
UC Irvine
UC Irvine Previously Published Works

Title
A New Approach to Spinors and Some Representations of the Lorentz Group on Them

Permalink
https://escholarship.org/uc/item/3048w1nx

Journal
Foundations of Physics, 31(12)

ISSN
0015-9018

Authors
Friedman, Yaakov
Russo, Bernard

Publication Date
2001-12-01

DOI
10.1023/a:1012622917155

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3048w1nx
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1733

0015-9018/01/1200-1733/0 © 2001 Plenum Publishing Corporation

Foundations of Physics, Vol. 31, No. 12, December 2001 (© 2001)

A New Approach to Spinors and Some Representations
of the Lorentz Group on Them

Yaakov Friedman1 and Bernard Russo2

1 Jerusalem College of Technology, Jerusalem 91-160, Israel; e-mail: friedman@mail.jct.ac.il
2 Department of Mathematics, University of California, Irvine, California 92697-3875; e-mail:
brusso@math.uci.edu

Received February 9, 2001; revised June 14, 2001

We give a geometric realization of space-time spinors and associated representa-
tions, using the Jordan triple structure associated with the Cartan factors of type
4, the so-called spin factors. We construct certain representations of the Lorentz
group, which at the same time realize bosonic spin-1 and fermionic spin- 12 wave
equations of relativistic field theory, showing some unexpected relations between
various low-dimensional Lorentz representations. We include a geometrically and
physically motivated introduction to Jordan triples and spin factors.

1. INTRODUCTION

A determination of all unitary representations of the inhomogeneous
Lorentz group is equivalent to a determination of all possible relativistic
wave equations.(1) Moreover, the formalism of relativistic quantum theory
is based on a unitary (possibly reducible) representation of the restricted
Poincaré group. The representation provides the quantum mechanical
Hilbert space, and the infinitesimal generators of its Lie algebra are inter-
preted as the basic physical observables (energy, momentum, angular
momentum).(2) The irreducible representations of the Lorentz group were
first determined by E. Wigner in the 1930s.

Geometric characterizations, with quantum mechanical significance,
of the state spaces of Jordan algebras(3) have been known for some time.
These characterizations are expressed axiomatically in the category of
ordered Banach spaces. However, a geometric model for quantum mechanics



based on the premise that states are just the unit vectors of a normed space
resulted in the characterization of the state spaces of atomic JB*-triples.(4)

An important example which corresponds to ‘‘two state’’ physical
systems gives rise to the JB*-triple called a Cartan factor of type 4, or a
spin factor. JB*-triples occur in the study of bounded symmetric domains
in finite and infinite dimensions. In recent years, bounded symmetric
domains and JB*-triples have appeared naturally in physics, for example in
transmission line theory and special relativity.(5, 6) In this paper we show
how the JB*-triple-structure occurs in the representation theory of the
Lorentz group.

More precisely, we propose a triple product representation of the
canonical anticommutation relations which does not make use of the asso-
ciative Clifford algebra. Imposition of these commutation relations on the
natural basis of Cn defines a triple product making Cn into a Cartan factor
of type 4 that we denote by Sn. This Jordan structure is used to represent
the Lorentz group on S3 and S4. The irreducible representation on S3

corresponds to the relativistic transformations of the electro-magnetic field.
The irreducible spin-1 representation on S4 extends the Lorentz space-time
transformation. By taking the self-adjoint part of this representation with
respect to the spin conjugation, a reducible spin- 1

2 representation on S4

results. The latter is shown to induce two spin-1 representations in the
space of determinant preserving maps on S4 showing that the same spin
factor could be used to represent the two types of elementary particles:
bosons and fermions.

This paper is organized as follows. Except for a review of some physi-
cal concepts in Subsec. 2.1, Secs. 2–4 are concerned with JB*-triples. The
definition of JB*-triple and background on the connection with bounded
symmetric domains is given in Sec. 2.2. In Sec. 3 we introduce a triple
product structure on Cn and show that it satisfies the algebraic part of the
definition of JB*-triple. Then we construct two linear Lie groups, as well as
their Lie algebras, which are derived from this Jordan structure. These
spaces are used in the constructions of the representations of the Lorentz
group in Sec. 5. We shall see that although these finite dimensional repre-
sentations cannot be unitary, they do have an algebraic invariant, namely
the determinant. In Sec. 4, using the determinant, a simple characterization
of the tripotents (the basic building blocks of the triple product) is given.
Also, a crucial decomposition, interesting in its own right, which we call
the facial decomposition (Theorem 1), of any element into a linear combi-
nation of two maximal tripotents, is used to define the norm which
together with the triple product makes Cn into a JB*-triple (Theorem 2)
denoted Sn. We also use the facial decomposition to obtain an analog of
the polar decomposition for an arbitrary element (Theorem 3).
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Section 5 contains the construction of the representations corresponding
to the relativistic transformations of the electromagnetic field and to the
Lorentz space-time transformation. The latter is a spin-1 representation.
The Jordan theoretic relation between the spin-1 and spin- 1

2 representations
is described in Theorem 4.

2. PRELIMINARIES

2.1. Lorentz Group in Relativity and in Electromagnetic Fields

The Lorentz group and its representations pervade any advanced text-
book of physics. Most often the Lorentz group acts on four-vectors, which
form a four dimensional real space. Such vectors may represent space-time,
energy-momentum, scalar and vector potentials of the electromagnetic field
and other physical quantities. The Lorentz group also introduces nonlinear
maps of the ball in R3 of all possible velocities, and acts on the intensities
of the electromagnetic field, which are a pair of three dimensional vectors.
In Relativistic Quantum Mechanics, this group is represented on Dirac
bispinors which are complex four tuples and are use to represent the state
of an electron. We will now recall some of these facts.(7)

The space-time is a four dimensional real Euclidean space with one
coordinate representing time and three coordinates representing position.
A reference frame is an orthonormal basis in the spacetime. A reference
system is called inertial if a moving body which is not acted on by external
forces moves with constant velocity, that is, is freely moving. The principle
of relativity states that all laws of nature are identical in all inertial frames
of reference, that is, the equations expressing these laws are invariant with
respect to appropriate transformations of coordinates and time from one
system to another. The principle of relativity of Einstein leads to relativistic
mechanics, in which the interval between two events is identical for all
inertial frames.

The interval between two events (t1, x1, y1, z1) and (t2, x2, y2, z2) is
defined as

s=[c2(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2]1/2

If we set

x0=ct, x1=x, x2=y, x3=z
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then the interval becomes

s=[Dx2
0 −Dx2

1 −Dx2
2 −Dx2

3]1/2

The group generated by all possible transformations from one inertial
frame to another is called the Poincaré group. This group contains the
subgroups of spatial and time translations and the Lorentz group. The
Lorentz group consists of all space-time transformations preserving the
interval and the origin of the reference frame.

The Lorentz group is a six dimensional Lie group. It contains as a
subgroup the group of spatial rotations, which is isomorphic to the group
SO(3) consisting of all 3 by 3 orthogonal real matrices with determinant
one. The rotation group is a three dimensional Lie group. The remaining
three dimensions of the Lorentz group come from the boosts representing
transformations from one inertial system to another that is moving in par-
allel to the first one with constant velocity V.

The Lie group of rotations consists of spatial rotations about some
axis in space by an angle j. For example the rotation matrix R1 about the
x-axis by an angle t in coordinates x0, x1, x2, x3 is,

R1(t)=r
1 0 0 0
0 1 0 0
0 0 cos t sin t
0 0 −sin t cos t

s (1)

The infinitesimal generator of R1(t), denoted by J1, represents the angular
momentum and in the above coordinates is given by

J1=r
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

s (2)

Similarly, the infinitesimal generators of rotations about the y-axis and
z-axis are

J2=r
0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

s , J3=r
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

s (3)
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The Lie algebra of the Lie group SO(3), is linearly spanned by these
three matrices, which satisfy the commutation relations

[J1, J2]=−J3, [J2, J3]=−J1, [J3, J1]=−J2 (4)

To determine the Lorentz transformations from one inertial reference
system to another obtained by boosts, consider the boost in the x-direction.
It is easy to show [7, p. 10] that the linear transformation which preserves
the intervals for this case leads to

x0=
x −0+

V
c

x −1

=1 −
V2

c2

, x1=
x −1+

V
c

x −0

=1 −
V2

c

, x2=x −2, x3=x −3

where V is the velocity of the second reference frame in direction of the x-axis
with respect to the first. Let K1 be the infinitesimal generator corresponding
to this boost. Then the matrix of K1 in the above mentioned coordinates is

K1=r
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

s
Similarly, the infinitesimal generators K2, K3 of the Lorentz boosts in

the y and z directions are given by

K2=r
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

s, K3=r
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

s
Direct calculation show that the remaining commutation relations of the
Lie algebra (the real span of Jk, Kk with k=1, 2, 3) of the Lorentz group
are

[J1, K1]=0, [J1, K2]=−K3, [J1, K3]=K2 (5)

[J2, K1]=K3, [J2, K2]=0, [J2, K3]= − K1 (6)

[J3, K1]=−K2, [J3, K2]=K1, [J3, K3]=0 (7)

[K1, K2]=J3, [K2, K3]=J1, [K3, K1]=J2 (8)
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The above action of the Lorentz group is called the realization on the
four-vectors. Transformation from one inertial system to another induces
also a nonlinear transformation on the ball of possible velocities. These
transformations are affine and preserve segments. We will discuss them in a
future paper.

The equations of motion of a charge in a given electromagnetic field
involve the electric field intensity E and the magnetic field intensity H. The
transformation of the electric field intensity from one inertial system to
another one moving with velocity V in the x-direction is given [7, p. 62] by

Ex=E −x, Ey=
E −y+

V
c

H −

z

=1 −
V2

c2

, Ez=
E −z −

V
c

H −

y

=1 −
V2

c2

and similar equations for the magnetic field, where E has coordinates Ex,
Ey, Ez.

If we let F denote E+iH, it is a fact that the complex valued quantity

F2=F2
x+F2

y+F2
z=||E||2 − ||H||2+2iE ·H (9)

is invariant under the transition from one inertial frame to another. The
above transformations of electric and magnetic fields take the form

Fx=F −x, Fy=F −y cosh k− iF −z sinh k, Fz=iF −y sinh k+F −z cosh k

and are thus described by the matrix

r1 0 0
0 cosh k i sinh k
0 − i sinh k cosh k

s (10)

where tanh k=V/c. Thus, the natural model for the electromagnetic field
intensity is the vector F in C3 and the Lorentz group is represented by the
linear maps preserving F2.

2.2. JB*-Triples

A symmetric domain is an open connected subset D of Cn with the
following property: for each point of D, there is an involutive holomorphic
automorphism of D which has that point as an isolated fixed point. This is
the same as the domain having the property at a single point, and being
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homogeneous (the group of all holomorphic automorphisms acts transiti-
vely). For example, in the complex plane, the unit disk, and hence by the
Riemann mapping theorem, every simply connected proper planar domain
is a symmetric domain.

For a bounded symmetric domain D in Cn, the set G=aut D of
complete holomorphic vector fields on D is a real Lie algebra making the
group G=Aut(D) of all holomorphic automorphisms of D into a real Lie
group. From this the irreducible bounded symmetric domains in Cn were
classified. These results were accomplished in the 1930s.

In some unpublished lecture notes of 1969, M. Koecher established a
correspondence between bounded symmetric domains in Cn and finite
dimensional JB*-triples (defined below); for a thorough discussion of this
see the lecture notes of Loos.(8) A link was provided between infinite
dimensional holomorphy and functional analysis by Harris:(9) the open unit
ball of a C*-algebra is a bounded symmetric domain, a transitive family of
automorphisms being provided by the Möbius transformations

z W (I − aa*)−1/2 (z+a)(I+a*z)−1 (I − a*a)1/2

Since this formula involves only the symmetrized triple product

{abc}=
ab*c+cb*a

2
(11)

the result holds for norm closed subspaces of C*-algebras which are stable
for the map (a, b, c) W {abc}, equivalently a W aa*a. Such spaces were
called J*-algebras by Harris but are now called JC*-triples.

There are six types of Cartan factors. The types 1, 2, and 3 are very
easy to describe. In finite dimensions, they consist respectively of the rec-
tangular m by n complex matrices, the k by k anti-symmetric complex
matrices, and the l by l symmetric complex matrices. Here, m \ 1, n \ 1,
k \ 3, l \ 2. The types 5 and 6 are exceptional of dimensions 16 and 27
respectively, and we will not be concerned with them. The Cartan factor of
type 4, sometimes called a spin factor will be a key ingredient of the rest of
this paper. Cartan factors of types 1–4 are JC*-triples under the triple
product (11), and the above descriptions of them are valid in infinite
dimensions.

We introduce now some facts about spin factors(10) which will help us
to motivate our paper. An even dimensional spin factor is a linear space
with a basis G={vj, ṽj : j ¥ J} and a (conjugate linear) conjugation Ä
defined by vÄi =ṽi (and ṽ Äi =vi). Let ui be either vi or ṽi. Define the triple
product on the space by extending it linearly (conjugate linear in one of the
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variables) from the basis elements as follows. The only non-zero triple
products of the basis elements for any i, j ¥ J with i ] j are the following

(i) {uiuiui}=ui meaning that ui is a tripotent;

(ii) {uiuiuj}=1
2 uj meaning that ui and uj are co-orthogonal (colinear

in the literature)

(iii) {uiuju
Ä

i }=−1
2 uÄj meaning that ui, uj, uÄi , uÄj form an odd

quadrangle.

Note that from the above definition, it follows that {uiu
Ä

i uk}=0 for any uk,
meaning that the pairs vi, ṽi are orthogonal. Also, each ui is a minimal tri-
potent, meaning that {uiujui}=0 for all j ] i. We shall also make use of
maximal tripotents, which are defined by {www}=w and {wwa}=a for
every a ¥ G. For example, for each a ¥ G, a+aÄ is a maximal tripotent.
A basis of the above type for a spin factor is called a spin grid.

We give two examples of spin grids. The second will be important in
Subsec. 5.4. The triple product used is given by (11).

Example 2.1. [2 by 2 matrices]

v1=51 0
0 0
6 ; ṽ1=50 0

0 1
6 ; v2=50 1

0 0
6 ; ṽ2=5 0 0

−1 0
6

Example 2.2. [4 by 4 anti-symmetric matrices]

v1=r
0 1 0 0

−1 0 0 0
0 0 0 0
0 0 0 0

s ; v2=r
0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

s ; v3=r
0 0 0 1
0 0 0 0
0 0 0 0

−1 0 0 0

s

ṽ1=r
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

s ; ṽ2=r
0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

s ; ṽ3=r
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

s
We note that in both Examples 2.1 and 2.2, there is an unexpected

minus sign. This is due to the fact that in order for all the quadrangles
(vi, vj, ṽi, ṽj) to ‘‘glue’’ together correctly, as noted above, they must be odd
quadrangles. Note that in Examples 2.1 and 2.2, the conjugation Ä is dif-
ferent from the usual adjoint for matrices, behaving more like the Hodge
operator for differential forms.
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A spin grid not only determines the triple product, but it can also be
used to define an inner product by declaring the spin grid to be an ortho-
normal basis, that is, Oa | bP=; aj b̄j+; ãj b̄̃j if a=; ajvj+; ãj ṽj and
b=; bjvj+; b̃j ṽj. Then the triple product, inner product, and conjugation
are related by

2{abc}=Oa | bP c+Oc | bP a −Oa | cÄP bÄ (12)

A useful tool for studying spin factors is the so-called determinant,
which is defined by

det a=1
2 Oa | aÄP (13)

For example, the spectral theorem says that if det a ] 0, then a=s1e+s2 f,
where e and f are orthogonal minimal tripotents, s1 \ s2 > 0 and ||a||=
max{s1, s2}=s1. Moreover, for the dual norm, we have

sup
||b|| [ 1

|Oa | bP|=s1+s2 (14)

The definition of JB*-triple will now be given. A complex Banach
space U is said to be a JB*-triple if it is equipped with a continuous triple
product (a, b, c) W {abc} mapping U × U × U to U such that

(i) {abc} is linear in a and c and conjugate linear in b;

(ii) {abc} is symmetric in the outer variables: {abc}={cba};

(iii) for any x ¥ U, the operator D(x) from U to U defined by D(x) y
={xxy} is hermitian (that is, exp itD(x) is an isometry for all
real t) with non-negative spectrum;

(iv) the triple product satisfies the following identity,

D(x){abc}={D(x) a, b, c} − {a, D(x) b, c}+{a, b, D(x) c} (15)

(v) ||{xxx}||=||x||3.

The identity (15) can be linearized to

{x, y, {abc}}={{xya}, b, c} − {a, {yxb}, c}+{a, b, {xyc}}

The building blocks of the algebraic structure of a Jordan triple system
are the tripotents (that is, elements e with {eee}=e) and their corresponding
Peirce decompositions. There are important relations between pairs, triples,
and quadruples of tripotents (orthogonal, colinear, governing, trangle,
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quadrangle). These relations are fundamental tools in the classification(10)

of atomic JB*-triples as well as in their abstract geometric counterparts,
the facially symmetric spaces.(4)

3. TRIPLE PRODUCT REPRESENTATION OF CAR

The classical definition of the canonical anticommutation relations
(CAR) involves a sequence pk of elements of an associative algebra which
satisfy the relations

pl pk+pk pl=2dkl

This trivially implies that

pl pk pl=−pk for k ] l; and pk pk pl=pl for any k, l

The last relations we will call ‘‘the triple canonical anticommutation rela-
tions’’ (TCAR for short).

We note now that the TCAR occur naturally in a Cartan factor of
type 4. Let G={vj, ṽj : j ¥ J} be a spin grid (see Sec. 2.2) for a spin factor
of dimension n which we assume finite. Define a basis of maximal tripo-
tents w1,..., wn by

w2j=vj+ṽj, w2j+1=i(vj − ṽj) (16)

Then a direct calculation shows that Owp | wqP=2dpq, wÄp=wp and

{wlwkwk}={wkwkwl}=wl; {wlwkwl}=−wk+2dklwl

for any 1 [ k, l [ n, and

{wkwlwm}=0 if k, l, m are distinct

This motivates the definitions in the next subsection.

3.1. A Triple Product Structure on Cn

Now let Cn be the n (finite or infinite) dimensional complex Euclidean
space with the usual inner product O · | ·P, Euclidean norm || · ||2, and
natural basis

e1=(1, 0,..., 0), e2=(0, 1,..., 0),..., en=(0,..., 0, 1)
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We define a triple product on Cn by use of the TCAR for the elements of
the natural basis and extend it to the whole space to be linear and symme-
tric in the outer variables and conjugate linear in the middle variable.
Namely, define

{elekek}=el; {ekekel}=el; {elekel}=−ek+2dklel (17)

for any 1 [ k, l [ n and

{ekelem}=0 if k, l, m are distinct (18)

Then for arbitrary a=(a1,..., an), b=(b1,..., bn), c=(c1,..., cn) ¥ Cn define

{abc}= C
j, k, l

aj b̄kcl{ejekel}

It is trivial to check that

{abc}=Oa | bP c+Oc | bP a −Oa | c̄P b̄ (19)

where ā=(ā1,..., ān). This should be compared with (12).
We now define a TCAR basis to be any linearly independent set

u1,..., un in Cn which satisfies (17) and (18), where the triple product is
defined by (19). It follows that such a basis is an orthonormal basis in Cn.
Of course, an example of such a basis is the natural basis.

The straightforward proof of the following lemma will be omitted.

Lemma 3.1. An orthonormal basis u1,..., un is a TCAR basis if and
only if uj=Ouk | ūkP ūj for all k, j. In particular, Ouj | ūkP=0 for all k ] j.
Moreover, there is a l ¥ C, |l|=1 such that Ouk | ūkP=l and uk=lūk.

Corollary 3.2. An orthonormal set which satisfies the TCAR prop-
erties can be extended to a TCAR basis.

Proof. Let uj, 1 [ j [ m satisfy TCAR. There is a l with |l|=1 such
that for all j, uj=lūj. Thus uj=mxj where m2=l and x1, ..., xm, is an
orthonormal set of vectors with real coordinates. Now complete x1,..., xm to
an orthonormal basis x1,..., xn ofRn and set uj=mxj for m+1 [ j [ n. i

The space Cn with the triple product defined by (19) will be denoted
by Sn. For any x, y ¥Sn define a linear map D(x, y) by

D(x, y) z={xyz} for any z ¥Sn
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By straightforward calculation, using (19),

D(x, y){abc}={D(x, y) a, b, c} − {a, D(y, x) b, c}+{a, b, D(x, y) c}
(20)

which shows that Sn satisfies the ‘‘algebraic part’’ of the definition of JB*-
triple, that is (i), (ii), and (iv). The analytic part, that is, conditions (iii) and
(v) will be verified in Sec. 4 after constructing a norm different from the
Hilbert space norm used so far.

3.2. The Linear Automorphism Group Taut(Sn) and Its Lie Algebra

The following proposition will be used to define a Lie group of linear
transformations which will be instrumental in the construction of the
representations in Sec. 4.

Proposition 3.3. Let T be a linear map of Sn into Sn. The following
are equivalent:

(a) T is invertible and satisfies

T{abc}={TaTbTc} (21)

(b) If {u1,..., un} is any TCAR basis, then so is {Tu1,..., Tun}.

(c) The matrix of T in the natural basis has the form lU where l ¥ C,
|l|=1 and U is a real orthogonal matrix.

Proof.

(a) S (b) Let {uj} be a TCAR basis and let wj=Tuj. Since T pre-
serves the triple product, the wj satisfy (17)–(18). We have already
remarked that this implies that Owj | wkP=djk.

(b) S (c) Since T takes an orthonormal basis to an orthonormal
basis, it preserves the inner product. Since {Tej} is a TCAR basis, by
Lemma 3.1 there is a m ¥ C, |m|=1 such that Tek=mTek. Define l=m̄1/2

and U=l̄T or T=lU. Then

Uek=l̄Tek=lTek=lmTek=l̄T(ek)=Uek

This implies that the matrix of U in the natural basis is a real unitary
matrix and thus orthogonal.

(c) S (a) Since the matrix for U is real, Ua=Uā, so (21) follows. i
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A linear map T on Sn satisfying one of the equivalent conditions of
the above Proposition will be called a triple automorphism of Sn. We
denote by Taut(Sn) the Lie group of all such triple automorphisms. From
Proposition 3.3 it follows that this group is the product of O(n), the
orthogonal group of dimension n, and the group U(1) of rotations in the
complex plane. Thus, the real dimension of Taut(Sn) is n(n − 1)/2+1.

To describe the Lie algebra taut(Sn) of the group Taut(Sn) of triple
automorphisms, note that the infinitesimal generators of such auto-
morphisms are triple derivations, that is, linear maps d on Sn that satisfy

d{abc}={da, b, c}+{a, db, c}+{a, b, dc}

For any uk, ul of a TCAR basis with k ] l we have D(uk, ul)=−D(ul, uk)
and thus from (20)

D(uk, ul){a, b, c}

={D(uk, ul) a, b, c}+{a, D(uk, ul) b, c}+{a, b, D(uk, ul) c}

implying that D(uk, ul) ¥ taut(Sn). From (17) and (18) it follows that the
matrix of D(uk, ul) with respect to the basis u1,..., un is a basic real anti-
symmetric matrix. Since a real linear combination of triple derivations is
also a triple derivation, the operator d defined on Sn by

d=C
k < l

dklD(uk, ul) with dkl ¥ R

is represented by an n × n real antisymmetric matrix and d ¥ taut(Sn).
Note that by properties of the triple product, it follows that the

operator diI is also a triple derivation for any real d. Counting dimensions
we arrive at the following proposition.

Proposition 3.4. The Lie algebra taut(Sn) is the direct sum of the
algebra of real antisymmetric n × n matrices and Ri, that is,

taut(Sn)=3d=diI+C
k < l

dklD(uk, ul) : d, dkl ¥ R4

This description of taut(Sn) is clearly independent of the choice of
TCAR basis, up to isomorphism of Lie algebras.
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3.3. The Determinant Preserving Group Dinv(Sn) and Its Lie Algebra

The finite dimensional representations that we are going to construct
in Sec. 5 cannot be unitary because of the non-compactness of the Lorentz
group. However, there is another algebraic invariant which will be pre-
served by our representations, and this invariant will be related to the
relativistic invariant of intensity in an electromagnetic field. We introduce
that invariant, called determinant, in this section. It will be used also in
Sec. 4 to classify the tripotents of Sn and to prove the important facial
decomposition.

For any a ¥Sn define a notion of determinant by

det a=Oa | āP=C a2
j

After we have proved Theorem 2, we shall see that this definition
agrees with the determinant in a spin factor, given by (13), and coincides
with the ordinary determinant of a matrix in Examples 2.1 and 2.2. Now
define the group Dinv(Sn) to be the set of all invertible linear maps of Sn

which preserve the determinant. Note that SO(n) … Dinv(Sn) … GL(Sn)
and if we denote the Lie algebra of Dinv(Sn) by dinv(Sn), we have
so(n) … dinv(Sn) … gl(Sn). By general principles, if g(t) is a one-parameter
subgroup of Dinv(Sn), then X :=gŒ(0) ¥ dinv(Sn) and g(t)=exp tX.
Conversely, if X ¥ dinv(Sn), then exp tX is a one-parameter subgroup of
Dinv(Sn). Hence dinv(Sn) consists of all infinitesimal generators of one-
parameter subgroups of Dinv(Sn).

Note that for lU ¥ Taut(Sn), OlUa | lUaP=l2Oa | āP so that

Taut(Sn) 5 Dinv(Sn)=SO(n)

Proposition 3.5. If g(t) is a one-parameter subgroup in Dinv(Sn)
then its infinitesimal generator X(=gŒ(0) ¥ dinv(Sn)) is an anti-symmetric
matrix with respect to any TCAR basis of Sn. Hence dinv(Sn) … An(C),
where An(C) denotes the Cartan factor of type 2 (n by n complex anti-
symmetric matrices).

Proof. Differentiating the equation

Og(t) a | g(t) aP=Oa | āP

at t=0 yields OXa | āP=0 for every a ¥Sn and by polarization OXb | āP+
OXa | b̄P=0 for every a, b ¥Sn.
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If X has the matrix [xkj] with respect to a TCAR basis u1,..., un. Then

OXuj | ukP+OXuk | ujP=0

so X is anti-symmetric. i

We shall see later (in Subsec. 5.2) that dinv(S4)=A4(C) (=S6).
The problem of characterizing the linear maps which preserve the

determinant has a long history going back to Frobenius in 1897. Frobenius
showed that the linear maps of the n by n complex matrices which preserve
determinant are of one of the forms A W PAQ or A W PA tQ, where A t is
the transpose of A and P, Q are matrices with det PQ=1. It would be
interesting to find a characterization of determinant preserving linear maps
on Sn. It would also be interesting to explore the analog in our setting of
the pseudo-orthogonal groups SO(n, C) of determinant 1 linear maps of Cn

which preserve the form z2
1+ · · · +z2

n.

4. THE JB*-TRIPLE STRUCTURE OFSn

In this section we construct the norm which makes Sn with the triple
product (19) into a JB*-triple. To do this we need some decomposition
theorems which are interesting in their own right. Moreover, the fact that
Sn is a JB*-triple will be useful in our forthcoming study of nonlinear
representations of the Lorentz group. Only Proposition 4.4 will be used
explicitly in Sec. 4.

4.1. Facial Decomposition

We will describe first the tripotents u, meaning elements u ¥Sn

satisfying u={uuu}, that are the building blocks of the triple product.
If det a ] 0 the argument of the determinant is defined as

ard a=
det a

|det a|

and ard a=1 if det a=0. Note that the elements with zero determinant are
called null-vectors in the literature.

From (19) an element u is a tripotent in one of the following two cases:

det u=0 and Ou | uP=1/2

A New Approach to Spinors and Some Representations of the Lorentz Group on Them 1747



in which case u is called a minimal tripotent, or

ū=(ard u) u and Ou | uP=1

in which case u is called a maximal tripotent.
Note that it follows from (19) that for any maximal tripotent u we

have D(u, u)=I and from (17) that each element uj of a TCAR basis is a
maximal tripotent. On the other hand, for a minimal tripotent v, we have
D(v, v) v̄=0 and both v+v̄ and v − v̄ are maximal tripotents.

Lemma 4.1. Let w1, w2 be a pair of maximal tripotents in Sn. The
following are equivalent.

(a) w1, w2 are linearly independent and {w1w2w1}=w2

(b) ard w1=−ard w2 and Ow1 | w2P=0

(c) w1, iw2 are linearly independent and satisfy TCAR.

Proof.

(a) implies (b) From w̄j=ard wjwj, and 2Ow1 | w2P w1 −Ow1 | w̄1P w̄2=
w2 we obtain

2Ow1 | w2P w1 − (Ow1 | ard w1w1P ard w2+1) w2=0

(b) implies (c) Since w1 and iw2 are maximal tripotents, we need only
to show that {w1, iw2, w1}=−iw2 and {iw2, w1, iw2}=−w1. For example

{iw2, w1, iw2}=−{w2w1w2}=Ow2 | w̄2P w̄1

=ard w2 ard w1w1=−w1

(c) implies (a) {w1w2w1}=i{w1, iw2, w1}=i(−iw2)=w2. i

A pair of maximal tripotents w1, w2 will be called a complementary
pair if one of the equivalent conditions in Lemma 4.1 is satisfied.

Theorem 1 (Facial Decomposition). For any element a ¥Sn there
exist a unique complementary pair w1, w2 of maximal tripotents and a
unique pair of non-negative real numbers a1, a2 satisfying

a1 \ a2 \ 0

and

a=a1w1+a2w2 (22)
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The formula (22) will be called the ‘‘facial decomposition’’ of a. This
terminology will be justified later in this section.

Proof. For any element a ¥Sn with det a ] 0, if l is a complex
number with |l|=1, then ard(la)=l2 ard a. Thus, if m=(ard a)1/2, then
the element b defined by a=mb has a nonnegative determinant. If we
decompose b as

b=x+iy, x, y ¥ spanR{ej}

then (compare to (9))

det b=||x||22 − ||y||22+2iOx | yP (23)

and the condition det b \ 0 implies

Ox | yP=0 and ||x||2 \ ||y||2 (24)

Therefore, in the above notation we have

a=m(x+iy) with m=(ard a)1/2, x, y ¥ spanR{ej} (25)

and x, y satisfying (24).
For any element a ¥Sn satisfying (25) we have

a=m 1 ||x||2
x

||x||2
+||y||2 i

y
||y||2
2=a1w1+a2w2

where the positive real numbers a1=||x||2, a2=||y||2 and the elements
w1=m x

||x||2
, w2=im y

||y||2
are complementary maximal tripotents with ard a

=ard w1. It is readily seen that w1 and w2 satisfy the condition (b) for
complementary pair.

Let us now prove the uniqueness of the facial decomposition. If
a=a1w1+a2w2=b1v1+b2v2, with w1, w2 and v1, v2 complementary pairs
of maximal tripotents and a1 \ a2 \ 0 and b1 \ b2 \ 0, there are, by
Lemma 3.1, constants l, m of absolute value one with w1=lw̄1, w2=−lw̄2

and v1=mv̄1, v2=−mv̄2. From det a=Oa | āP we obtain (a21 −a22) l=
(b2

1 −b2
2) m, and from ||a||22=Oa | aP we obtain a21+a22=b2

1+b2
2 and so

aj=bj and l=m.
Now from

a=a1w1+a2w2=a1v1+a2v2
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and

ā=a1 l̄w1 −a2 l̄w2=a1 l̄v1 −a2 l̄v2

we obtain

w1=
a+lā

2a1
, w2=

a −lā
2a2

(26)

and the same formulas hold for v1 and v2. i

4.2. The JB*-Triple Norm ofSn; Polar Decomposition

As consequences of the facial decomposition, we can now define a
norm which will make Sn into a JB*-triple, and prove a polar decomposi-
tion for arbitrary elements of the JB*-triple Sn.

The norm is defined for any element a ¥Sn with facial decomposition
a=a1w1+a2w2 by

||a||=a1+a2 (27)

We will show first that

||{aaa}||=(a1+a2)3=||a||3 (28)

which is the analog of the defining identity ||a*a||=||a||2 for a C*-algebra.
Thus we can refer to this as the ‘‘operator norm.’’

As in the proof of Theorem 1, ā=m̄(x − iy)=m̄2(a1w1 −a2w2), Oa | aP=
a21+a22, and Oa | āP=m2(a21 −a22).

From (19) it follows that

{aaa}=(a31+3a22a1) w1+(a32+3a21a2) w2

which implies (28).
We still need to show that the function || · || is a norm. It is obvious

from the uniqueness of the facial decomposition that

||la||=|l| ||a|| (29)

for every l ¥ C. The proof of the triangle inequality is more difficult. An
elementary proof requires the solution of a optimization problem for which
a direct proof seems intractible. Instead, we shall prove the following
lemma using properties of spin factors.
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Lemma 4.2. The function || · || defined by (27) satisfies the triangle
inequality, and is therefore a norm on Sn.

Proof. Let C denote the Cartan factor of type 4 and dimension n.
Assume for simplicity of notation that n is even and let v1, ṽ1,..., vm, ṽm be a
spin grid for C (see Subsec. 2.2). For a =; ajvj+; ãj ṽj ¥ C let

f(a)=1
2 (a1+ã1, −i(a1 − ã1), a2+ã2, −i(a2 − ã2),...,

am+ãm, −i(am − ãm)) ¥Sn

One checks easily that

• Of(a) | f(a)P=1
2 Oa | aP

• Of(a) | f(a)P=; aj ãj

• f(aÄ)=f(a).

Hence, from (12) and (19), f({aaa})={f(a), f(a), f(a)} (and by polariza-
tion, f is an isomorphism: f({abc})={f(a), f(b), f(c)}).

Since the function ||f(a)|| is continuous, there is a constant k <. such
that sup {||f(a)|| : ||a|| [ 1} [ k, and by (29), ||f(a)|| [ k ||a||. We now have
||f(a)||3=||{f(a) f(a) f(a)}||=||f{aaa})|| [ k ||{aaa}||=k ||a||3. By iteration
||f(a)|| [ ||a||, and by symmetry ||f−1(b)|| [ ||b||. Finally ||a+b||=||f−1(a)+
f−1(b)|| [ ||f−1(a)||+||f−1(b)||=||a||+||b||. i

Theorem 2. Sn is a JB*-triple isomorphic to a Cartan factor of type 4.

Proof. Referring to the definition of JB*-triple given earlier, it
remains to show that the operator D(a) is Hermitian and positive. In the
first place, if a=a1w1+a2w2 is the facial decomposition of a, then the
matrix of D(a) with respect to a TCAR basis w1, iw2, u3,..., un containing
w1, iw2 is

D(a)=|
a21+a22 2ia1a2 0 · · · 0
− 2ia1a2 a21+a22 0 · · · 0

0 0 a21+a22 · · · 0
· · · · ·
0 0 0 · · · a21+a22

}
and this matrix has eigenvalues a21+a22, (a1+a2)2, and (a1 −a2)2.

Next let T denote the operator exp itD(a) for real t. Since itD(a) is
a derivation of the triple product, T is an automorphism. Thus, as in
the proof of Lemma 4.2, from {TxTxTx}=T{xxx} we obtain ||Tx||3=
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||{TxTxTx}||=||T{xxx}|| [ ||T|| ||x||3, so that by iteration ||Tx|| [ ||T||3
−k

||x||
and ||T|| [ 1. Since T−1 is also an automorphism, ||T−1|| [ 1, so T is an
isometry, which proves that D(a) is hermitian. i

Now that we know that || · || is a norm, we can use the facial decompo-
sition to prove the polar decomposition.

Theorem 3 (Polar Decomposition). For any a ¥Sn with facial decom-
position a=a1w1+a2w2, there exists a positive Hermitian operator T on Sn

such that a=T(w1) and ||T||=||a||. If w is any maximal tripotent and T is
any Hermitian operator such that a=Tw, then w=w1.

Proof. For any a ¥Sn with the facial decomposition (22),

a=(a1I+a2D(w1, w2)) w1

which we will call the canonical polar decomposition of a. We shall show
that the operator H :=a1I+a2D(w1, w2) is an Hermitian operator with
positive spectrum and with norm ||a||. Note that H=i(−ia1I+a2D(w1, iw2))
=id with d ¥ taut(Sn).

The matrix of H with respect to a TCAR basis w1, iw2, u3,..., un which
extends w1, iw2 is

H=|
a1 ia2 0 · · · 0

− ia2 a1 0 · · · 0
0 0 a1 · · · 0
· · · · ·
0 0 0 · · · a1

} (30)

which has eigenvalues a1, a1 ±a2.
To show H is a hermitian operator with respect to the norm || · ||, it is

required to show that exp itH is an isometry for all real t. As is well known
for JB*-triples, this is the same as exp itH being a (triple) automorphism.
But we have already observed above that iH ¥ taut(Sn), and so exp itH ¥

Taut(Sn).
Finally, since ||{abc}|| [ ||a|| ||b|| ||c||, if x ¥Sn, then ||H(x)||=||a1x+

a2{w1w2x}|| [ (a1+a2) ||x||. Since H(w1)=a, ||H||=||a||. This proves the
first statement.

We now prove the second statement. Since T is hermitian, iT ¥

taut(Sn), so by Proposition 3.4,

T=i C
j < k

djkDjk − dI for some djk, d ¥ R
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where Djk=D(uj, uk) and u1, u2,..., un is any TCAR basis with w=u1. In
particular

a=Tu1=−du1 − i 1C
n

2
d1juj
2

With ūj=muj and w̄1=lw1, w̄2=−lw2,

l̄(a21 −a22)=det a=m̄ 1d2 −C
n

2
d2

1j
2

Therefore l̄m=1 and

(a21 −a22)=1d2 −C
n

2
d2

1j
2

Similarly, using Oa | aP, we obtain

(a21+a22)=1d2+C
n

2
d2

1j
2

so that a1=−d and a2=(;n
2 d2

1j)
1/2.

From (26)

w1=
(1+l̄m)(−du1) − (1 − l̄m) i ;n

2 d1juj

2a1
=u1

so w1=w. i

Although the phase w1 in the polar decomposition is unique, the posi-
tive Hermitian operator T with Tw1=a is not. Note that the matrix of any
such T with respect to the TCAR basis u1,..., un, is

r a1 id12 id13 · · · id1n

− id12 a1 id23 · · · id2n

· · · · ·
− id1n − id2n − id3n · · · a1

s
whereas the matrix of a1I+a2D(w1, w2) is (30), where a2=(;n

2 d2
1j)

1/2.
For example, for n=3, the eigenvalues of T are a1, a1 ± `a22+d2

23 .
Thus T is positive if and only if a22+d2

23 [ a
2
1. On the other hand, since the
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norm of a Hermitian element is its spectral radius, ||T||=||a|| if and only if
d23=0. Thus the operators

Th=r
a1 ia2 cos h ia2 sin h

− ia2 cos h a1 0
− ia2 sin h 0 a1

s

are precisely the ones that occur in the possible polar decompositions of the
element a with facial decomposition (22). The canonical polar decomposi-
tion occurs for h=0.

Denote the unit ball of the JB*-triple Sn with respect to the operator
norm by BSn

, namely

BSn
={a ¥Sn : ||a|| < 1}

Thus BSn
is a Cartan domain of type 4, called the Lie ball and any isometry

of Sn is a triple product automorphism.
From (28) it follows that the norm of any tripotent is one and from

(22) that any element in the interior of the unit ball is a convex combina-
tion of zero and two complementary maximal tripotents. Thus an element
of norm one lies on the line segment connecting w1 and w2 in the boundary
of the unit ball. This is why we call (22) the facial decomposition of a.

4.3. The Trace Norm Unit Ball

We may consider any element f ¥Sn as a functional by

f(a)=Oa | fP for any a ¥Sn

with the norm || · ||g called the trace norm, defined by

||f||g=sup{|f(a)| : a ¥ BSn
}

Proposition 4.3. If the facial decomposition of f is f=a1w1+a2w2

then

||f||g=a1

Proof. Let f be the isomorphism of C onto Sn used in the proof of
Lemma 4.2. Recall that f takes the elements vj+ṽj, i(vj − ṽj) into the
(natural) TCAR basis e1,..., en of Sn. Let u1,..., un be a TCAR basis
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extending w1, iw2 and let k be the isomorphism of C onto Sn which maps
vj+ṽj, i(vj − ṽj) onto u1,..., un. We shall show that

k*(f)=
a1 −a2

2
v1+
a1+a2

2
ṽ1 (31)

and therefore by (14),

||f||g=||k*(f)||C*=
a1 −a2

2
+
a1+a2

2
=a1

To prove (31), write a=; ajvj+; ãj ṽj so that k(a)=a1(u1 − iu2)/2+
ã1(u1+iu2)/2+ · · · . Now f=a1u1 − ia2u2 and therefore

f(k(a))=a1
a1+ã1

2
−a2

a1 − ã1

2

On the other hand, writing k*(f)=; cjvj+; c̃j ṽj, we have

k*(f)(a)=C cjaj+C c̃j ãj

so that

c1=
a1 −a2

2
, c2=c3= · · · =0

and

c̃1=
a1+a2

2
, c̃2=c̃3= · · · =0 i

We will denote the unit ball in Sn with respect to the trace norm by S.
It is obvious from the facial decomposition that the boundary of S is the
union of the sets

Gu={u+aw : 0 [ a [ 1; {www}=w; Ou | wP=0; Ow | wP=1;

ard w=−ard u} (32)

where u varies over all maximal tripotents.
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Proposition 4.4. The sets Gu are norm exposed faces of S, that is,
Gu=Fu where

Fu={a ¥Sn : Ou | aP=1=||a||g}

and are therefore n − 1 dimensional unit balls. For n=4 this implies that
the boundary of S is the union of real 3-dimensional balls.

Proof. We prove that Gu=Fu. If a=u+aw ¥ Gu then clearly Ou | aP=
1=||a||g, so that a ¥ Fu. Conversely, let a ¥ Fu have facial decomposition
a=w1+a2w2. Then a ¥ Fw1

and the intersection Fu 5 Fw1
is a face of rank

one or two. In the latter case, w1=u so that a=w1+a2w2=u+a2w2 ¥ Gu.
In the former case the intersection consists of a alone so that a is an
extreme point and hence a minimal tripotent. Thus Oa | aP=1/2 and
det a=0. But det a=l(1 −a22) for some complex number l of absolute
value one, so a2=1. But then Oa | aP=2, a contradiction. So Fu … Gu, as
stated. i

5. SPIN-1 AND SPIN-12 REPRESENTATIONS OF THE
LORENTZ GROUP

All of our representations will be defined on the Lie algebras so(3) and
sl(2, C) and by simple connectedness of SU(2) and SL(2, C) we can pass
freely to representations of those groups. The corresponding representa-
tions of the groups SO(3) and the Lorentz group may therefore be double
valued.

5.1. Lorentz Group Representations in dinv(S3)

Consider the rotation group SO(3) consisting of all 3 by 3 orthogonal
real matrices with determinant one. As was mentioned earlier, this group
coincides with Taut(S3) 5 Dinv(S3). The Lie algebra of the Lie group
SO(3), which is linearly spanned by the three 3 by 3 matrices obtained
from (2) and (3) by omitting the first rows and columns, and satisfying the
commutation relations (4) can be represented in taut(S3) by the operators

s(J1)=D(u2, u3), s(J2)=D(u3, u1), s(J3)=D(u1, u2)

that satisfy the same commutation relations, that is, s extends to a Lie
algebra homomorphism of so(3) into taut (S3). Here of course, u1, u2, u3 is
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any fixed TCAR basis of S3. Note that the corresponding representation
at the group level is the identity map, if elements of taut(S3) are replaced
by their matrices with respect to u1, u2, u3. For example the rotation matrix
R1=exp ts(J1) generated by J1 is the 3 by 3 matrix obtained from (1)
by omitting the first row and column. Note that since R1a=R1 ā, R1 ¥

Dinv(S3).
We shall now extend s, to a linear representation of the Lorentz

group.
Let J1, J2, J3, K1, K2, K3 be the standard infinitesimal generators of

the Lorentz group, the Jj corresponding to the rotation group, and the Kj

corresponding to the boosts.
The commutation relations between J1, J2, J3 are given by (4). The

other commutation relations are (5)–(8).
It is trivial to check that if J1, J2, J3 are any three elements of a

complex Lie algebra satisfying (4), and if we set Kj=iJj for j=1, 2, 3, then
(5)–(8) hold.

We now define a three dimensional linear representation s̃ of the
Lorentz Lie algebra into dinv(S3), extending s, via:

s̃(Kk)=is(Jk)

for k=1, 2, 3.

Proposition 5.1. s̃ is an irreducible representation with range in
dinv(S3).

To see that the image of s̃ lies in dinv(S3), note that for example the
one parameter group (boost) B1(t)=exp ts̃(K1) is the same as the 3 by 3
matrix (10). Thus, although B1(t) cannot be a unitary matrix, it does pre-
serve the determinant of elements of S3. This connection with (10) and the
connection of (23) with (9) shows the relevance of our construction with
the natural model for the electromagnetic field intensity.

5.2. Spin-1 Representations of the Lorentz Group in dinv(S4)

In the previous subsection, we constructed a three-dimensional linear
representation s of the rotation group, and extended it to the full Lorentz
group in such a way that it acts by determinant preserving linear maps
on S3. We shall now construct a linear irreducible four-dimensional repre-
sentation of the Lorentz group which also extends s and show that it is
equivalent to the standard representation of the Lorentz group on space-
time.
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We shall again let J1, J2, J3, K1, K2, K3 be the standard infinitesimal
generators of the Lorentz Lie algebra. We also let u0, u1, u2, u3 denote a
TCAR basis for S4 and define a representation p from the Lorentz Lie
algebra to operators on S4. For notation’s sake, we shall use Djk to denote
D(uj, uk), for j, k ¥ {0, 1, 2, 3}, j ] k. Note that here for example D(u2, u3)
is acting on the space spanned by u0, u1, u2, u3 whereas in the previous
section it was acting on the span of u1, u2, u3. We define p by

p(J1)=D23, p(J2)=D31, p(J3)=D12

p(K1)=iD01, p(K2)=iD02, p(K3)=iD03

Proposition 5.2. p is an irreducible representation with range in
dinv(S4).

We omit the proof as it is a straightforward calculation. We just note
that for example if T=exp tp(K1), then with respect to the basis {u0, u1,
u2, u3},

T=r
cosh t i sinh t 0 0

− i sinh t cosh t 0 0
0 0 1 0
0 0 0 1

s
so that if a=;3

0 ajuj, then OTa | TaP=Oa | āP.
Note that p(Jk) and p(Kk) for k=1, 2, 3 are elements of dinv(S4)

which is a subset of A4(C) by Proposition 3.5. But A4(C) is the complex
span of the Djk and as we have just seen Djk and iDjk belong to dinv(S4).
Therefore dinv(S4)=A4(C).

To understand this representation, we will consider its action on the
positive cone L=1t > 0 tFu0 generated by the face Fu0 of Proposition 4.4.
Note that under the embedding (t, x, y, z) W tu0+ixu1+iyu2+izu3 of
space-time into S4 the determinant corresponds to the square of the
interval.

Proposition 5.3. Let L=1t > 0 tFu0 . Then

(a) L={su0+aw : s ¥ R+, aw=xiu1+yiu2+ziu3, x, y, z ¥ R, x2+y2+
z2 [ s2, 0 [ a [ 1}.

(b) p is an extension of the usual representation of the Lorentz group
on the space-time.
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Proof. From Proposition 4.4 we may use the description of Fu0 given
in (32). If u0+aw ¥ Fu0 , then w=;3

1 ajuj where aj=xj+iyj ¥ C satisfies
;3

1 |aj |2=Ow | wP=1. Since w and u0 are maximal tripotents, det w=ard w
and det u0=ard u0, so that for some l of modulus 1,

1C a2
j
2 l=det w=−ard w=−l

Thus ;3
1 a2

j =−1 so that aj=iyj is purely imaginary with ;3
1 y2

j =1, and
hence

L=3 tu0+ta C
3

1
iyjuj : yj ¥ R, C

3

1
y2

j =1, t > 04

from which (a) follows.
By taking s=ct, where c is the speed of light in vacuum we can iden-

tify the cone L with the ‘‘light cone.’’ A direct calculation shows that L is
invariant under the representation p. For example with T=exp tp(K1),

T(s, ix, iy, iz)=(cosh ts+sinh tx, −i sinh ts+i cosh tx, iy, iz)

Since this representation preserves the determinant of any element in S4

and since for the elements of the cone L, the determinant coincides with the
space-time interval, (b) follows. i

5.3. Spin-12 Representation in dinv(S
4)

The elements Djk from dinv(S4), defined in the previous section, form
a spin grid (as described in Subsec. 2.2) generating the spin factor of
dimension 6. The sharp operation on the grid (see Example 2.2) of this
factor is thus given by

DÄ

01=D23, DÄ

02=D31, DÄ

03=D12

DÄ

23=D01, DÄ

31=D02, DÄ

12=D03

and is extended to be conjugate linear on the whole factor.
For the representation p, constructed in the previous section, p(Jk)

and p(Kk) are minimal tripotents of dinv(S4). We now use the conjugation
Ä to construct, from p, two representations p+ and p− of the Lorentz group

A New Approach to Spinors and Some Representations of the Lorentz Group on Them 1759



using maximal tripotents. The representation p+ is going to be the self-
adjoint part of p with respect to Ä on J1, J2, J3 and the skew-adjoint part of
p with respect to Ä on K1, K2, K3. That is,

p+(Jk)=1
2 (p(Jk)+p(Jk)Ä), p+(Kk)=1

2 (p(Kk) −p(Kk)Ä)

Note that p+(Kk)=ip+(Jk) for k=1, 2, 3.
For example, the matrices of p+(J1), p+(J2) and p+(J3) in the basis u0,

u1, u2, u3 are extensions of the anti-symmetric matrices J1, J2, J3 to a mul-
tiple of 4 by 4 orthogonal matrices as follows:

p+(J1)=
1
2
r 0 1 0 0

− 1
0 J1

0

s=1
2
r 0 1 0 0

− 1 0 0 0
0 0 0 1
0 0 − 1 0

s

p+(J2)=
1
2
r 0 0 1 0

0
− 1 J2

0

s=1
2
r 0 0 1 0

0 0 0 − 1
− 1 0 0 0
0 1 0 0

s

p+(J3)=
1
2
r 0 0 0 1

0
0 J3

− 1

s=1
2
r 0 0 0 1

0 0 1 0
0 − 1 0 0

− 1 0 0 0

s
Note that the constant 1

2 is necessary in order that p+ will be a represen-
tation of so(3). Since p+(Kk)=ip+(Jk), p+ is a representation of sl(2, C).

Notice also that p+(J1), p+(J2), p+(J3) each have 2 distinct eigen-
values, and using the fact that this number is 2j+1 where j is called the
spin value, for our representation we have j=1/2, implying that this is a
spin- 1

2 representation. This is confirmed in the proposition that follows,
whose proof is an elementary calculation.

Proposition 5.4. p+ and p− (defined below) are representations of
sl(2, C). The representation p+ of so(3) into dinv(S4) induces a spin- 1

2

representation of SO(3) in Dinv(S4). For example, the matrix of the opera-
tor R3(t)=exp tp+(J3) with respect to the TCAR basis {u0, u1, u2, u3} is
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R3(t)=exp tp+(J3)=|
cos

t
2

0 0 sin
t
2

0 cos
t
2

sin
t
2

0

0 − sin
t
2

cos
t
2

0

− sin
t
2

0 0 cos
t
2

}
Similarly for R1(t)=exp tp+(J1) and R2(t)=exp tp+(J2).

Let us now define the representation p−, which is going to be the skew-
adjoint part of p with respect to Ä on J1, J2, J3 and the self-adjoint part of
p with respect to Ä on K1, K2, K3. Thus,

p−(Jk)=1
2 (p(Jk) −p(Jk)Ä), p−(Kk)=1

2 (p(Kk)+p(Kk)Ä)

and again p−(Kk)=ip−(Jk) for any k=1, 2, 3.
The matrices of p−(J1), p−(J2) and p−(J3) in the basis u0, u1, u2, u3 are

extensions of the anti-symmetric matrices J1, J2, J3 to a multiple of 4 by 4
orthogonal matrices as follows:

p−(J1)=
1
2
r0 −1 0 0

1
0 J1

0

s=1
2
r0 −1 0 0

1 0 0 0
0 0 0 1
0 0 −1 0

s

p−(J2)=
1
2
r0 0 −1 0

0
1 J2

0

s=1
2
r0 0 −1 0

0 0 0 −1
1 0 0 0
0 1 0 0

s

p−(J3)=
1
2
r0 0 0 −1

0
0 J3

1

s=1
2
r0 0 0 −1

0 0 1 0
0 −1 0 0
1 0 0 0

s
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The above construction can also be done by using the Hodge operator,
also called the star operator. Borrowing the definition from the theory of
differential forms, we define

gDjk=Ejklm g jjgkkDlm

where {j, k, l, m}={0, 1, 2, 3}, gpq is the Lorentz metric: g00=1, gkk=−1
for k=1, 2, 3, and gpq=0 if p ] q, and Ejklm is the signature of the permu-
tation (j, k, l, m) W (0, 1, 2, 3). Specifically,

gD01=D23, gD02=D31, gD03=D12

gD23=−D01, gD31=−D02, gD12=−D03

The representation p+ is then the skew-adjoint part of p with respect
to the Hodge operator, and the representation p− is the self-adjoint part of
p with respect to the Hodge operator.

Proposition 5.5. The representation p+ is a direct sum of two copies
of the standard spin- 1

2 representation in terms of the Pauli spin matrices sk,
k=1, 2, 3.

Proof. Since p+(Kk)=ip+(Jk), it suffices to consider the restriction
of p+ to so(3). A simple calculation shows that a complex matrix which
commutes with all p+(Jk) has the form

r a b c d
− b a − d c
− c d a − b
− d − c b a

s=aI4+2bp−(J1)+2cp−(J2)+2dp−(J3)

The eigenspaces of p−(J2) and hence two invariant subspaces of the
representation p+ are

M=spC{u0+iu2, u1+iu3}

and its orthogonal complement

M+=spC{u0 − iu2, u1 − iu3}
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By properties of the TCAR basis, the matrix of p+(J1) |M with respect
to the basis {u0+iu2, u1+iu3} is

s2=
1
2
5 0 1

− 1 0
6 (33)

Similarly, the matrices of p+(J2) |M and p+(J3) |M with respect to the basis
{u0+iu2, u1+iu3} are

s3=
1
2
5 i 0

0 − i
6 (34)

and

s1=
1
2
50 i

i 0
6 (35)

Moreover, the matrices of p+(Jk) |M+ with respect to the basis {u0 − iu2,
u1 − iu3} turn out to be identical to (33)–(35).

Hence, for k=1, 2, 3,

p+(Jk)=
1
2
5sk+1 0

0 sk+1

6

where of course by s4 we mean s1. i

One can obtain other invariant subspaces by considering the eigen-
spaces of p−(J1) and p−(J3). The restriction of p+ to these subspaces also
leads to the Pauli spin matrices, but possibly in a different order and with
possible sign changes. By rotating the basis in these subspaces one can
obtain the Pauli matrices in the standard order and with the appropriate
sign.

For comparison and the sake of completeness, we also analyze the
representation p−. The situation is entirely symmetric in the following
sense. As remarked above, the commutant of {p+(Jk) : k=1, 2, 3} is
spC[{p−(Jk) : k=1, 2, 3} 2 {I}], which, when restricted to real scalars, is a
four dimensional associative algebra isomorphic to the quaternions. The
commutant of {p−(Jk) : k=1, 2, 3} is therefore spC[{p+(Jk) : k=1, 2, 3} 2
{I}], which is also (after restriction to real scalars) isomorphic to the qua-
ternions. Thus we say that the Lie algebra taut (S4) consists of two copies
of the quaternions, ‘‘glued together’’ at (i times) the identity.
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The representation p− exhibits all of the characteristics of the repre-
sentation p+; it is a direct sum of two copies of the spin- 1

2 two-dimensional
representation given by the Pauli spin matrices. Once again, these matrices
occur not always in the natural order and with some change of sign, both
of which can be corrected by a change of basis. We omit the details of the
calculation.

5.4. Action of the Spin- 12 Representation in dinv(S
4)

Let us now lift the representations p+ and p− from acting on S4 to an
action on dinv(S4)=S6 that correspond to the momentum and angular
momentum operators on the states represented by S4.

We recall first that, from Example 2.2, a spin grid for dinv(S4)=S6

is given by

v1=D01, ṽ=D23; v2=D02, ṽ2=D31; v3=D03, ṽ3=D12

So it follows from (16) that a TCAR basis for the spin factorS6 is given by

D01+D23, D02+D31, D03+D12

i(D01 − D23), i(D02 − D31), i(D03 − D12)

Note that this has the same complex span as

{p+(Jk), p−(Kk) : k=1, 2, 3}

We shall choose

p+(J1), p+(J2), p+(J3), p+(K1), p−(K2), p−(K3) (36)

as a basis for dinv(S4). For any element T in the group Dinv(S4), define
an operator T̃ on Dinv(S4) by T̃A=TAT−1 for any A ¥ Dinv(S4). By
taking T=Rk(t)=exp(tp+(Jk)) or T=Bk(t)=exp(tp+(Kk)) we obtain the
Jordan theoretic connection between the two types of fundamental particles
in nature.

Theorem 4. With respect to the basis (36) of dinv(S4),

R̃1(t)=r
1 0 0 0
0 cos t sin t 0
0 − sin t cos t 0
0 0 0 I3

s , B̃1(t)=r
1 0 0 0
0 cosh t i sinh t 0
0 − i sinh cosh t 0
0 0 0 I3

s
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R̃2(t)=r
cos t 0 − sin t 0

0 1 0 0
sin t 0 cos t 0

0 0 0 I3

s , B̃2(t)=r
cosh t 0 − i sinh t 0

0 1 0 0
− i sinh t 0 cosh t 0

0 0 0 I3

s

R̃3(t)= r
cos t sin t 0 0

− sin t cos t 0 0
0 0 1 0
0 0 0 I3

s , B̃3(t)=r
cosh t i sinh t 0 0

− i sinh t cosh t 0 0
0 0 1 0
0 0 0 I3

s
Thus our spin-12, representation p+ of SO(3) and the Lorentz group on S4

induces a spin-1 representation of SO(3) and the Lorentz group on Dinv(S4).

5.5. Concluding Remarks

We have seen that the action of p+ and p− on S4 is similar to the action
of the Lorentz group on the Dirac bispinors. So, it may be that S4 is equiva-
lent or is a replacement for the bispinors representing the relativistic state of
an electron. Moreover, using the polar decomposition from Sec. 4.2 of any
element ofS4, this state could be decomposed into a maximal tripotent and a
positive operator acting on it. The maximal tripotent could be identified with
the spin of the particle, while the positive operator with the representation of
the energy and momentum of the particle. Our representations act properly
on each part of this decomposition, mainly as a spin-1/2 on the spin part and
as a spin one action on the four-vector representing energy-momentum.

Another interesting observation is that adding an additional symmetry
with respect to the Hodge operator (or the sharp operation) to the repre-
sentation p that is an extension to S4 of the regular Lorentz group repre-
sentation on four-vectors leads to the representation on the bispinors. It
will be interesting to find the physical meaning of this observation.

Since S3 is imbedded into S4 and the representations p+ and p− on
S4 preserve the determinant, from results of Sec. 5.1, these representations
act properly on the intensities of the electromagnetic field.
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