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Abstract

MILA-S is an interactive open learning environment for sci-
entific modeling (Joyner, Goel, & Papin, 2014). It enables
students to build conceptual models of ecological phenom-
ena, evaluate them through simulation, and revise the models
as needed. MILA-S automatically spawns simulations from
the conceptual models, making modeling easier for the stu-
dent. Earlier work had described the use of MILA-S in middle
school. In this paper, we report an experiment on the use of
MILA-S in two college-level classes. In one class, we found
that almost half of the students showed improved understand-
ing of scientific modeling; in the other class, about two thirds
of the students showed enhanced understanding.
Keywords: education; ecology; learning; modeling; science

Introduction
Most artificial intelligence theories, techniques and tools for
aiding learning have focused on K12 education. However, AI
has an important role to play from pre-K to graduate school.
An important question is whether AI techniques that prove
useful in, say, middle school (K6-8), may also be useful at
the college level. On one hand, the background knowledge
and learning goals of college students are quite different from
those in middle school. On the other, many cognitive pro-
cesses and some learning tasks transcend any given level of
education. Let us consider scientific modeling as an exam-
ple. Although science standards vary widely, lessons in scien-
tific modeling in many school systems begin in the upper ele-
mentary school (K4-5) and continue through graduate school.
Given that some cognitive processes of scientific modeling
likely remain the same from K4-5 through graduate school,
though for different kinds of problems and different levels
of detail, we may expect that the same set of AI theories and
techniques might be useful at the different grades, though per-
haps with different types of scaffoldings. Yet, insofar as we
know, there has been little work on using the same AI tools to
support scientific modeling across the educational spectrum.

MILA-S is an interactive open learning environment for
scientific modeling (Joyner et al., 2014), including the full
cycle of model construction, evaluation, and revision. It en-
ables students to build conceptual models of ecological phe-
nomena, evaluate them through agent-based simulation, and

revise the models as needed. MILA-S’s innovation is that it
uses AI techniques to automatically spawn simulations from
the conceptual models, thus making modeling easier for the
student.

When we introduced MILA-S in ecology classes in mid-
dle school science, we observed significant gains in learn-
ing about the process of scientific modeling as well as in the
quality of the final models (Joyner et al., 2014). A key find-
ing from the earlier experiments is that the ability to evaluate
conceptual models of ecological systems through simulation
leads to qualitatively different and apparently better models
(Goel & Joyner, 2015).

In this paper, we report a new set of experiments on the
use of MILA-S in two college-level classes. In one class on
AI, with a mixture of residential and online students as well
as graduate and undergraduate students, we found that almost
half of the students showed improved understanding of scien-
tific modeling. In the other class on cognitive science with all
residential graduate students, about two thirds of the students
showed enhanced understanding. Although the MILA-S tu-
torial in both classes focused solely on ecology, in both we
found spontaneous transfer of the modeling process to other
domains.

Scientific Cognition
Cognitive theories of scientific discovery indicate that scien-
tists conduct inquiries by observing a phenomenon, propos-
ing a hypothesis for explaining the phenomenon, elaborating
the hypothesis into a predictive model, evaluating the model
by verifying its predictions, and then repeating the cycle of
model construction, evaluation and revision until they are sat-
isfied with the model or they abandon it in favor of another
hypothesis e.g., (Clement, 2008; Nersessian, 2008). Cogni-
tive theories of learning science suggest an authentic inquiry-
based approach to learning about scientific modeling, includ-
ing cycles of model construction, evaluation, and revision
e.g., (Schwarz et al., 2009).

However, scientific models can be of various types, with
each type having its own unique affordances and constraints,
and fulfilling specific functional roles in scientific inquiry
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(Magnani, Nersessian, & Thagard, 1999). Conceptual mod-
els allow scientists to specify and share explanations of how
a system works through qualitative relationships among vari-
ous entities in a representation language. Simulation models
capture relationships between the variables of a system such
that as the values of input variables are specified, the simu-
lation model predicts the temporal evolution of the values of
other system variables.

AI tools for science education have used both concep-
tual models (e.g., (Novak, 2010)) and simulation models
e.g., (De Jong & Van Joolingen, 1998; Jackson, Krajcik,
& Soloway, 2000). However, past research typically has
used the two kinds of models independently from each other
(VanLehn, 2013): students use one set of tools for construct-
ing, using, and revising conceptual models, and another tool
set for constructing and using simulation models. In contrast,
cognitive theories of scientific inquiry suggest a symbiotic re-
lationship between conceptual and simulation modeling e.g.,
(Nersessian, 2008; Clement, 2008): scientists use conceptual
models to set up the simulation models, and they run simula-
tion models to test and revise the conceptual models. This led
us to MILA-S.

MILA-S
MILA-S builds on a long line of exploratory learning environ-
ments including the Aquarium Construction Toolkit (ACT)
(Vattam et al., 2011) and the Ecological Modeling Toolkit
(EMT) (Joyner, Goel, Rugaber, Hmelo-Silver, & Jordan,
2011). ACT and EMT were shown to facilitate significant
improvement in student’s deep, expert-like understanding of
complex ecological systems. Both ACT and EMT, provided
one set of tools for conceptual modeling and another tool
set for simulation modeling, and used the NetLogo platform
for agent-based simulations (Wilensky & Resnick, 1999).
For conceptual modeling, ACT used Structure-Behavior-
Function models (Goel et al., 1996). In contrast, EMT used
Component-Mechanism-Phenomenon (or CMP) conceptual
models that are variants of Structure-Behavior-Function mod-
els adapted for modeling natural systems (Joyner et al., 2011).

Conceptual Models

Figure 1: Example of conceptual model

MILA-S uses CMP models. Components in CMP model-
ing can be either biotic or abiotic. Each component has a set
of variables associated with it, four for biotic components,
and one for abiotic components. Biotic components are de-
fined by their population quantity, lifespan, energy level, and

likelihood to breed; abiotic components are defined only by
their quantity. Figure 1 illustrates a conceptual model con-
structed by a team of 7th grade life science students in an
earlier study. In this model, there are three components: Sun-
light, Oxygen, and “Fishies”. The Sunlight and Oxygen are
abiotic components, and they have only Amount as a variable
which is designated on the node for the component. “Fishies”
is a biotic component, and thus has Population, Age, Birth
Rate, and Energy as variables; Population is designated on the
“Fishies” node itself, while the notations for the other three
variables extend downward from the main node.

MILA-S provides the user with a set of prototypes that de-
scribe causal relationships among the system variables. The
choice among the available prototypes is determined by the
variables on either end of the relation and the type or direction
of the relation. For example, a relation from the Population
of a biotic component to the Amount of an abiotic compo-
nent, such as that from Fish Population to Oxygen Amount,
could be ‘consumes’, ‘produces’, or ‘becomes upon death,’
etc. Similar relationship prototypes are available for links be-
tween two biotic and two abiotic components. In the model
shown in Figure 1, the prototypes chosen are ‘consumes’ for
the relationship between Fish and Oxygen, and ‘produces’ for
the relationship between Sunlight and Oxygen. The direction
of the arrow between the two components indicates the direc-
tion of causal influence.

A Mechanism in CMP modeling is a chain of component
variables connected by causal relations. For example, Fig-
ure 1 illustrates a mechanism according to which the Amount
of Sunlight (an abiotic component) influences the Amount of
Oxygen (another abiotic component) and the Population of
Fish (a biotic component) also influences the Amount of Oxy-
gen. A Phenomenon in CMP is an observation about the sys-
tem of interest. For example, the phenomenon is a change in
the Amount of Oxygen in an aquatic ecosystem for which the
mechanism illustrated in Figure 1 provides an explanation.

Figure 2: Result of Netlogo Simulation of conceptual model

Agent-Based Simulations
Figure 2 illustrates the result of a NetLogo simulation
spawned from the conceptual model of Figure 1. Note that
all three components of the conceptual model are represented
in the simulation: the Fish are in red, Sunlight hits the water
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at the location of the brown dots, and the Oxygen produced
by that interaction appears as blue dots. As Figure 2 illus-
trates, NetLogo provides graphs and counters for illustrating
the temporal evolution of various variables of the simulation.
Before running a simulation, the user sets values of input vari-
ables to the simulation through the sliders and toggles on the
left side of the simulation window illustrated in Figure 2.

NetLogo simulations are typically designed with their own
dedicated programming language, which allows for enor-
mous flexibility. However, this flexibility of designing sim-
ulations makes rapid evaluation and revision of models dif-
ficult. First, it requires at least a rudimentary background in
programming. Secondly, even if the simulation designer is
relatively experienced in NetLogo, it can still take significant
time to make non-trivial changes to the simulations: these
changes can involve writing all-new methods, creating new
variables, or defining new agents.

MILA-S provides a technique for controlling the cost of
generating NetLogo simulations: it automatically generates
the simulations from a users conceptual model. Note also
that the generation of the CMP conceptual model illustrated
in Figure 1 does not require any knowledge of programming.
Instead, MILA-S’s CMP language provides a visual syntax
for setting up the simulations.

Figure 3: Scheme of translation of CMP conceptual models
into NetLogo agent-based simulations

Translating Conceptual Models into Simulations
After constructing a CMP conceptual model, a student first
uses a template to set values of the input variables to the
simulation system, and then clicks a ‘Run Sim’ button for
simulation generation. MILA-S gathers together all the com-
ponents for initialization along with their individual param-
eters. Next, MILA-S writes the functions based on the rela-
tions specified in the CMP model. A key part of this is a set of
assumptions that MILA-S makes about the nature of ecolog-
ical systems. For example, MILA-S assumes that if a biotic
component consumes a certain other component, then it must
need that other component to survive. A model with ‘Fish’
that contains ‘consumes’ connections to both ‘Plankton’ and

‘Oxygen’ would infer that fish need both Plankton and Oxy-
gen to survive. MILA-S also assumes that species will con-
tinue to reproduce to fulfill their carrying capacity rather than
hitting other arbitrary limitations. These assumptions do limit
the range of simulations that MILA-S can generate, but they
also facilitate higher-level rapid model revision. Figure 3 il-
lustrates the general scheme for translating the semantics of
CMP conceptual models into the semantics of the Netlogo
agent-based simulations. Note that this also combines quali-
tative conceptual models with numerical simulations.

The simulations created by MILA-S are emergent simula-
tions. The results of the simulation are dictated by the prop-
erties and variables of the CMP model interacting with one
another as well as the initial values of the variables set by
the user. Students can now experiment with their conceptual
models and the initial values of the variables rather than just
plugging the numbers into an equation until one gets the right
answer. Iteratively and incrementally exploring how the sim-
ulation results change through small revisions in the concep-
tual model allows users to develop a deeper understanding of
scientific modeling and discovery.

Results From Previous Studies

We have conducted several studies on using the MILA fam-
ily of tools in middle school science. The most relevant to the
present discussion is a 2014 study at a middle school in Geor-
gia in which 50 “gifted” students used MILA-S for inquiry-
based learning in the ecological domain. We discovered that
the students found the MILA-S tool easy to use, and that the
use of the tool helped improve their understanding of the pro-
cess of scientific inquiry and modeling (Joyner et al., 2014).
However, our most salient finding from the previous study in
middle school science was that students constructed qualita-
tively different conceptual models when they could test them
through simulation: instead of constructing mostly explana-
tory models, they constructed conceptual models that were
both explanatory and predictive (Goel & Joyner, 2015).

However, when we introduced MILA-S in a unit on ecol-
ogy in a college-level introductory biology course for non-
majors we found little gain in learning or understanding . This
could have been because of the very limited duration of the in-
tervention in the college-level class on introductory biology:
while the intervention in middle school unfolded over several
days, the college students had only a single class period of 50
minutes to take a pre-test, learn about MILA-S from a brief
tutorial, use MILA-S to address a new problem, and address
a post-test. In subsequent studies described below, we made
the intervention more open-ended, allowing the students to
work with MILA-S outside the class, and also provided the
students incentives for completing the study. In addition, we
tweaked the questionnaire as well as the MILA-S tool itself,
making ecological modeling more authentic as described in
(Goel, Joyner, & Hartman, 2016).
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Table 1: Participant Distribution

Level of Study # Students CogSci # Students KBAI
Undergraduate 0 25
Masters Oncampus 10 15
Masters Online 0 103
Doctoral 13 3

Experiment Design
We have now conducted two new studies in using MILA-S
for inquiry-based scientific modeling.

Human Subjects
The first study in Fall 2016 engaged students from a class on
Knowledge-Based AI (KBAI). Different sections of the class
contained residential and online students, as well as under-
graduate and graduate students. The second study involved
graduate students in a residential class on Cognitive Science
(CogSci). Table 1 indicates the distribution of students in the
two classes. Of the 146 KBAI students, 142 students had
STEM background, while 4 did not. Most of the students
with STEM background were computer science students. Of
the 23 CogSci students, 21 students had STEM background
while 2 did not; most of the students with STEM background
again were computer science students. In the KBAI class, the
MILA-S study was offered for extra credit. In CogSci class
the study was presented as a small project that all students had
to complete. Participants from the CogSci class were addi-
tionally asked to form small groups, discuss their experiences
with MILA-S, and submit a report on the same.

Materials
There were three components of the both studies:

1. Tutorial: single page tutorial of MILA was provided to stu-
dents which also contained video links of different ecolog-
ical phenomena e.g. starfish dying along western coast.
A five minute video demonstrating use of MILA was also
shared.

2. Questionnaires: The students were asked to answer three
questionnaires as part of the study.

(a) Initial Survey
(b) Pre-Test:- comprised of a total of 10 MCQs.
(c) Post-Test:- consisted of the same questions as pre-

questionnaire (and additional feedback questions).

3. MILA-S: The students were given access to MILA-S af-
ter they had completed the initial survey and the pre-
questionnaire. Once the participant got access to MILA,
they were asked to complete three tasks:

(a) Build a sheep-grass model
(b) Build a wolf-sheep-grass model
(c) Model(s) of their choice.

Tasks a and b above were included to help students be-
come familiar with the MILA-S tool, as well as understand
the parameters such as birth rate that affect ecological sys-
tems. From an analytical perspective, the first two models
provided data for qualitative analysis of differences in stu-
dent behaviors. The third task was aimed at understanding
the degree of familiarity students developed with the abili-
ties of MILA-S, and the scope of transfer and innovation in
model building. Overall, the study was kept a little open,
without too many constraints on student interactions with
the tool. While instructors were not present during student
work, students always had the option of reaching out and
asking questions, and we saw that many students did utilize
this to inquire about the tool, development of conceptual
models and understanding of the simulation results.

Question Categories
The initial survey focused on gathering demographic infor-
mation such as study level, self reported curiosity scores,
STEM experience. All questions were multiple choice ques-
tions.

The 10 MCQs on the pre- and post-tests asked questions in
three broad categories:

1. Basic concepts and processes of scientific modeling.

2. Understanding of conceptual and simulation models of
complex systems in general as well as ecological systems
in particular.

3. Understanding of ecological systems, for example, how
ecological systems respond to different changes. In par-
ticular, students were asked about effects of different pa-
rameters such as birth rate, initial energy and lifespan on
the simulation.

Results
We assume that learning occurs if a student correctly answers
more questions on the post-test as compared to the pre-test.
Table 2 summarizes the main results, where the pre- and post-
test scores are on a scale of 1-10. We note that 45% of the
KBAI class participants and 65% of the participants from the
CogSci had improved post test scores. The higher number
in the CogSci class might be because of the larger incentive
given to the students.

Moving away from a binary interpretation of learning, Ta-
ble 3 gives details about the pre- and post-test scores in KBAI
and CogSci classes. While more CogSci students showed
learning gains compared to the KBAI students, the KBAI
class on average showed slightly larger learning gains. We
observe that the learning results are statistically significant
(p-value was calculated by performing the paired t-test).

We also calculated the correlation between level of study
and learning, and STEM background and learning. Here, we
assigned numerical values to level of study e.g. undergradu-
ate:1, masters:2, doctoral:3. For STEM Experience, we cre-
ated bins based on whether a person had studied/worked in
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Table 2: % Participants with improved post-test scores

# KBAI CogSci
Total Learning 66 / 146 ( 45.2%) 15/23 ( 65.2%)
Undergraduate 11/25 (14%) NA
Masters 54/118 (45.7%) 7/10 (70%)
Doctoral 1/3 (33.33%) 8/23 (61.53%)
Participants from
STEM field

64/142 (45%) 1/2 (50%)

Participants not from
STEM field

2/4 (50%) 14/21 (66.66%)

Table 3: Learning Statistics

Group #Users Pre Test Post Test P-Value
KBAI 146 mean:6.82 Mean:7.65 0.0035

Stdev:1.55 Stdev:1.77
CogSci 23 Mean:5.44 Mean:5.81 0.004

Stdev:1.81 Stdev:1.8

a STEM related field prior to taking the KBAI/CogSci class
as well as their self reported score on familiarity with STEM
concepts. We then calculated the Pearson coefficient of these
variables against difference in the pre- and post-test scores,
and observed that the values were small, less than 0.02. This
indicates that learning occurred independent of the Level of
Education, or STEM Experience.

Student Models
Figures 4 and 5 illustrate two conceptual models built by the
students in the KBAI class. We note that these models are not
from ecology: students in our studies apparently were spon-
taneously able to transfer the CMP language for modeling
complex systems and the MILA-S methodology for scientific
modeling to other agent-based domains.

To assess the quality of models constructed by the students,
we calculated the model complexity scores for 27 randomly
selected participants from KBAI class and for 16 students
from CogSci class. Model complexity score was calculated
only for the model(s) that students themselves built. In case
of multiple models we selected the model with the highest
complexity score.

Complexity Score = cc + lc + uc
where, cc = number of components in the conceptual

model, lc = total number of links between components in the
conceptual model, and uc = undirected cycles in conceptual
model.

We observed that for the KBAI class, complexity scores
ranged between 3-13 with mean of 7 and standard deviation
of 3.46, and for the CogSci class, they ranged between 5-15
with mean of 7.56 and standard deviation of 5.67. This in-
dicates that the complexity of models in the two classes was
about the same. The p-value (based on the paired t-test be-
tween the complexity score and the difference of post-pre test

scores) in both classes was p less than 0.01.

Figure 4: Impact of Epidemics - KBAI

Figure 5: Model of PhD Life - KBAI

Ease of Use
In this study, the students were given with a single page tuto-
rial on MILA-S including basic terms such as ecological sys-
tems, conceptual modeling, simulation modeling, and agent-
based simulation, along with a 5 minute video about how
to use MILA-S. In their feedback on MILA-S, students in-
dicated that they were able to easily use MILA-S to model
ecosystems, and asked very few questions regarding how to
build conceptual or simulation models. This provides positive
feedback regarding MILA-S’s ease of use.
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Other Observations and Future Work
1. MILA-T (Joyner & Goel, 2015) uses intelligent tutors to

help middle school students learn about the process of sci-
entific modeling as well as the content of models of ecolog-
ical phenomena. However, the experiments in this paper
were limited to MILA-S.

2. In future work, we would like to extend the study by pro-
viding interventions based on a students progress on a par-
ticular task or assignment.

3. In future, we would like to conduct a controlled study in
order to focus on specific parameters of learning.

Conclusion
Our goal in this work was to study the use of MILA-S for
learning about model construction, evaluation, and revision
among college-level students in contrast to middle school stu-
dents in earlier studies. Our hypothesis in this study was that
MILA-S would enable college students to learn about scien-
tific inquiry and modeling much like it helped middle school
students. Preliminary results from two studies on the use of
MILA-S in two college-level classes provide evidence sup-
porting this hypothesis. In the first study in an AI class con-
sisting of 146 students, over 45% of the students showed im-
proved understanding of scientific modeling. In the second
study in a class on cognitive science with 23 students, more
than 65% of the participating students showed improved un-
derstanding and indicated that the application helped them
learn about some of the intricacies of ecological modeling.

When coupled with similar results from earlier studies in
middle schools, these results suggest three conclusions. First,
learning about scientific inquiry and modeling is an impor-
tant issue at all levels of education, from middle school to
graduate school. Second, MILA-S with its combination of
conceptual and simulation modeling can support the cycle of
model construction, evaluation and revision not only in ecol-
ogy but in several agent-based domains. Third, use of MILA-
S enhances understanding about scientific modeling for more
than half of all graduate students.
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