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Abstract: The North American clade (NAC) of Ceratocystis includes pathogenic species that infect a wide range
of woody hosts. Previous phylogenetic analyses have suggested that this clade includes cryptic species and a
paraphyletic C. variospora. In this study, we used morphological data and phylogenetic analyses to characterize
NAC taxa, including Ceratocystis isolates causing a serious disease of almond trees in California. Phylogenetic
analyses based on six gene regions supported two new species of Ceratocystis. Ceratocystis destructans is
introduced as the species causing severe damage to almond trees in California, and it has also been isolated from

wounds on Populus and Quercus in lowa. It is morphologically similar to C. tiliae, a pathogen on Tilia and the most
recently characterized species in the NAC. Ceratocystis betulina collected from Betula platyphylla in Japan is also
newly described and is the sister taxon to C. variospora. Our six-locus phylogenetic analyses and morphological
characterization resolved several cryptic species in the NAC.

Effectively published online: 27 February 2019.

INTRODUCTION

The genus Ceratocystis (Sordariomycetes, Microascales,
Ceratocystidaceae) was proposed in 1890 based on C. fimbriata,
which was first described as the causal agent of black rot of sweet
potato (lpomoea batatas) in the USA (Halsted 1890). The genus
now comprises 39 species (Marin-Felix et al. 2017, Barnes et al.
2018, Liu et al. 2018) and consists of a complex of many cryptic
and some host-specialized species (Harrington 2000, Oliveira et
al. 2015a) that cause various wilt and canker diseases on a wide
range of economically important crops around the world (Kile
1993, Harrington 2013). Hosts impacted by Ceratocystis species
include Coffea arabica (coffee), Eucalyptus spp., Ficus carica
(fig), Hevea brasiliensis (rubber tree), Mangifera indica (mango),
Platanus spp. (sycamore or plane trees), Populus spp. (aspen
and other poplars), Prunus spp. (almond and other stone fruits),
Quercus spp. (oak) and Theobroma cacao (cacao) (Harrington
2000, 2013, de Beer et al. 2014). Recently, Ceratocystis s. lat. was
split into 11 genera (Ambrosiella, Berkeleyomyces, Bretziella,
Ceratocystis, Chalaropsis, Davidsoniella, Endoconidiophora,
Huntiella, Meredithiella, Phialophoropsis, and Thielaviopsis)
based on morphological observations, namely perithecial
and ascospore characters, and to a greater extent based on
phylogenetic placement (de Beer et al. 2014, 2017, Mayers et al.
2015, 2018, Nel et al. 2018).

Ceratocystis is morphologically defined as species that
produce hat-shaped ascospores from brown to black, globose,
unornamented perithecial bases with elongated perithecial
necks that terminate as aseptate, divergent, and blunt-tipped
ostiolar hyphae (de Beer et al. 2014). Long-necked perithecia
release sticky masses of ascospores at their terminus (Upadhyay

1981, Seifert et al. 1993, Harrington 2013, de Beer et al.
2014). The asexual thielaviopsis-like morph, is characterized by
phialidic conidial ontogeny producing chains of hyaline, single-
celled, cylindrical-shaped conidia, called endoconidia (de Beer
et al. 2014). Barrel-shaped conidia (doliiform conidia) may also
be produced from similar endoconidiophores, and most species
produce dark, thick-walled aleurioconidia that facilitate survival
in wood or in soil (Harrington 2013, de Beer et al. 2014).

Ceratocystis species are mainly wound colonizers and include
weak to highly virulent pathogens causing disease on diverse
woody plant hosts. However, Ceratocystis disease cycles are not
well understood due to the diversity of spore types, inoculum
sources, and dispersal mechanisms, such as insect vectors,
wind, infected planting material, root grafting or mechanical
transmission during pruning and harvesting (Harrington 2013).
Many Ceratocystis species are adapted for insect dispersal by
producing sweet-smelling or fruity volatiles that attract insect
vectors (Harrington 1993, Kile 1993, Wingfield et al. 1993). The
sticky ascospore masses adhere to insect bodies where they can
be easily vectored from one host to another (Malloch & Blackwell
1993). Ceratocystis fimbriata has nonspecific associations with
insects such as sap-feeding beetles (Coleoptera; Nitidulidae),
flies (Diptera; Drosophilidae) and ambrosia beetles (Coleoptera;
Curculionidae) (Kile 1993). In addition to insect dispersal,
Ceratocystis species that produce aleurioconidia are typically
soilborne and can be transported in water (Kile 1993, Harrington
2013).

Currently, phylogenetic hypotheses have placed Ceratocystis
in four broad geographical clades, the Latin American clade
(LAC) (Harrington 2000, Engelbrecht & Harrington 2005), the
North American clade (NAC) (Johnson et al. 2005), the African
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clade (AFC) (Heath et al. 2009, Mbenoun et al. 2014), and the
Asian-Australian clade (AAC) (Johnson et al. 2005, Thorpe et al.
2005, Li et al. 2017).

The LAC is represented by C. fimbriata which is the pathogen
that causes black rot of sweet potato. This pathogen is native
to South and Central America and the Caribbean (Harrington
et al. 2011) and causes wilt or cankers on coffee, Eucalyptus
spp., rubber trees, and mango (Harrington 2013). Species in
the LAC are considered to be aggressive pathogens responsible
for emerging epidemics when introduced to new hosts and
locations, such as the recent outbreak of Ceratocystis wilt on
mango in Oman and Pakistan (Al Adawi et al. 2014). Other
economically important LAC species include C. platani, the causal
agent of canker stain on Platanus spp. and C. cacaofunesta,
the causal agent of Ceratocystis wilt of T. cacao (Engelbrecht
& Harrington 2005). In California, C. platani from the LAC has
caused mortality of California sycamores (Platanus racemosa
var. racemosa) and plane trees in Modesto, California (Perry
& McCain 1988), and the pathogen was apparently introduced
from the eastern USA (Engelbrecht et al. 2005). Most recently, a
new Ceratocystis species belonging to the LAC, C. lukuohia, was
identified in Hawai’i and associated with rapid death of "ohi‘a
lehua (Metrosideros polymorpha), a devastating disease on an
ecologically important native tree species (Barnes et al. 2018).

The AFC includes C. albofundus, a pathogen of black wattle
(Acacia mearnsii) in Africa (Wingfield et al. 1996). This species
is thought to be native to Africa with two genetically isolated
populations, in Uganda and South Africa (Barnes et al. 2005).
The AAC is represented by C. pirilliformis (Johnson et al. 2005,
Thorpe et al. 2005), a pathogen discovered on Eucalyptus nitens
in Australia (Barnes et al. 2003). Other species residing in the
AAC include C. changhui from Colocasia esculenta in China (Liu
et al. 2018) and C. uchidae from C. esculenta in Hawai’i (Li et al.
2017). However, species boundaries within the AAC are unclear
and require phylogenetic and taxonomic re-examination (Li et
al. 2017). Recently, C. huliohia, a newly identified species in the
AAC, was described together with C. lukuohia (LAC), as a second
causal agent of rapid death of "6hi‘a lehua in Hawai’i (Barnes et
al. 2018).

Morphological features have been used to distinguish
isolates from the NAC and LAC, most notably, slightly smaller
ascospores in the NAC and the presence of a collar at the base
of the neck of the perithecium; this diagnostic feature is absent
in members of the LAC (Johnson et al. 2005). Within the NAC,
Ceratocystis species are distinguished from one another based
on the presence or absence of conidial stages, host range,
isozyme alleles, and DNA-based phylogenetic analyses (Johnson
et al. 2005, de Beer et al. 2014, Oliveira et al. 2015a). Yet, the
taxonomy and systematics in the NAC needs more rigorous
investigation (Johnson et al. 2005, Oliveira et al. 2015a).

The NAC currently includes five Ceratocystis species that
have been isolated from various tree hosts, including Betula,
Carya, Celtis, Ostrya, Populus, Prunus, Quercus, Tilia, and Ulmus
in Europe, Asia, and North America (Johnson et al. 2005).
Currently, the NAC of Ceratocystis is comprised of four strongly
supported species including C. caryae (Carya spp. and other
hosts), C. harringtonii (synonym C. populicola; Populus spp.),
C. smalleyi (Carya spp. and an associated bark beetle, Scolytus
quadrispinosus), C. tiliae (Tilia americana), and the paraphyletic
taxon C. variospora. Traditionally, the name C. variospora has
been used to describe the species infecting oaks (Quercus spp.)
in the midwestern USA, but it has been isolated from other

hardwood species, and C. variospora currently includes the
pathogen on Prunus spp. in California (Johnson et al. 2005).
Although isolates of C. variospora from oak and Prunus differ in
their ITS sequences, they could not be distinguished based on
morphology nor host association (Johnson et al. 2005). A new
species within C. variospora was recently described as C. tiliae,
a wound-associated pathogen of basswood (Tilia americana)
in Nebraska and lowa (Oliveira et al. 2015a). Individual
phylogenetic analysis across three loci (LSU, TEF1, and Cerato-
platanin) strongly suggests that C. variospora is a paraphyletic
taxon as currently defined (Oliveira et al. 2015a). Interfertility
tests have shown that isolates from the Quercus lineage (C.
variospora s. str.) are only interfertile with each other and not
with isolates collected from Betula, Prunus, or Tilia (C. variospora
s. lat.) (Johnson et al. 2005), thus supporting a biological species
concept in conjunction with host specialization (Oliveira et al.
2015a).

Johnson et al. (2005) proposed that the name C. variospora
should be applied to the Prunus pathogen in California. The
fungus causes Ceratocystis canker of almond (Prunus dulcis)
(DeVayetal. 1960) and infects other stone fruits, including apricot
(P armeniaca) and prune (P. domestica) (DeVay et al. 1962). The
fungus is thought to colonize wounds made on the bark of trees
during mechanical harvest. This disease is ubiquitous in older
almond orchards and has recently become a growing concern
for young orchards. Almonds are California’s most economically
important agricultural crop and over 80 % of the global supply is
grown in California. Disease symptoms appear as brown to dark
brown, shallow (not extending far beyond the cambium), and
sunken, cankers. Canker expansion is rapid during the growing
season, eventually girdling infected limbs, causing leaves to wilt
and branches to dieback. The use of mechanical shakers has led
to bark injuries on the trunks of trees and a high incidence of
Ceratocystis canker.

The aim of this study was to revisit the taxonomy and
phylogeny of Ceratocystis isolates recovered from symptomatic
almond trees in California. DNA from cultures linked to ex-type
and representative specimens for each species in the NAC were
obtained and included in a six-gene phylogeny, utilizing portions
of 28S (LSU) rDNA, B-tubulin (TUBZ2), translation elongation
factor 1-alpha (TEF1), mini-chromosome maintenance complex
component 7 (MCM?7), 60S ribosomal protein RPL10 (60S), and
Cerato-platanin (CP) gene fragments to further resolve cryptic
species within the NAC of Ceratocystis.

MATERIALS AND METHODS
Collection of isolates

Isolates were collected from symptomatic almond trees
throughout the major almond producing regions in the Central
Valley of California (Table 1). Frequently, isolates were collected
from trees that were damaged by mechanical harvesting at the
trunk or near large pruning wounds made on the scaffolding
branches. Gummosis delineated the margins of the cankers in
most cases. Trees exhibiting gummosis and sunken lesions in the
bark were sampled using a hatchet. Fungi were isolated from
pieces of inner bark (50 x 50 x 5 mm) from the margins of active
cankers; the pieces were surface disinfested in 0.6 % sodium
hypochlorite for 2 min, rinsed twice with sterile water and patted
dry with a paper towel. The inner bark pieces were incubated
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Table 1. (Continued).

GenBank Accession Nos.

TUB2 TEF1 Mcm7 60S cp®

LSU
T.C. Harrington MG980975 MG980875 MG980779 MG981021 MG980825

Collector

Geographic origin Year

Host

Isolate®

Species

MG980925

2004

Story Co., lowa

Tilia americana

C2131/CBS 137355

C. tiliae

MG980923

T.C. Harrington MG980973 MG980873 MG980777 MG981019 MG980823

2001

Douglas Co.,
Nebraska

Tilia americana

C2622/CBS 137356

MG980974 MG980874 MG980778 MG981020 MG980824 MG980924

J.A. Johnson

2002

Boone Co., lowa

Tilia americana

C1954/CBS 137354

MG980976 MG980876 MG980780 MG981022 MG980826 MG980926

J.A. Johnson

lowa 2002

Tilia americana

C1959

FUSE

Phylogeny of the North American clade of Ceratocystis

MG980935 MG980835 MG980739 MG980982 MG980786 MG980885

1955/1956 R.N. Campbell

Carlton Co.,
Minnesota

C1009/CBS 773.73 Quercus ellipsoidalis

C. variospora

MG980886

MG980936 MG980836 MG980740 MG980983 MG980787

1955/1956 R.N. Campbell

Minnesota

Quercus ellipsoidalis

C1483/ATCC 12866

MG980887

KM495561

MG980937 MG980837 MG980741 KM495471

Allamakee Co., ) J.A. Johnson

lowa

Quercus alba

C1843/CBS 114715

MG980938 MG980838 MG980742 MG980984 MG980788 MG980888

Marshall Co., 2001 J.A. Johnson

lowa

Quercus robur

C1846/CBS 114714

3lsolates in bold represent type specimens. Isolates with the prefix “C” are from the culture collection from T. C. Harrington at lowa State University, isolates with the prefix “KARE” are from the culture

collection at University of California Kearney Agricultural Research and Extension Centre.

® Cerato-platanin.

bark-side down (cambium-side up) in a moist chamber (metal
mesh rack placed over moistened paper towels in clear plastic
boxes) at room temperature for one wk in the laboratory
under natural photoperiod to promote perithecia formation.
Mats of mycelium typical of Ceratocystis, namely a white
wiry mycelium with black, long-necked perithecia extending
from the surface of diseased tissue was observed after 5-6 d.
Masses of ascospores exuding from the tips of the perithecia
were transferred with a sterilized needle to fresh acidified
potato dextrose agar (APDA; 2.6 mL of 25 % [vol/vol] lactic acid
per liter of medium) plates followed by hyphal-tip purification
to fresh PDA (Potato Dextrose Agar, Difco) filled Petri dishes for
additional morphological and phylogenetic analyses. Twenty-
six isolates including five cultures linked to ex-type specimens
of Ceratocystis were obtained from the culture collection of
Dr. Thomas C. Harrington, Department of Plant Pathology and
Microbiology, lowa State University, corresponding to isolates
lodged at the Westerdijk Fungal Biodiversity Institute (former
CBS) and are presented in Table 1.

Phylogenetic analyses

Total genomic DNA was isolated from 24 Californian isolates
and an additional 26 NAC isolates from mycelium scraped with
a sterile scalpel from the surface of 14-d-old PDA cultures using
the DNeasy Plant Kit (Qiagen, Valencia, California), following
the manufacturer’s instructions. Amplification of translation
elongation factor 1-a (TEF1) fragments utilized the primer set
EFCF1 and EFCF6 (Harrington 2009), B-tubulin (TUB2) utilized
primers Btla and Btlb (Glass & Donaldson 1995), the 28S
(LSU) rDNA region utilized primers LROR and LR7 (Vilgalys &
Hester 1990), Cerato-platanin (CP) utilized primers CP-2F and
CP-1R (Pazzagli et al. 1999, Chen et al. 2013), 60S ribosomal
protein (60S) utilized primers 60S-506F and 60S-908R (Stielow
et al. 2015), and the mini-chromosome maintenance complex
component 7 (MCM?7) utilized primers Cer-MCM7F and Cer-
MCMT7R (de Beer et al. 2014). PCR amplification conditions for
the TUB2 and TEF1 regions were the same as those described
by Oliveira et al. (2015b); amplification conditions for the
cerato-platanin region were the same as those described by
Oliveira et al. (2015a), and amplification conditions for the
LSU region were the same as those described by Vilgalys &
Hester (1990). A slightly modified PCR program from de Beer
et al. (2014) was used for MCM?7 and 60S [initial denaturation
(96 °C, 5 min) followed by 35 cycles of denaturation (95 °C,
45 s), annealing (58 °C for MCM7 and 56 °C for 60S, 45 s),
extension (72 °C, 60 s), and a final extension (72 °C, 10 min)].
PCR products were visualized on a 1.5 % agarose gel (120 V for
25 min) to validate presence and size of amplicons, purified via
Exonuclease | and recombinant Shrimp Alkaline Phosphatase
(Affymetrix, Santa Clara, California), and sequenced in both
directions via BigDye® Terminator v. 3.1 Cycle Sequencing Kit
(Thermo Fischer Scientific, Waltham, Massachusetts) on an
ABI 3730 Capillary Electrophoresis Genetic Analyzer (College
of Biological Sciences Sequencing Facility, University of
California, Davis).

Forward and reverse nucleotide sequences were
assembled, proofread, and edited in Sequencher v. 5 (Gene
Codes Corporation, Ann Arbor, Michigan) and deposited
in GenBank (Table 1). Sequences from type and non-type
Ceratocystis isolates (n = 5 and 21, respectively) in the NAC
were included for phylogenetic reference (de Beer et al. 2014,
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Oliveira et al. 2015a) (Table 1). Multiple sequence alignments
were performed in MEGA v. 6 (Tamura et al. 2013) and manually
adjusted where necessary in Mesquite v. 3.10 (Maddison &
Maddison 2016). Alignments were submitted to TreeBASE under
accession number S22454. Concordance among datasets (P 2
0.010) was evaluated with the partition homogeneity test (PHT)
conducted in PAUP v. 4.0b162 (Swofford 2002). Datasets were
analyzed using two different optimality search criteria, maximum
parsimony (MP) and maximum likelihood (ML), in MEGA v. 6
(Tamura et al. 2013). For MP analyses, heuristic searches with
1 000 random sequence additions were implemented with the
Tree-Bisection-Reconnection algorithm, gaps were treated as
missing data. Bootstrap analysis with 1 000 pseudoreplicates was
used to estimate branch support. For ML analyses, MEGA was
used to infer a model of nucleotide substitution for each dataset,
using the Akaike Information Criterion (AIC). ML analysis utilized
the Nearest-Neighbor-Interchange heuristic method and branch
stability was determined by 1 000 bootstrap pseudoreplicates.
Sequences of Ceratocystis fimbriata s. str. isolate C1476 from
the LAC served as the outgroup taxon in all analyses.

Morphological characterization

Novel fungal species identified during this study were
characterized for morphology. Representative isolates
(KARE1428, KARE1610, C578, C821, C1709, and C1770) selected
based on phylogenetic results were cultured on MEA (2 % Malt
Extract Agar; Difco) and PDA. Subculturing was performed by
transferring triplicate 5-mm diam mycelial plugs from the colony
periphery of a pure culture to the center of fresh Petri dishes
filled with MEA and PDA. Cultures were incubated for up to
14 d at room temperature (24 +/- 1 °C) with natural ambient
day light and darkness at night (Sep. 2017). Radial growth was
measured after 7 d of incubation by taking two measurements at
right angles to each other. This experiment was repeated once.
Descriptions of colony color (Rayner 1970) and morphology was
conducted on day 14. Morphological characterization included
measuring the diameter of perithecia and length of ostiolar
neck (n = 30), length of ostiolar hyphae (n = 30), ascospore
dimensions (n = 30), conidiophores (n = 10), dimensions of
cylindrical and doliiform conidia (n = 30), and aleurioconidia
(n = 30) at 1000x magnification from 14-d-old cultures by
mounting and/or squashing perithecia and other structures
in a sterile 50 % glycerol solution on glass slides followed by
covering with a glass coverslip and observing structures with
a Leica DM500B compound microscope (Leica microsystems
CMS GmbH, Wetzlar, Germany). No stain was applied in order
to preserve the natural pigmentation of the fungal specimens.
Morphological measurements are represented by the mean
and a range depicting the standard deviation in the center with
minima and maxima in parentheses, respectively.

Optimal growth temperature for the representative isolates
(KARE1428, KARE1610, C578, €821, C1709, and C1770) was
assessed by culturing isolates as described above on MEA and
PDA in the dark and incubating them at temperatures ranging
from 5 °Cto 40 °Cin five degree increments for up to 14 d. Radial
colony growth was measured as described above every two days
and average colony growth rate and average colony diameter
were calculated. Three individual colony replicates per isolate
were measured for each temperature. This experiment was
repeated once.

RESULTS
Collection of isolates

Surveys of almond orchards in California revealed that
Ceratocystis canker was widespread throughout the Central
Valley region where almond trees are grown. Infections
produced gummosis at the margin of active cankers (Fig. 1A, B).
Internal symptoms in infected trunks or scaffolds included death
of cambium and bark tissues as well as diffuse, dark brown
discoloration that extended into the primary and secondary
xylem (Fig. 1C). Cankers were generally associated with wounds
created by mechanical harvesting and pruning equipment on
the tree trunks (Fig. 1A, D—F) or main scaffold branches (Fig. 1B).
Wounds caused by mechanical harvesters typically ruptured the
bark, thus exposing the susceptible cambial tissues. Cankers
expanded along the main axis of the tree, sometimes extending
into one of the main scaffolds (Fig. 1A). Isolations from 4—15-yr-
old trees symptomatic of Ceratocystis canker yielded 87
Ceratocystis isolates from 20 almond orchards in six California
counties.

Phylogenetic analyses

Tests for concordance between datasets using PHT revealed
that these data were not significantly inconcordant (P = 0.10)
and were combined and analyzed as above. For ML analyses,
the best-fit model of nucleotide evolution was selected based
on the AIC (K2 for 60S and LSU; K2+G for TEF1, TUB2, MCM?7, CP,
and the combined analysis).

Alignment of the combined sequences (TEF1+TUB2+CP
+60S+MCM7+LSU) resulted in a 4905-character dataset, in which
4 432 characters were constant, 198 characters were parsimony-
uninformative, and 275 characters were parsimony-informative
(6 %). MP analysis generated 8 equally most parsimonious trees
of 553 steps and consistency index (Cl), retention index (RI), and
rescaled consistency index (RC) of 0.8951, 0.9580, and 0.8523,
respectively. MP and ML analyses of the combined six-gene
dataset revealed seven strongly supported lineages (= 91 % /
> 99 % MP and ML bootstrap values, respectively) within the
NAC (Fig. 2). Of these seven lineages, two represent the newly
described species hereinafter identified as Ceratocystis betulina
sp. nov. and Ceratocystis destructans sp. nov. Ceratocystis
betulina was revealed to be the sister taxon to C. variospora s.
str., while C. destructans includes the almond pathogen and a
group of Ceratocystis isolates collected from Populus, Celtis sp.,
black cherry (Prunus serotina), and Quercus macrocarpa in lowa.
The branch that included only the California isolates (including
a single isolate from Populus in lowa) was strongly supported
(91 % / 99 %), but there was only weak support (75 % / < 70
%) for the broader C. destructans lineage that included all the
lowa isolates. The C. destructans lineage is sister to the recently
described species C. tiliae. The order of divergence within the
NAC was almost fully resolved, thus providing the first strongly
supported hypotheses concerning speciation order within the
NAC as depicted in Fig. 2. Thus, the six-gene analysis provides
strong support not only for species delineation but also for early
and late bifurcations of independently evolving lineages within
the NAC.

PCR amplification of the TEF1 locus produced 1 433-1 473
bp fragments and resulted in a 1 473-character dataset, in
which 1 351 characters were constant, 39 were parsimony
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Fig. 1. Symptoms of Ceratocystis canker of almond in California. A. Gummosis and canker associated with a large pruning wound on trunk. B. Scaffold

canker. C. Transverse cut of a tree trunk infected with Ceratocystis canker and showing dead cambium and bark tissues as revealed by the brown

discoloration extending into the primary and secondary xylem. D-E. Damaged bark and active Ceratocystis cankers developing on the trunk of young

almond trees. F. Damaged bark and active Ceratocystis cankers developing on the trunk of a mature almond tree.

uninformative, and 83 were parsimony informative (6 %).
The MP analysis produced eight equally most parsimonious
trees of 146 steps and a Cl, RI, and RC of 0.8290, 0.9529, and
0.8223, respectively (Fig. 3A). PCR amplification of the TUB2
locus produced 535-547 bp fragments and resulted in a
547-character dataset, in which 480 characters were constant,
33 were parsimony uninformative, and 34 were parsimony
informative (6 %). The MP analysis produced eight equally most
parsimonious trees of 76 steps and a Cl, RI, and RC of 0.8604,
0.9625, and 0.8870, respectively (Fig. 3B). PCR amplification of
the MCM7 locus produced 628 bp fragments and resulted in a

628-character dataset, in which 570 characters were constant,
20 were parsimony uninformative, and 38 were parsimony
informative (6 %). The MP analysis produced 10 equally most
parsimonious trees of 68 steps and a Cl, RI, and RC of 0.9166,
0.9823, and 0.9254, respectively (Fig. 3C). PCR amplification of
the 60S locus produced 415-429 bp fragments and resulted in
a 429-character dataset, in which 386 characters were constant,
18 were parsimony uninformative, and 25 were parsimony
informative (6 %). The MP analysis produced 10 equally most
parsimonious trees of 47 steps and a Cl, RI, and RC of 0.9574,
0.9800, and 0.9385, respectively (Fig. 3D). PCR amplification of
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50 Changes

Fig. 2. One of eight equally most parsimonious trees generated from maximum parsimony analysis of the six-gene (TEF1+TUB2+CP+60S+MCM7+LSU)
combined dataset. Numbers in front and after the slash represent parsimony and likelihood bootstrap values from 1 000 pseudoreplicates, respectively.
Values represented by an asterisk were less than 70 % for the bootstrap analyses. Bar indicates the number of nucleotide changes. Ex-type isolates
are in bold.
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Fig. 3. Equally most parsimonious trees from single-locus analyses. Numbers in front and after the slash represent parsimony and likelihood bootstrap

values from 1 000 pseudoreplicates, respectively. Values represented by an asterisk were less than 70 % for the bootstrap analyses. The scale bar

indicates the number of nucleotide changes. Ex-type isolates are in bold. A. One of eight equally most parsimonious trees for the TEF1 analyses. B.

One of eight equally most parsimonious trees for the TUB2 analyses. C. One of 10 equally most parsimonious trees for the MCM7 analyses. D. One of

10 equally most parsimonious trees for the 60S analyses. E. One of 10 equally most parsimonious trees for the Cerato-platanin analyses. F. One of 10

equally most parsimonious trees for the LSU analyses.
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Fig. 3. (Continued).
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KARE1611 Prunus dulcis California
KARE1610 Prunus dulcis California
KARE1609 Prunus dulcis California
KARE1448 Prunus dulcis California
KARE1447 Prunus dulcis California
KARE1428/CBS 144227 Prunus dulcis California
KARE1427 Prunus dulcis California
96/96 KARE994 Prunus dulcis California
KARE979 Prunus dulcis California
KARE978 Prunus dulcis California
KARE495 Prunus dulcis California
KARE494 Prunus dulcis California
KARE490 Prunus dulcis California
KARES300 Prunus dulcis California
KARE230 Prunus dulcis California
KARE223 Prunus dulcis California
KARE219 Prunus dulcis California

Ceratocystis destructans sp. nov.

C821 Prunus dulcis California
C1822 Prunus dulcis California
76/77 C856 Prunus dulcis California

C578 Prunus dulcis California
C1963 Prunus serotina lowa
C1957 Celtis sp. lowa

C1956 Quercus macrocarpa lowa
C1483 Quercus ellipsoidalis Minnesota
C1843 Quercus alba lowa

Ceratocystis variospora
C1846 Quercus robur lowa P

C1009 Quercus ellipsoidalis Minnesota
C1709/CBS 144246 Betula platyphylla Japan

Ceratocystis betulina sp. nov.
C1770 Betula platyphylla Japan ys ult P v

C1827 Carya ovata lowa 3 )
Ceratocystis smalleyi

C1829 Carya cordiformis lowa

C684 Carya cordiformis lowa
84/87 | &4 Ceratocystis caryae

I C682 Carya cordiformis Wisconsin
C1485 Populus tremuloides Colorado
€685 Populus tremuloides Québec, Canada | Ceratocystis harringtonii
C995 Populus sp. Poland
C1476 Ipomoea batatas Papua New Guinea Ceratocystis fimbriata

1 Change

Fig. 3. (Continued).

the Cerato-platanin locus produced 487-498 bp fragments and
resulted in a 498-character dataset, in which 327 characters
were constant, 85 were parsimony uninformative, and 86 were
parsimony informative (17.2 %). The MP analysis produced 10
equally most parsimonious trees of 207 steps and a Cl, RI, and
RC of 0.8606, 0.9575, and 0.8795 respectively (Fig. 3E). PCR
amplification of LSU produced 1 330 bp fragments and resulted
in a 1 330-character dataset, in which 1 318 characters were

constant, three were parsimony uninformative, and nine were
parsimony informative (1 %). The MP analysis produced 10
equally most parsimonious trees of 13 steps and a Cl, Rl, and
RC of 0.9230, 0.9736, and 0.8936, respectively (Fig. 3F). No
single gene fragment was able to confidently recognize all seven
lineages within the NAC. Many single gene analyses produced
tree topologies that separated most if not all species; however,
a lack of support for some phylogenetic positions was realized.
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Results strongly suggest that multiple gene regions are required
to accurately separate the more recently diverged species
C. tiliae and C. destructans, while earlier diverging members
of the NAC (i.e. C. harringtonii and C. smalleyi) were typically
discernible based on fewer loci or even a single locus (i.e. TEF1)
(Fig. 3A—F). Only the TEF1 gene region was able to discern
the recently diverged C. caryae and C. smalleyi as separate
phylogenetic species, further supporting the use of multiple loci
for accurate identification of Ceratocystis species in the NAC.

Morphological characterization

Isolates representing C. betulina (C1709 and C1770) and C.
destructans (C578, C821, KARE1428, and KARE1610) were used
for morphological characterization (Table 2 and Supplementary
Table 1). For C. betulina isolates C1709 and C1770, the average
colony diameter after 7 d on PDA and MEA at room temperature
(24+/-1°C)was 27 (PDA)/24.2 (MEA)and 23/22 mm, respectively.
For C. destructans isolates C578, C821, KARE1428 and KARE1610
the average colony diameter after 7 d on PDA and MEA at room
temperature (24 +/- 1 °C) was 36/30, 35/32, 40/20.3 and 35/17.3
mm, respectively. In culture, both C. betulina and C. destructans
were slow-growing with even to uneven margins. The colonies
of C. betulina varied in color from white to grey to olivaceous
green. Colonies of C. destructans were grey to olivaceous green.
Ceratocystis betulina isolate C1770 produced few perithecia
in culture, and the perithecia often lacked necks or had short
necks. Ascospores were not observed for this isolate. Isolates of
C. destructans produced black ascomata scattered throughout
the colony with many perithecia near the colony centre. The
ascomatal bases of C. destructans isolates ((118-)197(-358)
um) were larger than those produced by isolates of C. betulina
((103-)162(-220) um). The morphological characters that
distinguished C. betulina from C. destructans were the average
diameter of the ascomata and lengths of the necks. Ceratocystis
destructans had larger ascomatal diameters (av. ranging from
163-220 um among the four isolates) and longer necks (av.
ranging from 379—623 um among the four isolates) compared
to smaller ascomata (av. of the two isolates = 149 um and 175
um, respectively) and shorter necks (av. of the two isolates = 142
um and 298 um, respectively) of C. betulina. Cylindrical conidia
and thick-walled aleurioconidia were abundant in both species
and of similar dimensions. Aleurioconidia of C. betulina were
often found in short chains compared to C. destructans, whose
aleurioconidia were found singly or in short chains. Doliiform
conidia were abundant in C. betulina isolates and sparse or
absent in C. destructans isolates C578 and C821.

For two isolates of C. betulina (C1709 and C1770) and four
isolates of C. destructans (C578, C821, KARE1428 and KARE1610)
the optimal temperature for growth was 25 °C. In general,
Ceratocystis destructans grew faster than C. betulina at 5, 10,
15, 20 and 35 °C on PDA. On the other hand, C. betulina isolates
grew faster on PDA at the optimal temperature of 25 °C at an
average of 3.5 mm/d, while C. destructans isolates grew at an
average of 3.1 mm/d on PDA at 25 °C. All isolates grew slower on
MEA, with an average growth rate of 0.8 mm/d and 1.3 mm/d at
25 °C for C. destructans and C. betulina, respectively. No growth
was observed at 40 °C for any isolates on either growth medium.
For both taxa, growth at 5 and 10 °C was reduced, and an abrupt
decline was observed at 35 °C, however C. destructans (25 mm
diam) had almost double the growth of C. betulina (15 mm diam)
at this temperature after 14 d on PDA. For both taxa ascomatal
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production was most abundant when grown at 20 and 25 °C,
and no ascomata were produced at 10 and 35 °C.

TAXONOMY

Morphological comparisons coupled with  multi-locus
phylogenetic analyses (MP and ML) of the combined six-gene
dataset identified two distinct and strongly supported lineages
for which no apparent species names exists. Thus, we propose
the following new species names to properly circumscribe these
unique taxa and to further resolve paraphyletic and cryptic taxa
in the NAC.

Ceratocystis betulina D.P. Lawr., L.A. Holland & Trouillas, sp. nov.
MycoBank MB824502. Figs 2, 4.

Etymology: The name refers to the host, Betula platyphylla,
from which this fungus was isolated.

Typus: Japan, Morioke, Iwate, isolated from sporulating fungal
mat on a log of Betula platyphylla, 22 Sep. 2000, H. Masuya No.
C1709 (holotype BPI 910648, dried culture; ex-type culture CBS
144246).

Colonies 24.2 mm after 7 d at 25 °C on MEA, slow-growing with
uneven margins and copious aerial hyphae. Hyphae initially hyaline,
smooth, straight, branched, septate, becoming dark with age.
Mycelium submerged, olivaceous green, aerial mycelium white,
producing ascomata in clumps, odor sweet, with banana-like scent.
Ascomata perithecial, with bases superficially to partially immersed
in the substrate, mostly black, globose, (102.5-)124-174(—193) um
diam, unornamented or with undifferentiated hyphae, collar
(32-)43-54(-59.5) um wide at the base of the perithecial neck.
Perithecial necks black, slender, (144.5-)227.5-368(—438) um long,
(14.5-)16.5-22(-24.5) um wide at the base, (11.5-)13.5-19.5(—
20) um wide at the apex. Ostiolar hyphae hyaline, aseptate, straight
to flexuous, 22-55 um long. Asci not seen. Ascospores (4.5-)4.5—
5(-5.5) x (2.5-)3-3.5(-5) um with outer sheath forming a hat-
shaped brim. Conidiophores of three types: endoconidiophores
lageniform, hyaline to pale brown, septate, 29—67 um in length,
3-6.5 um wide at the base and 3-5 um wide at the mouth,
producing hyaline, concatenated, cylindrical conidia (10-)11-
15.5(-19) x (2—)2.5-3(-3) um; other endoconidiophores shorter,
14-33 um in length, 3—6 um wide at the base and 3.5-5.5 um wide
at the mouth, producing hyaline, concatenated, smooth-walled,
doliiform conidia (5.5-)6—8(—9.5) x (4.5—)5.5—-6(—6.5) um; and less
abundant, simple conidiophores (21.5-)23—-30(-30) x (2.5—)3-5(—
6) um, producing smooth- and thick-walled, dark brown, ellipsoid
to clavate, aleurioconidia (9—)9.5-10.5(—11) x (7.5-)8—-8.5(—8.5) um
either singly or in short chains of 2-3.

Distribution: Morioke, Iwate (Japan).

Additional material examined: Japan, Morioke, lwate, isolated from
Carpophilus sibiricus from a log of Betula platyphylla, 22 Sep. 2000, H.
Masuya (C1770).

Notes: Ceratocystis betulina was isolated from a log of Betula
platyphylla located near Prunus and Quercus trees. Prior to our
analyses, isolates C1709 and C1770 were considered to be C.
variospora. Phylogenetically, C. betulina is strongly supported
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Fig. 4. Morphological characteristics of Ceratocystis betulina. A. 14-d-old PDA culture. B. Close-up of perithecia from 7-d-old culture. C. Globose
unornamented ascomata base with elongated neck. D. Straight to flexuous ostiolar hyphae. E. Hat-shaped ascospores from top and side view. F. Cylindrical
conidia. G. Short, barrel-shaped conidia. H. Thick-walled aleurioconidia. Scale bars: C =100 pm; D = 20 um; E =5 um; F-G = 20 um; H = 10 pm.

as the sister taxon to C. variospora. Morphologically, C. betulina
is similar to other members in the NAC and cannot be easily
distinguished, though it has somewhat smaller perithecia
(102.5-)149(-192) um diam, shorter, flask-shaped conidiophores
(29-67 pm), shorter, wide-mouth conidiophores (14-33 um),
and smaller aleurioconidia, (9-)10(-11) x (7.5-)8(-8.5) um.
Ceratocystis betulina can be distinguished from C. variospora
based on slightly smaller cylindrical conidia (10-19 x 2—-3.5 um
for C. betulina and 6-30 x 2.5-5 um for C. variospora) (Table 2;
Supplementary Table 1).

Ceratocystis destructans L.A. Holland, D.P. Lawr., & Trouillas, sp.
nov. MycoBank MB824558. Figs 2, 5.

Etymology: The name refers to this fungus causing destructive
cankers in almond.

Typus: USA, California, Madera County, 36°52’50.3”"N
119°51’'25.4”W, isolated from wood canker of Prunus dulcis,
19 Jul. 2016, L.A. Holland No. KARE1428 (holotype BPI 910649,
dried culture; ex-type culture CBS 144247).
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Fig. 5. Morphological characteristics of Ceratocystis destructans. A. 14-d-old PDA culture. B. Close-up of perithecia from 7-d-old culture. C. Globose
unornamented ascomata base with elongated neck. D. Mostly straight ostiolar hyphae. E. Hat-shaped ascospores from top and side view. F. Cylindrical
and short, barrel-shaped conidia. G. Flask-shaped conidiophores. H. Thick-walled aleurioconidia. Scale bars: B = 500 um; C = 100 um; D = 25 um; E =
5um; F=25pum; G=20 um; H =25 um.

Colonies 20.3 mm after 7 d at 25 °C on MEA, slow-growing with to brown, aerial hyphae white, odor sweet, with banana-like
uneven margins and copious aerial hyphae, olivaceous green scent, ascomata produced in clumps or in concentric rings.
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Hyphae initially hyaline, smooth, straight, branched, septate,
becoming dark with age. Ascomata perithecial, with bases
superficially to partially submerged, mostly black, globose,
(121.5-)142-184(-208) um diam, unornamented or with
undifferentiated hyphae, collar (44-)47.5-57(-64) um wide at
the base of the perithecial neck. Perithecial necks black, slender,
(382-)434-573(—626) um long, (13-)18-23.5(-24.5) um wide
at the base, (11-)12-17(-22) um wide at the apex. Ostiolar
hyphae hyaline, aseptate, mostly straight, 38—-56 um long. Asci
not seen. Ascospores (5-)4.5-5(-5) x (2.5-)3—-3.5(-3.5) um
with outer sheath forming a hat-shaped brim. Conidiophores of
three types: endoconidiophores lageniform, hyaline to pale
brown, septate, 34—113 um in length, 3—-5 um wide at the base
and 2-3 um at the mouth; producing concatenated, hyaline,
cylindrical conidia (12-)14.5-20.5(-26) x (1.5-)2-2.5(-3) um;
other endoconidiophores less prevalent and shorter, 26—69 um
in length, 3.5-4 um wide at the base and 4.5-5.5 um wide at
the mouth, producing hyaline, concatenated, smooth-walled,
doliiform conidia (7-)8-10(-10.5) x (4-)4.5-6(—6.5) um; and
simple conidiophores not as prevalent, (18-)24-41(-45.5) x
(2.5-)3-3.5(-4), producing smooth- and thick-walled, dark
brown, clavate, aleurioconidia (7.5-)9-12(-13) x (7-)8.5-11(-
13) um either singly or in short chains of up to four.

Distribution: California (USA), Prunus dulcis; lowa (USA), Prunus
serotina, Populus, Celtis and Quercus.

Additional materials examined: USA, California, Colusa County, isolated
from bark canker of P. dulcis, 1989, R. Bostock (C578); California, Colusa
County, isolated from stem canker of P. dulcis, 24 Feb. 1996, D. Rizzo
(C821); California, Merced County, isolated from bark canker of P.
dulcis, 8 Sep. 2016, F. Trouillas (KARE1610).

Notes: Ceratocystis destructans has been isolated from almond
trees throughout the Central Valley Region of California
from necrotic inner bark and wood tissues of trees showing
sunken cankers and gummosis. Ceratocystis destructans is
morphologically similar to the sister species C. tiliae. However,
these species can be distinguished based on average ascospore
dimensions, with C. destructans having slightly smaller
ascospores (4-5 x 2.5-3.5 um) than C. tiliae (5-6 x 4—4.5 pum)
and smaller ascomata (Table 2; Supplementary Table 1).

DISCUSSION

Morphological and phylogenetic analyses revealed two novel
Ceratocystis species, C. betulina and C. destructans, that
reside in the North American clade of Ceratocystis. The NAC of
Ceratocystis was established, and the first species delineated
by Johnson et al. (2005) based on ITS-rDNA phylogeny,
electrophoretic phenotypes, interfertility tests, and cross-
inoculations experiments. The host-associated lineages included
the aspen lineage with C. harringtonii (synonym C. populicola),
the hickory lineage with two species, C. caryae and the closely
related species C. smalleyi, and a third lineage represented by
the earlier described C. variospora (Davidson 1944), with two
well-supported subclades: the “oak lineage” associated with
oak (Quercus) and birch (Betula) and the ‘cherry lineage,” mainly
associated with cherry and almond (Prunus spp.), Populus, and
basswood (Tilia americana). Johnson et al. (2005) hypothesized
that host-associated isolates of C. variospora from Prunus,

Quercus, and Tilia could represent three separate species,
respectively, but these intersterile lineages could not be clearly
distinguished by phenotypic traits, i.e., morphology or host
specialization to Quercus vs. Prunus spp. Oliveira et al. (2015a),
using three individual gene analyses (LSU, TEF1, and CP), showed
that Ceratocystis isolates recovered from Tilia clustered as a well-
supported monophyletic group sister to the cherry lineage of C.
variospora in the TEF1 and CP analyses. Not surprising, limited
sequence variation failed to identify sublineages within C.
variospora in the analysis of LSU, the least informative marker in
that study and in our study. Inoculation of Quercus macrocarpa
and Tilia americana seedlings demonstrated that only Tilia-
derived isolates were aggressive on T. americana, cultures of the
Tilia pathogen were distinguished morphologically, and C. tiliae
was described as new (Oliveira et al 2015a). Like Johnson et al.
(2005), Oliveira et al. (2015a) maintained the name C. variospora
to accommodate isolates recovered from Betula, Celtis, Populus,
Prunus and Quercus, thus leaving C. variospora as a paraphyletic
species.

Our individual gene analyses produced similar topologies
and support values for species assighments as in de Beer et
al. (2014) and Oliveira et al. (2015a), highlighting the need for
combined multi-locus analyses to discriminate closely related
species and to estimate species relationships in the NAC. For
example, of the six loci tested, only TEF1 was able to confidently
delineate the sister species C. caryae and C. smalleyi, and all
loci except LSU and 60S were able to discern C. betulina and C.
variospora as well-supported sister groups. All loci supported
the close relationship of C. betulina, C. variospora, C. tiliae,
and C. destructans, while C. harringtonii and C. caryae/smalleyi
lineages were more distantly related, in agreement with previous
studies (Johnson et al. 2005, Oliveira et al. 2015a).

The de Beer et al. (2014) multi-locus analysis (LSU+MCM7
+60S) involving NAC members distinguished the ex-type cultures
of C. caryae C1829, C. harringtonii C685, C. smalleyi C684, and
C. variospora C1009, but they did not examine the intraspecies
diversity of the NAC. Analyses with more isolates of the NAC
with phylogenetically informative loci such as TEF1 and CP have
revealed greater diversity within the oak and cherry lineages
of C. variospora (Oliveira et al. 2015a) as compared to ITS
analyses (Johnson et al. 2005). Oliveira et al. (2015a) did not
perform a multi-locus analysis because they reported a low
P value (P = 0.01) for their three-gene PHT. The topology and
support values for our TEF1 and CP phylograms are very similar
to those reported by Oliveira et al. (2015a). The results of our
PHT (P = 0.10) and examination of tree topology and support
for phylogenetic species recognition utilizing six loci revealed
no significant incongruence amongst loci, and the combined
analyses resulted in a more robustly supported inference about
species recognition (Taylor et al. 2000) and species relationships
within the NAC.

The use of multiple phylogenetically informative gene
regions has allowed for further taxonomic refinement of species
assignments within both the oak and cherry lineages of C.
variospora. The oak lineage now consists of two robust lineages,
which are defined by the species C. betulina and C. variospora,
which was hypothesized by Johnson et al. (2005) and is now
strongly supported by multi-locus analyses. The former cherry
lineage now consists of two strongly supported phylogenetic
lineages, C. tiliae and C. destructans, as predicted by interfertility
tests and distinct mycelial phenotypes, namely the former with
slower growth and less pigmentation as compared to the latter
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(Johnson et al. 2005, Oliveira et al. 2015a). The phylogenetic
position of three isolates (C1956 from Quercus, C1957 from
Celtis, and C1963 from Prunus) from lowa is very close to C.
destructans, and can be considered this species, but further
intersterility testing and phylogenetic analyses would be needed
to confidently resolve this small group.

Most Ceratocystis species within the NAC are not only
supported by multi-locus phylogenetic analyses but also by
host specialization, a biological species concept, and in some
cases morphological characters. Host specificity through
pathogenicity tests has been demonstrated in the aspen (C.
harringtonii) and hickory lineages (C. caryae and C. smalleyi)
(Johnson et al. 2005, Oliveira et al. 2015a). Now, with additional
locus sampling, the former oak lineage of C. variospora consists
of two host-associated species, C. betulina and C. variospora,
which have only been isolated from Betula and Quercus,
respectively. A clear pattern of host specialization was not
as evident in the oak and cherry lineage cross-inoculations,
with one exception. Ceratocystis tiliae was more aggressive to
Tilia than close relatives isolated from Quercus and vice versa
(Oliveira et al. 2015a). Ceratocystis betulina is represented by
isolates from a single Betula log, and it is not clear if the log
was saprobically colonized or if the fungus was native to Japan.
To our knowledge no pathogenicity trials have compared the
host associated sister clades C. betulina and C. variospora, but
we predict that some level of host specialization will be realized
in this clade as suggested by phylogenetic results. Preliminary
pathogenicity trials have shown that isolates of C. destructans
are highly pathogenic to almond trunks and branches (Holland,
unpublished data); however, no cross-inoculation experiments
have been performed. Ceratocystis destructans appears to have
a rather broad geographic and host range, including Prunus spp.
in California as well as Celtis, Populusk, Prunus and Quercus in
the Midwest of the USA.

Intersterility tests by Johnson et al. (2005) revealed that MAT-
2 testers from the cherry, oak and Tilia lineages of C. variospora
were only interfertile with MAT-1 testers from the same
respective lineages, which are now recognized as C. destructans,
C. variospora and C. tiliae. Two MAT-2 testers from almond trees
in California (i.e. C578 and C856) were only interfertile with
other isolates now defined as C. destructans, including other
Californian isolates from almond and lowa isolates from Populus
and Quercus. Furthermore, C1709, the ex-type culture of C.
betulina, was not interfertile with the MAT-2 testers of these
species, nor were MAT-1 strains of C. harringtonii, C. caryae and
C. smalleyi interfertile with the MAT-2 testers of C. destructans,
C. variospora and C. tiliae. These examples of reproductive
isolation support the recognition of biological species, which
together with phylogenetic evidence, supports designation of
these lineages as distinct taxa.

Morphology in the NAC was similar for all isolates with
some unifying features, such as the ability to produce a second
endoconidial stage of doliiform conidia from wide-mouth
phialides and a distinct collar at the base of the perithecial neck
(Johnson et al. 2005). Within the NAC, morphological features
vary only slightly among the different species. For instance, C.
variospora, which formerly encompassed what is now identified
as C. tiliae (Oliveira et al. 2015a), C. destructans and C. betulina,
differs morphologically from these species. For example, C.
variospora possesses larger perithecia (130-350 pm), on
average, than C. destructans (122—208 um) and C. betulina (103—
192 um). Ceratocystis variospora also produces slightly larger

cylindrical endoconidia than C. betulina. However, the overall
lack of morphological distinction makes it difficult to recognize
these species without molecular characterization. Ceratocystis
destructans and C. betulina are similar to other species in the
NAC, with a dark green to grey colony color, fruity odor, and both
cylindrical and doliiform endoconidia, as well as aleurioconidia
(Table 2; Supplementary Table 1). Ceratocystis caryae and C.
smalleyi (hickory lineage) have very similar ITS sequences and
allozyme phenotypes, and they appear to be sexually interfertile
(Johnson et al. 2005), but they differ greatly in morphology and
biology. Ceratocystis smalleyilacks cylindrical conidia from flask-
shaped phialides and aleurioconidia (Johnson et al. 2005).

Several species in the NAC, including C. caryae, C.
harringtonii, C. tiliae and C. variospora, are most commonly
associated with wounded trunks and branches of trees (Johnson
et al. 2005, Oliveira et al. 2015a), suggesting that members of
this clade may act primarily as wound colonizers. Ceratocystis
destructans is proposed as the new name for the causal agent
of Ceratocystis canker of almond in California. The disease is
common in California almond orchards where the trees have
suffered repeated bark injuries during mechanical harvest, and
C. destructans has been routinely isolated from discolored inner
bark of almond trees that have been damaged by mechanical
harvesting equipment. Ceratocystis destructans can also infect
almond trees at wounds caused by pruning, producing branch
cankers that result in extensive branch dieback. Several insects
have been identified in California almond orchards as potential
vectors, including several species of sap-feeding beetles
(Coleoptera; Nitidulidae) and fruit flies (Diptera: Drosophilidae)
(Moller & DeVay 1968). These insects are attracted to the sweet-
smelling volatile compounds produced by Ceratocystis, and thus
the insects may transport infectious spore inoculum from one
tree to another. The pathogenicity to almond of C. destructans
isolates collected for this study was recently investigated.
Results showed that this fungus can produce cankers and cause
extensive gumming in trunks and branches of almond (Holland
et al. 2017). The host range of C. destructans in California and
the occurrence of putative natural inoculum sources in the
native vegetation surrounding almond orchards are unknown.
Yet, C. destructans has been isolated from Populus spp. and
Quercus spp. in the eastern USA. The occurrence in California
of C. destructans on similar or related plant species should be
investigated to better understand the pathogens’ biology and
putative origin as Ceratocystis canker continues to threaten the
almond industry in California.
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