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ABSTRACT: We evaluate fine particulate matter (PM2.5) exposure−
response models to propose a consistent set of global effect factors for
product and policy assessments across spatial scales and across urban
and rural environments. Relationships among exposure concen-
trations and PM2.5-attributable health effects largely depend on
location, population density, and mortality rates. Existing effect factors
build mostly on an essentially linear exposure−response function with
coefficients from the American Cancer Society study. In contrast, the
Global Burden of Disease analysis offers a nonlinear integrated
exposure−response (IER) model with coefficients derived from
numerous epidemiological studies covering a wide range of exposure
concentrations. We explore the IER, additionally provide a simplified
regression as a function of PM2.5 level, mortality rates, and severity,
and compare results with effect factors derived from the recently
published global exposure mortality model (GEMM). Uncertainty in effect factors is dominated by the exposure−response
shape, background mortality, and geographic variability. Our central IER-based effect factor estimates for different regions do
not differ substantially from previous estimates. However, IER estimates exhibit significant variability between locations as well
as between urban and rural environments, driven primarily by variability in PM2.5 concentrations and mortality rates. Using the
IER as the basis for effect factors presents a consistent picture of global PM2.5-related effects for use in product and policy
assessment frameworks.

1. INTRODUCTION

1.1. History of Epidemiology-Based Effect Factors.
We evaluate fine particulate matter (PM2.5) exposure−
response models to propose a consistent set of global effect
factors across spatial scales and across urban and rural
environments for use in product and policy assessments,
such as life cycle impact assessment (LCIA) and health impact
assessment (HIA). Exposure to PM2.5 is the leading environ-
mental contributor to human disease burden, with more than
seven million deaths globally attributed to ambient and
household PM2.5 exposure in 2015.1 The influence of exposure
to PM2.5 on mortality rates became clear with the “Harvard Six
Cities” study in 1993.2 The effect seen was so large that a

second, larger, study was conducted involving more than

500 000 subjects from 151 communities within the United

States. This American Cancer Society (ACS) study,3 published

in 1995, confirmed the relationship between exposure to PM2.5

and mortality rates for concentrations and composition of

PM2.5 in the United States with an effect size roughly one-third

as large as that found in the Six Cities study.
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At about the same time, Hofstetter4 began working on
methods for comparing environmental impacts from pollutant
emissions along product and service life cycles. As part of this
effort, he developed the first approach to address exposure to
PM2.5 in large-scale emission-based comparisons. In such
comparisons, the most common measure of the relationship
between population exposure and health effects is the “effect
factor”, typically expressed in terms of years of life lost (YLL)
or disability-adjusted life years (DALY) for a given population
per kilogram intake (e.g., via inhalation) of a pollutant. To be
suitable for evaluating different emission situations, such effect
factors are combined with human intake fractions relating
PM2.5 emissions to population intake.5−7 Hofstetter4 applied
for his effect factor estimates the PM2.5 risk coefficient from the
ACS study (0.4% increase in mortality among adults [≥30
years of age] per μg/m3) to cardiopulmonary mortality rates
for European adults of 1400 deaths per 100 000 person-years.
He assumed that the entire effect seen in the ACS study was
due to PM2.5 exposure and used a severity factor of 6.6 YLL/
death, deriving effect factors for Europe of 41 YLL per kg
PM2.5 or sulfate inhaled.
Over the past 25 years, the Six Cities and ACS studies have

been frequently extended and reanalyzed,8−11 and several new
cohorts have been evaluated.12−20 These studies have
repeatedly confirmed that mortality rates are higher at higher
levels of PM2.5 exposureeven after accounting (at the
individual level) for differences in behavior, socioeconomic
status, and other factors known to affect mortality rates. A
recent meta-analysis of these studies associated a 1.1% increase
in cardiovascular mortality per μg/m3 increase in PM2.5, with
study-to-study results variability thought to be attributable to
difference in particle composition, building air exchange rates,
demographic factors, and meteorology.21

In parallel, several research groups have published new PM-
related effect factors, including estimates yielding 58 YLL per
kg PM10 inhaled in Europe22 and 64 YLL (78 DALY) per kg
PM2.5 inhaled in the United States.

23 More recent estimates are
more variable and in part substantially larger than previous
estimates,24,25 with estimates for example ranging for Europe
from 192 YLL (France) to 622 YLL (Bulgaria) per kg PM2.5
inhaled and for North America from 151 YLL (Mexico) to 395
YLL (Canada), with the United States at 287 YLL, per kg
PM2.5 inhaled.

24

All described estimates have relied on risk coefficients from
the original ACS study or one of its follow-up studies. Van
Zelm et al. (2008)22 used a risk coefficient of 0.43% (0.26−
0.91%) per μg/m3 PM10 based on Künzli’s synthesis of results
from the Six Cities and ACS studies.26 We note that because
the ACS study is much larger than the Six Cities study, Künzli’s
pooled risk coefficient is very similar to the coefficient from the
ACS study. Further, although the original coefficients were
applied to PM2.5, in an attempt to be conservative, Künzli et
al.26 presented these as if they applied to all inhalable particles
(PM10). Gronlund et al.23 used risk coefficients of 0.6% (0.2−
1%) and 0.8% (0.1−1.6%) per μg/m3 PM2.5 for, respectively,
cardiopulmonary mortality and lung cancer, taken from the
2002 extension of the ACS study.8 These were applied to
disease-specific background mortality rates in the United States
in 1982−88 (640 deaths per 100 000 persons and year for
cardiopulmonary disease and 82 deaths per 100 000 persons
and year for lung cancer) combined with severity factors of 13
YLL (17 DALY) per death for cardiopulmonary disease and 27
YLL (28 DALY) per death for lung cancer. Recent studies24,25

used 1.3% (1.0−1.6%) and 1.4% (0.6−2.3%) per μg/m3 PM2.5
for, respectively, cardiopulmonary mortality and lung cancer
from the 2009 reanalysis of the ACS study, adjusted for
ecological covariates.9 The underlying risk coefficients are
approximately three times larger than those used to support
Hofstetter’s original estimate of 41 YLL/kg PM2.5 inhaled.

4

These studies have attempted to characterize the uncertainty
inherent in their results by relying on estimates of the
parameter uncertainty in risk coefficients from the underlying
epidemiological studies. None of these analyses, however,
considered the epistemic uncertainty introduced by using a
study conducted in the United States to estimate health
impacts from exposure to PM2.5 in other regions.25

The original ACS study cohort was exposed to annual
average PM2.5 concentrations varying from 9 to 34 μg/m3,3

while worldwide PM2.5 levels vary from <5 to >300 μg/m3.27 If
the true relationship between PM2.5 concentration and
mortality is strictly proportional, risk estimates derived using
a proportional exposure−response model would be appro-
priate. However, if the true exposure−response relationship is
nonlinear, this approach (i.e., extrapolating globally from U.S.
results) is not satisfactory. Furthermore, the ACS study cohort
was exposed to PM2.5 with a composition resulting from a
specific source mixture and atmospheric conditions in the
United States, while worldwide PM2.5 compositions may differ
significantly from those in the United States.28 However, while
assessing and comparing emission scenarios aims at evaluating
all possible source types, consistently differentiating various
anthropogenic and nonanthropogenic PM2.5 sources would
require globally spatialized data that are currently lacking.
Finally, the ACS study cohort includes residents with an ethnic
mix, health-relevant behaviors (e.g., smoking, diet), socio-
economic status, and access to health care all specific to the
United States. However, if the influence of these coexposures
or behavioral factors is not multiplicative, then the use of an
exposure−response model based on relative risk does not
provide a satisfactory approach for decomposing observed
mortality into components attributable to exposure to ambient
PM2.5 and components attributable to other causal factors.
These issues of synthesizing evidence, shape of exposure−

response, potential differential toxicity, and extrapolation of
epidemiological results from the United States and Western
Europe to the rest of the world are relevant to various
assessment communities but also to regulatory authorities
around the world. All of them face the question of how best to
synthesize and interpret this large and growing body of
evidence on the mortality effects from PM exposure. One
synthesis effort of particular interest underlies the Global
Burden of Disease (GBD) studies. Since 2010, the GBD has
relied on an integrated exposure−response (IER) model to
characterize risks from exposure to PM2.5.

1,29−31 In this effort,
(i) a variety of exposure−response functions was explored
instead of assuming proportionality, (ii) a counterfactual level
of pollution was explicitly accounted for, below which no effect
would be seen, (iii) evidence from all major cohort studies of
ambient PM2.5 and mortality was synthesized, and (iv) it was
assumed that all fine particles were equivalently toxic (per unit
mass inhaled), incorporating evidence from studies involving
exposure to active and passive cigarette smoke and indoor
smoke from cooking and heating using dung and other dirty
fuels.32,33 The IER approach has been well received and
provided the basis for a number of prominent estimates of the
global health impact of exposure to PM2.5.

29,34−36
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1.2. Toward Appropriate Global Effect Factor
Estimates. At the 2016 Pellston expert workshop on 'Global
Guidance for Life Cycle Impact Assessment Indicators and
Methods',37,38 an international group of researchers focused on
understanding the suitability of the IER approach for
developing globally applicable PM2.5 effect factors linking
change in mortality to change in exposure. The main goal was
to provide PM2.5 effect factors appropriate for different
emission situations (unknown location, known continent or
subcontinent, known country or subnational region, and urban
area emissions with known city). For each situation, we apply
the IER from the 2015 GBD study to (i) understand the
factors responsible for variation in derived effect factors, (ii)
compare these results with previous estimates and with
estimates derived using an alternative exposure−response
model, and (iii) promote discussion of the importance of
approaches for synthesizing evidence and characterizing effect
factor uncertainty. Combining our effect factors with intake
fractions will allow for a spatialized evaluation of different
PM2.5 emission situations suitable for use in LCIA, HIA, other
comparative risk and impact assessments, and analyses of
emission reduction policies.

2. MATERIALS AND METHODS

2.1. General Approach Followed. Our approach for
deriving effect factors for exposure to PM2.5 involves the
following steps. (1) Synthesis of epidemiological literature is
used to provide a risk coefficient, β (% increase in mortality
rate per μg PM2.5/m

3), or a set of d disease-specific (and, for
certain diseases, age-specific) risk coefficients, βd1, βd2, ..., βdn,
reflecting the selected synthesis of exposure−response
functions of some arbitrary shape. (2) Estimates of the annual
mean PM2.5 exposure concentrations (μg/m3) and data on
overall mortality, M (deaths/year), in the regions of interest
are obtained. (3) Exposure estimates are combined with
mortality rates to compute, in each region of interest, the
relative risk, RR (dimensionless), corresponding to the
ambient PM2.5 exposure concentration level, C (μg/m3), the
attributable risk fraction, ARF (dimensionless), as the fraction
of mortality attributable to exposure to PM2.5, and the related
PM2.5-attributable mortality, MPM2.5 (deaths/year). (4) Esti-
mates of severity, SF (YLL/death or DALY/death), appro-
priate for each cause of death or disability and region of
interest are obtained. (5) The above factors are used to
compute the health effects (YLL or DALY) from exposure to
PM2.5 in each region of interest as exposure−response factor,
ERF = dMPM2.5/dC × SF. (6) To link health burden to human
intake, the change in intake is computed as the product of the
change in annual PM2.5 concentration, ΔC (μg/m3), a nominal
breathing rate, BR (m3/person/d), and the population count in
each region of interest, Npop (persons). After converting
micrograms to kilograms and days to year, we yield a dose−
r e s p o n s e f a c t o r ,

= × × ×μ( )DRF ERF N BR/ 10 365pop
9 g

kg
d

year
. (7) Effect

factors, EF (YLL or DALY per kg PM2.5 inhaled), are finally
calculated and defined as the slope of the relationship between
effects and inhalation exposure. This process provides
additional health burden attributable to PM2.5 exposure,
ΔMPM2.5 (deaths/year), per increment of increased intake of
PM2.5, ΔI (kg inhaled/year), by the exposed population in
each region of interest.

Following this approach, our analysis relies on the IER
model from the 2015 GBD study and uses data for PM2.5
exposure concentration, mortality, severity, population count,
and breathing rates as detailed in the following.

2.2. Synthesis of Epidemiological Evidence. There
have been several attempts to synthesize evidence from existing
epidemiological studies but none as ambitious as the GBD’s
IER. On the assumption of the equitoxicity of PM2.5 (i.e.,
assuming particles are equivalently toxic per unit mass
inhaled),1 the IER considers evidence not only from
epidemiological studies of ambient PM2.5 but also from
epidemiological studies examining the impact of exposure to
indoor smoke and from exposure to both active and passive
cigarette smoke.32,33 The general form of the GBD’s IER
relative risk (RR) models is:

α
=

+ × − ≥

<

β− × − δl
m
ooo
n
ooo

RR C
C C

C C
( )

1 (1 e ) for

1 for

C C( )
0

0

0

(1)

with C being the PM2.5 exposure concentration, C0 the
theoretical minimum risk exposure level (TMREL; also
referred to as “counterfactual”), 1 + α the maximum relative
risk, β the ratio of relative risk at low-to-high PM2.5 exposure,
and δ the power of PM2.5 exposure concentration.
The 2010 GBD study was the first major application of the

IER model.29 This model is well known, has been widely used,
and has been refitted twice, incorporating additional
epidemiological studies and using somewhat different statistical
methods. The 2013 coefficients32 have been used exten-
sively.34,35 The most recent update produced the 2015
coefficients that provided the basis for a study reviewing 25
years of mortality attributable to PM2.5 exposure.36 The IER
model is applied separately to each of five causes of death:
ischemic heart disease (IHD), stroke, chronic obstructive
pulmonary disease (COPD), and lung cancer in adults, as well
as acute lower respiratory infections (ALRI) in children. For
IHD and stroke, the IER model is applied separately to each of
12 age groups: 25−29 years, ..., 75−79 years, and ≥80 years.
For COPD and lung cancer, IER model parameters are
estimated only once and they apply to all individuals over 25
years of age. For ALRI, the model is applied to children below
5 years of age.
The IER model used in the GBD study32 accounts for

uncertainty by providing 1000 equally likely sets of values for
the model coefficients α, β, δ, and C0 for each disease and age
group of interest. These sets of coefficients are generated by
creating 1000 equally likely data sets and then determining the
values of α, β, δ, and C0, with a mean C0 = 4.2 μg/m3.
Individual data sets are generated by drawing one set of values
of relative risk and PM2.5 exposure concentration for each
cohort study under consideration from a pool of relative risk
and PM2.5 exposure concentration values thought to represent
the study.
Strengths of the GBD’s IER model include the following:36

(i) It reflects virtually all available published cohort studies of
mortality attributable to PM2.5 exposure. (ii) It begins with a
highly flexible set of exposure−response functions and
objective criteria to select among them. (iii) It uses
sophisticated statistical methods to account for between-
study heterogeneity. (iv) It provides users with an approach for
characterizing parameter uncertainty. (v) It includes input
from a large group of leading experts in the field of PM2.5
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epidemiology. (vi) It is published in the peer-reviewed
literature, widely used, and updated frequently. (vii) It covers
the entire range of PM2.5 exposure concentrations of interest
by incorporating evidence from studies of ambient PM2.5,
indoor PM2.5 from cook stoves and passive smoking, along
with data on PM2.5 exposures and risks among active smokers.
Potential limitations of the GBD’s IER model include the

following: (i) The effect of including epidemiological evidence
from studies of direct smoking is to flatten the exposure−
response function at high concentrations, which is especially
relevant for populations exposed to highly polluted ambient air
(e.g., urban China, India). (ii) A secondary effect of including
evidence from direct smoking is that reported uncertainty in
estimates of the slope decreases as the concentration increases,
with the result that for regions with highly polluted ambient air
the IER suggests that the slope is known quite precisely,
whereas in fact there is the least direct evidence. (iii) The IER
model provides no information about model uncertainty
introduced by fundamental lack of scientific understanding of
issues necessary to interpret the results as causal or to apply
risk estimates to populations that have not been studied
epidemiologically or which are exposed to PM with different
composition or particle size than those seen in the considered
epidemiological studies. (iv) The validity of the IER model,
hence, depends on two strong assumptions. The first
assumption is that PM2.5 toxicity does not depend on source
or chemical composition, since despite substantial efforts
neither epidemiological nor toxicological research has con-
clusively identified particular sources or components that
uniquely determine the toxicity of PM2.5.

36 When used to
evaluate emissions, the second assumption is that the exposure
concentration needed for the IER model can be obtained from
the total inhaled PM2.5 mass per unit emission provided by the
intake fraction.
2.3. Model Input Data. 2.3.1. Spatial Resolution of the

Analysis. Our analysis considers 175 countries, 18 of which
were further divided into subnational regions. The United
States was divided into 51 regions (50 states and American
Samoa). India was divided into 64 regions (32 urban and 32
rural). China was divided into its 34 provinces, Mexico into 32
states, Brazil into 26 states, Saudi Arabia into 13 provinces, and
the UK into 13 counties. In addition, several countries
(including Australia, Canada, Gabon, Indonesia, Kenya,
Norway, Somalia, Spain, and Uganda) were divided into two
and Russia into three regions located in different subcon-
tinents. This yields 419 regions studied.39,40 When aggregating
regional and national results to the level of 8 continents and 16
subcontinents, we grouped Africa and the Middle East as one
continent, Latin America and the Caribbean as one continent,
and identify the northern regions of North America, Europe,
and Central Asia as a distinct continental region.40 In addition,
we considered 3448 cities (i.e., urbanized areas with more than
100 000 inhabitants).41 Following these spatial resolutions
renders our resulting effect factors consistent with related
intake fraction estimates.39

2.3.2. Fine Particulate Matter Exposure Levels. We
obtained consistent estimates of the 2016 annual average
concentrations of PM2.5 prevalent in each of the 419 regions
and 3448 cities considered in our analysis from the World
Health Organization.27,42 PM2.5 exposure levels used in
support of national (or subnational) effect factors reflect
population-weighted averages of outdoor PM2.5 concentrations
across rural and urbanized areas within each region. PM2.5

exposure levels used in support of city-specific effect factors
reflect population-weighted averages of outdoor PM2.5
concentrations in each respective urban area. For comparing
cities or regions, the provided resolution in PM2.5 concen-
trations is sufficient, while higher resolutions would be
required for evaluating sources within a given city. Effect
factors for ambient environments include exposures both
indoors and outdoors (i.e., without a signification contribution
from indoor sources). We derive additional effect factors
intended for application to situations, where indoor sources
constitute a substantial contribution to PM2.5 exposure. We use
archetypal levels to characterize environments with significant
indoor emissions, for example, related to cook stoves, applying
an average indoor PM2.5 concentration of 250 μg/m3 as
representative of such environments.43,44 Since indoor
emissions can vary among countries and households as a
function of sources and renewal rates, additional scenarios can
be evaluated following our general approach for deriving effect
factors.

2.3.3. Mortality Data. Estimates of age- and disease-specific
mortality, M (deaths/year), for each of the five target health
outcomes included in the IER (i.e., IHD, stroke, COPD, lung
cancer, and ALRI) in each of the 419 regions of interest for the
year 2015 were obtained from the GBD Collaborative
Network.45 For IHD and stroke, we obtained specific data
for each of 12 age groups (25−29, ..., 75−79, and ≥80 years).
For COPD and lung cancer, we obtained data for adult
mortality (age ≥ 25 years). For ALRI, we used data on
mortality of infants and very young children (age ≤ 5 years).
Mortality data are available for countries or subnational regions
and are applied additionally to all cities in their respective
regions.

2.3.4. Attributable Risk Fraction and Deaths Attributable
to PM2.5 Exposure. Multiplying the attributable risk fraction,
ARF (dimensionless), by the current overall mortality, M
(death/year), in any given region provided us the mortality
(i.e., number of deaths) attributable to PM2.5 exposure, MPM2.5
(deaths/year), in that region, i.e., MPM2.5 = ARF × M. For the
case of ambient air pollution, in which the entire population is
exposed, the attributable risk fraction is a simple function of
the relative risk, i.e., ARF = (RR − 1)/RR.

2.3.5. Severity Factors. Estimates of disease- and region-
specific severity factors for mortality, SFYLL (YLL/death), and
for morbidity and mortality combined, SFDALY (DALY/death),
for the year 2015 were obtained from the GBD Collaborative
Network.45 Severity varies up to a factor of 5, mainly due to
regional differences in life expectancy.46 In the calculation of
YLL, the GBD has relied since 2015 on a reference life table
constructed using the lowest age-specific mortality rates seen in
2013 in any population larger than 5 million capita.46

2.3.6. Exposed Population and Breathing Rate. To
compare emission scenarios we relate emission mass to
exposure in order to apply effect factors using available intake
fraction methods as well as population and breathing rate
data.39 We obtained population counts across all ages, Npop
(capita), for 3448 cities41 and for 419 regions of interest for
the year 2015.45 Population counts were summed to city and
region definitions. To assess intake, we used a nominal
population-average breathing rate of BR = 11.68 m3/person/
d,39,44 accounting for time fractions spent and activity indoors
and outdoors,44,47 and the equilibrium fraction of ambient
particles penetrating indoors.39 Due to missing global
spatialized data, we assumed an equal distribution of time
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spent indoors/outdoors across cities and regions. This
approach leads to a value lower than the breathing rates
typically used in the intake fraction literature. However, to
facilitate comparison with previous estimates, our effect factors
can easily be rescaled. When combining effect factors with
intake fractions, which also include information on time spent
indoors/outdoors and on breathing rates, the same values for
these aspects should be used in both and finally cancel out.
2.4. Approaches for Deriving the Effect Factor Slope.

As effect factors reflect health impacts attributable to a unit
change in PM2.5 intake, they are obtained as the slope of the
relationship between mortality and mass of PM2.5 inhaled.
When studying the environmental performance of product or
service systems, different slopes are relevant for addressing
different perspectives. Consequential studies assess environ-
mental impacts expected in consequence of choosing one

studied system over another. This perspective requires
“marginal” effect factor slopes. In contrast, attributional studies
assess environmental impacts along one life cycle of a given
system and require using “average” effect factor slopes. For a
linear exposure−response function, marginal and average
slopes are identical. However, for nonlinear functions, such
as GBD’s IER, marginal and average slopes differ. Different
effect factors are therefore needed for consequential and
attributional studies. Hence, we provide marginal effect factors
EFmarginal at a given region or city exposure working point (C,
μg/m3) and average effect factors EFaverage between a given
region or city exposure working point (C, μg/m3) and the
theoretical minimum risk exposure level (C0, μg/m

3). Both
types of effect factors are calculated as a function of the
difference in mortality attributable to PM2.5 exposure, MPM2.5
(deaths/year), divided by the difference in intake, I (kg/year)
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Table 1. Global and (Sub-)continental Effect Factor (DALY/kg PM2.5 inhaled) Mean Values and Lower and Upper 95%
Confidence Interval Limits (values in parentheses)

marginal slope average slope

region regions cities regions cities

global average 44 (17−127) 54 (35−124) 115 (49−355) 137 (55−1034)
continental regions
North America 115 (91−141) 103 (70−173) 302 (238−384) 259 (167−431)
Latin America 44 (18−80) 42 (12−107) 116 (45−229) 111 (31−283)
Europe 74 (23−141) 72 (22−149) 217 (63−465) 190 (53−437)
Africa and Middle East 43 (4−106) 31 (3−81) 92 (13−195) 77 (12−190)
Central Asia 49 (17−129) 60 (15−236) 138 (54−395) 201 (49−788)
Southeast Asia 33 (21−77) 32 (13−65) 92 (58−207) 87 (48−168)
Northern regions 123 (84−165) 187 (67−475) 366 (213−510) 584 (163−1754)
Oceania 178 (116−297) 112 (77−195) 638 (301−1511) 332 (192−762)
subcontinental regions
Central Asia 49 (17−127) 66 (15−270) 136 (54−388) 188 (49−818)
Indochina 48 (29−79) 41 (25−76) 127 (78−218) 107 (64−187)
Northern Australia 177 (115−293) 110 (79−156) 709 (297−1418) 312 (202−527)
Southern Australia and New Zealand 176 (115−293) 112 (75−197) 678 (290−1361) 349 (191−791)
Southern Africa 56 (27−94) 38 (23−67) 114 (69−194) 92 (60−154)
North, West, East, and Central Africa 37 (3−133) 28 (3−97) 84 (14−222) 71 (12−184)
Argentina+ 48 (23−120) 43 (19−60) 133 (62−317) 112 (48−165)
Brazil+ 60 (18−81) 56 (10−117) 164 (44−231) 148 (27−337)
Central America+ and Caribbean 30 (17−75) 25 (15−57) 78 (47−182) 69 (43−150)
United States and Southern Canada 115 (92−139) 100 (69−160) 301 (237−384) 255 (164−459)
Northern Europe and Northern Canada 125 (88−164) 194 (65−554) 374 (232−495) 595 (166−1681)
Europe 75 (24−141) 72 (20−148) 205 (62−450) 190 (48−433)
East Indies and Pacific 85 (68−193) 62 (47−98) 219 (179−421) 173 (126−284)
India+ 28 (20−41) 29 (12−56) 80 (61−99) 82 (45−136)
Eastern China 26 (21−32) 27 (18−45) 72 (58−85) 73 (53−108)
Japan and Korean peninsula 57 (25−79) 44 (21−67) 142 (59−202) 107 (48−170)
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Equations 2a and 2b are derived from substituting the relative
risk in the relation of PM2.5-attributable mortality (see section
2.3.4) and PM2.5 exposure levels as described in section 2.1.
More specifically, RRi(Cj) is the relative risk obtained from eq
1 for disease i at the PM2.5 exposure level Cj in jth city (for
urban effect factors) or in region j = r (for regional effect
factors). Mi,r is the overall mortality in region r for disease i,
which contains the city of interest and all other cities and rural
areas in a given region. SFi,r is the corresponding region- and
disease-specific severity factor. Npop is the exposed population
and BR the individual breathing rate. Units are corrected via
factors fd to yr = 365 d/year and f kg to μg = 109 μg/kg. Ratio
(Mi,r)/(RRi(Cr) × Npop,r) is the regional background mortality
rate without the influence of PM2.5 exposure, calculated based
on the corresponding PM2.5 concentration of that region (i.e.,
Cr). If this ratio is multiplied by (RRi(Cr) − 1) in eq 2b, we get
the attributable mortality rate due to PM2.5 exposure. We
finally divide by inhaled PM2.5 mass per person (deaths/kg
inhaled) and multiply by the severity (DALY/death) to yield
the effect factor (DALY/kg inhaled).
2.5. Implementation and Model Evaluation. We

implemented both the marginal and the average approaches
in Analytica Release 4.6 and in Microsoft Excel 2016 to derive
effect factors for the considered 419 regions and 3448 cities.
Results from the two implementations were compared as a
quality control measure. All simulations were run using the full
set of 1000 equally likely realizations of relative risk model
parameters, and uncertainty ranges around effect factors are
based on Monte Carlo simulations performed in Analytica.
To evaluate our effect factor estimates we followed two

distinct approaches. First, we simplified the effect factor model
in a regression, focusing on understanding the most relevant
aspects influencing variability in effect factors. This yields
additional insight in aspects contributing to linking health
effects to human intake and provides a simple tool for
practitioners to estimate effect factors based on only knowing

the most relevant key inputs, namely, PM2.5 concentration,
mortality rates, and disease severity. Second, we compare our
effect factors against recent spatialized factors and against
factors obtained following our proposed approach but using
another exposure−response relationship, namely, the recently
published Global Exposure Mortality Model (GEMM),48

synthesizing epidemiological evidence from cohorts in 16
countries. Unlike GBD’s IER, GEMM exclusively considers
studies on ambient PM2.5 exposure.

3. RESULTS
3.1. Effect Factors for Total Mortality for Different

Levels of Spatial Aggregation. We summarize our results
starting with the most general case in which the location of the
PM2.5 emission source is unknown (Table 1). In this case, our
central effect factor estimates, EF (DALY/kg PM2.5 inhaled),
reflect the population-weighted (as surrogate for emission-
weighted) average of the marginal and average slopes for
morbidity and mortality attributable to PM2.5 exposure. When
there is no information about emission location, geographic
variability contributes significantly to overall effect factor
uncertainty. We characterize uncertainty by providing
confidence intervals as well as expected values obtained from
the distributions of possible values.
Effect factors based on the average slope of the exposure−

response function between the exposure working point and the
theoretical minimum risk exposure level tend to be ∼2.5 times
larger than effect factors based on the marginal slope of the
exposure−response function evaluated at the exposure working
point. The mean marginal slope effect factor averaged over the
419 considered regions is 44 DALY/kg PM2.5 inhaled, with
95% of region-specific values falling in the range from 17 to
127 DALY/kg PM2.5 inhaled. In contrast, the mean average
slope effect factor averaged over the same 419 regions is 115
DALY/kg PM2.5 inhaled, with 95% of region-specific values
falling in the range from 49 to 355 DALY/kg PM2.5 inhaled.

Figure 1. Population-weighted distribution of average effect factors due to PM2.5 exposure across cities (urbanized areas) and regions (including all
rural and urban areas within a region) per continent, with a comparison to the average effect factor appropriate for scenarios with substantial
emissions from indoor sources. Boxes represent median and interquartile ranges, and whiskers represent ranges containing 95% of continent-
specific effect factors. Continents are arranged from left-to-right in order of increasing mean effect factors. Bars represent total population count
(capita) in each continental region and across cities per region.
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The mean marginal slope effect factor averaged over the 3448
considered cities is 54 DALY/kg PM2.5 inhaled, with 95% of
city-specific values falling in the range from 35 to 124 DALY/
kg PM2.5 inhaled. In contrast, the mean average slope effect
factor averaged over these same 3448 cities is 137 DALY/kg
PM2.5 inhaled, with 95% of region-specific values in the range
from 55 to >1000 DALY/kg PM2.5 inhaled. Typical city effect
factors appear to be slightly (20−30%) larger than effect
factors for regions with a wider variability across cities.
We next consider the case in which the location of PM2.5

emissions is relatively well known, where we can identify either
the city or the country (or subnational region) in which a
PM2.5 source of interest is located. Marginal and average slope
effect factors for all 419 regions and 3448 cities are provided in
the Supporting Information (SI).
To provide factors for an intermediate level of spatial detail,

between unknown source location and rather precise source
specification, we developed and summarize in Figure 1 the
average effect factors for regions and cities, aggregated at the
level of continents. We estimated the continental weighted
median effect factors by pooling the effect factors for each
region or city using weights representing the fraction of the
population of the continent contributed by each region or city.
The continental median as well as the 2.5% and 97.5%

cumulative probability values come from the distribution (p1 ×
EF1 + p2 × EF2 + ... + pm × EFm), where p1, p2, ..., pm are
probabilistic weights (Bernoulli variables) taking the value 1
with probability p and 0 with probability 1 − p, and EF1, EF2,
..., EFm are probabilistic characterizations of the effect factors
from each region or city within a given continent. Marginal and
average slope effect factors for (sub)continents are provided in
Table 1.
Figure 1 shows average effect factor estimates across regions

and urban areas per continent, respectively. In addition, Figure
1 shows the distribution of the average effect factor for the
indoor environment archetype with substantial indoor
emission sources. For indoor environments, the effect factor
based on the average slope between the exposure working
point and the theoretical minimum risk exposure level is
recommended, since indoor exposure reduction efforts will
usually lead to a substantial (nonmarginal) change in indoor
PM2.5 concentrations.

49

Effect factors tend to be higher for exposure levels in North
America, Oceania, and Northern Regions than for exposure
levels in Southeast Asia, Africa, and the Middle East, Latin
America, and Central Asia. Effect factors in Europe tend to fall
between these. While there are differences in the typical effect
factor by continent, the within-continent variation tends to be

Figure 2. Median effect factor estimates for PM2.5 exposure in 3448 cities (top) and in 419 regions (bottom) with 95% confidence intervals for
each city and region and with the distribution across all cities (top) and across all regions (bottom) indicated as right-side box plots. z-scores
indicate how many standard deviations city-/region-specific median effect factors are from the respective mean across all considered cities/regions.
Median effect factors based on GEMM48 are indicated as white dashes for comparison. Light-colored bars around median values indicate
confidence interval ranges.
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larger than differences between values typical for various
continents.
Indoor effect factors are lower than outdoor effect factors

primarily due to the high working point exposures indoors
(due to cooking) that push the nonlinear model into a region
of lower slopes.
Figure 2 illustrates the variability and uncertainty in median

average effect factor estimates for PM2.5 exposure in each of the
3448 considered cities. Of the 3618 cities initially considered,
170 were excluded from our analysis because their mean
ambient annual PM2.5 concentration was below the theoretical
minimum risk exposure level, yielding an effect factor that is
either zero or almost infinite. The vertical axis in Figure 2
reflects the range of city-specific effect factor estimates, which
vary from less than 10 to 1900 DALY/kg PM2.5 inhaled. The
horizontal axis shows the z-score, indicating how many
standard deviations the median effect factor for a specific
city is from the mean across cities, calculated as z-score = (X −
μ)/σ, with X being the median effect factor for a given city, μ
the mean effect factor across cities, and σ the standard

deviation. The fact that the 3448 city-specific median effect
factor estimates lie, approximately, on a straight line suggests
that median average urban effect factor estimates are
approximately log-normally distributed with a median of 133
DALY/kg PM2.5 inhaled and a geometric standard deviation of
1.95 (summarized in the box plot on the right side of Figure
2).
To illustrate the dependence of effect factors on PM2.5

exposure concentration levels, we color coded the data shown
in Figure 2. Blue data points correspond to cities with PM2.5
concentrations between 5.8 and 15 μg/m3, yellow data points
correspond to cities with PM2.5 concentrations between 15 and
25 μg/m3, and red data points correspond to cities with PM2.5
concentrations above 25 μg/m3. Finally, gray data points
indicate cities with mean PM2.5 concentrations at or below the
upper confidence interval limit of the theoretical minimum risk
exposure level of 5.8 μg/m3. Increasing PM2.5 exposure
concentrations yield lower effect factors for both cities and
regions. This reflects the influence of the underlying nonlinear
exposure−response model, suggesting modest reductions in

Figure 3. Distribution of average slope median effect factors across cities per country ranked according to increasing country-specific average effect
factors that include all rural and urban areas for 147 countries with at least one city with more than 100 000 inhabitants.
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health burden in highly polluted areas unless PM2.5 levels
markedly decline.36

Uncertainty in each of our effect factor estimates is reflected
in the error bars shown for each city- and region-specific value.
Because the GBD’s IER model is highly nonlinear with a slope
that approaches infinity as PM2.5 concentration levels approach
the theoretical minimum risk exposure levels (which are
themselves uncertain), effect factors become increasingly
uncertain at levels of PM2.5 near this exposure level, usually
reaching magnitudes beyond 500 DALY/kg inhaled. For
comparison, effect factors based on GEMM (see Figure 2)
generally deviate from results based on GBD’s IER within a
factor of 2 but also suggest a less extreme trend at both ends of
the PM2.5 concentration range. In fact, very high effect factors

are rather an artifact in the underlying exposure−response
driven by studies on active smokers rather than ambient PM2.5

exposure, while very low effect factors are an artifact for forcing
the curve to meet the minimum risk exposure level.
To relate effect factors in cities to those of their respective

regions, we plot in Figure 3 the relationship of average effect
factors between the various cities in each of the 175 considered
countries (subnational regions were aggregated to national
estimates) and the average slope effect factor for the respective
country (considering all rural and urban areas in that country).
Only 147 out of the 175 considered countries contain cities
with more than 100 000 inhabitants. For these countries, the
number of cities ranges from a single city in, e.g., Iceland to
337 cities in India and 827 cities in China. In several countries,

Figure 4. Effect factors estimated in the present study derived from the GBD IER (Integrated Exposure-Response) model36 for 419 regions
compared against (a) their respective PM2.5 exposure levels, (b) our simplified regression model, (c) effect factors provided by van Zelm et al.
(2016),24 and (d) effect factors derived from the Global Exposure Mortality Model (GEMM).48 Regression coefficients in (b) are for effect factors
(EF, DALY/kg inhaled) in regions (including urban and rural areas). Madult (deaths/person-year), SF (DALY/death), and C (μg/m3), respectively,
denote total adult mortality (considering IHD, stroke, COPD, and lung cancer, for age groups ≥ 25 years), average severity factor over all age
groups for the same diseases, and annual average PM2.5 exposure concentration per region. Plotted effect factor ranges are restricted to 800 DALY/
kg inhaled.
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city-specific effect factors vary considerably, indicating that it is
important to distinguish urban and rural factors and individual
cities whenever related emission information is available. City-
specific effect factors being higher than the related country
averages across cities indicates that the overall country average
is driven by (usually large) cities with higher PM2.5 levels and
related lower effect factors.
3.2. Determinants of Effect Factors: Simplified

Regression. In an effort to understand the determinants of
effect factors related to PM2.5 exposure, we analyzed our results
statistically. We found that for urban areas, marginal and
average effect factors are well approximated with simple
regression models of the following form:

=
+ × ×

−
EF

k k M SF
C k

( )1 2
adult

3 (3)

where Madult is the total adult mortality rate (deaths/person-
year) from the four related diseases considered by GBD’s IER
model for age groups ≥ 25 years (derived from the ratio of the
sum over age group specific deaths/year and population
count), SF is the average severity factor (over all age groups)
for the same four diseases, C is the annual average ambient
PM2.5 exposure concentration (μg/m3) in the area of interest,
and k1, k2, and k3 are fitting parameters.
First, we compared effect factors with their respective PM2.5

exposure levels (Figure 4a). Using 1/C as the regression model
explained 18% of the variance when taking average slope effect
factors across our 419 considered regions. In a second model
for the same data set, we estimated effect factors from 1/(C −
k3), which explained 22% of the effect factors variance.
Including mortality into the regression of the form (k2 ×
Madult)/(C − k3) already explained 77% of our effect factor
variance. Finally, we introduced severity factors into the model,
which then takes the form as in eq 3, and explains 94% of the
variance of average slope effect factors across regions as shown
in Figure 4b.
For the 419 regions in our analysis, optimal values of model

parameters for marginal slope effect factors, EFregion
marginal, are k1 =

8 deaths/person-year, k2 = 15 028, and k3 = 0 μg/m3, yielding
R2 = 0.95. For average slope effect factors, EFregion

average, in the 419
regions, the optimal parameter values are k1 = 0 deaths/
person-year, k2 = 28 100, and k3 = 3.9 μg/m3, yielding R2 =
0.94. It can be shown that for an average slope effect factor, the
constant k2 is an estimate of the average adjusted relative risk

value of × [ − ] ×μ ( )RR C RR C BR10 ( ( ) 1)/ ( ) / 3659 g
kg

d
year

.

With the value of the nominal per-capita daily breathing rate
of 11.68 m3/person/d used in our analysis, an estimate of k2 of
28 100 is consistent with an average attributable risk fraction of
0.12, corresponding to a relative risk of RR = 1.136. The
constant k3 of 3.9 μg/m3 is an estimate of the theoretical
minimum risk exposure level of PM2.5.
For the 3448 cities considered in our analysis, the optimal

values of model parameters for marginal slope effect factors,
EFcity

marginal, are k1 = 11 deaths/person-year, k2 = 13 800, and k3 =
0.3 μg/m3, giving R2 = 0.96. For average slope effect factors in
cities, EFcity

average, the optimal parameter values are k1 = 11
deaths/person-year; k2 = 36 311, and k3 = 1.7 μg/m3, giving R2

= 0.89. It can be shown that for a marginal slope effect factor
the constant k2 is again an estimate of the average adjusted
relative risk value, which is consistent with an average
attributable risk fraction of 0.154, corresponding to a relative

risk of RR = 1.182. The constant k3 of 1.7 μg/m3 is again an
estimate of the theoretical minimum risk exposure level of
PM2.5. Overall, our simplified regression model predicts effect
factors very well, using only information on PM2.5 exposure
concentration, total adult mortality, and severity for any given
region or city, which is readily available from the GBD study
and global PM2.5 monitoring data.

4. DISCUSSION
4.1. Applicability of Our Effect Factors. We proposed a

consistent set of global effect factors that can be combined
with human intake fractions39 in support of comparative
assessments that are relevant to a broad range of emission and
related exposure situations, applicable to a diverse number of
populations, cities, and countries, and applicable for different
levels of spatial aggregation. While we can currently not
differentiate between anthropogenic and nonanthropogenic
PM2.5 sources (i.e., our approach is equally applicable to both),
future efforts should focus on providing effect factors that are
differentiated by source type. We found that estimating PM2.5
effect factors requires information for five underlying aspects,
namely, (i) shape and parameters of the epidemiology-based
exposure−response function, (ii) levels of PM2.5 exposure in
the considered population, (iii) mortality rates for PM2.5
exposure-related diseases, (iv) severity factors reflecting loss
of life expectancy and duration and severity of disease-related
disability preceding death, and (v) amount of air inhaled by the
exposed population. Of these, the most critical and uncertain
information is that related to the exposure−response function.
Comparing 4.2 with 8.9 million deaths globally estimated for
2015 using, respectively, GBD’s IER model36 and the
GEMM48 (using all cohorts) indicates uncertainty of the
exposure−response of at least a factor of 2. This is dominating
as compared to other contributors to uncertainty (breathing
rates, exposure concentrations, and indoor/outdoor time
patterns), which generally vary much less than a factor of
2.41,44 In the mid-1990s, evidence about the exposure−
response relating chronic exposure to mortality was limited
to the results from two cohort studiesthe Six Cities study2

and the ACS study3these gave central effect estimates, which
differed by a factor of 3. More than 20 years later, results from
a dozen relatively large cohort studies and an equal number of
smaller cohorts contribute to our understanding of this issue.
A number of effect factor estimates for PM2.5 exposure has

been proposed. All estimates have relied, almost exclusively, on
evidence from one cohort, i.e., the ACS study3 (and its
extensions and reanalyses). Although it is one of the largest
and best-studied cohorts and used by regulatory authorities in
the United States and Europe, we identified concerns about the
ACS study. In particular, because of its use of ambient air
exposures and health data for the United States, it may be
unable to provide the best possible synthesis of evidence on
mortality effects of chronic exposure to PM2.5 for use in the
development of globally applicable effect factors.
The IER model provides an alternative synthesis,32 has been

used to support estimates of the Global Burden of Disease
since 2010, and has provided the basis for a number of
independent studies of the mortality impacts of chronic
exposure to ambient PM2.5.

1,29,30,33−36 GBD’s IER model relies
on evidence from all major cohort studies of mortality related
to chronic exposure to PM2.5 and supplements this with
information from studies of mortality impacts from exposure to
smoke in households, which rely on dirty fuels for indoor
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cooking and heating, and from studies of exposure to both
active and passive cigarette smoke. Using this model in our
approach to develop global effect factors constitutes a more
consistent picture than relying on evidence from a single
region, thereby accounting for spatial variability in important
underlying aspects including PM2.5 exposure levels, mortality,
and disease severity.
4.2. Evaluation against Other Factors and Models.We

explored the implications of using the synthesis provided by
GBD’s IER model for deriving effect factors and observed the
following. First, our central estimates of global population-
weighted marginal region and city effect factors are 44 and 54
DALY/kg PM2.5 inhaled, respectively. The variability in
marginal slope effect factors across regions is substantial. If
the location of a PM2.5 emissions source is unknown, the
marginal slope effect factor could be between 17 and 127 (with
95% confidence). Similar variability is found for emissions
across cities. Second, our central estimates of the global
population-weighted average slope region and city effect
factors are 2−3 times as large as the corresponding marginal
slope effect factors. The variability in average slope effect
factors is also substantial. If the location of an emissions source
is unknown, the average slope effect factor could be between
49 and 355 (with 95% confidence). Similar variability is again
found across cities. We recommend applying the average effect
factors rather than the marginal effect factors in cases where
substantial variations in background PM2.5 exposure concen-
trations are expected over the lifetime of a considered system
under analysis. This is, for example, the case in China, where a
substantial reduction in concentrations has been observed in
recent years and are expected in the coming decade, or for
analyzing indoor PM mitigation scenarios, for which cooking
alternatives can strongly reduce PM exposure levels. Third,
although effect factors tend to be somewhat higher for some
continents (North America, Oceania, Northern Regions) than
for others (Southeast Asia, Central Asia, Latin America, Africa,
and the Middle East), most of the variability in effect factors is
within continent and is determined largely by variation in the
average annual mean PM2.5 exposure concentrations from
place to place. This occurs because of the nonlinearity of the
IER exposure−response, which exhibits low slopes at high
PM2.5 exposure concentrations and increasingly large slopes as
PM2.5 exposure concentrations decrease toward the theoretical
minimum risk exposure level of PM2.5. Fourth, our estimates of
the population-weighted marginal and average slope effect
factors for Europe are, respectively, ∼70 and ∼150 DALY/kg
PM2.5 inhaled and for North America, respectively, ∼110 and
∼290 DALY/kg PM2.5 inhaled. Differences between Europe
and the United States are mainly driven by lower PM2.5 levels
in the United States (leading to higher exposure−response
slopes), and our estimates are only slightly larger than previous
estimates of 58 YLL per kg PM2.5 inhaled (Europe)22 and 78
DALY per kg PM2.5 inhaled (United States).23 Fifth, similar to
recent studies,24,25 we provide estimates of effect factors
appropriate for various countries and regions worldwide. Our
estimates of population-weighted marginal slope effect factors
are both variable and uncertain, with typical values varying
from 27 DALY/kg PM2.5 inhaled (95% confidence interval,
17−120) in Central Asia to 168 DALY/kg PM2.5 inhaled (95%
confidence interval, 78−306) in Northern Regions. Previous
estimates are also variable and uncertain, varying from 87
YLL/kg PM2.5 inhaled in Thailand to 857 YLL/kg PM2.5
inhaled in Kazakhstan.24 However, as Figure 4c shows, the

different sets of estimates present quite distinct pictures of
both the patterns and sources of variability and the nature and
extent of uncertainty in effect factor estimates. These
differences are primarily due to the nonlinearity in GBD’s
IER model being the major source of variability in our
estimates, a feature not present in earlier estimates.24,25

In conducting this analysis we are not proposing that effect
factors based on GBD’s IER model are more reliable than
estimates based on other syntheses of the epidemiological
evidence for mortality effects of PM2.5. Instead, the goal of our
analysis is to illustrate the importance of the approach used to
synthesize exposure−response evidence for compiling a
globally consistent set of effect factors that allow for evaluating
emission and emission reduction situations at different spatial
levels. We note that uncertainty about how to synthesize
epidemiological evidence is arguably the largest, often
unacknowledged source of uncertainty in PM2.5 effect factor
estimates. To evaluate this aspect, we finally developed effect
factors following our general approach but using the recently
published Global Exposure Mortality Model (GEMM)48 and
compared results against our factors based on GBD’s IER
model (see Figure 2). Comparing both sets of effect factors for
the 419 considered regions we find that GEMM-based factors
overall agree well with IER-based factors (Figure 4d); however,
there are some deviations especially at very high and very low
PM2.5 exposure levels, where the GEMM is less nonlinear than
the IER model. This suggests that the relative risk estimates
underlying our analysis could be potentially limited at both
extremes of the considered PM2.5 range to yield effect factors
that are better aligned with GEMM and less influenced by
artifacts related to the IER shape. An advantage of using
GEMM as the underlying exposure−response model could be
that each included cohort can be fitted separately for a given
region. However, additional research is required to select, for
example, the appropriate cohorts in GEMM for regions where
no epidemiological evidence is currently available.
On the basis of the current state-of-the-science synthesis

used by the GBD study,36 our effect factor estimates can be
consistently coupled with the indoor and outdoor region and
city-specific intake fractions39 for use in LCIA, comparative
risk and health impact assessments, and emission reduction
policy analyses. Our continental, country- and region-level, and
city-specific effect factors thereby capture important variability
in mortality from exposure to PM2.5, which is not possible with
currently available spatialized models. As science advances and
new syntheses of the epidemiological evidence on mortality
attributable to PM2.5 exposure becomes available, our approach
can easily accommodate this new information to produce
updated global effect factors for exposure to PM2.5.

4.3. Recommendations for Policy and Practitioners.
Effect factors for exposure to PM2.5 combined with intake
fractions39 provide important insight when evaluating different
emission and emission reduction situations. Effect factors vary
considerably across cities and regions (Figures 1 and 3), with
lower effect factors in areas with higher PM2.5 exposure and
highest effect factors in areas with PM2.5 exposure close to the
minimum risk exposure level (Figures 2 and 4a). Current
spatial models are unable to capture the most important
related variabilities in effect factors (see Figure 4c). Our
consistent set of global effect factors addresses this spatial
variability by covering different spatial scales through para-
metrized cities and countries (or subnational regions),
continents, and global averages that can be applied as a
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function of information available about emission location. We
recommend using as underlying exposure−response model
GBD’s IER covering a wide range of PM2.5 exposure
concentrations based on a large set of epidemiological studies
from different regions36 while further exploring other models,
such as GEMM.48 GEMM is generally in good agreement with
the IER but also exhibits important differences, such as a more
linear behavior at high PM2.5 exposures (see Figure 4d).
However, important questions still need to be addressed before
GEMM can be applied in a global context, for example,
selection of appropriate cohorts in areas without available
epidemiological evidence. We generally recommend applying
effect factors derived from an average slope, where substantial
variations in background PM2.5 exposure are expected over the
lifetime of an assessed product system or as consequence of
emission or exposure reduction efforts. Finally, when only
limited information is available regarding PM2.5 exposure,
mortality, and disease severity, we recommend applying our
simplified regression model (eq 3, Figure 4b) with different
fitting coefficients for regions, cities, and marginal versus
average slopes. Further research should focus on providing
globally spatialized data on time spent indoors/outdoors,
breathing rates, additional health outcomes associated with
PM2.5 exposure, epidemiological evidence in regions currently
not covered, and effect factors differentiated by source type.
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Antoń, A.; Bare, J.; Boulay, A.-M.; Cherubini, F.; Hauschild, M. Z.;
Henderson, A.; Levasseur, A.; McKone, T. E.; Michelsen, O.; Mila y
Canals, L.; Pfister, S.; Ridoutt, B.; Rosenbaum, R. K.; Verones, F.;
Vigon, B.; Jolliet, O. Global guidance on environmental life cycle
impact assessment indicators: Progress and case study. Int. J. Life Cycle
Assess. 2016, 21, 429−442.
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