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ORIGINAL ARTICLE Open Access

Breast MRI radiomics: comparison of
computer- and human-extracted imaging
phenotypes
Elizabeth J. Sutton1, Erich P. Huang2, Karen Drukker3, Elizabeth S. Burnside4, Hui Li3, Jose M. Net5, Arvind Rao6,
Gary J. Whitman7, Margarita Zuley8, Marie Ganott8, Ermelinda Bonaccio9, Maryellen L. Giger3,
Elizabeth A. Morris1,10* and on behalf of the TCGA group

Abstract

Background: In this study, we sought to investigate if computer-extracted magnetic resonance imaging (MRI)
phenotypes of breast cancer could replicate human-extracted size and Breast Imaging-Reporting and Data
System (BI-RADS) imaging phenotypes using MRI data from The Cancer Genome Atlas (TCGA) project of the
National Cancer Institute.

Methods: Our retrospective interpretation study involved analysis of Health Insurance Portability and Accountability
Act-compliant breast MRI data from The Cancer Imaging Archive, an open-source database from the TCGA
project. This study was exempt from institutional review board approval at Memorial Sloan Kettering Cancer
Center and the need for informed consent was waived. Ninety-one pre-operative breast MRIs with verified
invasive breast cancers were analysed. Three fellowship-trained breast radiologists evaluated the index cancer
in each case according to size and the BI-RADS lexicon for shape, margin, and enhancement (human-extracted image
phenotypes [HEIP]). Human inter-observer agreement was analysed by the intra-class correlation coefficient (ICC) for
size and Krippendorff’s α for other measurements. Quantitative MRI radiomics of computerised three-dimensional
segmentations of each cancer generated computer-extracted image phenotypes (CEIP). Spearman’s rank correlation
coefficients were used to compare HEIP and CEIP.

Results: Inter-observer agreement for HEIP varied, with the highest agreement seen for size (ICC 0.679) and shape (ICC
0.527). The computer-extracted maximum linear size replicated the human measurement with p < 10−12. CEIP of shape,
specifically sphericity and irregularity, replicated HEIP with both p values < 0.001. CEIP did not demonstrate agreement
with HEIP of tumour margin or internal enhancement.

Conclusions: Quantitative radiomics of breast cancer may replicate human-extracted tumour size and BI-RADS
imaging phenotypes, thus enabling precision medicine.
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Key points

� Computer-extracted breast cancer maximum linear
size replicated the human measurement.

� Computer-extracted breast cancer shape replicated
the human-extracted imaging phenotypes.

� Using both computer- and human-extracted
imaging phenotypes may be clinically valuable.

Background
Breast magnetic resonance imaging (MRI) is currently
the most sensitive imaging modality to detect breast
cancer [1]. Radiologists are trained to visually identify
pertinent imaging characteristics for cancer detection
while taking into account clinical information and context.
To standardise reporting and minimise inter-observer
variability, the Breast Imaging-Reporting and Data
System (BI-RADS), a quality assurance tool, was
designed and disseminated into clinical practice [2].
Nevertheless, substantial inter- and intra-observer
agreement variability continue to exist among radiolo-
gists, though the degree of both is unclear because of a
paucity of literature [3]. Despite this recognised vari-
ability, the radiologist is the imaging reference standard
for interpretation of diagnostic imaging studies, includ-
ing breast MRI.
The goal of research focusing on integrating computer-

aided diagnosis (CAD) and human MRI interpretation is
to improve breast cancer detection, moving beyond deter-
mining if a lesion is benign or malignant [4–7], and
additionally to use radiomics in assessing cancer subtypes.
Prototype CAD systems have been investigated clinically
and shown to significantly improve the average diagnostic
performance of radiologists [8]. Now algorithms are
tasked with improving specificity, decreasing observer
variability, and identifying biomarkers of breast cancer
genotype and/or outcome. Breast cancer radiomics,
namely computer-assisted phenotype extraction, can
quantify information from voxel-based MRI, providing
reproducible information that may be imperceptible to the
human eye. Quantitative radiomics can analyse texture
features, providing further insight into inter- and intra-
tumour heterogeneity and assess enhancement kinetics
[3, 7, 9–11]. Similar to human assessments, there may
be computer software and/or algorithm variability.
Diagnostic breast MRI is in the midst of a paradigm

shift whereby the correlative and complementary roles
of human-extracted imaging phenotypes (HEIP) and
computer-extracted imaging phenotypes (CEIP) are
being assessed for the diagnosis, treatment and manage-
ment of breast cancer. There may soon be a clinical role
for using both HEIP and CEIP wherein the strengths of
each are leveraged to generate combined biomarkers
that accurately predict important outcomes. One of the

initial steps for CEIP to be clinically accepted is to com-
pare them with the clinical gold standard (i.e., human
radiologists) and to demonstrate that CEIP can reason-
ably replicate HEIP. The purpose of this study was to in-
vestigate if CEIP MRI phenotypes of breast cancer could
replicate HEIP (i.e., human-extracted size and BI-RADS
phenotypes) using MRIs from The Cancer Genome
Atlas (TCGA) project of the National Cancer Institute.

Methods
Institutional review board approval
In this retrospective study, all patient data were Health
Insurance Portability and Accountability Act-compliant
and acquired under institutional review board approval
with a waiver of the need for informed consent.

Patient population
We retrieved data from an open-source de-identified
database, The Cancer Imaging Archive (TCIA) [12],
which is the imaging counterpart of TCGA. TCGA, in
brief, is a coordinated effort led by the National Cancer
Institute to accelerate the molecular and genomic under-
standing of cancer [13]. The TCGA program performs
genomic sequencing and characterisation of tissue from
cancers diagnosed and treated at cancer centres around
the United States.
Breast cancer (both invasive ductal and lobular) was one

of the cancers selected for study, and by December 16,
2014, 1100 breast cancer cases had been collected by
TCGA and 1098 also had available genomic and clinical
data (available at: https://gdc.cancer.gov/; accessed Febru-
ary 17, 2016). To complement the genomic and clinical
data, the National Cancer Institute enriched the TCGA
open-source data portal by collecting MRI studies for stor-
age and analysis in the TCIA. However, in 2014, only 108
breast cancers had TCIA MRI (pre-operative
examinations with pathologically verified cancer) to
correlate with available TCGA data. Clinical, pathologic
and genomic data were extracted using the TCGA assem-
bler, an open-source, publicly available, free tool [14].
Because our patients were drawn from the TCGA,

an open-source database, some patients in our cohort
were included in several previously published studies
[9–11, 15, 16]. However, this paper has no scientific
overlap with the other published studies. We report new
findings from our study done to investigate if CEIP of
breast cancer could replicate HEIP using MRI from
TCGA. Thus, whereas we assessed the correlation
between CEIP and HEIP, the other studies assessed the
correlation between CEIP and clinical features.

MRI acquisition
All breast MRI data were downloaded from the Breast
Cancer Risk Assessment collection within TCIA
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(http://www.cancerimagingarchive.net). The data had
previously been generated under MRI studies originally
performed between 1999 and 2004 at four institutions:
the Mayo Clinic, Memorial Sloan Kettering Cancer
Center, Roswell Park Cancer Institute and the University
of Pittsburgh Medical Center. To avoid differences in
image quality caused by different equipment vendors, only
MR images obtained with 1.5-T systems were included in
our study, which limited the number of patients consid-
ered for inclusion in our analysis to 93. Of these 93
patients, two were excluded because of missing genomic
data (n = 1) and missing images (n = 1).
Therefore, in total, 91 female patients with pre-

operative breast MRI studies underwent analysis in our
study. All images were acquired with a 1.5-T system
(Signa or Signa HDX; General Electric Medical Systems,
Waukesha, WI, USA). In all patients, a dedicated surface
breast coil was used. T1-weighted fat-suppressed images
were acquired before and after intravenous administra-
tion of a gadolinium-based contrast agent (gadodiamide,
Omniscan®; Nycomed-Amersham, Princeton, NJ, USA),
with three to five post-contrast images because the
protocol was institution-dependent. In-plane spatial
resolution ranged from 0.53 to 0.86 mm, and slice
spacing ranged from 2 to 3 mm. Only pre- and post-
contrast T1-weighted fat-suppressed images were
included in our study. Further information, including
full clinical breast MRI protocols, can be accessed from
the open-source TCIA.

HEIP
To generate HEIP, a pool of eleven board-certified
breast-imaging radiologists, with experience ranging
from 4 to 29 years (ESB, 14 years; GJW, 25 years; EJS,
4 years; JMN, 5 years; MG, 29 years; and EAM, 25 years;
the other five radiologists were non-authors), partici-
pated in the manual assessment of MRI data. The image
location of the index breast cancer and maximal tumour
size were identified on the first post-contrast image and
annotated by each radiologist using an open-source and
open-access software platform [17]. For each patient,
three radiologists from this pool were randomly assigned
to review the imaging data. Visual assessments of
tumour characteristics of the cancer were made according
to BI-RADS 5 descriptors (lesion-shaped, internal en-
hancement and margin), yielding HEIP. In patients with
multifocal or multicentric disease, the largest mass was
used as the index lesion.
Four HEIP characteristics were assessed: lesion size

(largest size as per Response Evaluation Criteria in Solid
Tumours 1.1 recommendation [18]), lesion shape
(whether the lesion was irregularly shaped or round/
oval), internal enhancement (whether the enhancement
was heterogeneous or homogeneous) and margin (whether

the margin was circumscribed, irregular or spiculated). The
radiologists performed their reviews independently and were
blinded to all health information. Enhancement kinetics/
curves were not generated, owing to the variable temporal
resolution across sites and over time, which would have
significantly impacted the accuracy of the results. HEIP for
each feature from the three radiologists was summarised
into a single representative consensus value for each patient;
these summary values served as the case-based HEIP
in the subsequent statistical analysis. The decision
rule for consensus was simple majority. There were
no cases where all readers disagreed.

CEIP (quantitative radiomics)
Given the approximate tumour centre location, each
index breast tumour was automatically segmented in the
three-dimensional (3D) space. The quantitative radio-
mics workstation used for this study was able to yield 38
CEIP from dynamic contrast-enhanced MRI scans to
characterise tumour size, shape, margin, enhancement
texture, kinetics, and variance kinetics [6, 7, 19–21].
However, because kinetic characteristics were not
assessed by the radiologists (i.e., as HEIP) for this study,
only 24 phenotypes (from four categories) were used to
compare the HEIP and CEIP. The 14 kinetics-related
CEIP were excluded. All measurements were extracted
from the first post-contrast MR images.
The 24 CEIP were calculated on the basis of automat-

ically derived 3D tumour segmentations [19]. They were
further separated into four phenotypic categories: (a)
size-measuring tumour dimensions (4 CEIP); (b) shape,
quantifying the 3D tumour geometry (3 CEIP); (c)
morphology, combining tumour shape and margin char-
acteristics such as margin sharpness (3 CEIP); and (d)
enhancement texture, describing the texture of the
contrast uptake (heterogeneity of the uptake) in the
tumour on the first post-contrast MRI image (14 CEIP)
(Fig. 1). Owing to our small sample size, we report only
the CEIP extracted for each HEIP BI-RADS descriptor
but do not provide the coefficients.

Statistical methods
Inter-observer agreement in HEIP
Inter-observer agreement for human-extracted lesion
size was based on inferences on the (−log 1.20, log 1.20)
coverage probability of the natural logarithm of the size.
This is the probability that the absolute difference
between the natural logarithm of the size measurements
from any two radiologists differs by less than log
1.20, or equivalently, that the size measurements from
any two radiologists are within 20% of each other.
Inter-observer agreement for human-extracted tumour
shape, margin and heterogeneity was based on inferences
on Krippendorff ’s α [22]. The 95% CIs for Krippendorff ’s
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α and the coverage probability were constructed using the
nonparametric bootstrap [23].

Associations between HEIP and CEIP
Associations for lesion size were assessed through in-
ferences on the Kendall τ rank correlation coefficient
[24]; p values were obtained through permutation
tests. Associations for both shape and internal en-
hancement were assessed through the Mann-Whitney
U test [25]. Associations for margin were assessed
through inferences on the Kendall τ rank correlation
coefficient; p values were obtained through permuta-
tion tests [26]. The Benjamini-Hochberg procedure
was used to correct for multiple hypothesis testing.
All tests of associations between HEIPs and individual
CEIPs were performed at the α = 0.05 level [27].

Replicating HEIP using CEIP
We analysed the feasibility of replicating each of the four
HEIP using the corresponding CEIP. These were treated
as either prediction or classification problems that we
evaluated in terms of accuracy. The replication of HEIP
of tumour size given the CEIP of tumour size was
treated as a prediction problem. A predictor for the
HEIP of tumour size based on the size-related CEIP was
constructed using multivariate linear regression subject
to elastic net constraints [28]. The elastic net constraints
set some coefficients in the model exactly to zero
because of the model’s geometry, thus performing

variable selection, and also simultaneously stabilises the
coefficient estimates in the presence of substantial
correlation between the CEIP. Ten-fold cross-validation
[29] was used to select the values of the tuning parame-
ters controlling the severity of the elastic net constraints.
The replications of tumour shape, internal enhancement,

and margin were treated as classification problems. Classi-
fiers for tumour shape and internal enhancement were
constructed using multiple logistic regression subject to
elastic net constraints. Classifiers for tumour margin were
constructed using ordinal logistic regression, also subject to
elastic net constraints. For these classifiers, tuning parame-
ters for the elastic net constraints were also selected using
ten-fold cross-validation.
These predictors and classifiers were then assessed in

terms of their prediction and classification accuracy
through nested ten-fold by ten-fold cross-validation
[30]. For tumour size, performance was evaluated in
terms of the mean squared deviation [31]. For tumour
shape and internal enhancement, performance was
evaluated in terms of AUC in ROC analysis. For
tumour margin, performance was evaluated in terms of
the Kendall τ rank correlation coefficient between the
classifier score and the actual value of the HEIP of
tumour margin [24].
For each of these four tumour characteristics (size,

shape, internal enhancement, and margin), the p values
of predictive signal contained within CEIP were
computed through permutation tests. The Benjamini-

Fig. 1 Schematic of breast magnetic resonance imaging human-extracted image phenotypes (HEIP) and computer-extracted imaging phenotypes
(CEIP). TCIA The Cancer Imaging Archive
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Hochberg procedure was applied to these p values to
correct for multiple hypothesis testing [27].

Results
Patients
Ninety-one patients with invasive breast cancer who
underwent pre-operative breast MRI were included in
the study sample. Their median age was 53.6 years
(range 29–82) at first cancer diagnosis (Table 1). Breast
cancers were predominantly oestrogen receptor- and
progesterone receptor-positive. Human epidermal grow
factor receptor 2 status was known only in 63 (69%) of
91 patients, of whom 49 (78%) of 63 were negative and
14 (22%) of 63 were positive. Additional information
regarding the tumours can be found on the open-source
website (available at: https://gdc.cancer.gov/; accessed
February 17, 2016).

Inter-observer agreement in HEIP
There was variability in the inter-observer agreement of
HEIP of tumour size, shape, margin and internal
enhancement (Table 2). Tumour size, the only quantita-
tive measurement, showed the strongest inter-observer
agreement, with a coverage probability of π = 0.679 (95%
CI 0.561–0.736). Tumour shape and margin showed
moderate inter-observer agreement, with α = 0.527 (95%
CI 0.380–0.654) and α = 0.561 (95% CI 0.426–0.674),
respectively. Tumour internal enhancement showed the
poorest inter-observer agreement, with α = 0.292 (95%
CI 0.147–0.433).

Association between HEIP and CEIP
Strong evidence of associations between the HEIP and
corresponding CEIP were observed in some cases, indi-
cating that the CEIP may have the ability to replicate the
HEIP (Table 3).
The p values of the associations between HEIP of

tumour size and each of the size-related CEIPs were all
< 10−12. Figure 2 shows a scatterplot of the human-
extracted tumour size versus each of the four tumour
size-related CEIP. The p values of the associations
between the HEIP and corresponding CEIP of tumour
shape, specifically sphericity, and irregularity, were
5.65 × 10−5 and 3.98 × 10−3, respectively. Figure 3 shows
box plots of the CEIP of tumour sphericity and irregu-
larity versus HEIP of tumour shape. Figures 4 and 5
demonstrate representative cases where CEIP and HEIP
are concordant and discordant, respectively. These asso-
ciations also remained significant even after adjustment
for multiple comparisons using the Benjamini-Hochberg
procedure [27].
Meanwhile, no evidence of association between the

HEIP and the corresponding CEIP of tumour internal
enhancement or tumour margin was observed.

Feasibility of replicating HEIP using combinations of HEIP
A summary of the results of the analysis of the ability of
CEIP to replicate HEIP is given in Table 4.
HEIP of tumour size could be replicated using a

weighted sum of CEIP of effective diameter, surface area
and maximum linear size (mean squared deviation
56.56, p < 0.001). HEIP of tumour shape could also be

Table 1 Patient and invasive breast cancer characteristics and
axillary lymph node status

Characteristics Total (N = 91), n (%)

Mean age, years (range) 53.6 (29–82)

Tumour diameter, cm (SD) 2.41 (0.78–5.93)

Invasive breast

Ductal carcinoma 79 (86.8%)

Lobular carcinoma 10 (11.0%)

Other 2 (2.2%)

Oestrogen receptor

Positive 76 (83.5%)

Negative 15 (16.5%)

Progesterone receptor

Positive 72 (79.1%)

Negative 19 (20.9%)

HER2 receptor

Positive 14 (15.4%)

Negative 49 (53.8%)

Unknown 28 (30.8%)

Lymph node status

Positive 44 (48.4%)

Negative 46 (50.5%)

Unknown 1 (1.1%)

Stage

I 22 (24.2%)

II 58 (63.7%)

III 11 (12.1%)

HER2 Human epidermal grow factor receptor 2
Numbers in parentheses represent percent for categorical variables unless
otherwise indicated

Table 2 Human-extracted imaging phenotypes and
inter-observer agreement

HEIP Inter-observer agreement (95% CI)

Lesion size π = 0.679 (0.561–0.736)

Shape α = 0.527 (0.380–0.654)

Internal enhancement α = 0.292 (0.147–0.433)

Margin α = 0.561 (0.426–0.674)

HEIP Human-extracted image phenotype
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Table 3 Association between human-extracted image
phenotype and computer-extracted image phenotype

Human-extracted assessment Computer-extracted feature p Value

Lesion size Effective diameter <10−12

Surface area-to-volume ratio <10−12

Maximum linear size <10−12

Lesion volume <10−12

Shape Sphericity 5.65 × 10−5

Irregularity 0.00398

Surface area-to-volume ratio 0.363

Internal enhancement Contrast 0.378

Correlation 0.409

Difference in entropy 0.353

Difference variance 0.191

Energy 0.186

Entropy 0.194

Inverse difference moment 0.466

IMC1 0.328

IMC2 0.340

Maximum correlation coefficient 0.336

Sum average 0.151

Sum entropy 0.336

Sum variance 0.702

Sum of squares 0.297

Degree of margin spiculation Mean margin sharpness 0.292

Variance margin sharpness 0.227

Variance radial gradient histogram 0.055

IMC Information measure of correlation

Fig. 2 Comparison between human- and computer-measured
maximum linear size

Fig. 3 Comparison of computer- and human-extracted shapes

Fig. 4 Sagittal fat-suppressed T1-weighted first post-contrast image
of a breast cancer (arrow) where computer-extracted image
phenotype (CEIP) sphericity is high and the radiologist assessed
it as round/oval for shape. CEIP and human-extracted image
phenotype are concordant
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replicated using CEIP of tumour sphericity (AUC 0.720,
p = 0.004). Both the abilities of tumour size-related
CEIP to replicate HEIP of tumour size and CEIP of
tumour sphericity to replicate HEIP of tumour shape
remained statistically significant even after correction
for multiple testing.
The HEIP of tumour internal enhancement could not

be replicated with a reasonable degree of accuracy using
CEIP of tumour enhancement; the AUC associated with

the best model as identified through ten-fold cross-
validation, which involved energy, entropy, information
measure of correlation, maximum correlation coefficient,
sum of average, sum of entropy, and sum of squares,
was 0.551 (p = 0.263).
The HEIP of tumour margin could not be replicated

with a reasonable degree of accuracy using CEIP of
tumour margin. The value of τ associated with the best
classifier as identified through ten-fold cross-validation,
which involved variance of the radial gradient histogram
only, was 0.143 (p = 0.183). Because of the limited
sample size of 91 and the preliminary nature of this
analysis, only the CEIP involved in the predictor or
classifier of the HEIP BI-RADS descriptors is reported.

Discussion
Our results demonstrate that breast MRI CEIP can repli-
cate some HEIP of breast cancer. In our study, we evalu-
ated four HEIP characteristics: lesion size, lesion shape,
internal enhancement, and margin. Specifically, CEIP in
our study was able to replicate radiologists’ assessment of
tumour size and shape. There was a correlation between
the CEIP and radiologists’ measurement of tumour
margins; however, it was not statistically significant.
For radiologists in the era of precision medicine, the

quantification and precision of radiology using compu-
terised MRI analysis (i.e., radiomics) are a rapidly evolving
field of interest, paralleling the pace of technologic
innovation outside healthcare. Computer machine-
learning algorithms continue to be developed to facili-
tate tumour diagnosis (detection and localisation),
segmentation (automated and semi-automated), and
feature extraction on MRI. Radiomics of breast cancer
on MRI, which involves the extraction of quantitative
imaging features (also known as CEIP), have the poten-
tial to provide further insight into tumour imaging
phenotypes that are imperceptible to the human eye
[32, 33]. In contrast to the qualitative nature of HEIP,
these quantitative characteristics of CEIP may improve
the reproducibility, accuracy and predictive power of
existing subjective BI-RADS terms. Furthermore,
computers do not suffer from fatigue, distraction or
hunger, which are known to affect the clinical perform-
ance of humans [34, 35]. In addition, to the advantages
mentioned above, CEIP may be able to identify new
image features that could become biomarkers of
tumour biology, predictors of treatment response or
surrogates for genetic testing [32, 33].
Some correlations between CEIP and breast cancer

subtype and genotype have been reported in the litera-
ture. Bhooshan et al [36] developed CEIP as MRI-based
prognostic markers, distinguishing between ductal
carcinoma in situ and invasive breast cancer and
between breast cancer with and without positive lymph

Fig. 5 Axial fat-suppressed T1-weighted first post-contrast image of
a breast cancer (arrow) where computer-extracted image phenotype
(CEIP) sphericity is high and the radiologist assessed it as irregular for
shape. CEIP and human-extracted image phenotype are discordant

Table 4 Abilities of computer-extracted image phenotypes to
replicate corresponding human-extracted phenotypes

BI-RADS feature Performance metric
estimate with p value

CEIPs involved in chosen
predictor/classifier

Lesion size MSD 56.558
(p < 0.001)

Effective diameter
Surface area
Maximum linear size

Lesion shape AUC 0.720
(p = 0.004)

Sphericity

Internal enhancement AUC 0.551
(p = 0.263)

Energy
Entropy
IMC1
Maximum correlation
coefficient
Sum of average
Sum of entropy
Sum of squares

Margin τ = 0.143
(p = 0.183)

Variance radial gradient
histogram

IMC Information measure of correlation, MSD Mean squared deviation
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nodes. They [37] also demonstrated CEIP in the classifi-
cation of breast cancer tumour grades. Mazurowski et al
[38] found that the Luminal B molecular subtype is asso-
ciated with enhancement dynamics on MRI. Sutton et al
[39] developed a predictive model using features
extracted from MRI that could distinguish between inva-
sive ductal carcinoma molecular subtypes. Agner et al
[40] reported that CEIP could identify triple-negative
breast cancers and could differentiate them from other
molecular subtypes. Sutton et al [41] developed a model
using CEIP that could predict the likelihood of recur-
rence and magnitude of chemotherapeutic benefit. The
TCGA Breast Phenotype Group has related CEIP to
clinical features including pathologic stage [11]; molecular
classification of breast cancers (such as luminal A) [15];
risk of recurrence with research versions of Oncotype DX,
MammaPrint and PAM50 multi-gene assays [9]; clinical
phenotype [10]; and genetics of various pathways [16].
The results of this study suggest a potential role for

CEIP tumour features; however, further research must
demonstrate how CEIP can assist, complement, or
benefit the human/radiologist. In our study, inter-
observer variability in radiologists’ use of tumour BI-
RADS features was significant even among experts in
breast imaging. The highest correlation was seen with
size and shape. These features were also those that the
CEIP combinations could successfully replicate. The
difficulty in our study for CEIP in replicating HEIP of
tumour internal enhancement or margin may be a result
of low radiologist inter-observer agreement; it is hard to
predict features that radiologists do not agree on. The
reason for low inter-observer agreement is unclear, and
there is a paucity of literature exploring this [3]. All
readers in thus study were fellowship-trained breast-
imaging radiologists. Future research could be focused
on reproducible quantitative CEIP tumour features and
their possible role as the imaging reference standard for
BI-RADS HEIP with high inter-reader variability, such
as tumour internal enhancement and margin in our
study, also possibly concealing clinically important infor-
mation. Before this can happen, however, the research
community must decide on a standardised computer al-
gorithm for tumour segmentation and quantitative
image analysis that work across different image proto-
cols, image quality and magnet strength. A CEIP lexicon
of breast cancer image features analogous to BI-RADS is
needed because features that can be extracted by com-
puters are vast and somewhat abstract to the clinical
radiologist who is used to the BI-RADS lexicon. Finally,
there may be variability in CEIP tumour assessments
analogous to the inter- and intra-observer variability
seen with radiologists.
The present study had several limitations. First, this

was a retrospective analysis of 91 patients who presented

over 6 years across 4 different institutions. Image acqui-
sition took place between 1999 and 2004, and technol-
ogy has since improved significantly. Most patients had
oestrogen receptor- and progesterone receptor-positive
breast cancers; therefore, our evaluation was not repre-
sentative of all immunohistochemical subtypes. In addition,
all index lesions were masses, so it remains to be deter-
mined if the same results would be seen with cancers
presenting as only non-mass enhancement. Second, the
standard MRI acquisition parameters varied across institu-
tions and possibly over time. Third, it is uncertain if our
results can be extrapolated for different imaging equipment
and protocols. Finally, this is a small dataset, and our classi-
fier cannot be assumed to work on a larger dataset.
In conclusion, this study we found that, for some phe-

notypes, CEIP were able to successfully replicate breast
MRI HEIP. Thus we propose that there may be a role in
the future for using both whereby the strengths of each
are leveraged to optimise diagnostic reporting, decrease
inter-observer variability, and perhaps even improve our
understanding of breast cancer. As computer algorithms
continue to be developed, we foresee that radiology
reports in the future will include quantitative metrics
besides size, the result of CEIP from validated computer
algorithms. This information will be compounded by the
continuing improvements in MRI sequences, specifically
the ability to perform simultaneously high temporal and
spatial resolution imaging. Our study demonstrates the
feasibility of a future method where radiomics are part
of everyday radiology reporting. Future research will be
needed on larger datasets to validate this observation. In
addition, the observed trend that the correlation
between CEIP and HEIP corresponded to the degree of
inter-observer agreement requires further investigation.
Large-scale datasets are needed to provide further
evidence for the use of CEIP in clinical practice.
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