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Multiharmonic Small-Signal Modeling of Low-Power
PWM DC-DC Converters

YA WANG, Texas A&M University
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DANI TANNIR, Lebanese American University
NING DONG, G. PETER FANG, and WEI DONG, Texas Instruments Inc.
PENG LI, Texas A&M University

Small-signal models of pulse-width modulation (PWM) converters are widely used for analyzing stability
and play an important role in converter design and control. However, existing small-signal models either are
based on averaged DC behaviors, and hence are unable to capture frequency responses that are faster than
the switching frequency, or greatly approximate these high-frequency responses. We address the severe lim-
itations of the existing models by proposing a multiharmonic model that provides a complete small-signal
characterization of both DC averages and high-order harmonic responses. The proposed model captures
important high-frequency overshoots and undershoots of the converter response, which are otherwise unac-
counted for by the existing techniques. In two converter examples, the proposed model corrects the misleading
results of the existing models by providing truthful characterization of the overall converter AC response
and offers important guidance for converter design and closed-loop control.
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design automation;
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1. INTRODUCTION

For the efficient Electronic Design Automation (EDA) of power management and dis-
tribution circuits, there is an increasing need for accurate control techniques for the
design and simulation of Pulse-Width Modulation (PWM) DC-DC converters in modern
low-power integrated circuits [Zeng et al. 2013]. Converter circuit behavior is typically
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highly nonlinear due to the strong switching activities and the presence of nonlinear
devices. The small-signal model, which approximates the behavior of the DC-DC con-
verter by linearizing the nonlinear devices and switches at a certain DC operating
point, is widely used by designers to design the control blocks and closed-loop systems,
as well as to analyze system stability.

Typically, a small-signal model is obtained by first deriving the averaged model of the
DC-DC converter, then injecting perturbations to the averaged model through the con-
trol signal/supply voltage, followed by evaluating the sensitivity of the circuit states.
Thus, the accuracy of the small-signal model relies on the accuracy of the averaged
models, which depend on one of several different existing DC-DC converter averaging
techniques. The circuit averaging technique first introduced in Wester and Middlebrook
[1973] and Vorperian [1990] constructs the small-signal model based on the averaged
models of linearized switch cells. This method is extended in Vorpérian [1990], where
DC-DC converters operating in the discontinuous conduction mode (DCM) are also con-
sidered. The sampled-data modeling approach introduced in Verghese et al. [1986] and
Shortt and Lee [1982] builds linear discrete small-signal models with consideration
of the time-variant discrete nature of DC-DC converters. The state-space averaging
technique introduced in Sun et al. [2001] uses a set of differential equations to repre-
sent the averaged model of DC-DC converters with a modification matrix that takes
the DCM operation into account, which is further developed into small-signal models
that are applicable to both DCM and continuous conduction mode (CCM) operations.
Alternatively, the approaches in Noworolski and Sanders [1991] and Sanders et al.
[1991] present generalized averaged models with harmonic components considered,
from which a condensed approximate second-order small-signal model is developed,
which in turn considers the interaction of the harmonic components with the DC aver-
ages [Caliskan et al. 1999].

Unfortunately, since the state-space averaging process eliminates the inherent sam-
pling nature of the switching converter, the accuracy of the average model is ques-
tionable at frequencies approaching half that of the switching frequency [Qiu et al.
2006]. Therefore, none of these existing works have made successful attempts to fully
capture the harmonic components while constructing the small-signal model, and none
of these models can accurately capture circuit responses faster than the switching fre-
quency. For low-power DC-DC converters, it is critically important to capture the high-
frequency circuit responses in stability analysis and closed-loop design. For example,
Scandola et al. [2015] demonstrate significant accuracy improvement in small-signal
models by capturing high-order harmonics in DC-DC series resonant converters. Al-
ternatively, harmonic balance-based approaches have been proposed for small-signal
modeling [Groves 1991; Feldmann and Roychowdhury 1996]. Harmonic balance-based
small-signal analysis solves the periodic steady states at multiple harmonics and lin-
earizes the system at multiple harmonics, thereby generating periodically time-varying
transfer functions. Although such techniques do allow for accurate behavior prediction
at relatively high frequencies, they are not an efficient means for extracting physical
design insights out of the complicated model [Qiu et al. 2006].

Recently, an enhanced circuit averaged model for PWM DC-DC converters was in-
troduced to accurately account for the effects of device nonidealities in low-power inte-
grated circuits [Tannir et al. 2016]. The method in Tannir et al. [2016] was, however,
limited to modeling the DC-level behavioral effects of the converter. In Wang et al.
[2016], a multiharmonic large-signal model was first introduced to efficiently model
the higher-order effects of the converter behavior while also accounting for the effects
of device nonidealities when performing time-domain simulations. In this article, we
present for the first time a multiharmonic small-signal model that demonstrates sig-
nificant accuracy improvements in high-frequency responses over existing methods in
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Fig. 1. A boost converter.

the literature, thereby providing useful design insights for critical applications such as
optimization and design centering. The focus of this article is therefore on presenting
an efficient and accurate model for the analysis and design of low-power PWM con-
verters. We first derive a multiharmonic averaged model, which is a six-state variable
system that considers both the DC response and the first-order harmonics as well as
the interactions between them. We then develop a small-signal model to accurately
capture the small-signal dependencies of each harmonic component on the targeted
input perturbation. The proposed model is presented in both the state-space form and
the frequency domain. We compare the proposed small-signal model with the conven-
tional small-signal model, which is based on the average model that only considers the
DC component of the Fourier series of the signals [Erickson and Maksimovic 2007],
in two converter examples to demonstrate the significant accuracy enhancement that
is offered by using the proposed model in high-frequency circuit responses. We will
show that the proposed model has a time-varying aspect and has the ability to identify
misleading results that can result from using conventional small-signal models. The
proposed model therefore provides the actual behavior of the converters that will in
turn lead to stable closed-loop designs.

This article is organized as follows. Following this introduction, Section 2 presents
an overview of the derivation for the large-signal multiharmonic average model.
Section 3 then presents the derivation of the small-signal state-space model, while
Section 4 shows how we cast the small-signal state-space model to the frequency
domain to derive a linear time-varying AC model that can capture important high-
frequency characteristics and lead to useful design insights. Experimental results to
demonstrate the improved accuracy of the proposed model are in Section 5, followed
by the conclusion in the final section.

2. MULTIHARMONIC AVERAGE MODEL

In this section, we present an overview of the derivation for the large-signal multihar-
monic average model. The multiharmonic average model takes both the DC average
and the multiple harmonic components into account [Caliskan et al. 1999]. Note that
while the derivation will be based on the standard boost converter shown in Figure 1,
fundamentally similar derivations can be applied to other PWM DC-DC converter
topologies, including buck- and buck-boost-type converters [Wang et al. 2016; Tannir
et al. 2016].

We begin the derivation with the equations that describe the switched model of the
boost converter operating in CCM and controlled by the switching function q(t):

di(t)
dt

= 1
L

(VS − (1 − q(t))v(t)) (1)
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dv(t)
dt

= 1
C

(
(1 − q(t))i(t) − 1

R
v(t)

)
. (2)

The switching function is binary and can be expressed as

q(t) =
{

1 t ∈ (0, dTs) switch is ON
0 t ∈ (dTs, Ts) switch is OFF,

(3)

where d is the duty ratio of the switching function and Ts is the switching period. We
capture the variation of each state variable x(τ ) (i.e., v and i in Equation (1)) within each
switching cycle by decomposing it into a Fourier series with time-varying coefficients
as

x(τ ) =
∞∑

k=−∞
〈x〉k(t)e jkωsτ , (4)

where ωs = 2π fs and fs is the switching frequency. 〈x〉k(t) is the kth complex Fourier
coefficient [Sanders et al. 1991], which is given by

〈x〉k(t) = 1
Ts

∫ t

t−Ts

x(τ )e− jkωsτ dτ. (5)

From Equation (5), it is clear that the kth complex Fourier coefficient of a state variable
in Equation (1) is in fact its average value at the frequency kfs. Thus, we refer to the
kth complex Fourier coefficient 〈x〉k(t) as the index-k average.

Going forward, we will develop the proposed small-signal model using only the index-
0 and index-1 terms in the derivation as we believe they will present sufficient accuracy
for most practical applications while still having the important ability to obtain design
insights from the model that are critically important for low-power converter design,
such as performing a stability analysis. It is important to note here that the developed
models can be augmented by including higher orders of index-k averages when nec-
essary. This would result in a multiharmonic model that approximates the nonlinear
behavior of the switch model more accurately, but at the cost of increased complexity.
However, the fact that index-1 averages correspond to the most significant fundamen-
tal harmonics implies it is sufficient to only have index-0 and index-1 components for
most practical cases of DC-DC converters, which are not typically used as conventional
analog circuits. This is more clearly illustrated in Figure 2, which shows the FFT spec-
trum of the output voltage of a standard boost converter operating in the steady state.
As can be seen, the magnitudes of the index-0 and the index-1 components are mea-
sured to be 18dB and −40dB, respectively, which dominate the overall circuit response.
In comparison, the magnitudes of all the other higher-order harmonic components are
less than −60dB, which is no more than 4% of the magnitude of the index-1 component,
thus confirming our original assumption that by including the index-0 and the index-1
components, the multiharmonic model is able to capture the circuit behavior with suf-
ficient accuracy. This will also be verified in the results of the numerical examples in
Section 5.

To calculate the index-0 averages, we need to apply the discrete convolution and
conjugation property to Equation (1). According to Caliskan et al. [1999], we have

d〈i〉0

dt
= 1

L

( − 〈q′〉0〈v〉0 + 2
(〈q〉R

1 〈v〉R
1 + 〈q〉I

1〈v〉I
1

))
(6)

d〈v〉0

dt
= 1

C

(
〈q′〉0〈i〉0 − 〈v〉0

R
− 2

(〈q〉R
1 〈i〉R

1 + 〈q〉I
1〈i〉I

1

))
, (7)
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Fig. 2. The FFT spectrum of the output voltage of a boost converter operating in the steady state.

where q′ = 1 − q, 〈·〉R
1 and 〈·〉I

1 are the real part and imaginary part of the index-1
average 〈·〉1. Similarly, the index-1 average of the switch model (Equation (1)) can be
calculated as

d〈i〉R
1

dt
= ωs〈i〉I

1 + 1
L

(−〈q′〉0〈v〉R
1 + 〈v〉0〈q〉R

1

)
(8)

d〈v〉R
1

dt
= ωs〈v〉I

1 + 1
C

(
〈q′〉0〈i〉R

1 − 〈i〉0〈q〉R
1 − 〈v〉R

1

R

)
(9)

d〈i〉I
1

dt
= −ωs〈i〉R

1 + 1
L

(−〈q′〉0〈v〉I
1 + 〈v〉0〈q〉I

1

)
(10)

d〈v〉I
1

dt
= −ωs〈v〉R

1 + 1
C

(
〈q′〉0〈i〉I

1 − 〈i〉0〈q〉I
1 − 〈v〉I

1

R

)
. (11)

Now we have a highly coupled system of two state variables of index-0 and four state
variables of index-1, which define the dynamic behavior of the boost converter. Notice
that Equations (6) through (11) rely on the index-0 and index-1 averages of the switch-
ing function q(t). Substituting Equation (3) into Equation (5) gives the relation of the
index-0 and index-1 averages of the switching function to the duty ratio d as

〈q〉0 = d (12)

〈q〉R
1 = 1

2π
sin(ωst + 2πd) (13)

〈q〉I
1 = 1

2π

[
cos(ωst + 2πd) − 1

]
. (14)

Finally, by combining Equations (6) and (7) with Equations (8) to (11) and Equa-
tions (12) to (14), the final multiharmonic averaged model of the boost converter in-
cluding index-0 and index-1 averages is specified.

3. SMALL-SIGNAL STATE-SPACE MODEL

The small-signal model characterizes the sensitivities of the circuit state variables to
the perturbation of parameters such as duty ratio or supply voltage. In this article, we
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will focus on the perturbation of the duty ratio. Let us assume that the boost converter
is in steady state and there is a perturbation in the duty ratio of the form

d = d̄ + d̂, (15)

where d̄ is the steady-state value of the duty ratio and d̂ is the small-signal perturba-
tion. The immediate effect of the duty ratio perturbation is the variation of switching
functions. Based on the relations given by Equations (12) through (15), the variations
of the index-0 and index-1 averages of the switching function are

ˆ〈q〉0 = d̂ (16)

ˆ〈q〉R
1 = 1

2π

[
sin

(
ωst + 2π (d̄ + d̂)

) − sin(ωst + 2π d̄)
]

(17)

ˆ〈q〉I
1 = 1

2π

[
cos

(
ωst + 2π (d̄ + d̂)

) − cos(ωst + 2π d̄)
]
, (18)

in which 〈q̂〉R
1 and 〈q̂〉I

1 are nonlinear functions of the duty ratio perturbation d̂. Next,
we linearize Equations (16) through (18) around d = d̄ as [ 〈q̂〉0 〈q̂〉R

1 〈q̂〉I
1 ]T = Qs · d̂,

where

Qs =

⎡
⎢⎣

1

cos
(
ωst + 2π d̄

)
−sin

(
ωst + 2π d̄

)
⎤
⎥⎦ (19)

is the switching function input matrix.
The effect of the perturbation continues to propagate to each of the state variables.

Based on Equations (6) and (7), the perturbation of index-0 state variables can be
calculated as

d〈î〉0

dt
= 1

L

(
(〈q̄〉0 − 1)〈v̂〉0 + 〈v̄〉0〈q̂〉0

) + 2
L

(〈q̄〉R
1 〈v̂〉R

1 + 〈v̄〉R
1 〈q̂〉R

1

)
+ 2

L

(〈q̄〉I
1〈v̂〉I

1 + 〈v̄〉I
1〈q̂〉I

1

)
(20)

d〈v̂〉0

dt
= 1

C

(
(1 − 〈q̄〉0)〈î〉0 + 〈ī〉0〈q̂〉0 − 〈v̂〉0

R

)
− 2

C

(〈q̄〉R
1 〈î〉R

1 + 〈ī〉R
1 〈q̂〉R

1

)
− 2

C

(〈q̄〉I
1〈î〉I

1 + 〈ī〉I
1〈q̂〉I

1

)
. (21)

Similarly, the perturbation of the index-1 state variables can be calculated as
d〈î〉R

1

dt
= ωs〈î〉I

1 + 1
L

(−〈v̂〉R
1 + 〈q̄〉0〈v̂〉R

1 + 〈v̄〉R
1 〈q̂〉0 + 〈q̄〉R

1 〈v̂〉0 + 〈v̄〉0〈q̂〉R
1

)
(22)

d〈v̂〉R
1

dt
= ωs〈v̂〉I

1 + 1
C

(
〈î〉R

1 − 〈v̂〉R
1

R
− 〈q̄〉0〈î〉R

1 − 〈ī〉R
1 〈q̂〉0 − 〈q̄〉R

1 〈î〉0 + 〈ī〉0〈q̂〉R
1

)
(23)

d〈î〉I
1

dt
= −ωs〈î〉R

1 + 1
L

(−〈v̂〉I
1 + 〈q̄〉0〈v̂〉I

1 + 〈v̄〉I
1〈q̂〉0 + 〈q̄〉I

1〈v̂〉0 + 〈v̄〉0〈q̂〉I
1

)
(24)

d〈v̂〉I
1

dt
= −ωs〈v̂〉R

1 + 1
C

(
〈î〉I

1 − 〈v̂〉I
1

R
− 〈q̄〉0〈î〉I

1 − 〈ī〉I
1〈q̂〉0 − 〈q̄〉I

1〈î〉0 + 〈ī〉0〈q̂〉I
1

)
. (25)

Combining Equations (20) and (21) with Equations (22) through (25) and rewriting the
equations into a state-space representation gives

d
dt

[ 〈�x〉0
〈�x〉1

]
=

[
A1 A2
A3 A4

][ 〈�x〉0
〈�x〉1

]
+

[
B1
B2

]
· Qs · d̂, (26)
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where 〈�x〉0 = [〈i〉0 〈v〉0]
T is the vector of index-0 state variables and 〈�x〉1 =

[〈î〉R
1 〈v̂〉R

1 〈î〉I
1 〈v̂〉I

1]
T is the vector of index-1 state variables. The state matrix A and

input matrix B are partitioned to form two subsystems. A1 and A4 represent the sub-
systems of the index-0 components and index-1 components. A2 and A3 represent the
interaction between those two subsystems. Similarly, B1 and B2 represent the input to
the index-0 and index-1 subsystems. The submatrices in state matrix A and the input
matrix B are

A1 =
[

0 〈q̄〉0−1
L

1−〈q̄〉0
C − 1

RC

]
(27)

A2 =
⎡
⎣ 0 2〈q̄〉R

1
L 0 2〈q̄〉I

1
L

0 −2〈q̄〉R
1

C 0 −2〈q̄〉I
1

C

⎤
⎦ (28)

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 〈q̄〉R
1

L
−〈q̄〉R

1
C 0

0 〈q̄〉I
1

L
−〈q̄〉I

1
C 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(29)

A4 =

⎡
⎢⎢⎢⎢⎣

0 〈q̄〉0−1
L ωs 0

1−〈q̄〉0
C − 1

RC 0 ωs

−ωs 0 0 〈q̄〉0−1
L

0 −ωs
1−〈q̄〉0

C − 1
RC

⎤
⎥⎥⎥⎥⎦ (30)

B1 =
⎡
⎣ 〈v̄〉0

L
2〈v̄〉R

1
L − 2〈v̄〉I

1
L

−〈ī〉0
C

−2〈ī〉R
1

C
2〈ī〉I

1
L

⎤
⎦ (31)

B2 =

⎡
⎢⎢⎢⎢⎢⎣

〈v̄〉R
1

L
〈v̄〉0

L 0
−〈ī〉R

1
C

〈ī〉0
C 0

〈v̄〉I
1

L 0 −〈v̄〉0
L

−〈ī〉I
1

C 0 −〈ī〉0
C

⎤
⎥⎥⎥⎥⎥⎦. (32)

The system described in Equation (26) is a complete characterization of the multi-
harmonic small-signal model for the boost converter. The system diagram is shown in
Figure 3, with an output matrix C that selects all voltage harmonic components as the
outputs. Compared to the conventional small-signal model, which is a small-signal DC
averaged model with a state matrix equal to A1, the multiharmonic small-signal model
provides more accurate circuit behavior by modeling the index-0 and index-1 compo-
nents, as well as the interactions between them. This model can be easily extended to
include harmonic components of an arbitrary degree.

4. SMALL-SIGNAL AC MODEL

In this section, we cast the proposed small-signal state-space model to the frequency
domain to derive a linear time-varying AC model . We show how our AC model can im-
mediately capture important high-frequency characteristics and lead to useful design
insights.
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Fig. 3. The state space of the multiharmonic small-signal model and the interactions between its
subsystems.

4.1. Frequency-Domain Small-Signal Model

The state-space model of Figure 3 outputs the index-0 and the real and imaginary parts
of the index-1 components of the converter output voltage. These components can be
combined to form the total voltage response:

v̂(t) = 〈v̂〉0(t) + 〈v̂〉1(t)e jωst + 〈v̂〉−1(t)e− jωst, (33)

where v(t) is a combined output, and for convenience we have represented the index-1
component using complex exponentials. Applying the Laplace transform to Equa-
tion (33) gives the frequency-domain representation

v̂(s) =
∫ ∞

0
〈v̂〉0(t)e−stdt +

∫ ∞

0
〈v̂〉1(t)e( jωs−s)tdt +

∫ ∞

0
〈v̂〉−1(t)e−( jωs+s)tdt, (34)

which can be further simplified to

v̂(s) = 〈v̂〉0(s) + 〈v̂〉1(s − jωs) + 〈v̂〉−1(s + jωs). (35)

The small signal model of Equation (35) is a linear time-variant (LTV) system, which
is illustrated in Figure 4. Each of 〈v̂〉0, 〈v̂〉1, and 〈v̂〉−1 can be characterized using a
scalar LTI transfer function derived based on the small-signal state-space model. Note
that the index-1 components 〈v̂〉1(t) and 〈v̂〉−1(t) are modulated by periodic signals
e jωst and e− jωst, which have frequency-shift effects in the frequency-domain response
(Equation (35)).

4.2. Parametric Dependencies of High-Frequency Behavior

It is worth noticing that the proposed model captures the important high-frequency
characteristics based on two mechanisms. First, as a model with six state variables, the
proposed model accounts for high-frequency poles and zeros that are missing from tra-
ditional second-order models such as the ones presented in Erickson and Maksimovic
[2007]. Second, the inclusion of the index-1 components takes into account additional
high-frequency behaviors due to the frequency-shift effects.

Recall that the state matrix A from Equation (26) is a 6 × 6 matrix that has four
submatrices, where A1 and A4 correspond to the subsystem of the index-0 and index-1
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Fig. 4. Illustration of the linear time-variant (LTV) system with the frequency-shift effect.

harmonic components. As pointed out in Pérez-Arriaga et al. [1990], there is a distinc-
tive model separation in system A and we can closely approximate the eigenvalues
of A using those of the submatrices A1 and A4. From Equation (30), we evaluate the
eigenvalues of A4 analytically [Caliskan et al. 1999]:

λ1,2(A4) = −α ± j
(
−ωs +

√
ωn

2 − α2
)

(36)

λ3,4(A4) = −α ± j
(
ωs +

√
ωn

2 − α2
)

, (37)

where ωn = 1−d√
LC

, α = 1
2RLC , and ωs is the switching frequency of the converter. In

our case, system eigenvalues are actually the poles for the corresponding transfer
functions. For each pair of complex conjugates we derive the quality factor Q, which
indicates the magnitude of the resonant overshoot, and the angular corner frequency
ω0, which indicates the location of the corresponding overshoot. For boost converters,
we have

Q = 1
2α

√
α2 + (

ωs ±
√

ωn
2 − α2

)2

≈ 1
2α

· |ωs ± ωn|
(38)

and

ω0 =
√

α2 + (
ωs ±

√
ωn

2 − α2
)2

≈ |ωs ± ωn|.
(39)

The effects of Q and ω0 on resonant overshoot are illustrated in Figure 5. From Equa-
tion (39), it is clear that the overshoots appear around the switching frequency ωs, and
hence have a significant effect on the converter’s high-frequency response. For con-
verter systems with Q larger than 1, there will be large overshoots/spikes around the
switching frequency, which can potentially lead to stability problems. In the following
converter design examples, we will show how high-frequency overshoots eventually
lead to instability of the closed-loop system and how this can be fixed by adjusting the
converter design parameter to reduce the value of Q.

5. EXPERIMENTAL RESULTS

We demonstrate the application of the proposed model using two different converter
examples. The two converter types selected are the boost converter shown in Figure 1
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Fig. 5. The effect of Q and ω0 on a boost converter frequency response.

Fig. 6. The buck-boost converter.

Table I. Circuit Parameters

R[�] C[F)] L[H] fs[Hz] Vin[V ] d [ratio]
Boost converter 20 50μ 75μ 100k 2 0.4
Buck-boost converter 4 220μ 50μ 10k 4 0.4

and the buck-boost converter shown in Figure 6. The nominal duty ratio for both
converters is 0.4 with the full set of parameters for both converter types, as shown in
Table I. We analyze the frequency response of each converter circuit using the proposed
small-signal model and compare the results with the frequency response obtained
using the conventional small-signal model, which is based on the average model that
only considers the DC component of the Fourier series of the signals [Erickson and
Maksimovic 2007]. We also compared our proposed model with some reference values,
which are the actual gain values obtained from a transient analysis. These reference
values were calculated by first perturbing the duty ratio by a small amount (0.001 or
0.1% in both cases) and then measuring the resulting perturbation of the average of
the output voltage. The perturbation is a sinusoidal waveform, and the commercial tool
used for performing the transient analysis is Cadence Virtuoso. Finally, we demonstrate
how the conventional small-signal model can lead to a false understanding of the
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Fig. 7. The control-to-output transfer functions of the DC-DC converters modeled by the proposed small-
signal model (index-0 and index-1) and the conventional small-signal model.

closed-loop stability and how our proposed model can aid in the compensator design to
ensure stability of the two converters.

5.1. Analysis of the Frequency-Domain Responses

Figure 7 shows the index-0 and index-1 harmonic components of each converter ob-
tained by the proposed small-signal model. Compared with the transfer function ob-
tained by the conventional small-signal model, our proposed model demonstrates en-
hanced accuracy and reveals important response characteristics and design insights.
Figure 8 also shows a direct comparison with the ground-truth reference values. As
can be seen, the proposed method again demonstrates significantly improved accuracy
relative to the reference values when compared with the traditional model.
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Fig. 8. Comparison of our proposed model, traditional small signal model, and reference values.
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Table II. Lead Compensator Designs Based on the Conventional Small-Signal
Model and the Proposed Small-Signal Model

Conventional Small-Signal Model Proposed Small-Signal Model

Boost converter 2.61s+1.47×104

s+3.85×104
4.22s+1.22×105

s+5.17×105

Buck-boost converter 4.41s+1.02×105

s+4.53×105
42.3s+2.73×104

s+1.16×104

The first converter we analyzed is the boost converter, with the resulting plots as
shown in Figure 7(a) and Figure 8(a). The index-1 component is negligible in this exam-
ple. Because our proposed model is a six-state model that also captures the index-0 and
index-1 interactions, the computed index-0 component captures several spikes around
the switching frequency. The peak magnitude of the spikes is 25dB, which means that
the switching noise is essentially amplified by the boost converter. As we will show
later in the closed-loop simulation, the amplified switching noise affects the stabil-
ity of the system by disrupting the behavior of the pulse-width modulator [Erickson
and Maksimovic 2007]. On the other hand, the conventional small-signal model only
demonstrates a typical two-pole low-pass filter characteristic, without showing any
sign of high-frequency spikes or instability.

The second example converter we analyzed is the buck-boost converter, with the
resulting plots as shown in Figure 7(b) and in Figure 8(b). The frequency responses
obtained by the proposed small-signal model shows that the index-0 component has a
large low-frequency gain with two spikes around the switching frequency. The index-1
harmonic component has a significant magnitude at high frequency, which indicates
that the harmonic component of the converter response is sensitive to the perturbation
of the duty ratio. On the other hand, the conventional small-signal model only captures
behavior of the index-0 component, which provides no information on the harmonics of
the response. As will be shown next in the compensator design example, large harmonic
components can possibly lead to an unstable closed-loop design.

5.2. Stability Analysis and Closed-Loop Design

For each converter circuit, we design a lead compensator based on the gain crossover
frequency and the open-loop phase margin obtained from the frequency response of the
conventional small-signal model, which is based on the average model that only con-
siders the DC component of the Fourier series of the signals [Erickson and Maksimovic
2007]. Table II shows the lead compensator transfer functions for both converters.
Figure 9 shows the transient simulation of the closed-loop systems using the convert-
ers and the designed compensators. It is clear that the compensators based on the
conventional small-signal model fail to stabilize either converter circuit in the start-up
transient simulation.

The failure of the compensator design demonstrates the limitation of the conven-
tional small-signal model in modeling the high-frequency behavior of DC-DC convert-
ers. On the other hand, our proposed model can accurately capture high-frequency
circuit behaviors and provide truthful responses since it is based on a multiharmonic
averaged model, which considers the DC component, the first-order component, and
the interactions between them. In fact, the index-0 component of the proposed model
predicts the instability of the previously designed closed-loop systems. According to
the revised bode stability criterion [Hahn et al. 2001], both compensated systems are
unstable with negative gain margins of −15dB and −11dB.

Taking things a step further, we will use the proposed model to improve the closed-
loop design and correct the compensator designs, which eventually regains the stability
of the closed-loop systems. In the first example, the causes of the instability of the boost
converter are the spikes around the switching frequency. As discussed in Section 4.2,
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Fig. 9. Comparison of the transient responses of the closed-loop systems designed by the conventional
small-signal model and the proposed small-signal model.

these spikes are essentially high-frequency overshoots of the index-0 component. To re-
duce the magnitude of the spikes, we reduce the quality factors. According to Equation
(38), the maximum quality factor of the boost converter is Q = 26.3 = 28dB, which is
a good estimation of the amplitude of the spike shown in Figure 7(a). By changing the
value of the output capacitance C from 50μF to 10μF, the value of the quality factor
is reduced to 1.5 and the magnitude of the spike is reduced to 2.3dB, which is less than
8% of the original spike magnitude. Then, we design a new lead compensator using
the frequency response of the improved converter design. As shown by the transient
simulation in Figure 9(a), the closed-loop system becomes stable.

In the second example, the conventional small-signal model, which is a simple second-
order model, fails to reveal the potential design problems due to the large magnitude
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of the index-1 component. To properly design a stable closed-loop system, we suppress
the amplitude of the index-1 component. By adjusting the converter parameters to
L = 800μH and C = 10μF, we are able to limit the maximum magnitude of the index-
1 component in all frequencies under 2dB. With the new converter design, we redesign
the lead compensator based on the gain crossover frequency obtained from our index-0
model. The transfer function of the lead compensator is shown in Table II. With the
new lead compensator, the output voltage of the buck-boost converter settles down as
shown in Figure 9(b), which validates the stability of the closed-loop system.

6. CONCLUSION

In this article, a novel multiharmonic small-signal model that accurately accounts for
the high-frequency responses of the DC-DC converters is presented. Compared with
existing small-signal models, the proposed model considers both the DC averages and
the higher-order harmonic components in addition to the interactions between them,
thereby providing a complete small-signal characterization of the converter circuits.
Two converter design examples are presented, which demonstrate the significant im-
provements of the proposed model on frequency-domain response analysis, stability
analysis, and closed-loop design.
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