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Probabilistic inference of multi-Gaussian fields from indirect
hydrological data using circulant embedding and
dimensionality reduction
Eric Laloy1,2, Niklas Linde3, Diederik Jacques1, and Jasper A. Vrugt2,4

1Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Mol, Belgium, 2Department of Civil and
Environmental Engineering, University of California, Irvine, California, USA, 3Applied and Environmental Geophysics
Group, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland, 4Department of Earth Systems Science,
University of California, Irvine, California, USA

Abstract We present a Bayesian inversion method for the joint inference of high-dimensional multi-
Gaussian hydraulic conductivity fields and associated geostatistical parameters from indirect hydrological
data. We combine Gaussian process generation via circulant embedding to decouple the variogram from
grid cell specific values, with dimensionality reduction by interpolation to enable Markov chain Monte Carlo
(MCMC) simulation. Using the Mat�ern variogram model, this formulation allows inferring the conductivity
values simultaneously with the field smoothness (also called Mat�ern shape parameter) and other geostatisti-
cal parameters such as the mean, sill, integral scales and anisotropy direction(s) and ratio(s). The proposed
dimensionality reduction method systematically honors the underlying variogram and is demonstrated to
achieve better performance than the Karhunen-Loève expansion. We illustrate our inversion approach using
synthetic (error corrupted) data from a tracer experiment in a fairly heterogeneous 10,000-dimensional 2-D
conductivity field. A 40-times reduction of the size of the parameter space did not prevent the posterior
simulations to appropriately fit the measurement data and the posterior parameter distributions to include
the true geostatistical parameter values. Overall, the posterior field realizations covered a wide range of
geostatistical models, questioning the common practice of assuming a fixed variogram prior to inference of
the hydraulic conductivity values. Our method is shown to be more efficient than sequential Gibbs sampling
(SGS) for the considered case study, particularly when implemented on a distributed computing cluster. It is
also found to outperform the method of anchored distributions (MAD) for the same computational budget.

1. Introduction

High-parameter dimensionality poses considerable challenges for the inversion of groundwater flow and
transport data [e.g., Kitanidis, 1995; Hendricks-Franssen et al., 2009; Laloy et al., 2013; Zhou et al., 2014, and
references therein]. What is more, conceptual and structural inadequacies of the subsurface model and
measurement errors of the model input (boundary conditions) and output (calibration) data introduce
uncertainty in the estimated parameters and model simulations. Another important source of uncertainty
originates from sparse data coverages that rarely contain sufficient information to uniquely characterize the
subsurface at a spatial resolution deemed necessary for accurate modeling. This results in an ill-posed
inverse problem with many different sets of model parameter values that fit the data acceptably well. Inver-
sion methods should consider this inherent uncertainty and provide an ensemble of model realizations that
accurately span the range of possible models that honor the available calibration data and prior
information.

Hydraulic conductivity (K) fields are typically assumed to be stationary and log-normally distributed with a
spatial structure determined by a two-point geostatistical model or variogram [e.g., Rubin, 2003]. Unfortu-
nately, a lack of (sufficient) point K measurements (if any) makes it difficult to estimate directly the geostatis-
tical parameters (mean, sill, variogram model, integral scales and anisotropy factors) from variographic
analysis [Ortiz and Deutsch, 2002; Nowak et al., 2010]. Simultaneous (inverse) inference of conductivity values
and associated geostatistical parameters is therefore attractive yet computationally challenging. Indeed,
only a few studies can be found in the literature that have attempted simultaneous estimation using global
and probabilistic search methods. For example, Jafarpour and Tarrahi [2011] used the Ensemble Kalman
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Filter (EnKF) [Evensen, 2003] to estimate jointly the conductivity field and associated geostatistical proper-
ties. However, their attempt was not particularly successful, and they attributed this lack of success to a
complex and nonunique relationship between the parameters of interest and available flow data. On the
contrary, Jardani et al. [2012] used Bayesian inversion and backed out successfully the transmissivities at 72
pilot-points together with 45 leakage coefficients, and the sill, and correlation range of a 2-D spherical iso-
tropic variogram. However, their case study was made relatively simple by assuming a fairly smooth multi-
Gaussian field with narrow ranges for the two unknown variogram parameters. Fu and G�omez-Hern�andez
[2009] introduced a Markov chain Monte Carlo (MCMC) simulation method that iteratively produces local
perturbations of a multi-Gaussian parameter field by resimulation of only a fraction of the field at each real-
ization. This approach cannot directly cope with variogram uncertainty, but Hansen et al. [2012] and Hansen
et al. [2013a, 2013b] proposed methodological extensions to enable joint inference of the values of a multi-
Gaussian field and its associated variogram properties. Their method, known as sequential Gibbs sampling
(SGS), was applied to the joint estimation of a 2-D velocity field and corresponding correlation lengths using
crosshole ground penetrating radar tomography data [Hansen et al., 2013b]. However, the variogram infer-
ence only concerned two parameters (i.e., the range in two different directions), and the inverse solution
was stabilized by using a Gaussian prior. Furthermore, variogram inference with SGS simply involves sam-
pling of the prior variogram distribution, which may not be efficient if the prior variogram uncertainty range
is large and/or the information content of the calibration data is high. Lastly, the method of anchored distri-
butions (MAD) introduced by Zhang and Rubin [2008] and Rubin et al. [2010] simultaneously derives vario-
gram parameters and hydraulic conductivity/transmissivity values at selected locations (the so called
‘‘anchors’’) within the hydrogeologic domain of interest. In the examples presented by Rubin et al. [2010]
and Murakami et al. [2010], the estimated geostatistical properties are restricted to the mean, sill and range
of a 2-D exponential isotropic model. Perhaps more importantly, the MAD framework relies on plain Monte
Carlo (MC) simulation and is thus computationally very demanding, particularly in high-dimensional param-
eter spaces [e.g., Murakami et al., 2010]. Indeed, MC simulation is very inefficient if the prior distribution is
large with respect to the size of the posterior distribution.

Dimensionality reduction of the parameter space can help solving high-dimensional inverse problems. This
includes methods such as the MAD technique described above or the Karhunen-Loève (KL) transform
[Loève, 1977]. The latter is widely used in subsurface hydrology to represent multi-Gaussian parameter
fields. The KL transform uses the covariance function to describe a spatially Gaussian process in a reduced
basis [e.g., Zhang and Lu, 2004; Li and Cirpka, 2006; Laloy et al., 2013]. The base functions are the eigenfunc-
tions of the covariance function multiplied by the square root of the associated eigenvalues. The sorted
eigenvalues and corresponding eigenfunctions can then be truncated, thereby leading to a reduced param-
eter space if the number of dominant eigenvalues is smaller than the number of simulation grid points.
Overall, the smoother the covariance kernel the larger the parameter reduction. Hence, the KL expansion
cannot cope efficiently with rough random fields and/or short integral scales. In such cases, the number of
base functions needed for accurate field reconstruction may approach the size of the original discretized
domain. Another difficulty arises from the fact that numerical estimation of the required eigenfunctions and
eigenvalues of the considered covariance kernel can be CPU-demanding for large grids [though different
kernel-specific solutions exist for speeding up efficiency, see e.g., Zhang and Lu, 2004; Li and Cirpka, 2006].

Here we present a novel Bayesian inversion approach for the simultaneous estimation of high-dimensional
hydraulic conductivity fields and associated two-point geostatistical properties from indirect hydrologic
data. Our method uses Gaussian process generation via circulant embedding [Dietrich and Newsam, 1997]
to decouple the variogram from grid cell specific values, and implements dimensionality reduction by inter-
polation to enable MCMC simulation with the DREAM ZSð Þ algorithm [Vrugt et al., 2009; Laloy and Vrugt,
2012]. We use the Mat�ern function to infer the conductivity values jointly with the field smoothness and
other geostatistical parameters (mean, sill, integral scales, anisotropy direction(s) and anisotropy ratio(s)).
Moreover, conditioning on direct point conductivity measurements (if any) is straightforward. We illustrate
our method using synthetic, error corrupted, data from a tracer simulation experiment involving a 10,000
dimensional 2-D conductivity field.

This paper is organized as follows. Section 2 presents the different elements of our inversion approach, and
demonstrates the merits of the proposed dimensionality reduction method by comparison against the
widely used KL transform. This is followed in section 3 with numerical experiments involving a fairly
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heterogeneous reference field. Our numerical experiments involve benchmark tests against standard imple-
mentations of the state-of-the-art SGS and MAD techniques. Section 4 takes a closer look at the required
CPU-time and provides further analysis of the performance of our method. Finally, section 5 concludes this
paper with a summary of the most important findings.

2. Methods

For ease of understanding, we proceed first by describing the general circulant embedding technique in
section 2.1. Next, section 2.2 details our proposed dimensionality reduction approach.This step is of utmost
importance as it reduces significantly the dimensionality of the parameter space used by the circulant
embedding, thereby enabling Bayesian inference via MCMC simulation. Section 2.3 then compares for dif-
ferent levels of dimensionality reduction the proposed approach against the KL transform, before sections
2.4, 2.5 and 2.6 present the other ingredients of our inversion approach.

2.1. Stationary Gaussian Process Generation via Circulant Embedding
We use the stationary Gaussian process generation through circulant embedding of the covariance matrix
proposed by Dietrich and Newsam [1997] (see also the excellent review by Kroese and Botev [2015]). We pro-
vide herein a short description of this methodology for a 2-D domain but extension to a 3-D grid is straight-
forward. Further details on the method can be found in the cited references.

Multi-Gaussian field generation over a regularly meshed 2-D grid can be implemented as follows. If Y0, the
zero-mean stationary Gaussian field to be generated, is of size m 3 n then:

1. Build a 2m21ð Þ3 2n21ð Þ symmetric covariance matrix S for a given covariance kernel C. The entries of S
are the 2-point covariances between any point in the 2m21ð Þ3 2n21ð Þ domain and the domain center
point. The dimensions 2m21ð Þ3 2n21ð Þ represent the minimal length for which a symmetric nonnega-
tive definite circulant matrix S can be found.

2. Compute the X matrix of eigenvalues as

X5
real FFT2 FFTSHIFT Sf gð Þ½ �

2m21ð Þ3 2n21ð Þ ; (1)

where real [] denotes the real part, FFT2 signifies the two-dimensional fast Fourier transform, and
FFTSHIFT is a function that swaps the first quadrant of a matrix with the third and the second quadrant
with the fourth.

3. Make sure that all elements Xi;j where i51 � � � 2m21 and j51 � � � 2n21 are greater than zero (nonnega-
tive embedding). Negative eigenvalues might appear when the integral scale of C becomes large com-
pared to the domain size. For instance, Dietrich and Newsam [1997] showed that for a two-dimensional
domain of size m 3 m the minimum ratios of the domain side length to the integral scale for which the
embedding is nonnegative are about 5.6 and 4.5 respectively, for Gaussian and exponential covariance
models. In this work, we simply assume that the search range of the integral scale is bounded such that
the maximum number of negative eigenvalues in X is kept reasonably small, and negative values are set
to zero if they occur.

4. Generate two 2m21ð Þ3 2n21ð Þ matrices with standard normal variates, say Z1 and Z2, and construct the
complex Gaussian matrix

Z5Z11iZ2; (2)

with i5
ffiffiffiffiffiffiffi
21
p

. Finally, two independent zero-mean stationary Gaussian realizations Y0 with prescribed
covariance kernel C are given by the first m 3 n elements of real f½ � and imag f½ � where imag [] signifies
the imaginary part and

f5FFT2
ffiffiffiffi
X
p
� Z

� �
; (3)

where � denotes component-wise multiplication. The complex standard normal matrix Z represents the
uncorrelated noise component of the Gaussian field, decoupled from its covariance structure embedded
into X.
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The use of circulant embedding for generating multi-Gaussian fields (section 2.1) has several attractive fea-
tures, one of which is that it enables joint inference by fast (de)coupling of the grid cell random numbers
from their geostatistical properties. The computational complexity (cost) of circulant embedding is similar
to that of the FFT method. The computational complexity of the FFT method is of order O nlog nð Þð Þ for a
symmetric positive definite n 3 n covariance matrix, which compares very favorably to the computational
complexity of O n3ð Þ for Cholesky decomposition. Yet statistical inference becomes more and more difficult
with increasing dimensionality of the search space. This justifies the dimensionality reduction approach pro-
posed in section 2.2.

Lastly, it is worth noting that an alternative FFT-based decoupling method was proposed by Le Ravalec et al.
[2000]. Their FFT moving average (or FFT-MA) approach has been developed independently from the stand-
ard technique by Dietrich and Newsam [1997], though it also makes use of FFT and the circulant embedding
property of covariance matrices. The FFT-MA generator is used as a basic building block by Hansen et al.
[2013a, 2013b] for joint inversion of field properties and variogram parameters. Yet our experience with
FFT-MA suggests the need for a larger embedding domain than for the standard approach to produce con-
sistent multi-Gaussian fields with long integral scales. Coupling FFT-MA with dimensionality reduction also
led to reconstructed models that are less accurate than those derived from coupling of dimensionality
reduction with the classical circulant embedding approach (see also section 2.3).

2.2. Dimensionality Reduction by One-Dimensional FFT Interpolation
We take advantage of one-dimensional interpolation to significantly reduce the dimensionality of the
parameter space. More specifically, we employ one-dimensional interpolation by the FFT method to resam-
ple two lower-dimensional vectors of standard normal variates, say r1 and r2, to two sets of 2m21ð Þ 2n21ð Þ
equally spaced points, hereafter referred to as z1 and z2. The reconstructed vectors z1 and z2 can then be
reshaped into the matrices Z1 and Z2 (see equation (2)). In this work, r1 and r2 have a dimensionality that is
one to two orders of magnitude lower than that of z1 and z2.

The original low-dimensional r1 and r2 vectors are thus transformed to the Fourier domain using FFT and
then transformed back with 2m21ð Þ 2n21ð Þ points to produce z1 and z2, respectively. We deliberately
chose FFT over other methods such as linear interpolation, as this approach was found to better preserve,
during resampling, the unit variance of the standard normal distribution. In other words, if r1 and r2 are
�N 0;1ð Þ, then the variances of z1 and z2 were found to be closer to unity when one-dimensional interpola-
tion is performed by FFT. In contrast, linear interpolation generally led to a variance reduction.

To eliminate short lag autocorrelation, the elements of z1 and z2 are permuted randomly after interpolation
from r1 and r2, respectively. This permutation step is necessary as the circulant embedding method breaks
down if neighboring values of z1 and z2 are correlated. Therefore, we use preselected permutation schemes
to independently permute the elements of z1 and z2. Of the two field realizations real f½ � and imag f½ � pro-
duced by equation (3), we only use real f½ � herein. This is because, for inference, each r5 r1; r2½ � vector must
be associated with a single multi-Gaussian field and corresponding simulated data set.

Our dimensionality reduction approach can thus be briefly summarized as follows:

1. Perform circulant (periodic) embedding of the covariance function at the desired resolution. This gives
the circulant matrix S.

2. Fourier transform S to obtain the matrix of eigenvalues X.

3. Generate two low-dimensional vector of real-valued (standard normal) random numbers, r1 and r2. The
larger the dimensionalty reduction, the smaller the selected sizes of r1 and r2.

4. Using one-dimensional FFT interpolation, resample r1 and r2 to two vectors of real-valued random num-
bers of the right size, z1 and z2.

5. Randomly permute the elements of z1 and z2 to eliminate the short-lag autocorrelation caused by the
interpolation.

6. Reshape the z1 and z2 vectors into the two matrices Z1 and Z2, respectively.

7. Fourier transform the product of the complex Gaussian matrix Z5Z11iZ2 with the square-root of X to
obtain two fields in the spatial domain (a real-valued and an imaginary one).
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Lastly, we would like to stress that our dimensional-
ity reduction approach is fundamentally different
from the KL transform. This latter method describes
multi-Gaussian fields in a reduced basis that repro-
duces the large scale variations only. The proposed
approach, on the contrary, does not favor one length
scale over another, and will lead to reconstructed
fields that consistently honor the selected variogram
independently of the number of ‘‘super parameters’’
or dimensionality reduction variables (e.g., elements
of r) considered. This is demonstrated in the next
section.

2.3. Effects of the Dimensionality Reduction
We first investigate the trade-off between dimensionality reduction and the accuracy of reconstruction, that
is, the degree to which the statistical properties of the reconstructed field match those derived from direct
generation of the original field. To highlight the essential differences between our approach and the KL
expansion, the latter is included in our analysis.

An anisotropic exponential variogram with short integral scales is considered for reconstruction of a 100 3

100 field (that is, 10,000 grid points). This variogram model characterizes the log conductivity of the refer-
ence field used in our inversions (Table 1 and Figure 1a). The grid point mean and variance distributions
and the average experimental variograms calculated from 1000 field realizations are analyzed to assess the
performance of the dimensionality reductions. The number of variables of each dimensionality reduction,
hereafter referred as DR variables, corresponds to the length of the r-vector, r5 r1; r2½ �. For the KL transform,
the dimensionality reduction variables are the coefficients that multiply the base functions [see e.g., Zhang
and Lu, 2004; Li and Cirpka, 2006; Laloy et al., 2013, for details] and we refer to these coefficients as KL
variables.

Figures 2 and 3 depict the corresponding results for 100, 250, and 1000 DR (Figure 2) and KL (Figure 3) vari-
ables. The mean of the reconstructed field (not shown) is not affected by dimensionality reduction, yet the
grid point variances clearly are (Figures 2a–2c and 3a–3c). As the number of DR variables increases and
dimensionality reduction becomes less important, the distribution of the grid point variance gets narrower
and closer to the statistical fluctuations derived from direct simulation of 1000 standard normal fields (Fig-
ures 2a–2c). A similar trend is observed for the KL transform (Figures 3a–3c), though with much more irregu-
lar and overdispersed variance distributions. Indeed, the proposed approach appears to honor the
prescribed variogram independently of the selected number of DR variables (Figures 2d–2f). The spurious

Table 1. Bounds of the Jeffreys (J), Uniform (U), and Standard
Normal (N) Prior Distributions Used in our Case Studya

Parameter Units Prior Prior Range True Value

re kg m23 J 0.01–0.3 0.039
m U 24 to 22 23
v J 0.5–2 1
IM m U 0.2–2 0.67
A degree U 60–120 75
RI U 0.1–0.5 0.25
m J 0.1–5 0.5
r N

aThe last column lists the true values of re and the geostatis-
tical parameters.
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Figure 1. (a) Reference log conductivity field and (b) simulated transport data used in the inversions. Each black cross in the right-hand
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ments for the inversion. The noise level is 0.039 kg m23.
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correlations introduced by dimensionality reduction do not noticeably affect the 2-point correlation struc-
ture of the reconstructed field. This is explained by the fact that the fixed permutation scheme used herein
causes the (artificial) additional correlations to be distributed independently from the lag (separation) dis-
tance between two points. This permutation scheme also has a desired byproduct which is that it simplifies
the model reduction error to random noise during inversion. As a consequence of the above, the associated
(randomly chosen) field realizations are visually similar to their counterparts derived from direct field gener-
ation (compare Figure 1a with Figures 2g–2i). Perhaps not surprisingly, the KL is unable to honor the vario-
gram of the reference field even when 1000 KL variables are used (Figures 3d–3f), and the generated fields
are overly smooth (Figures 3g–3i).

We repeated the above analysis for the same geostatistical model except for the integral scale along the
major axis of anisotropy that we fixed to a five times larger value, that is, 3.33 m. The main results of this
analysis (not shown) are that our proposed approach still outperforms the KL. Even when considering 1000
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Figure 2. (a-c) Grid point variance distribution and (d–f) experimental variograms in both the horizontal (x-dir) and vertical (z-dir) directions calculated from 1000 realizations of an auto-
correlated multi-Gaussian field with zero-mean and the reference variogram used for the inversions (see last of column Table 1 and Figure 1a), using (a, d) 100-dimensional, (b–e) 250-
dimensional, and (c–f) 1000–dimensional r5 r1; r2½ � vectors, and (g–i) randomly chosen field realizations derived with (g) 100-dimensional, (h) 250-dimensional, and (i) 1000-dimensional
r5 r1; r2½ � vectors. The gray and red bins in Figures 2a–2c denote the variance distributions obtained from our dimensionality reduction approach and from directly generating autocorre-
lated multi-Gaussian fields with the prescribed variogram, respectively. The red histograms in Figures 2a–2c thus represent the natural statistical fluctuations. The (plain and dashed) lines
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our dimensionality reduction approach (DR) and from directly generating autocorrelated multi-Gaussian fields with prescribed variogram (Full), respectively.
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KL variables, the KL transform was found to produce oversmoothed fields given the selected exponential
variogram model whereas the associated correlation lengths remain slightly overestimated (not shown).

We conclude from this analysis that the proposed dimensionality reduction approach (1) is well suited to
reconstruction of multi-Gaussian fields, and (2) outperforms the KL transform in cases of short and
moderate-lag correlation(s). For computational tractability, we use 250 DR variables in our first MCMC trial.
Though larger values would ensure less bias in the grid point variance, we consider the deviations of Figure
2b to be acceptable. In a second step, a MCMC trial with 1000 DR variables is performed, and the posterior
distributions resulting from using 250 and 1000 DR variables are compared.

2.4. Conditioning to Point Conductivity Measurements
The unconditional (approximately) multi-Gaussian field realizations generated by our method can easily be
conditioned on point measurements via kriging [e.g., Chilès and Delfiner, 1999]. This reproduces the actual
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point measurements and preserves the prescribed variogram. Details of this procedure can be found in
Appendix A. For the sake of brevity, however, we do not condition on point conductivity measurements in
the present paper.

2.5. The Mat�ern Variogram
We use the Mat�ern [1960] variogram model to describe the geostatistical properties of the field. This func-
tion is given by

cðjhjÞ5v 12
1

C mð Þ2m21

jhj
a

� �m

Km
jhj
a

� �� �
; (4)

where a > 0 is the scale (or range) parameter, C �ð Þ represents the gamma function, Km �ð Þ denotes the modi-
fied Bessel function of the second kind and order m, and jhj signifies the norm of the lag distance vector h.
The Mat�ern function is equivalent to the exponential model for m50:5, the Whittle [1954] model for m 5 1
and approaches the Gaussian model for m!1. The integral scale, I, measures spatial persistence and is
defined as [e.g., Rubin, 2003]

I5
1
v

ð1
0

CðjhjÞdjhj; (5)

with covariance function CðjhjÞ52cðjhjÞ1v. The integral scale of the Mat�ern model depends on the values
of a and the shape parameter m. For a fixed value of a, I becomes larger if m increases [e.g., Pardo-Iguzquiza
and Chica-Olmo, 2008]. This dependence might complicate inference of I. Fortunately, numerical simulations
with different values of a and m demonstrates that the ratio of I to a is constant for a given value of m. For
any value of m, the following fitted polynomial function can be used to derive a from I

I
a

520:0014m610:0242m520:1745m410:6558m321:4377m212:4506m10:0586: (6)

This allows us to simultaneously infer I and m. The coefficient of determination (squared correlation coeffi-
cient) associated with equation (6) is 0.999986.

2.6. Joint Inference of Conductivity Fields and Variogram Parameters
In the Bayesian paradigm, the unknown model parameters, h, are viewed as random variables with a poste-
rior probability density function (pdf), p hjdð Þ, given by

p hjdð Þ5 p hð Þp djhð Þ
p dð Þ / p hð ÞL hjdð Þ; (7)

where L hjdð Þ � p djhð Þ signifies the likelihood function of h. The normalization factor p dð Þ5
ð

p hð Þp djhð Þdh
is obtained from numerical integration over the parameter space so that p hjdð Þ is a proper probability den-
sity function and integrates to unity. The quantity p dð Þ is generally difficult to estimate in practice but is not
required for parameter inference. In the remainder of this paper, we will thus focus on the unnormalized
density p hjdð Þ / p hð ÞL hjdð Þ. As an exact analytical solution of p hjdð Þ is not available in most practical cases,
we resort to MCMC simulation to generate samples from the posterior pdf [see e.g., Robert and Casella,
2004]. The state-of-the-art DREAM ZSð Þ [ter Braak and Vrugt, 2008; Vrugt et al., 2009; Laloy and Vrugt, 2012]
algorithm is used to approximate the posterior distribution. A detailed description of this sampling scheme
including a proof of ergodicity and detailed balance can be found in the cited references. Various contribu-
tions in hydrology and geophysics (amongst others) have demonstrated the ability of DREAM ZSð Þ to success-
fully recover high-dimensional target distributions [Laloy et al., 2012, 2013; Linde and Vrugt, 2013; Rosas-
Carbajal et al., 2014; Laloy et al., 2014; Lochb€uhler et al., 2014, 2015].

Under Gaussian and stationarity assumptions, the field geostatistical properties and pixel/voxel random
number values that jointly define the (base ten) log conductivity field, log 10 Kð Þ, can be inferred simultane-
ously using MCMC simulation. We use the Mat�ern function to infer field smoothness jointly with the stand-
ard normal variates and other geostatistical parameters. The following geostatistical parameters are
sampled together with r1 and r2: (I) m, the mean, (II) v, the variance, (III) IM, the integral scale along the major
axis of anisotropy, (IV) RI, the ratio of the integral scale along the minor axis of anisotropy (Im) to the integral
scale along the major axis of anisotropy, (V) A, the anisotropy direction or angle (rotation anticlockwise from
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the z axis), and (VI) m, the shape parameter of the Mat�ern function. To build the covariance kernel, C, we
used the mGstat geostatistical toolbox in MATLAB (http://mgstat.sourceforge.net/).

If we assume the N-vector of residual errors (differences between the measured and simulated data), e, to
be Gaussian distributed, uncorrelated and with constant variance, r2

e , the likelihood function of h can be
written as

L hjdð Þ5 1ffiffiffiffiffiffiffiffiffiffi
2pr2

e

p
 !N

exp 2
1
2

r22
e

XN

i51

di2Fi hð Þ½ �2
 !

; (8)

where d5 d1; . . . ; dNð Þ is a set of measurements, and F hð Þ is a deterministic ‘‘forward’’ model. The standard
deviation of the residuals, re (kg m23), is jointly inferred with the other unknown variables, and thus h5

re;m; v; IM; RI; A; m; r1; r2½ � (see Table 1). The number of parameters sampled with MCMC is thus equivalent
to the number of DR variables plus seven. This equates to a total of 257 parameters for the first MCMC trial
with 250 DR variables, and 1007 parameters for the second trial with 1000 DR variables.

The standard normal distribution of z1 and z2 (and thus r1 and r2) can be enforced by the use of a standard
normal prior

p rð Þ5
exp 2 1

2 rT r
	 

ffiffiffiffiffiffi
2p
p N ; (9)

in which the superscript T signifies transpose and r5 r1; r2½ �. The variogram is assumed to be largely
unknown and thus characterized by a wide prior, details of which will follow in section 3.

3. Case Studies

3.1. Model Setup
The 100 3 100 modeling domain lies in the x – z plane with a grid cell size of 0.2 m (Figure 1a). Steady state
groundwater flow is simulated using MaFloT [K€unze and Lunati, 2012] assuming no flow boundaries at the
top and bottom and fixed head boundaries on the left and right sides of the domain so that a lateral head
gradient of 0.025 is imposed, with water flow in the x direction. For the tracer experiment, we consider two
different boreholes that are 20 m apart. A conservative tracer with concentration of 1 kg m23 is applied into
the fully screened left borehole using a step function. The background solute concentration is assumed to
be 0.01 kg m23. Ignoring density effects, conservative transport of the tracer through the subsurface is
simulated with MaFloT using open boundaries on all sides, and longitudinal and transverse dispersivities of
0.1 and 0.01 m, respectively. Solute transport was monitored during a period of 10 days with concentration
measurements made every day at nine different depths (2, 4, 6, 8, 10, 12, 14, 16, and 18 m) in the borehole
at the right-hand side. The total number of observations is therefore 90. These measurement data were
then corrupted with a Gaussian white noise using a standard deviation equivalent to 5% of the mean
observed concentration. This led to a root-mean-square-error (RMSE) of 0.039 kg m23 between error-free
and noisy data (Figure 1b).

3.2. Inference of an Heterogeneous Random Field With Short Integral Scales
Our case study considers a reference log conductivity field with an exponential variogram model and fairly
short integral scales compared to the domain size of 20 3 20 m (Figure 1a). The values of the geostatistical
parameters are: m 5 0.5, IM 5 0.67 m and RI 5 0.25 (Im 5 0.17 m). Furthermore, we assume value of m 5 23
and v 5 1 for the mean and variance of the log-conductivity field, whereas the anisotropy angle, A, is set to
75 degrees. In the absence of prior information about the geostatistical parameters (with exception of the
ranges of the search space), we assumed either uniform or Jeffreys [1946] (that is, log-uniform) truncated
individual priors that span a wide range of values. We selected a bounded uniform prior for m and a
bounded Jeffreys prior for v. This is a common choice in the inference of multi-Gaussian fields [e.g., Box and
Tiao, 1973; Rubin et al., 2010]. We chose bounded uniform priors for IM, A, and RI, and a bounded Jeffreys
prior for m. Also, a Jeffreys prior is selected for re. Table 1 summarizes the prior distribution and correspond-
ing ranges of each parameter. For completeness, we also list the true values of the geostatistical parameters
used to generate the reference field.
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We estimate the posterior distribution of the parameters using MCMC simulation with DREAM ZSð Þ. Default
values of the algorithmic variables are used. Yet the number of Markov chains was increased to eight and
the number of crossover values (geometric series) set to 25 to enhance the MCMC search capabilities for
this high-dimensional parameter space. To further increase the acceptance rate of proposals, we decreased
the default jump rate of DREAM ZSð Þ by a factor of four. Of course, we could have tuned the jump rate auto-
matically in DREAMðZSÞ to achieve a certain desired acceptance rate of proposals but choose this simpler
approach. Convergence of the sampled Markov chains was monitored using the potential scale reduction
factor, R̂ [Gelman and Rubin, 1992]. This statistic compares for each parameter of interest the average
within-chain variance to the variance of all the chains mixed together. The closer the values of these two
variances, the closer to one the value of the R̂ diagnostic. Values of R̂ smaller than 1.2 are commonly
deemed to indicate convergence to a limiting distribution. Our simulation results indicate that convergence
is achieved after about 400,000 forward model evaluations (FEs) (shown later). Visual inspection of the
sampled likelihood values suggests however, that far fewer model evaluations are needed for every chain
to locate the posterior distribution.

Figure 4a presents the evolution of the R̂ statistic calculated from the last 90% of the samples in each chain,
and Figure 4b depicts a trace plot of the sampled RMSE values for each of the eight Markov chains. The
average acceptance rate (AR) is about 33.3 % (not shown). All chains appear to sample stable RMSE (and
thus likelihood) values after approximately 40,000 FEs (Figure 4b). However, another 360,000 FEs are
required before all R̂ values are smaller than 1.2 and official convergence can be declared (Figure 4a). It is
not surprising that the sampled RMSE values stabilize much faster than the associated values of the R̂ diag-
nostic. The chains converge rapidly to a point in the posterior but many more function evaluations are
required to fully explore this distribution and satisfy requirements for convergence.

Marginal distributions of re, the geostatistical parameters and r1 and r250 are depicted in Figure 5 using ker-
nel density smoothing. The prior distribution is also shown. The standard deviation of the residuals, re, and
the field mean of the log conductivity, m, appear very well resolved. Despite a 40-times dimensionality
reduction, the posterior distributions of the geostatistical parameters contain their true values used to cre-
ate the reference conductivity field. The posterior modes are somewhat removed from the true values,
especially for A and to a lesser extent m. This is due to measurement errors and the use of a reduced param-
eter space which inevitably introduces some bias in the sampled posterior distribution.

Figure 6 displays the reference conductivity field and eight randomly chosen samples from the posterior
distribution. The posterior conductivity fields differ substantially from each other, yet all of them produce
simulation results that are in (statistical) agreement with the observed data. The geostatistical properties of

Figure 4. (a) Evolution of the R̂ convergence metric [Gelman and Rubin, 1992] for the proposed method with 250 DR variables. Each of the
257 sampled parameters is coded with a different color. The chains have officially converged if the plotted lines fall below the horizontal
black line. (b) Trace plot of the sampled RMSE values. Each of the eight Markov chains is coded with a different color. The horizontal black
line denotes the true RMSE of 0.039 kg m23.
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realization V are relatively similar to those of the reference field. The other posterior fields include fairly dif-
ferent spatial statistics (e.g., realizations III, IV, and VI).

To investigate the bias introduced by the dimensionality reduction in the posterior estimates we would
need to compare our results for the DREAMðZSÞ trial with 250 DR variables against those of DREAMðZSÞ for
the original parameter space. However, such a sampling run is computationally intractable. Instead, we per-
formed a trial with DREAMðZSÞ using 1000 DR variables and thus 1007 parameters.

The results of this more complex run are fairly similar to those of our trial with 250 DR variables. Again,
about 30,000–40,000 FEs are required to reach stable values of the RMSE (not shown), yet a larger
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Figure 5. Marginal prior and posterior distributions of (a) the standard deviation of the residual errors, (b–g) the six geostatistical parameters, and (h) the first (r1), and (i) last (rMAX) ele-
ments of the r vector for the inversion with 250 (blue lines) and 1000 (dashed red lines) DR variables. The distributions are derived from kernel density smoothing using the last 90% of
the samples generated by DREAM ZSð Þ . The parameter values used for creating the reference field are separately indicated with a vertical black line. Since the reference field was gener-
ated without dimensionality reduction, there are no true values for r1 and rMAX. The rMAX parameter is either r250 (blue line) or r1000 (red dashed line), whereas the respective r1 and rMAX

distributions derived from the inversions with 250 and 1000 DR variables are grouped into the same plots for visual convenience only. There is no reason for these distributions to be
similar across inversions.
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computational budget of approximately 1 million FEs is required for this 1007 dimensional search space
before convergence to a limiting distribution can be officially declared (not shown). This is more than twice
the number of FEs needed for the previous trial with 250 DR variables, but arguably rather efficient consid-
ering the about fourfold increase in parameter dimensionality. The AR of DREAMðZSÞ is rather large (45%)
but results in a good mixing of the individual chains. Perhaps most importantly, the marginal distributions
of the geostatistical parameters plotted in Figures 5b–5g (dashed red line) are in good agreement with their
counterparts derived from the DREAMðZSÞ trial with 250 DR variables (solid blue line). For the trial with 1000
DR variables as well, the marginal distributions include the true values used to generate the reference log-
conductivity field. Note though that the distributions of most of the geostatistical parameters have become
somewhat more peaky, most noticeably for A. The distributions of m, v, IM and m are also more centered on
their true values.
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Altogether we conclude that the posterior distribution of the geostatistical parameters is only weakly
affected by dimensionality reduction, let alone the maximum a posteriori (MAP) values which are better
resolved as dimensionality reduction decreases.

The field realizations resulting from the 1007-dimensional posterior distribution are in strong qualitative
agreement with the counterparts derived from the 257-dimensional posterior distribution, but with less var-
iation in the anisotropy angle, and a slight tendency toward smoother fields (Figure 7).

3.3. Comparison With Other Posterior Sampling Methods
3.3.1. Comparison Against Sequential Gibbs Sampling
Now that we have discussed the main elements of our inversion methodology we are left with a compari-
son against state-of-the-art methods in the literature. As a first test, we consider the SGS method for
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variogram estimation as implemented in the SIPPI 0.94 toolbox [Hansen et al., 2013a, 2013b]. This open
source MATLAB package is described in detail in the cited references, and interested readers are referred to
these publications. We used default settings for the algorithmic variables, and the same prior distribution
for re and the geostatistical parameters as used in our numerical experiments described previously. Further-
more, we added to the SIPPI toolbox the Mat�ern variogram as this function was not yet incorporated in the
toolbox.

Before proceeding with our results, we would like to emphasize that SGS (or the very similar but independ-
ently developed iterative spatial resampling (ISR) scheme by Mariethoz et al. [2010]) is a powerful MCMC
algorithm for sampling from complex geologic prior models [e.g., Mariethoz et al., 2010; Hansen et al., 2012].
This method creates candidate points by conditioning a field realization drawn from the prior to a randomly
chosen set of points from the current state (and hence model/field) of the Markov chain. Nonetheless, SGS
with variogram inference suffers one important drawback and that is that it relies completely on sampling
from the prior distribution of the variogram parameters (see Hansen et al. [2013b] for details). Moreover,
SGS uses a single Markov chain in pursuit of the posterior distribution. This not only makes it difficult to rap-
idly explore multidimensional parameter spaces, but also complicates assessment of convergence, and
effective use of multiprocessor resources. Prefetching [Brockwell, 2006] and multitry Metropolis sampling
[Liu et al., 2000] offer some options for distributed, multicore implementation of single chains. What is
more, the use of a single chain increases chances of premature convergence. To mitigate this risk, it is gen-
erally recommended to perform several independent trials and verify whether the different chains have
converged to the approximate same limiting distribution. In contrast to SGS, DREAM ZSð Þ is embarrassingly
parallel and thus readily amenable to multiprocessor distributed computation which should drastically
reduce the required CPU time for posterior exploration. In the case studies presented herein, we ran each of
the eight different Markov chains of DREAM ZSð Þ on a different processor. This significantly reduced the CPU
time required for posterior exploration, details of which will be presented in section 4 of this paper.

For proper convergence assessment, we performed three (independent) SGS trials using starting points
drawn randomly from the prior distribution. Because of the associated computational costs, we terminated
the calculation after a total of 500,000 FEs (that is, 166,667 FEs per Markov chain) and the comparison with
our method is made on the basis of the same computational budget of 500,000 FEs. We used default set-
tings of SGS and individually sampled, with equal probability, the different geostatistical parameters and
vector of (standard normal) field values. Each iteration produces a candidate log conductivity field as fol-
lows. With probability 1/8, either a new 10,000-dimensional vector of standard normal variates, say g, is pro-
duced, or the current geostatistical model is updated by replacing one of the six geostatistical parameters
with a random draw from its prior, or a new value of re is sampled from p reð Þ. When g is updated, the can-
didate model (proposal) is obtained by conditioning on a fraction, /, of locations randomly chosen from
the current model. The value of / is adapted during burn-in to achieve a targeted acceptance rate, which
we set to 20%. The upper bound of / was set to 1 (i.e., totally different proposal) whereas its lower bound
was fixed to 0.001, that is, only 10 of the 10,000 log 10 Kð Þ values are perturbed per iteration.

With an average (adapted) value of / reaching its lower bound of 0.001, the mean AR values for each of the
eight individual sampling steps are 20.7, 1.0, 7.9, 5.1, 9.4, 4.9, 13.4, and 7.0%, for g, m, v, IM, A, RI, m, and re,
respectively. Both SGS and the proposed sampling method successfully fit the data to the prescribed error
level (Figures 8a and 8b), but the SGS method needs somewhat fewer function evaluations to do so. Never-
theless, our proposed inversion approach is more effective and efficient in exploring the posterior target, as
shown by the respective Markov chain trajectories of DREAM ZSð Þ and SGS for the field variance (Figures 8c
and 8d) and integral scale along the major anisotropy axis (Figures 8e and 8f). Even after a total of 500,000
FEs or 166,667 FEs per chain, the three SGS trials do not converge appropriately to the true value of IM. The
DREAM ZSð Þ algorithm on the contrary needs about 200,000 FEs (that is, 25,000 FEs per chain) to converge to
the reference value of 0.67. Moreover, SGS has difficulty in sampling the correct value of v as well. Two of
the three chains are somewhat stuck near its lower bound.

A convergence check of the three chains sampled by SGS is provided in Figure 9a. For convenience we plot
only the evolution of the R̂ statistic of re and the six variogram parameters. In practice, SGS samples 10,007
parameters, and hence convergence can only be formally declared if all sampled parameters fall below the
threshold value of 1.2 (horizontal black line). Nevertheless, it is evident that SGS is unable to converge
adequately within the allowed computational budget. Even after 500,000 FEs several of the plotted
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trajectories remain well above the R̂-threshold value of 1.2. As a consequence, the corresponding posterior
distribution is quite inaccurate. The posterior mode of v is close to its lower bound, well removed from the
reference value (Figure 9b). What is more, a multimodal posterior distribution is observed for IM with true
value that falls in a region with lower posterior probability (Figure 9c). Finally, the posterior fields sampled
by SGS exhibit considerably more correlation at different spatial lags than its counterpart derived from our
proposed approach (Figure 9d).

3.3.2. Comparison Against the Method of Anchored Distributions
The MAD method (see Rubin et al. [2010], for an extensive description) is especially designed for inference
of (multi-)Gaussian parameter fields. It differs from classical Bayesian inference methods in the treatment of
the likelihood function, L hjdð Þ � p djhð Þ. Whereas SGS and our proposed inversion method describe p djhð Þ
as a parametric probability distribution of the residuals (e.g., equation (8)) that is specified a priori, MAD
takes p djhð Þ as the conditional probability density of the simulated data given a parameter set h. This is
done by approximating p djhð Þ from an ensemble of conditional simulations, using a nonparametric
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approach whenever computationally tractable. This method has several advantages, one of which is that it
avoids making strong and sometimes unjustified assumptions about the properties of the residual errors. In
practice, however, and because of computational constraints, at least some parametric (Gaussian) assump-
tions often need to be made about p djhð Þ a priori [e.g., Murakami et al., 2010; Over et al., 2015]. Another fea-
ture of MAD is that it uses basic Monte Carlo simulation to solve for the posterior parameter distribution.
Once the anchor locations have been defined, the inferred parameters are drawn randomly from their (mar-
ginal) prior distribution for a prespecified number of times. This is not very efficient, especially if the poste-
rior distribution constitutes only a small part of the prior distribution. Hence, even with the assumption of a
Gaussian distribution for p djhð Þ, the total number of forward model evaluations required by MAD will typi-
cally be on the order of several millions [e.g., Murakami et al., 2010; Over et al., 2015]. This requires the use
of many processors on a distributed computing network [on the order of several thousands, e.g., Murakami
et al., 2010].

MAD distinguishes between two types of inferred variables: variogram parameters, hV and conductivity val-
ues at selected locations or anchor sets, hK. If no direct point conductivity measurements are considered in
the inference, the posterior distribution p hV; hKjdð Þ reduces to

p hV; hKjdð Þ / p hVð Þp hKjhVð Þp djhV; hKð Þ; (10)

where p hVð Þ denotes the prior distribution of the variogram parameters, p hKjhVð Þ signifies the prior anchor
distribution given a variogram parameter vector hV, and p djhV; hKð Þ is the likelihood function of hV; hKf g.
While p hVð Þ and p hKjhVð Þ can be derived analytically, numerical estimation of p djhV; hKð Þ is a complicated
task. MAD proceeds as follows. First, define the anchor locations. Then sample p hVð Þ nV times and for each

Figure 9. (a) Evolution of the R̂ convergence diagnostic [Gelman and Rubin, 1992] for the total computational budget of 500,000 model
evaluations of the three SGS trials. We only plot traces (color coded) of the six geostatistical parameters and re. (b, c) Marginal posterior
distributions (red lines) of v and IM derived from the last 90% of the samples generated with the three different SGS trials. Kernel density
smoothing is applied. The prior distribution is indicated by a gray line, and the true values by the vertical black lines. (d) Mean autocorrela-
tion function (ACF) of the 10,000 log-conductivity grid values derived from DREAMðZSÞ (blue line) or SGS (red line) for lags 0–5000. The
lag-k autocorrelation is defined as the correlation between draws k lags apart. Listed statistics are computed for the last 50,000 log-
conductivity fields sampled in the eight DREAMðZSÞ chains or the three independent SGS chains. The average of the chains is presented.
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of the resulting hV vectors, sample p hKjhVð Þ nK times. Third, create an ensemble of nf random fields, W, from
each of the nV 3 nK hV; hKf g parameter sets using a direct conditioning method such as the one described
in Appendix A. The nf fields of W thus exactly honor hK and are distributed according to hV, and result into
nf simulated data vectors, D. Finally, the likelihood, p djhV; hKð Þ, of the parameter set under evaluation,
hV; hKf g, is approximated by fitting a multivariate density distribution to the multivariate frequency distribu-

tion of the simulated data stored in D. For this, one can use nonparametric kernel density estimation (possi-
bly after reduction of the data vector) or assume a Gaussian parametric model for d. The total number of
forward model calls is therefore equal to nV 3nK 3nf .

We used 49 anchors on a regular grid (Figure 10a) and set nV to 500, nK to 12 and nf to 100, leading to a
total computational budget of 600,000 FEs. The 500 samples from p hVð Þ were drawn randomly using Latin
hypercube sampling. Our values for nV, nK and nf are based on the work of Murakami et al. [2010] who used
44 anchor locations, nV 5 3000, nK 5 12 and nf 5 250 for a grid of approximatively similar dimension as in
our numerical experiments herein, but with a much smaller prior variogram uncertainty. Obviously, the best
choice for the MAD algorithmic parameters is problem-dependent and our settings might not be optimal.
We would like to stress, however, that a total of 600,000 FEs for MAD is justified. Indeed, a computational
budget of only 500,000 FEs was assigned to our proposed inversion approach (section 3.2) and the SGS
method (section 3.3.1).

Figure 10b presents a histogram of the RMSE values derived from the 600,000 forward model calls. The min-
imum RMSE sampled by MAD is 0.051 kg m23 (vertical black line) which is not only significantly larger than
the true value of 0.039 kg m23 for the reference field but also outside the posterior distribution of RMSE val-
ues sampled by our approach and SGS (see Figures 4b, 8a, and 8b). No matter how the likelihoods of the i5
1; � � � ; nV 3nK hV; hKf gi parameter sets are estimated, inference from these 600,000 forward runs can thus
only be flawed. Obviously, appropriate (random) sampling of the prior parameter space would require
much larger values of nV and nK.

4. Discussion

Some remarks about the presented study are in order. Due to time constraints, the different MCMC and
MAD trials were only performed once. Repeated sampling runs with different random seeds would provide
a more accurate benchmark of our inversion methodology. Nevertheless, the results presented herein
inspire confidence in the effectiveness and efficiency of our proposed Bayesian inversion method.

The computational requirement is an important issue. Considering a serial calculation framework, we find
that the serial implementation of our approach outperforms both SGS and MAD for the case study consid-
ered herein. The DREAM ZSð Þ sampler is however designed specifically so that it is embarrassingly parallel
and thus can take maximum advantage of multiprocessor resources. We did so herein using an 8-core work-
station, assigning each of the eight interacting Markov chains to a different processor. This resulted in a six
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Figure 10. (a) Anchor locations and (b) RMSE distribution of the 600,000 forward runs performed by the MAD trial. The vertical black line
in Figure 10b denotes the true RMSE value of 0.039 kg m23. The RMSE values sampled with MAD are much larger than the true value. This
simply demonstrates that the method cannot converge properly within the assigned computational budget of 600,000 model evaluations.
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times speed up of the calculations. The advantages of the proposed multicore approach are hence evident.
Note also that if more parallel cores are available, then the search efficiency can be further increased by
using the multitry variant of DREAM ZSð Þ [Laloy and Vrugt, 2012].

Another crucial point is the inevitable trade-off between model truncation (dimensionality reduction) and
the accuracy of the posterior field realizations. The MCMC search is performed within a truncated model
space that constitutes only a subset of the original model space. By construction, not all possible posterior
models can therefore be represented by the truncated posterior pdf. Model truncation might also bias the
posterior distribution by shifting the probability mass away from the original MAP values. In addition, for a
given truncation level the peakedness of the likelihood function will influence the quality of approximation
of the original posterior distribution by the truncated posterior distribution. A dimensionality reduction with
a factor 40 was shown to work well for the considered case study. The resulting posterior distribution was
found to be in good agreement with the distribution stemming from a dimensionality reduction with a fac-
tor 10. As model space truncation or peakedness of the likelihood further increases, the distribution and
associated parameter uncertainties will nevertheless be increasingly corrupted. The combined effects of
dimensionality reduction and measurement data quality on the accuracy of the estimated target distribu-
tion deserve further analysis.

The Gelman and Rubin [1992] potential scale reduction factor was computed using the last 90% of the gen-
erated samples in each Markov chain evolved by DREAM ZSð Þ. This value differs from the default of 50% used
in DREAM ZSð Þ, but is warranted in each of our case studies because the joint chains converge to stable RMSE
values within less than 10% of the assigned computational budget. Indeed, the sampled RMSE (and thus
likelihood) values appropriately converge within 30,000–40,000 FEs. The use of 90% of the chains is equiva-
lent to a burn-in of 50,000 (trial with 250 DR variables) and 100,000 (trial with 1000 DR variables) samples,
well beyond when the posterior distribution has been located.

This study considers a two-dimensional flow and transport modeling domain. Extension of the proposed
approach to 3-D domains is straightforward and will be investigated in future work. Extension to pluri-
Gaussian simulation [e.g., Lantu�ejoul, 2002] for inference of categorical conductivity fields also seems
promising.

5. Conclusions

This paper presents a novel Bayesian inversion scheme for the simultaneous estimation of high-
dimensional multi-Gaussian conductivity fields and associated geostatistical properties from indirect hydro-
logical data. Our method merges Gaussian process generation via circulant embedding [Dietrich and
Newsam, 1997] to decouple the variogram from grid cell specific values, with dimensionality reduction by
interpolation to facilitate Markov chain Monte Carlo (MCMC) simulation with the DREAM ZSð Þ algorithm [ter
Braak and Vrugt, 2008; Vrugt et al., 2009; Laloy and Vrugt, 2012]. We use the Mat�ern variogram model to infer
the conductivity values simultaneously with field smoothness (or Mat�ern shape parameter) and other geo-
statistical parameters (mean, sill, integral scales, and anisotropy factor(s)). The proposed dimensionality
reduction approach systematically honors the prescribed variogram and is shown to outperform the
Karhunen-Loève [Loève, 1977] transform. Our inverse method is demonstrated using synthetic, error cor-
rupted, data from a flow and transport model involving a fairly heterogeneous 10,000-dimensional multi-
Gaussian conductivity field. Despite a reduction of the parameter space by a factor of 40, the measurement
data were fitted to the prescribed noise level while the derived posterior parameter distributions always
included the true geostatistical parameter values. A comparison between the posterior distributions derived
for a 257 (40-times reduction) and 1007-dimensional (10-times reduction) parameter space, respectively,
indicated that the bias introduced by the dimensionality reduction in the posterior estimates is rather small.
This inspires confidence in the effectiveness of the approach. The posterior field uncertainty encompassed
a large range of different geostatistical models, which calls into question the common practice in hydro-
geology of fixing the variogram model before inversion. For the considered case study, the serial version of
our method appears to be more computationally efficient than both the SGS algorithm of Hansen et al.
[2012, 2013a, 2013b] and the MAD method of Rubin et al. [2010]. The advantages of the proposed approach
are even more apparent when executed on a distributed computing network. A six times reduction in CPU
time was observed with DREAM ZSð Þ using parallel evaluation of the eight different Markov chains. Future
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work will investigate the application of the proposed approach to 3-D modeling domains, and to pluri-
Gaussian simulations for inference of categorical field structures.

Appendix A

Conditioning an unconditional simulation of a random field can be easily performed via kriging. Kriging-
based geostatistical methods are extensively described in the literature [e.g., Chilès and Delfiner, 1999; Ren
et al., 2005; Huang et al., 2011].

If the values of Y xð Þ are known at locations xi; i51 � � � ny , the value of Y xð Þ at any arbitrary location x, Ykr xð Þ,
can be predicted unbiasedly as

Ykr xð Þ5
Xny

i51

kiY xið Þ (A1)

in which the kriging weights ki depend solely on the prescribed variogram. Now if we have an uncon-
ditional realization, Yuc xð Þ, the corresponding random field conditioned to the ny observed values, Yc, is
given by

Yc xð Þ5Yuc xð Þ1 Ykr xð Þ2Ykr-u xð Þ½ �; (A2)

where Ykr-u is obtained by kriging (equation (A1)) using the unconditional simulated values at the ny data
locations, and the same kriging weights are used for determining Ykr xð Þ and Ykr-u xð Þ. Equation (A2) implies
that, at each conditioning data location, the unconditional simulated value is taken out and replaced by the
conditioning datum. In the vicinity of a conditioning data location, the kriging operator smooths the change
between the conditioning data and the unconditional simulated values outside the range of kriged values.
The conditioning is therefore exact at data locations whereas beyond the correction range, the conditional
simulated values will be the unconditional simulated values.

Using matrix notation, the ki in equation (A1) are obtained for a random field with dimension m 3 n as

k5CT
dfC21

dd ; (A3)

where Cdf is the ny3 m3nð Þ matrix of covariances between data and target field values, Cdd is the data-to-
data covariance matrix, and the superscripts T and 21 denote transpose and inverse matrix operations,
respectively.

References
Box, G. E. P., and G. C. Tiao (1973), Bayesian Inference in Statistical Analysis, Addison-Wesley, Mass.
Brockwell, A. E. (2006), Parallel Markov chain Monte Carlo simulation by pre-fetching, J. Comput. Graph. Stat., 15, 246–261, doi:10.1198/

106186006X100579.
Chilès, J.-P., and P. Delfiner (1999), Geostatistics: Modeling Spatial Uncertainty, John Wiley, N. J.
Dietrich, C. R., and G. H. Newsam (1997), Fast and exact simulation of stationary Gaussian processes through circulant embedding of the

covariance matrix, SIAM J. Sci. Comput., 18, 1088–1107.
Evensen, G. (2003), The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dyn., 53, 343–367.
Fu, J., and J. J. G�omez-Hern�andez (2009), A blocking Markov chain Monte Carlo method for inverse stochastic hydrogeological modeling,

Math. Geosci., 41, 105–128, doi:10.1007/s11004-008-9206-0.
Gelman, A. G., and D. B. Rubin (1992), Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457–472.
Hansen, T. M., K. C. Cordua, and K. Mosegaard (2012), Inverse problems with non-trivial priors: Efficient solution through sequential Gibbs

sampling, Comput. Geosci., 16, 593–611, doi:10.1007/s10596-011-9271-1.
Hansen, T. M., K. C. Cordua, M. C. Looms, and K. Mosegaard (2013a), SIPPI: A Matlab toolbox for sampling the solution to inverse problems

with complex prior information: Part 1—Methodology, Comput. Geosci., 52, 470–480, doi:10.1016/j.cageo.2012.09.004.
Hansen, T. M., K. C. Cordua, M. C. Looms, and K. Mosegaard (2013b), SIPPI: A Matlab toolbox for sampling the solution to inverse problems

with complex prior information: Part 2—Application to crosshole GPR tomography, Comput. Geosci., 52, 481–492, doi:10.1016/
j.cageo.2012.10.001.

Hendricks-Franssen, H.J., A. Alcolea, M. Riva, M. Bakr, N. van der Wiel, F. Stauffer, and A. Guadagnini (2009), A comparison of seven methods
for the inverse modelling of groundwater flow: Application to the characterisation of well catchments, Adv. Water Resour., 32(6), 851–
72, doi:10.1016/j.advwatres.2009.02.011.

Huang, J. W., G. Bellefleur, and B. Milkereit (2011), CSimMDMV: A parallel program for stochastic characterization of multi-dimensional,
multi-variant, and multi-scale distribution of heterogeneous reservoir rock properties from well log data, Comput. Geosci., 37, 1763–
1776, doi:10.1016/j.cageo.2010.11.012.

Jafarpour B., and M. Tarrahi (2011), Assessing the performance of the ensemble Kalman filter for subsurface flow data integration under
variogram uncertainty, Water Resour. Res., 47, W05537, doi:10.1029/2010WR009090.

Acknowledgments
We would like to thank the Associate
Editor Olaf Cirpka and three
anonymous reviewers for their useful
comments and suggestions which
significantly helped to improve the
manuscript. We are grateful to Thomas
Mejer Hansen and coworkers for
sharing online their mGstat and SIPPI
toolboxes. We also like to thank
Rouven K€unze for providing us with
the MaFloT simulator. A MATLAB code
of the approach proposed in this study
is available from the first author
(elaloy@sckcen.be). The general-
purpose DREAMðZSÞ algorithm is
available from the fourth author
(jasper@uci.edu).

Water Resources Research 10.1002/2014WR016395

LALOY ET AL. JOINT FIELD/VARIOGRAM MCMC INVERSION 4242

http://dx.doi.org/10.1198/106186006X100579
http://dx.doi.org/10.1198/106186006X100579
http://dx.doi.org/10.1007/s11004-008-9206-0
http://dx.doi.org/10.1007/s10596-011-9271-1
http://dx.doi.org/10.1016/j.cageo.2012.09.004
http://dx.doi.org/10.1016/j.cageo.2012.10.001
http://dx.doi.org/10.1016/j.cageo.2012.10.001
http://dx.doi.org/10.1016/j.advwatres.2009.02.011
http://dx.doi.org/10.1016/j.cageo.2010.11.012
http://dx.doi.org/10.1029/2010WR009090


Jardani, A., J. P. Dupont, A. Revil, M. Massei, M. Fournier, and B. Laignel (2012), Geostatistical inverse modeling of the transmissivity field of
a heterogeneous alluvial aquifer under tidal influence, J. Hydrol., 472, 287–300.

Jeffreys, H. (1946), An invariant form for the prior probability in estimation problems, Proc. R. Soc. London, Ser. A, 186, 453–461.
Kitanidis, P. (1995), Quasi-linear geostatistical theory for inversing, Water Resour. Res., 31(10), 2411–2419, doi:10.1029/95WR01945.
Kroese, D. P., and Z. I. Botev (2015), Spatial Process Generation, in Lectures on Stochastic Geometry, Spatial Statistics and Random Fields: Mod-

els and Algorithms, edited by V. Schmidt, pp. 369–404, Springer International Publishing.
K€unze R., and I. Lunati (2012), An adaptive multiscale method for density-driven instabilities, J. Comput. Phys., 231, 5557–5570.
Laloy, E., and J. A. Vrugt (2012), High-dimensional posterior exploration of hydrologic models using multiple-try DREAM ZSð Þ and high per-

formance computing, Water Resour. Res., 48, W01526, doi:10.1029/2011WR010608.
Laloy, E., N. Linde, and J. A. Vrugt (2012), Mass conservative three-dimensional water tracer distribution from Markov chain Monte Carlo

inversion of time-lapse ground-penetrating radar data, Water Resour. Res., 48, W07510, doi:10.1029/2011WR011238.
Laloy, E., B. Rogiers, J. A. Vrugt, D. Mallants, and D. Jacques (2013), Efficient posterior exploration of a high-dimensional groundwater model

from two-stage Markov Chain Monte Carlo simulation and polynomial chaos expansion, Water Resour. Res., 49, 2664–2682, doi:10.1002/
wrcr.20226.

Laloy, E., J. A. Huisman, and D. Jacques (2014), High-resolution moisture profiles from full-waveform probabilistic inversion of TDR signals,
J. Hydrol., 519, 2121–2135, doi:10.1016/j.jhydrol.2014.10.005.

Lantu�ejoul, C. (2002), Geostatistical Simulation: Models and Algorithms, Springer, Berlin Heidelberg.
Le Ravalec, M., B. Noetinger, B., and L. Y. Hu (2000), The FFT moving average (FFT-MA) generator: An efficient numerical method for gener-

ating and conditioning Gaussian simulations, Math. Geol., 32(6), 701–723.
Li, W. and O. A. Cirpka (2006), Efficient geostatistical inverse methods for structured and unstructured grids, Water Resour. Res., 42, W06402,

doi:10.1029/2005WR004668.
Linde, N., and J. A. Vrugt (2013), Distributed soil moisture from crosshole ground-penetrating radar travel times using stochastic inversion,

Vadose Zone J., 12(1), doi:10.2136/vzj2012.0101.
Liu, J. S., F. Liang, and W. H. Wong (2000), The multiple-try method and local optimization in Metropolis sampling, J. Am. Stat. Assoc.,

95(449), 121–134, doi:10.2307/2669532.
Lochb€uhler, T., S. J. Breen. R. L. Detwiler, J. A. Vrugt, and N. Linde (2014), Probabilistic electrical resistivity tomography for a CO2 sequestra-

tion analog, J. Appl. Geophys., 107, 80–92, doi:10.1016/j.jappgeo.2014.05.013.
Lochb€uhler, T., J. A. Vrugt, M. Sadegh, and N. Linde (2015), Summary statistics from training images as prior information in probabilistic

inversion, Geophys. J. Int., 201, 157–171, doi:10.1093/gji/ggv008.
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