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Polynomial Coefficients. Application to Spin-Spin Splitting

by N Equivalent Nuclei of Spin I > 1/,
(Short Title: Spin-Spin Splitting by N Equivalent Nuclei of Spin 7> 1/5)

Charles L. Perrin
Department of Chemistry, University of California—San Diego La Jolla, CA 92093-0358

cperrin@ucsd.edu

Abstract. The NMR intensity pattern of a nucleus split by N identical nuclei of spin !/, is given
by the binomial coefficients. These are conveniently obtained from Pascal's Triangle, equivalent
to the chemist's branching diagram. Much less well known is the pattern from splitting by N
identical nuclei of spin I > !/,. This was originally presented in terms of multinomial coefficients,

but polynomial coefficients are more convenient. These describe the number of ways that N
objects can be distributed to 2/+1 numbered boxes. They arise in the polynomial expansion and
are conveniently obtained from generalizations of Pascal's Triangle. Examples and predictions

are given.
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Binomial Coefficients

It is well known that the NMR intensity pattern of a nucleus that is split by N identical

nuclei of spin I = !/, is an (N+1)-line multiplet with relative intensities given by the binomial



coefficients, C,N, in eq 1.""" The separation between successive lines is the coupling constant J.
The binomial coefficients arise from the binomial expansion (eq 2).” Eq. 3 then gives the
probability of throwing N coins and obtaining r heads and N-r tails, or equivalently, the
probability that r nuclei out of N are of spin +1/, and N-r nuclei are of spin -1/,. The binomial
coefficients are conveniently obtained from Pascal's Triangle (Fig. 1), where each coefficient is
the sum of the two coefficients above it, according to eq 4. Chemists more customarily present
this figure as a branching diagram,** developed from splittings by successive nuclei, as shown
in Fig. 2 for splitting by the three protons of an adjacent methyl group, with a separation between
successive lines equal to the coupling constant J. Another example, from Fig. 1, is the intensity
pattern of the central CH of isopropyl alcohol, (CH3),CHOH, split by the six adjacent methyl

protons into a seven-line multiplet with relative intensities 1:6:15:20:15:6:1. These correspond

to the successive values 3, 2, 1, 0, -1, -2, -3 of the spin quantum number My = !/,N-r.

¢ = (1)
AN = X" N @)
P(r) = ¢, (1N 3)

CN+1r = CNr—l + CNr (4)

(N=0) 1



N=1) 1 1
N=2) 1 2 1
N=3) 1 3 3 1
N=4) 1 4 6 4 1
N=5) 1 5 10 10 5 1
N=6) 1 6 15 20 15 6 1
N=T) 1 7 21 35 35 21 7 1
(N=8) 1 8 28 56 70 56 28 8 1
(N=9) 1 9 36 84 126 126 84 36 9 1
(N=10) 1 10 45 120 210 252 210 120 45 10 1

Figure 1. Pascal's Triangle.
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Figure 2. Splitting by three adjacent nuclei of spin !/,.

Multinomial Coefficients

Much less well known is the NMR or EPR pattern from splitting by N identical nuclei of

spin I > 1. In particular, the EPR spectrum of tetracyanoethylene radical anion,

(NC),C=C(CN);~, was puzzling, showing a nine-line multiplet with relative intensities



1:4:10:16:19:16:10:4:1.5"  This is an example of splitting by four identical 14N nuclei, of spin I
= 1, but these are clearly not the familiar binomial coefficients. Further unfamiliar sequences

were presented for the relative intensities of both a 19-line EPR multiplet due to splitting by six

equivalent chlorines of I = 3/, (but without distinguishing 33C1 from 37Cl, which have magnetic

moments and coupling constants that are nearly, but not exactly, the same), ' and a 25-line EPR

multiplet due to splitting by eight equivalent !B atoms, also of I = 3,."”" In neither case was the

method for obtaining the intensity pattern disclosed.
A brief explanation for such patterns was presented in terms of multinomial coefficients.

81 Multinomial coefficients, describing the number of ways that N objects can be distributed to
2I+1 boxes, with ng objects in box #0, nj objects in box #1, ny objects in box #2, etc., subject to

the constraint of eq 5, are given in eq 6.’ These arise in the multinomial expansion (eq 7),
although the usual treatment replaces 21 by the parameter n-1, '© whereas we allow for the

possibility that 7 is a half-integer. Then, if N coins are tossed into (2/+1) equally likely boxes,

the probability of the distribution {rn;}, with ng coins in box #0, n coins in box #1, ny coins in

box #2, etc., is given by eq 8. Eq 8 reduces to eq 3 for I = 1/,. These multinomial coefficients

are well-known to mathematicians, but their applicability to NMR is little known to chemists.

Yool ni=N 5)

My = ©)

21 aq
Xico” XN = (v +x1 + 12+ + 1V = M" {ni}Hi=0 xi'™ (7)



PUm)) = M) 8)

It is necessary to use sums of multinomial coefficients to describe the relative intensities

PrN of the 2NI+1 peaks in an NMR or EPR multiplet due to splitting by N nuclei of spin 1.

Those intensities are given in eq 9, where the summation is only over those distributions {n;}

where Zini = r and where the spin quantum number My, equal to r — NI, ranges from -NI to +NI.

PrN = ZAfN{rzi} )

Polynomial Coefficients

This formulation, in terms of sums of multinomial coefficients, is awkward.

Consequently, that early presentation,’® which also focused on moments of the distribution, is

. . . N . . .
not useful. It is more convenient to recognize the P, as polynomial coefficients. These
describe the number of ways that N objects can be distributed to 2/+1 boxes, numbered from -I to
+1, such that the sum of the box numbers is r. They are called polynomial coefficients because

they also arise in the expansion of a polynomial (eq 10). For example, the expansion of

(14+x+x2)% is 1 + 4x + 10x2 + 16x3 + 19x* + 16x° + 10x° + 4x7 + x8, which reproduces the relative
intensities above in the EPR spectrum of tetracyanoethylene radical anion. These polynomial

coefficients are likewise well-known to mathematicians, but their applicability to NMR and EPR



is little known to chemists.

(Z =021xr)N — (1 +x +x2 + - +x2])N — Zr=02NI Prer (10)

The polynomial coefficients are conveniently obtained from generalizations of Pascal's
Triangle,!""! where each coefficient is the sum of the 21+1 coefficients above it. Thus, for I = 1

each coefficient is the sum of the three coefficients above it, according to eq 11 and as illustrated

in Fig. 3. An example is the intensity pattern of the 13C NMR of methanol-d3, split by the 3

adjacent deuteriums, of I = 1, which is a seven-line multiplet with relative intensities

1:3:6:7:6:3:1, as can also be seen from the chemists' branching diagram, shown in Fig. 4.

Another example is the seven-line 'H NMR multiplet of TpIrD3H (Tp = hydridotrispyrazol-1-

ylborato), split by three deuteriums.!"? Again, the separation between successive lines is the

coupling constant J. For I = 3/, each coefficient is the sum of the four coefficients above it in a

generalized Pascal's triangle, according to eq 12 and as illustrated in Fig. 5. An example is the

IH NMR spectrum of fluxional B3Hg", which shows a 10-line pattern from splitting by three

equivalent !B of I = 3,,,1"¥ with relative intensities 1:3:6:10:12:12:10:6:3:1 (although these

ratios were not provided).

P = P e P s P (11)

P =P PN e PN s P, (12)



(N=0) 1
(N=1) 1 1
(N=2) 1 2 3
(N=3) 1 3 6 7
N=4) 1 4 10 16 19 16 10 4 1
(N=5) 1 5 15 30 45 51 45 30 15 5 1
1 6 21 50 90 126 141 126 90 50 21 6 1
17 28 77 161 266 357 393 357 266 161 77 28 7 1
1 8 36 112 266 504 784 1016 1107 1016 784 504 266 112 36 8 1
1 9 45 156 414 882 1554 2304 2907 3139 2907 2304 1554 882 414 156 45 9 1

Figure 3. Pascal's Triangle Generalized to I = 1.

(N=6)

|
As

| I#HWHI |

1367 631

Figure 4. Splitting by three adjacent nuclei of spin 1.

1111

12 3 4 3 21
13 6 10 12 12 10 6 31
1410 20 31 40 4 40 31 20 104 1
1 515 35 65 101 135 155 155 135 101 65 35

120 216 336 456 546 580 546 456 336 216 120 56 21 6 1
& 28 71

1551

1 621 56
17 28 &4 203 413 728 1128 1554 1918 2128 2128 1918 1554 1128 728 413 203

1 8 36 120 322 728 1428 2472 3823 5328 6728 7728 8092 7728 6728 5328 3823 2472 1428 728 322 120 36 8 1

Figure 5. Pascal's Triangle Generalized to I = 3.

A more elaborate pattern is the 19-line multiplet from splitting by nine identical nuclei of



I = 1, with relative intensities 1:9:45:156:414:882:1554:2304:2907:3139:2907:2304:1554:882:
414:156: 45:9:1, as in the last line displayed in Figure 3. This can be predicted for the 'H NMR

spectrum of isobutane-dg HC(CD3)3, which was characterized only as an incompletely

deuterated material."" Still moe elaborate is the 3!P{IH}NMR spectrum of (CD3CH»)4P*,

which is as yet unknown but which can be predicted to show a 25-line multiplet with relative

intensities  1:12:78:352:1221:3432:8074:16236:28314:43252:58278:69576:73789:69576,  etc.

Other predictions for splitting by many nuclei of spin I = 1 or 3/, can be drawn from Figures 3

and 5, but they are more likely to appear in EPR spectra.

Summary

Beyond the familiar binomial coefficients, which specify the relative intensities for
splitting by N identical nuclei of spin !/,, there are little-known polynomial coefficients

applicable to N nuclei of spin I > !/,. These describe the number of ways that N objects can be

distributed to 2/+1 boxes, numbered from -I to +I, such that the sum of the box numbers is r.

Besides, they are the coefficients in the expansion of the polynomial (1 + x + x% + - + x2/)N, and
they are readily obtained by generalizations of Pascal's triangle.
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