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Abstract

Studying Energy Loss Mechanisms in MEMS Based Contour-Mode Resonators Using

Laser Doppler Vibrometery

by

Brian A. Gibson

The work in this thesis aims to uncover energy loss mechanisms in MEMS-based piezo-

electric contour-mode resonators. Quality factors for these devices has been constrained

to under 10,000, limiting their commercial applications. The first part of this thesis

studies Q degredation related to anchor losses. During fabrication, the outer edge of the

anchors are released from the substrate due to an isotropic etch step used in releasing

the device from the substrate. This allows both ends of the anchors and the surrounding

region of the device layers to undergo strain resulting in energy loss during operation.

This study finds that a variation in Q of up to 31% can occur as a result of this released

area. A novel method for minimizing this loss through modified boundary conditions is

also analyzed and experimentally tested.

The second part of this thesis develops a new method of measuring ring-downs at

ultra high frequencies using laser Doppler vibrometry. Due to an inherently low signal to

noise ratio and a 4ns timing error in the vibrometer measurement triggering, traditional

ring-down methods are not possible at ultra high frequencies. The method outlined here

overcomes this and produces results with an error of less than 6% when compared to

electrically determined values.

Next, a method is outlined for measuring the magnitudes of the individual material

wavelengths on the surface of the resonator. The devices are composed of multiple

material layers, each with a unique acoustic velocity. As a result, at resonance, each

x



layer has a unique wavelength that can be measured using laser Doppler vibrometery.

The final section combines the previous two methods to measure the ring-downs of

the individual material layers used in the construction of the resonators. Due to their

unique material properties, the rate at which the vibrations of each material decays can

be quantified to determine future fabrication choices.

xi



Contents

Curriculum Vitae vii

Abstract x

List of Figures xiv

List of Tables xix

1 Introduction 1
1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 What is a resonator? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 AlN CMR Design and Fabrication . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Energy Loss Mechanisms in CMRs . . . . . . . . . . . . . . . . . . . . . 12
2.4 Anchor Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Interfacial Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Viscous/Air Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Thermoelastic Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Minimizing Anchor Loss 18
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Alumnium Nitride CMRs . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Experimental Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Finite Element Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 A New Method for Single Point Ring-Down Measurements 38
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xii



4.3 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Measurement Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Measuring Spatial Wavelengths on the Surface of a CMR 49
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Measuring Ring-Down For Each Material 53
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Laser Doppler Vibrometery 59
A.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2 Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.3 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B Automation of the Polytec UHF-120 LDV 64
B.1 Spatial Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.2 Setting Measurement Parameters . . . . . . . . . . . . . . . . . . . . . . 66
B.3 Data Acquistion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.4 In-Plane Spatial Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

C Phase Noise 71

D Determining Q and K2
t from Admittance Data 74

E Transmission Line Theory 78

F Matlab Code for Finding Ring-Down Time Constant 84

G Matlab Code for Finding Material Quality Factors 86

Bibliography 89

xiii



List of Figures

1.1 A Schematic of a Super Heterodyne Transceiver used in front-end wireless
technology. The SAW filters and TCXO crystal (in red) are external, non-
CMOS compatible components. Image courtesy of Prof. Gianluca Piazza 2

2.1 A schematic of a simple oscillator circuit. The resonator serves to set the
operating frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Two examples of typical frequency responses of a resonant device. A
resonator is effectively a very narrow bandpass filter. The quality factor,
Q, of the resonator defines the efficiency of the device as well as the its
bandwidth. The low Q device has a wider bandwidth than the high Q
device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 A schematic of the aluminum nitride piezo-electric resonators. The fre-
quency is set by the spacing of the electrodes. . . . . . . . . . . . . . . . 9

2.4 The fabrication sequence for the AlN contour-mode resonators. A 10nm
layer of Ti is deposited onto an Si substrate followed by 100nm of Pt (a).
AlN is then sputtered on (b) followed by 100nm of Al (C). The AlN layer
is patterned using a Cl2 dry etch (d). The last step uses XeF2 to etch the
Si and release the device from the substrate (e). . . . . . . . . . . . . . 10

2.5 A microscope image of a 220MHz CMR. The area covered by the elec-
trodes defines the active region of the device where the acoustic energy is
transduced. The inactive region is necessary for power distribution and
physical support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 The length, La, of the anchors of CMRs below 220MHz has a significant
impact on performance. It was shown that Q could have a five-fold vari-
ation due to anchor length. No correlation between the width, Wa, of the
anchors and Q was found. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 An SEM image of the anchor region of a 220MHz AlN CMR. Typical
studies assume that the outer edge of the anchor (right side in this image)
are fixed to the substrate and do not undergo displacement. . . . . . . . 19

xiv



3.2 The isotropic etch that is used to release the device from the substrate
also undercuts the region outside of the device anchors. This results in
excessive motion that can effect the quality factor by as much as 31%. . . 20

3.3 A schematic of the measurement path of a heterodyne laser Doppler vi-
brometer. Also shown is the released region of the device layer that is
outside of the anchors (dark area). This is due to the isotropic XeF2 etch
that is used to release the body of the device from the substrate. . . . . . 21

3.4 The devices are composed of a 1µm aluminum nitride layer sandwiched
between a 100nm upper and lower layer of aluminum and platinum respec-
tively. The operating frequency of the resonators is set by the electrode
spacing, W . When driven at this frequency, in-plane Lamb waves are
created as a result of the d31 Piezoelectric coefficient of the AlN. . . . . . 22

3.5 The acoustic energy used for transduction is produced within the active
region of the resonator. Energy is dissipated into the inactive regions
where it could potentially be reflected and returned to the active region
or it could be dissipated into the substrate where it contributes to a loss
in quality factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 COMSOL FEA was used to compute the energy flux through this cross
section in the anchors over one cycle. Perfectly matched layers (shown in
black) were used to simulate a semi-infinite substrate. The simulation was
validated by matching the out-of-plane motion to the LDV experiments. . 26

3.7 The experimental and COMSOL simulated displacement of the released
region of device #1. The exceptional match of the simulated and LDV
data validated the COMSOL model, allowing the energy flux through the
anchors to be evaluated. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 The magnitude of the displacement of the released region was squared
and the area under the curve was integrated to provide a figure of merit
proportional to strain energy. this figure of merit follows an abs(sin)
pattern as explained below. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9 Using transmission line theory to describe the energy flux through the
anchors, the active region is modeled as a voltage source with a character-
istic impedance and the inactive region is modeled as a transmission line.
Because the outer edge of the released region is fixed to the substrate, it
can be treated as an open circuit. Under this condition, all of the acoustic
energy is reflected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.10 When the length, L of the inactive region is equal to an integer multiple
of λ/4 it acts as a either a 1/4λ or 1/2λ transformer. This constrains the
maximum amount of energy within the active region of the resonator and
therefore maximizes Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xv



3.11 The figure of merit for the displacement of the inactive regions of the
COMSOL Simulations at each etch step and the analytical fit as a function
of the wavelength, λ, from the active region. Maximum displacement
occurs every 12.02µm, which corresponds to nλ/4. The simulation data
follows the same trend as the LDV measurements. . . . . . . . . . . . . 32

3.12 The simulated energy flux through the anchors of the resonator over a
complete cycle. A minima occurs every nλ/4. This occurs as a result of
the inactive region acting as a 1/4λ or 1/2λ transformer and placing a
stress free or a virtual fixed-boundary condition at the edge of the active
region. This serves to contain the acoustic energy within the active region
of the resonator, improving Q. . . . . . . . . . . . . . . . . . . . . . . . . 33

3.13 A figure of merit identical to that used for the inactive region was used for
the active region and the ratio of these two is shown as a function of λ.
The resulting value is proportional to Q and follows the same trend (solid
lines). When there is a minimum in anchor displacement, there is a peak
in this ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.14 The quality factor at each etch step. Q varies by as much as 31% as
the etch distance is varied. The maxima at nλ/4 correspond to points of
minimum energy loss through the anchors. The solid lines are curve fitting
of the abs(sin) function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.15 Using a FIB, a slot was cut through the device layers of the released region
(1µm x25 µm). This converted the end condition from a node to an anti-
node. The result is that, at (nλ/4 + λ/8), Q reaches a maxima. . . . . . 35

3.16 Due to the fact that the end condition of the released region has been
converted from a fixed to a stress-free condition, the previous minimum
Q points at 1.375λ and 1.625λ become maximum Q points. In fact, the
highest Q for this device (#3) was obtained with the stress-free end condition. 35

4.1 An example of the exponential decay profile of a traditional, linear resonant
device. The rate of decay is defined by a ring-down time constant, τ . . . 39

4.2 A comparison between an ideal ring-down profile and the actual LDV
measurement of the ring-down of the 220MHz resonator. The signal is
dominated by noise due to the small displacement. No averaging was
applied to this time signal. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 An example of the 220MHz AlN CMR used for single point measurements.
These measurements were taken at the center of the device (red dot).
Initial displacements ranged from 125pm to 225pm. . . . . . . . . . . . . 41

4.4 A simulation of the reduction in signal amplitude due to averaging ten
times when a trigger error of ±40ns exists. To suppress the noise, Polytec
recommends averaging up to 10,000 times. . . . . . . . . . . . . . . . . . 42

xvi



4.5 An FFT is taken from short time samples at multiple time points through-
out the ring-down event. For clarity, this example used 8µs time samples
that were taken every 10/mus. In practice, many more points at shorter
intervals should be used. The magnitude at each time point is then used
to reconstruct the ring-down. . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 The measurement setup for capturing ring down measurements of a 220MHz
CMR. The first function generator is used to trigger the start of the mea-
surement and the cut-off of the drive signal supplied by the second function
generator. The LeCroy scope is used to capture the data from the vibrom-
eter and transfer it to the PC for post-processing. . . . . . . . . . . . . . 45

4.7 An FFT is taken from short time samples at multiple time points through-
out the ring-down event. The magnitude at each time point is then used
to reconstruct the ring-down. . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 To determine the error associated with these measurements, a single point
was measured ten times and a ring-down curve was fit to the two extremes.
A total error of ±3.85% in Q was found. . . . . . . . . . . . . . . . . . . 48

5.1 The surface of the resonator was scanned along the path shown. The
spatial resolution was increased to 733nm to reduce the measurement time. 51

5.2 The mode shape along the centerline of a 220MHz resonator. As is evident,
the mode shape is a superposition of multiple wavelengths due to the
different material properties of each layer. . . . . . . . . . . . . . . . . . 52

5.3 The spatial FFT of the surface of the resonator produced by the mode
shape. There are peaks at 15µm, 25µm, 54µm. Variations in the stiffness
and density would account for the variations in wavelength with respect
to the analytical values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 The ring-down profile of the three peaks in the spatial FFT associated
with Pt(a), Al(b), AlN(c). Each material shows a unique time constant
i.e. quality factor. Further experimental work will be conducted to better
understand these effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 The length, La, of the anchors of CMRs below 220MHz has a significant
impact on performance. It was shown that Q could have a five-fold vari-
ation due to anchor length. No correlation between the width, Wa, of the
anchors and Q was found. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 The electrically measured device Q vs. the effective material quality factors
for each material layer of the five devices fabricated with a 1µm aluminum
nitride layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 The electrically measured device Q vs. the effective material quality fac-
tors for each material layer of the five devices fabricated with a 1.5µm
aluminum nitride layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xvii



A.1 A schematic of the light paths of a heterodyne laser Doppler vibrometer
and its various components. . . . . . . . . . . . . . . . . . . . . . . . . . 60

B.1 The hardware and associated connections involved in automating the LDV
measurement process, The PC running a Matlab GUI controls all functions
and collects the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.2 The graphical user interface developed to automate the LDV measure-
ments of the UHF-120. Through this interface, the user can select all
of the measurement parameters for standard or ring-down measurements.
Once the scan is started, no input is needed from the user and the software
will email the user once the measurements are complete. . . . . . . . . . 66

B.3 The stepper motors used to drive the Y axis and focus. Also shown are the
Parker Motion ViX500IM stepper drives. The X axis motor is not visible. 67

B.4 The VibSetup GUI used to define the spatial measurement points. The
user first selects a fiducial area which is used by GibSoft to track the DUT
within the objective area. The desired scan points can then be selected. . 67

C.1 The output of an oscillator circuit can be represented with a phasor di-
agram. An ideal oscillator would have a fixed amplitude, A, and phase
angle, Θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C.2 In practice, oscillators have noise in both phase and magnitude directions. 72
C.3 An example of a phase noise diagram. Because of symmetry, only the

left side of the power spectrum is shown. The Y-axis is in dBc
Hz

and is
normalized to the power of the center frequency. . . . . . . . . . . . . . . 72

D.1 The conductance and susceptance portions of admittance data generated
by the VNA from a CMR. These represent the real and imaginary portions
of admittance respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

D.2 The admittance data of a 220MHz AlN CMR in magnitude/phase form. . 76
D.3 The magnitude of admittance on a log scale of a CMR. The quality factor

is the ratio between the resonant frequency and the 3dB bandwidth. . . . 77
D.4 The Modified Butterworth-Van Dyke model used for fitting the electrical

parameters to the admittance data. . . . . . . . . . . . . . . . . . . . . . 77

E.1 A transmission line (a) can be analyzed as a cascade of lumped models
(b) each with differential length ∆z. . . . . . . . . . . . . . . . . . . . . 79

E.2 A transmission line terminated with a load impedance. . . . . . . . . . . 80
E.3 The power dissipated to the anchor regions can be modeled as a transmis-

sion line with a characteristic impedance, Z0. . . . . . . . . . . . . . . . . 82

xviii



List of Tables

3.1 The resonant frequency, quality factor, anchor dimensions, and bus bar
width of the devices tested (see figure 2.6). . . . . . . . . . . . . . . . . 25

4.1 The dimensions and results from the ring-down measurement of a single
point on the surface of a 220MHz AlN CMR. The quality factors as found
through LDV measurements were all within 5.25% of the electrically de-
termined Q, with higher Q devices having more better precision. . . . . 47

5.1 The Young’s modulus, density, and resulting acoustic wavelengths at 220MHz
for each of the materials used in the CMRs tested. . . . . . . . . . . . . . 50

6.1 The resonant frequency, Q, anchor dimensions, and the bus bar width of
the devices tested. Two thicknesses of AlN active layers were tested. . . 55

xix



Chapter 1

Introduction

The demand for consumer wireless devices continues to grow exponentially. By the end

of 2015 there were 378 million wireless devices in use in the U.S. alone totaling $192

billion in sales [1]. According to the Cellular Telephone Industries Association (CTIA),

48.3% of U.S. households use mobile phones exclusively for voice calls. In addition, there

will be in excess of 16 billion Wi-Fi enabled devices shipped worldwide by the end of

2016 [2].

With this demand comes an equivalent demand for smaller and more efficient devices.

The unique qualities of MEMS resonators places them in a position to fulfill this demand.

As opposed to traditional crystal resonators, devices such as those described in [3, 4, 5, 6,

7, 8, 9, 10, 11, 12] are CMOS compatible, allowing them to be fabricated onto the same

chip as the associated electronics. This integration allows for a substantial reduction in

size and weight over current resonators.

Figure 1.1 shows a schematic of a typical super-heterodyne transceiver used in RF

communications. Multiple resonators, currently in the form of surface acoustic wave

(SAW) filters and temperature controlled crystal oscillators (TCXO) are used in these

circuits. The TCXO crystal is a discreet component that must be placed onto the chip
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Figure 1.1: A Schematic of a Super Heterodyne Transceiver used in front-end wireless
technology. The SAW filters and TCXO crystal (in red) are external, non-CMOS
compatible components. Image courtesy of Prof. Gianluca Piazza

after fabrication which is costly, time consuming and bulky. The SAW filters are also very

bulky and require specific and carefully controlled device layer thicknesses that make it

impossible to integrate as on-chip devices due to the multiple frequencies necessary for

such a circuit.

Piezoelectric contour-mode resonators (CMRs) have shown great promise due to their

high electro-mechanical coupling coefficients, their ability to reach frequencies in excess of

2 GHz and the ability to set their frequency in CAD, allowing multiple device frequencies

to be fabricated on the same chip [8, 9]. One of the limiting factors for the integration of

CMRs is their relatively low quality factors. Quality factors as high as 4000 have been

reached [13, 14] which is an order of magnitude lower than traditional quartz crystal-

based resonators. This thesis investigates energy loss mechanisms in aluminum nitride

(AlN) CMRs through the use of laser Doppler vibrometery (LDV).
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1.1 Thesis Outline

This thesis can be divided into three parts: background information, an anchor loss

study, and ring-down measurements. Chapter 2 provides background information on res-

onator applications and how resonators work as well as key characterization parameters.

It also provides information on the design and fabrication of the aluminum nitride CMRs

used in this thesis. Finally, it includes energy loss mechanisms present in resonators

including anchor loss, interfacial loss, viscous damping, and thermoelastic dissipation.

Chapter 3 studies the effect of the released substrate regions on Q. When fabricating

aluminum nitride CMRs the isotropic etch step that releases the body of the resonator

from the substrate also releases a large region outside of the support anchors. This allows

both sides of the anchor to undergo motion that results in substantial energy loss into

the substrate region. As will be shown, this can cause a loss in quality factor of up to

31%.

Chapter 4 details a new method for measuring ring-downs using LDV. This method

overcomes the limitations inherent in an ultra high frequency LDV system due to trig-

gering error and a low signal to noise ratio. Effective measurements were taken at initial

displacements as low as 1× 10−12m. The measurements taken with the LDV match the

electrically determined measurements with an error of less than 6%. This method is

applied to 220MHz AlN CMRs but could be extended to higher frequencies and to other

resonant devices.

Chapter 5 describes a method for measuring the multiple wavelengths present on the

surface of a CMR during operation. Because a CMR is composed of multiple material

layers, each with unique acoustic velocities, the mode shape on the surface of the res-

onator is a superposition multiple wavelengths. This mode shape is detectable exclusively

through LDV measurements, which provides the ability to measure the magnitudes of
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each of these wavelengths.

Chapter 6 combines the previous two chapters to measure the ring-down of each

material layer of the CMR. A method is described to measure the ring-down of the mode

shape of the surface of the resonator. By studying how each wavelength decays within

the mode shape during the ring-down, it is possible to determine energy loss values for

each of the materials in the CMR.
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Chapter 2

Background

2.1 What is a resonator?

Within every wireless device, there is an oscillator circuit (figure 2.1). The role of an

oscillator is to produce an oscillating voltage that is then used to send and receive the

electromagnetic signals. Within an oscillator circuit, a key component is the resonator.

This component sets the frequency of oscillation of this circuit. Whether through a

flexural or bulk acoustic mode, the physical vibrations of this component are transduced

into an electric signal which is then amplified and fed back into the resonator for sustained

oscillations. The resonator acts like a very narrow bandpass filter (figure 2.2), allowing

only a very narrow range of frequencies to pass through. In doing so, the oscillator circuit

produces a sinusoidal voltage at a very specific frequency that is set by the resonator. The

term oscillator and resonator are often used interchangeably but for the purposes of this

thesis an oscillator is a complete system including the resonator and the feedback circuit

whereas the resonator is just the vibrating piezoelectric device that sets the frequency of

oscillation.

As described in the introduction, resonators also serve in filter banks in radio front-
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Figure 2.1: A schematic of a simple oscillator circuit. The resonator serves to set the
operating frequency.

ends. After the wireless signal is received by the antenna, the resonator suppresses all

undesired frequencies. The narrow bandwidth of the resonator is necessary to keep neigh-

boring frequencies from being received and causing interference. To this end, a resonator

with a higher quality factor will result in a wireless device with higher performance.

2.1.1 Characterization of Resonators

A key figure of merit for resonator performance is the quality factor, Q. This is an

inverse measure of the energy dissipation per cycle of the resonator

Q = 2π
Est
Edis

(2.1)

where Est is the energy stored in the resonator and Edis is the energy that is dissipated by

the resonator per cycle. High quality factors are important in resonator design in order

to minimize oscillator phase noise and power consumption [15]. Appendix C provides
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Figure 2.2: Two examples of typical frequency responses of a resonant device. A
resonator is effectively a very narrow bandpass filter. The quality factor, Q, of the
resonator defines the efficiency of the device as well as the its bandwidth. The low Q
device has a wider bandwidth than the high Q device.

detail phase noise and the effects of Q. Sections 2.4-2.7 will elaborate on sources of

Q degradation. High quality commercial quartz resonators can reach quality factors as

high as 3 million. The typical method for determining Q is through analysis of electrical

admittance data on a vector network analyzer which is described in Appendix D. Quality

factor also provides a figure of merit for the frequency selectivity of the resonator. As

shown in figure 2.2, a device with a higher Q has a bandwidth that is narrower than a

low Q device.

Another measure for the performance of a resonator is its electro-mechanical coupling

coefficient, K2
t . This parameter defines the devices efficiency in transducing an electrical

signal into mechanical motion [16]

K2
t =

Emech
Etotal

× 100% =
1

1 + Eelec
Emech

× 100% (2.2)

where Emech is the mechanical energy stored in the device, Eelec is the electrical energy
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stored in the device and Etotal = Emech+Eelec. The value for K2
t is the percentage of total

energy in the device that has been converted to mechanical energy. Typical values for K2
t

range from 0.3-6% for contour-mode resonators [17] to 17% for electro-statically driven

flexural resonators. This measurement can also be determined by analyzing admittance

data as described in Appendix D.

2.2 AlN CMR Design and Fabrication

The resonators studied in this thesis are aluminum nitride (AlN) based contour-mode

resonators (CMR) [18],[9],[19]. They are piezoelectric devices consisting of an AlN device

layer sandwiched on the top and bottom by two metal electrode layers (figure 2.3). The

top electrode layer consists of interdigitated electrodes and the bottom metal layer is

a solid, floating electrode used to contain the electromagnetic field. By applying an

AC voltage to the electrodes at the device’s resonant frequency, in-plane Lamb waves

develop as a result of the strain induced by the d31 piezo-electric coefficient in the AlN.

The operating frequency is set by [9]

f0 =
1

2W

√
Eeq
ρeq

(2.3)

whereW is the electrode spacing, and Eeq and ρeq are the equivalent Young’s modulus and

density, respectively, of the combined three layers. The equivalent Young’s modulus is a

result of the combined contribution of each layer’s stiffness proportional to its thickness,

Eeq =

∑n
i=1Eili∑n
i=1 li

(2.4)
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where E is the Young’s modulus of each material and l is the thickness of the material.

The equivalent density, ρeq can be found in a similar manner.

ρeq =

∑n
i=1 ρili∑n
i=1 li

(2.5)

Because the frequency of a CMR is set by the electrode spacing and not the thickness

..

Figure 2.3: A schematic of the aluminum nitride piezo-electric resonators. The fre-
quency is set by the spacing of the electrodes.

of the piezo-electric layer, as in film bulk acoustic resonators (FBARs) [20], multiple

resonators with different frequencies can be lithographically patterned onto the same

substrate allowing greater design flexibility. The fabrication process is also CMOS com-

patible allowing the resonator to be manufactured directly on-chip.

The fabrication sequence is shown in figure 2.4. A 10nm layer of titanium was de-

posited onto a silicon substrate to provide effective adhesion for the next layer, 100nm of

platinum to form the bottom electrode (a). Two different aluminum nitride thicknesses

were deposited for this thesis. Devices with a 1µm AlN layer were used as well as devices

with a 1.5µm AlN thick layer. The aluminum nitride layer was sputtered on using an

aluminum target in the presence of a N2/Ar atmosphere (b). Careful control over the

chamber pressure as well as the voltage of the RF power must be maintained to ensure

low residual stress and high c-axis orientation [21, 22]. A 100nm of metal was then pat-

terned to form the top electrode layer (c). A Cl2-based dry etch was used to form the

device shape by etching the aluminum nitride (d). The final step used an isotropic XeF2
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dry etch to release the device from the substrate (e). Figure 2.5 shows a microscope

..

Figure 2.4: The fabrication sequence for the AlN contour-mode resonators. A 10nm
layer of Ti is deposited onto an Si substrate followed by 100nm of Pt (a). AlN is then
sputtered on (b) followed by 100nm of Al (C). The AlN layer is patterned using a Cl2
dry etch (d). The last step uses XeF2 to etch the Si and release the device from the
substrate (e).
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image of a 220MHz CMR. The area extending from the tip of the center electrode on the

right to the tips of the outer electrodes on the left defines the active region of the device

where the acoustic energy is generated and transduced. The bus bars in the inactive

region are necessary to distribute the electrical current to the electrodes and the anchors

suspend the body of the resonator above the substrate.

Figure 2.5 also shows an undesired side effect of the isotropic XeF2 etch process. The

purpose of this etch is to release the body and anchors of the resonator from the substrate

but it also undercuts the region of the device layer outside of the anchors. This can be

seen as a dark brown area in the figure. Because it is released from the substrate, this

region is capable of motion as a result of the acoustic energy transmitted through the

anchors from the active region. If this is not properly designed, energy can be lost to the

substrate and result in a lower Q. This is the subject of Chapter 3.

For this study, two different aluminum nitride thicknesses were used; 1µm and 1.5

µm. A study was conducted [22] using a 5.9µm thick AlN layer at 720 and 800MHz.

Using somewhat different electrode configurations, the devices in the study were called

Two-Dimensional-mode Resonators that coupled in and out-of-plane modes to enhance

K2
t values up to 3.4%. Because this design couples the in-plane and-out-of-plane modes,

the thickness of the AlN layer must change depending on the desired operating frequency.

This limits the number of different resonator frequencies that can be fabricated on a single

chip and therefore reduces its utility in future commercial designs.
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Figure 2.5: A microscope image of a 220MHz CMR. The area covered by the electrodes
defines the active region of the device where the acoustic energy is transduced. The
inactive region is necessary for power distribution and physical support.

2.3 Energy Loss Mechanisms in CMRs

The overall energy loss per cycle in a resonator is the result of many difference mech-

anisms. Each of these can have an associated quality factor that sum as

1

Qtotal

=
1

Qanchor

+
1

Qinterfacial

+
1

QTED

+
1

Qviscous

+ ... (2.6)

The most common and dominate energy loss mechanisms for contour-mode resonators

are given below. This thesis focuses on anchor losses and interfacial losses.

2.4 Anchor Loss

Anchor loss is the result of the scattering of acoustic waves originating in the body

of the resonator into the substrate [23]. In [19] it was shown that, at frequencies below

370MHz, anchor loss has a greater effect on Q than interfacial losses or any other mech-

anism. The study tested devices operating at 220MHz, 370MHz, and 1.05GHz. Through
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experimental measurements it was shown that the length, La (figure 2.6), of the support

anchors could produce up to a five-fold increase in Q for the two lower frequencies. It

was found that Q would reach a maximum when La = λ/2, where λ is the wavelength

of the primary mode at resonance. When La = λ the quality factor reached a minimum.

This study found no relationship between the width, Wa, and Q and La had a negligible

effect on the 1.05MHz devices. This paper did not provide any analysis on the cause of

this variation in Q but this effect is similar to what is found in Chapter 3 and analysis

will be provided then. In addition, this paper makes the assumption that all energy that

is transmitted into the anchors is lost to the substrate. This thesis will show that is not

the case.

..

Figure 2.6: The length, La, of the anchors of CMRs below 220MHz has a significant
impact on performance. It was shown that Q could have a five-fold variation due
to anchor length. No correlation between the width, Wa, of the anchors and Q was
found.

Much effort has been made to model anchor loss, [24, 25, 26]. These techniques

often employ perfectly matched layers (PMLs) [27, 28, 29]. In finite element analysis,

a PML is a finite domain attached to the outer boundary of the finite element model

to simulate an infinite domain. This is done because the actual MEMS resonator is
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several orders of magnitude smaller than the substrate that it is mounted to. It has been

assumed that the energy that propagates through the anchors and into the substrate

would travel outward with no reflections. This would result in a complete loss of any

energy that escapes through the anchors. The PML simulates this effect by matching

its mechanical impedance to the device impedance at the boundary. This eliminates any

reflection at the interface between the PML and the device. The acoustic wave energy

is then exponentially damped out within the PML to eliminate reflections at its outer

edges. The simulation can then act like a resonator attached to an infinite substrate. As

we will see in chapter 3, this does not perfectly define a real MEMS resonator due to

the fact that there is some reflection at the interface between the device layer and the

substrate and it is therefore possible to have a portion of the escaping energy return to

the resonator.

In addition, [30] studied the anchor losses associated with 65MHz AlN CMRs and

offered two approaches for predicting energy losses. The first method is analytical in

nature and models the resonator with a one-dimensional wave equation. They assume

that the anchors are ”quasi-static” meaning that both end conditions are not fixed but

the outer edge is more heavily constrained by the substrate. For a given anchor width,

wa, and body length, L, they estimate Qanc, the quality factor associated with anchor

loss only to be

Qanc =
2π(1− ν2)2L

ν2(Wa + λ
2π
sin
(
2πWa

λ

)
)

(2.7)

where ν is the Poisson ratio of aluminum nitride and λ is the acoustic wavelength of

the aluminum nitride layer at resonance. The accuracy of this method at predicting Q

is mixed. Of the devices tested, 60% had a predicted Q that fell within two standard

deviations of the electrically measured Q. The publication is frank in explaining that this

method can serve as a qualitative method for estimating quality factor to help designers
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choose device dimensions. The second method for predicting quality factor is numerical

in nature and serves to replace the finite element modeling technique of using PMLs in

modeling a semi-infinite substrate. It employed a fixed constraint at the edge of the

released region and gave results that were considerably more accurate than the first

method.

2.5 Interfacial Loss

There are two competing theories on the mechanisms behind interfacial losses. Ac-

cording to [31], this loss mechanism is the result of a stress jump that occurs at the

interface of two materials with differing Young’s moduli as they undergo strain. For the

resonators used in this thesis, this occurs at the interface between the aluminum nitride

device layer and the upper and lower metal layers. Aluminum nitride and Aluminum for

instance, have significantly different Young’s moduli, 308GPa and 69GPa respectively.

During operation, as the resonator undergoes elastic deformation, the amount of strain

is constant across the interface and therefore there is a jump in the stress value. This

stress jump will cause an interfacial slip to occur without breaking the bonds that join

the material layers together. This interfacial slip produces unrecoverable thermal energy

resulting in energy loss.

The competing theory for interfacial losses follows from the idea of an effective strain

jump across the interface as described in [32]. Specifically, there is a jump in acoustic

velocity at the interface due to the mismatch in Young’s modulus and density between

the two materials. This mismatch results in an in-plane strain at the interface which

causes energy dissipation due to changes in the crystalline structure. This latter method

was validated experimentally using 1GHz aluminum nitride CMRs similar to those used

in this thesis.
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2.6 Viscous/Air Damping

There are three different mechanisms by which energy is dissipated into the fluid

environment surrounding the resonator: acoustic, squeeze-film and viscous damping [33].

When large plate structures are moving normal to their face, acoustic damping dominates.

The loss is proportional to the gas pressure. Because the primary mode is in-plane for

CMRs, the out-of plane motion is very small and this form of loss is negligible.

Squeeze film damping occurs when two plates move toward each other and, as the

name implies, the fluid between the two plates is squeezed out of the way which results in

energy loss of the device. This occurs in flexural structures where large in-plane motion

occurs or within an inter-digitated comb drive array. Again, because of the nature of the

CMR motion this loss mechanism is also negligible. There is a small possibility for this

to occur between the ends of the resonator and the substrate but, because the device is

less than 2µm thick, the gap is at least 6µm wide, and the in-plane motion is less than

1nm, the result would be orders of magnitude less than other dominant loss mechanisms.

Viscous damping is the result of the solid surface of the reosnator sliding through the

viscous atmosphere. This would be the most dominant form of environment/fluid loss in

CMRs due to the large plate moving in-plane in atmosphere. Considering this, viscous

damping is still not a major source of energy loss due to the fact that there is very little

displacement especially at higher frequencies. Experiments have shown [9, 34] that for

lateral field excited resonators, the impact on quality factor due to viscous damping is

less than 10% at lower frequencies and drops to almost 0% at 1GHz. In fact, [34, 35]

show that viscous damping is inversely proportional to the square root of the resonant

frequency of the device.
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2.7 Thermoelastic Dissipation.

Thermoelastic dissipation (TED) is a process by which energy is lost due thermal

gradients brought on by a strain gradient [9, 36, 37]. Elastic strain produces heat. If a

strain gradient exists then there will be a thermal gradient and heat flow will result. This

heat flux is not recoverable and is therefore an energy loss mechanism. It has been shown

in [36, 38, 39] that CMRs suffer from very little thermoelastic damping due to the fact

that there is very little displacement and very little resulting strain gradients. At 1GHz,

Q would be limited to 32000 which is an order of magnitude higher than experimental

measurements.
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Minimizing Anchor Loss

3.1 Background

In an effort to maximize the device Q extensive research has gone into the geometry

of contour-mode resonators (CMRs). In [19], it was shown through experimental and

simulation studies that the dominant source of energy loss in contour-mode resonators

below 400MHz was due to anchor losses. Three device frequencies were tested: 220MHz,

370MHz, and 1.05GHz. For each frequency, multiple anchor dimensions were tested. For

the two lower frequencies, the quality factor improved when the width of the anchors

approached 1
2
λ, where λ is the acoustic wavelength of aluminum nitride. The quality

factor decreased when the width of the anchor approached λ. This trend was not evident

in the 1.05GHz devices. For the high frequency devices, there was also no trend with

regards to the length of the anchors and at higher frequencies, interfacial dissipation

becomes more dominant as shown in [32].

The dimensions of the bus bars has also been studied as a source of Q degradation in

CMRs. Because the bus bars (see figure 3.5) are outside of the active region, they do not

aid in the transduction of mechanical and electrical energy but they can serve to enhance
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the performance of the active region. In [18] the widths of the bus bars are varied in a

group of 207MHz CMRs. When all other device dimensions were held constant, a 40%

increase in Q was found when the bus bar width was optimized. The paper provides

no analytical insight into why the bus bar width effects Q except to explain that, by

varying this dimension, the ”equivalent acoustic boundary condition” (the edge of the

active region) is being transformed. Section 3.5 of this thesis provides analysis on a

phenomenon that is very similar to the results of [18] and can support this theory.

In [40] the shape of the electrodes are tailored to minimize spurious modes. Called

apodization, the lengths of the electrodes are contoured to minimize the excitation of

other, unwanted modes in the body of the CMR. While this techniques does not increase

Q, the elimination of spurious modes may help in reducing phase noise.

Figure 3.1: An SEM image of the anchor region of a 220MHz AlN CMR. Typical
studies assume that the outer edge of the anchor (right side in this image) are fixed
to the substrate and do not undergo displacement.

Yet to be considered is how the quality factor is affected by the propagation of acous-

tic waves into the substrate region beyond the anchor attachment points. When modeling
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resonators, it is often assumed that the outer end of the anchor is fixed with respect to

the substrate (figure 3.1). This simplifies analysis but is not completely accurate due

to the fact that an isotropic etch process is often used to release the device from the

substrate [41]. This etch also releases the device layers outside of the anchor region from

the substrate (figure 3.2) making the resonator more compliant than a traditional model

would indicate. Through laser Doppler vibrometer (LDV) measurements it was deter-

mined that the outer end of the anchor in a 220MHz resonator can move as much as 60pm

in the out-of-plane direction which is approximately 20% of the maximum magnitude of

motion seen in the body of the resonator. This motion results in strain energy that can

be lost to thermoelastic dissipation resulting in a degradation of Q.

Figure 3.2: The isotropic etch that is used to release the device from the substrate also
undercuts the region outside of the device anchors. This results in excessive motion
that can effect the quality factor by as much as 31%.

To determine the effects of this substrate motion, the out-of-plane displacement of

multiple 220MHz aluminum nitride (AlN) CMRs were measured using an LDV along a

path shown in figure 3.3. Electrical measurements were also taken to monitor Q and the

fundamental contour-mode resonant frequency, f0. The device then underwent a XeF2

etch to release additional device layer area. The measurements were then taken again.

This sequence was repeated nine times. We show that there is a variation in Q of up to

31% due to the motion of the released region and that this variation occurs as a function

of L, the distance from the active region of the device to the edge of the released region

of the device layer (figure 3.3). This effect is explained through the use of transmission

line theory and also by the appearance of standing waves in the released region.
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To further validate this theory, a design change was made to the device layers in the

released region, converting the outer boundary condition from a fixed to a free condition.

In doing so, the quality factor of the device switched from a minimum to a maximum.

Figure 3.3: A schematic of the measurement path of a heterodyne laser Doppler
vibrometer. Also shown is the released region of the device layer that is outside of the
anchors (dark area). This is due to the isotropic XeF2 etch that is used to release the
body of the device from the substrate.

3.2 Alumnium Nitride CMRs

The devices used for this study are AlN-based CMRs [18]. These are piezoelectrically

actuated devices composed of a 1µm AlN layer sandwiched between upper and lower

100nm metal layers (figure 3.4). The upper layer is patterned to provide interdigitated

drive and sense electrodes that govern the contour-mode resonant frequency. The bottom

electrode layer covers the entire device in order to contain the electric field. The body

of the resonator measures 140µm long and 57µm wide. The resonant frequency, f0 is set
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by the electrode spacing and is governed by [9]

f0 =
1

2W

√
Eeq
ρeq

(3.1)

where W is the electrode spacing (figure 3.4) and Eeq and ρeq are the Young’s modulus

and density respectively of all three layers combined. By applying an sinusoidal voltage

to the electrodes at the device’s resonant frequency, in-plane Lamb waves are induced

as a result of the strain produced by the d31 Piezoelectric coefficient of the aluminum

nitride.

Figure 3.4: The devices are composed of a 1µm aluminum nitride layer sandwiched
between a 100nm upper and lower layer of aluminum and platinum respectively. The
operating frequency of the resonators is set by the electrode spacing, W . When driven
at this frequency, in-plane Lamb waves are created as a result of the d31 Piezoelectric
coefficient of the AlN.

The devices are fabricated by first applying a 10nm layer of titanium to provide

adhesion between the silicon handle wafer and the 100nm aluminum layer that is de-

posited next to serve as the bottom electrode. A 1µm device layer is then sputtered and

subsequently followed by the top 100nm, patterned electrode layer of platinum that is

evaporated on. A CL2-based dry etch is used to pattern the AlN layer. The final step

is an isotropic XeF2 etch to release the device from the substrate. It is this final etch

step that also releases the region outside of the anchors. During fabrication, often the

priority is to insure a complete release of the device without concern for the effect of this
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released substrate region. This study shows that it can have a profound effect on device

performance.

Acoustic energy is produced in the active region of the resonator which includes

the area between the tips of the electrodes (figure 3.5). Energy contained within the

active region can be used for transduction whereas energy that escapes into the adjacent

inactive regions, which includes the bus bars, anchors and released regions, results in a

degradation of the quality factor unless it can be reflected and returned to the active

region.

Figure 3.5: The acoustic energy used for transduction is produced within the active
region of the resonator. Energy is dissipated into the inactive regions where it could
potentially be reflected and returned to the active region or it could be dissipated into
the substrate where it contributes to a loss in quality factor.

3.3 Experimental Measurements

In a contour-mode resonator the primary motion is in-plane which cannot be directly

measured using LDV. There is, however, measurable out-of-plane motion due both to the

Poisson effect and the Piezoelectric effect. To this end, using COMSOL, a finite element

model was built which included perfectly matched layers (PMLs) [42, 28] to simulate the
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devices. The FEA model was validated by matching its out-of-plane motion with that

of the LDV measurements. This is discussed in section 3.4. The energy flux through the

resonator anchors produced by FEA could then be compared to the released substrate

length, L.

Admittance data was collected using a Rhode&Schwarz ZVL vector network analyzer

(VNA). The device was probed using an Infinity probe from Cascade Microtech (model

I40-A-GSG-150)and the VNA was calibrated using a Cascade Microtech impedance stan-

dard (part# 101-190). From the electrical data f0 and Q were extracted. Appendix D

describes how these values are found from the admittance data.

The out-of-plane displacement measurements were taken using a Polytec UHF120

LDV. A 50X objective was used to produce a spot size of approximately 2µm. The

device was driven using a Rhode&Schwarz SMBV100A function generator (FGN). The

device was probed in the same setup as the electrical measurements. It was scanned

with the LDV along the path shown in figure 3.3 with a spatial resolution of 720nm

±80nm. This allowed us to look at the displacements of the body of the resonator, both

anchors and the released area outside of the anchors. The device was driven at -6dBm

and at its resonant frequency determined by the electrical measurements. This power

level was chosen to prevent the resonator from operating in a nonlinear regime while

still inducing enough out-of-plane motion to be detectable with the LDV. Displacement

data was collected with an out-of-plane resolution of 1.2pm and with a noise floor of

4pm. Displacement magnitude values were extracted from a fast Fourier transform of

the original LDV time trace with a resolution bandwidth of 19.5kHz.

Table 6.1 shows the details for the three resonators that were tested for this study.

They operate in the 220MHz range with similar electrode configurations but each have

different anchor dimensions and their initial quality factors vary from 1176 to 2588.
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Table 3.1: The resonant frequency, quality factor, anchor dimensions, and bus bar
width of the devices tested (see figure 2.6).

Device
#

f0 [MHz] Initial Q Anchor
Length
[µm]

Anchor
Width
[µm]

Bus bar
Width
[µm]

1 218.39 1866 7.5 8 6.59

2 220.58 2588 21 15 7.33

3 220.75 1176 11 15 6.96

3.4 Finite Element Modeling

In order to verify that the motion measured in the released region is proportional to

the energy loss through the anchors, a COMSOL Multiphysics model of the resonator

body, anchors, and surrounding substrate was made. The geometry of the model was

taken from device #1, and PMLs were used to model the semi-infinite substrate [42, 28,

43]. The PMLs were used at the edges of the silicon and aluminum nitride layers and

on the upper electrode layer near the region of interest (shown in black in Figure 3.6).

The PMLs were placed 300µm from the outer edge of the anchor in the direction of the

scan path. This distance is far enough from the edge of the released substrate region so

that any reflections at this interface could be taken into account in the simulations. The

simulated magnitude and wavelength of the out-of-plane displacement were compared

to that of the LDV measurements in the inactive region of one side of the resonator to

validate the model. The model was then simulated for each release distance, L, from the

experimental procedure and the energy flux through the outer cross-section of the anchor

(Figure 3.6) for each release distance was calculated. The results of the simulations and

experiments are given below.
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PML
regions

Cross section
for energy flux 

Figure 3.6: COMSOL FEA was used to compute the energy flux through this cross
section in the anchors over one cycle. Perfectly matched layers (shown in black) were
used to simulate a semi-infinite substrate. The simulation was validated by matching
the out-of-plane motion to the LDV experiments.

3.5 Analysis and Results

Figure 3.7 shows the LDV measurements and COMSOL simulation of the displace-

ment of the substrate region for one side of the device before any additional etching.

This quality of fit for the displacement and wavelength of the simulation to the LDV

data validated the COMSOL model.

To provide a figure of merit that is proportional to strain energy, the measured dis-

placement is squared and then the area under this curve is integrated to provide a single

value that is proportional to the energy being transmitted into the inactive region,

FoM =

∫ L

0

D(x)2dx (3.2)

where D(x) is the magnitude of the displacement at a point x along the LDV scan path.

This is done for each etch step and is plotted in figure 3.8 for all three devices as a

function of L normalized to the wavelength, λ = 48.08µm. This value for λ was found

by performing a spatial FFT on the displacement curve of device #1. This method

is explained in detail in Chapter 5. This allowed us to determine the actual acoustic
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Figure 3.7: The experimental and COMSOL simulated displacement of the released
region of device #1. The exceptional match of the simulated and LDV data validated
the COMSOL model, allowing the energy flux through the anchors to be evaluated.

wavelength of the sputtered aluminum nitride in the tested devices. Because of variations

in the sputtering process, the density and elastic modulus can change from batch to batch

which will alter the acoustic velocity and the wavelength.

A portion of the acoustic wave energy generated within the active region of the

resonator propagates outward into the bus bar and anchor regions. The portion that

passes through the anchor then travels into the released portion of the substrate. These

elastic waves reflect off of the outer edge of the released region and a portion can return to

the active region of the resonator. This effect can be analyzed using electrical transmission

line theory [44, 45].

Figure 3.9 shows the transmission line model as it is applied to the resonator. The

active region is represented as an AC voltage source with some characteristic impedance,

Z0. The inactive region can be modeled as a transmission line with its own impedance.

The outer edge of the released region is fixed to the substrate and therefore the bulk of

the acoustic energy is reflected. This condition, in electrical terms, can be treated as an
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Figure 3.8: The magnitude of the displacement of the released region was squared
and the area under the curve was integrated to provide a figure of merit proportional
to strain energy. this figure of merit follows an abs(sin) pattern as explained below.

open circuit. Due to this open circuit condition, the impedance of this transmission line

as seen by the active region is

Zout =
−jZ0

tan(kL)
(3.3)

where k is the wave number associated with the resonant frequency and L is the length

of the inactive region. Appendix E goes into detail about transmission line theory and

of the derivation of this equation. Since the device has the same composition throughout

the active and inactive regions, the impedance, Z0 of each section is identical for the

purposes of this study. It can therefore be shown that the traditional power equation,

Pesc = I · V ∗, showing the loss of energy to the inactive region of the device becomes

Pesc = abs

(
V 2 sin(2kL)

4Z0

)
(3.4)

Equation 3.4 shows that the minimum energy is transmitted from the active to the inac-

tive regions when L = nλ/4 where n = 1, 2, 3... is the number of wavelengths contained
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Figure 3.9: Using transmission line theory to describe the energy flux through the an-
chors, the active region is modeled as a voltage source with a characteristic impedance
and the inactive region is modeled as a transmission line. Because the outer edge of
the released region is fixed to the substrate, it can be treated as an open circuit. Under
this condition, all of the acoustic energy is reflected.
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within the inactive region. Under this condition, the current and voltage are in quadra-

ture, meaning that they are π
2

radians out of phase with each other. When L = 2nλ/4

the inactive region acts as a 1
2
λ transformer and places a virtual fixed boundary at the

edge of the active region (figure 3.10). The electrical equivalent is that the current flow,

I = 0, and the power transmitted to the end of the transmission line is zero. When

L = (2n − 1)λ/4 the inactive region acts as a 1
4
λ transformer by placing a stress-free

boundary at the edge of the active region. In this case, the electrical equivalent is that

the voltage, V = 0, and the power transmitted to the end of the transmission line is

zero. Either of these conditions confines the maximum amount of acoustic energy into

the active region and minimizes the energy lost to the anchor/substrate region. This is

evidenced by the minima in figure 3.8.

The figure of merit for the inactive region of the simulation also follows the same

abs(sin) trend as the experimental measurements (figure 3.11). From the simulation, the

energy flux through the anchors was measured and plotted in figure 3.12. It follows an

identical trend to the figure of merit of the displacement of the inactive region, validating

the theory that anchor motion is proportional to energy loss through the anchors.

The figure of merit was found for the active region and the ratio of active to inactive

regions is plotted in figure 3.13. As expected, there is an inverse relationship between

figure 3.8 and figure 3.13. When there is a minimum in the motion of the inactive

region, there is a peak in the active/inactive ratio. Because the voltage produced by

a piezoelectric device is proportional to strain this ratio is proportional to the quality

factor. A similar equation from [44] was modified to account for the released area:

Q̃ =
Qideal

1 + 2α
(

2abs(sin(2kL))
4Z0

) (3.5)

where Qideal is the ideal Q with no anchor loss, and α is proportional to the amount
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Figure 3.10: When the length, L of the inactive region is equal to an integer multiple
of λ/4 it acts as a either a 1/4λ or 1/2λ transformer. This constrains the maximum
amount of energy within the active region of the resonator and therefore maximizes
Q.
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Figure 3.11: The figure of merit for the displacement of the inactive regions of the
COMSOL Simulations at each etch step and the analytical fit as a function of the
wavelength, λ, from the active region. Maximum displacement occurs every 12.02µm,
which corresponds to nλ/4. The simulation data follows the same trend as the LDV
measurements.

of energy lost to the anchor from the active region of the resonator. An identical λ/4

variation can be seen for Q with peaks at nλ/4 (figure 3.14). The quality factor varies

by as much as 31 % for device #1. Each of the devices tested had different baseline Q

values because each had different anchor lengths and bus bar widths. Because of these

dimensions, they each had different levels of energy that is dissipated to the released

region.

3.5.1 Released Region Modification

To further validate the theory that some of the escaping energy through the anchors

is recoverable, a slot was cut through all three layers of device #3 in the released region

(figure 3.15). It was placed at a distance of L ≈ 1.625λ from the edge of the active region.

Before this modification, when L = 1.625λ, the quality factor was 2475, which represents

a minimum value. Placing a slot at this point converts the boundary condition from a
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Figure 3.12: The simulated energy flux through the anchors of the resonator over a
complete cycle. A minima occurs every nλ/4. This occurs as a result of the inactive
region acting as a 1/4λ or 1/2λ transformer and placing a stress free or a virtual
fixed-boundary condition at the edge of the active region. This serves to contain the
acoustic energy within the active region of the resonator, improving Q.

Figure 3.13: A figure of merit identical to that used for the inactive region was used
for the active region and the ratio of these two is shown as a function of λ. The
resulting value is proportional to Q and follows the same trend (solid lines). When
there is a minimum in anchor displacement, there is a peak in this ratio.
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Figure 3.14: The quality factor at each etch step. Q varies by as much as 31% as the
etch distance is varied. The maxima at nλ/4 correspond to points of minimum energy
loss through the anchors. The solid lines are curve fitting of the abs(sin) function.

fixed to a stress-free edge. The outer edge of the released region is therefore converted

from a node to an anti-node. In transmission line theory, this would result in the end

condition becoming an ideal terminated end rather than an open circuit. The quality

factor at (L = nλ/4 + λ/8) reached a maximum value of 3048 as opposed to a minimum

value of approximately 2475. In fact, this Q is highest value obtained for this device.

A second slot was cut at L ≈ 1.375λ with similar results. A Q of 2940 was obtained.

Without the slot, the Q was 2575 at this value for L. Similar to [45], with these slots

through the device layer, the release distance will no longer effect the performance of the

device. The boundary for wave reflection is now set by the slot and not the edge of the

released region.

34



Minimizing Anchor Loss Chapter 3

Figure 3.15: Using a FIB, a slot was cut through the device layers of the released
region (1µm x25 µm). This converted the end condition from a node to an anti-node.
The result is that, at (nλ/4 + λ/8), Q reaches a maxima.

Figure 3.16: Due to the fact that the end condition of the released region has been
converted from a fixed to a stress-free condition, the previous minimum Q points at
1.375λ and 1.625λ become maximum Q points. In fact, the highest Q for this device
(#3) was obtained with the stress-free end condition.
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3.6 Conclusion

As we have seen the isotropic XeF2 etch step releases not only the device, but the

device layers outside of the anchor region. The quality factor of the device can be very

sensitive to this etch distance. In some cases a variation of length, L, by 1µm can result

in a degradation in Q by 11%. During a commercial fabrication process this etch step

could be difficult to control with the precision necessary to minimize energy losses. As

a result, an effective alternative would be to incorporate slots into the released region

rather than trying to control the etch rate of the XeF2 . Doing so could produce a gain

of up to 31% versus allowing the release etch to go uncontrolled. This could also be

necessary if multiple resonators of differing frequencies are placed on the same die.

3.7 Future Work

Additional studies could be performed on resonators at both higher and lower fre-

quencies. As operational frequencies increase, the wavelengths decrease. As a result,

very small changes in the released distances can have potentially very large effects on

Q. It is believed that at higher frequencies, anchors losses have a much smaller effect on

Q and carrying out a study similar to this one could help confirm that. Conversely, a

similar study on low frequency devices could highlight the need for careful design of the

anchors and anchor regions. It would also be interesting to optimize the design of both

the bus bar and the anchor dimensions and then perform this study again to see what

effect, if any, the released region has on a device with already minimized anchor losses.

It is possible that, at some point, the amount of energy that escapes through the anchors

is so low that it is not possible to recover any of it. It may also be possible that these

slots should become a feature of all future designs to capture any additional energy that
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escapes through an otherwise optimized design.

Another line of study would be to experiment with methods to fabricate the wave

reflectors and properly incorporate them into the initial designs of the devices. The

placement could be much more carefully controlled during initial fabrication as opposed

to using a FIB to cut them. Alternatively, a new fabrication process could be developed

to eliminate this undercutting process completely. If the devices could be fabricated

so that the outer edge of the anchor was actually fixed to the substrate, modeling the

devices could prove to be much more accurate than in the past.
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Chapter 4

A New Method for Single Point

Ring-Down Measurements

4.1 Introduction

A common characterization of resonant structures involves performing a ring-down

measurement. This measurement provides information about the device’s quality factor

as well as non-linear characteristics that may be present. Due to a very low signal

to noise ratio and trigger inaccuracy, the process of measuring ring-downs at ultra high

frequencies is not possible with the traditional ring-down methods. This chapter describes

a new method for performing ring-downs on ultra high frequency resonant structures

with very low displacements using laser Doppler Vibrometry (LDV). The measurements

performed on the devices in this study produced quality factors that were all within 6%

of the electrically determined values for Q. The devices tested were 220MHz alumnium

nitride (AlN) contour-mode resonators (CMRs) but this technique could be extended to

both lower and higher frequencies (potentially up to the 1.2GHz limit of the UHF-120

vibrometer) and to other bulk mode and flexural mode structures.
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Figure 4.1: An example of the exponential decay profile of a traditional, linear resonant
device. The rate of decay is defined by a ring-down time constant, τ .

4.2 Theory

Traditional ring-down measurements are performed by applying a step function to

the DUT and then measuring its response to this input [46, 47]. The harmonic motion

of a linear resonant device will decay exponentially over time, t, to zero following the

equation

x(t) = A0 exp(
−t
τ

)sin(ω0t) (4.1)

where ω0 is the resonant frequency of the device, A0 is the initial magnitude, and τ is the

ring-down time constant. Figure 4.1 shows an example of this decay. The rate at which

this motion decays is defined τ . A larger value for τ will result in a longer ring-down

time. The quality factor of a resonantor is directly related to τ
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Q = πf0τ (4.2)

where f0 is the resonant frequency.

To capture the complete ring-down event, the LDV measurement must be started

before the drive signal has been switched off and it must continue until the motion of

the resonator has decayed to zero. To ensure that the complete ring-down is captured

by the vibrometer, the timing between the cut off of the applied signal and the start of

the measurement must be carefully timed.

During steady-state operation, the surface of the CMRs tested in this study had a

maximum out-of-plane displacement of between 100 and 400pm. At this amplitude, the

vibrometer output signal is dominated by noise. This noise comes from various sources

including thermal noise in the resonator and inherent measurement noise in the LDV.

Figure 4.2 shows a comparison between an ideal, simulated ring-down time trace and

an actual ring-down measurement taken from a 220MHz CMR by the Polytec UHF-120

LDV. Figure 4.3 shows the device used for this measurement. A detailed description

of the device is given in chapter 2.2. The measurement was taken at the center of the

device. It is evident that the ring-down signal is completely buried in noise.

In order to reduce this noise, it is necessary to take multiple measurements and average

them together. The Polytec VibSoft software used to control the UHF-120 vibrometer

has the ability to do this automatically for up to 10,000 cycles. Unfortunately this system

has an inherent trigger error of ±4ns. This error is negligible at lower frequencies but at

220MHz the period of a single wavelength is 4.55ns and as a result, repeated averaging will

eliminate the desired ring-down signal along with the noise. Figure 4.4 shows a simulation

of this effect. The original, 220MHz simulated signal (blue trace) was averaged only ten

times with a timing error of ±4ns which resulted in a ten fold decreasing in signal

amplitude (red trace). To suppress this inherent random noise Polytec recommends
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Figure 4.2: A comparison between an ideal ring-down profile and the actual LDV
measurement of the ring-down of the 220MHz resonator. The signal is dominated by
noise due to the small displacement. No averaging was applied to this time signal.

averaging up to 10,000 times. At this frequency and amplitude, it is not possible to make

use of time domain data to measure a ring-down.

Figure 4.3: An example of the 220MHz AlN CMR used for single point measure-
ments. These measurements were taken at the center of the device (red dot). Initial
displacements ranged from 125pm to 225pm.

The solution is to make these measurements in the frequency domain as opposed to

the time domain. In frequency domain measurements, the LDV takes a discrete time

sample and performs a fast Fourier transform (FFT) to extract the magnitude and phase
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Figure 4.4: A simulation of the reduction in signal amplitude due to averaging ten
times when a trigger error of ±40ns exists. To suppress the noise, Polytec recommends
averaging up to 10,000 times.

information of the various frequency components in the time sample. The magnitude

and phase data is then averaged over successive measurements in order to suppress the

noise. The two methods for averaging that are most commonly used in vibrometry

measurements are magnitude and complex averaging. Appendix A.2 gives detail on these

two methods and for these measurements, complex averaging is the preferred method

because it is much more effective at suppressing noise due to Brownian motion and other

incoherent noise. In the frequency domain the trigger error becomes negligible because

the ±4ns error is three orders of magnitude smaller than the 3.2µs sample time used for

the FFT measurements.

To measure the decaying amplitude of a ring-down profile, short time samples are

taken of only a portion of the transient event. The timing between when the measurement

starts and when the drive signal is cut off is progressively delayed so that short samples

are taken along multiple time points of the ring-down. Figure 4.5 shows an example of

three such delay points. The magnitude of the resonant frequency for each sample is then

used to reconstruct the ring-down. For the example shown in figure 4.5, a sample time of
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8µs was used and the time step between each sample was 10µs. In practice, many more

time points should be taken so that each time sample overlaps the previous one. This

will insure high enough time resolution of the ring-down profile.

Figure 4.5: An FFT is taken from short time samples at multiple time points through-
out the ring-down event. For clarity, this example used 8µs time samples that were
taken every 10/mus. In practice, many more points at shorter intervals should be
used. The magnitude at each time point is then used to reconstruct the ring-down.

4.3 Experimental Setup and Results

Figure 4.6 shows the measurement setup. A function generator produces a square

wave at approximately 1kHz to provide timing for the simultaneous triggering of the start

of the measurement and termination the sinusoidal drive signal. The device is driven with

a Rhode&Schwarz SMBV100A function generator at the device’s resonant frequency and

at -6dBm. At this power level, nonlinear effects due to heating are not observable but

there is still sufficient surface displacement to achieve good LDV displacement data.

The resonant frequency and device electrical quality factor are determined by col-
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lecting admittance data using a Rhode&Schwarz ZVL network analyzer. The analyzer

was calibrated using a Cascade Microtech calibration standard. The device was probed

using an Infinity probe from the same company. The delay between the cut-off of the

drive frequency and the start of the measurements was automated using software written

by this author. Detail of this software is given in Appendix B. All other measurement

parameters such as drive frequency and power were also controlled by this software.

Six devices were used for this study and an example is shown in figure 4.3. The

body of the resonators measure 140µm long by 58µm wide. They consist of a 1µm thick

aluminum nitride layer sandwiched between an upper and lower 100nm layer of aluminum

and platinum respectively. Each device had identical geometry except for the length and

width of the support anchors. Table 4.1 gives these dimensions for each device.

Figure 4.7 shows the experimental measurements from a single spatial point at the

center of the body of resonator #1 with a sample time of 3.2µs and a time step between

each sample of .2µs. The sampling rate was 2GHz. Each time point was averaged 100

times using complex averaging (see Appendix A.2 for detail on averaging).

It is necessary to optimize the sample time. If the sample time is too long, the portion

of the sample that represents the ring-down event becomes too small and the amplitude

resolution will decrease. The sample time must also be long enough to avoid FFT bin

splitting. When the sample time is short the resolution bandwidth (RBW) of the FFT

becomes large. This means that the bin spacing becomes larger. If the time sample

contains a frequency that is not aligned with the center of an FFT bin, its magnitude

data is split between two adjacent bins. Doing this will give erroneous data. In order to

avoid this, the drive frequency must be selected to line up with the center of one of the

FFT bins. This means that, to get good data, the drive frequency may be slightly off

from the devices resonant frequency. Therefore, the sample time must be long enough to

ensure that there is a small enough RBW to allow for a drive frequency that is close to
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Figure 4.6: The measurement setup for capturing ring down measurements of a
220MHz CMR. The first function generator is used to trigger the start of the mea-
surement and the cut-off of the drive signal supplied by the second function generator.
The LeCroy scope is used to capture the data from the vibrometer and transfer it to
the PC for post-processing.

the device’s resonant frequency.

The experimental data in figure 4.7 does not follow the expected exponential decay

of a traditional ring-down. This is due to the fact that each data point is the average

magnitude of the resonant frequency over its entire time sample. For example, if the

sample window includes steady-state oscillation as well as a portion of the ring-down event

(e.g. the center FFT in figure 4.5) the magnitude is a convolution of the steady-state and

the ring-down event. The most efficient way to determine the ring-down time constant

is to produce a simulated waveform that includes a steady state and ring-down event

and perform a simulated measurement with identical parameters to the experimental

measurement. The frequency, steady-state magnitude, sampling rate, drive signal cutoff
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Figure 4.7: An FFT is taken from short time samples at multiple time points through-
out the ring-down event. The magnitude at each time point is then used to reconstruct
the ring-down.

time and sample time are all know a priori. The time-constant, τ , for the exponential

decay can then be varied until there is a good fit between the experimental and simulated

data. Figure 4.7 shows the match between the experimental and simulated data from the

single spatial point at the center of the device. For this measurement the time constant

τ = 2.4µs. At the resonant frequency of 220.5MHz this gives a quality factor of 1664

which matches the electrically measured Q of 1610 by 3.25%.

Five other devices were tested for this study. Table 4.1 shows the results of these

measurements. All of the LDV ring-down measurements are within 5.25% of the electrical

quality factor. Devices with higher electrical Q resulted in more precise measurements

which is most likely due to the fact that these devices have higher initial displacements,

which results in less noise.
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Device # f0[MHz] Anchor
Length
[µm]

Anchor
Width
[µm]

Initial Dis-
placement
[pm]

Electrical
Q

τ [µs] LDV
Measured
Q

% Error

1 220.4 7.5 8 125.2 1610 2.40 1664 3.35
2 220.6 22 15 155.6 1161 1.59 1100 5.25
3 220.5 21 15 125.4 1575 2.38 1650 4.76
4 220.8 11 15 219.4 2207 3.32 2300 4.21
5 220.8 40 15 255.3 3155 4.50 3121 1.08
6 220.8 21 17 225.6 2944 4.18 2900 1.49

Table 4.1: The dimensions and results from the ring-down measurement of a single
point on the surface of a 220MHz AlN CMR. The quality factors as found through
LDV measurements were all within 5.25% of the electrically determined Q, with higher
Q devices having more better precision.

4.4 Measurement Error

From Appendix A.3 the out-of-plane measurement resolution of the LDV can be

calculated to be 16pm. In practice, this error may be larger due to the reflectivity of the

surface and the stability of the resonator motion itself but can also be reduced through

extensive averaging. To determine the actual error associated with these measurements,

a single point on a sample resonator was measured sequentially ten times. The results

are shown in figure 4.8. The average displacement error over the entire ring-down event

is 24.6pm. By fitting ring-down curves to this data, a minimum and maximum quality

factor was found to be 1863 and 2009 respectively. This yields an error of ±3.85% in Q.

4.5 Future Work

This method could be applied to any bulk acoustic or flexural device that has a

measurable out-of-plane motion component. Frequencies up to the 1.2 GHz limit of

the UHF-120 could potentially be measured as well, by using smaller time samples and

smaller delay steps. In addition to quality factor, this measurement method could be
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Figure 4.8: To determine the error associated with these measurements, a single point
was measured ten times and a ring-down curve was fit to the two extremes. A total
error of ±3.85% in Q was found.

used to determine the presence of non-linearities in the device and it could potentially be

used to measure the onset of parametric resonance at previously unachievable frequencies

[48].
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Chapter 5

Measuring Spatial Wavelengths on

the Surface of a CMR

5.1 Background

The surface of an ideal contour-mode resonator (CMR) would oscillate with a sin-

gle uniform wavelength, however, due to the fact that multiple materials are used in

its construction, the motion at the surface of the CMR is a superposition of multiple

wavelengths. Aluminum, aluminum nitride, and platinum, the typical materials used in

the devices each have a unique acoustic velocity that is governed by their densities and

Young’s moduli. The resulting wavelength for each material is defined by

λ =
1

2πf0

√
E

ρ
(5.1)

where f0 is the resonant frequency, and E and ρ are the elastic modulus and density,

respectively. At 220MHz and using standard values for the density and elastic moduli

the resulting wavelengths for the materials used in the tested devices are shown below
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in table 5.1. As described in section 2.2, the contour-mode resonant frequency of the

device is set by the electrode spacing and is the result of the contribution of each of the

material layers to the average acoustic wavelength of the resonator.

We are interested in determining the relative magnitudes for each of these wave-

lengths. These values can not be measured electrically but will be important in chapter

6 for measuring the ring-down of each of the materials in the resonator. This chapter

develops the procedure for extracting the portion of the surface motion due to each ma-

terial present in the 220MHz aluminum nitride piezoelectric CMRs similar to those used

in the previous chapter.

Material Elastic
Modulus
[GPa]

Density
[ kg
m3 ]

λ[µm]

AlN 380 3200 49.5
Al 68.5 2700 22.9
Pt 168 21450 12.7

Table 5.1: The Young’s modulus, density, and resulting acoustic wavelengths at
220MHz for each of the materials used in the CMRs tested.

5.2 Experimental Procedure

To analyze these wavelengths, the UHF-120 laser Doppler vibrometer was used to

measure points along the path shown in figure 5.1. The vibrometer measured 180 points

along the body of the resonator providing a spatial resolution of 733nm. The bandwidth

was 2GHz with 128,000 FFT lines. At 220MHz the out-of-plane measurement resolution

is approximately 15pm ±1.8pm as described in Appendix A.3. The device was driven

at its resonant frequency which was determined by electrical admittance data using the

same method as described in section 4.3. The devices were driven at -3dBm.
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Figure 5.1: The surface of the resonator was scanned along the path shown. The
spatial resolution was increased to 733nm to reduce the measurement time.

The magnitude and phase data gathered at each point can be combined using

z(t) = (Magnitude) · sin(ωt+ phase) (5.2)

to produce a two-dimensional mode shape of the surface of the resonator as shown in

figure 5.2. As described before, the mode shape is not composed of a single wavelength,

but rather a superposition of multiple wavelengths. To determine these wavelengths, a

spatial FFT of this mode shape was then taken to determine the magnitudes of each of

the dominant wavelengths (figure 5.3). The peaks at approximately 15µm, 25µm, 54µm

are associated with the Pt, Al, and AlN layers respectively. The mismatch with the

values in table 5.1 are due to variations in the densities and moduli in the experimental

devices as compared to the standard values.
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Figure 5.2: The mode shape along the centerline of a 220MHz resonator. As is evident,
the mode shape is a superposition of multiple wavelengths due to the different material
properties of each layer.

Figure 5.3: The spatial FFT of the surface of the resonator produced by the mode
shape. There are peaks at 15µm, 25µm, 54µm. Variations in the stiffness and density
would account for the variations in wavelength with respect to the analytical values.
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Chapter 6

Measuring Ring-Down For Each

Material

6.1 Introduction

We are interested in measuring the ring-down time and therefore the energy dissi-

pation of each of the material layers that compose the contour-mode resonator (CMR)

using laser Doppler vibrometry (LDV). This time constant would be indicative of the en-

ergy lost due to intrinsic material losses and interfacial dissipation between two adjacent

layers. To do this requires a combination of the measurement techniques described in the

previous two chapters. We are interested in determining how the FFT peaks associated

with each material decay over time after the actuation signal is removed. By doing so,

we can determine the time constant for the exponential decay in motion for each of the

materials.
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6.2 Experimental Procedure

A ring-down measurement is performed at each point along the path shown in figure

5.1. This provides a portrait of how the two dimensional mode shape from chapter 5

decays after the drive signal is cut-off. At each time point a spatial FFT is performed on

the mode shape and the magnitude of each peak is obtained. From this the ring-down

profile for each of the peaks in the spatial FFT can be plotted. Figure 6.1 shows the

ring-down profiles for each of the materials in a 220MHz CMR. A curve has also been

fitted to the experimental data as described in chapter 4. Quality factor is typically a

measurement of the energy loss of the resonator as a whole, but for clarity the effective

quality factor for each material has been calculated as a way of understanding the energy

loss of each layer.

Figure 6.1: The ring-down profile of the three peaks in the spatial FFT associated with
Pt(a), Al(b), AlN(c). Each material shows a unique time constant i.e. quality factor.
Further experimental work will be conducted to better understand these effects.

6.3 Results and Discussion

Eight devices were tested for this study. These include five devices with a 1µm

aluminum nitride layer and three devices with a 1.5µm aluminum nitride layer. Each

device had identical body dimensions (100µm long x 54µm wide). The dimensions of the

anchors varied in each case. Electrical data was collected using a Rhode&Schwarz ZVL
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Table 6.1: The resonant frequency, Q, anchor dimensions, and the bus bar width of
the devices tested. Two thicknesses of AlN active layers were tested.

Device # AlN
Thickness
[µm]

f0
[MHz]

Electrical
Q

Anchor
Length
[µm]

Anchor
Width
[µm]

Busbar
Width [µm]

1 1.0 218.58 1161 21 15 6.59

2 1.0 220.53 1505 21 15 7.33

3 1.0 220.75 2207 11 15 6.96

4 1.0 220.78 3155 40 15 7.33

5 1.0 220.49 2914 11 15 6.96

6 1.5 232.65 1360 21 15 7.33

7 1.5 232.28 1708 11 15 6.96

8 1.5 233.14 2101 40 15 7.33

network analyzer. From this, the resonant frequency and electrical quality factor were

extracted for each device. Table 6.1 shows these values and the dimensional values of

each resonator (figure 6.2).

Figure 6.3 shows the results from measuring the five 220MHz devices with a 1µm

aluminum nitride layer. For clarity a dashed line has been drawn along a 1:1 line between

the X and Y axes. This line would represent the position where the effective material Q

matches the device electrical Q. For each device, the effective material quality factor for

aluminum nitride follows this line with an R2 value of .987. Intuitively this is the result

of the fact that it is the aluminum nitride layer that is generating the electrical response,

through the Piezoelectric effect, that is creating the device electrical Q. If the aluminum

nitride layer is oscillating, it is generating strain and therefore an electrical response.

The effective Q values for aluminum and platinum also follow linear trend lines similar

to aluminum nitride. For each device, platinum has an effective Q that is, on average,

11.3% lower than aluminum nitride. This indicates that there is more energy dissipation

in the platinum layer than in the aluminum nitride layer. With these measurements, it

is not possible to parse out whether these losses come from intrinsic material losses in
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..

Figure 6.2: The length, La, of the anchors of CMRs below 220MHz has a significant
impact on performance. It was shown that Q could have a five-fold variation due
to anchor length. No correlation between the width, Wa, of the anchors and Q was
found.

the platinum or if they are the result of interfacial losses at the aluminum nitride and

platinum interface. A similar trend is seen with the aluminum layer except that it has,

on average, an effective Q that is 13.6% lower than the aluminum nitride layer.

Figure 6.3 shows the results from measuring the three 220MHz devices with a 1.5µm

aluminum nitride layer. The trend is similar to that of the devices with the thinner

aluminum nitride layer. The effective material quality factor of the aluminum nitride

layer matched the electrically measured Q. In this case the effective quality factor values

for the platinum layers are much closer in value to the aluminum nitride layer. The

platinum Q values are only 4% less than the aluminum nitride layer. The values for the

platinum layer are within 12% is similar to the 1µm devices.

6.4 Conclusion

A new method has been developed for measuring energy losses associated with the

individual layers of a resonant structure. By using a newly developed technique for
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Figure 6.3: The electrically measured device Q vs. the effective material quality
factors for each material layer of the five devices fabricated with a 1µm aluminum
nitride layer.

measuring ring-downs of an ultra high frequency resonator it is possible to study the

energy loss of any material on the device that possesses a unique acoustic wavelength.

Eight devices were tested with device quality factors ranging from less than 1200 to

almost 3200. In each case, it was possible to extract the effective material quality factor

for each of the layers of the CMR. The effective material quality factor for the aluminum

nitride layer closely matched the devices electrical quality factor, whereas the effective Q

for the aluminum and platinum layers were lower by 13.6% and 11.3% respectively for the

1.5µm aluminum nitride devices and 12% and 4% respectively for the 1µm devices. The

increased loss in the aluminum layer occurs even though there is less coverage of this layer

versus the bottom platinum layer that covers the entire resonator. These measurements

support the theory discussed in [49] that aluminum nitride is a relatively high-Q material

and it is the metal electrodes that are responsible for low Q values. The aluminum layer is

more lossy than the platinum layer so higher performance could be gained by fabricating
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Figure 6.4: The electrically measured device Q vs. the effective material quality
factors for each material layer of the five devices fabricated with a 1.5µm aluminum
nitride layer.

the devices using platinum for the upper and bottom metal layers.

6.5 Future Work

Future work for this study should include measurements on similar CMRs with other

metal layers. It would be useful to study devices that had identical physical dimensions

but with alternative metals such as silver or gold. This could provide better insight

into which materials produce the least energy loss. In addition, other types of resonant

devices could be tested. It would be useful to measure a multi-layer flexural device such

as a Piezo-electrically fixed-fixed beam.
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Appendix A

Laser Doppler Vibrometery

A.1 Theory

One of the leading methods for non-contact displacement measurements of MEMS
devices is through the use of laser Doppler vibrometery. This was first employed on the
macro-scale in 1964 for measurements in flow fields using a homodyne interferometer
[50]. With the advent of the heterodyne interferometer [51] laser Doppler Vibrometry
(LDV) could be employed in more practical applications due to its ability to measure
much smaller frequency shifts as well as making it more robust to environmental con-
ditions. This method, as well as the sources of error and these values associated with
the Polytec UHF-120 used in this thesis are described below. Current technology allows
LDV measurements from DC to 1.2GHz with a noise floor of 4pm and with sub-picometer
resolution [52].

Figure A.1 shows the laser light path of a typical heterodyne LDV. Coherent light
is produced by, in the case of the UHF-120, a NdYAG-crystal laser. The beam is split,
using a beam splitter, into a reference beam and a measurement beam. The measurement
beam passes directly through another beam splitter, through the object lens and then
strikes the surface of the DUT. The reference beam is passed through a Bragg cell which
shifts the beam frequency up by 40MHz. After the measurement beam reflects off of
the surface of the DUT it returns through the objective and is then redirected by the
beam splitter toward a photo-detector. The measurement beam and the reference beam
are mixed together at a final beam splitter just before the photo-detector. Because the
interferometer measures the reflected light along the same axis as the illuminated light,
the measurement can be modeled as a one-dimensional wave equation [53]:

∂2E(x, t)

∂x2
=

1

c2m(x, t)

∂E(x, t)

∂t
(A.1)

where x = 0,and cm(x, t) = c/n(x, t) is the speed of light in a medium of index of
refraction, n(x, t). By assuming that the index of refraction is constant, the solution at
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Figure A.1: A schematic of the light paths of a heterodyne laser Doppler vibrometer
and its various components.

the surface of the DUT, s(t) is:

Es(s(t), t) = E0cos(ωt− k(s(t))) (A.2)

where ω is the frequency of the laser source, E0 is the emission power of the laser and
k = 2π/λ, is the wavenumber with λ being the wavelength of light. Using several
simplifications the electric field at the detector is:

Ed(sd, t) =
√
rE0cos(ωt− φ(t)) (A.3)

where r is the reflectivity of the DUT, and φ(t) is defined by:

φ(t) = (ksd − 2ks(t)− 2ks0) (A.4)

The first term in equation A.4 represents the distance from the sample to the detector.
The second term refers to the surface motion of the DUT and the third term is the
average distance from the laser to the DUT. The Doppler shift is given by

dφ(t)

dt
=
d(kn(2s(t) + 2s0 − sd))

dt
= k

d(OPL(t))

dt
(A.5)

where OPL is the total optical path length. The Doppler shift is therefore a result of
the change in the path length with respect to time, i.e. the velocity of the surface of
the DUT. The resulting light energy from the measurement beam that is incident on the
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photo-detector is therefore:

Ed(sd, t) =
√
rE0cos(ωt+ 2knv(t)) (A.6)

where n is simply the number of integer wavelengths along the light path. The total
light that is incident upon the detector is the sum of this measurement beam and the
reference beam which has a similar equation except with a fixed phase for the reference
beam

Ed(t) = Emcos(ω1t− φ(t)) + Ercos(ω2t− φ0), (A.7)

where Em =
√
rE0 is the amplitude of the measurement beam and Er is the amplitude of

the reference beam. The detector outputs a current which is proportional to the square
of the electric field. The electric current can be found to be

ip = K[Pm + Pr + 2
√
PmPrcos(ω1t− ω2t− φ(t) + φ0)] (A.8)

where Pm and Pr are the optical powers of the measurement and reference beam respec-
tively and K is the linear amplification of the photo-detector. The purpose of the Bragg
cell is to shift the reference beam frequency by ωc. The result is that ωc =| ω1−ω2 | and
equation A.8 becomes

ip = K[Pm + Pr + 2κ
√
PmPrcos(ωct− φ(t) + φ0)] (A.9)

where κ is defined as a heterodying efficiency that accounts for any loss of signal through
the Bragg cell [53]. Something to note is that the actual Doppler frequency shift of the
light that has been reflected off of the surface of the DUT is very slight. It can be shown
that the actual frequency shift, ∆f , is

∆f ≈ vs
c

(A.10)

where vs is the velocity of the DUT surface and c is the speed of light. At 220MHz with
a displacement of 300pm, the maximum velocity of the surface 400mm

s
. At this velocity,

the frequency shift is 1.4×10−9Hz. Because of this, the LDV doesn’t technically measure
a Doppler shift but rather the time-dependent phase changes between the reference and
measurement beams.

A.2 Averaging

Measured data from any source is always a superposition of some amount of noise. To
minimize this noise and thereby improve the signal to noise ratio, averaging is applied to
the signal. The LDV captures a time domain sample and has the ability to convert it into
an FFT in the frequency domain. Averaging can be applied in either domain and the two
most common methods for averaging LDV data in the frequency domain is magnitude
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and complex averaging. Since this thesis focuses on averaging in the frequency domain
the focus of this section will be on magnitude and complex averaging.

To perform averaging in the frequency domain, a series of time traces are collected
and an FFT is performed on each of these time samples independently. The time samples
must be the same length so that each of their respective FFTs has the same number of
lines. In addition, if the data collected is not in steady state, each sample should be taken
from the same point in the transient event. This can be accomplished by synchronizing
the transient event and the measurement by means of a trigger.

When an FFT is taken of a single time measurement, each bin is represented by
a phasor Sn. These complex values represent the magnitude and phase of each of the
frequency components that make up the time signal.

A.2.1 Magnitude Averaging

When magnitude averaging is applied, the phasor for each of the bins in the FFT is
summed with the corresponding phasor from each time sample, the magnitude is then
taken and the result is divided by the number of time samples,

|S̄| = 1

N

N∑
n=1

|Sn| (A.11)

where N is the number of time samples taken. Magnitude averaging results in a higher
noise floor due to the fact that incoherent or non-phase-locked noise will not be elimi-
nated. Magnitude averaging is useful when it is not possible to maintain a steady phase
value between the input and output signal such as when measuring the frequency response
using only Brownian motion. If there is no drive signal available magnitude averaging is
the best averaging method.

A.2.2 Complex Averaging

When complex averaging is used, the phasor from each frequency bin in the FFT is
split into its real and imaginary portions. Each portion is then averaged independently,

S̄ =
1

N

( N∑
n=1

Re(Sn) + i ·
N∑
n=1

Im(Sn)

)
(A.12)

complex averaging is very effective at removing noise due to the fact that, for each FFT
bin, the phase value for the incoherent noise is random with respect to the drive signal
and will therefore be averaged away over successive measurement averages. To make use
of complex averaging it is necessary to provide a drive signal or some other reference that
can be used to phase-lock the desired output signal. This ensures that the desired signal
is not averaged away in the same manner as the noise.
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A.3 Resolution

Polytec specifies the amplitude resolution of the UHF-120 as a function of resolution
bandwidth (RBW) in Hz. The RBW is a function of the measurement bandwidth selected
as well as the number of FFT lines chosen for the measurement. For a given bandwidth,
BW the sampling frequency, fs is

fs = 2.56 ·BW (A.13)

The sample time, ts, is then found by

ts =
Nfft

BW
(A.14)

Where Nfft is the number of FFT lines selected. From here the resolution bandwidth is,

RBW =
1

ts
(A.15)

Finally, the displacement amplitude resolution is

DisplacementAmplitudeResolution =
30× 10−15m√

Hz
·RBW (A.16)

As an example, for the settings used in chapter 4.5, a bandwidth of 2GHz with 6400
FFT lines, the RBW is 312.5kHz. This would give a displacement amplitude resolution
of 16.8pm. With repeated averaging, however, this value can be lowered into the sub-
picometer range.
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Automation of the Polytec UHF-120
LDV

In its off-the-shelf form, the Polytec UHF-120 is a single point system. It is intended to
take a single measurement at a single spatial point and at a single drive frequency and
power setting. The measurements taken in this thesis include, in some cases, thousands of
measurements at different spatial points and drive settings. To this end, it was necessary
to automate the measurement process so that the experiments could be performed quickly
and effectively.To automate this process, Mathworks Matlab was used in conjunction with
its graphical user interface (GUI) coding plug-in. This allowed for the development of
an easy to use working environment for the large number of measurements required for
these studies.

Figure B.1 shows the hardware components required and their associated connections.
The components include:

• UHF-120 interferometer head

• LeCroy fast digitizing oscilloscope

• Polytec PC

• Rhode&Schwarz function generator (FGN)

• Motion control hardware

The following sections describe each of the hardware components necessary for the au-
tomation of the LDV measurements.

B.1 Spatial Automation

The UHF-120 interferometer head was placed onto a two axis motion control stage
to move the laser in the X and Y axes with respect to the DUT. A stepper motor
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..

Figure B.1: The hardware and associated connections involved in automating the
LDV measurement process, The PC running a Matlab GUI controls all functions and
collects the data.

was also mounted onto the focus system to allow automated focusing (figure B.3). Each
stepper motor was controlled by a Parker Motion ViX500IM stepper drive which received
commands through the serial port of the PC. The Matlab GUI, known as GibSoft, controls
the stepper drives through the COM ports on the PC (figure B.2).

To control the spatial positioning in the in-plane, or X-Y, directions, image tracking
was required. Before running GibSoft the user must run a setup GUI, known as VibSetup
(figureB.4). The video feed from the LDV is digitized and displayed in a preview window
within the VibSetup GUI. The user must first select a fiducial. This is a region of the
image that the image correlation algorithm can use to track the position of the DUT
within the image. The user can then select the desired scan points. There is an option
of a single point, a line or a box of measurement points. For the latter two choices, the
density of points can be selected. Once the spatial points have been selected, the files
should be saved and then the user must open GibSoft and load the setup file created in
VibSetup. A built-in function called normxcorr2, is used to match the position of the
fiducial within the live video feed. This function outputs the position of the lower left
corner of the fiducial within the live image which can then be used to align the DUT
under the vibrometer with an accuracy of approximately 400nm.
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Figure B.2: The graphical user interface developed to automate the LDV measure-
ments of the UHF-120. Through this interface, the user can select all of the measure-
ment parameters for standard or ring-down measurements. Once the scan is started,
no input is needed from the user and the software will email the user once the mea-
surements are complete.

B.2 Setting Measurement Parameters

Polytec supplies software, known as VibSoft, to start and stop the LDV measurements
as well as set the measurement parameters. These parameters include:

• Bandwidth

• Number of FFT lines

• FFT frequency range

• Vib and Reference channel sensitivity

• The type of averaging (complex or magnitude)

• The number of averages

• Triggering method and source
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Figure B.3: The stepper motors used to drive the Y axis and focus. Also shown are
the Parker Motion ViX500IM stepper drives. The X axis motor is not visible.

..

Figure B.4: The VibSetup GUI used to define the spatial measurement points. The
user first selects a fiducial area which is used by GibSoft to track the DUT within the
objective area. The desired scan points can then be selected.

GibSoft allows the user to input all of these settings into the GUI and, through an
ActiveX portal, GibSoft sets these parameters automatically in VibSoft. This allows a
single interface for the user to work with.

The next step is to select whether to perform a ring-down measurement or a parameter
sweep such as a frequency or power sweep. If the user chooses a parameter sweep such
as frequency, the frequency center, span and number of steps can be entered. GibSoft
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connects to the function generator (FGN) through a LAN connection to control the
frequency and power settings. For a ring-down measurement, the user must select a
frequency and power setting and then select the range of measurement delays and steps
overwhich to perform the measurement.

B.3 Data Acquistion

VibSoft acquires the data from UHF-120 vibrometer head using a LeCroy fast digitiz-
ing oscilliscope. The data is then transferred to the PC via a LAN connection. VibSoft
then provides the following post-processing capabilities:

• Display of measurement and reference time traces

• Display of FFT of measurement and reference signals

• Application of complex and magnitude averaging to the time or frequency based
data

Through VibSoft, GibSoft initiates the measurement, waits for the measurement to finish,
and then pulls the desired data. This data is stored in a temporary file while the scan is
being performed. Once all of the measurements are completed, this data along with all
of the measurement parameters, are saved to a user-defined file name and location. The
output data includes:

• Vib channel displacement magnitude

• Vib channel phase

• Vib channel frequency

• Reference channel voltage

• Delay

• X axis position

• Y axis position

• X axis error

• Y axis error

• A time stamp for each measurement

The measurement parameters include:

• All vibrometer settings
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• All function generator settings

• All spatial points

• All frequency, power and delay values

• An image of the DUT

• The name of the data file

All of these parameters would allow a user to recreate an experiment using only the
output file. The length of time for each scan can take anywhere from a few seconds
to several days depending on how many spatial, frequency, power, and delay points are
chosen as well as how many averages are selected. Because the process is automated, no
input is needed from the user during this time. The software can email the user when
the measurements are completed.

B.4 In-Plane Spatial Error

There is in-plane spatial error when using GibSoft due to the image tracking system
and the motion control system used to position the laser. The CCD used to image the
device outputs in PAL format with a resolution of 576 horizontal pixels by 768 vertical
pixels. All measurements are taken through a 50X objective lens and as a result the
video resolution is 2.73 pixels per micron in the X and Y axes. Both Axes have the same
resolution due to the fact that the aspect ratio of the image is rectangular and because
each pixel is not square. Given this resolution, the maximum in-plane spatial precision
is 366nm. In practice, the positioning error is higher due to the precision of the stepper
motors used. Because the image tracking algorithm can register this error, an RMS value
for the combined X and Y error is calculated by GibSoft and saved to the output file.
Over five ring-down measurements taken during the experiments in chapter 6 the average
error due to the stepper motors is 0.1625 pixels or 60nm. The combined error is then
426nm.

B.5 Future Work

Future work for GibSoft would include an improved motion control stage for better
X-Y positioning. The spatial error could be reduced if, for instance, a piezo-electric
actuator, was used in conjunction with the existing stepper motor/lead screw system.
This would allow much greater precision in positioning as well as potentially reducing
the time required to move from one position to the next. Moving spatial positions can
consume as much as twenty seconds per measurement. When this is multiplied by several
thousand points it becomes apparent how much time could be saved in this upgrade.
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Another future project could involve bypassing the VibSoft software provided by
Polytec. It is possible to control the fast digitizing oscilloscope directly with Matlab and
this may further reduce the time required to make measurements. Additional research
would need to be done to determine the usefulness of this work, since Polytec has, to
some extent, optimized the interface between the oscilloscope and VibSoft.

An improved auto-focus algorithm would also serve to greatly reduce measurement
times for GibSoft. It currently requires approximately thirty seconds to complete an
autofocus cycle. This time is consumed by the built-in Matlab imaging script used to
gauge focus as well as the focus algorithm written by this author. Both areas could see
substantial improvement.
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Phase Noise

An important characteristic in the design and implementation of an oscillator circuit is
its noise level. Oscillator noise can be broken down into amplitude noise and phase noise.
This section provides an explanation of both as well as sources of noise and what impact
the resonator has on contributing to or reducing noise.

..

Figure C.1: The output of an oscillator circuit can be represented with a phasor
diagram. An ideal oscillator would have a fixed amplitude, A, and phase angle, Θ.

The output of an oscillator circuit can be represented by a phasor (figure C.1) with a
given amplitude, A, and phase, Θ. An ideal oscillator would have a fixed value for each
component of the phasor. In practice, the phase and amplitude have some amount of
random time variance(figure C.2). This variance is known as phase noise and amplitude
noise.

In an oscillator circuit the amplitude of oscillation is controlled by non-linearities in
the feedback circuit [54]. If there is any perturbation in the amplitude due to noise, the
feedback circuit automatically suppresses it. As a result, amplitude noise is not usually a
major problem in oscillator circuits. Of greater concern is phase noise. This is not easily
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controlled by the feedback circuit and it comes from many sources.

..

Figure C.2: In practice, oscillators have noise in both phase and magnitude directions.

On a power spectrum, an ideal oscillator would appear similar to a delta function
with all energy occurring at a singular frequency. The presence of phase noise causes the
signal energy to spread out into side bands adjacent to the main carrier frequency. An
example of a phase noise plot is shown in figure C.3. Because of the symmetry above
and below the center frequency, a phase noise diagram only shows the left side bands
and assumes that the right side bands are identical. The units of magnitude are in dBc

Hz

because the y axis is normalized to the power of the center frequency. The unit, dBc
represents decibels below the carrier. Noise at frequencies near the carrier is known as
”close-in” phase noise whereas noise at frequencies much higher or lower then the carrier
frequency is known as ”far from carrier” phase noise. Far from carrier phase noise is
typically white noise because it has zero slope on the phase noise plot and its amplitude
is not related to frequency.

..

Figure C.3: An example of a phase noise diagram. Because of symmetry, only the left
side of the power spectrum is shown. The Y-axis is in dBc

Hz and is normalized to the
power of the center frequency.
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Some of the noise sources include thermal noise, shot noise and flicker noise. Thermal
noise is caused by Brownian motion of the electrons in the electrical components as well
as in the resonator [55, 56]. Shot noise is the result of the discreet nature of electron flow
at very low current levels in the pn junctions of the amplifier elements and power supply.
Flicker noise is related to the close-in phase noise and is found in all active electrical
elements such as amplifiers and transistors in the oscillator circuit.

A common model for phase noise is the Leeson equation [57]

L(fm) = 10log

[
1

2

((
f0

2Qfm

)2

+ 1

)(
fc
fm

+ 1

)(
FkT

Ps

)]
(C.1)

where f0 is the output frequency, fm is the offset from the output frequency, fc is the
1/f corner frequency, F is the noise factor of the amplifier, k is Boltzmann’s constant, T
is the temperature, and Ps is the output power. The first term in the brackets represents
the contribution to the close-in phase noise, the second term represents the mid range
noise known as 1/f 3 noise and the last term is the white noise that is from carrier. The
close-in phase noise is directly proportional to the Q of the resonator. A higher Q will
produce less close-in phase noise.
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Determining Q and K2
t from

Admittance Data

D.0.1 Quality Factor

From the S11 parameters produced by the vector network analyzer, an admittance
response plot from the resonator can be produced. The admittance data can be separated
into real (conductance) and imaginary (susceptance) portions (figure D.1). From this
data the quality factor, K2

t and other values can be extracted. There are four common
methods for determining the quality factor from electrical admittance data. Each method
is described below and, with quality data will provide identical results.

The real and imaginary portions of admittance form a phasor. The angle of that
phasor as a function of frequency is often plotted along with the magnitude of the phasor.
At resonance the slope of the phase data can be used to determine Q. The slope of the
phase at resonance multiplied by the resonant frequency defines Q

Q = f0 ·
∂Φ

∂f
(D.1)

where Φ is the phase at a given frequency, f .
The next method for determining Q is by measuring the resonance and anti-resonance

peaks on the susceptance plot. Q is proportional to the difference between the resonance,
fr, and antiresonance, fa peaks,

Q =
f0

fa − fr
(D.2)

The third method for determining Q is known as the ”half power” method. If the
magnitude of the admittance is plotted on the dB scale as shown in figure D.4, the
bandwidth of the response at 3dB below resonance can be found.

Q =
f0

∆f−3dB

(D.3)

74



Determining Q and K2
t from Admittance Data Chapter D

..

Resonance
Peak

Anti-resonance
peak

Figure D.1: The conductance and susceptance portions of admittance data gener-
ated by the VNA from a CMR. These represent the real and imaginary portions of
admittance respectively.

The fourth and final method for determiningQ is through curve fitting. A common model
for a contour-mode resonator is known as the Modified Butterworth-Van Dyke model
[58]. This modified version of the traditional Butterworth-Van Dyke model accounts
for parastic capacitance, C0, and resistance, R0. Using this model, the equation for
admittance Yeq(ω) becomes

Yeq(ω) =
1

Rm + jωLm + 1
jωCm

+

(
1

jωC0

+R0

)−1

+
1

R0p

(D.4)

Once a good fit is obtained, the value for Q can be found by

Q =
1

Rm

·
√
Lm
Cm

(D.5)

and k2t is found by

k2t =
π2

8
· Cm
C0

(D.6)
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Figure D.2: The admittance data of a 220MHz AlN CMR in magnitude/phase form.
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3dB below 
resonancef

Figure D.3: The magnitude of admittance on a log scale of a CMR. The quality factor
is the ratio between the resonant frequency and the 3dB bandwidth.

..

Figure D.4: The Modified Butterworth-Van Dyke model used for fitting the electrical
parameters to the admittance data.
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Appendix E

Transmission Line Theory

Traditional circuit analysis assumes that the physical dimensions of the electrical circuit
to be analyzed is much smaller than the wavelength of the electrical signal. In contrast,
transmission line theory takes into account the fact that the circuit is a substantial
fraction of the electrical wavelength or multiple wavelengths long. Because the dimensions
of the resonators used in this thesis are several acoustic wavelengths long, it is useful to use
transmission line theory in studying the behavior of the acoustic energy that is escaping
the active region of the device. Transmission line theory accounts for the propagation
of waves along a medium and also provides tools to account for electrical (or, in this
case, acoustic) reflections at an interface (the edge of the released region). This section
provides a short tutorial on transmission line theory as it relates to the analysis in this
thesis.

As shown in [59], a simple transmission line shown in figure(E.1)a can be broken into
differential elements of length ∆z. Each of these elements can be treated as a lumped
model (figure E.1b ) with a:

• Resistance per unit length, R, due to the finite conductivity of the material.

• Inductance per unit length, L, due to self inductance of the two conductors.

• Shunt conductance per unit length, G, due to dielectric losses.

• Shunt capacitance per unit length, C, due to the proximity of the two conductors.

By taking the limit as ∆z → 0, the voltage and current at any point can be given by

∂v(z, t)

∂z
= −Ri(z, t)− L∂i(z, t)

∂t
(E.1a)

∂i(z, t)

∂z
= −Gv(z, t)− C∂v(z, t)

∂t
(E.1b)
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Figure E.1: A transmission line (a) can be analyzed as a cascade of lumped models
(b) each with differential length ∆z.

Equations E.1a&b are known as the telegraphers equations. If we are interested in the
voltage and current only at steady-state, these can be simplified to

dV (z)

dz
= −(R + jωL)I(z) (E.2a)

dI(z)

dz
= −(G+ jωC)V (z) (E.2b)

The solutions to E.2a&b can be solved to produce traveling wave equations for each

V (z) = V +
0 e

−γz + V −
0 e

−γz (E.3a)

I(z) = I+0 e
−γz + I−0 e

−γz (E.3b)

where
γ =

√
(R + jωL)(G+ jωC) (E.4)

and e−γz represents wave propagation in the -z direction and eγz represents wave prop-
agation in the z direction. If E.2a is combined with E.3a the characteristic impedance,
Z0 is given by

Z0 =
R + jωL

γ
(E.5)
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If we assume that the transmission line is lossless (R = G = 0), which is an acceptable
simplification for our analysis, then it can be shown that

Z0 =

√
L

C
(E.6)

and equations E.3 can be rewritten as

V (z) = V +
0 e

−jβz + V −
0 e

jβz (E.7a)

I(z) =
V +
0

Z0

e−jβz +
V −
0

Z0

ejβz (E.7b)

where
β = ω

√
LC (E.8)

Figure E.2 shows a transmission line that has been terminated with some load of im-

..

Figure E.2: A transmission line terminated with a load impedance.

pendance, ZL. At the load (z = 0) the impedance is

ZL =
V (0)

I(0)
=
V +
0 + V −

0

V +
0 − V −

0

Z0 (E.9)

Solving for the voltage reflected back into the transmission line from the load, V −
0 , gives

V −
0 =

ZL − Z0

ZL + Z0

V +
0 (E.10)
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This yields a voltage reflection coefficient, Γ, given by

Γ =
ZL − Z0

ZL + Z0

(E.11)

Equations E.7 then become

V (z) = V +
0 [e−jβz + Γejβz] (E.12a)

I(z) =
V +
0

Z0

[e−jβz − Γejβz] (E.12b)

For the purposes of this thesis, a special case is considered where the load impedence is
an open circuit and therefore ZL = ∞. This results in Γ = 1 and, with a trigonometric
identity, equations E.12 become

V (z) = 2V +
0 [e−jβz + ejβz] = 2V +

0 cos(βz) (E.13a)

I(z) =
V +
0

Z0

[e−jβz − ejβz] =
−2jV +

0

Z0

sin(βz) (E.13b)

The input impedance, given by

Zin =
Vz
Iz

(E.14)

is then equal to

Zin =
−jZ0

tan(βz)
(E.15)

Because this thesis is analyzing a resonant system, the values for L and C used to
determine β are the same that are used to find the resonant frequency of the device
which is given by

ω0 =
1√
LC

(E.16)

therefore equation E.8 becomes

β =
ω

ω0

(E.17)

and, since the device is operating at resonance, β = 1 and equation E.15 becomes

Zin =
−jZ0

tan(z)
(E.18)

When the transmission line has a length z = λ
4

+ nλ
2

for any n = 1, 2, 3, ... its impedance
zin = 0. Taken from chapter 3, figure E.3 shows the transmission line model as it applies
to the active and inactive regions of the aluminum nitride CMR. The power delivered to
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Figure E.3: The power dissipated to the anchor regions can be modeled as a trans-
mission line with a characteristic impedance, Z0.
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the inactive region, Pout is given by

Pout =
1

2
Re(VinI

∗
in) =

1

2
|Vg|2|

Zin
Zin + Zg

|2 (E.19)

where I∗in is the complex conjugate of the current phasor at the edge of the active region,
Vg is the voltage of the source and Zin is the characteristic impedance of the inactive
region as seen at the edge of the active region. Because the construction of the inactive
region is identical to that of the active region the acoustic wave dissipation is similar for
each and the value for Zg, for our analysis, is equal to Z0. Through simplification the
power delivered to the inactive region becomes

Pesc = abs

(
V 2 sin(2kL)

4Z0

)
(E.20)

where L is the length of the inactive region and k is the wavenumber.
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Appendix F

Matlab Code for Finding
Ring-Down Time Constant

1 c l c
2 c l e a r
3 c l f
4 f i g u r e ( g c f )
5

6 f i l ename=’ c :\ use r s \turnermems\Google Drive\DEFYS\Ringdown\
NewData\220MHz\Al1p5um\Row2Col4\SinglePointRingDown ’ ;

7 % f i l ename =’d :\ GoogleDrive\ g i b s o f t \ g i b s o f t v 2 1 \ t empoutput f i l e . mat
’ ;

8 c o l o r =[ ’ r ’ , ’ g ’ , ’ b ’ , ’ y ’ , ’ k ’ , ’ c ’ , ’m’ ] ;
9 Spat i a lPo in t =1;

10 load ( f i l ename )
11 subplot ( 3 , 1 , 1 ) ; p l o t (− squeeze ( Output . Delay ( 1 , 1 , 1 , : ) ) /1e−6,smooth (

squeeze ( Output . Displacement (1 , Spat ia lPo int , 1 , : ) ) , 3 ) /1e−12, ’ . ’
)

12 % ylim ( [ 0 , 1 . 1 ∗max( Output . Displacement ( 1 , 1 , 1 , : ) ) ] /1 e−12)
13 hold on
14

15 Tau=3.3e−6;
16 TimeOffset=−1.5e−6;
17 Frequency=Parameters .FGN. FrequencySett ing ;
18 Q=pi ∗Tau∗Frequency
19 SampleTime=Parameters . Vibrometer . SampleTime ;
20 In i t i a lMagn i tude=75e−12;
21 ExpTimePoints=−squeeze ( Output . Delay ( 1 , 1 , 1 , : ) ) ;
22 Fs=6e9 ;
23 NoiseFloor =0.1e−12;
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24 RingDownLength=ExpTimePoints ( end ) ;
25 %% bui ld a n a l y t i c a l data
26 PreRollTime=l i n s p a c e (2 . 5∗ ExpTimePoints (1 ) ,0 ,−Fs ∗ (2 . 5∗

ExpTimePoints (1 ) ) ) ;
27 PreRo l lS i gna l =( In i t i a lMagn i tude−NoiseFloor )∗ s i n ( Frequency ∗2∗ pi ∗

PreRollTime )+NoiseFloor ∗ s i n ( Frequency ∗2∗ pi ∗PreRollTime ) ;
28 RingDownTime=l i n s p a c e (0 , ExpTimePoints ( end )+3∗SampleTime , Fs∗(

RingDownLength+3∗SampleTime ) ) ;
29 RingDown=( In i t i a lMagn i tude−NoiseFloor )∗exp(−RingDownTime/Tau) .∗

s i n ( Frequency ∗2∗ pi ∗RingDownTime)+NoiseFloor ∗ s i n ( Frequency ∗2∗
pi ∗RingDownTime) ;

30 F u l l S i g n a l=horzcat ( PreRol lS igna l , RingDown) ;
31 Ful lS ignalTime=horzcat ( PreRollTime , RingDownTime)−TimeOffset ;
32 %%
33 % Indexes=round ( l i n s p a c e (1 , l ength ( F u l l S i g n a l ) , l ength (

ExpTimePoints ) ) ) ;
34 f o r loop =1: l ength ( ExpTimePoints )
35 Indexes ( loop )=f i n d ( Ful lSignalTime>ExpTimePoints ( loop ) ,1 ) ;
36 end
37 I t e r a t i o n = 1 ;
38 f o r loop =1: l ength ( Indexes )
39 SampleWindow=F u l l S i g n a l ( Indexes ( I t e r a t i o n ) : Indexes ( I t e r a t i o n

)+f l o o r ( SampleTime∗Fs ) ) ;
40 SampleWindowTime=Ful lS ignalTime ( Indexes ( I t e r a t i o n ) : Indexes (

I t e r a t i o n )+f l o o r ( SampleTime∗Fs ) ) ;
41

42 %% FFT
43 L = length (SampleWindow) ;
44 NFFT = 2ˆnextpow2 (L) ;
45 Y = f f t (SampleWindow ,NFFT) /L ;
46 f = Fs/2∗ l i n s p a c e (0 , 1 ,NFFT/2+1) ;
47 mag=2∗abs (Y( 1 :NFFT/2+1) ) ;
48 hold on
49 Peak ( I t e r a t i o n )=max(mag) ;
50 Simulat ionDelay ( I t e r a t i o n )=(SampleWindowTime (1) ) ;
51 I t e r a t i o n = I t e r a t i o n +1;
52 end
53 subplot ( 3 , 1 , 1 ) ; p l o t ( ( Simulat ionDelay ) /1e−6,Peak/1e−12, ’ r . ’ )
54 subplot ( 3 , 1 , 2 ) ; p l o t ( Ful lSignalTime , F u l l S i g n a l )
55 subplot ( 3 , 1 , 3 ) ; p l o t (− squeeze ( Output . Delay ( 1 , 1 , 1 , : ) ) , squeeze (

Output . Voltage ( 1 , 1 , 1 , : ) ) )
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Matlab Code for Finding Material
Quality Factors

1 c l c
2 c l f
3 f i g u r e ( g c f )
4 c l e a r
5 %Lambda = 50 .6um−AlN , 23 .2um−Al , 12 .7um−Pt
6 f i l ename=’d :\ GoogleDrive\DEFYS\Ringdown\NewData\220MHz\Al1p5um\

Row2Col2\BodyRingDown ’ ;
7 load ( f i l ename ( 1 , : ) )
8 PeakPoint =31;% the po int along the FFT that i s sampled
9 Tau=1.95e−6;%Ring−Down time constant

10 TimeOffset =1.70e−6;%TIme O f f s e t d i a l e d in to the FGN to a l low a
f u l l r ing−down

11 NoiseFloor =.1e−12;
12 In i t i a lMagn i tude =20.8e−12;
13 PlusPoints =3;
14 MinusPoints =3;
15 Frequency=Parameters .FGN. FrequencySett ing ;
16 Q=pi ∗Tau∗Frequency
17 SampleTime=Parameters . Vibrometer . SampleTime ;
18 ExpTimePoints=squeeze ( Output . Delay ( 1 , 1 , 1 , : ) ) ;
19 ExpTimePoints=ExpTimePoints ;
20 DelayPoints=squeeze ( Output . Delay ( 1 , 1 , 1 , : ) ) ;
21 Fs=1/((norm( Parameters . Spa t i a lPo in t s ( end , : )−Parameters .

Spa t i a lPo in t s ( 1 , : ) ) ∗ .3663 e−6)/ s i z e ( Parameters . Spat i a lPo in t s
, 1 ) ) ;

22 L = length ( Output . Displacement ( 1 , : , 1 , 1 ) ) ;
23 NFFT = 4∗2ˆ nextpow2 (L) ;
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24 %Create r ing−down p r o f i l e f o r exper imenta l data
25 f o r DelayLoop=1: l ength ( DelayPoints )%
26 Displacement=smooth ( squeeze ( Output . Displacement ( 1 , : , 1 ,

DelayLoop ) ) ,3 ) ; %Build a mode shape f o r each de lay time
27 %% Pul l FFT
28 Y = f f t ( Displacement ,NFFT) /L ;%take a s p a t i a l FFT of that

mode shape
29 f = Fs/2∗ l i n s p a c e (0 , 1 ,NFFT/2+1) ;
30 Lambda=1./ f ;
31 mag=abs (Y( 1 :NFFT/2+1) ) ;
32 i f ( DelayLoop==2)
33 subplot ( 4 , 1 , 1 ) ; p l o t ( smooth ( squeeze ( Output . Displacement

( 1 , : , 1 , DelayLoop ) ) ,3 ) /1e−12)
34 subplot ( 4 , 1 , 2 ) ; p l o t (Lambda/1e−6,mag/1e−12)
35 hold on
36 p lo t (Lambda( PeakPoint ) /1e−6,mag( PeakPoint ) /1e−12, ’ r∗ ’ )
37 xlim ( [ 0 , 7 0 ] )
38 end
39 DecayCurve ( DelayLoop )=max(mag( PeakPoint−MinusPoints :

PeakPoint+PlusPoints ) ) ;%Pul l the magnitude o f the d e s i r e d
peak

40 end
41 DecayCurve=smooth ( DecayCurve , 1 ) ’ ;
42 subplot ( 4 , 1 , 3 ) ; p l o t (−DelayPoints ( 1 : DelayLoop ) /1e−6,DecayCurve/1e

−12, ’ . ’ )
43 PeakWavelength=Lambda( PeakPoint )
44 %% f i t curve
45 Fs=7e9 ;
46 RingDownLength=−ExpTimePoints ( end ) ;
47 %% bui ld s imulated data
48 PreRollTime=−l i n s p a c e ( ExpTimePoints (1 )+TimeOffset , 0 , Fs∗(

ExpTimePoints (1 )+TimeOffset ) ) ;
49 PreRo l lS i gna l =( In i t i a lMagn i tude−NoiseFloor )∗ s i n ( Frequency ∗2∗ pi ∗

PreRollTime )+NoiseFloor ∗ s i n ( Frequency ∗2∗ pi ∗PreRollTime ) ;
50 RingDownTime=l i n s p a c e (0 ,−ExpTimePoints ( end )+2∗SampleTime , Fs∗(

RingDownLength+2∗SampleTime ) ) ;
51 RingDown=( In i t i a lMagn i tude−NoiseFloor )∗exp(−RingDownTime/Tau) .∗

s i n ( Frequency ∗2∗ pi ∗RingDownTime)+NoiseFloor ∗ s i n ( Frequency ∗2∗
pi ∗RingDownTime) ;

52 F u l l S i g n a l=horzcat ( PreRol lS igna l , RingDown) ;
53 Ful lS ignalTime=horzcat ( PreRollTime , RingDownTime)+TimeOffset ;
54 f o r loop =1: l ength ( ExpTimePoints )
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55 Indexes ( loop )=f i n d ( Ful lSignalTime> −ExpTimePoints ( loop ) ,1 ) ;
56 end
57 I t e r a t i o n = 1 ;
58 f o r loop =1: l ength ( Indexes ) %Repeat the procedure on the

s imulated data
59 SampleWindow=F u l l S i g n a l ( Indexes ( I t e r a t i o n ) : Indexes ( I t e r a t i o n

)+f l o o r ( SampleTime∗Fs ) ) ;
60 SampleWindowTime=Ful lS ignalTime ( Indexes ( I t e r a t i o n ) : Indexes (

I t e r a t i o n )+f l o o r ( SampleTime∗Fs ) ) ;
61 %% FFT
62 L = length (SampleWindow) ;
63 NFFT = 2ˆnextpow2 (L) ;
64 Y = f f t (SampleWindow ,NFFT) /L ;
65 f = Fs/2∗ l i n s p a c e (0 , 1 ,NFFT/2+1) ;
66 mag=2∗abs (Y( 1 :NFFT/2+1) ) ;
67 hold on
68 Peak ( I t e r a t i o n )=max(mag) ;
69 SimulationTime ( I t e r a t i o n )=SampleWindowTime (1) ;
70 I t e r a t i o n = I t e r a t i o n +1;
71 end
72 subplot ( 4 , 1 , 3 ) ; p l o t ( ( SimulationTime ) /1e−6,Peak/1e−12, ’ r . ’ )
73 subplot ( 4 , 1 , 4 ) ; p l o t (−DelayPoints , squeeze ( Output . Voltage ( 1 , 1 , 1 , : )

) )
74 %% Create Rˆ2 Value
75 YMean=mean( DecayCurve ) ;
76 SSRes=sum ( ( DecayCurve−Peak ) . ˆ 2 ) ;
77 SSTot=sum ( ( DecayCurve−YMean) . ˆ 2 ) ;
78 RSquared=1−(SSRes/SSTot )
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