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Abstract
The behavioural ecology of host species is likely to affect their microbial communi-
ties, because host sex, diet, physiology, and movement behaviour could all potentially 
influence their microbiota. We studied a wild population of barn owls (Tyto alba) and 
collected data on their microbiota, movement, diet, size, coloration, and reproduc-
tion. The composition of bacterial species differed by the sex of the host and fe-
male owls had more diverse bacterial communities than their male counterparts. The 
abundance of two families of bacteria, Actinomycetaceae and Lactobacillaceae, also 
varied between the sexes, potentially as a result of sex differences in hormones and 
immunological function, as has previously been found with Lactobacillaceae in the 
microbiota of mice. Male and female owls did not differ in the prey they brought to 
the nest, which suggests that dietary differences are unlikely to underlie the differ-
ences in their microbiota. The movement behaviour of the owls was associated with 
the host microbiota in both males and females because owls that moved further from 
their nest each day had more diverse bacterial communities than owls that stayed 
closer to their nests. This novel result suggests that the movement ecology of hosts 
can impact their microbiota, potentially on the basis of their differential encoun-
ters with new bacterial species as the hosts move and forage across the landscape. 
Overall, we found that many aspects of the microbial community are correlated with 
the behavioural ecology of the host and that data on the microbiota can aid in gener-
ating new hypotheses about host behaviour.
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1  | INTRODUC TION

Animals and the microbes living within or on them have a symbi-
otic relationship characterized by a variety of important interac-
tions. Hosts can affect the composition of their microbiota through 
diet (Delsuc et al., 2014; Godoy-Vitorino et al., 2011; Muegge 
et al., 2011), behaviour (Risely, Waite, Ujvari, Hoye, & Klaassen, 
2018; Smits et al., 2017; White et al., 2010), genes (Goodrich, 
Davenport, Waters, Clark, & Ley, 2016), and physiology and health 
(Ganz et al., 2017). Microbes may affect their hosts by causing or 
preventing disease (Soler, Martín-Vivaldi, Peralta-Sánchez, Arco, & 
Juárez-García-Pelayo, 2014; Vågene et al., 2018), aiding in digestion 
(Hehemann et al., 2010; Kohl, Connelly, Dearing, & Forbey, 2016; 
Kohl, Weiss, Cox, Dale, & Dearing, 2014), and interacting with host 
development (McFall-Ngai, 2014). While much of the microbiota is 
obtained from the surrounding environment or diet (Moeller et al., 
2013, 2017; Moeller, Suzuki, Phifer-Rixey, & Nachman, 2018), bac-
terial colonization of the host is also influenced by the host envi-
ronment, because it has been established that host species in the 
same geographic location often have distinct microbiota reflecting 
their evolutionary history (García-Amado et al., 2018; Hird, Sánchez, 
Carsten, & Brumfield, 2015; Kropáčková et al., 2017; Phillips et al., 
2012). Some microbes are vertically inherited (Moeller et al., 2016, 
2018; Ochman et al., 2010), which allows for co-evolution with their 
hosts and potentially large effects on the fitness of the interacting 
species (Brucker & Bordenstein, 2013). The complexity of the pos-
sible interactions between hosts and their microbes points to the 
need to identify the major ecological and environmental factors that 
shape the microbial communities of a host. Work on model species 
in the laboratory has been vital for increasing our understanding 
of how hosts and microbes affect one another (Goodrich et al., 
2016; Markle et al., 2013; Moeller et al., 2018). However, studies of 
free-ranging animals in the wild are also needed if we are to under-
stand how hosts and microbes interact in a more natural context in 
which environmental and ecological effects play a larger role (Hird, 
Carstens, Cardiff, Dittmann, & Brumfield, 2014; Hird et al., 2015; 
Moeller et al., 2013; Schnorr et al., 2014).

Many aspects of the behavioural ecology of wild species are 
likely to affect their microbiota. Males and females often have dis-
tinct behavioural ecologies (Davies, Krebs, & West, 2012), which 
could affect their microbiota in a variety of ways. The two sexes may 
have different diets (Temeles, Pan, Brennan, & Horwitt, 2000), which 
could affect the prevalence of particular gut microbes (Muegge et al., 
2011; Schnorr et al., 2014). Males and females can have different 
body sizes (Corl, Davis, Kuchta, Comendant, & Sinervo, 2010) and 
microbial diversity has been correlated with body mass differences 
within and among species (Gao et al., 2018; Reese & Dunn, 2018). 
The sexes may also differ in social and sexual interactions, which can 
affect how microbes spread among individuals (Levin et al., 2016; 
White et al., 2010). Males and females can have different microbiota 
during the breeding season (Escallón, Belden, & Moore, 2019), which 
is a period of time when the sexes may differ profoundly in paren-
tal care, physiology, and stress levels. In addition, there are often 

differences between the sexes in their immune function, which can 
lead to differences in their microbiota (Fransen et al., 2017; Markle 
et al., 2013; Yurkovetskiy et al., 2013). Thus, there is significant 
potential for the two sexes to have distinct microbiota, especially 
during periods in which males and females assume different repro-
ductive roles.

Host movement behaviours may also influence the microbiota of 
hosts. The movement ecology of individual hosts can differ in many 
aspects including activity pattern (e.g., moving short vs. long dis-
tances), habitat preference, territory size, interaction with different 
individuals, and whether they choose to disperse from a residence 
area. All of these differences in movement ecology may impact 
the microbiota by affecting host contact with particular microbes. 
Microbial communities can vary at both large (Moeller et al., 2017) 
and small spatial scales (Suzuki & Nachman, 2016), so hosts that re-
side in different localities may be colonized by different microbes. 
Hosts that move through and interact with a greater diversity of en-
vironments will probably have higher microbial diversity than their 
more sedentary counterparts if microbial species are patchily dis-
tributed in the environment. Alternatively, movement behaviours 
may be indirectly linked to microbiota if host physiology impacts 
both movement ecology and microbial communities. For example, 
migrating birds may experience temporary gut atrophy, and mi-
grant populations have been found to have lower microbial diversity 
than conspecific populations of resident birds (Risely et al., 2018). 
Although some population studies have examined the influence of 
migratory behaviour on host microbiota, the effects of the move-
ment ecology of individual hosts on their microbiota have rarely, if 
ever, been explored. Detailed tracking data for individual hosts is re-
quired to determine whether and how an animal's movement affects 
its microbiota. Such information could increase our understanding 
of the ways in which exposure to new microbial species in the land-
scape affects host microbiota.

Host physiology, reproductive state, and measures of reproduc-
tive fitness may also be associated with differences in host microbi-
ota. In humans, the physiological changes accompanying pregnancy 
are associated with changes in the gut microbiota (Koren et al., 
2012). The reproductive periods of wild species may similarly affect 
their microbiota. Measures of host reproductive fitness (e.g., num-
ber of offspring) might also be associated with different microbial 
communities if the condition of the host influences both its fitness 
and its microbiota. Healthy hosts can have different microbiota than 
unhealthy hosts (Ganz et al., 2017) and healthy individuals can have 
larger clutch sizes than unhealthy individuals (Merilä & Andersson, 
2016). In addition, host stress hormone levels can be associated 
with both reproductive fitness (Ouyang, Sharp, Dawson, Quetting, 
& Hau, 2011) and with changes to their microbiota (Noguera, Aira, 
Pérez-Losada, Domínguez, & Velando, 2018). Thus, microbial species 
composition may be associated with a wide variety of traits related 
to the physiology and reproduction of the hosts.

We conducted a broad study of the behavioural ecology of a 
population of barn owls (Tyto alba) aimed at revealing the princi-
ple host phenotypes associated with variation in cloacal microbial 
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composition, focusing on sexual differences and variation in host 
movements. Detailed behavioural ecological studies of barn owls are 
possible because they can be trapped at their nest boxes, allowing 
for the efficient collection of a wide range of data on individual owls 
and their offspring. Male and female barn owls differ markedly in 
their behaviour during the nesting period: females lay and incubate 
eggs, protect the nest, and care for nestlings (e.g., feed them from 
prey brought by males), while males forage intensively to feed the 
entire family until adult females resume intensive hunting around 
three weeks after hatching the first nestling. We tested for differ-
ences between the microbiota of males and females, which could 
arise from their distinct behavioural ecologies, such as behavioural 
differences while nesting or physiological differences. We also as-
sessed how host microbiota changed with the age of their nestlings, 
given that females change their behaviour as the nestlings grow 
and that females go from being fed by the male early in the nest-
ing period to feeding themselves later in that period. In addition, we 
tested whether morphology (e.g., mass, wing length) and reproduc-
tive parameters (clutch size, laying date, number of fledglings, etc.) 
of the owls were correlated with their microbiota, as host size and 
health could affect both their reproduction and microbial commu-
nities. We collected detailed movement data from barn owls that 
were harnessed with a reverse-GPS tracking system (Weiser et al., 
2016) to examine whether the microbial composition of individual 
owls was correlated with the size of their home range and/or with 
average daily flight distance from their nest. Using camera traps, 
we obtained dietary data on individual birds, which allowed us to 
test whether male and female owls differed in the species of the 
prey that they caught. Finally, we examined whether the microbi-
ota varied with the birds’ feather coloration, because the amount 
of melanin on the feathers has previously been correlated with im-
mune function (Roulin, Jungi, Pfister, & Dijkstra, 2000; Roulin, Riols, 
Dijkstra, & Ducrest, 2001) and dietary differences (Charter, Peleg, 
Leshem, & Roulin, 2012; Roulin, 2004b) among barn owls. Overall, 
our aim was to gain insight into the major factors that structure the 
cloacal microbiota of a wild bird species to better understand how 
host sex, movement behaviours, and reproduction impact their mi-
crobial communities.

2  | MATERIAL S AND METHODS

2.1 | Owl capture, monitoring, and data collection

We studied a population of barn owls in the Hula Valley in north-
ern Israel (Figure 1) from 12 April–5 July in 2017 using methods 
approved by the ethics committee of the Hebrew University of 
Jerusalem (permit NS-16-14801-2) and the UC Berkeley IACUC (No. 
AUP-2016-04-8665-1). One of the authors (M.C.) monitored barn 
owl nest boxes from 1–8 times (mean = 3.7 times per nest box) to 
determine nest box occupancy and to track owl reproduction across 
the season (Figure 1b). Data were collected on: (a) clutch size; (b) age 
of the oldest nestling, determined by back calculations using wing 

length (Roulin, 2004a); (c) laying date (the date on which the first egg 
was laid); (d) the number of young hatched; (e) brood size at fledg-
ing, measured by the number of nestlings when the oldest individual 
was 53 days old (Charter, Izhaki, & Roulin, 2018); (f) fledging success, 
measured by the percentage of hatchlings that survived to fledging 
from each brood, and (g) egg productivity, measured by the percent-
age of eggs that survived to fledging from each brood. We inferred 
laying dates by identifying the oldest nestling using wing length (the 
oldest nestling has the largest wings due to the asynchronous in-
cubation of barn owls) and then back-calculating laying date from 
the age of the oldest nestling plus an average incubation period of 
32 days (Roulin, 2004a).

Adults of both sexes were captured either during the day in-
side the nest box or at the entrance of the nest box at night after at 
least one nestling had hatched to minimize the probability of nest 

F I G U R E  1   (a) A female barn owl with a prey item (Photo: Amir 
Ezer). Diet data was collected with camera traps at nest boxes. (b) 
Map of the study site in the Hula Valley, Israel. Yellow points show 
the position of the nest boxes of the owls that were sampled for 
this study. (c) An example of the movement data that was collected 
on the owls. The data are for a mated pair of owls collected over a 
consecutive 15 day period, with blue circles for the male (20,019 
localizations) and purple circles for the female (70,249 localizations)

(a)

(c)

(b)
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abandonment. The cloaca of each adult was swabbed in the field to 
obtain a sample of the microbiota of each owl. The swabs were sterile 
Flexible Mini Tip FLOQSwabs (Copan Diagnostics Inc.) The full head 
of the swab was inserted into the cloaca in a circular motion and 
then the inside of the cloaca was swabbed in three circular motions. 
The swab was placed in 95% ethanol, stored at –20°C in the field for 
2–4 days, and then switched to –80°C for long-term storage. Data 
on the mass (g), wing length (mm), and tarsus length (mm) of each 
adult owl was also collected after trapping. The sex of the birds was 
determined when they were trapped, as only females have a brood 
patch that is used for incubation. To assess pheomelanin-based col-
oration, a Nikon D3100 camera was used to photograph the breast 
feathers of each owl alongside a white balance card (WhiBal G7 
White Balance Pocket Card) that served as a standard. We obtained 
a measure of the extent of reddish colour on the breast feathers of 
each owl (Charter et al., 2012) with the digital photography soft-
ware “Barn Owl” (The Signal and Image Processing Laboratory in the 
Department of Electrical Engineering of the Technion). In addition to 
pheomelanin-based coloration, barn owls also vary in the degree of 
eumelanin-based coloration in the form of black spots located at the 
feather tips. We quantified this coloration for each individual by: (a) 
counting the total number of eumelanic spots within a 60 × 40 mm 
frame that was overlain on the breast of the owl, and (b) measuring 
the diameter of 10 spots within the frame to the nearest 0.1 mm and 
then calculating the mean spot diameter.

To avoid negatively affecting breeding success, all adults were 
returned carefully to their nest box, which featured an entrance that 
was blocked with a pillow that was attached to a rope. This design 
enabled us to remove the pillow from a distance, thereby limiting the 
number of owls that are flushed out of the nest box after capture (M. 
Charter, unpublished data).

To determine the diet of the birds, Bushnell Trophy Cam HD 
Aggressor No-Glow Trail Cameras were placed in the nest boxes 
when the oldest nestling was 30 days old and when both parents 
took an active role in foraging. Prey specimens were identified to 
the species level when possible. We used Rstudio 1.2.1335 (RStudio 
Team, 2018) to pair the date and time of the prey observed by the 
camera with the date and time that an adult owl arrived at the nest 
box as determined by the ATLAS tracking system (see below). This 
procedure allowed us to determine the diets of individual males and 
females, because the tracking system provided the individual iden-
tity of the forager and the cameras provided the prey type. We used 
data collected over a four-day period after the camera was placed in 
the nest box.

2.2 | Movement data

We monitored owl movement across the Hula Valley by fitting all 
adults with an ATLAS tracking device (Weiser et al., 2016) using a 
Teflon harness (total weight of the device and harness was 13 g). 
ATLAS wildlife tags provided the date and time at which the owls 
were at particular XY coordinates (Figure 1c). The localizations could 

occur as frequently as once every 4 s, but there were sometimes 
gaps between time points if the ATLAS system could not localize an 
individual at a particular time point due to the signal of the tags being 
obscured as a result of the owl moving close to the ground, through 
dense trees, or into an area with weaker coverage by the ATLAS sys-
tem. Movement data were analysed for 15 days following the col-
lection of the cloacal swab, except in the case of two owls, one with 
only 11 days of data available and the other with only 14 days. For 
each night, we analysed 10 hr of data collected from 7:00 p.m. until 
5:00 a.m. Across the 15 day period, the average number of observa-
tions per owl was 46,403, with a range from 3,821 to 89,763.

We used Rstudio to analyse all movement data. Owl movement 
was divided into two categories: at its nest, when the owl was within 
40 m of its nest, and away from its nest, when the owl was >40 m 
from its nest and probably hunting or travelling to, or from, hunting 
sites. We calculated the time that each owl was at or away from its 
nest each night, averaged these values across the two-week period, 
and then computed the proportion of time that the owl was at its 
nest. We used the kernel estimation and the utilization distribution 
(Worton, 1989) to estimate the home range during the two week 
period using the r-package adehabitathr (Calenge, 2006) with the fol-
lowing parameter settings: the ad hoc method for smoothing, a grid 
size of 2,000, a grid extent of three, and a home range at the 99th 
percentile level. We calculated the maximum and median displace-
ment for each individual each night from the straight-line distances 
between each ATLAS localization and the owl's nest location, and 
then averaged these nightly values over the two week period. There 
was a negative correlation between the proportion of observed 
to expected localizations of an owl and its median displacement 
(p = .04) and home range (p = .02), with a similar trend for maximum 
displacement (p = .11). Thus, we generally have more localization 
data on owls with small home ranges than those with large home 
ranges, because the former were less likely to be missed as a result of 
passing through areas of low coverage in the ATLAS system.

2.3 | Microbial DNA extraction and sequencing

Cloacal swab samples were randomly assigned to different sets for 
DNA extraction. We implemented this procedure to avoid having 
all samples collected from a particular time, place, or category be 
grouped together during extraction, because of the need to control 
for the bacteria in DNA extraction kits (Salter et al., 2014; Weiss 
et al., 2014). Swabs were placed into the bead tubes with forceps 
that had been flame sterilized to avoid contamination. Before bead-
beating, the tubes were heated to 65°C for 10 min to promote cell 
lysis and increase the reaction rate between the lysis buffer and the 
faecal material (PowerFecal DNA isolation kit: Mobio Laboratories 
Inc.). DNA was extracted with a Qiagen PowerLyzer PowerSoil DNA 
Kit. The bead-beating step was performed with a PowerLyzer ho-
mogenizer set at 3,500 rpm for 16 cycles of 30 s on and 30 s off.

DNA was quantified with a Qubit flourometer using 5 µl of 
each sample. Samples were concentrated in a Centrivap vacuum 
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centrifuge from a volume of 95 to 40 µl. We then sent 20 µl to 
the Argonne Sequencing Center at Argonne National Laboratory, 
Lemont, IL, USA for PCR amplification and sequencing. The V4 re-
gion of the 16S rRNA gene was amplified using the primers 515F and 
806R that also included adapter sequences for Illumina sequencing 
and Golay barcodes (Caporaso et al., 2012) on the forward primer. 
PCR reactions included 1 µl of DNA (or more if the initial amplifi-
cation failed), 9.5 µl of MO BIO PCR Water (Certified DNA-Free), 
12.5 µl of QuantaBio's AccuStart II PCR ToughMix, and 200 pM of 
each primer. In the PCR, DNA was denatured at 94°C for 3 min, then 
cycled 35 times at 94°C for 45 s, 50°C for 60 s, and 72°C for 90 s, 
followed by a hold at 72°C for 10 min after cycling. Three indepen-
dent PCRs were performed for each sample, which were then com-
bined. Equimolar amounts of each sample were then pooled before 
sequencing on a 151 bp paired-end run of an Illumina MiSeq.

2.4 | Bioinformatics and data filtering

We demultiplexed the sequence data using qiime2 (Bolyen et al., 
2019) and followed the workflow established by Callahan, Sankaran, 
Fukuyama, McMurdie, and Holmes (2016) for processing the se-
quences in r (R Core Team, 2018). In brief, we removed the first 
10 bases of each read and then inferred sequence variants using 
DADA2 (Callahan, McMurdie, et al., 2016). Variant inference was 
based on the pool of all sequence reads. After merging the forward 
and reverse reads, chimeric sequences were removed. We used the 
SILVA 132 taxonomy database (Glöckner et al., 2017; Quast et al., 
2012) for taxonomic classification, with the training data obtained 
from http://benjj neb.github.io/dada2 /train ing.html. We used the r 
package decipher (Wright, 2015) to align sequences and the pack-
age phangorn (Schliep, 2010) to construct a maximum likelihood 
phylogeny. The phylogenetic tree, taxonomy, operational taxo-
nomic unit (OTU) table, and metadata for the sequence data were 
joined together in phyloseq (McMurdie & Holmes, 2013) for analy-
sis. The OTU table consisted of unique amplicon sequence variants 
(Callahan, McMurdie, & Holmes, 2017) and not groups of sequences 
clustered based upon a certain percentage of sequence divergence, 
which gave a fine-scale resolution of the bacterial diversity in the 
samples.

Bacteria from the DNA extraction kits, environment, or people 
extracting the samples serve as contaminants when characterizing 
an individual's microbiota (Salter et al., 2014; Weiss et al., 2014). To 
identify and remove such contaminants, we sequenced five nega-
tive control samples, which were processed identically to the clo-
acal swab samples except that a swab was not added to the tubes. 
We also sequenced two blank control samples, which consisted of 
UltraPure distilled water (Invitrogen) that went through the PCR am-
plification, but not the DNA extraction process. In this manner, we 
identified 551 contaminating sequences, which were removed from 
the data set. In addition to contaminants, we removed any sequences 
that were not assigned to the kingdom of bacteria, that could not 
be assigned to a phylum, or that were assigned to mitochondria or 

chloroplasts. We filtered the resulting data set to only include se-
quences that were found in more than one individual, because rare 
sequence variants could easily be due to sequencing errors or rare 
contaminants from the environment. A total of 3,207 bacterial OTUs 
remained after filtering.

The average number of reads across our samples was 8,850, 
with a minimum of 259 and a maximum of 34,772 per individual. We 
excluded from the analysis six samples that had fewer than 1,000 
reads and then rarefied the remaining samples to an equal sequenc-
ing depth (1,176 reads) to standardize our sequencing effort across 
samples (Weiss et al., 2017). We used a random number seed of 999 
when rarefying the data. We excluded from the analyses one female 
owl that did not lay eggs and was therefore likely to be a nonbreed-
ing adult (floater). We also excluded one male owl sample that had 
been collected 40 days before it had nestlings, because all other 
samples were collected after the nestlings had hatched. In total, we 
had 55 samples, of which 39 were from females and 16 were from 
males, all of which were actively breeding during the study period.

2.5 | Statistical tests

All statistical tests were conducted using r 3.5.1 (R Core Team, 
2018). Visualization of the data was performed using functions in 
phyloseq and ggplot2 (Wickham, 2016). We used Fisher's exact test 
to compare the frequencies of prey types brought by males and fe-
males to the nest boxes.

We measured the alpha diversity of the cloacal swab samples 
using the Chao1 estimator of the number of species (Chao, 1984; 
Kim et al., 2017) with a log base 10 transformation to normalize the 
data. Filtering out sequence variants that were only found in a sin-
gle individual (see above) could potentially affect our estimates of 
alpha diversity, but we found that estimates of alpha diversity with 
and without prevalence filtering were highly correlated (R2 = .832, 
p = 2.2 × 10–16). Sample sizes for some of the phenotypic traits of 
the owls varied with the amount of field data available for them. 
The sample sizes for the traits that differed from the total possible 
sample size of 55 individuals are as follows: wing length (54), mass 
(53), clutch size (50), brood size at fledging (54), fledging success (49), 
and egg productivity (40). The colour phenotypes that we measured 
mainly showed variation across females, so we restricted our anal-
yses to the females when testing for effects of breast coloration 
(N = 38, log-transformed), number of spots on the breast (N = 39), 
and spot diameter (N = 39). All movement metrics had a sample size 
of 46 individuals. We used a log base 10 transformation on the av-
erage median displacement per day, the average maximum displace-
ment per day, and the home range area so that these variables would 
better match a normal distribution.

Some of the owl traits were correlated with one another. The age 
of the oldest nestling (�2

1
 = 11.27, p = .0007) and fledging success  

(F1, 32 = 6.67, p = .015) were each negatively correlated with laying date, 
but the age of the oldest nestling was not correlated with fledging  
success (F1, 32 = 1.93, p = .174). All of the following movement metrics 

http://benjjneb.github.io/dada2/training.html
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were correlated with one another: median displacement versus maxi-
mum displacement (R2 = .66, p = 5×10–12), median displacement versus 
home range area (R2 = .81, p < 2×10–16), and maximum displacement 
versus home range area (R2 = .84, p < 2×10–16). To simplify, we reported 
on a subset of independent traits in the main text and reported on the 
other correlated traits in the Supporting Information. We analysed ef-
fects of the age of the oldest nestling in the main text, because this 
variable provides a direct measure of where the adult owl was in its 
nestling period when the cloacal swab was taken; laying data is there-
fore reported in the supplemental text. We reported on the average 
median displacement travelled per day in the main text, because this 
movement metric better matched a normal distribution than maximum 
displacement or home range area.

We used linear models as implemented in the car R-package 
(Fox & Weisberg, 2011) to evaluate which factors were correlated 
with bacterial alpha diversity. Using one-way ANOVA, we found 
that the sex of the bird was correlated with bacterial alpha diver-
sity. When testing for possible correlations of each of the other 
variables with alpha diversity, we performed an ANCOVA that in-
cluded the variable of interest, sex as a factor, and an interaction 
between sex and the variable of interest. If we detected a signifi-
cant interaction, we implemented separate linear models for males 
and females in order to determine which sex had an association 
with changes in alpha diversity. We used type II ANCOVAs unless 
there was a significant interaction, in which case we used type III. 
With the results of the ANCOVAs, we then constructed a mul-
tivariate model of all independent variables that were correlated 
with alpha diversity.

We visualized differences in bacterial communities among owls 
(i.e., beta diversity) with a principal coordinate analysis. We cal-
culated distances among samples using the Jaccard, Bray-Curtis, 
UniFrac, and weighted UniFrac metrics to determine whether pat-
terns in our data changed with different methods of measuring dif-
ferences in microbial communities. Jaccard and UniFrac are based 
on presence/absence of bacterial OTUs, whereas Bray-Curtis and 
weighted UniFrac also incorporate information on the abundance 
of the OTUs. UniFrac used phylogenetic information for the OTUs 
to calculate the distance between any two samples as the fraction 
of the branch-lengths of the phylogeny that were not shared be-
tween samples (Lozupone & Knight, 2005). Weighted UniFrac is a 
variant of UniFrac that weights the branch-lengths by the relative 
abundance of the OTUs in the samples (Lozupone, Hamady, Kelley, & 
Knight, 2007). We used the adonis function in the R-package vegan 
(Oksanen et al., 2018) to perform a permutational multivariate anal-
ysis of variance (PERMANOVA) to test for differences in commu-
nity distances among groups with 9,999 permutations of the data. 
Significant differences in the PERMANOVA may result from either 
differences in location or dispersion, so we used the betadisper 
function in vegan to test for homogeneity of group dispersions. No 
significant differences in dispersion were detected.

We tested for differential abundance of bacteria between 
males and females using DESeq2 (Love, Huber, & Anders, 2014) 
within the phyloseq package. We first tested for differential 

abundance of individual OTUs. However, differential abundance 
may occur at higher taxonomic levels than the OTU, if all OTUs 
within a particular taxonomic category are functionally equiva-
lent to the host. Therefore, we used taxonomic agglomeration at 
the level of bacterial genera and families as classified by SILVA to 
test if higher level groupings of bacteria were differentially abun-
dant between males and females. In all cases, we report p-values 
that have been adjusted for multiple testing using the Benjamini-
Hochberg correction.

Studies of the microbiota of wild populations of animals are 
still quite new, so major factors that could affect their bacterial 
communities may be unknown. Many of our analyses were explor-
atory in nature, rather than hypothesis-driven, as we sought to 
capitalize on our rich data set on barn owls to identify potential 
factors that could be linked to their bacterial communities. These 
exploratory analyses meant that we tested whether the microbi-
ota was correlated with many different phenotypes, which leads 
to an increased risk of false positive findings as a result of the 
number of statistical tests (Rice, 1989). Adjusting our p-values for 
the number of tests could be overly conservative (Moran, 2003), 
so we instead report on the results of all of our statistical tests 
(both significant and nonsignificant) to make the readers aware of 
the extent of testing and that p-values close to an α = 0.05 should 
be treated with caution.

3  | RESULTS

3.1 | Alpha diversity

3.1.1 | Significant life history traits

Male owls had significantly less bacterial alpha diversity than fe-
males (Figure 2a, ANOVA, R2 = .079, F1, 53 = 5.6, p = .021). Alpha 
diversity was significantly related to an interaction between 
sex and clutch size (Figure 2b, ANCOVA, R2 = .169, F1, 46 = 7.18, 
p = .010), with higher alpha diversity associated with larger clutch 
sizes for males (p = .01), but not females (p = .46). Alpha diver-
sity was significantly related to an interaction between sex and 
fledging success (Figure 2c, R2 = .14, F1, 45 = 6.4, p = .015), with 
females with higher fledging success tending to have more alpha 
diversity (p = .09) and males with higher fledging success tending 
to have less alpha diversity (p = .10). There was a nominally sig-
nificant interaction between sex and the age of the oldest nestling 
(F1, 51 = 4.03, p = .050), with female (p = .01), but not male (p = .49), 
alpha diversity increasing with the age of the oldest nestling at the 
time of sampling (Figure 2d).

3.1.2 | Nonsignificant life history traits

Body size was not a significant predictor of alpha diversity, 
whether measured by mass (Figure S1a, F1, 49 = 0.39, p = .54), 
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wing length (F1, 50 = 0.29, p = .59), tarsus (F1, 51 = 0.75, p = .39), 
or mass divided by tarsus (F1, 49 = 1.2, p = .27), nor were there 
any significant associations between alpha diversity and the in-
teractions of these factors with sex (all p-values > 0.39). Neither 
brood size at fledging (F1, 50 = 0.12, p = .73) nor an interaction of 
sex and brood size at fledging (F1, 50 = 1.39, p = .24) were associ-
ated with alpha diversity. Neither egg productivity (F1, 36 = 1.78, 
p = .19) nor an interaction between sex and egg productivity  
(F1, 36 = 2.41, p = .13) were associated with alpha diversity. There 
was no association between alpha diversity and breast colora-
tion (F1, 36 = 1.56, p = .22), the number of spots on the breast 
(F1, 37 = 0.22, p = .64), or the diameter of the spots (F1, 37 = 0.14, 
p = .71) for female owls.

3.1.3 | Movement

Both median displacement (F1, 42 = 6.6, p = .014) and sex (F1, 42 = 13.3, 
p = .0007), but not their interaction (p = .91), were significantly re-
lated to alpha diversity in a model containing both factors (R2 = .206). 
Individuals that traveled greater distances away from their nest had 
higher alpha diversity (Figure 2e). Alpha diversity was not correlated 
with the proportion of time spent near the nest box (F1, 42 = 0.001, 
p = .97) nor with an interaction between sex and the time spent near 
the nest box (Figure S1b, F1, 42 = 1.66, p = .20). Although both males 
and females had similar relationships between alpha diversity and the 
movement metrics, there were differences in movement behaviour 
of the two sexes. The median displacement traveled was significantly 

F I G U R E  2   Alpha diversity related to owl phenotypes, reproduction, and movement. (a) Boxplots for males and females of the number 
of bacterial OTUs (i.e., alpha diversity) estimated by the Chao1 metric. (b) Alpha diversity related to clutch size, (c) fledgling success, which 
is the percentage of young that fledged, (d) the age of the oldest nestling, and (e) average median displacement per day from the nest in 
metres. (f) Relationship between the age of the oldest nestling and median displacement. Females are denoted by red points and males by 
black triangles. Shaded grey areas are the 95% confidence intervals around trend lines
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TA B L E  1   Model of uncorrelated 
factors that explain variation in bacterial 
alpha diversity as measured by the Chao1 
metric (R2 = .35)
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related to an interaction between sex and the age of the oldest nest-
ling (F1, 42 = 14.4, p = .0005, R2 = .523), with females, but not males, 
traveling further distances as the nestlings got older (Figure 2f).

3.1.4 | Multivariate model

We constructed a model of independent factors correlated with 
alpha diversity (Table 1). The age of the oldest nestling was left out 
of this model, given its strong correlation with median displacement 
from the nest (Figure 2f) and weak correlation with alpha diversity 
(Figure 2d). The model had an R2 = .35, with a significant effect of 
median displacement traveled from the nest (p = .021), a significant 
interaction between sex and clutch size (p = .041), a nominally non-
significant interaction between sex and fledging success (p = .065), 
a nearly significant main effect of sex (p = .051), and a nonsignificant 
main effect of fledging success (p = .822).

3.1.5 | Beta diversity

Male and female owls showed differences in the composition of 
their bacterial communities (Figure 3, Figure S2). The difference be-
tween the sexes was apparent across all the metrics of community 
difference, with the male and female samples differing on axis 2 of 
the principal coordinate analysis plots. We assessed the differences 
between male and female communities by using PERMANOVA tests, 
which were significant for UniFrac (Figure 3a, p = .0016) and Jaccard 
(Figure S2a, p = .0214) distances, nearly significant for weighted 
UniFrac distances (Figure 3b, p = .0753), and not significant for Bray-
Curtis dissimilarity (Figure S2b, p = .2034). Individuals in the mated 
pairs of owls had different bacterial communities (Figure 3c), despite 
sharing the same nesting area.

3.2 | Differential abundance analyses

The barn owl microbiomes were dominated by the bacterial phyla 
Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria 
(Figure 4a). Male and female samples had generally similar propor-
tions of these phyla (Figure 4a).

The test for OTUs that were differentially abundant between 
males and females revealed only a single OTU with a strong bias be-
tween the sexes (log2 fold change = –4.32, p = .084) that had higher 
abundance in females (Figure 4b). This OTU was an outlier in compari-
son with all other OTUs, all of which had p-values greater than 0.998. 
This OTU was in the genus Lactobacillus (family Lactobacillaceae, 
phylum Firmicutes). No genera were differentially abundant be-
tween males and females: Lactobacillus had a p-value of .520 and 
all other genera had p-values greater than 0.996. The test for dif-
ferentially abundant families between males and females (Figure 4c) 
revealed that the family Actinomycetaceae was significantly more 
abundant in males (log2 fold change = 4.22, p = .000009) and the 

family Lactobacillaceae was significantly more abundant in females 
(log2 fold change = 2.88, p = .020).

3.3 | Role of diet and foraging location

Males and females brought similar types and proportions of prey 
items to the nest (Figure 5), including voles (Günther's vole, Microtus 
guentheri), mice (house mouse, Mus musculus), and jirds (Tristram's 
jird, Meriones tristrami). In total, females brought 95 voles (64.6%), 14 
mice (9.5%), four jirds (2.7%), and 34 unknown (23.1%) items of prey, 
whereas males brought 79 voles (62.7%), 11 mice (8.7%), one jird 
(0.8%), and 35 unknown (27.8%) items of prey. The frequencies of 
the different types of prey did not differ between males and females 
across all the individuals (p = .60). There were five nest boxes where 
we had diet data for both the male and female at the nest. In all five 
cases, the frequencies of prey types did not significantly differ be-
tween males and females (box 155, p = .29; box 157, p = 1; box 219, 
p = .46; box 232, p = 1; box 238, p = .38).

4  | DISCUSSION

We observed that differences in host movement patterns were cor-
related with differences in their microbiota, which suggests that the 
study of movement ecology offers a potentially valuable new way 
to understand host microbial communities. We do not know of any 
other studies that have examined the movement ecology of individual 
animals in relation to their microbiota, with the single exception of a 
laboratory study that found that locomotor behaviour in Drosophila is 
influenced by their microbiota (Schretter et al., 2018). In the owls that 
we studied, we found that alpha diversity was higher in individuals 
that moved greater distances away from the nest each day (Figure 2e). 
There are at least two potential explanations for this pattern. First, the 
association of larger movement distances with greater bacterial diver-
sity could occur if owls that move through and forage over a larger 
area are colonized by a greater number of distinct species of bacteria. 
Dispersal of microbes can affect host microbiota (Burns et al., 2017), 
and host movement may effectively facilitate bacterial dispersal and 
colonization of the host. A study of wild populations of different 
mammal species suggested that bacterial types are dispersal limited 
at large geographic scales, because sympatric populations of host 
species were more similar than allopatric populations (Moeller et al., 
2017). To explain the pattern we observed in owls, bacterial types 
would have to vary at the scale of a few kilometers or less (Figure 1c), 
and host alpha diversity would need to be affected by encounter rates 
with new bacteria. An alternative explanation for the pattern of higher 
bacterial diversity in individuals that move greater distances is that 
differences in host behaviour and physiology could lead to a correla-
tion between alpha diversity and movement. For example, the domi-
nance or age of owls could affect their territory sizes and movement 
patterns as well as physiological factors that could causally influence 
their microbiota such as hormone levels or their immune systems. 
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Both stress hormones (Noguera et al., 2018; Stothart et al., 2016) and 
sex hormones (Escallón et al., 2019; Yurkovetskiy et al., 2013) can af-
fect the microbiome, and hormones of both types could be associ-
ated with different movement behaviours or degrees of territoriality 
(Canoine & Gwinner, 2002; Davies, Beck, & Sewall, 2018).

We can use our diverse data set on the owls to begin to eval-
uate the hypothesis that movement and microbiota are correlated 
as a result of host physiological differences. Male and female owls 
have different hormones and distinct reproductive roles during 
the period in which we studied them, which could potentially alter 
whether and how movement is correlated with the microbiota. 
Despite these behavioural and physiological differences, the two 
sexes had similar increases in their alpha diversity with increasing 
amounts of movement (Figure 2e), because we did not detect an 
interaction between median displacement and sex for predicting 
alpha diversity (p = .91). In addition, we did not find a correlation 
between bacterial alpha diversity and the number or the size of 
the eumelanic spots on the breast of the owls. Variation in these 
spots has previously been linked to the immune function of the 
owls (Roulin et al., 2000, 2001) as well as to the owls’ boldness 
or timidity as nestlings (Peleg, Charter, Leshem, Izhaki, & Roulin, 
2014). Thus, our data at hand suggests that host physiological dif-
ferences may not lead to a correlation between movement and mi-
crobiota. However, more detailed studies on movement, behaviour, 
and physiology are needed to fully evaluate this proposition and 
the bacterial dispersal hypothesis.

Movement data can help explain some of the correlations we 
observed between parental traits and alpha diversity. We observed 
that alpha diversity in females, but not males, increased as their 
chicks aged (Figure 2d). We also observed that females, but not 
males, moved longer distances as their chicks aged (Figure 2f). Thus, 
alpha diversity is likely to increase in females as the nestlings age, 
because females may encounter more bacteria when foraging than 
when they stay at the nest. This finding demonstrates that collecting 
movement data can be useful for interpreting differences among in-
dividuals in their microbial communities.

We observed that the male and female barn owls in our study had 
differences in their cloacal microbiota. Females had more diverse mi-
crobiota than males (Figure 2a) and the two sexes differed in the com-
position of their microbial communities (Figure 3). Several studies of 
wild bird species have found little or no difference between the sexes 
in their microbiota. These studies include a study of New World vul-
tures (Roggenbuck et al., 2014), a comparative study of 59 bird spe-
cies (Hird et al., 2015), and a study of barn swallows (Hirundo rustica) 
in the Czech Republic (Kreisinger, Čížková, Kropáčková, & Albrecht, 
2015). However, a recent paper on barn swallows in Italy found that 
males and females differed in microbial community composition, 
but not in bacterial alpha diversity (Ambrosini et al., 2019). In addi-
tion, a study of rufous-collared sparrows (Zonotrichia capensis) found 
that microbial community composition differed between the sexes 
in breeding males and females, but not nonbreeding birds (Escallón 
et al., 2019). Our study thus provides one of the first examples of 
sexual differences in both the composition and alpha diversity of 
the microbiota in a wild bird species. Differences in the microbiomes 
of males and females have been observed previously in model sys-
tems including humans (Mueller et al., 2006) and mice (Fransen et al., 
2017; Markle et al., 2013; Yurkovetskiy et al., 2013), suggesting that 
perhaps finding sexual differences simply requires sufficient sample 
sizes and/or environmental controls to detect effects. Alternatively, 
sexual differences might be confined to the breeding season (Escallón 
et al., 2019) or may be obscured by the homogenizing effects of mat-
ing (White et al., 2010). While sexual differences in cloacal microbiota 
have now been observed in a few bird species, the causes of these 
differences are largely unknown. Our study capitalized on a rich be-
havioural ecology data set to explore some of the possible reasons for 
the differences in the microbiota of male and female owls.

There are many potential reasons why female barn owls gen-
erally have different and more diverse microbial communities than 
males. Microbiota in the digestive system can vary with body size 
(Gao et al., 2018; Reese & Dunn, 2018), and female barn owls can 
be more massive than males during the nesting period. However, 
alpha diversity was not correlated with body mass in the birds we 

F I G U R E  3   Principal coordinate analysis plots of the bacterial community composition of males (black points) and females (red points). 
Differences in the bacterial communities were measured by UniFrac (a & c) and Weighted UniFrac (b) distances. Grey lines in (c) connect 
mated pairs of owls to highlight differences between owls that shared the same nest-box. The percentage of variation explained is given for 
each axis
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studied (Figure S1a), which suggests that body size is probably not 
responsible for the differences in microbial communities between 
the sexes. Another possibility is that males and females differ in 
foraging behaviour, which results in them having different diets and 
microbiomes. Work on barn owls in India showed that males and fe-
males differ in the items of prey that they bring to a nest, the mass 
of the prey delivered, and the number of prey deliveries (Pande & 
Dahanukar, 2012). While male and female barn owls specialize on 
different prey species in India, this does not appear to be the case 
in the Hula Valley in Israel, because we did not detect any differ-
ences in the types or proportions of prey delivered to nest boxes 
by males and females (Figure 5). Thus, the evidence at hand sug-
gests that dietary differences are unlikely to be responsible for the 

differentiation of the microbiota of male and female barn owls in 
Israel. Another potential reason for sex differences in the microbi-
ota is that birds can share bacteria with their nest environment (van 
Veelen, Falcao Salles, & Tieleman, 2017) and female barn owls spend 
more time in the nestbox, which is lined with regurgitated owl pel-
lets that probably host a lot of bacteria. We would predict that the 
two sexes would differ most in their microbiota early in the nesting 
period when the females stay in the nestbox if acquisition of bacte-
ria from the nesting environment was responsible for the sex differ-
ences in microbiota. However, we observed the opposite pattern, 
with females having that greatest difference in alpha diversity when 
they had older nestlings (Figure 2d), which is when they resume for-
aging outside the nest. Similarly, neither the time spent near the nest 

F I G U R E  4   Abundance of different bacterial groups in females and males following rarefaction. (a) Proportional abundance of the top 
10 most abundant bacterial phyla in each sample relative to the total abundance of all bacterial phyla (including additional phyla at low 
abundance). (b) Abundance of a Lactobacillus OTU that was differentially abundant in males and females. (c) Two families of bacteria that 
had significant differences in abundance between males and females. Abundance in (b) and (c) is the number of sequencing reads for each 
bacterial group
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box nor an interaction between sex and the time spent near the nest 
box were predictive of alpha diversity. Thus, while females may ac-
quire some bacteria from their nesting environment, this is unlikely 
to explain the generally higher levels of bacterial alpha diversity in 
females and the increase in alpha diversity when they leave the nest.

Immune system differences are another potential reason for dif-
ferentiation of the microbiota between the two sexes. Males and fe-
males can differ in their immune responses (Nunn, Lindenfors, Pursall, 
& Rolff, 2008) and parasite loads (Zuk & McKean, 1996), which can 
be due to hormonal differences (McCombe & Greer, 2013; Roved, 
Westerdahl, & Hasselquist, 2017). Studies of mice suggest that dif-
ferences in immunological responses and levels of sex hormones 
can lead to differences in the gut microbiota of males and females 
(Fransen et al., 2017; Markle et al., 2013; Yurkovetskiy et al., 2013) 
and, in one study, male mice had lower alpha diversity than females 
(Yurkovetskiy et al., 2013). Thus, our observation of generally lower 
alpha diversity in male barn owls could be explained by cascading ef-
fects of hormonal differences on the immune system and microbiota. 
Further work in barn owls is needed to directly test whether hormone 
levels and immune system differences can result in differentiation of 
their microbiota. This new area of research appears promising, given 
that a recent study of rufous-collared sparrows found that differ-
ences in levels of testosterone were correlated with the diversity of 
their microbiota (Escallón et al., 2019). Therefore, some generalizable 
physiological factors (e.g., testosterone levels) may exist that impact 
microbial diversity in both birds and mammals.

Differences in the bacterial communities of males and females 
were found using metrics that compared the presence/absence of 
species (i.e., Jaccard and UniFrac), but were less apparent with met-
rics that incorporated abundance information about the species (i.e., 
weighted UniFrac and Bray-Curtis). This finding suggests that the 
presence or absence of particular bacteria plays a large role in the 
community differences between males and females. The generally 
higher alpha diversities of females could mean that they are more 
likely to share rare OTUs, which could explain some of the similari-
ties in their bacterial communities (Figure 3). However, differences 
in beta diversity between the sexes could not have been due exclu-
sively to differences in alpha diversity, because we found that males 
and females had some differentially abundant bacteria (Figure 4). The 

detection of sex differences in the abundance of an OTU in the genus 
Lactobacillus and the bacterial family Lactobacillaceae (which con-
tains Lactobacillus) is quite intriguing, because this pattern has also 
been observed in other studies. A study of Japanese quail (Coturnix ja-
ponica) observed that females had a higher abundance of Lactobacillus 
in many regions of their gastrointestinal tract (Wilkinson et al., 2016), 
which is similar to our observation that an OTU in Lactobacillus 
and Lactobacillaceae were more abundant in female barn owls 
(Figure 4b,c). In addition, studies of mice have detected sex-specific 
differences for Lactobacillus and Lactobacillaceae as a result of dif-
ferences in the immune systems of the sexes (Fransen et al., 2017; 
Yurkovetskiy et al., 2013). This suggests that certain bacteria may 
be responsive to differences in male and female environments even 
across such different hosts as mammals and birds. Sex differences in 
the bacterial family Actinomycetaceae are more difficult to explain. 
Increased abundance of Actinomycetaceae has been associated with 
obesity in humans (Peters et al., 2018). Potentially Actinomycetaceae 
are responding to the increased body mass that female barn owls 
have when they stay at the nest to guard offspring. However, we 
found fewer Actinomycetaceae in female barn owls, which are more 
massive than males when nesting, opposite to the pattern in humans. 
Thus, it is difficult at this time to know what factors are responsible 
for the differential abundance of Actinomycetaceae in barn owls.

We found that bacterial alpha diversity was correlated with two dif-
ferent reproductive traits: clutch size (Figure 2b) and fledging success 
(Figure 2c). The correlation with fledging success was not maintained 
in our multivariate model, which suggests that it may be a byproduct 
of other factors. The correlation of the bacterial alpha diversity of a 
male owl with the clutch size produced by his mate suggests that males 
may differ in behaviour, diet, or physiology in some way that influences 
both their own microbiota and the clutch size of their mate. For exam-
ple, female barn owls rely upon their mates to provide all their prey 
in the days before and during the egg laying period (Taylor, 2004), so 
males that are better foragers might have higher cloacal bacterial di-
versity and also enable their female to produce more eggs.

Our research shows that the joint study of the microbiota and 
behavioural ecology of wild species can be fruitful for both fields of 
inquiry. The detailed data we collected on the behavioural ecology of 
barn owls showed that a subset of factors including sex, movement, 

F I G U R E  5   Number and type of prey 
brought to the nest box by females and 
males. Bold text on the x-axis denotes 
nest boxes that have data for both the 
male and female of a breeding pair
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and aspects of reproduction were correlated with changes in the mi-
crobiota of the host, but that a variety of other factors (e.g., body 
size and coloration) were not. These findings demonstrate that de-
tailed data on the behavioural ecology of species may be necessary 
to understand the diversity of factors that can alter host microbiota 
in wild populations and to achieve a better understanding of host/
microbe interactions. While our research focused on factors that 
may affect the microbiota of hosts, this work also generated hypoth-
eses about the behavioural ecology of the host species. For instance, 
our observation of differences between the sexes in their microbiota 
motivated us to test for dietary differences between males and fe-
males. Thus, studying microbiota may help inspire new ideas about 
the hosts’ behavioural ecology. Overall, we conclude that the be-
havioural ecology of a host is linked to their microbiota, with sex and 
movement ecology being important factors that may influence the 
microbial community. Manipulative experiments are needed to eluci-
date the mechanisms that link host behavioural ecology and their mi-
crobiota. For example, movement patterns could be experimentally 
manipulated in aviaries or by releasing homing pigeons (Columba livia 
domestica) at varying distances from their roost. In addition, more 
studies of wild populations of animals are needed to test whether 
sex and movement ecology are generally important in structuring 
the microbiota of other species. We are currently studying additional 
bird species in the wild to determine if the links that we observed in 
barn owls between the microbiota and behavioural ecology of the 
host are generalizable to other species.
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