and histology that are predominantly caused by: 1) tissue shrinkage 

and warping during histological processing, 2) the use of a single 4 μm histology section to 

represent the entire imaged volume and 3) the use of a computer mouse to trace the relevant 

tissue types, which does not allow for very detailed lines to be drawn with the Aperio 

software. Additionally, while we hypothesize that NADH and FAD allow us to distinguish 

cancerous from fibrous and adipose tissue based on known fluorescence lifetime properties 

of these molecules, we can’t verify this without chemical analysis. We also acknowledge 

that these results will need to be validated in a larger cohort, and we aim to move to entire 

lumpectomy specimens rather than sections of lumpectomy and mastectomy specimens for 

this work. A larger cohort will also enable the study of whether DCIS and invasive cancer 

can be distinguished using this technique. In the current study, nevertheless, cancerous 

tissue, regardless of cancer type, was discriminated from normal breast tissue (both fibrous 

and adipose).

In conclusion, normal fibrous and adipose tissue was able to be distinguished from 

cancerous breast tissue with accuracy > 97% with a classification algorithm designed using 

FLIm derived parameters. The FLIm measurements can be acquired within minutes either 

by hand or automated scanning of a fiber optic, without the need for contrast agents or dyes 

and without damaging tissue. Additionally, the FLIm signal is generated from the region of 

breast specimens appropriate for current guidelines for determining tumor margin status. All 

combined, these results indicate that the current technique has great potential for further 

application in the field of surgical breast oncology to reduce rates of re-excision by 

determining tumor margin status intraoperatively either during surgery or on resected tissue 

specimens.
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Figure 1. Representative breast specimen automatically scanned on the mechanical stage.
(A) White light image of a breast specimen scanned on a mechanical stage. (B) White light 

image augmented with FLIm data from spectral channel 2; (C) white light image augmented 

with classification results when this specimen was left out of the training set. (D) 

Corresponding H&E histology section. Cancer is outlined in red, adipose in blue and fibrous 

in green. Scale bar = 4 mm. (E) Zoomed in histology section from black dashed line in (D) 

with regions of interest included in the study shown with the filled-in shapes (red for cancer, 

blue for adipose, green for fibrous). Scale bar = 0.5 mm. These regions are overlayed with 

the breast specimen in (F).
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Figure 2. Representative breast specimen manually scanned by hand.
(A) H&E histology section from breast specimen overlayed with pathologist tracings and the 

regions of interest selected for the study (filled-in shapes). Scale bar = 4 mm. (B) The 

corresponding white light image of the breast specimen augmented with the regions of 

interest identified by the pathologist tracings. (C) White light image augmented with FLIm 

data from detection channel 2; (D) white light image augmented with the classification 

results when this specimen was left out of the training set.
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Figure 3. Average fluorescence lifetime from adipose, fibrous and cancerous breast tissue.
This plot includes all data from the ROIs co-registered with histology and included in the 

classification algorithm. Fibrous: green circles, adipose: blue squares, and cancerous: red 

diamonds. Fluorescence lifetime (ns) can be seen to vary between the 3 breast tissue types. 

P<0.001 except for between fibrous and cancer in channel 1.
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Figure 4. SVM plots demonstrating discrimination between groups.
These plots demonstrate the SVMs that separate the three groups: (A) Adipose (blue) and 

fibrous (green), (B) fibrous and cancer (red), (C) adipose and cancer. The axes represent 

fluorescence lifetime (ns) in detection channels 1, 2 and 3.
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Video 1. Representative breast specimen scanned on a mechanical stage.
This MP4 video was recorded as this breast specimen was scanned automatically on a 

mechanical stage. The augmented colors represent fluorescence lifetime in detection channel 

2.
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Video 2. Representative breast specimen scanned by hand.
This MP4 video was recorded as this breast specimen was scanned by hand. The augmented 

colors represent fluorescence lifetime in detection channel 2.
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Table 1.

Demographic and tumor characteristics of N=14 patients in this study.

Characteristic Number (%)

Age <50 3 (21)

>50 9 (64)

Unknown 2 (14)

Race White, not hispanic or latino 12 (86)

Unknown 2 (14)

Body mass index, kg/m2 Normal (<25) 5 (36)

Overweight, 25–30 5 (36)

Obese, ≥30 2 (14)

Unknown 2 (14)

Menopausal status Premenopausal 4 (29)

Postmenopausal 10 (71)

Unknown 2 (14)

Radiotherapy No radiotherapy 8 (57)

Radiotherapy 2 (14)

Unknown 4 (29)

Hormone therapy No 7 (50)

Yes 4 (29)

Unknown 3 (21)

Type of surgery Lumpectomy 3 (21)

Mastectomy 9 (64)

Unknown 2 (14)

Receptor status Negative 2 (14)

Positive 8 (57)

Unknown 4 (29)

Cancer stage DCIS 3 (21)

Invasive 9 (64)

Unknown 2 (14)
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Table 2.

Results from leave-one-out cross validation with a Gaussian SVM (numbers of pixels per group imbalanced).

Sensitivity analysis Specificity analysis

No. No.

Accuracy
a

PPV
a

SE
a TP FN SP

a TN FP

cancer 99.0 (99.0–99.1) 98.5 (98.4–98.5) 100.0 (100.0–100.0) 70555 1 97.4 (97.3–97.5) 40819 1093

adipose 99.3 (99.3–99.4) 99.9 (99.9–100.0) 97.2 (97.1–97.3) 25250 723 100.0 (100.0–100.0) 86479 16

fibrous 99.7 (99.6–99.7) 100.0 (100.0–100.0) 97.6 (97.5–97.7) 15552 387 100.0 (100.0–100.0) 96527 2

Abbreviations: PPV, positive predictive value; SE, sensitivity; TP, true positive; FN, false negative; SP, specificity; TN, true negatives; FP, false 
positives.

a
Value expressed as: % (95% CI)
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Table 3.

Results from leave-one-out cross validation with a Gaussian SVM (numbers of pixels per group balanced with 

31 pixels per group from each sample).

Sensitivity analysis Specificity analysis

No. No.

Accuracy
a

PPV
a

SE
a TP FN SP

a TN FP

cancer 97.8 (96.9–98.5) 93.1 (91.7–94.4) 100.0 (99.7–100.0) 434 0 96.9 (95.8–97.7) 991 32

adipose 99.9 (99.6–100.0) 100.0 (100.0–100.0) 99.8 (99.4–100.0) 526 1 100.0 (99.7–100.0) 930 0

fibrous 97.7 (96.8–98.4) 99.8 (99.3–100.0) 93.5 (92.1–94.7) 464 32 99.9 (99.5–100.0) 960 1

Abbreviations: PPV, positive predictive value; SE, sensitivity; TP, true positive; FN, false negative; SP, specificity; TN, true negatives; FP, false 
positives.

a
Value expressed as: % (95% CI)
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