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Abstract
We introduce an approach for the interactive visual analysis of weighted, dynamic networks. These networks arise
in areas such as computational neuroscience, sociology, and biology. Network analysis remains challenging due to
complex time-varying network behavior. For example, edges disappear/reappear, communities grow/vanish, or overall
network topology changes. Our technique, TimeSum, detects important topological changes in graph data to abstract
the dynamic network and visualize one summary representation for each temporal phase, a state. We define a network
state as a graph with similar topology over a specific time interval. To enable a holistic comparison of networks, we
use a difference network to depict edge and community changes. We present case studies to demonstrate that our
methods are effective and useful for extracting and exploring complex dynamic behavior of networks.
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Introduction

Representations and analysis of networks are important
to investigate interactions between entities in a variety of
applications. For example, to investigate teacher-student and
student-student interaction patterns in a classroom [28],
social scientists use networks to model behavioral patterns.
In neuroscience, understanding network properties, with
nodes representing brain regions and edges representing
functional dependencies, is important to gain insight into the
cognitive functions of the brain. Visualization of connectivity
in such networks is crucial to extract insights concerning
global topology, local neighborhood patterns, and overall
community structure.

Networks are often large and time-dependent, evolving
over several hundreds of timesteps. Network changes are
reflected through the addition or deletion of edges, the birth
or death of communities or fluctuations in modularity . In
most cases, such dynamic changes do not affect all the
structures in a network, and many core structures remain
stable over certain periods of time. We call such phases
with similar topological structure as states of a dynamic
network. If we can detect and understand these states and
core structures that remain stable over states, we will then be
able to answer questions related to their role in the context of
an entire system’s evolution. For example, neuroscientists are
keenly interested in such states to comprehend interactions
that relate cognitive functions to the functional states; social
scientists, studying classroom interactions, are concerned
about the correlation of communication patterns with their
educational outcomes.

The complex dynamic behavior (within and between
states) of a network affects its overall topology. Identifying
the dependencies between these properties over time can
provide us with high-level information about the causes and
effects of evolution behavior. In other words, a minor change,

such as the addition or deletion of an edge, might explain
an entire global state change of a dynamic network. For
example, in a classroom social network, the removal of a
communication channel between two popular students (who
are linked to many other students) could explain a major shift
in social dynamics of the classroom.

Analyzing and depicting such data in a comprehensible
manner for large, dense networks remains challenging as
purely visual approaches become inadequate and require
algorithmic techniques to meaningfully present and abstract
the data without actual information loss. Many existing
approaches that visualize dynamic networks and their
community structures depict an entire network and all its
changes for every timestep. Such techniques can lead to
duplication of visual elements that represent nearly the
same information (due to temporal correlation). Further, they
require large screen-space for visualization. For example, an
ECoG (Electrocorticography) data array capturing neuronal
activation patterns of brain regions for just one hour may
need several thousand copies of the original network,
resulting in a representation with several million nodes and
edges. Moreover, most current methods do not effectively
show changes in topology between timesteps or their
effects on the overall system. Analyzing these changes are
essential for understanding the time-varying phenomena in
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2 Information Visualization XX(X)

Figure 1. Our approach enables a holistic understanding of time-varying networks through two complementary techniques,
Summary (C) and Difference Graphs (D). A. Control menu for selecting plot styles and visualization parameter values. B. Similarity
plot showing magnitude of topological change between two graphs at adjacent timepoints. Each of the five states is defined by a
time interval corresponding to a stable topological structure. The brain network possesses major topological changes through
timesteps, 22, 32, 53, and 82. C. Visualization of topology in the summary form. States 1 and 2 are visualized for further
analysis. Pie Glyphs represent nodes that change community membership for each state, while Squares represent stable,
unchanging communities. D. Difference Graph of network states—Diamonds represent nodes that change community membership
across time. Disappearance of an edge (from brain region 11 to 18 and to 6) caused the community to change, indicated by the
change from green to yellow from nodes 18 and 6. E. Visualization of original network with a traditional small-multiples method.

dynamic social networks or neurodegenerative diseases, e.g.,
schizophrenia.

These challenges motivated us to devise a new approach
for detecting, visually representing and exploring summaries
and differences concerning topological changes, including
the use of depictions of summary structures, i.e., states,
seeFig. 1C. We summarize and represent underlying
dynamic behavior for each detected state by computing a
representative summary graph using unique glyph designs,
see Fig. 1B. To represent and explore the topological changes
between networks over states, we have developed a network
difference technique, see Fig. 1D. Our main contributions
are:

• A new approach for the visualization of dynamic
networks through detecting temporal states

• Effective visual graph designs emphasizing similar-
ity and differences in topology over time

Related Work
We review related work in three areas: Dynamic network
visualization, dynamic network simplification, and the
difference graph framework.

Dynamic Network Visualization
Static network visualization techniques [8] often use two
major views, i.e., matrices or graphs (when a depiction via

a graph is possible), to understand the global topology of
the system. In dynamic graph representations, the major
distinguishing feature is the temporal aspect. Key challenges
in visualizing such graphs concern visual scalability of
graphical primitives and computational complexity of graph
processing. Various visualization techniques have been
proposed to communicate changes effectively. The survey by
Beck et. al [5; 6] categorizes most existing work in dynamic
network visualization into two main methodologies, i.e.,
animations and small-multiples.

Through animation, major evolving patterns, such as
community changes, are shown by interpolating smooth
transitions between the underlying layout or partitioning the
rendering space into hierarchically arranged blocks [21].
Techniques proposed by Ghani [18] explore various metrics
for enhancing user perception of the animation. The space
to time mapping approach [33] draws a sequence of graphs
along a timeline. Unlike animations, the space to time
mapping technique enables easy comparison between objects
at discontinuous timesteps. However, for a large number of
timesteps, such views can be cognitively overwhelming.

Other techniques include parallel edge splatting [13],
where all the changes in edges between graphs across
timesteps are visualized to identify general trends in the
dataset. Further, alluvial diagrams model the links between
clusters in successive timesteps as split-merge ribbons [33;
29; 44] to enhance visual traceability of important cluster
evolution patterns. Techniques like EgoNetCloud [25] use an
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Murugesan et al. 3

egocentric summarization approach to analyze major events
in a dataset, while GraphDiaries [4] use animated transitions
between timesteps in a network to highlight changes. Further
work by van den Elzen [42], involves reducing the time-
varying network into interpretable time points, giving the
user an intuition to detect states within the dataset. Another
work by Dal Col et al. [14] further detect connectivity
patterns on large time networks using wavelet transform
methodology.

In contrast, the approach introduced in our work, uses a
simplification algorithm to deal with networks that evolve
over a large number of timesteps and utilizes summary and
difference representations to reveal variabilities and complex
dynamics underlying dynamic networks.

Dynamic Network Simplification
One of the important problems in visualizing large-scale
dynamic networks is depicting the connectivity information
without substantial information loss [26]. Several techniques
have been published that deal with the visual complex-
ity problem. These approaches rely on manual filtering of
edges and nodes or deriving a minimum spanning tree,
when possible, preserving connectivity. The path-oriented
simplification [40] method removes edges that do not af-
fect the quality of best paths between any pair of nodes.
Approaches like SEG [36], Apostolico [10] and EgoNet-
Cloud [25] condense large network information without
sacrificing connectivity information. Other approaches com-
press weighted graphs [41] or use motif-based methods for
static graphs [15]. Methods presented by Sun et al. [39] and
Eagle et al. [16] use minimum description length and Fourier
Transform analysis respectively to compress complex net-
works respectively.

In several applications, it is important to detect states in
dynamic networks, see, for example, Bernaly et al. [32] and
Mutlu et al. [30] . In contrast, the abstraction procedure in our
method happens at the level of the network, preserving the
rich topological structure of the individual state. Further, we
compute a summary and difference representation to explore
the complex dynamics underlying each state. Such methods
are essential for an in-depth comprehension of the overall
role of states in the context of system dynamics.

Difference Graph Framework
A difference graph describes the changes between the graphs
of two timesteps. Given two graphs, only the changes
concerning edges and nodes are visualized [3]. To handle
large-scale changes in difference graphs, Archambault et
al. [2] used hierarchies to show where large areas of a
graph change. Bourqui and Jourdan [11] described a method
that visualizes edges having similar pathways, focusing on
structural similarity. Rufiange [34] used a hybrid method
involving small-multiples and animations to determine local
topological changes between graphs.

Our method focuses on changes in edges (constant nodes)
and community membership. We characterize changes by
defining the importance of each change in a graph and
visualizing the effect of the change on the topology using
a community-based difference graph.

Design Goals
Based on existing literature regarding dynamic network
visualization [7], we identified primary design goals to be
met by our approach. We base our approach on these goals:

Simplification of temporal features Topological patterns
in dynamic networks often re-occur, e.g., brain network
patterns. Methods are needed that can aggregate data by
considering and taking advantage of similarity between
graphs.

Support of effective visualization of topological shifts
Visualizing series of large, dense graphs causes visual
information overload hindering data interpretation. Due
to the limited cognitive processing ability of humans,
techniques should detect and convey changes in a visually
comprehensible manner.

Interactive exploration capability for temporal data
Networks function at multiple scales. To efficiently derive
insights at different scales, the methods must allow a user to
explore summary and detail information on demand.

Motivated by major network analysis tasks covered
in [1], for example, we identified the following important
capabilities that our method should address:

• Identify and characterize patterns defining temporal
states (T1)

• Analyze summary topologies that represent temporal
states (T2)

• Analyze topological variations within states (T3)

• Analyze local dynamics governing global community
and state changes (T4)

Method
Our computational framework incorporates algorithmic
analysis with interactive visualization to extract and
summarize recurring patterns in graphs. As shown in Fig. 1,
in the first stage, we use a similarity metric to identify
time intervals within the dynamic network that possess
similar network topology (Fig. 1B); in the second stage,
using the detected interval points, we run our summary
graph representation algorithm to compute the most common
topology representing the detected state, see Fig. 1C; in the
third stage, to allow a user to explore topological changes
across graphs, we compute the importance of each edge
change, to construct and visualize a difference graph using
novel visual-designs, see Fig. 1D. Throughout all the stages,
we enable interactive filtering, aggregation and selection
allowing users to interactively explore major recurring
pattherns within the graph.

To reliably generate summary graphs, our technique
requires an understanding of temporal change within the
graph. To numerically quantify such a change, we define
a similarity measure. This measure allows us to detect
states (T1) having similar graph-level properties. A well-
constructed similarity metric allows us to detect states (T1)
having similar graph-level properties.

Notation and Definitions
Mathematically, we model a dynamic graph Gs as a sequence
of static graphs, denoted as Gs = { G0, G1, G2, ..}. We
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4 Information Visualization XX(X)

detect communities for each timestep, where a community
consists of a subset of nodes within a particular timestep.
All communities between subsequent timesteps are matched
by using the maximum overlap algorithm [19]. We do not
employ temporal smoothing for communities as we assume
that the underlying connectivity is temporally correlated.
Most naturally occurring time-series show significant auto-
correlation.

We assume that the number of nodes is the same for every
timestep, and that edges are undirected and weighted. Three
major quantities for a dataset include, i.e., time, number of
nodes, and number of edges. We denote the temporal state
set as St = { S1, S2, S3,... }, where each state Si contains a
range of continuous time points within the time points in the
dataset.

State-based Similarity Measure
In order to detect topological change between graphs
and group them into states, we establish a means for
identifying similarities and changes within graphs. While
general graph properties, such as degree distribution and
community membership, can be used to characterize change
in networks, they are too generic to extract complex time-
varying behavior in the graph. We have adopted the similarity
metric described in [23] for similarity of network topology.
It is an accepted similarity measure for quantifying changes
in graphs, and, through discussions with domain experts,
we determined that this method is applicable to our use
cases. Based on the demands of a specific application, we
can include different measures in our visual analysis system
to reliably extract temporal states that possess the most
meaning.

We compute a similarity value Simi(Gk,Gk+1) ∈ [0,1],
where a value of 1 implies that two graphs Gk,Gk+1 are
similar, and a value of 0 indicates that two graphs are
maximally dissimilar, see [23] et al.. To compute such a
value, we need to define the influence that any node i has on
all other nodes j, for all nodes within the graph. To perform
such an operation, we define N (N being the number of nodes
in a graph) column vectors ~si for every node i, and arrange
them in a matrix S, with ~si being a column in S. Intuitively,
for the [23] measure, influence scores, si, j, between nodes
i and j are higher when sum paths of the edge weights are
larger and are at most one hop away. The vector matrix S,
encompassing such score is defined as,

S = [si j] = [I + ε
2D− εA]−1. (1)

Here, ε = 1
1+max(dii))

is a value used to capture the
influence between neighboring nodes, and D is an n× n
diagonal matrix, where dii is the degree of node i. A is the
adjacency matrix of the raw graph data for each timestep,
and I is the identity matrix. In order to compute a distance
between graph vectors, we use the root-mean-square (RMS)
measure, allowing us to detect changes in graphs. Formally,

d = RootED(S1,S2) =

√
n

∑
i=1

n

∑
j=1

(
√

S1,i j−
√

S2,i j)2, (2)

and the eventual distance value of two graphs is defined as,

sim(G1,G2) =
1

1+d
. (3)

States Defined by Similarity Matrix
To extract temporal states from the metric, a method is
needed to compute the time-intervals belonging to each
state. Such a method must take into account the similarity
information for all pairs of timesteps, taking into account
reoccurring patterns across discontinuous timesteps.

We define a distance matrix of size N×N, where N is the
number of timesteps and matrix entry ci, j is the similarity
(Eq. 3) of the graph structures at timesteps i and j. The higher
the value is, the more similar the graphs i and j are. As we are
mainly interested in the most common topological properties
associated with the state, we use a threshold that is large
enough not to “swamp” the matrix with moderately similar
entries – but not too large in order to capture significant
entries. We employ a modified change detection mechanism
proposed by [30],

I(Gi,G j) =

{
Simi, j, if (Simi, j− (uG +δ1 ∗σG)≥ 0),
0,otherwise

,

(4)
,where uG and σG are the mean and standard deviation of
the values in the distance matrix and δ1 is the threshold
coefficient for σG. We assume that4 relies on a normal
distribution of the similarity values without a large number
of outliers. Based on the thresholded matrix, we use
a connectivity-based clustering algorithm [9] to identify
clusters with similar graph structure, to define states. An
advantage of this approach is the fact that the states obtained
are based on values of the entire time dataset, rather than the
values based on a current timestep t and previous timestep
t +1.

Algorithm 1: Summary Graph Representation
Data: Sequence of similar graphs G1,G2,G3, ...
Result: Representative summary graph GAv

1 Compute adjacency matrix of pairwise distance values
for time-steps tk to tk+w, using Eq. 3, where w is the
time-interval;

2 Perform standard change detection procedure, using
Eq. 4, to threshold the matrix;

3 Rank all graphs Gti based on number and average of
non-zero values in columni, avgSimi;

4 Filter top k candidates for comparison based on a
threshold δ2 for filtering the similarity matrix;

5 Pick most frequent community membership for each
node in GAv from k graphs – in case of a tie, use
membership from the graph with highest avgSimi
value;

6 Intersect edge lists of the k graphs to obtain edge list
of GAv;

7 Set weights of edge lists of GAv, averaging over all k
graphs – ignore non-existing edges ;

Consensus-based State Summary Graphs
To understand dynamic network topology reflecting state
changes and reduce the amount of information used for
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visual inspection, we derive a single representation for each
state. The reduced graph shows overall stability (community
changes, edge changes) of the network and variability and
mean of important changes, for the time interval of a detected
state.

Our temporally reduced summary graph representation
should satisfy the following design objectives:

• The graph representation must capture the most
common topological properties of the system.

• The graph representation must be indicative of the
overall community structure for the interval.

• The representation must highlight nodes that often
change communities.

We consider different approaches to generate a temporally
reduced summary graph in order to satisfy the design criteria.
One can accumulate the nodes over time to form edges.
However, one of the assumptions is that the meaning of edges
is ignored. The representation of such graphs depends on the
lengths of the time intervals considered. The larger the time-
windows are, the higher is the “density” of the graph.

An alternative approach identifies changes from a pool of
similar graphs and averages the weights over the detected
state-intervals. This approach treats all edges equally and
produces a dense network representation, which may not be
representative of the most common topology.

Our approach Our approach for defining a summary
graph, see Fig 2, produces informative summaries based
on salient patterns. We construct one representative
visualization of the state. Our problem definition can be
stated a follows: Given N similar graph structures, how
should one depict the most representative graph? We
consider these main aspects for the representative graph:

• Identification of the community membership of a node
in the graph

• Determination of the presence of edges between all
pairs of nodes

• Determination of the weight of an edge

Algorithm 1 and Figure 2 describe the procedure that
constructs a summary graph from a set of similar networks
for a given temporal state. To determine the quality and
uncertainties associated with a graph generated by the
summary algorithm, we use a metric, Average Number of
Edges Pruned per Timestep (AEP), defined as: total number
of edges pruned by algorithm per state between same nodes/
time interval of the state. This estimates the average amount
of dynamic edges (edges that frequently get added or deleted
within the state interval pruned by the algorithm). This
value provides us with insight into the overall variability
of the topologies within the state. For example, states with
edges exhibiting significant variability (addition or deletion)
have relatively high AEP values. Such a metric allows
us to determine whether the sparseness of the graph is
representative of the underlying data or is the result of the
dynamics occurring within the state.

Visual Representation of Summary Graph

The reduced graphs are a simple representation of a complex
dynamic phenomena occurring within the represented time-
interval.

To facilitate understanding such data, we need visual
representations that not only depict the summarized
topological information, but also depict variances in the
properties where there might be one. Such depiction of
dynamics is crucial to understanding the cause and effect
of the formation of the temporal states. For example, in
neuroscience, transient nodes (brain regions) with more
flexibility (frequent community memberships changes) may
be involved in performing a wide range of cognitive
functions and may be particularly involved for changing
global brain states [22].

To facilitate such a detailed exploration process in
an intuitive manner, we want to represent the following
quantities: 1) nodes with frequent community changes, 2)
stability of communities, 3) variability in edge weights, 4)
mean value of edge weights.

We considered three visual designs for this purpose,
all following the data aggregation principles discussed by
Elmqvist et al. [17] (Figure 4). In the first design, to
enable comparison between edges in the same graph, we
encode variance in edge weights using color, and line
thickness represents mean edge weight. Outlier edges with
high variances are shown as dashed lines. Transient nodes
that change their community membership over time are
represented as vertically stacked bars with an enclosed circle.
The length of a bar represents longevity of a community in
that node for a given time interval. The second and third
designs use the same scheme for the edges; however, each
node is represented as a pie chart, where each slice represents
the longevity of a community in a particular node. In the third
design, based on the principle of selective visual attention
as described in [24] and to visually distinguish dynamic
behavior of transient nodes, we represent other stable
nodes as static rounded rectangles, with color representing
community membership.

Overall, based on different trial runs, we found the third
design to express the changes in a visually clear and concise
manner. Particularly, the unique visual outlines convey the
changes in transient nodes more effectively. We use this as
our design for the summary graph (Fig 3).

Difference Graph Framework

Analyzing every graph at each timestep and identifying
change is cognitively overwhelming. The problem becomes
more pronounced for large graphs with minuscule change
occurring between timesteps. The analyst has to manually
correlate changes from many views, increasing context-
switching costs associated with every view.

Given two graphs, to enable assessment of the functional
difference between them, it is crucial that we not only show
the change but also show the importance that change has
on its overall topology. For example, the disappearance of
an edge causing a community-change is far more important
than the disappearance of an edge within a community and
causing no change in the global structure.
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Figure 2. The algorithm used to construct the summary graph identifies the most common local and global topological attributes
from a set of similar graphs. Networks for a given time interval define the input. Similarities between networks are computed which
define the entries of a similarity matrix. Using a threshold δ2, we pick the top k candidates for intersection of edge lists and
computation of summary community memberships, characterizing the summary graph.

To address this issue, we propose a community-based
difference-graph approach to depict the dynamics occurring
over a set of similar graphs for a given state.

Community-based Difference Graph Visual Design:
Since we do not deal with addition or deletion of nodes, we
define the nodes of the difference graph to have the same
meaning as the static graph. For edges, we define three major
types (in the order of decreasing importance) (Fig. 4C).

1) Modular edge change–defined as an event involving
addition or deletion of an edge when comparing adjacent
timepoints A and B. Such type of a change always results
in change of communities, for e.g., at timepoint B. Fig. 4C1.

2) Inter-modular edge change–defined as addition or
deletion of edges between graphs across two timepoints,
unlike modular edge changes, such edges connect between
different communities and transfer information over multiple
communities, Fig. 4C2.

3) Intra-modular edge change–such change events
occur across two timepoints, causing no overall changes
in community, however decreasing/increasing the overall
connectivity within or across a community, Fig. 4C3.

We use thickness of the edge line to convey the importance
of these edges. The thicker the edge, the greater is its
importance. Based on previous studies in a difference
graphs [4; 31; 46], we use the colors red and blue to indicate
the addition and the deletion of edges respectively. There are
cases when a node in a graph is becoming transient, i.e.,
changing the community membership. Such events are the
pivotal time points of nodes and are of utmost importance
in its evolution. We explored two designs to convey such
dynamics occurring in difference graph.

In the first design (Fig. 4B), to depict a community change
at a given node, we subdivide the circle into two equal parts,
the left semicircle denoting the community membership
of the previous timestep and the right one denoting the
membership at the current timestep. In our second design to
further visually distinguish the most important change, we
encode dashed lines to depict deletion of edges and encode a

diamond with two sides to depict the change in community
membership for a given node. To enhance visual clarity, we
only show the nodes that are involved in change. The size
of the nodes in our graph represents the amount of local
change).

Different trials of various visual designs based on a real
brain network dataset made it clear that the second design
showed variations in data more convincingly. However, in
cases where there is a lot of change occurring, the user would
have to analyze the original raw graph to assess the change in
the difference graph. There is a switching cost is involved in
such operations. Nonetheless, we found that this technique
is better suited for our use-case. Further, we utilize various
interaction techniques such as egocentric navigation (Fig 8),
filtering (Fig 7), focus+context exploration (Fig 5) to steer
through the complexity.

Case Studies

We now apply our methods to generic domains to test
the generalizability of our methods. We note that domain-
specific studies require similarity measures specific for the
study at hand. For our case, as the similarity has been proven
generalizable for diverse datasets, we apply our methods to a
network flow and social science datasets.

McFarland’s Classroom Data Set
We have applied our visual analysis technique to the
publicly available “McFarland’s classroom” dataset [27; 28].
This dataset contains information concerning conversations
between teachers and students in a high school economics
class (11th and 12th grades). We used the McFarland dataset
as a use-case for our system to analyze how students and
teachers interacted in this class. We pre-processed the given
data to create a dynamic network dataset, appropriate as
input to our system, consisting of 20 nodes (17 students,
three teachers) spanning 49 minutes (converted to 82
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Murugesan et al. 7

Figure 3. Our methods applied to a real brain network dataset.
The summary graph in conjunction with the difference graph
depict similarities and differences in topologies, respectively. A.
Summary graph involving four nodes (glyphs) depict the
frequent change in communities during a particular
time-interval. B. A difference graph explaining the community
change of ldFI, left dorsal frontoinsula and lmdTha, mediodorsal
thalamus, from grey to pink.

timesteps). We were able to identify evolving communities,
states, and a summary topology for each state.

The state detection algorithm found two dominant
conversation states in the dataset, i.e., a first state where
teachers did broadcast information to students and a second
“sociable state” where students interacted with each other,
forming multiple communities (modular) (T1,T2). The
detected intervals in the states have the following intervals,
state one has associated intervals (1-2, 10-15, 37-42, 49),
and state two has associated intervals (3-9, 16-36, 42-48,
50-82), see Fig. 5A. The states identified by our system are
in agreement with those reported in a study concerning this
dataset [28].

Specifically, the class started with the teacher lecturing
(state one, timesteps 1–2), followed by students performing

Figure 4. We investigate different visual designs to convey
uncertainty and variability in the dynamic network data. A.
Summary graph representing stable nodes as rectangles and
nodes that change their communities as glyphs. B. Difference
graphs representing deletion and addition of edges as dashed
blue and solid red lines, respectively. C. Visual encodings that
depict the importance of each edge change in the difference
graph.

a group task (state two, timesteps 3–9) The students in this
state formed closely knit communities talking with each
other over a few known social groups. This state’s structure is
dispersed as a consequence of teacher intervention, defining
the structure for timesteps 10–15. The fluctuating state
patterns with consistent sparse and dense core connectivity
are captured by the summary graph, see Fig. 5B.

To understand the dynamics of state one, we selected
a sub-interval (10-15, within state one) and visualized
its corresponding summary and difference graphs, see
Fig. 5A,B. The broadcasting edges emanating from teachers
T1 and T2 represent communication to all students over
the entire interval. During this interval, a community (light
yellow) involving student groups (S13, S15, S18) can
be detected, possibly reflecting conversations among these
students during lecture (T3). The circles depicting students
S5 and S9 indicate that they potentially have formed their
own communities before listening to the lectures of teachers
T1 and T2. The summary graph visualizes the consistent
dense temporal behavior in this interval.

The difference graph depicting topological change (15–
16), see Fig. 5C, contains many dashed lines, i.e., edges
disappear, indicating that teachers have stopped lecturing and
assigned group tasks to students [28]. The relatively large
number of rotated diamonds (seven) in the graph could be
indicative of student groups (S4, S7) and (S8, S11, T3 and
S16) switching communities, which could have caused a
system state change (T3,T4).

In conclusion, the summary graphs effectively visualize
consistent similar network structure over time, where either
teachers teach or students perform group tasks, see Fig. 5B.
The difference graphs reflect the topological effects teachers’
pausing their lectures, when students form their own
communities.
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8 Information Visualization XX(X)

Figure 5. The two dominant states in the McFarland dataset. A. Red rectangles represent lecture sessions by the teachers, and
black rectangles represent states when the teachers are not lecturing. B. Broadcasting edges from teachers T1 and T2 depict
lecturing student groups. C. State change as a consequence of students forming groups and teachers not lecturing.

Primary School Dataset
We also tested our method by applying it to an academic
collaboration network, the Primary School dataset [38].
The goal was to extract contact patterns of students in a
primary school. The data represents interactions between
232 school children and 10 teachers for five classes. The
data was collected for period from 10:00am to 12:00am,
Thursday, October 1, 2009. RFID readers were placed on
the contacts to record conversations had in the cafeteria,
on stairways, on playgrounds or in classrooms. It is poorly
understood how children interact with each other during
different times of the day in a school. A better understanding
of children’s interactions is desirable from a pedagogical
viewpoint. We have used our system to better understand this
school scenario.

To handle the size of this dataset, we used force-directed
edge bundling, see Holten et al. [20], and placed nodes onto
circles for each class. We have explored the following issues:

• How do contact patterns evolve over time (within
the timeframe recorded)? Are they s knit or are they
modular? (T1)

• What are the communication patterns of students
during certain temporal states, e.g., during a break?
(T2)

• How different are the communication patterns for
classroom time vs. break time? (T3)

• What student communication patterns cause a state
change? (T4)

Fig. 6A shows the different states detected by our
system. The summary and difference networks were used
to explore connectivity patterns underlying the dataset for
the period from 10:00am to 12:00pm. Our tool helped with
the identification of four states with different connectivity
structure.

Based on the temporal states, we explored and identified
major shifts in student contact patterns. For example,
considering the (1-Similarity) plots shown in fig. 6A, one
can identify timepoints indicative of students moving to
different rooms, and explore how that movement affected
communication. Timepoints 10:18am and 10:50am reflect
major shifts in the topology of the graph. Further, based on
the connectivity data, the second state corresponds to student
interactions on the playground. The third state corresponds
to students going back to the classroom.

By examining topology when students were on the
playground, from 10:18am to 10:50am, we can see that
students started forming communities with their grade peers,
particularly third graders. This configuration reflects how
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Figure 6. Major states of primary school dataset. The five circular node layouts represent students from first grade to fifth grade. A.
Topological changes between adjacent timesteps. The state detection method uses all pair similarity values between nodes to
identify highly similar states. B. Summary graph depicting major communication patterns of students on the playground.

students interacted during breaks. As annotated in the graph
of third graders, some students conversed with specific
communities within first graders, light-green and light-
red communities. We also see that fifth graders talked
less with students in other grades. Second graders talked
intensely, compared to others, and formed diverse and rich
communities amongst themselves, see the large number of
colored communities. Fourth graders kept a smaller group of
students working with them, compared to students in other
grades.

Our system allows one to observe consistent network
structure over time, e.g., where students performed group
tasks within grades in our scenario, see Fig. 6B. The sum-
mary graphs effectively capture emerging communication
between third graders and fifth graders. Approaches like
small multiples or animations rely on the user to identify

states or phases in a dataset, while our approach, together
with a meaningful distance metric, can identify and visualize
states automatically. Further, inter- and intra-community
patterns, for example, are apparent in graph-based analysis
and visualization.

TimeSum Used in Neuroscience

To demonstrate the value of our approach, we applied it to
two brain network datasets. We performed the presented case
studies in collaboration with neuroscientists, co-authors of
this paper, who are experts in brain network neuroscience.
The studies concern exploratory data analysis, where the
goal was to visualize global network dynamics and their
relationships to brain regions, with the purpose of generating
scientific hypotheses that would later be studied with
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rigorous statistical methods. Neuroscientists use functional
Magnetic Resonance Imaging (fMRI) to measure whole-
brain activity, which can be modeled as a set of brain regions
(nodes) connected by edges reflecting the correlations
between their activities. Changes in topology over time can
be conceptualized as switches between multiple quasi-stable
functional states [37]. Identifying the temporal intervals with
similar topological structure is important to understand the
interaction of behavioral systems when performing a task or
their impairment due to a disorder [12].

Case Study 1
The objective of this case study was to explore and under-
stand the dynamics concerning the salience network [35] of a
healthy older adult. This network represents the correlations
between regions in the brain responsible for the monitoring
of sensory, visceral, and the reward or threat system. It
consists of input nodes in anterior insula (e.g., dFI,vFI)
that gather sensory information and output nodes in ante-
rior cingulate (e.g., dpACC,vpACC) that initiate behavioral
actions. A major challenge in analysis is understanding the
dynamic fluctuations of connectivity profiles between these
two groups or nodes over time.

The processed time-varying data (pairwise time series
correlations between 21 regions, 202 timesteps) was used
as input to our system to identify dynamic communities,
state-intervals, and abstract graph topologies. The system
detected nine states with similar graph-level properties. The
modularity and (one-similarity) plots, see Fig. 7B, convey
the temporal structure and the extent of the individual states
in the dataset (T1).

We can clearly see consistent patterns for each state. Two
major structures are revealed, a sparse (highly modular)
structure (states 3 and 9) and a densely-integrated structure
(states 1, 2, 4, 5, 6, 7, and 8) (T2), which may correspond
to existing studies in neuroscience [37]. The state detection
method was able to abstract variabilities within those
two major categories, see Table 2. One also observes
this phenomenon as a large number of squares (stable
communities) in the summary graph for time 57-87, see
Fig. 7B3, state 3. Most of the other summary graphs
have glyphs, representing regions that dynamically change
communities.

The more globally integrated and less modular states had
earlier been suggested to be more energetically demanding,
requiring increased cerebral blood flow, explaining the
dense structure [45]. States having high modularity and
high stability, like states 3 and 9, require less overall
“cost” (fewer/shorter edges) than more globally integrated
states. This could explain its maintenance as a stable
structure. When analyzing the dynamics of state 3, see
Fig. 7B3, state 3, one can quickly identify two brain
regions right ventral frontoinsula, i.e., rvFI2 and right
dorsal frontoinsula, i.e., rdFI with flexible community
membership. This could suggest that these regions may have
switched their roles (T3).

To explore intrinsic structural change of the network
between states two and three, we drill down and visualize the
difference graphs from times 55 to 58, see Fig. 7A3. A drastic
topological change is visible. The large number of diamonds
at time 56-57 indicates the extent of community changes

States Time C Q ED AEP
State 1 0-40 0.79 0.32 0.30 2.56
State 2 41-56 0.77 0.19 0.30 6.4
State 3 57-87 0.83 0.38 0.28 3.2
State 5 100-119 0.78 0.14 0.40 8.3
State 6 120-133 0.74 0.16 0.53 5.21
State 7 134-146 0.72 0.12 0.44 6.94
State 8 147-182 0.84 0.16 0.31 3.14
State 9 183-202 0.74 0.56 0.19 7.03
Dataset 0-202 0.79 0.29 0.22 NA

Table 1. The table statistically compares the properties of the
detected states. We generally find two major types of states,
with low modularity and high density or with high modularity and
low density. We further find that the difference in modularity is
drastic from state 2 to state 3. Abbreviations:‘C’: Average
Temporal Correlations (average of Eq.4);‘Q’: Modularity;‘ED’:
Edge Density ;‘AEP ’: Average Number of Edges Pruned.

taking place. In general, many regions lose their correlations
(dashed lines), which could explain the network’s shift
towards a higher degree of modularity (high Q in state 3)
(T3).

To understand integral node dynamics of brain regions
during state transitions, we hover over and interact with
the brain region ventral pregenual anterior cingulate
cortex, i.e. IvpACC, see Fig. 7A2. The change of local
neighborhood of the node is clearly visible, i.e., changes in
the lvpACC’s connectivity from the vFI and dFI, its main
input nodes, to the dpACC, one of its main output nodes. The
node lvpACC eventually changes its membership (T4). One
explanation of this highly flexible node configuration is that
the region oscillates between receive (input) and transmit
(output) modes. A detailed fMRI analysis would be
necessary to test this hypothesis.

Case Study 2
Exploratory visual analysis in dynamic networks is key
to observe general trends, explore temporal variability,
and understand higher-level organization of the network.
This case study involved a domain expert who was able
to construct and articulate hypotheses on-the-fly, during
interactive data analysis process. The goal was to understand
the dynamics of the resting state brain network connectivity
and its impact on individual nodes and their connections.
Specific questions were: What are the major topological
changes (spontaneous global dynamics) (T1) in the dataset?
How do they relate to local changes in the network (T4)?

We used a whole-brain, high-temporal resolution
(TR=720ms) resting state fMRI dataset [43] and extracted
time-series from a 36-node functional parcellation. By using
Multiplication of Temporal Derivatives [37] we were able to
calculate 1200 time-varying network matrices. To remove
noise, we smoothed the dataset with a 14 times (volume)
sliding window.

Based on initial plots (1-similarity and modularity) of the
full 1200 volume time-series dataset, we filtered a 140 times
(400-560) window containing consistent similarity patterns,
visible as peaks in the similarity plot. Using this dataset
as input, TimeSum identified time-varying communities,
state-intervals, and summarized topology. Two major classes
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Figure 8. A. Exploration of posteromedial cortex, node 4, in an integrated state from timesteps 42-54 through the summary graph.
B. Detailed exploration of changes in local topology of node 4 through difference graph for timesteps 50-52. C. Plots for 1-similarity
and modularity of the identified state. Filtering within-state variability for timesteps 50-52.

of network states were identified: one with relatively high
density and low modularity (times 42-54, 96-120); one with
low density and high modularity (times 0-40, 60-96, 121-
140), see Fig. 8B (T1). This behavior may correspond to
the results from a previously performed statistical analysis of
the data, which had identified tight, integrated and modular,
segregated states [37].

To better understand network changes driving dynamic
behavior, we drilled down into a time sub-interval (42-54),
investigating a state transition, see Fig. 8B. Our domain
expert focused on visualizing the dynamics of node 4,
encompassing brain region posteromedial cortex, one of
the most connected areas of the human brain. As shown
in the summary graph in Fig. 8A, posteromedial cortex
exhibited diverse connectivity with multiple flexible regions
(frequent community changes) within the state, (i.e., nodes
27, 28, 30, 31) (T2,T4). Interestingly, node 4 (posteromedial
cortex) itself does not change its community during this time,
and this relative stability matches previous research done
regarding the dynamics of this brain region [37].

Within the selected sub-interval, the similarity plot
suggested large changes of network structure during time
50-52. Visualization of these changes using a difference
graph, see Fig. 8B,(T3,T4), only for node 4, may provide
an explaination of the relatively large shift in global network
structure (visible in the similarity plot), driven by changes
in few edges and shifts in community structure. Additional
research and rigorous statistical analysis is needed to validate
the network dynamics inferred by TimeSum.

To summarize, our domain experts could easily identify
major topological shifts in the datasets used for the presented
case studies. The case studies demonstrate that our approach
has great potential for rapidly formulating initial hypotheses
for different types of applications requiring complex network
analysis. Traditional approaches used to visualize such data
use small multiples or animations. Such methods do not
effectively depict major topological patterns, like birth or
death of communities or transient nodes, see Fig. 8B, node
27.

Discussion

Traditionally, analysts use their expert knowledge, experi-
ence and perceptual skill to identify and glean core topologi-
cal structure of the network and its dynamic behavior. Time-
Sum, based on its algorithmic and visual methods, is able to
characterize important changes happening in a network and
compute the core network structure characterizing a state.

Domain Expert Feedback Our domain expert (neurosci-
entist) has used our tool and is convinced of its value. He
was quickly able to identify higher-level topological network
changes, and identify trend behavior in the connectivity
profiles of the nodes. He stated: “The interactive visual
techniques introduced, enabled an intuitive understanding
of the systems we study. For example, the summary graphs
provided high-level overviews of network structure and how
it changes. The difference graph allowed me to get a sense of
variability within each state and comprehend the dependence
between dynamics across timepoints. It would be great to
add more layout techniques to understand modular structure
better.” He added that “there haven’t really been any good
ways to visualize time-varying network data in a way that
facilitates detailed and intuitive understanding. TimeSum
allows me to perform the kind of deep data exploration that
is likely to help substantially for gaining new insights.”

Our method was designed primarily to address the
temporal scalability problem arising in time-varying network
data analysis. Through our experiments, we determined that
our system can be used as an interactive, near-real-time
system for datasets consisting of 240+ nodes, 4,608,400
edges, and 200+ timesteps. The processing time required
for interactive filtering and switching views is negligible.
As all abstraction algorithms are executed online, the system
requires approximately five to six second//s to start up.

Scalability For larger datasets, our technique demands
more screen space and computational power. Nevertheless,
our method produces intuitively understandable results when
graphs exhibit temporal correlation and inherent modular
structure. Many naturally occurring networks have such
properties. While scalability of computational aspects of
our approach is important, we believe that “perceptual
scalability” is perhaps even more important, and perceptual
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Figure 9. Our technique reduces the time-varying dataset into
summary graphs. Difference graphs convey the causes and
effects of topological changes. Here, the small multiples
technique (A) is compared with the summary graph (C) and
difference graph (B) C. Considering the summary graph, we can
identify the nodes that often change community membership. B.
The addition of the edge from node 0 to node 15 causes nodes
15 and 20 to change their community (grey).

scalability was the main focus of our research. Our approach
provides an effective means for visualizing similarities and
differences between graphs, while avoiding visual clutter and
greatly reducing edge crossings. Reduction of complexity
can be achieved by sampling using centrality, for example,
aggregating nodes of lower importance. Further, methods
like semantic zooming, providing additional details on
demand further deal with visualizing large number of nodes.
However, Our method focuses on the complexity of temporal
behavior. Other methods, such as edge-bundling or meta-
node reduction, could be used in conjunction to deal with
perceptual scalability.

Tuning parameter values The threshold used for the
computation of summary graphs affects the computation of
topology. A resulting graph will be sparse if the algorithm
finds similar topological behavior between dissimilar graphs
in a state. For example, AEP, see Section 7, is an indicator
one can use to determine the reliability of the summarization
algorithm. Our technique requires a user to specify the values
of several parameters, e.g., δ values used as weights to define
similarities, threshold values for summary graph generation
and state detection, etc. Proper choices of values depends on
the particular dataset to be analyzed and the questions to be
answered.

Comparison with Other Techniques
Domain experts commonly use small-multiples or anima-
tions to understand the dynamics and evolution of graphs

over time, see Figure 9. We compare our approach to
common methods and explain the conceptual advances our
technique offers. Fig. 9A shows two graphs (101, 102) in the
same state (timestep interval 100-105), with nodes being col-
ored by the dynamically changing community membership.
Figs. 9B and 9C show the difference and summary network
computed by our technique.

Considering small-multiples, to identify (T1) states and
analyze summary topologies (T2), the method relies on
a user’s visual perceptual skills to identify commonalities
in the behavior of similar graphs. Generally, a user must
manually inspect a large number of views. To understand
such variations in topology (T3) and comprehend complex
local dynamics (T4) in dense graphs, finding differences is
a cognitively overwhelming and extremely time-consuming
task. Users often fail to notice major differences between
two adjacent graphs since recognizing changes can be
perceptually challenging.

Animations The use of visual animations, which is
limited to a user’s short-term memory, is often ineffective
for the analysis of complex time-varying networks. A user
must remember changes in community membership, deal
with unstable layouts necessary to classify states (T1), and
mentally determine commonalities (T2). Further, identifying
small-scale changes in the topology of dense graphs is a
complex and cognitively demanding task (T3,T4). Tasks like
identifying major events like growth or death of communities
is challenging through animations due to its constantly
fluctuating and dynamic feature of the visualization.

To support efficient state analysis of complex time-varying
networks, our method automatically computes an unchang-
ing network topology and its corresponding time-interval,
see Fig. 9C. This approach reduces redundancy in visual
representations used to depict the same information. It also
increases visual comprehension of common connectivity
patterns (T1,T2) through abstraction and reduction of visual
clutter. With our approach, small-scale changes in topology
causing community changes can be identified quickly via
community-based difference graphs, see Fig. 9B. depicting
a community change of node 15 (T3,T4). The combination
of these views supports a user substantially to understand
similarities and differences in toplogy and communities.
Without our system, such a detailed analysis of a time-
varying network would require a user to spend a significant
amount of time for manual inspection of a much larger
number of views and develop an instinct to find the common
topological structure.

Conclusions and Future Work

We have presented TimeSum, an approach for exploring
dynamic networks and presenting their complex topologies
via effective abstractions. We have introduced a unique
set of algorithms to identify time-intervals related to
similar topological network properties, allowing one to
comprehend global trends in a network dataset. TimeSum
is a powerful tool for dealing with the temporal visual
scalability problem, greatly reducing the need for time-
consuming manual network analysis steps. With the help
of our tool, experts could comprehend rapidly the causes
and effects of topological changes occurring in networks,

Prepared using sagej.cls



14 Information Visualization XX(X)

which, using commonly available methods, would require
cumbersome off-line data processing.

We plan to focus on the crucially important aspect
of scalability for effective network data processing and
visualization. As datasets become larger, in terms of
nodes and timesteps, methods are needed that can display
large data meaningfully. We plan to consider combining
temporal and spatial network information through leveraging
dynamic techniques, such as orchestrating changes in node
appearance (e.g., semantic zooming). Further, it is possible
to improve our exploration approach by enabling difference
graph computation with not only adjacent timepoints but also
time-discontinuous time points.
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