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Abstract

Bottom-up and Top-down Approaches to a Quantum Theory of Gravity

by

Chitraang Murdia

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Yasunori Nomura, Chair

In this dissertation, we explore these two complementary approaches to quantum gravity –
holography as a bottom-up perspective and string theory as a top-down framework.

On the holography side, we study two novel extensions of the AdS/CFT duality – TT de-
formed CFTs and their gravitational duals, and a two-dimensional BCFT with two conformal
boundaries dual to AdS spacetime with two End-of-the-World branes that can intersect at
a defect. We also develop a bulk flow procedure that can be interpreted as generating a
sequence of coarse-grained holographic states. We demonstrate the existence of a novel
inside-out entanglement island for the eternally inflating multiverse. We compute the entan-
glement entropy of free fermions in the presence of a partially transmitting boundary and
use it to study entanglement islands for a blackhole with non-trivial graybody factors.

On the string theory side, we study non-perturbative effects in minimal string theory. We
compute various instanton contributions like the ZZ cylinder, the ZZ annulus one-point
function, and the disk two-point function using string field theory. We also match these to
results from the dual matrix model or matrix quantum mechanics.
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Chapter 1

Introduction

Quantum mechanics and general relativity have been the crown jewels of physics in the
twentieth century. These theories have been tested to a high degree of accuracy in their
respective domains of validity and have led to tremendous amounts of scientific progress.
However, the search for a theory of quantum gravity that unifies these theories has been a
long-standing problem in theoretical physics. The key issue is that a naive theory of quantum
gravity has ultraviolet divergences. When the usual methods of perturbative quantum field
theory are applied to gravity, they lead to a nonrenormalizable theory. Historically such
ultraviolet divergences have indicated the incompleteness of our current understanding and
have necessitated the emergence of new physics at shorter distances. Developing a new,
divergence-free fundamental theory represents a bottom-up approach to quantum gravity.

One sharp way the conflict between quantum mechanics and general relativity is realized
is through theoretical puzzles such as the black hole information paradox and the firewall
paradox [1, 2, 3]. These paradoxes arise from the tension between the equivalence principle
in general relativity and unitarity in quantum mechanics. Understanding and resolving these
paradoxes is the motivating goal behind a top-down approach to quantum gravity.

In this dissertation, we explore these two complementary approaches – holography as
a bottom-up perspective and string theory as a top-down framework towards a quantum
theory of gravity.

1.1 Bottom-up Approach

One approach to understanding quantum gravity is through a bottom-up perspective, which
seeks to understand the theory from an overarching viewpoint. Holography has been one of
the most promising bottom-up approaches to a theory of quantum gravity. The holographic
principle is the proposal that the quantum gravitational degrees of freedom in a given region
R live on its boundary ∂R like a hologram describing all the physics inside it [4, 5]. The
most concrete realization of holography is the AdS/CFT correspondence – a duality between
quantum gravity in anti-de Sitter (AdS) spacetime and a conformal field theory (CFT) living
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on its boundary [6, 7, 8].
A major advance in our understanding of holography came with the development of

the Ryu-Takayanagi (RT) formula and its covariant extension, the Hubeny-Rangamani-
Takayanagi (HRT) formula [9, 10, 11]. According to these prescriptions, the entanglement
entropy of a subregion in CFT is given by the area of an associated minimal or extremal
surface in the bulk. When quantum corrections are included, we get the Quantum Extremal
Surface (QES) formula for the entanglement entropy

S(R) = Sgen(γR) :=
A(γR)

4GN

+ Sbulk(ΣR) (1.1)

where R is a subregion of the CFT and γR is the quantum extremal surface (QES), found
by extremizing the generalized entropy Sgen [12, 13]. Also, ΣR is a partial bulk Cauchy slice
with ∂ΣR = R ∪ γR.

Another key aspect of the holographic dictionary is the subregion-subregion duality. This
duality tells us that the boundary subregion R has access to all the information about the
bulk in the associated entanglement wedge EW (R), the domain of dependence of ΣR [14,
15]. A major step towards resolving the black hole information puzzle came when the QES
prescription was used to study the entanglement wedge of Hawking radiation. After Page
time, this entanglement wedge contains a disconnected region that is completely inside the
black hole. This disconnected region is called the entanglement island, and including it
enables the entanglement entropy of radiation to follow the Page curve [16, 17].

In this work, we focus on holography beyond AdS/CFT and on the applications of en-
tanglement islands to holography.

• Chapter 2 considers T T̄ deformed CFTs and their gravitational duals. In this chap-
ter, we refine some recent work demonstrating the success of the RT formula in T T̄
deformed theories. We emphasize general arguments that justify the use of the RT for-
mula in general holographic theories that obey a GKPW-like dictionary. In doing so,
we clarify subtleties related to holographic counterterms and discuss the implications
for holography in general spacetimes. This chapter is based on Ref. [18].

• Chapter 3 focuses on generating a family of bulk-boundary dualities by using a coarse-
graining procedure. Motivated by the understanding of holography as realized in tensor
networks, we develop a bulk procedure that can be interpreted as generating a sequence
of coarse-grained holographic states. This coarse-graining procedure involves identify-
ing degrees of freedom entangled at short distances and disentangling them. This is
manifested in the bulk by a flow equation that generates a codimension-1 object, which
we refer to as the holographic slice. We generalize an earlier classical construction to
include bulk quantum corrections, which naturally involves the generalized entropy as
a measure of the number of relevant boundary degrees of freedom. The semiclassical
coarse-graining results in a flow that approaches quantum extremal surfaces such as
entanglement islands that have appeared in discussions of the black hole information
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paradox. We also discuss the relation of the present picture to the view that the
holographic dictionary works as quantum error correction. This chapter is based on
Ref. [19].

• Chapter 4 studies a novel gravity dual for a 2d BCFT with two conformal boundaries
by introducing a defect that connects the two End-of-the-World branes. We demon-
strate that the BCFT dual to this bulk model exhibits a richer lowest spectrum. The
corresponding lowest energy eigenvalue can continuously interpolate between − πc

24∆x

and 0 where ∆x is the distance between the boundaries. This range was inaccessible
to the conventional AdS/BCFT model with distinct boundary conditions. We compute
the holographic entanglement entropy and find that it exhibits three different phases,
one of which breaks the time reflection symmetry. We also construct a wormhole sad-
dle, analogous to a 3d replica wormhole, which connects different boundaries through
the AdS bulk. This saddle is present only if the BCFT is non-unitary and is always
subdominant compared to the disconnected saddle. This chapter is based on Ref. [20].

• Chapter 5 applies the entanglement islands prescription to the multiverse. We study
the redundancies in the global spacetime description of the eternally inflating multi-
verse using the quantum extremal surface prescription. We argue that a sufficiently
large spatial region in a bubble universe has an entanglement island surrounding it.
Consequently, the semiclassical physics of the multiverse, which is all we need to make
cosmological predictions, can be fully described by the fundamental degrees of freedom
associated with certain finite spatial regions. The island arises due to mandatory col-
lisions with collapsing bubbles, whose big crunch singularities indicate redundancies
of the global spacetime description. The emergence of the island and the resulting re-
duction of independent degrees of freedom provides a regularization of infinities which
caused the cosmological measure problem. This chapter is based on Ref. [21].

• Chapter 6 studies the entanglement entropy of free fermions in 2 dimensions in the
presence of a partially transmitting interface and its application to entanglement islands
for a blackhole with non-trivial graybody factors. We focus on the case of a single
interval that straddles the defect, and compute its entanglement entropy in three limits:
Perturbing away from the fully transmitting and fully reflecting cases, and perturbing
in the amount of asymmetry of the interval about the defect. Using these results within
the setup of the Poincaré patch of AdS2 statically coupled to a zero-temperature flat
space bath, we calculate the effect of a partially transmitting AdS2 boundary on the
location of the entanglement island region. The partially transmitting boundary is a
toy model for black hole graybody factors. Our results indicate that the entanglement
island region behaves in a monotonic fashion as a function of the transmission/reflection
coefficient at the interface. This chapter is based on Ref. [22].
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1.2 Top-down Approach

A complementary approach to understanding quantum gravity is through a top-down per-
spective, which seeks to understand the theory from a fundamental viewpoint. String theory
is currently the best candidate for a top-down theory of quantum gravity. In this theory,
one replaces the point particles of quantum field theory with one-dimensional objects called
strings. This softens the divergences of gravity and unifies it with quantum field theory.
String theory has been extremely successful owing to the capability to describe a wide range
of phenomena while simultaneously including gravity. Perturbative string theory has been
studied extensively and has led to various exciting results such as consistent quantum gravity
amplitudes, grand unified gauge groups, and extra dimensions. However, non-perturbative
effects in string theory still need to be understood better.

In this work, we focus on non-perturbative contributions in minimal string theory, a
particular model of 2-dimensional gravity.

• Chapter 7 studies one-eigenvalue instantons across this duality. We use insights from
string field theory to analyze and cure the divergences in the cylinder diagram in
minimal string theory with both boundaries lying on a ZZ brane. We focus on theories
with worldsheet matter consisting of the (2, p) minimal model plus Liouville theory,
with total central charge 26, together with the usual bc-ghosts. The string field theory
procedure gives a finite, purely imaginary normalization constant for non-perturbative
effects in minimal string theory, or doubly non-perturbative effects in JT gravity. We
find precise agreement with the prediction from the dual double-scaled one-matrix
integral. We also make a few remarks about the extension of this result to the more
general (p′, p) minimal string. This chapter is based on Ref. [23].

• Chapter 8 generalizes our results to multi-instantons. We compute the normalization
of a general multi-instanton contribution to the partition function of (p′, p) minimal
string theory and also to the dual two-matrix integral, and find perfect agreement
between these two results. This chapter is based on Ref. [24].

• Chapter 9 studies subleading corrections to these non-perturbative effects. We compute
the ZZ annulus one-point function of the cosmological constant operator in non-critical
string theory, regulating divergences from the boundaries of moduli space using string
field theory. We identify a subtle issue in a previous analysis of these divergences,
which was done in the context of the c = 1 string theory, and where it had led to a
mismatch with the prediction from the dual matrix quantum mechanics [25, 26]. After
fixing this issue, we find a precise match to the expected answer in both the c < 1 and
c = 1 cases. We also compute the disk two-point function, which is a quantity of the
same order, and show that it too matches with the general prediction. This chapter is
based on Ref. [27].
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Part I

Bottom-up Approach
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Chapter 2

Comments on Holographic
Entanglement Entropy in T T̄
Deformed CFTs

2.1 Introduction

Gauge-gravity duality, specifically AdS/CFT, is our best known example of a holographic
description of quantum gravity [6]. The so-called GKPW dictionary [8, 7] relating bulk
physics to boundary dynamics takes the form

ZCFT[γij] = e−Ibulk[gµν ], (2.1)

where γij is the background metric of the space in which the boundary CFT lives, and gµν
is the bulk metric. A particularly consequential holographic correspondence given by this
duality is the Ryu-Takayanagi (RT) formula

S(A) = min
∂Γ=∂A

[
∥Γ∥
4G

]
, (2.2)

which relates the entanglement entropy of a subregion A of the boundary space to the area of
the bulk extremal surface Γ anchored to the entangling surface ∂A [9, 10, 11]. Throughout,
we will work to leading order in the bulk Newton’s constant, G, and suppress all bulk fields
aside from gµν . Higher order effects are well understood in the context of AdS/CFT [12, 13].

Other holographic dualities with similar features have been proposed. In particular,
the TT deformation of 2-dimensional CFTs and its appropriate generalizations to higher
dimensions have been argued to have holographic duals [28, 29, 30]. Of crucial importance
to our discussion is that the proposed dictionary relating the boundary and bulk observables
in these theories takes the same form as Eq. (2.1), except that now Dirichlet boundary
conditions are imposed on a cutoff surface in the bulk.
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The simple idea we would like to highlight is that Eq. (2.2) was derived in the context of
AdS/CFT from Eq. (2.1) under rather tame assumptions [31]. The same argument, therefore,
can be used to show that the RT formula holds for all dualities adopting dictionaries of the
form of Eq. (2.1). This straightforward result is known in the community; however, careful
consideration of it resolves subtleties involving counterterms when calculating entanglement
entropy in TT deformed theories.

Note that several calculations of entanglement entropy in TT deformed theories have
appeared recently [32, 33, 34, 35, 36, 37, 38]. Our goal is to emphasize the generality of the
arguments leading to an agreement between boundary entanglement entropy and the RT
formula and clarify some of the calculations performed in these works.

Conventions

The background metric of the space in which the boundary field theory lives is denoted by
γij, while hij refers to the bulk induced metric on the cutoff surface at r = rc. These are
related by hij = r2cγij.

Overview

In Section 2.2, we review some aspects of entanglement entropy from a field theory per-
spective and then proceed to a calculation in the particular case of TT deformed theories.
In Section 2.3, we discuss the general holographic argument for the RT formula, which is
followed by a sample calculation in cutoff AdS. Along the way, we address some subtleties re-
lated to holographic renormalization. We conclude with a discussion about the consequences
for holography in general spacetimes in Section 2.4.

2.2 Field Theory Calculation

Preliminaries

Consider a D-dimensional CFT with action I[ϕ] =
∫
dDx

√
γ L[ϕ]. One can prepare a density

matrix ρ on a spatial slice Σ using an appropriate Euclidean path integral. In order to
compute the entanglement entropy S(A) of a subregion A of Σ, one can use the replica trick
as follows:

S(A) = lim
n→1

log
(
Z(b) [Mn]

)
− n log

(
Z(b) [M1]

)
1− n

=

(
1− n

d

dn

)
log
(
Z(b)[Mn]

) ∣∣∣∣
n→1

, (2.3)
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where

Z(b)[M ] =

∫
Dϕ exp

(
−
∫
M

dDx
√
γ L[ϕ]

)
(2.4)

is the “bare” partition function computed by the path integral on a given manifold M . M1

is the manifold used to compute Tr ρ, while Mn is an n-sheeted version of M1 which is a
branched cover with a conical excess of angle ∆ϕ = 2π(n − 1) localized at the (D − 2)-
dimensional submanifold ∂A.

The bare partition function Z(b)[M ] typically diverges and takes the form

log
(
Z(b)[M ]

)
= c1(Λa)

D + c2(Λa)
D−2 + . . . , (2.5)

where Λ is a UV cutoff and a is the length scale associated with the manifold M [39]. What
are the contributions of these divergences to entanglement entropy? These divergence can
be expressed as local integrals of background quantities [40, 41, 42]. (In even dimensions,
there is a logarithmic divergence which cannot be expressed in this manner.) This implies
that their contributions cancel in Eq. (2.4) everywhere away from ∂A, sinceMn and n copies
of M1 are identical manifolds except at ∂A. However, Mn has extra divergent contributions
coming from curvature invariants localized at ∂A. This leads to

S(A) =

⌊D/2⌋∑
k=1

akΛ
D−2k

∫
∂A

dD−2x
√
H
[
R,K2

]k−1
, (2.6)

where [R,K2]k−1 represents all possible scalar intrinsic and extrinsic curvature invariants of
∂A of mass dimension 2k − 2, with their coefficients collectively written as ak, and Hab is
the intrinsic metric of ∂A. Here, we have suppressed possible finite terms to focus on the
leading divergences. This is the famous “area law” associated with entanglement entropy,
which comes from the short distance correlations between A and Ā.

Since the above behavior is sensitive to the cutoff, one often considers a renormalized
version of entropy. In particular, the divergences in Eq. (2.5) can be subtracted (except for
logarithmic ones) by introducing a counterterm action Ict which involves local integrals of
curvature invariants:

Ict =

⌊D/2⌋+1∑
k=1

bkΛ
D−2k+2

∫
M

dDx
√
γRk−1. (2.7)

Here, Rk−1 represents all possible scalar curvature invariants of M that one can write down
at mass dimension 2k − 2, and their coefficients bk can be tuned exactly to cancel the
divergences. The renormalized entropy is then given by

Sren(A) = lim
n→1

log (Zren[Mn])− n log (Zren[M1])

1− n
, (2.8)
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where Zren is the renormalized partition function which is computed using the action with
the counterterms in Eq. (2.7). This renormalized entropy is universal, i.e. UV regulator
independent in the continuum limit, and has been discussed previously in the literature [42].
A closely related version of renormalized entropy was discussed in [41]. These two are not
identical, but they both extract the appropriate universal behavior in the CFT limit by
subtracting the power divergences.

Entanglement Entropy in TT Deformed Theories

We now specialize to the case of a D-dimensional CFT deformed by a particular composite
operator XD of the stress tensor [30]. The presence of this deforming irrelevant operator
breaks conformal invariance and gives rise to a QFT that is conjectured to be holographically
dual to AdS with a finite cutoff radius, where Dirichlet boundary conditions are imposed.

We will focus on computing the partition function of this TT deformed theory on the
manifold SD of radius R:

γij = R2dΩ2
D. (2.9)

The theory is defined by the flow equation dictated by XD, and using this we obtain

⟨T ii ⟩ = −Dλ⟨XD⟩, (2.10)

where λ is the deformation parameter. Tij is the renormalized stress tensor, whose trace

vanishes up to conformal anomalies in the CFT limit λ → 0. The bare stress tensor T
(b)
ij is

related to the renormalized one1 as

⟨T (b)
ij ⟩ = ⟨Tij⟩ − Cij, (2.11)

where Cij represent various terms involving the background metric γij that arise from vari-
ation of the counterterm action, which in the CFT limit is given by Eq. (2.7). For finite λ,
the cutoff of the theory is provided by the deformation itself, so that Λ is replaced by—or
identified with—λ−1/D in Eqs. (2.5 – 2.7).

Since SD is a maximally symmetric space, the one point function of the stress tensor
takes the form

⟨Tij⟩ = ωD(R) γij, (2.12)

⟨T (b)
ij ⟩ = ω

(b)
D (R) γij. (2.13)

1The bare stress tensor is related to the Brown-York stress tensor [43], while the renormalized stress
tensor is related to the Balasubramanian-Kraus stress tensor [44] by a factor of rd−2

c .
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Using the flow equation, one can solve for ωD(R) and ω
(b)
D (R) as has been done in [37],

yielding

ωD(R) =− D − 1

2Dλ

√
1 +

L2
D

R2
+
D − 1

2Dλ

+

⌊(D−1)/2⌋∑
k=1

fk,D
λ

(
LD
R

)2k

, (2.14)

ω
(b)
D (R) =− D − 1

2Dλ

√
1 +

L2
D

R2
, (2.15)

where L2
D = 2D(D−2)αDλ

2/D with αD being quantities related to the central charges of the
field theory, and fk,D are dimension dependent constants. (Note that αD ∝ 1/(D − 2), so
that L2 ̸= 0.) We stress that while ωD(R) has been represented schematically, the expression

for ω
(b)
D (R) is exact. The explicit expressions for ωD(R) can be found in [37].

Now using these results, we can compute the bare partition function as

d

dR
logZ

(b)

SD = − 1

R

∫
SD

dDx
√
γ ⟨T i(b)i ⟩, (2.16)

obtaining

logZ
(b)

SD = −DΩD

∫ R

0

dR ω
(b)
D (R)RD−1

=
ΩDLDR

D−1

2λ
2F1

[
−1

2
,
D − 1

2
;
D + 1

2
;−R2

L2
D

]
, (2.17)

where ΩD is the volume of a unit SD. The entanglement entropy of a subregion A which is
a hemisphere of the spatial SD−1 can then be computed by a simple trick described in [33]:

S(A) =

(
1− n

d

dn

)
log
(
Z(b)[SDn ]

) ∣∣∣∣
n→1

=

(
1− R

D

d

dR

)
logZ

(b)

SD . (2.18)

This gives us the answer

S(A) =
πΩD−2LDR

D−1

D(D − 1)λ
2F1

[
1

2
,
D − 1

2
;
D + 1

2
;−R2

L2
D

]
. (2.19)

We can also compute the renormalized entanglement entropy in multiple different ways,
e.g. using Eq. (2.8), which results in a universal answer in the CFT limit [42]. Alternately,
one can use the version employed in [41]. For finite λ these two versions give different
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answers, which explains the discrepancy in [38] between the field theory calculation and the
renormalized entropy.

We, however, emphasize that the TT deformation provides a particular physical regulator
for the entropy, so one need not focus their attention on the renormalized entropy. This
regularization has a simple interpretation in field theory, which also has a geometric bulk
interpretation. Specifically, on the field theory side one only includes the energy levels below
the shock singularity, above which the energies take complex values. The existence of this
regularization naturally leads us to consider the bare entanglement entropy in Eq. (2.19),
which captures all the information about correlations between A and Ā.

2.3 Bulk Calculation

Holographic Duality

Using the holographic dictionary in Eq. (2.1), the entanglement entropy S(A) of a boundary
subregion A can be calculated as

S(A) = lim
n→1

Ibulk[Bn]− nIbulk[B1]

n− 1
, (2.20)

where Bn and B1 are the saddle point bulk solutions dual to the boundary conditions dictated
by the field theory path integral on Mn and M1, respectively [31]. Notably, the action Ibulk
dual to the bare partition function is the usual Einstein-Hilbert action supplemented by
the Gibbons-Hawking-York boundary term. Assuming that the solution Bn preserves the
Zn symmetry of the boundary, [31] showed that the contribution to the above expression is
localized to the extremal surface Γ, resulting in the RT formula

S(A) = min
∂Γ=∂A

[
∥Γ∥
4G

]
. (2.21)

Our simple observation is that this proof carries through unmodified as long as one is com-
puting the bare partition function. The TT theory must then obey the RT formula by
construction.

Counterterms added to the boundary action are well understood to correspond to bound-
ary terms added to the bulk action [44, 45]. Per the discussion in Section 2.2, these terms
give rise to extra contributions to S(A) localized to the entangling surface ∂A. The saddle
point solutions are not modified by the inclusion of these terms, which are pure functionals
of the induced metric hij. This implies that the renormalized entropy can be calculated
holographically as

Sren(A) = min
∂Γ=∂A

[
∥Γ∥
4G

]
+ S̃(∂A), (2.22)

where the form of S̃(∂A) is discussed in [42].
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RT Formula in Cutoff AdS

As a simple check, we now compare the result of the RT formula to the entanglement entropy
obtained in Section 2.2. On the bulk side, we need to compute the minimal surface Γ anchored
to the entangling surface ∂A on the cutoff surface at r = rc, on which the induced metric is
given by

hij = r2cR
2dΩ2

D ≡ r20dΩ
2
D. (2.23)

This calculation was performed in [38] and the answer obtained is

S(A) =
rD−1
0 ΩD−2

4G(D − 1)
2F1

[
1

2
,
D − 1

2
;
D + 1

2
;−r

2
0

l2

]
, (2.24)

where l is the AdS radius. By using the holographic identifications

λ =
4πGl

DrDc
, (2.25)

l2 = 2D(D − 2)αDλ
2/Dr2c = L2

Dr
2
c , (2.26)

we find that this is identical to Eq. (2.19).

2.4 Discussion

Holographic Dictionary

As emphasized throughout, if there exists a holographic duality between Einstein gravity
in the bulk and a quantum field theory on the boundary such that the two are related by
Eq. (2.1), then the RT formula will hold. This is true independent of the details of the bulk
spacetime and the boundary field theory. Indeed, we have shown that the TT deformed CFT
provides an explicit example of the validity of the Lewkowycz-Maldacena (LM) proof beyond
AdS/CFT at the conformal boundary.2 In fact, all the results based only on this dictionary
element will hold in any such duality, at least in a perturbative expansion in G. Two salient
examples include the prescription for calculating refined Rényi entropies presented in [47] and
generalizations of the RT formula in higher curvature gravity [48]. Though the robustness
of the LM proof is far from unknown, we hope that highlighting this feature helps solidify
the relationship between entanglement entropy and geometry in general spacetimes.

Holographic Renormalization and Counterterms

In CFT calculations, one often considers only renormalized quantities because these are
universally well-defined and survive the continuum limit. However, entanglement entropy

2An important assumption is the Zn symmetry in the bulk. It is plausible that the argument holds after
relaxing this assumption; See, e.g., [46].
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is not one of these quantities. Nevertheless, since the TT operator implements a particular
physical cutoff which has a simple geometric dual, it is sensible to consider bare quantities. In
particular, TT deformations with different background geometries would implement different
regularizations, leading to different entanglement entropies. On the bulk side, this manifests
as different choices of the cutoff surface. This provides a better understanding of the UV-IR
correspondence.

The handling of counterterms is the only additional subtlety encountered when calcu-
lating entanglement entropy in TT deformed CFTs. For finite deformations, all quantities
are automatically regulated and hence the previous distinction between finite and divergent
terms becomes muddled. We aimed to clarify the conceptual aspects of these terms and how
they are related with the holographic result.

The fundamental idea is that the dictionary relation

ZCFT[γij] = e−Ibulk[gµν ] (2.27)

is precisely between the bare CFT on the boundary and Einstein-Hilbert gravity (plus the
necessary Gibbons-Hawking-York term) in the bulk, both of which have divergent partition
functions. This is the arena in which the RT formula was shown to hold. If one now
chooses to introduce specific counterterms to renormalize the CFT stress tensor, then this
will correspondingly alter the gravity side of the dictionary (specifically by adding terms
localized to the boundary of the bulk). In particular, the addition of counterterms will
alter the RT prescription to include terms beyond the standard area piece. This addition
manifests as integrals of local geometric invariants at the entangling surface. In the CFT
limit these are used to cancel power divergences, but with finite deformations one need not
add a counterterm. Indeed, calculations including counterterms [33, 38] would necessarily
miss the area law piece for D > 2, which is finite for finite deformations.

Holography in General Spacetimes

The explicit verification of the RT formula beyond AdS/CFT at the conformal boundary of
AdS provides a strong footing for the surface-state correspondence [49] and related construc-
tions to understand holography in general spacetimes via entanglement entropy [50, 51, 52,
53, 54]. In previous work, the RT formula was used as an assumption to investigate prop-
erties of a hypothetical boundary theory, and self-consistency checks provided confidence in
that assumption. Now, the evidence that a duality in the form of Eq. (2.1) exists beyond
basic AdS/CFT, and the RT formula along with it, suggests that a duality may indeed exist
for general spacetimes and bolsters our confidence in previous work.

The results of TT deformations provide a particularly promising avenue to investigate
flat space holography, since they hold down to scales below the AdS radius l. This contrasts
with the conventional UV-IR correspondence, which would result in a single matrix-like the-
ory describing an AdS volume [55]. It suggests that there is a way to redistribute degrees
of freedom on the boundary theory in a way that maintains local factorization, and the TT
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deformation implements this. This is explicitly seen in the calculation of entanglement en-
tropy in the fact that it does not face an obstruction when a volume law scaling is reached at
r0 ≈ l. Volume law scaling of entanglement entropy suggests that the boundary theory for
asymptotically flat space is non-local, as is expected from the TT deformation. Correspond-
ing behavior is seen in cosmological spacetimes [53], and investigating properties of highly
deformed CFTs may shed light on these theories. Since the TT operator naturally imple-
ments some sort of coarse graining, it would be interesting to relate this to the geometric
coarse graining procedure developed in [54].
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Chapter 3

Coarse-Graining Holographic States:
A Semiclassical Flow in General
Spacetimes

3.1 Introduction

The holographic principle, as embodied by the AdS/CFT correspondence, has led to a
tremendous amount of progress in our understanding of quantum gravity. In particular,
the realization that entanglement plays a crucial role in generating bulk spacetime has put
the holographic correspondence on much stronger footing [9, 10, 11, 56, 57]. This has led to
key insights about bulk reconstruction and subregion duality, culminating in entanglement
wedge reconstruction [58, 59, 60, 14, 15, 61]. Interestingly, several of these insights are quite
general and do not seem to require an AdS setting in particular, and thus they can be used
to understand features of holography in general spacetimes [51, 52, 53, 54].1

A particular manifestation of the above ideas can be seen in tensor networks (TNs) that
serve as useful toy models of holography [57, 69, 70, 71, 72]. TNs prepare quantum states
with a lot of structure and via the process of “pushing” the state generate a sequence of
boundary states, each of which satisfies the Ryu-Takayanagi (RT) formula [9, 10].2 This
procedure involves disentangling certain short-distance degrees of freedom and coarse-grains
the state by reducing it to one in a smaller effective Hilbert space. Applying this procedure
to a general smooth classical spacetime leads to a flow equation in the continuum limit as

1An early work in this direction is the so-called surface/state correspondence [49, 62], of which the
construction of Refs. [51, 52, 53, 54] can be viewed as a covariant generalization. For other work on holography
beyond AdS/CFT, see, e.g., Refs. [63, 64, 65, 66, 67, 35, 68].

2We distinguish this from the Hubeny-Rangamani-Takayanagi (HRT) formula [11] which applies in time-
dependent spacetimes.
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we shall review later [54]. The flow equation takes the form3

dxµ

dλ
=

1

2
(θkl

µ + θlk
µ),

where xµ are the embedding coordinates of a codimension-2 surface σ on which the holo-
graphic states are defined, and {kµ, lµ} are the future-directed null vectors orthogonal to σ,
with θk,l being the classical expansions in the corresponding directions. This flow satisfies
all the required properties for it to be interpreted as a disentangling procedure resulting in
a sequence of coarse-grained states.

In this work, we go beyond the classical flow equation by including bulk quantum cor-
rections. In the TN picture, we include these effects by modifying the network such that it
includes non-universal tensors/bonds as well as bonds connecting tensors nonlocally. With
this picture in mind, we develop a coarse-graining procedure analogous to the classical flow
equation which pleasantly fits in with our understanding of holography. In the continuum
limit, the procedure leads to a flow equation similar to that in the classical case:

dxµ

dλ
=

1

2
(Θkl

µ +Θlk
µ),

where Θk,l now represent quantum expansions [73].4 This is our primary result. It is in line
with many results in which quantum corrections are included by replacing the area A/4GN

with the generalized entropy Sgen [73, 74, 75, 76, 77]. Though motivated by TNs, which
often face issues in describing time-dependent situations, our procedure can be applied quite
generally. In fact, we obtain consistent descriptions in general time-dependent spacetimes.

Another important progress in understanding holography is the view that the holographic
dictionary works as quantum error correction [3, 78, 79, 80], where a small Hilbert space of
semiclassical bulk states is mapped isometrically into a larger boundary Hilbert space. In
our framework, this picture arises after considering a collection of states over which we want
to build a low energy bulk description. Choosing such a collection is equivalent to erecting a
code subspace. We argue that while there is no invariant choice of code subspace in a general
time-dependent spacetime, our framework gives a natural choice(s) determined by the coarse-
graining procedure. This procedure leads to a one-parameter family of “dualities” depending
on the amount of coarse-graining performed, providing an improved understanding of the
holographic dictionary in general spacetimes.

Overview

In Sec. 3.2, we first establish the framework in which we are working. We explain how quan-
tum corrections affect the description of holography in general spacetimes and the associated

3The sign convention for the flow parameter λ in this paper is opposite to that in Ref. [54].
4We use a modified version of the quantum expansion which includes a bulk entropy contribution from

an exterior region as described in Sec. 3.5.
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HRT formula. In Sec. 3.3, we review the classical flow equation. In Sec. 3.4, we motivate
our coarse-graining procedure with a toy model of TNs, elucidating how features of a state
relevant for the quantum-level consideration are represented there.

In Sec. 3.5, we present our main result, i.e. the procedure of performing the flow in
the bulk at the quantum level, which corresponds to moving the holographic boundary. In
Sec. 3.6, we discuss properties of this flow indicating that it corresponds to a coarse-graining
of holographic states. We elucidate that the way the flow ends can be used as an indicator of
qualitative features of the boundary state describing a given spacetime, using the example
of a collapse-formed evaporating black hole. In Sec. 3.7, we discuss how the picture of
quantum error correction may be implemented in our framework. Finally, conclusions are
given in Sec. 3.8.

3.2 Framework

In this work, we follow and further develop the framework of holography for general space-
times proposed in Ref. [51]. In this framework, we consider an arbitrary spacetime M and
posit the existence of a dual “boundary” theory that lives on a holographic screen [81],
which is a codimension-1 hypersurface H embedded in M. This hypersurface is foliated by
marginally trapped/anti-trapped codimension-2 surfaces called leaves, which we denote by σ.
A marginally trapped/anti-trapped surface σ is defined by the property that σ has classical
expansion θ = 0 in one of the orthogonal null directions. The proposal is that the boundary
theory describes everything in the “interior” of H, and states of the theory are naturally
defined on the leaves σ, which provide a preferred foliation of H into constant time surfaces.
Based on the covariant entropy bound, it is expected that the boundary theory effectively
possesses A(σ)/4GN degrees of freedom, where A(σ) is the area of a leaf. The AdS/CFT
correspondence can be viewed as a special case of this duality, where the holographic screen
is sent to the conformal boundary of AdS.

Given this setup, it was shown in Ref. [50] that the HRT formula for computing entan-
glement entropy can be applied consistently using a maximin procedure [59]; i.e., for any
subregion A of a leaf

S(A) =
A(γA)

4GN

, (3.1)

where S(A) is the von Neumann entropy of the reduced density matrix on subregion A,
and A(γA) is the area of the HRT surface γA of A. The entanglement wedge, denoted by
EW(A), is defined as the bulk domain of dependence of any bulk partial Cauchy slice ΣA with
∂ΣA = A ∪ γA, which is often called the homology surface. The entropies obtained by the
above procedure can be shown to satisfy all the basic properties of von Neumann entropy
and are consistent with more constraining inequalities satisfied by holographic states in
AdS/CFT [82, 83, 84].
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Figure 3.1: The leaf σ is split into σint ∪σext such that σint and σext are separated by a small
regulating region Σϵ on a Cauchy slice Σ. This induces a division of the Cauchy slice as
Σ = Σint ∪ Σϵ ∪ Σext. We define the location of the holographic screen by requiring it is
marginally quantum trapped/anti-trapped under variations of σint.

Now, in order to generalize this framework to the quantum level, we can follow the simple
guiding principle of replacing A/4GN with the generalized entropy Sgen to include quantum
corrections in the bulk [12, 13]

A
4GN

→ Sgen =
A

4GN

+ Sbulk, (3.2)

where Sbulk is the von Neumann entropy of the bulk reduced density matrix on the homology
surface which is appropriately modified at the quantum level. This is motivated by various
examples in which this naturally works [73, 74, 75, 76, 77]. Furthermore, Sgen is a natural
quantity because it is a quantity that is renormalization scheme independent, and hence is
expected to be associated with fundamental degrees of freedom in the UV theory [85, 86,
75].

The generalization to include bulk quantum corrections requires a refined understanding
of the holographic duality which we now turn to. First, we note that the global description
of a state involves both the interior and exterior portions of the holographic screen [81].
Although the generalization of the HRT formula we describe applies to the interior region,
it will be important to keep track of the exterior as well.
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Next, the quantum extension of Eq. (3.2) implies that the location of the screen on which
the holographic theory is defined needs to be shifted accordingly. Let us consider a specific
global bulk state. We propose that the boundary theory describing the dynamics of this state
lives on a modified version of a Q-screen H ′ [74], rather than a classical holographic screen
H. A Q-screen is defined as a codimension-1 hypersurface foliated by quantum marginally
trapped/antitrapped surfaces, i.e. surfaces that have the quantum expansion Θ = 0 in one
of the orthogonal null directions. Usually the quantum expansion is defined by including a
contribution from the von Neumann entropy of the interior or exterior region of a leaf which
is a simple codimension-2 surface. In this paper, however, we consider that leaf σ is given by
σint ∪ σext such that σint and σext are split by a small regulating region Σϵ on a Cauchy slice
Σ as seen in Fig. 3.1. This induces a division of the Cauchy slice as Σ = Σint ∪ Σϵ ∪ Σext.
Now, we define the generalized entropy of σ to be

Sgen(σ) =
A(σ)

4GN

+ Sbulk(Σint ∪ Σext). (3.3)

With this definition of generalized entropy, one can define a quantum expansion Θ by the
variation of Sgen(σ) under deformations of σint while holding σext fixed. Using this definition
of Θ, we can locate marginally trapped/anti-trapped surfaces self-consistently for any given
ϵ. The location H ′ of the holographic screen is a Q-screen defined using this definition of Θ
in the limit ϵ→ 0.

Generalizing the HRT formula of Eq. (3.1), we postulate that the von Neumann entropy
of a subregion A on the leaf σ of a Q-screen can be computed as

S(A) =
A(A ∪ ΓA)

4GN

+ Sbulk(ΣA), (3.4)

where ΓA is the minimal quantum extremal surface (QES) [13], and ΣA is the homology
surface with ∂ΣA = A ∪ ΓA. To find ΓA, we can use a maximin procedure at the quantum
level [87] applied to general spacelike surfaces containing σ. We treat σext as a single unit
that cannot be further divided into subregions, which must be either included in or excluded
from A. We assume that the leaf σ is convex where σext is treated as an indivisible unit.
Thus, S(A) obtained by Eq. (3.4) satisfies properties required for it to be interpreted as
the von Neumann entropy of the density matrix of subregion A. With this assumption,
we will show that the same applies to any renormalized leaf σ(λ) obtained from σ by our
coarse-graining procedure.

In AdS/CFT, the regime of validity of the quantum extremal surface formula, Eq. (3.4),
has been suggested to be all orders in GN [13]. However, there are subtleties with the
definition of entanglement entropy for gravitons which have not been completely resolved
(see e.g. Ref. [73]). At the least, we expect the formula to hold at O(1), where it can already
lead to a surface different from that obtained by using Eq. (3.1) [16, 17, 88, 89, 90]. In order
to avoid subtleties with gravitons, one could consider a setup with bulk matter having a
large central charge c so that the graviton contribution is subleading in 1/c expansion. We
expect a similar regime of validity for Eq. (3.4) in general spacetimes.
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Note that in Eq. (3.4) we have included the area contribution from A in addition to
that from ΓA. This is required if there is a spacetime region outside the leaf, as is the case
in generic spacetimes. In this case, Sbulk(ΣA) receives a contribution from entanglement of
bulk fields across A, which is divergent. This divergence is then canceled with that in the
area contribution from A in the first term, making S(A) well defined. The same applies to
the AdS/CFT case if we impose transparent boundary conditions near the boundary which
lead to kinetic terms coupling the interior and exterior of AdS space [16, 17]. In fact, the
classical formula in Eq. (3.1) must also have the contribution from the boundary subregion
area, A(γA) → A(A ∪ γA), in these cases, although this does not affect the minimization
leading to γA and hence the result of Ref. [54].

There are special cases in which the area contribution from A—as well as the correspond-
ing contribution from Sbulk(ΣA)—is absent. This occurs when the spacetime outside the leaf
is “absent,” as is the case if Dirichlet boundary conditions are imposed on the Q-screen,
or if reflective boundary conditions are imposed in AdS/CFT. Even in this case, however,
our coarse-graining procedure—which corresponds to moving the leaf portion σint inward—
induces the area contribution from A on a moved—i.e. renormalized—leaf σint(λ), reflecting
the fact that the spacetime continues across σint(λ).

5

3.3 Review of Classical Flow

In previous work [54], it was shown that a coarse-graining procedure motivated by TNs can
be defined in the bulk at the level of classical geometry. Here we review this construction,
which allows us to elucidate a generalization to include bulk quantum corrections.

A key idea is to realize that a TN defines a sequence of states that can be generated by
including fewer tensors, layer by layer, as shown in Fig. 3.2. For example, one can consider a
state defined on the outermost legs which lives in Hilbert space Hσ. A coarse-grained version
of this state can then be given by a smaller TN that is obtained by peeling off the outermost
layer. This state lives in a smaller Hilbert space Hσ1 , and the TN provides an isometric map
from Hσ1 to Hσ. The sequence can then continue, giving a series of Hilbert spaces Hσ2 , Hσ3 ,
and so on.

In fact, this peeling-off procedure can be decomposed further into smaller steps. For any
subregion A of a given boundary, there is an isometric map from the in-plane legs at the RT
surface γA to the boundary legs in A [69, 70]. This implies that a particular subspace of the
boundary subregion legs, corresponding to the in-plane legs at γA, is maximally entangled
with the complementary subregion A via γA, which acts as an entanglement “bottleneck”
see Figs. 3.3 and 3.4. All the other subregion legs can be disentangled by applying unitary
UA that acts locally within A.

5This is different from what has been done in the AdS/CFT literature in the context of TT deforma-
tions [28, 33, 37, 38, 18, 91], which corresponds to (re)imposing Dirichlet boundary conditions at each step
in the coarse-graining, i.e. at σint(λ) for all λ.
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Figure 3.2: A TN defines a boundary state in the Hilbert space Hσ at the outer legs. One
can, however, also consider “coarse-grained” states defined at inner layers, e.g. states defined
in Hilbert spaces Hσ1 and Hσ2 .

Therefore, if one is to preserve only long range entanglement while getting rid of short
range entanglement, one could compress the state down to that defined at the legs of the
surface σ′ = γA ∪ A. This reduces the size of the effective Hilbert space, mapping a pure
state in the larger boundary Hilbert space Hσ to a pure state in a smaller boundary Hilbert
space Hσ′ . This can be done by considering small subregions of σ and truncating the TN to
end at σ′. One useful way to interpret this step is that we are retaining the complementary
entanglement wedge EW(A). This step can then be repeated multiple times to generate a
sequence of states, all of which are increasingly coarse-grained.6

Now, we apply this idea to a general spacetime M by considering infinitesimal subregions
A of size δ (→ 0) on the boundary leaf σ. In order to coarse-grain, we find the HRT surface
γA and reduce the accessible spacetime region to the complementary entanglement wedge,
EW(A). Repeating this multiple times involves shrinking the domain of dependence at each
step by finding new HRT surfaces anchored to infinitesimal subregions as seen in Fig. 3.5.

In the continuum limit, this reduces to the original construction of Ref. [54]; see Fig. 3.6.
Here, we consider the intersection of the complementary entanglement wedges EW(Ap) for
infinitesimal subregions Ap, centered around arbitrary points on the leaf, denoted by p. This

6We note that this is similar to the construction suggested in Refs. [92, 93], although here we directly
use the TN description and its fine structure, as opposed to constructing the TN using information about
the boundary state such as entanglement of purification [94, 95] or reflected entropy [96].
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Figure 3.3: The von Neumann entropy of subregion A is computed by the minimal cut γA
that splits the TN into two parts containing A and A respectively.

Figure 3.4: By applying a local unitary on A, we can find maximally entangled legs across
γA, which serve as a bottleneck for the entanglement between A and A.

leads to a new domain of dependence R(σ),

R(σ) = ∩p EW(Ap), (3.5)

which can be interpreted as defining the state on a new “renormalized” leaf σ1 such that
the domain of dependence of σ1 is R(σ), i.e. D(σ1) = R(σ).7 The HRT prescription can be
shown to consistently apply for subregions on this renormalized leaf as well, owing to the fact

7The domain of dependence of a closed codimension-2 surface is defined as the domain of dependence of
a spacelike hypersurface enclosed by the surface.
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Figure 3.5: A sequence of coarse-graining steps. At each step, we consider infinitesimal
subregions of size δ (→ 0) and reduce the spacetime region to their respective complementary
entanglement wedges.

that it is still a convex surface [54]. Thus, we may interpret this as the spacetime continuum
version of the procedure yielding the sequence of states described above using TNs.

This continuum procedure can be written in terms of a flow equation for the leaf σ(λ),
which is interpreted as a Lorentzian mean curvature flow:

dxµ

dλ
=

1

2
(θkl

µ + θlk
µ), (3.6)

where xµ are the embedding coordinates of σ(λ), {kµ, lµ} are the future-directed null vectors
orthogonal to σ(λ), normalized such that k · l = −2, and θk,l are the classical expansions in
the k, l directions, respectively. The sequence of renormalized leaves span a codimension-1
hypersurface, which was termed the holographic slice. In particular, it is a partial Cauchy
slice of the bulk domain of dependence, D(σ), of the original leaf σ.

It was shown that the flow described above satisfies various interesting properties that are
consistent with the coarse-graining interpretation. These include the fact that the area of the
leaf σ(λ) decreases monotonically with λ, implying that the number of degrees of freedom in
the effective Hilbert space Heff(σ(λ)) decreases as we flow. By choosing statistically isotropic
subregions with random shapes, one can obtain a preferred holographic slice that preserves
the symmetries of the system. Alternatively, by varying flow rates along the transverse
directions, one could get a range of different, but gauge equivalent, slices of D(σ).
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Figure 3.6: Coarse-graining over infinitesimal subregions on σ can be performed by consid-
ering the intersection of complementary entanglement wedges. This leads to a domain of
dependence R(σ) which corresponds to a new renormalized leaf σ1.

3.4 Motivation from Tensor Networks

Having the classical construction in hand, we now describe how to generalize it to include
bulk quantum corrections. Let us take a specific state defined on a leaf of a Q-screen. We
want to understand how coarse-graining of this state works using the TN picture.

We expect that the state is still modeled by a TN at the quantum level. In order to
represent the effect of bulk quantum corrections appropriately, this TN must include two
additional features compared with the classical case. First, tensors and bonds used in the
network should in general not be all “featureless,” i.e. all the tensors being the same and
connected by maximally entangling bonds, as was the case in simple perfect tensor [69] or
random tensor [70] networks. Reflecting the existence of excitations of bulk low-energy fields,
tensors and/or bonds must have a non-universal structure representing such excitations. This
generally makes the network not fully isometric. Second, since bulk low-energy quantum
fields can have long-range entanglement, corresponding to Sbulk in Sgen, there should be
longer bonds connecting non-nearest-neighbor tensors, although the number of such non-
local bonds (or more precisely, the total dimension associated with them) is suppressed
generally as the bonds become longer. A typical TN of this sort is depicted in Fig. 3.7.

Once we have a TN representation of the state, the scenario in Sec. 3.3 can be generalized
in a relatively simple manner. To do so, we must first establish how to compute the entropy
of a boundary subregion, following the formula in Eq. (3.4). In general, the boundary legs
consist of both the shortest, local bonds and longer, nonlocal bonds cut by the boundary.
When we compute the entropy of subregion A of σint, i.e. a subset of these legs, we must
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Figure 3.7: A TN representing a state at the quantum level has tensors that are not universal
(yellow) and bonds that connect tensors nonlocally (pink).

minimize

S̃gen(A,XA) =
A(A ∪XA)

4GN

+ Sbulk(ΞA) (3.7)

over all surfaces XA anchored to the boundary of A, where ΞA is the homology surface with
∂ΞA = A ∪ XA. In this expression, the area term represents the contribution from the
shortest bonds, while Sbulk(ΞA) from longer bonds, cut by ∂ΞA. In short, S̃gen(A,XA) is
given by the entropy of all the bonds connecting tensors inside and outside ∂ΞA, regardless
of their lengths; see Fig. 3.8. (This reflects the fact that the precise way to separate the
contributions from local and nonlocal bonds is arbitrary and does not have an invariant
meaning.)

With this prescription, we can follow the analysis in Sec. 3.3 and coarse-grain the region
A of the boundary state by removing the bulk regions that are entangled with A, i.e. by
reducing the TN to a smaller one giving a state on

σ′ = A ∪ ΓA. (3.8)

Note that here the complement A of A is defined as that on the entire leaf σ = σint ∪ σext,
not on σint. The QES ΓA is given by the surface XA minimizing

S̃gen(A,XA) =
A(A ∪XA)

4GN

+ Sbulk(ΞA), (3.9)

where
∂XA = ∂A = ∂Aint (3.10)
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Figure 3.8: The minimal QES ΓA of subregion A is determined by minimizing the entropy
of all bonds connecting tensors inside and outside A∪ ΓA (consisting of 12 black and 2 pink
bonds in the figure).

with Aint the complement of A on σint (i.e. A = Aint ∪ σext, and ∂ΞA = A ∪ XA, meaning
that

ΞA = ΞA,int ∪ Σext. (3.11)

Here, ∂ΞA,int = Aint ∪ XA, and Σext is a spacelike hypersurface exterior to σext. Note that
here we have defined that for σext, the surface “enclosed” by σext to be the exterior of σext:

∂Σext = σext. (3.12)

This procedure gives the interior portion of the new leaf to be

σ′
int = Aint ∪ ΓA. (3.13)

We assume that for a TN representing a state with a semiclassical bulk, the RT formula with
quantum corrections can be applied to the state on this new surface as well. The process
described here can be repeated multiple times, leading to a similar sequence of coarse-grained
states as before.

Note that the assumption of the RT formula continuing to hold is nontrivial given that
generic bulk states break the isometric property of the TN. However, we will only need to
assume that the RT formula holds for infinitesimal subregions and their complements, which
gives results that are consistent with the coarse-graining interpretation suggested here. As
discussed in Sec. 3.2, one could also consider bulk matter with large central charge so that the
non-isometric behavior appears only at subleading order in 1/c for reasonable bulk states [92,
93].
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3.5 Coarse-Graining and Quantum Flow

Definition

Having found the procedure in TNs, we can now look for a continuum version in semiclassical
gravity. Given the framework established in Sec. 3.2, we can locate the Q-screen for a given
state and start a coarse-graining procedure analogous to that discussed in Sec. 3.4.

As described in Sec. 3.3, we consider an infinitesimal subregion on the interior portion
σint of the original leaf σ and reduce the accessible spacetime region to the complementary
quantum entanglement wedge QEW(A), which is determined by the minimal QES ΓA of A
such that QEW(A) = D(ΣA), where ∂ΣA = A ∪ ΓA. Note that in a general spacetime, the
global description includes an exterior portion outside σext. Thus, the complement of an
infinitesimal subregion A ⊂ σint on the leaf is A = Aint ∪ σext, and the bulk entropy term
Sbulk of the generalized entropy is given by the von Neumann entropy of ΣA = ΣA,int ∪Σext.
The necessity of including the region exterior to σext can be argued from complementary
recovery in pure states.

Considering many such infinitesimal subregions Ap on σint centered around points p as
in Eq. (3.5), we can sequentially reduce the accessible spacetime region to

R(σ) = ∩pQEW(Ap), (3.14)

which leads to a renormalized leaf σ1 such that D(Σ1) = R(σ), where ∂Σ1 = σ1. This
yields a new boundary state in a smaller effective Hilbert space defined on σ1. As we show
later, the convexity of the original leaf implies that the corresponding renormalized leaf is
also convex, which ensures that the coarse-graining prescription can be repeatedly applied
to get a family of leaves. This describes what we call the quantum flow. The preservation of
convexity also means that S(A) of a subregion A of a renormalized leaf obtained by Eq. (3.4)
satisfies properties needed for it to be interpreted as the von Neumann entropy of the density
matrix of the region.

Possibility of appearance of disconnected leaf portions

While performing the coarse-graining as described above, it may occur that the minimal QES
ΓAp

for Ap in Eq. (3.14) becomes non-infinitesimal. In particular, if there is a bulk region
surrounded by a surface X of area A(X) and whose entanglement with the exterior of σext
exceeds A(X)/4GN on a given spacelike slice containing σi = σint,i ∪ σext, then the quantum
minimal surface χ(Ap) on it has a disconnected component surrounding the region. If such
a disconnected component remains after the maximization over all the spacelike slices, then
the minimal QES Γ(Ap) does have a disconnected component, and as a consequence R(σ)
will have a “hole” such that ∂R(σ) ⊃ X. This makes the new leaf σint,i+1 have a disconnected
component X (⊂ σint,i+1), in addition to the portion infinitesimally close to σint,i. The region
surrounded by X is thus excluded from the flow afterward.
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When it first appears, an excluded region, and hence the disconnected component of the
leaf associated with it, is small. This appearance cannot be seen just by solving the flow
equation, although our coarse-graining procedure itself captures the occurrence of this phe-
nomenon. After its appearance, the disconnected component of the leaf also flows generally,
following the flow equation. This makes the hole of the spacetime larger, which may even-
tually collide with the component arising from the continuous inward motion of the original
leaf portion σint.

The Flow Equation

In the continuum limit, the behavior of QESs anchored to small subregions can be studied
analytically. While the von Neumann entropy can in general show complicated behaviors as
the subregion is varied, for an infinitesimal subregion we may expect that such behaviors arise
only from physics at scales much larger than the size of the subregion. It is then reasonable
to assume that the change of the entropy of the subregion, as well as that of the complement,
can be approximated by the volume integral of some density function. With this assumption,
and reasonable smoothness assumptions about the spacetime and subregions, we show later
that the resulting QESs are such that the deepest point lies in a universal normal direction
to the leaf given by

s =
1

2
(Θkl +Θlk) , (3.15)

as long as the relevant QESs exist. Here, {kµ, lµ} are the future-directed null vectors or-
thogonal to σint, normalized such that k · l = −2, and Θk,l are the corresponding quantum
expansions. Here, Θk,l are computed by varying Sgen as defined in Eq. (3.9). This is sufficient
to find the location of σ1,int, and hence of σ1, after fixing relative normalizations for the size
of subregions considered on different portions of the leaf. For convenience, we will choose
the normalizations such that the resulting flow equation takes the simplest form. Other
possibilities will be discussed in later.

Following the procedure described above, we can derive a flow equation, which generalizes
the Lorentzian mean curvature flow in Eq. (3.6) to include bulk quantum corrections:

dxµ

dλ
=

1

2
(Θkl

µ +Θlk
µ), (3.16)

where xµ are the embedding coordinates of the interior portion σint(λ) of the renormalized
leaves σ(λ) = σint(λ)∪ σext, parameterized by λ, and Θk,l represent the quantum expansions
of σ(λ) at xµ. The resulting sequence of σint(λ) spans a codimension-1 quantum-corrected
holographic slice as shown in Fig. 3.9.

Derivation of the Flow Equation

Consider a codimension-2, closed, achronal surface σ in an arbitrary (d + 1)-dimensional
spacetimeM . Suppose σ is a convex boundary. We assume that bothM and σ are sufficiently



CHAPTER 3. COARSE-GRAINING HOLOGRAPHIC STATES: A SEMICLASSICAL
FLOW IN GENERAL SPACETIMES 29

Figure 3.9: A sequence of renormalized leaves σint(λ) obtained by solving the flow equation in
Eq. (3.16) spans a codimension-1 quantum-corrected holographic slice. Each leaf represents
the domain of dependence of a spacelike surface Σint(λ) with ∂Σint(λ) = σint(λ).

smooth so that variations in the spacetime metric gµν and induced metric on σ, denoted by
hij, occur on characteristic length scales Lg and Lσ, respectively. We also assume that
the changes of the variational entropy current density Jµ(x), discussed below, occur on a
characteristic length scale LS.

Consider subregion A of characteristic length δ ≪ Lg, Lσ, LS on the surface σ. This
subregion A is chosen to be a (d− 1)-dimensional ellipsoid on σ at order O(δ). Then, at the
leading order, the QES anchored to ∂A lives on the hypersurface generated by the evolution
vector8

s =
1

2
(Θkl +Θlk) = Θtt−Θzz (3.17)

normal to σ. Here, k and l are future-directed null vectors orthogonal to σ normalized as
k · l = −2, and t and z are vectors related to these by

k = (t+ z), l = (t− z). (3.18)

Let us now prove this claim. Since the subregion A is assumed to be an ellipsoid, we
label its center point as p. We can then set up Riemann normal coordinates in the local
neighborhood of p:

gµν(x) = ηµν −
1

3
Rµνρσx

ρxσ +O(x3). (3.19)

In these coordinates, we are considering a patch of size O(δ) around the origin p with
Rµνρσ ∼ O(1/L2

g), so at any point in this patch

gµν(x) = ηµν +O

(
δ2

L2
g

)
. (3.20)

8We ignore the possibility that there is no QES infinitesimally close to A as δ → 0, i.e. the possibility
(iii) for the end of flow.
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Since there is still a remaining SO(d, 1) symmetry that preserves the Riemann normal
coordinate form of the metric, we can use these local Lorentz boosts and rotations to set t
and z as the coordinates in the normal direction to σ at p while yi parameterize the tangential
directions. At order O(δ), the subregion A is then an ellipsoid in the yi coordinates centered
at the origin p.

In a small region around p, we can define a variational entropy current density that
measures how Sbulk changes. More formally, let XA be a surface anchored to the boundary
of A, or equivalently of A: XA = XA. Let ΞA be the homology surface with ∂ΞA = A ∪XA,
then

Sbulk(ΞA) = S0 −
∫
S
Jµ(x)da

µ. (3.21)

where S0 is the Sbulk associated with the full σ, so it is independent of the choice of subregion
A or the surface XR. Jµ(x) is the aforementioned variational entropy current density which
upon integrating over S, a homology surface with boundary ∂S = A ∪XA, determines how
Sbulk(ΞA) differs from S0.

We now Taylor expand the entropy current density about p, so for any point within O(δ)
distance of p

Jµ(x) = Jµ
(
1 +O

(
δ

LS

))
, (3.22)

where Jµ = Jµ(0). Recall that LS is the length scale of the variations of corresponding
entropy variations.

Let Kt
ij , K

z
ij denote the extrinsic curvature tensors of σ for the t and z normals, respec-

tively. It follows that Kt
ij, K

z
ij ∼ O(1/Lσ). Since t and z are normal to σ, the equations for

the surface σ, described by tL(y
i) and zL(y

i), can be Taylor expanded in the region A as

tL(y
i) = −1

2
Kt
ijy

iyj +O

(
δ3

L2
σ

)
, (3.23)

zL(y
i) =

1

2
Kz
ijy

iyj +O

(
δ3

L2
σ

)
, (3.24)

where the negative sign in the first line is due to the time-like signature of the t normal.
From Eqs. (3.23) and (3.24), it follows that at the leading order in δ,

∇2tL = −ηijKt
ij, (3.25)

∇2zL = ηijKz
ij, (3.26)

where ∇2 = ∂i∂i. Note that hij = ηij at this order.
It follows that the ratio of quantum null expansions on the surface σ is

Θk

Θl

=
ηij(Kt

ij +Kz
ij) + 4GN(Jt − Jz)

ηij(Kt
ij −Kz

ij) + 4GN(−Jt − Jz)
, (3.27)
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or equivalently
Θt

Θz

=
Θk +Θl

Θk −Θl

=
ηijKt

ij − 4GNJz
ηijKz

ij + 4GNJt
. (3.28)

Here, we have used that bulk entropy is given by Eq. (3.21) along with the Taylor expansion
in Eq. (3.22).

The QES ΓA can be parameterized in a similar way using tE(y
i) and zE(y

i). The boundary
conditions satisfied by the QES are

tE(∂A) = tL(∂A), (3.29)

zE(∂A) = zL(∂A). (3.30)

Since the region A is chosen to be an ellipsoidal region in the yi coordinates at O(δ),
we have symmetry under yi → −yi at this order. Consequently, the t and z directions are
normal to the QES at the center point (tE(0), zE(0), 0).

Let K̃t
ij, K̃

z
ij denote the extrinsic curvature tensors of the QES for the t and z normals,

respectively. We assume that the QES is approximately flat at lengthscale δ, i.e. K̃t
ij, K̃

z
ij ≪

1/δ. We will show that this assumption is self-consistent as long as the entropy current
density is not too large.

We can Taylor expand tE(y
i) and zE(y

i) as

tE(y
i) = tE(0)−

1

2
K̃t
ijy

iyj, (3.31)

zE(y
i) = zE(0) +

1

2
K̃z
ijy

iyj. (3.32)

Since the QES has vanishing quantum null expansion, we have at the leading order

ηij(K̃t
ij + K̃z

ij) + 4GN(Jt − Jz) = 0, (3.33)

ηij(K̃t
ij − K̃z

ij) + 4GN(−Jt − Jz) = 0. (3.34)

Here, we have used the expansion in Eq. (3.22) because any point on the QES is at most
O(δ) distant from the origin p.

These equations, along with Eqs. (3.31) and (3.32), result in the following differential
equations for tE(y

i) and zE(y
i) at the leading order

∇2tE = −ηijK̃t
ij = −4GNJz, (3.35)

∇2zE = ηijK̃z
ij = −4GNJt. (3.36)

Earlier, we assumed that K̃t
ij, K̃

z
ij ≪ 1/δ, which is justified as long as Jt,Jz ≪ 1/(4GNδ),

which is the case if Jt,Jz do not diverge as δ → 0.
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Let us consider the quantities δt = tE − tL and δz = zE − zL. These satisfy the following
differential equations at the leading order

∇2δt = ηijKt
ij − 4GNJz, (3.37)

∇2δz = −ηijKz
ij − 4GNJt. (3.38)

The boundary conditions are given by

δt(∂A) = δz(∂A) = 0. (3.39)

It is now clear that at the leading order, δt/Θt and −δz/Θz satisfy the same differential
equation with the same boundary conditions, since Θt and Θz can be regarded as constant
at this order. Thus,

δt

Θt

= − δz

Θz

(1 +O(δ)) (3.40)

for all points on the extremal surface. Rewritten, the extremal surface lives on the hyper-
surface generated by the evolution vector s = Θtt−Θzz normal to σ.

In making the claim above, we have assumed that the subregion A is a (d−1)-dimensional
ellipsoid on the surface σ. Nonetheless, the proof goes through if the subregion R has a
reflection symmetry (y1, y2, ..., yd−1) → (−y1,−y2, ...,−yd−1) about the center point p at
order O(δ).

In fact, we expect this theorem to hold for a more general subregion A because the above
proof works if we can find any point p ∈ A such that the normal vectors to σ at p match
with the normal vectors to the QES at the point corresponding to p at order O(δ). Under
the condition that δ ≪ Lg, Lσ, LS, such a point lies at the “center,” in the sense that the
leading-order treatment here works; for example, the QES of the form of Eqs. (3.31) and
(3.32) is correctly “anchored” to ∂A at the leading order in δ.

Finally, our discussion here applies in the context of the main text to the interior portion
of the leaf, σint. The existence of the exterior portion σext does not change the fact that the
QES of A lies on the hypersurface given by Eq. (3.40).

3.6 Features of the Quantum Flow

Convexity of Renormalized Leaves

Let us begin by defining convexity in the context of this chapter. Consider a compact set
S on spacelike slice Σ. This set is defined to be convex if the quantum minimal surface χA
anchored to the boundary ∂A of a codimension-2 region A ⊂ S is such that ∀A, χA ⊂ S.
Here, the quantum minimal surface χA is defined as the surface on Σ which minimizes the
generalized entropy Sgen for the region on Σ bounded by χA ∪A. A codimension-2 compact
surface σ is called a convex boundary if on every codimension-1 spacelike slice Σ such that
σ ⊂ Σ, the closure of the interior of σ is a convex set.
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Figure 3.10: The quantum minimal surface χB crossing the quantum minimal surface ΓA.

Theorem. If σ is a convex boundary, then for any subregion A ⊂ σ, A ∪ ΓA is also a
convex boundary.

Proof. Suppose that for some spacelike slice Σ, which contains A ∪ ΓA, there is B in the
closure of the interior of A ∪ ΓA such that the unique quantum minimal surface χB goes
outside A ∪ ΓA.

Since σ is assumed to be a convex boundary, χB cannot go outside σ, i.e. it cannot cross
A. Thus, χB must cross ΓA as shown in Fig. 3.10.

As ΓA = X1 ∪X2 is the quantum minimal surface for A,

A(X1)

4G
+

A(X2)

4G
+

A(A)

4G
+ Sbulk(ab) ≤ A(X2)

4G
+

A(X3)

4G
+

A(A)

4G
+ Sbulk(abc), (3.41)

where the right hand side corresponds to the surface XA = X2 ∪X3.
Also, χB = X3 ∪X4 is the unique quantum minimal surface for B, so

A(X3)

4G
+

A(X4)

4G
+

A(B)

4G
+ Sbulk(bc) <

A(X1)

4G
+

A(X4)

4G
+

A(B)

4G
+ Sbulk(b), (3.42)

where the right hand side corresponds to the surface XB = X1 ∪X4.
Combining Eqs. (3.41) and (3.42), we have

Sbulk(ab) + Sbulk(bc) < Sbulk(b) + Sbulk(abc) (3.43)

which contradicts strong subadditivity. Thus, the quantum minimal surface χB crossing the
quantum minimal surface ΓA results in a contradiction.
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By repeatedly applying this theorem, we can show that if the initial leaf has the interior
portion σint that is convex, then a sequential quantum flow procedure results in a convex
interior portion at each step. In the continuum limit, this sequential procedure gives us the
same renormalized leaves that were obtained using the flow equation. Thus, we conclude
that if the initial leaf portion σint(0) is a convex boundary, then the renormalized leaf portion
σint(λ) is also a convex boundary for all λ > 0.

Lemma. Consider a slice Σ and a compact set S ⊂ Σ. If S is convex then ΘΣ(∂S) ≤ 0.
Here, ΘΣ(∂S) is the trace of the quantum extrinsic curvature of ∂S embedded in Σ for the
normal pointing inward.

Proof. Suppose that ΘΣ(∂S) > 0 somewhere on ∂S. One can explicitly construct minimal
surfaces that are outside S by considering small enough subregions anchored to this portion
of ∂S.

Let the future-directed null vectors orthogonal to a codimension-2 spacelike surface σ be
k and l, which we normalize as k · l = −2.

When we discuss the convexity of the leaf σ(λ) = σint(λ) ∪ σext, we treat σext as a single
unit on σ which cannot be further divided into subregions. Thus, σext is included or excluded
as a whole when we consider any boundary subregion A.

Properties of the Flow

We now illustrate some of the salient properties of the flow, showing the consistency of it
being interpreted as coarse-graining.

Monotonicity of generalized entropy of renormalized leaves

In order to interpret our procedure as coarse-graining, the number of degrees of freedom
must decrease monotonically with λ. The dimension of the effective Hilbert space Heff(σ(λ))
associated with leaf σ(λ) can be defined as the amount of entropy the boundary legs carry
in the TN picture, implying

ln |Heff(σ(λ))| =
A(σ(λ))

4GN

+ Sbulk(Σ(λ))

= Sgen(σ(λ)), (3.44)

where |H| represents the dimension of H, and Σ(λ) is a bulk codimension-1 spacelike surface
bounded by σ(λ) = σint(λ)∪σext, i.e. Σ(λ) = Σint(λ)∪Σext. We thus find that the condition
for the decrease of the degrees of freedom is the same as the statement that the generalized
entropy of the renormalized leaf σ(λ) decreases monotonically with λ. We now prove this in
a manner similar to Ref. [54].
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We have defined the evolution vector s, which is tangent to the holographic slice Υ and
radially evolves the interior leaf portion inward:

s =
1

2
(Θkl +Θlk) , (3.45)

where the associated quantum expansions satisfy

Θs = ΘkΘl ≤ 0. (3.46)

This follows from Θk,Θ−l being non-positive. To show this non-positivity property,
consider some spacelike slice Σ with boundary σ. The inward normal n on Σ is given by

n = αk − βl (3.47)

with α, β ≥ 0. Suppose Θk > 0. Now we can choose a slice Σ such that ΘΣ(σ) > 0 by taking
α ≫ β. Thus, σ is not a convex boundary because the closure of its interior is not convex
on Σ due to the lemma above and we arrive at a contradiction. A similar argument holds if
Θl < 0.

Next, consider a point p on the leaf portion σint(λ) and the s vector orthogonal to σint(λ)
at p. Next consider an infinitesimal patch of area δA around p. As we flow along s by a small
amount, the rate at which Sgen(σ(λ)) changes is determined by the quantum expansion Θs

as
δSgen ∝ ΘsδA ≤ 0. (3.48)

This implies that the contribution to Sgen(σ(λ)) from the inward flow of any infinitesimal
patch is negative, and hence Sgen(σ(λ)) must decrease with λ.

The argument above relies on the flow equation. However, as shown in Section 3.5, it is
possible that on coarse-graining, we obtain a new disconnected component of σint(λ). While
the appearance of such a component cannot be described by the flow equation, it comes with
a negative contribution to the generalized entropy of the renormalized leaf. Thus, even on
including this effect, we find that Sgen(σ(λ)) decreases with λ.

Containment of subregion flow

Consider the situation where we apply the holographic slice construction only to a finite
subregion A of the leaf portion σint. This yields a sequence of renormalized leaves given by
σ(λ) = A(λ) ∪ A. Here, A(λ) represents a sequence of subregions that arise from the radial
evolution of A.

Now, because of entanglement wedge nesting

QEW(A) ⊂ QEW(σ(λ)) (3.49)

for arbitrary λ, since A ⊂ σ(λ) for all λ. Here, QEW(A) and QEW(σ(λ)) are determined
by the corresponding minimal QESs. This implies that the boundary of QEW(A) acts as an
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extremal surface barrier for the flow of A(λ). In particular, A(λ) remains outside QEW(A)
for all λ.

Incidentally, if there is another QES anchored to ∂A which lies outside QEW(A), then
A(λ) would not be able to go beyond this non-minimal extremal surface.

Remaining freedom

In general, the proof in Sec. 3.5 allows us to fix the direction of the flow at each point of
σint(λ) to be the vector s as discussed in Eq. (3.15). However, there is no canonical choice of
normalization, reflecting the arbitrariness of choosing relative sizes of subregions for different
points on σint(λ). The ratio of these sizes must stay finite in the continuum limit, and yet it
can still lead to inequivalent flow equations parameterized as

dxµ

dλ
= α(yi, λ)(Θkl

µ +Θlk
µ), (3.50)

where yi represents the tangential coordinates on σint(λ), and α(yi, λ) > 0. These flow
equations in general result in different holographic slices, which are all gauge equivalent by
the equations of motion. By choosing subregions of the same characteristic size at all p, we
can fix the preferred normalization that leads to Eq. (3.16).

We note that this provides a natural gauge choice motivated by holography; the spacetime
inside the holographic screen, which is now the Q-screen H ′, is parameterized by λ, yi, and t,
where t is a time parameter on the holographic screen giving a sequence of leaves at different
times. (If disconnected components of σint(λ) appear during the flow, then we must extend
yi to incorporate those components.)

An alternative choice for the normalization is to take λ to be the proper length along the
trajectory p(λ) of a point on σint(λ). Here, the trajectory is defined such that if a point on
σint(λ+ dλ) is located on the 2-dimensional surface orthogonal to σint(λ) at p(λ), then it is
regarded as the “same” point as p(λ), i.e. p(λ + dλ). This provides another natural gauge
choice motivated by holography.

End of the Flow

The quantum flow procedure described above provides a way to probe a spacetime inside
the holographic screen by following the holographic slice inward. A key qualitative feature
of the spacetime is given by how and where the holographic slice ends.

The holographic slice can end in one of the three possible ways:

(i) The slice ends at an empty surface. This can occur simply such that σint(λ) keeps
moving inward, and the slice is capped off at a point, as shown in Fig. 3.11. Alterna-
tively, as discussed in Sec. 3.5, disconnected components of σint(λ) may appear during
the flow, which then grow outward and coalesce with the original component of σint(λ)
moving inward, ending up with an empty surface.
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Figure 3.11: The holographic slice ending in an empty surface.

Figure 3.12: The holographic slice asymptoting to a quantum extremal surface.

Figure 3.13: The holographic slice terminating abruptly.

(ii) The slice asymptotes to a QES as shown in Fig. 3.12. As the interior portion σint(λ)
of renormalized leaves approaches the QES, the flow slows down because Θk,Θl → 0.
Note that a QES homologous to the initial leaf portion σint(0)—even if it is non-
minimal—acts as a barrier which cannot be crossed as we flow in.

(iii) The slice terminates abruptly as shown in Fig. 3.13. This occurs when the minimal
QES associated with A, the complement of an infinitesimal subregion A, becomes
non-infinitesimal. At this point, we need to terminate the flow.

It is worth mentioning that while some of these cases have classical analogues, the second
possibility of (i) and the case (iii) are exclusive to the quantum flow.
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Examples

Various examples for the classical flow equation of Eq. (3.6) were discussed in Ref. [54]. In
many situations, the minimal QES is a small perturbation to the classical HRT surface, and
accordingly the quantum corrected flow equation in Eq. (3.16) results in a holographic slice
that is perturbatively close to the classical holographic slice. There are, however, cases in
which the two flows are significantly different. Here we illustrate an example of these: a
black hole formed from collapse.

In the classical case, it was found that the holographic slice stays close to the horizon for
a long time until it reaches the matter forming the black hole [54]. It is then capped off to
form a complete Cauchy slice of the spacetime as seen in Figs. 5 and 6 of Ref. [54]. How is
this modified at the quantum level?

Far from the black hole horizon, the flow is largely unaffected. It is, however, significantly
modified once we approach the horizon. As the black hole evaporates, there are Hawking
modes that escape to the region exterior to σext, denoted R, leaving behind their interior
partners entangled with them. As the leaf portion σint is moved inward by the flow, its
classical area decreases but the entropy contribution from the Hawking partners increases.
About a Planck distance inside the horizon, the two effects compete with each other, resulting
in a QES where the flow ends. The mechanism by which the QES emerges here is identical
to the one that appeared in a specific example in Ref. [97].9 Thus, after including bulk
quantum corrections, the holographic slice becomes a partial Cauchy slice of the spacetime
that excludes a large portion of the interior.10 The same feature can be found in the case of
an AdS black hole, where one could allow the black hole to evaporate by coupling the CFT
to a bath. Our coarse-graining procedure then leads to a flow that stops at the same QES
as that found in Refs. [16, 17].

Another mechanism excising the black hole interior comes from the phenomenon discussed
in Sec. 3.5. As the black hole evaporates, there are a large number of interior partners of
Hawking radiation that accumulate behind the horizon, which eventually exceed the area
of the horizon at the Page time. Hence the interior of such an old black hole would not be
swept by renormalized leaves (even if the flow did not halt as described above).

The phenomenon that the holographic slice does not penetrate deep into the black hole
horizon was already seen in the classical case. There is, however, an important difference in
the quantum case. As shown in Figs. 3.14 and 3.15, holographic slices become partial Cauchy
slices during the middle of the evolution of a black hole. (These can be contrasted with Figs. 5
and 6 of Ref. [54].) This implies, in particular, that with a given time parameterization on a
boundary, e.g. on the holographic screen, the concept of black hole formation and evaporation
can be rigorously defined through the behavior of the flow discussed earlier.

9Recently, Ref. [98] appeared which found such a non-trivial QES in cosmological spacetimes. The
coarse-graining flow would end at the QES in these situations as well.

10This does not necessarily mean that the interior of the black hole is absent. It is possible that the semi-
classical interior picture emerges through approximately state-independent operators acting on modes (the
hard modes [99, 100]) whose characteristic frequencies are larger than the local Hawking temperature [101].
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Figure 3.14: Eddington-Finkelstein diagram representing black hole formation and evapora-
tion with quantum holographic slices depicted for three characteristic times.

Figure 3.15: Penrose diagram version of Fig. 3.14. The region R outside σext is depicted by
orange lines.
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Figure 3.16: A TN representing a collection of states has dangling legs as well as nonuniversal
tensors and nonlocal bonds.

3.7 Relation to Quantum Error Correction

In this section, we discuss the relation between our coarse-graining procedure and the picture
that the holographic dictionary works as quantum error correction [3, 78, 79, 80], in which a
small Hilbert space of semiclassical bulk states is mapped isometrically into a larger boundary
Hilbert space. In our framework, this picture arises after considering a collection of states
over which we want to build a low energy bulk description.

In the context of quantum error correction, one chooses the set of semiclassical bulk
states that can be represented as a code subspace in the boundary theory. In a general
time-dependent spacetime, however, there is no natural choice of code subspace fixed by the
bulk effective theory. This is because degrees of freedom that appear natural on one time
slice need not be in bijection with those that appear natural on a different time slice. For
example, if a single heavy particle decays into a large number of radiation particles within
the causal domain of σint, then we may naturally choose a code subspace associated with the
degrees of freedom of the parent particle, e.g. its spin, or a larger subspace determined by
the coarse-grained entropy of the final state radiation.

Our framework addresses this issue by providing a specific gauge choice given by the
coarse-graining procedure. Suppose there are a set of states giving similar geometries on
their holographic slices. Then, we can represent all these states approximately at once by
a single TN, which has “dangling” legs so that different states in these legs correspond to
different elements in the set; see Fig. 3.16. This is a choice of code subspace motivated by
the coarse-graining procedure.
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Figure 3.17: With the state in Hcode being maximally mixed, the QESs ΓA and ΓA can differ.

The introduction of dangling legs amounts to dividing bulk degrees of freedom into two
classes: those represented by a code subspace and the rest. Let us denote the associated
Hilbert space factors by Hcode and Hfrozen, respectively. States in Hcode correspond to the
bulk degrees of freedom that we aim to reconstruct, while Hfrozen is viewed as “frozen.”
Namely, the degrees of freedom corresponding to Hfrozen are treated essentially as part of the
background, despite the fact that they are associated with quantum states in the conventional
bulk effective field theory.

We can now define the coarse-graining in this setup, namely on a continuum analogue of a
TN with dangling legs. Specifically, we take the maximally mixed state inHcode, while picking
a fixed state in Hfrozen determined by the network structure, i.e. the background geometry.
This can be thought of as considering a coarse-grained version of a generic state within the
code subspace. Indeed, the maximally mixed state plays a crucial role in AdS/CFT, in which
reconstruction of a certain operator in the maximally mixed state is sufficient for a given
operator to be reconstructed on arbitrary states in the code subspace [102, 103].

The coarse-graining procedure then follows that in Secs. 3.4 and 3.5, but this time Sbulk

receives contributions both from dangling legs, Scode, and nonlocal legs, Sfrozen. Since the
QESs for A and A need not agree (see Fig. 3.17), the region between the two surfaces—often
termed the no-man’s land—is partially entangled with both A and A. Nevertheless, using
Eq. (3.14) we can obtain a picture analogous to that in Secs. 3.4 and 3.5.

Once we perform the flow to obtain a renormalized leaf σ(λ) appropriate to deal with
the problem, e.g. by making σint(λ) a surface surrounding the region we are interested in,
then we can consider the set of all states in Hcode, rather than the maximally mixed state, to
analyze the system in more detail. As in the corresponding TN case, we can then interpret
such coarse-grained states in two ways.

One is to view a state in the set as defining an entangled state in the combined bulk-
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boundary Hilbert space

|ψ⟩ ∈ Hbulk ⊗Hboundary, (3.51)

where Hbulk represents the space of bulk states in the code subspace.
Another is to regard the set to give an isomorphic map between the bulk Hilbert space

(i.e. the space of dangling legs) and a subspace of the much larger boundary Hilbert space:

{|ψ⟩} : Hbulk ↔ Hcode ⊂ Hboundary. (3.52)

Note that in the TN picture, Hboundary consists of both local and nonlocal bonds cut by the
boundary surface obtained by the flow, as well as the part associated with σext. This implies
that the dimension of the boundary effective Hilbert space is given by

ln |Hboundary(σ(λ))| =
A(σ(λ))

4GN

+ Sfrozen(Σ(λ)). (3.53)

This can be compared with Eq. (3.44).
In this way, holographic properties such as the HRT formula and entanglement wedge

reconstruction can be naturally interpreted [78, 61]. The interpretation is consistent with
the analysis in Ref. [102] that the region reconstructable by state-independent operators—
termed the reconstruction wedge in Ref. [103]—can be computed by considering QEW(A)
of the maximally mixed state in Hcode. In this picture, our coarse-graining procedure is
interpreted to produce a sequence of holographic encoding maps parameterized by λ, each
of which can be viewed as a holographic duality of the form in Eq. (3.52).

3.8 Discussion

In this chapter, we have generalized the holographic coarse-graining procedure described
in Ref. [54] to include bulk quantum corrections. Interestingly, the generalization involves
promoting classical expansions θ to quantum expansions Θ as has been found in many other
examples [74, 73, 75, 76, 77]. We have demonstrated that the flow equation obtained in
the bulk has all the properties consistent with an interpretation as a coarse-graining process
in the holographic theory. Our procedure also gives a way in which the region exterior to
the holographic screen is treated at the quantum level. It would be interesting to explicitly
understand the detailed coarse-graining procedure from a boundary theory perspective.
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Chapter 4

Holographic BCFT with a Defect on
the End-of-the-World Brane

4.1 Introduction

AdS/BCFT [104, 105, 106] studies the gravity dual of boundary conformal field theory [107,
108]. The simplest, bottom-up model proposed for AdS/BCFT is a spacetime terminating
at the End-of-the-World (EOW) brane [105, 106, 109]. This EOW brane is anchored to
the BCFT boundary. This bottom-up model captures some qualitative aspects of stringy
models for AdS/BCFT [110, 111, 112], and has served as a useful toy model for black hole
evaporation [16, 17, 88, 89, 90, 115, 116, 117, 118, 113, 22, 114], interpreted as doubly-
holographic brane-world models [119, 120, 121, 122]. On the other hand, this simplest
model of AdS/BCFT is known to have several atypical features in the boundary operator
spectrum amongst all holographic BCFTs, such as fine-tuned boundary operator spectrum
[123] and the absence of interactions between distinct EOW branes. The latter, which is
the main focus of this chapter, results in a fixed gap between the lowest eigenvalues of the
BCFT with two distinct boundaries and the BCFT with identical boundaries [124].

We modify the conventional AdS/BCFT model by allowing the EOW branes with differ-
ent tensions to be connected at defects. Geometries with intersecting EOW branes were first
considered in [125]. In our model, we treat the defect explicitly by including an additional
contribution to the action from the intersection. Clearly, this defect leads to an interaction
between the EOW branes. We find that this interaction leads to several novel results:

• The defect modifies the lowest eigenvalue of the conventional AdS/BCFT model. In
fact, the lowest eigenvalue in our refined model continuously interpolates between the
identical boundary BCFT and the aforementioned spectral gap. We also include a bulk
conical defect on the gravity side, which corresponds to a boundary operator [126, 127,
125, 128, 129].

• The bulk theory we propose can also be considered as a gravity dual of a BCFT
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with corners [130, 131, 125]. In this duality, the corner on the boundary is in direct
correspondence with the defect on the EOW branes.

• The holographic entanglement entropy in our model exhibits three different phases.
This entanglement entropy can be seen as a toy model of a matter state prepared by
cosmological spacetimes [132, 133]. Interestingly, we have a phase that breaks the time
reflection symmetry, so the corresponding entanglement entropy is closely related to
the pseudo entropy [134].

• The defect enables us to construct a wormhole saddle that connects multiple AdS
boundaries, analogous to the replica wormhole with EOW branes considered in [89].
In our model, the wormhole saddle is allowed only when the BCFT is non-unitary,
and this saddle is always subdominant compared to the factorized saddle without any
wormholes.

Overview

In Sec. 4.2, we present our refined AdS/BCFT model and its connection to BCFT with a
corner. In Sec. 4.3, we describe the bulk geometry that is dual to BCFT on a strip. In
Sec. 4.3, we compute the Euclidean action for our geometry and use it to confirm that the
BCFT has a richer spectrum in comparison with the conventional AdS/BCFT model. In
Sec. 4.5, we compute the holographic entanglement entropy and describe its three phases. In
Sec. 4.6, we construct wormhole geometries using our model. In Sec. 4.7, we conclude with
discussions and future directions.

4.2 Gravity Dual

In this section, we describe our proposed AdS/BCFT model in which the EOW branes are
connected at a defect. The geometry with such intersecting EOW branes was previously con-
sidered in [125], and we will give an explicit model with action which realizes such geometry.
We use our proposal to find the bulk dual of a BCFT with a corner.

In the original AdS/BCFT proposal[105, 106], the holographic BCFT was dual to an
asymptotically AdS spacetime M with an EOW brane Σ anchored to the BCFT boundary.
This EOW brane might contain matter fields and have a non-trivial gravitational action.
We take the bulk theory to be Einstein gravity

IEH = − 1

16πGN

∫
M

√
g (R− 2Λ)− 1

8πGN

∫
N

√
hK, (4.1)

where N is the AdS boundary.
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The simplest EOW brane action is given by the Gibbons-Hawking boundary term plus
the tension term,

IETW = − 1

8πGN

∫
Σ

√
hK +

1

8πGN

∫
Σ

√
hT − 1

8πGN

∫
ΓΣ,N

√
gΓΣ,N

(
π − θ(Σ,N)

)
. (4.2)

Here hab is the induced metric and Kab is the extrinsic curvature defined using the outgoing
normal vector. We also need to include the Hayward term for ΓΣ,N , the corner between AdS
boundary N and the EOW brane Σ, with internal angle θ(Σ,N). This action leads to the
equation of motion for the EOW brane

Kab = (K − T )hab. (4.3)

The boundary entropy SB in 2d BCFT is defined in terms of the disk partition function
via ZDisk = eSB [135], which counts the number of degrees of freedom on the boundary. The
tension T of the EOW brane is related to the boundary entropy as

SB =
c

6
arctanh(ℓT ), (4.4)

where ℓ is the AdS radius [136]. In this simple model, there are no interactions and no
intersections between EOW branes dual to distinct BCFT boundaries whereas for identical
boundaries, the EOW branes can be smoothly connected. This simple interaction leads to a
simple value for the lowest eigenvalue [124] that is highly non-generic, which we will discuss
in Sec. 4.3.

The new ingredient introduced in here is such an interaction in the form of a defect that
glues two distinct EOW branes. Since the dual spacetime terminates at some finite depth,
the spectrum is no longer that simple, and indeed we have a new lowest eigenvalue as we
show later. The simplest action for this defect is given by

Idefect = − 1

8πGN

∫
Γ(a,b)

√
gΓ(a,b)

(
θ0:(a,b) − θ(a,b)

)
. (4.5)

Here Γ(a,b) is the defect which glues two EOW branes Σa and Σb, and θ(a,b) is the internal
angle ofM at Γ(a,b), see Fig. 4.1. Also, θ0:(a,b)−π can be regarded as the tension of the defect,
The action in (4.5) is called Hayward term [137] when θ0:(a,b) = π, and has been considered
in different AdS/BCFT contexts in [109, 138, 139]. This Hayward term can be obtained by
taking a singular limit of the Gibbons-Hawking-York term where the boundary has a sharp
corner.

The total action is the sum of these three contributions,

Itotal = IEH + IETW + Idefect. (4.6)

It is worth mentioning that this Itotal has UV divergences coming from the region near the
AdS boundary. To obtain a finite answer, these divergences need to be cured by introducing
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Figure 4.1: Sketch of our proposed gravity dual of BCFT. N is the AdS boundary where the
BCFT lives. Σa and Σb are the EOW branes, and Γ(a,b) is the defect connecting them.

a short distance cutoff at the boundary and including appropriate counterterms to cancel
the divergence.

The variation of Itotal is

δItotal = − 1

16πGN

∫
M

√
g

(
Rµν −

1

2
Rgµν + Λgµν

)
δgµν

−
∑
i=a,b

1

8πGN

∫
Σi

√
h (Kαβ −Khαβ + Tihαβ) δh

αβ − 1

8πGN

∫
N

√
h (Kαβ −Khαβ) δh

αβ

− 1

8πGN

∫
Γ(a,b)

(
θ0:(a,b) − θ(a,b)

)
δ
√
gΓ(a,b)

−
∑
i=a,b

1

8πGN

∫
Γ(i,N)

(
π − θ(i,N)

)
δ
√
gΓ(i,N)

. (4.7)

In AdS/BCFT, the metric can fluctuate freely on Σi, but not at AdS boundary N ,
therefore {

δhαβN = 0, δhαβΣi
free,

δ
√
gΓ(i,N)

= 0, δ
√
gΓ(a,b)

free.
(4.8)

These boundary conditions at Σi and Γ(a,b) result in the following equations of motion

Kαβ = (K − Ti)hαβ, (4.9)

θ0:(a,b) − θ(a,b) = 0. (4.10)

These two equations determine the shapes of the EOW branes Σi and of the corner Γ(a,b).
On the other hand, the above boundary conditions do not induce equations of motion at the
AdS boundary and Γ(a,N) because of the Dirichlet boundary condition.

Gravity Dual of BCFT with a Corner

In this subsection, we examine the gravity dual of BCFT with a corner as a simple example.
This dual is given by a vacuum AdS spacetime with two EOW branes glued at a defect.
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Figure 4.2: Two EOW branes embedded in Poincare AdS. They intersect in the bulk at an
internal angle θ(1,2) and on the boundary at an internal angle γ0. The bulk region is dual to
BCFT on the cornered region N = D.

Consider the Poincare background for vacuum AdS3

ds2 =
ℓ2

z2
(dx2 + dy2 + dz2) (4.11)

with ℓ being the AdS length. We restrict to the region

D := {u = reiθ ∈ C|r ≥ 0, 0 ≤ θ ≤ γ0} (4.12)

on the AdS boundary1 with u := x+iy. Since this region has a corner at the origin, the bulk
geometry is dual to BCFT with a corner. The bulk spacetime we consider is a spacetime
bounded by two EOW branes anchored to ∂D. The equation of motion for the EOW brane
fixes its shape to be a plane in (x, y, z) coordinates. Fig. 4.2 shows the bulk geometry
with these two intersecting EOW branes. Since the bulk metric is the Poincare metric, the
Fefferman-Graham expansion tells us that the stress tensor ⟨Tuu⟩ vanishes away from the
boundaries.

Let us first assume that the two EOW branes have equal tensions, so the boundary
entropies for the two boundaries are identical. The dimensionless tension Ta = ℓTa of the
EOW brane is related to the internal angle θ(a,N) between the brane and the AdS boundary
as

Ta = − cos θ(a,N). (4.13)

Note that the allowed values of the tension are given by |T | ≤ 1.

1The region D can be mapped to the upper half plane via a singular conformal transformation, and
standard BCFT techniques can be applied [125]. See also [130].



CHAPTER 4. HOLOGRAPHIC BCFT WITH A DEFECT ON THE
END-OF-THE-WORLD BRANE 48

The internal angle γ0 at AdS boundary and the internal angle θ(1,2) between EOW branes
are related as

γ0 =

arccos
(

cos θ(1,2)+T 2

1−T 2

)
2 arcsin |T | < θ(1,2) < π

2π − arccos
(

cos θ(1,2)+T 2

1−T 2

)
π < θ(1,2) < 2π − 2 arcsin |T |

. (4.14)

Since the configuration of the EOW brane is a plane in the (x, y, z) coordinates, θ(1,2) is
simply the angle of intersection of two planes.

For arbitrary tensions T1 and T2, we have

γ0 =



1
2
arccos

(
cos θ(1,2)+T1T2√
(1−T 2

1 )(1−T 2
2 )

)
,

arccos (
√

(1− T 2
1 )(1− T 2

2 )− T1T2 ) < θ(1,2) and

θ(1,2) < π − arccos (
√
(1− T 2

1 )(1− T 2
2 ) + T1T2) ,

π − 1
2
arccos

(
cos θ(1,2)+T1T2√
(1−T 2

1 )(1−T 2
2 )

)
,

π + arccos (
√
(1− T 2

1 )(1− T 2
2 ) + T1T2 ) < θ(1,2) and

θ(1,2) < 2π − arccos (
√

(1− T 2
1 )(1− T 2

2 )− T1T2) .

(4.15)

In the following sections, we will use this geometry to construct the gravity dual of BCFT
on a strip.

4.3 BCFT on a Strip

In this section, we construct the gravity dual of BCFT on an infinite Euclidean strip by
using our refined model for AdS/BCFT. We suppose that conformal boundary conditions a
and b have been imposed on the two boundaries of this strip.

Let us first review the conventional AdS/BCFT model which does not have any defects
connecting the EOW branes. When the two boundary conditions are identical, the dual
is given by thermal AdS with the EOW branes being connected without any defect (if the
two boundaries are sufficiently close to each other) [105, 106, 124]. In this case, the lowest
eigenvalue was found to be EBCFT

(a,b) = − πc
24∆x

where ∆x is the width of the strip. This spectrum
corresponds to the conformal dimension of the boundary condition changing operator being
hbcc(a,b) = 0.

When the boundary entropies of two boundary conditions are different, the dual geometry
is given by two disconnected EOW branes in the Poincare background. As the result, the
lowest eigenvalue for the BCFT was found to be EBCFT

(a,b) = 0, which corresponds to hbcc(a,b) =
c
24
.

These two results imply that there is no operator with conformal dimension between hbcc(a,b) = 0

and hbcc(a,b) =
c
24

in the conventional AdS/BCFT model.
In the following subsections, we generalize this simple spectrum by introducing a defect

that can connect the EOW branes, even if they have different tensions, or equivalently,
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different boundary entropies. This will allow us to obtain any value for the lowest operator
dimension between hbcc(a,b) = 0 and hbcc(a,b) =

c
24
.

Bulk Geometry

We are interested in constructing the gravity dual of an infinite Euclidean strip of width ∆x.
Let us start by considering the thermal AdS3 geometry with two EOW branes connected
through a defect. The metric of the thermal AdS3 without any branes is

ds2 = ℓ2
(

dτ 2

z20χ
2
+

dχ2

h(χ)χ2
+
h(χ)

χ2
dϕ2

)
. (4.16)

Here h(χ) = (1 − χ2), with 0 < χ ≤ 1. We denote the periodicity of the Euclidean time τ
as T−1

BCFT = 2πz0χH which is assumed to be large compared to z0 so that the thermal AdS
saddle is dominant compared to Euclidean black hole. The ϕ coordinate has period 2π so
that there is no conical defect at χ = 1. Note that z0 sets the length scale for the BCFT.

Let us first embed a single EOW brane without any defects in this geometry. Since the
brane satisfies the equation of motion in (4.9), its profile is

ϕ(χ) = ϕ(0)± arctan
T χ√

h(χ)− T 2
, (4.17)

in terms of the dimensionless tension T . As explained in the next subsection, a bulk coordi-
nate transformation can be used to show that this configuration is equivalent to EOW brane
with tension T anchored to a line in Poincare AdS. The deepest point that the EOW brane
reaches before turning back towards the AdS boundary is

χ = χ0(T ) :=
√
1− T 2. (4.18)

Next we consider two EOW branes Σ1 and Σ2, with dimensionless tensions T1 and T2,
respectively. We assume that these tensions satisfy |T2| ≤ |T1|, without loss of generality.
The branes are anchored to the AdS boundary at Γ1,N = {χ = 0, ϕ = π − α} and Γ2,N =
{χ = 0, ϕ = π + α} respectively, with some α ∈ (0, π). As mentioned earlier, M denotes
the bulk region between these branes. Its boundary ∂M consists of the two EOW branes Σ1

and Σ2, along with a region on the AdS boundary, N = {χ = 0, π − α ≤ ϕ ≤ π + α}. From
the perspective of the AdS boundary, the angular size of N is ∆ϕ = 2α. The width of the
strip is ∆x = 2αz0.

We want to calculate the angle θ(1,2) at which the two EOW branes intersect in the bulk.
Depending on the value of α, the bulk geometries are qualitatively different, so we need to
treat the various cases separately.

As an illustration, let us consider the case where T1, T2 > 0 and α is small, in particular,

0 ≤ α ≤ π
4
+ 1

2
arctan

T2
√

1−T 2
1√

T 2
1 −T 2

2

. We will state the results for the other cases momentarily. A
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Figure 4.3: A constant τ slice of thermal AdS with two EOW branes, Σ1 and Σ2, meeting
at the corner Γ(1,2).

constant τ slice of the bulk geometry, in this case, is shown in Fig. 4.3. The profiles of the
EOW branes in the intersection region are

ϕ1(χ) = −α + arctan
T1χ√

h(χ)− T 2
1

, ϕ2(χ) = α− arctan
T2χ√

h(χ)− T 2
2

. (4.19)

To obtain the intersection point χ∗, we set ϕ1(χ∗) = ϕ2(χ∗) to get an equation for χ∗

arctan
T1χ∗√

h(χ∗)− T 2
1

+ arctan
T2χ∗√

h(χ∗)− T 2
2

= 2α. (4.20)

This χ∗ increases monotonically with α. The upper bound on α for this case is attained
when χ∗ equals the maximum value χ0(T1) =

√
1− T 2

1
2, and the explicit value is α =

π
4
+ 1

2
arctan

T2
√

1−T 2
1√

T 2
1 −T 2

2

as stated above. The angle of intersection between the two EOW

branes is

θ(1,2) = arccos

√
(h(χ∗)− T 2

1 )(h(χ∗)− T 2
1 )− T1T2

h(χ∗)
. (4.21)

Now we state the result for general α. Assuming that the tensions satisfy the condition

2This maximal value corresponds to the deepest point on Σ1 because we have assumed that |T1| > |T2|,
which implies that χ0(T1) < χ0(T2).
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|T2| ≤ |T1|, the equation to obtain the intersection point is

∣∣∣ arctan T1χ∗√
h(χ∗)−T 2

1

+ arctan T2χ∗√
h(χ∗)−T 2

2

∣∣∣ = 2α, 0 < α < π
4
+ sgn(T1)

2
arctan

T2
√

1−T 2
1√

T 2
1 −T 2

2

,∣∣∣ arctan T1χ∗√
h(χ∗)−T 2

1

− arctan T2χ∗√
h(χ∗)−T 2

2

∣∣∣ = π − 2α, π
4
+ sgn(T1)

2
arctan

T2
√

1−T 2
1√

T 2
1 −T 2

2

< α < π
2
,∣∣∣ arctan T1χ∗√

h(χ∗)−T 2
1

− arctan T2χ∗√
h(χ∗)−T 2

2

∣∣∣ = 2α− π, π
2
< α < 3π

4
− sgn(T1)

2
arctan

T2
√

1−T 2
1√

T 2
1 −T 2

2

,∣∣∣ arctan T1χ∗√
h(χ∗)−T 2

1

+ arctan T2χ∗√
h(χ∗)−T 2

2

∣∣∣ = 2π − 2α, 3π
4
− sgn(T1)

2
arctan

T2
√

1−T 2
1√

T 2
1 −T 2

2

< α < π,

(4.22)
and the angle of intersection is

θ(1,2) =



arccos

(√
(h(χ∗)−T 2

1 )(h(χ∗)−T 2
2 )−T1T2

h(χ∗)

)
, 0 < α < π

4
+ sgn(T1)

2
arctan

T2
√

1−T 2
1√

T 2
1 −T 2

2

,

arccos

(
−
√

(h(χ∗)−T 2
1 )(h(χ∗)−T 2

2 )+T1T2
h(χ∗)

)
, π

4
+ sgn(T1)

2
arctan

T2
√

1−T 2
1√

T 2
1 −T 2

2

< α < π
2
,

2π − arccos

(
−
√

(h(χ∗)−T 2
1 )(h(χ∗)−T 2

2 )+T1T2
h(χ∗)

)
, π

2
< α < 3π

4
− sgn(T1)

2
arctan

T2
√

1−T 2
1√

T 2
1 −T 2

2

,

2π − arccos

(√
(h(χ∗)−T 2

1 )(h(χ∗)−T 2
2 )−T1T2

h(χ∗)

)
, 3π

4
− sgn(T1)

2
arctan

T2
√

1−T 2
1√

T 2
1 −T 2

2

< α < π.

(4.23)
Here, sgn(x) := x

|x| is the sign function. Note that these results are valid even when one or
both tensions are negative.

The equation of motion (4.10) fixes the angle of intersection to be θ(1,2) = θ0. This
determines the value of α, and hence, the geometry in terms of θ0 and the tensions of EOW
branes. Indeed, substituting θ(1,2) = θ0 in (4.23), we get

χ∗ =

√
1− T 2

1 + T 2
2 + 2T1T2 cos θ0
sin2 θ0

. (4.24)

Also, the value of α that corresponds to this θ0 is

α0 =



1
2
arccos

(
cos θ0+T1T2√
(1−T 2

1 )(1−T 2
2 )

)
,

arccos (
√
(1− T 2

1 )(1− T 2
2 )− T1T2 ) < θ0 and

θ0 < π − arccos (
√
(1− T 2

1 )(1− T 2
2 ) + T1T2) ,

π − 1
2
arccos

(
cos θ0+T1T2√
(1−T 2

1 )(1−T 2
2 )

)
,

π + arccos (
√

(1− T 2
1 )(1− T 2

2 ) + T1T2 ) < θ0 and

θ0 < 2π − arccos (
√
(1− T 2

1 )(1− T 2
2 )− T1T2) .

(4.25)

Note that (4.24) and (4.25) are symmetric in T1 and T2, therefore the formula applies even
when |T1| < |T2|. Moreover, this result for α0 is identical to (4.15) if we identify γ0 with 2α0.
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In fact, the two bulk geometries can be identified by a bulk coordinate transformation which
maps the infinite strip N to the cornered region D, as explained in the next subsection.

Let us now analyze the dependence of α0 as we vary θ0 for various values of the tensions.
When the two tensions are equal T1 = T2, then θ0 is a continuous function of α0. In this
case, (4.24) and (4.25) simplify to

χ∗ =

√
1− T 2

sin2(θ0/2)
, (4.26)

and

α0 =


1
2
arccos

(
cos θ0+T 2

1−T 2

)
, 2 arcsin |T | < θ0 ≤ π,

π − 1
2
arccos

(
cos θ0+T 2

1−T 2

)
, π ≤ θ0 < 2π − 2 arcsin |T |.

(4.27)

If we also set θ0 = π, then we get α0 =
π
2
. The dual bulk geometry has a smooth EOW

brane geometry without any defect, which is the same as the conventional AdS/BCFT model.
Conversely, we find that θ0 = π is possible only if T1 = T2.

When T1 ̸= T2, the curve for θ0 has a discontinuity at α0 = π/2. While all other values
for α0 are valid, α0 = π/2 is disallowed. This is because as we send θ0 to its corresponding
value, the defect approaches the boundary and one of the EOW branes disappears. For
α0 = π/2, we only have one EOW brane and no defect, so this value needs to be excluded.

Conical defect in the bulk

So far, the geometries we have considered have a defect only on the EOW brane. We can
construct more general geometries by including a bulk conical defect as well. First, we
consider the metric (4.16), and embed the EOW branes whose profiles are given by (4.17)
with internal angle θ(1,2). A bulk conical defect located at χ = 1 with a deficit angle of ∆ϕ
can be introduced by identifying ϕ = ϕ0 and ϕ = ϕ0 +∆ϕ in the geometry (4.16). Here, ϕ0

is chosen such that the region given by ϕ ∈ [ϕ0, ϕ0 +∆ϕ0] is contained within the spacetime
M which is bounded by EOW branes. This is possible if and only if

T1, T2 > 0, 2α0 ≥ ∆ϕ. (4.28)

The first condition T1, T2 > 0 is required for χ = 1 to be contained in the geometry, and
the second condition prevents self-intersection of the EOW branes [125]. For more recent
analysis, see [126, 127, 128, 129, 140].

Extention of Boundary Conformal Transformation to Bulk

Let us examine the bulk coordinate transformation from the Poincare patch to another
coordinate patch. This transformation is dual to the boundary conformal transformation
from a plane to a 2d patch. In particular, we use this to procedure to find the map between
vacuum AdS and thermal AdS.
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The Poincare AdS3 metric is

ds2 =
ℓ2

z2
(
−2dv+dv− + dz2

)
. (4.29)

Here we have used the light cone coordinate v± := 1√
2
(t ± r) for the Minkowski space

ds2 = −2dv+dv− = −dt2 + dr2 at the boundary of AdS.
Suppose we have a conformal transformation v± = f±(u±) that acts on the boundary.

We can extend this to a bulk coordinate transformation via [141]v± = f±(u±) +
2ζ2f ′±(u±)2f ′′∓(u∓)

8f ′+(u+)f ′−(u−)−ζ2f ′′+(u+)f ′′−(u−)
,

z =
8ζ(f ′+(u+)f ′−(u−))3/2

8f ′+(u+)f ′−(u−)−ζ2f ′′+(u+)f ′′−(u−)
.

(4.30)

where ζ is the new radial coordinate. This bulk transformation maps the Poincare AdS3

metric to

ds2 = ℓ2
(
dζ2

ζ2
+ L+du

2
+ + L−du

2
− −

(
2

ζ2
+
ζ2

2
L+L−

)
du+du−

)
. (4.31)

Here L± are related to the Schwarzian of the conformal transformation and are given by

L± := −1

2
{f±(u±), u±} =

3f ′′2
± − 2f ′

±f
′′′
±

4f ′2
±

. (4.32)

Hence, the CFT stress tensor in the transformed coordinates is

Tu±u± =
c

12π
L±, Tu+u− = 0. (4.33)

The analytical continuation of v± to imaginary time is

v± =
t± r√

2
→ −iτ ± r√

2
. (4.34)

Similarly, for ds2 = −2dx+dx− = −dt2x + z20dϕ
2, we have

u± =
tu ± z0ϕ√

2
→ −iτu ± z0ϕ√

2
. (4.35)

In these complexified coordinates, the conformal transformation can be rewritten as v =
r + iτ = g(u), v̄ = r − iτ = ḡ(ū) with u := z0ϕ+ iτu, ū := z0ϕ− iτu. The metric is

ds2 = ℓ2
(
dζ2

ζ2
+ Ldu2 + L̄dū2 +

(
1

ζ2
+ ζ2LL̄

)
dudū

)
. (4.36)

where we have defined

L :=
1

2
{g(u), u} = −1

4
{f−(u−), u−}, (4.37)

L̄ := −1

2
{ḡ(ū), ū} = −1

4
{f+(u+), u+}. (4.38)
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Mapping a plane to a cylinder

We consider a conformal transformation from a cylinder to a plane,

v = z0e
− i

z0
u
, v̄ = z0e

i
z0
ū
. (4.39)

Here we have defined the coordinates on the cylinder as

u := z0ϕ+ iτ = −
√
2u−, ū := z0ϕ− iτ =

√
2u+, (4.40)

and the coordinates on the plane as

v := x− iy = −
√
2v−, v̄ := x+ iy =

√
2v+. (4.41)

This conformal transformation can be also be expressed as v± = ± z0√
2
e

i
√
2

z0
u± .

Applying (4.30) to this conformal transformation, we obtain the bulk transformation

between the Poincare metric, ds2 = ℓ2

s2
(dx2 +dy2 +dz2), and thermal AdS, ds2 = ℓ2

(
dτ2

z20χ
2 +

dχ2

h(χ)χ2 +
h(χ)dϕ2

χ2

)
, to be {

v± = ± z0√
2

√
h(χ)ei

√
2u±/z0 ,

z = z0e
i(u++u−)/(

√
2z0)χ.

(4.42)

where we have related χ = 4z0ζ
ζ2+4z20

. This can also be expressed as
x = z0e

τ/z0
√
h(χ) cosϕ,

y = z0e
τ/z0
√
h(χ) sinϕ,

z = z0e
τ/z0χ,

(4.43)

For this transformation,

L± = − 1

2z20
, (4.44)

so the stress tensor is given by

Tττ = −Tϕϕ
z20

=
c

24πz20
. (4.45)

4.4 Euclidean Action and the BCFT Spectrum

In this section, we compute the Euclidean action for the bulk geometry dual to the strip.
This action is directly related to the lowest eigenvalue of the BCFT.
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First, consider the case with no conical defect in the bulk. After an explicit computation,
we find that the total action given by (4.6) is

Itotal =
ℓχH
2GN

[
−α0

ϵ2
+

1

2ϵ

2∑
a=1

(
Ta√
1− T 2

a

− arccos Ta

)]
, (4.46)

where we have introduced the short-distance cutoff ϵ at the AdS boundary to regulate the
UV divergences.

To cancel these divergences, we need to include boundary counterterms. These coun-
terterms must be covariant and local, and are chosen to cancel the divergences. In our
case,

Ict =
1

8πGNℓ

∫
N

√
h∂M +

∑
a

arccos Ta
8πGN

∫
Γ(a,N)

√
gΓ(a,N)

=
ℓχH
2GN

[
α0

(
1

ϵ2
− 1

2

)
− 1

2ϵ

2∑
a=1

Ta√
1− T 2

a

]
+

ℓχH
4GNϵ

2∑
a=1

arccos Ta.
(4.47)

On including these counterterms, we obtain the Euclidean action

IE = − ℓχH
4GN

α0 = − c

6πξ
α2
0. (4.48)

Here we have defined the aspect ratio ξ := ∆x · TBCFT in order to have scale-invariant
expressions. We have also used that the width of the strip is ∆x = 2α0z0 and the central
charge is c = 3ℓ

2GN
.

As an example, let us consider the case T1 = T2 and α0 =
π
2
, for which the EOW branes

do not have a defect. Then the action is given by

IconE = − πc

24ξ
,

where the superscript denotes that this is the answer in the connected phase of the conven-
tional AdS/BCFT model.

Let us generalize the above result to geometries with bulk conical defects, assuming
T1, T2 > 0. The action can be obtained by subtracting off the contribution corresponding
to the bulk portion that gets removed due to the conical defect. The result is

IE = − ℓχH
4GN

(
α0 −

∆ϕ

2

)
= − c

6πξ

(
α0 −

∆ϕ

2

)2

. (4.49)

Here we have used that the width of the strip is ∆x = (2α0 −∆ϕ)z0.
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Relation with the BCFT Spectrum

In this subsection, we examine the spectrum of the BCFT on a strip of width ∆x. This
BCFT is dual to the bulk geometry that is bounded by two EOW branes that are connected
at a defect and it also has a conical defect in the bulk. For this purpose, we consider the
partition function ZBCFT

a,b (T−1
BCFT,∆x), where T

−1
BCFT is the periodicity in τ direction which

we will take to be infinitely large. In this limit, we have

ZBCFT
a,b (T−1

BCFT,∆x) −−−−−−−−→
∆x·TBCFT→0

e−E
BCFT
a,b ·T−1

BCFT , (4.50)

where EBCFT
a,b is the lowest eigenvalue of the BCFT Hamiltonian HBCFT

a,b . In general, the
corrections to the above equation are exponentially suppressed. Using this lowest eigenvalue,
we can define the spectral gap as

∆EBCFT
a,b := EBCFT

a,b − 1

2
EBCFT
a,a − 1

2
EBCFT
b,b . (4.51)

Suppose the EOW branes have dimensionless tensions T1 and T2. Since Z ≈ e−IE and
using (4.49), the lowest eigenvalue is

EBCFT
a,b = − c

6π∆x

(
α0 −

∆ϕ

2

)2

. (4.52)

The condition for the boundary changing operator to be the identity operator is

α0 −
∆ϕ

2
=
π

2
,

so the corresponding lowest eigenvalue is

EBCFT
a,b = − πc

24∆x
. (4.53)

This situation includes the conventional model where the EOW branes are connected and
have identical tensions, and there is no bulk conical defect. In particular, when the two
boundary conditions are identical, we have EBCFT

a,a = − πc
24∆x

.
The lowest eigenvalue of any unitary BCFT must be higher than this value. Therefore,

if we demand that the BCFT is unitary, the following condition needs to be satisfied

0 ≤ α0 −
∆ϕ

2
≤ π

2
. (4.54)

Therefore, for a fixed α0, the spectrum obtained for an arbitrary ∆ϕ subject to (4.54) satisfies

− α2
0c

6π∆x
≤ EBCFT

a,b ≤ 0. (4.55)
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We note that (4.55) generalizes the lowest eigenvalue dictated by the conventional AdS/
BCFT model. In the conventional AdS/BCFT, neither intersections nor interactions between
distinct EOW branes are allowed, so such EOW branes are disconnected. As the consequence,
the lowest eigenvalue is given by

EBCFT
a,b = 0. (4.56)

The gravity dual that we have constructed using the defect on EOW branes generalizes this
lowest eigenvalue to go below (4.56), for any choice of the two boundary entropies. Note that
when two boundary conditions are identical, the lowest eigenvalue is given by the identity
operator, so the dual geometry corresponds to θ0 = π with ∆ϕ = 0 and α0 = π/2.

Finally, we note that α0 = π/2 is allowed only if T1 = T2, so there is no longer a defect
on the EOW branes. This implies that we can attain the lowest eigenvalue (4.53) only when
the boundary entropy of the two EOW branes are identical. In this case, the bulk conical
defect can reproduce the spectrum

− πc

24∆x
≤ EBCFT

a,b ≤ 0. (4.57)

For T1 ̸= T2, the corresponding α0 can be made arbitrarily close to π/2 by tuning θ0, but
equality cannot be achieved.

To summarize, a key advantage of our model is that it has a rich spectrum even if two
boundary entropies are distinct, as opposed to the conventional AdS/BCFT model which
has fixed lowest eigenvalue (4.56).

CFT stress tensor for thermal AdS

The above results for the lowest eigenvalue can also be derived by analyzing the metric near
the AdS boundary, without knowing the details of the bulk geometry. Rewriting the thermal
AdS3 metric in Fefferman-Graham coordinate, we have

ds2FG =
ℓ2

r2

(
dr2 +

1 + 2r2 + r4

2z20
dτ 2 +

1− 2r2 + r4

2
dϕ2

)
, (4.58)

with χ = 2r
1+r2

. Then the dual CFT stress tensor is given by [142]

⟨Tττ ⟩ = −⟨Txx⟩ =
ℓ

16πGN

1

z20
=

c

6π

(
α0 − ∆ϕ

2

)2
(∆x)2

. (4.59)

The lowest eigenvalue can be obtained by integrating the CFT stress tensor on the width of
the strip,

EBCFT
a,b = −

∫ ∆x/2

−∆x/2

dx ⟨Tττ ⟩ = − c

6π∆x

(
α0 −

∆ϕ

2

)2

, (4.60)

which matches our previous result.
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Relation between bulk mass and the spectrum

In Euclidean global AdS3, a massive particle at the center is described by the metric

ds2 =

(
r2

ℓ2
+ 1− µ

)−1

dr2 + ℓ2
(
r2

ℓ2
+ 1− µ

)
dτ 2 + r2dθ2. (4.61)

Here the mass parameter µ is related to the mass m through

µ = 8GNm (4.62)

Also, θ is periodic with period 2π.
When µ < 1, the massive particle corresponds to a conical defect with deficit angle

∆θ = 2π
√
1− µ. When µ > 1, this geometry is a Euclidean BTZ black hole. The relation

between µ and the lowest energy eigenvalue can be obtained from (4.52). In particular, when
the EOW brane has no defect i.e., α0 = π/2,

2
√
1− µ− 1 =

√
1−

24hbcc(a,b)

c
, (4.63)

where hbcc(a,b) is the chiral conformal dimension of the boundary condition changing operator.

This relation perfectly matches the corresponding relation found in [126].

Spectral Gap in Liouville Theory

In this section, we show that Liouville theory with ZZ boundaries [143] gives a spectral gap
∆EBCFT

a,b which is similar to that of our gravity dual. We emphasize that this match is only
a formal analogy because ZZ boundaries in Liouville theory have very different properties
compared to the usual conformal boundaries of unitary BCFTs.

For comparison, the spectral gap for our gravity model without bulk conical defects is

∆EBCFT
a,b =

πc

24∆x

(
1− α2

0

(π/2)2

)
∈
[
0,

πc

24∆x

]
. (4.64)

The central charge for the Liouville theory is c = 1 + 6Q2 where Q = b + b−1. The
semiclassical limit c→ ∞ can be obtained by taking b→ 0. The degenerate representations
appear at conformal dimensions

∆(m,n) :=
Q2

4
− (m/b+ nb)2

4
(4.65)

and the corresponding degenerate characters are

χm,n(τ) =
q−(m/b+nb)2/4 − q−(m/b−nb)2/4

η(τ)
, q := e2πiτ , (4.66)
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where n, m are positive integers. ∆(m,n) are negative except for ∆(1,1) = 0. Therefore there is
no direct connection between Liouville ZZ boundary states and our holographic construction.
Nevertheless, when we restrict our attention to the spectral gap ∆EBCFT

a,b , we can find an
interesting formal match.

The inner product between two ZZ boundary states |B(m,n)⟩ is given by [143]

⟨B(m,n)|e−βH/2|B(m′,n′)⟩ =
min(m,m′)−1∑

k=0

min(n,n′)−1∑
l=0

χm+m′−2k−1,n+n′−2l−1

(
i

βTBCFT

)
. (4.67)

When we take the limit βTBCFT → 0, the term with k = l = 0 dominates, so

⟨B(m,n)|e−∆xH |B(m′,n′)⟩√
⟨B(m,n)|e−∆xH |B(m,n)⟩⟨B(m′,n′)|e−∆xH |B(m′,n′)⟩

−−−−−−−−→
∆x·TBCFT→0

e
−∆EBCFT

(m,n),(m′,n′)·T
−1
BCFT , (4.68)

where

∆EBCFT
(m,n),(m′,n′) :=

π

4∆x

(
(n− n′)b+

m−m′

b

)2

. (4.69)

We consider b ≪ 1, which corresponds to the large c limit. Assuming that m = m′ and
|n− n′| ≤ 1/b2 + 1, the spectral gap ranges between

0 ≤ ∆EBCFT
(m,n),(m,n′) ≤

π(c− 1)

24∆x
≈ πc

24∆x
. (4.70)

This result matches the spectral gap in our AdS/BCFT model. However, we should reem-
phasize that match between Liouville theory with ZZ boundaries and our model is only
formal which is clear from ∆(m,n) being negative. Moreover, there is another peculiar feature
about ZZ boundaries that distinguishes them from usual BCFT boundaries. Namely, we
have

EBCFT
(m,n),(m,n) =

π

4∆x

(
(2n− 1)b+

2m− 1

b

)2

, (4.71)

which is distinct from (4.53) although this amplitude is between identical states. This
mismatch also disallows us from interpreting the Liouville theory with ZZ boundaries as the
usual BCFT.

4.5 Entanglement Entropy and Entanglement Island

In this section, we study the holographic entanglement entropy in our model. We use the
Ryu–Takayanagi (RT) prescription to compute this entanglement entropy. We restrict to
the case with no bulk conical defect.

We start by considering a normalized boundary state for a conformal boundary condition
Ba prepared on a circle with circumference T−1

BCFT,

|Ba(∆x/2)⟩ =
e−

1
2
HCFT∆x|Ba⟩√

⟨Ba|e−HCFT∆x|Ba⟩
. (4.72)
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This state is often used to model an initial state for a global quantum quench[144, 145].
In the following, we consider the entanglement entropy of a superposition state

|Ψ⟩ :=
∑
a

ca|Ba(∆x/2)⟩, (4.73)

where the ca’s are complex coefficients. We restrict to the case where the boundary entropy
SBa is equal to a fixed value SB (or it is in a narrow window around SB) for the boundary
conditions Ba appearing in |Ψ⟩. Let NSB

be the number of such boundary states.
We assume that the inner products ⟨Ba(∆x/2)|Bb(∆x/2)⟩ have holographic duals with a

defect connecting the EOW branes. For simplicity, we assume that θ(a,a) = π and θ(a,b) = θ0
when Ba ̸= Bb. Under these assumptions, the geometries with θ(a,b) = θ0 dominate the
gravitational computation for ⟨Ba(∆x/2)|Bb(∆x/2)⟩ if

NSB∑
a=1

|ca|2 ≪

NSB∑
a,b=1
a̸=b

c∗acb

 exp

[
− c

6π∆x

(
π2

4
− α2

0

)]
. (4.74)

If all the ca’s are approximately equal, then this condition can be satisfied only if NSB
≫

exp
[

c
6π∆x

(
π2

4
− α2

0

)]
. Since the gravity dual for ⟨Ψ|Ψ⟩ is given by the geometry with θ(a,b) =

θ0 in this case, the RT surfaces in this geometry compute the entanglement entropy of the
state |Ψ⟩.

One can also understand this RT surface in terms of the pseudo entropy [134]. The pseudo
entropy is given by the von Neumann entropy SP (A) = −Tr[XA logXA] of a normalized
transition matrix XA. In our case, this transition matrix is

XA :=
TrA

[
|Ba(∆x/2)⟩⟨Bb(∆x/2)|

]
TrAAc

[
|Ba(∆x/2)⟩⟨Bb(∆x/2)|

] . (4.75)

Three Phases of the RT Surface

In this subsection, we will use the RT surface prescription to compute the entanglement
entropy for a subregion [144, 145] of the state |Ψ⟩ or the pseudo entropy for XA. We assume
the tensions of the EOW branes are equal, T1 = T2 = T , and T is the corresponding
dimensionless tension. Also, the internal angle at the defect is θ0. We assume the bulk
conical defect is absent for simplicity.

Recall that our BCFT is defined on the strip

N = {(τ, x = z0ϕ) | 0 ≤ τ ≤ T−1
BCFT, π − α0 ≤ ϕ ≤ π + α0}, (4.76)

so the width of the strip is ∆x = 2z0α0. On this strip, we consider the subregion

A = {(τ, x = z0(π − σ)) | 0 ≤ τ ≤ |A|}, (4.77)
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Figure 4.4: Thermal Phase of the RT surface for the boundary subregion A.

with a particular value of σ ∈ [0, α0). Since τ is periodic with periodicity T−1
BCFT and |Ψ⟩ is

a pure state, it is sufficient to consider the case |A| < T−1
BCFT/2. There are three different

phases of the RT surface described below.

Case 1: Thermal phase

In this case, the RT surface is a single connected surface. This surface is shown in Fig. 4.4
and we label it as γ1. This phase is realized when the subregion A is sufficiently small. We
will see that the entanglement entropy is extensive in this case.

The bulk geometry has reflection symmetry about the ϕ = π − σ plane, so the γ1 lies on
this plane. This surface is given by the geodesic√

1− χ2 =
√
1− χ2

0 cosh
τ − τ0
z0

(4.78)

with the parameters being

τ0 =
|A|
2
, χ0 = tanh

|A|
2z0

. (4.79)

Note that (τ, χ, ϕ) = (τ0, χ0, π−σ) is the deepest point on this geodesic. If the maximum
depth χ0 is sufficiently large, γ1 will be cut by the EOW branes in the negative tension case.
Therefore, the thermal phase with T < 0 exists only if T ≥ − tan(α0−σ) sech(|A|/2z0)√

tan(α0−σ)2+tanh2(|A|/2z0)
.
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The length of this RT surface is given by

A(γ1) = 2

χ0∫
ϵ

dχ
ℓχ0

χ
√
(1− χ2)(χ2

0 − χ2)
(4.80)

= 2ℓ arctanh

√
1− ϵ2/χ2

0

1− ϵ2
(4.81)

≈ 2ℓ log
2

ϵ
− ℓ log

1− χ2
0

χ2
0

. (4.82)

Using the value of χ0, the holographic entanglement entropy is

S(A) =
A(γ1)

4GN

=
c

3
log

2

ϵ
+
c

3
log sinh(|A|/2z0). (4.83)

Since this result is independent of σ, analytically continuing it to real time does not give rise
to any time dependence. For large |A|, this entropy demonstrates the volume law

S(A) ≈ c

3
log

2

ϵ
+
c|A|
6z0

− c

3
log 2, (4.84)

at an inverse effective temperature,

β|Ψ⟩ = 2πz0 =
π

2α0

(2∆x). (4.85)

There is a prefactor π
2α0

here, which lowers the effective temperature for the same ∆x for a
given α0 ≤ π/2 as compared to the conventional case for which α0 = π/2.

Case 2: Boundary phase.

In this phase, the RT surface has two disconnected pieces that end on the EOW branes. This
surface is shown in Fig. 4.5 and we label it as γ2. This phase is preferred over the thermal
phase for sufficiently large |A|. We will see that the entanglement entropy is intensive in this
case.

Each piece of γ2 lies on a constant τ surface because of the τ reflection symmetry. These
pieces are given by the geodesic√

1− χ2 cos(ϕ− π + σ + ϕ0) = cosϕ0. (4.86)

Here we have determined the parameter ϕ0 = α0−σ by requiring that the geodesic intersects
the EOW brane orthogonally. The endpoints of γ2, lying on the EOW brane Σ1, are given
by χep =

√
1− T 2 sin(α0 − σ).
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Figure 4.5: Boundary Phase of the RT surface for the boundary subregion A.

If α0 ≤ π/2, or equivalently, θ0 ≤ π, this geodesic exists for all values of σ. If α0 ≥ π/2,
the critical value corresponds to the endpoint lying on the defect. This is given by χep =

χ∗ =
√
1− T 2 csc2( θ0

2
), so the condition for the existence of this geodesic is

α0 − σ ≤ arccos
T
∣∣∣cot( θ02 )∣∣∣√
1− T 2

. (4.87)

In particular, this surface exists for σ = 0 if and only if α0 ≤ π/2.
To find the length of this RT surface, let us first specialize to σ = 0. For T > 0

A(γ2) = 2

 sinϕ0∫
ϵ

dχ
ℓ sinϕ0

χ
√
h(χ)− cos2 ϕ0

+

sinϕ0∫
χi

dχ
ℓ sinϕ0

χ
√
h(χ)− cos2 ϕ0

 (4.88)

≈ 2ℓ log
2 sinϕ0

ϵ
+ 2ℓ arctanh

√
h(χi)− cos2 ϕ0

sinϕ0

(4.89)

= 2ℓ log
2 sin(α0)

ϵ
+ 2ℓ arctanh |T |. (4.90)

and for T < 0,

A(γ2) = 2

χi∫
ϵ

dχ
ℓ sinϕ0

χ
√
h(χ)− cos2 ϕ0

(4.91)

≈ 2ℓ log
2 sinϕ0

ϵ
− 2ℓ arctanh

√
h(χi)− cos2 ϕ0

sinϕ0

(4.92)

= 2ℓ log
2 sin(α0)

ϵ
− 2ℓ arctanh |T |. (4.93)
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For non-zero σ, we just need to shift α0 to (α0 − σ) to adjust for the angular separation
between A and Σ1. The final result is

A(γ2) = 2ℓ log
2

ϵ
+ 2ℓ log sin(α0 − σ) + 2ℓ arctanh T , (4.94)

so the holographic entanglement entropy is

SA =
A(γ2)

4GN

=
c

3
log

2

ϵ
+
c

3
log sin(α0 − σ)+ 2SB. (4.95)

Here SB is the boundary entropy

SB =
c

6
arctanh T , (4.96)

which can also be obtained using the disk partition function [106]. Note that there is an
extremal but not minimal surface γ′2 ending on the other EOW brane Σ2, i.e., the EOW
brane anchored at ϕ = π + α0. For this surface, we have

A(γ′2)

4GN

=
c

3
log

2

ϵ
+
c

3
log sin(α0 + σ)+ 2SB. (4.97)

The surface γ′2 exists when α0 + σ ≤ arccos
T
∣∣∣cot( θ02 )

∣∣∣
√
1−T 2

.

When we analytically continue this Euclidean entanglement entropy to real time, it is
important to consider both A(γ2) and A(γ′2), as well as cases where the two pieces of the
RT surface ends on distinct EOW branes. To evaluate the entanglement entropy of the

state e−iHCFTt|Ψ⟩, we analytically continue A(γ2)
4GN

and
A(γ′2)

4GN
by taking σ → −i t

z0
. After this

substitution, these two extremal areas are complex conjugates of the other, A(γ2) = A(γ′2).
The total areas in the other two cases are purely real and are equal to Re [A(γ2)] = Re [A(γ′2)].
Therefore, the real time entanglement entropy is given by this real piece,

SA = Re

[
A(γ2)

4GN

]
=
c

3
log

2

ϵ
+
c

6
log

cosh(2t/z0)− cos(2α0)

2
+ 2SB − c

3
log 2. (4.98)

At late times t≫ z0, this entanglement entropy is

SA ≈ c

3
log

2

ϵ
+

ct

3z0
+ 2SB. (4.99)

Hence, at late times satisfying

t >
|A|
2

− 6z0SB
c

, (4.100)

the thermal phase will be favored over the boundary phase.
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Figure 4.6: Defect Phase of the RT surface for the boundary subregion A.

Case 3: Defect phase.

In this phase, the RT surface has two disconnected pieces that end on the defect. This
surface is shown in Fig. 4.6 and we label it as γ3. As in the boundary phase, the entropy is
intensive. This phase is always subdominant compared to the boundary entropy phase if the
latter exists. Therefore, this phase is realized only when the subregion is sufficiently large
and the boundary entropy phase is absent. For this reason, when α0 ≤ π/2, this phase is
irrelevant.

As earlier, each piece of γ3 lies on a constant τ surface. These pieces are given by the
geodesic √

1− χ2 cos(ϕ− π + σ + ϕ0) = cosϕ0, (4.101)

Here we have determined the parameter ϕ0 = arctan sin(θ0/2)+T cosσ
T sinσ

by requiring that the
geodesic passes through the defect.

If T > 0 this geodesic is guaranteed to exist. However, when T < 0 this geodesic

exists only if σ ≤ 2 arctan
(
tan

(
θ0
4

)√
sin(θ0/2)+T
sin(θ0/2)−T

)
. This implies that this phase always exists

around σ = 0. The computation of the length of this RT surface is similar to previous case
with σ = 0, and we get the final result

A(γ3)

2R
= log

2

ϵ
+

1

2
log

(sin( θ0
2
) + T cosσ)2

sin2( θ0
2
)− T 2

. (4.102)

The holographic entanglement entropy is

SA =
A(γ3)

4GN

=
c

3
log

2

ϵ
+
c

3
log

sin(θ0/2) + T cosσ

sin(θ0/2) + T
+ 2SD. (4.103)
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Here we have defined

SD :=
c

12
log

sin(θ0/2) + T
sin(θ0/2)− T

, (4.104)

and we call it the defect entropy. This defect entropy can be considered as a generalization
of the boundary entropy SB and it reduces to SB if we make the defect disappear by setting
θ0 = π.

As mentioned earlier, the boundary phase is favored over this phase, A(γ2) < A(γ3), if
both phases exist. This is because γ2 is minimal amongst all surfaces that end on the EOW
brane.

The real time entanglement entropy is given by analytically continuing σ → −i t
z0
, so

SA =
c

3
log

2

ϵ
+
c

3
log

(
T cosh(t/z0) + sin(θ0/2)

T + sin(θ0/2)

)
+ 2SD. (4.105)

Note that this result is manifestly real unlike case 2. At late times t≫ z0, this entanglement
entropy is

SA ≈ c

3
log

2

ϵ
+

ct

3z0
+ 2SD − c

3
log

2 (T + sin(θ0/2))

T
. (4.106)

It is also worth mentioning that the γ3 is minimal but not extremal because of the singular
nature of the defect. One can imagine a scenario when there is a matter theory on the EOW
brane which smoothly interpolates between the two different tensions of the EOW branes,
and the defect is realized as the sharp limit. In this case, the RT surface is extremal and the
distinction between cases 2 and 3 disappears.

Interpretation as Entanglement Island

In this subsection, we explain and interpret the results in the previous section in terms of the
island formula. We interpret the state |Ψ⟩ as a field theoretic wavefunction being prepared
by a matter field that lives on the EOW brane. In other words, the EOW brane is now the
spacetime on which a quantum state |Ψ⟩ is prepared [132, 133]. We are interested in the
entanglement entropy of a subregion A of the state |Ψ⟩. We assume that the matter theory
is a holographic BCFT to simplify the analysis [146]. When the effective temperature of |Ψ⟩
is sufficiently low, the EOW branes in the bulk are disconnected. When the temperature is
sufficiently high, the EOW branes are connected via a defect, creating a closed universe that
terminates at this defect.

The three phases of the RT surface in the previous section can be interpreted as the
phases of the entanglement entropy of A [133]. When the subregion is sufficiently small, the
entanglement entropy is given by the thermal answer from matter theory. This corresponds
to case 1. When the subregion is large enough so that the naive thermal entropy is much
larger than the boundary entropy, then an entanglement island is formed on the EOW brane
(case 2) or on the defect (case 3).

In case 2, the two pieces of the RT surface can end on the same EOW brane or on
different EOW branes. However, the “island” in the latter case cuts through the defect
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on the EOW brane, so the corresponding entropy increases by the boundary entropy of the
defect coming from the matter field on the EOW branes. Consequently, it can be argued that
this configuration is subdominant when we are looking for the island. As the result, the island
lies only on one of the two EOW branes. The bulk matter wavefunction on such an island
is a transition matrix, so the matter part of the generalized entropy is given by the pseudo
entropy. It is expected that there is a generalization of entanglement wedge reconstruction to
such cases, although there are no quantum information theoretic foundations for this claim
yet.

In case 3, the RT surface ends on the defect. This can be interpreted as an island lying
exclusively on the defect. Therefore, a portion of the defect is included in the entanglement
wedge of the subregion A.

4.6 Three-dimensional Wormhole Saddles

In this section, we construct a connected bulk geometry with multiple AdS boundaries using
our model of EOW branes and defects. This geometry is similar to the replica wormhole in
2d gravity with EOW branes [89]. However, we will be interested in defects with θ0 > π, so
these defects have negative energy.

One way to add such negative energy in the bulk is by adding non-local interaction
between different boundaries [147], which can originate from integrating out “fast” degrees
of freedom. Such non-local interaction between boundaries can make a non-traversable
Einstein-Rosen bridge traversable, so that different boundaries can communicate with each
other [147, 148]. We interpret our model in this section as a realization of such non-local
interaction between BCFTs, and the non-unitarity of the BCFTs with θ0 > π comes from
such non-local interactions obtained by integrating out these fast degrees of freedom.

Let us consider two BCFTs that live on two different strips with widths ∆x1 and ∆x2
respectively. They have the same periodicity T−1

BCFT in τ direction, so the aspect ratios are
ξ1 = ∆x1 · TBCFT and ξ2 = ∆x2 · TBCFT. Fig. 4.7 shows a constant τ slice for this setup.

We assume that the tensions satisfy T1 = T3 and T2 = T4 and that the angle of intersection
between the Σ1, Σ3 EOW branes and the Σ2, Σ4 EOW branes is θ0 > π. This assumption
is required to get connected geometries. it implies that α0 >

π
2
and that the BCFTs are

non-unitary.
The factorized geometry is shown in Fig. 4.8. The Euclidean action for this geometry is

the sum of the two corresponding actions

I fE = − c

6π

α2
0

ξ1
− c

6π

α2
0

ξ2
. (4.107)

where α0 is given by (4.25).
The connected wormhole geometry is shown in Fig. 4.9. It is obtained by stitching

together two geometries, each with a boundary angle 2α0. The total boundary angle for this
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Figure 4.7: Constant τ slice for two BCFTs.

Figure 4.8: Constant τ slice of the factorized (disconnected) geometry.

wormhole geometry is 2αw = (4α0 − 2π), where we have subtracted a 2π to account for the
connection. The Euclidean action for the wormhole geometry is

IwE = − c

6πξw
α2
w = − c

6π

(2α0 − π)2

ξ1 + ξ2
, (4.108)

where ξw = ξ1 + ξ2 is the total aspect ratio for the wormhole.
The factorized geometry strictly dominates over the wormhole geometry, since

I fE = −cα
2
0

6π

(
1

ξ1
+

1

ξ2

)
≤ −cα

2
0

6π

4

ξ1 + ξ2
< −c(2α

2
0 − π)2

6π

1

ξ1 + ξ2
= IwE . (4.109)

Here we have used the arithmetic mean-harmonic mean inequality to establish the first
inequality.
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Figure 4.9: Constant τ slice of the wormhole (connected) geometry.

More generally, if we have n disconnected boundary regions with aspect ratios ξi =
∆xi · TBCFT, then the Euclidean actions for the factorized geometry is

I fE = − c

6π

n∑
i=1

α2
0

ξi
, (4.110)

and for the fully connected wormhole geometry is

IwE = − c

6π

(nα0 − (n− 1)π)2∑n
i=1 ξi

, . (4.111)

This fully connected geometry exists only for α0 ≥ (n−1)π
n

. From these results, we can con-
clude that any wormhole geometry is subdominant compared to the corresponding factorized
geometry, even though we have considered a non-unitary BCFT. Recall that without non-
unitarity, it is not even possible to construct a connected saddle. Interestingly, in order to
increase the number of boundary components, we need larger a α0, which means that we
need to make the BCFT “more” non-unitary.

4.7 Discussion

We have developed a generalization of the conventional AdS/BCFT model by including
defects that connect EOW branes with different tensions. This construction enables us to
study a BCFT whose lowest eigenvalue can be tuned arbitrarily close to that of the identity
operator. This construction is particularly useful when the boundary entropies of the two
boundaries are distinct, i.e. when the conventional model has a restricted lowest eigenvalue.

We conclude with some remarks and possible future directions. The construction in our
model is based on 3d gravity, and we expect that the generalization to higher dimensions
should be straightforward. Although we have calculated the real time entropy in section 4.5,
we did not study the corresponding real time geometry. It would be interesting to develop
this analytic continuation. It would also be interesting to generalize our defect on the EOW
branes to a smooth configuration. We can imagine a model in which the tension of the
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EOW brane is position dependent, and in particular, it interpolates smoothly between the
two BCFT boundaries. Closely related models were studied in [149, 150]. We would like
to understand the interpretation of the boundary entropy in this configuration, for which a
specific example is given by the defect entropy in (4.103).

The connection between unitarity and connected geometries in Sec. 4.6 remains mys-
terious and interesting. We should emphasize that although the connected saddle exists in
the non-unitary case, this saddle is always subleading compared to the disconnected saddle.
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Chapter 5

The Multiverse in an Inverted Island

5.1 Introduction

In the last two decades or so, we have learned a lot about the origin of spacetime in quantum
gravity. A key concept is holography [4, 5, 6, 81], which states that a fundamental description
of quantum gravity resides in a spacetime, often non-gravitational, whose dimension is lower
than that of the bulk spacetime. This concept has been successfully applied to understanding
the dynamics of an evaporating black hole, in particular to address the information problem
[1]; for recent reviews, see [151, 152, 153].

There are two distinct approaches to implementing the idea of holography. One is to
start from global spacetime of general relativity and identify independent quantum degrees
of freedom [16, 17, 88] using the quantum extremal surface (QES) prescription [9, 11, 12,
13]. When applying this prescription to a black hole, the existence of the interior is evident,
whereas understanding unitary evolution requires non-perturbative gravitational effects [89,
90]. The other approach is to begin with a description that is manifestly unitary (if all
the relevant physics is included in the infrared) and understand how the picture of global
spacetime emerges [154, 155, 156, 99, 100, 157, 158]. Specifically, in this approach, the
interior of an evaporating black hole arises as a collective phenomenon of soft (and radiation)
modes [99, 100, 157, 159]. While the two approaches appear radically different at first sight,
they are consistent with each other in the common regime of applicability.

In this chapter, we study the eternally inflating multiverse using the first approach which
begins with global spacetime. A key assumption is that for a partial Cauchy surface R
in a weakly gravitating region, we can use the QES prescription [13]. In particular, the
von Neumann entropy of the microscopic degrees of freedom associated with the region R is
given by the island formula [88]

S(R) = min
I

ext Sgen(I ∪R), (5.1)

where I is a partial Cauchy surface spacelike separated from R.1 Here, the boldface symbol

1In this chapter, I refers to a spacelike codimension-1 surface. Although it is more standard to refer to
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R in the left-hand side is to emphasize that S(R) is the microscopic von Neumann entropy
of the fundamental degrees of freedom, while

Sgen(X) =
A(∂X)

4GN

+ Sbulk(X) (5.2)

is the generalized entropy for partial Cauchy surfaceX calculated in bulk semiclassical theory,
whereA(∂X) is the area of the boundary ∂X ofX, and Sbulk(X) is the von Neumann entropy
of the reduced density matrix of X calculated in the semiclassical theory.

In this work, we show that when R is a sufficiently large region on a late-time hypersur-
face in a bubble universe, an island I appears which encloses the bubble universe. Given
that the semiclassical physics in I is fully reconstructed using the fundamental degrees of
freedom in R, this implies that the full semiclassical physics of the multiverse needed to make
cosmological predictions is encoded in the fundamental degrees of freedom of the region R,
which has a finite volume!

While one might feel that this is too drastic a conclusion, in some respects it is not. Even
for a black hole, the interior region described as an island I can have an ever-increasing
spatial volume, which can even be infinite for an eternal black hole [160, 161]. However, in
quantum gravity, the number of independent states associated with this region is bounded
by the exponential of the entropy of the system. This is because exponentially small overlaps
between semiclassically orthogonal states lead to a drastic reduction in the number of basis
states [162, 163, 164, 165]. What happens in the multiverse is an “inside-out” version of the
black hole case. As anticipated in [166, 167, 168], this allows us to address the cosmological
measure problem [169, 170, 171, 172, 173] associated with the existence of an infinitely large
spacetime at the semiclassical level.

Entanglement Castle

In the black hole case, the region R encloses I, so I looks geographically like an island.
However, in our setup, I encloses R so it no longer appears as an island. Thus, we call I an
inverted island.

The geography for a Cauchy surface Ξ containing R is depicted in Fig. 5.1.
It is usual to treat the regions R and I as “land” and everything else as “water.” Following

this convention, Ξ has a central land R surrounded by a moat R ∪ IΞ which separates R
from IΞ, where IΞ = D(I) ∩ Ξ. To describe the multiverse at the semiclassical level, one
only needs fundamental degrees of freedom associated with the complement of IΞ on Ξ,
IΞ = R∪ (R ∪ IΞ). This is the region corresponding to the castle—the multiverse lives in an
entanglement castle.

the domain of dependence of I, D(I), as the island, we also refer to I as an island in this chapter.
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Figure 5.1: The multiverse as an entanglement castle. On a given Cauchy surface Ξ, the
physics of the multiverse can be described by the fundamental degrees of freedom associated
with the region R ∪ (R ∪ IΞ), where IΞ = D(I) ∩ Ξ with I being the (inverted) island of a
partial Cauchy surface R.

Relation to Other Works

Entanglement islands in cosmological spacetimes have been discussed in the context of toy
models, e.g., models in which a nongravitational bath is entangled with a gravitational
system as well as models in lower dimensional gravity [174, 178, 132, 98, 98, 19, 179, 180,
181, 175, 176, 177]. In this chapter, we study them in a realistic scenario of eternal inflation.

Several holographic descriptions of the multiverse have been proposed [182, 183, 184,
166, 167, 168, 185, 186, 51], mostly to address the measure problem. These correspond to
the unitary description of a black hole, although the issue of unitarity at the fundamental
level is not quite clear in cosmology.

Overview

In Section 5.2, we review the eternally inflating multiverse and describe some basic assump-
tions employed in our analysis. In Section 5.3, we discuss how bulk entanglement necessary
for the emergence of an island can arise from accelerating domain walls, which are pervasive
in the eternally inflating multiverse.

Section 5.4 is the main technical part of this chapter, in which we show that a sufficiently
large region R in a bubble universe has an inverted island that surrounds R. Implications of
this result for the multiverse are discussed in Section 5.5.

5.2 The Eternally Inflating Multiverse in Global

Spacetime

In this chapter, we are concerned with eternally inflating cosmology. Eternal inflation occurs
when the theory possesses a metastable vacuum which has a positive vacuum energy and
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small decay rates to other vacua [187, 188]. If the universe sits in such a vacuum at some
moment, there will always be some spacetime region that remains inflating for an arbitrarily
long time.

This scenario of eternal inflation is naturally realized in the string landscape [189, 190,
191, 192]. In the string landscape, the number of local minima of the potential, i.e. false
vacua, is enormous. Vacuum energies at these minima can be either positive or negative.
Since exactly vanishing vacuum energy requires an infinite amount of fine-tuning, we expect
that it is realized only in supersymmetric vacua.

Spacetime regions in different vacua are created by nucleation of bubbles, each of which
can be viewed as a separate universe. We assume that bubble nucleation occurs through
Coleman-De Luccia tunneling [193], although we expect that our results also apply to other
vacuum transition mechanisms such as the thermal Hawking-Moss process [194, 195].

As explained in the introduction, we begin with the global spacetime picture, which is
the infinitely large multiverse with a fractal structure generated by continually produced
bubbles. We assume that the global quantum state on a Cauchy surface is pure. We are
interested in studying the existence and location of the island corresponding to a partial
Cauchy surface R in the global multiverse.

To address this problem, we focus on a particular bubble, which we call the central
bubble. We assume that the central bubble is formed in a parent de Sitter (dS) bubble.
After being nucleated, it undergoes collisions with other bubbles [188]. Let us follow a
timelike geodesic to the future along (and outside) the bubble wall separating the central
bubble from other bubbles. The last bubble that this geodesic encounters must be either
an anti-de Sitter (AdS) bubble or a supersymmetric Minkowski bubble, or else the geodesic
still has an infinite amount of time to encounter another bubble.

We assume that the last bubbles such geodesics encounter are all AdS bubbles and
call them surrounding AdS bubbles. Since AdS bubbles generally end up with big crunch
singularities [193], they are collapsing bubbles. Note that the choice of the central bubble was
arbitrary, so all the bubbles have the feature of being surrounded by collapsing AdS bubbles.
A typical example of the spacetime structure described here is illustrated in Fig. 5.2. (We
have omitted an infinite number of bubbles that form a fractal structure in the asymptotic
future infinity which are not relevant for the discussion here.)

We postulate that the cosmological history we study takes place in the semiclassical
regime. This implies that the characteristic energy scale E of the potential is sufficiently
smaller than the cutoff scale, and hence the Planck scale. On the other hand, in the string
landscape we expect that this energy scale is not much smaller than the string scale, e.g.,
E ∼ O(10−5 – 10−1)/lP , where lP is the Planck length. Note, however, that some of these
bubbles could be associated with much smaller energy scales by selection effects. For instance,
the bubble universe that we live in has a vacuum energy much smaller than the naive value
of O(E4) [196, 197, 198].
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Figure 5.2: A sketch of the Penrose diagram of the multiverse. We focus on an arbitrarily
chosen bubble, which we call the central bubble. The central bubble is nucleated in a parent
dS bubble and is surrounded by collapsing AdS bubbles which collide with it at late times.

5.3 Bulk Entanglement from Accelerating Domain

Walls

In this section, we discuss the possible origin of bulk entanglement Sbulk() leading to an island
in eternally inflating spacetime. As discussed in [98], an island cannot be created by Sbulk()
originating solely from entanglement between regular matter particles. In particular, the
generation of Sbulk() must involve spacetime (vacuum) degrees of freedom. Examples of such
processes include Hawking radiation and reheating after inflation. Here we discuss another
such process: Sbulk() generated by Unruh radiation [199, 200] from accelerating domain walls.

Consider a domain wall in 4-dimensional flat spacetime which is extended in the x2-x3

directions and is accelerating in the x1 direction. In an inertial reference frame, the domain
wall appears to emit radiation. This occurs because the modes of a light quantum field
colliding with the domain wall from behind are (partially) reflected by it, which converts
these modes into semiclassical excitations on top of the vacuum; see blue arrows in Fig. 5.3.
(For a review and recent analyses, see [201, 202, 203].)

An important point is that this process stretches the wavelength of reflected modes. In
particular, radiation emitted later corresponds to a shorter wavelength mode at a fixed early
time. We postulate that, as in the case of Hawking radiation [204] and the generation of
fluctuations in cosmic inflation [205, 206, 207, 208], this picture can be extrapolated formally
to an infinitely short distance, below the Planck length. This allows for converting an
arbitrary amount of short distance vacuum entanglement to entanglement involving physical
radiation. In particular, if we take a spatial region A that contains the radiation but not its
partner modes, then we can obtain a large contribution to Sbulk() from this process. This is
illustrated in Fig. 5.3.
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A
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Figure 5.3: Generation of Sbulk() by an accelerating domain wall. The blue and red lines are
entanglement partners of each other. This results in the region A, shown in green, to have
a large Sbulk().

This mechanism of generating Sbulk() operates at any wall separating bubble universes.
It converts entanglement in a semiclassical vacuum, which is assumed to take the flat space
form at short distances [209], into that involving radiation emitted by the wall. There are
two classes of walls relevant for our purpose.

The first is a bubble wall separating a nucleated bubble from the ambient bubble (parent
dS bubble in our context). In this case, the bubble wall accelerates outward, so that the
radiation lies inside the bubble. This radiation is homogeneous on a Friedmann-Robertson-
Walker (FRW) equal-time slice and has coarse-grained entropy density

s ∼
( √

−κ
2πa(t)

)3

, (5.3)

where a(t) is the scale factor at FRW time t, and 1/
√
−κ is the comoving curvature length

scale at an early stage of the bubble universe, when a(t) ≈
√
−κ t.

The second is a domain wall separating two bubbles colliding with each other. A do-
main wall relevant for our discussion is that separating the central bubble and one of the
surrounding AdS bubbles colliding with it. In this case, the domain wall accelerates outward
in the AdS bubble [210, 211], so the mechanism described above applies to the AdS bubble;
in Fig. 5.3 the regions left and right to the wall would correspond to the AdS and central
bubbles, respectively. If the domain wall is also accelerating away from the central bubble,
the radiation emitted into the central bubble also results in a large Sbulk(), although this is
not relevant for our setup.
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5.4 Entanglement Island from Surrounding

Collapsing Bubbles

In this section, we argue that a sufficiently large spacelike region R in the multiverse has an
island I. We use the method of island finder [212] to demonstrate this. First, we locate a
partial Cauchy surface I ′ that (i) is spacelike separated from R, (ii) provides a reduction of
generalized entropy Sgen(I

′ ∪ R) < Sgen(R), and (iii) has the boundary ∂I ′ that is quantum
normal or quantum antinormal with respect to variations of the generalized entropy Sgen(I

′∪
R). We will find such an I ′ which has a quantum antinormal boundary. We then argue that
there is a partial Cauchy surface I0 whose domain of dependence, D(I0), contains I

′ and
whose boundary, ∂I0, is quantum normal with respect to variations of Sgen(I0 ∪R). Having
such an I ′ and I0 guarantees the existence of a non-empty island I.

We focus on (3 + 1)-dimensional spacetime throughout our analysis, although it can be
generalized to other dimensions. In our analysis below, we assume that the central bubble
is either a dS or Minkowski bubble, which simplifies the analysis [210, 211]. We believe that
a similar conclusion holds for an AdS central bubble, but demonstrating this requires an
extension of the analysis.

The argument in this section consists of several steps. First, we identify a two-dimensional
quantum antinormal surface ∂Σ′ in a surrounding AdS bubble for a region R in the central
bubble. Then, we gather a portion of ∂Σ′ in each surrounding bubble and sew them together
to form a closed quantum antinormal surface ∂I ′ which encloses R. Next, we argue that
appending I ′ reduces the generalized entropy of R and hence it can serve as the I ′ of [212].
Then, we find I0, establishing the existence of a non-empty QES for R. Finally, we include
some discussion about the (inverted) island I.

While our argument applies more generally, in this section we consider a setup that
involves only a central bubble and its surrounding AdS bubbles. We discuss more general
cases in Section 5.5.

Quantum Antinormal Surface in a Colliding Collapsing Bubble

Let us consider the central bubble and only one of the surrounding AdS bubbles. These
bubbles are separated by a domain wall. This system preserves invariance under an SO(2, 1)
subgroup of SO(3, 1) symmetry of a single Coleman-De Luccia bubble. The spacetime is
thus given by a warped product of a two-dimensional hyperboloid H2 with a two-dimensional
spacetimeM2. Consider a two-dimensional hyperbolic surface ∂Σ′ given by the SO(2, 1) orbit
of a spacetime point as shown in Fig. 5.4. We denote the partial Cauchy surface which is
bounded by ∂Σ′ and extending toward the AdS side by Σ′.

We focus on the region near the domain wall at late times. Given a ∂Σ′ in this region,
let kµ and lµ be the future-directed null vectors orthogonal to ∂Σ′, pointing inward and
outward relative to Σ′, respectively, as depicted in Fig. 5.4. We normalize them such that
k · l = −2 and denote the corresponding classical and quantum expansions by θk,l and Θk,l,
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•
𝑘𝜇

𝜕Σ′

AdS
dS or Minkowski

ቊ
Θ𝑘 < 0
Θ𝑙 < 0

quantum

trapped

ቊ
Θ𝑘 > 0
Θ𝑙 < 0

quantum

antinormal

quantum

antitrapped

ቊ
Θ𝑘 > 0
Θ𝑙 > 0

Σ′

𝑙𝜇

Figure 5.4: Penrose diagram showing the region near the domain wall (yellow strip) separat-
ing the central dS/Minkowski and surrounding AdS bubbles at late times. The transverse
directions corresponding to the hyperboloid H2 have been suppressed. ∂Σ′ is a boundary
of a partial Cauchy surface Σ′ and kµ, lµ are future-directed null vectors orthogonal to it.
Blue and red arrows indicate Unruh radiation and their partner modes, respectively, and the
double line at the top of the AdS bubble represents the big crunch singularity. The signs of
classical expansions θk,l are shown in green following the Bousso wedge convention [213].

respectively. Here, Θk,l are given by the changes in the generalized entropy Sgen(Σ
′ ∪ R)

under infinitesimal null variations of ∂Σ′ [73].
Suppose that a surface ∂Σ′ in the AdS bubble is located near the big crunch singularity

but sufficiently far from the domain wall. This surface is classically trapped (θk, θl < 0).
When ∂Σ′ is moved toward the central bubble, first it becomes normal (θk < 0, θl > 0) and
then antitrapped (θk, θl > 0) [210, 211]. What about the quantum expansions?

In general, Sbulk(), and hence Sgen(), can only be defined for a closed surface, and its
change δSbulk() under a small variation of the surface depends non-locally on the entire
surface. In our setup, however, the only relevant contribution to δSbulk(Σ

′ ∪ R) comes from
partner modes of the Unruh radiation emitted by the domain wall into the AdS bubble, and
we can locally determine the signs of Θk,l.

2

Suppose we locally deform ∂Σ′ in the ±l direction. Then, δSbulk() receives a contribution
from reflected modes, depicted by blue arrows in Fig. 5.4. This contribution, however, is not
strong enough to compete with the classical expansion, since the modes are spread out in
the l direction.

To see this explicitly, let us assume that every radiation quantum carries O(1) entropy,
and that the rate of emission as viewed from the domain wall’s frame is controlled by the

2The contribution from partner modes of Unruh radiation emitted into the central bubble is not relevant
if R is sufficiently large, such that it intersects most of the radiation, since then the contribution has the
same sign as the variation of the area A(∂Σ′).



CHAPTER 5. THE MULTIVERSE IN AN INVERTED ISLAND 79

Unruh temperature T = aw/2π, where aw is the acceleration of the domain wall. We then
find that3

|δSbulk()| ∼
a3wℓ

6

λr2(t∞ − x−)3
δrΩH, (5.4)

where ℓ is the AdS radius in the bubble, (t, r) are the location of ∂Σ′ in the coordinates [210,
211]

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dH2

2 , (5.5)

δr is the change of r when we deform ∂Σ′ in the l direction, and ΩH is the coordinate area
of the portion of the hyperboloid for which we deform ∂Σ′. Also, λ is a parameter appearing
in the trajectory of the domain wall(

t
r

)
≃
(
t∞ − t∞e

−λ(τ−τ0)

r0 e
λ(τ−τ0)

)
, (5.6)

where τ is the proper time along the domain wall trajectory, with r0 = r(τ = τ0) and
t∞ = t(τ = ∞), and we have introduced the null coordinates

x± = t± ℓ2

r
. (5.7)

To derive the above expressions, we have assumed that λℓ ≳ 1 and r is sufficiently larger
than ℓ so that f(r) ∼ r2/ℓ2, which implies t∞ ∼ ℓ2/r0 (also t∞ > ℓ2/r0).

The expression in Eq. (5.4) should be compared with the corresponding change in area,∣∣∣∣ δA4l2P
∣∣∣∣ ∼ 1

l2P
rδrΩH. (5.8)

Assuming that the scalar potential responsible for the domain wall is characterized by a
single energy scale E, we find ℓ ∼ 1/E2lP and λ ∼ aw ∼ E,4 so∣∣∣∣δSbulk()

δA/4l2P

∣∣∣∣ ≲ lP
ℓ
, (5.9)

where we have only considered ∂Σ′ satisfying t < t∞. We indeed find that the quantum
effect, δSbulk(), is negligible compared to the classical contribution, δA/4l2P , for ℓ sufficiently
larger than lP .

On the other hand, if we vary ∂Σ′ in the ±k direction, δSbulk() receives a contribution
from partner modes, depicted by red arrows in Fig. 5.4. If ∂Σ′ is far from the domain wall,
this contribution is small, so that ∂Σ′ remains trapped at the quantum level: Θk,l < 0.

3We thank Adam Levine for discussion on obtaining the quantum contributions.
4The second relationship holds for generic bubbles. For supersymmetric bubbles, we instead have λ ∼

aw ∼ 1/ℓ, but this does not affect our final conclusions.
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However, if ∂Σ′ is moved toward the null surface to which the domain wall asymptotes,
x+ = t∞, the contribution becomes enhanced because the partner modes are squeezed there.

Specifically, the quantum effect can be estimated as

|δSbulk()| ∼
a3wℓ

6

λr2(x+ − t∞)3
δrΩH. (5.10)

Here, we have assumed that the reflected modes, the partners of which ∂Σ′ crosses, all pass
through Σ′, which requires

t > t∞ −
(
1− c

1 + c

)
ℓ2

r
, (5.11)

where c = (t∞ − ℓ2/r0)/(t∞ + ℓ2/r0) is a constant satisfying 0 < c < 1. We thus find that
the relevant ratio is given by ∣∣∣∣δSbulk()

δA/4l2P

∣∣∣∣ ∼ ℓ5lP
r3(x+ − t∞)3

, (5.12)

and the quantum effect can indeed compete with the classical contribution when ∂Σ′ ap-
proaches the null surface x+ = t∞.5

Since the sign of δSbulk() from this effect is such that Sbulk() gets reduced when ∂Σ′ is
deformed in the −k direction, Θk can become positive, making ∂Σ′ quantum antinormal:

Θk > 0, Θl < 0. (5.13)

We assume that this transition happens before ∂Σ′ changes from being classically trapped
to normal.6 This behavior of quantum expansions is depicted in Fig. 5.4.

Forming a Closed Quantum Antinormal Surface

In the previous subsection, we have shown that there is a quantum antinormal surface ∂Σ′

in the AdS bubble. If there were no other bubbles except for these two bubbles, then this
surface would extend infinitely in H2 and would have an infinite area.

However, this is not the case because the central bubble is surrounded by a multitude of
AdS bubbles, as shown in Fig. 5.5. The surface ∂Σ′ corresponding to a particular AdS bubble
is cut off by the domain walls resulting from collisions with the neighboring AdS bubbles.
Thus, we are left with a finite portion of ∂Σ′. Such a finite-sized, quantum antinormal surface
can be obtained in each AdS bubble, which we denote by σ′

i (i = 1, 2, · · · ).
These surfaces σ′

i can be connected with appropriate smoothing in such a way that the
resulting closed surface encloses the central bubble and is quantum antinormal everywhere.
To see this, we note that we have some freedom in choosing the values of (t, r) for each σ′

i.

5For supersymmetric bubbles, the numerator becomes ℓ4l2P . In this case, we need a more careful analysis
to show that δSbulk() can compete with δA/4l2P .

6If this assumption does not hold, we still have an island as will be shown later.
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Figure 5.5: A sketch of the construction of closed codimension-2 surface ∂I ′. The central
bubble and some of the surrounding AdS bubbles are depicted as the green and blue cones,
respectively. The region I ′ is defined as a partial Cauchy surface bounded by and outside
∂I ′.

Using this freedom, we can make two adjacent σ′
i’s intersect along a curve. The resulting

“kink” can then be smoothed at a length scale smaller than that of bulk entanglement. This
smoothing retains quantum antinormalcy, so we end up with a closed, quantum antinormal
surface.

We label this closed surface as ∂I ′, and the partial Cauchy surface bounded by ∂I ′ and
outside it as I ′; see Fig. 5.5. Note that ∂I ′ being quantum antinormal means that Θk > 0
and Θl < 0, where the quantum expansions are defined using Sbulk(I

′ ∪R).

Reduction of the Generalized Entropy

We now move on to discuss the generalized entropy. For a sufficiently large R, we expect
that the region I ′ reduces the generalized entropy of R in the sense that7

Sgen(I
′ ∪R) < Sgen(R). (5.14)

To understand this, we first note that Unruh radiation from the bubble walls of the central
and surrounding bubbles, as well as that from the domain walls separating the central and
surrounding bubbles, contributes to entanglement between R and I ′. Appending I ′ to R
therefore reduces the Sbulk() contribution to Sgen().

To illustrate this, let us take R to be a spherically symmetric region in the central
bubble. We assume that the distribution of AdS bubbles surrounding and colliding with the
central bubble is statistically spherically symmetric. We then append I ′ to R and compare
the decrease in Sgen() due to the change of Sbulk() with the increase in Sgen() coming from
A(∂I ′).

7This implies that I ′ violates the Bekenstein bound [214, 215].
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We do this comparison by focusing on an infinitesimal solid angle dΩS in the central
bubble. Using Eq. (5.3), we can estimate the differential change in Sgen() due to Unruh
radiation from the central bubble wall to be

dSbulk() ≡ [Sbulk(I
′ ∪R)− Sbulk(R)]

dΩS

4π

∼ − 1

32π3
sinh

(
2
√
−κχ∗

)
dΩS, (5.15)

where χ∗ is the coordinate radius of R in the hyperbolic version of the FRW metric. Here,
we have used the fact that the global state is pure, so that Sbulk(I

′ ∪ R) = Sbulk(I ′ ∪R).
Moreover, we have assumed that Sbulk(I ′ ∪R) is sufficiently smaller than Sbulk(R) and have
taken

√
−κχ∗ ≫ 1. These conditions can be satisfied if the bubble nucleation rates in the

parent bubble are small, so that the collisions with AdS bubbles occur at large FRW radii
in the central bubble.

The corresponding area element of ∂I ′ is given by

dA ≡ A(∂I ′)
∣∣
dΩH

= r2σ′
i
dΩH, (5.16)

where rσ′
i
is the location of σ′

i in coordinate r defined by Eq. (5.5), and dΩH is the hyperbolic
solid angle. By matching the area element of the domain wall expressed in hyperbolic and
FRW coordinates on the side of the central bubble, we find dΩS ∼ dΩH. This leads to∣∣∣∣dSbulk()

dA/4l2P

∣∣∣∣ ∼ l2P
16π3r2σ′

i

e2
√
−κχ∗ . (5.17)

(To do this properly, we need to regulate the solid angle ΩAdS which an AdS bubble asymp-
totically occupies and take dΩS sufficiently small so that this area element fits within the
corresponding domain wall. We can then take the limit ΩAdS, dΩS → 0 afterward.)

The radius rσ′
i
is microscopic and is controlled by lP and ℓi, where ℓi is the AdS radius

in the bubble in which σ′
i resides. When a surface ∂Σ′ is moved from an AdS bubble to

the central bubble, the radius r grows and becomes macroscopic. However, this transition
occurs mostly in the region where ∂Σ′ is classically normal, and since σ′

i resides on the AdS
side of it, rσ′

i
is small. In particular, from Eq. (5.12) we expect that rσ′

i
∼ O(ℓi).

8

Therefore, we find that for a sufficiently large region R satisfying

√
−κχ∗ ≳ log

(
4π2maxi(rσ′

i
)

lP

)
, (5.18)

appending I ′ to R reduces Sgen(), so Eq. (5.14) holds in this case.

8For supersymmetric bubbles, we must take rσ′
i
∼ O(ℓ2i /lP ).
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Figure 5.6: Variations of classical and quantum expansions, θ and Θ, when a two-dimensional
surface ∂Σ extending in the direction of hyperboloid H2 is moved between the surrounding
AdS and central bubbles. A finite area surface σ′

i (⊂ ∂Σ′), which constitutes a portion of
∂I ′, is taken in the regime where the surface is quantum antinormal. A surface σ0,i (⊂ ∂Σ0)
which gives ∂I0 after smoothing is in the quantum normal region.

Existence of a Quantum Extremal Surface

The existence of a surface ∂I ′ satisfying Eqs. (5.13) and (5.14) is not sufficient to ensure that
of a non-empty island I for R. The existence of an island, however, is ensured [212] if there
is a partial Cauchy surface I0 that (i) is spacelike separated from R, (ii) has the boundary
∂I0 that is quantum normal with respect to Sgen(I0 ∪ R), and (iii) encloses I ′ in the sense
that I ′ ⊂ D(I0).

To argue for the existence of such I0, let us consider a codimension-2 surface ∂Σ0 similar
to ∂Σ′. Such a surface is specified by the coordinates (t, r) in Eq. (5.5). The analysis above
then tells us that when ∂Σ0 is moved from the near singularity region to the central bubble,
it changes from being quantum trapped to quantum antinormal (as viewed from the side
opposite to the central bubble, which we denote by Σ0). This occurs before the classical
expansions become normal. As we move the surface further, we expect that the quantum
effect becomes subdominant at some point, making the signs of quantum expansions the
same as those of classical expansions. In Fig. 5.6, we depict possible behaviors of quantum
expansions in this region by green Bousso wedges which are consistent with the quantum
focusing conjecture [73]. We can thus take ∂Σ0 in the quantum normal region to construct
the surface ∂I0.

Like ∂Σ′, the surface ∂Σ0 is truncated by AdS-AdS domain walls and becomes a finite
surface σ0. As earlier, we form a closed surface using these truncated surfaces σ0,i (i =
1, 2, · · · ) from each surrounding AdS bubble. By using the freedom of locating each surface,
these pieces can be sewn together to form a closed surface enclosing the central bubble.

The resulting surface, however, has folds at the junctions between AdS bubbles, with
angles opposite to those required for quantum normalcy. Nevertheless, the effect of these
angles is suppressed by O(ℓi/r) compared to that of the expansions of σ0,i’s in the interior
of the AdS bubbles. Therefore, by locating σ0,i’s at large r, we can smooth out the folds to
form a closed surface that is classically normal and hence quantum normal.
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This surface can play the role of ∂I0:⋃
i

σ0,i −−−−−→
smoothing

∂I0, (5.19)

where we define I0 as a partial Cauchy surface bounded by and outside ∂I0. It is easy to
see that the smoothing can be done such that the resulting I0 is spacelike separated from R
and I ′ ⊂ D(I0). This guarantees the existence of an island for R.

We note that the existence of I0 is sufficient by itself to ensure the existence of an island
if R is very large, satisfying Eq. (5.18) with maxi(rσ′

i
) replaced with the radius of I0. Our

argument involving I ′, however, indicates that the island exists for much smaller R.

Inverted Island and Entanglement Castle

Given that the collisions between the central and surrounding bubbles play an essential role in
the existence of I ′ and I0, we expect that ∂I is located in the region near the corresponding
domain walls. In fact, it is reasonable to expect that the two possibilities for quantum
expansions depicted in Fig. 5.6 are both realized, depending on the path along which a
codimension-2 surface ∂Σ is moved. The edge of island ∂I would then lie at the point where
trajectories of ∂Σ bifurcate to behave in these two different ways. The structure of the
Bousso wedges around this location is indeed consistent with ∂I being a quantum maximin
surface [59, 87].

Strictly speaking, this only implies that the surface ∂I is a QES. In order for this surface
to be the boundary of an island, it must be the minimal QES. We assume that this is the
case, which is true if R has only one nontrivial QES with Sgen(I ∪R) < Sgen(R).

Since the topology of I is the same as that of I ′ or I0, the island I for region R is an
inverted island, and hence does not geographically look like an island. Let Ξ be a Cauchy
surface containing R and IΞ = D(I) ∩ Ξ the section of the inverted island on this surface.
Given the geography, we may refer to the region IΞ, complement of IΞ on Ξ, as an entan-
glement lake. However, R occupies a significant portion of IΞ, so (regarding R as a land
as other authors do) the region R ∪ IΞ which corresponds to water is more like a moat; see
Fig. 5.1. In this sense, the region IΞ in the present context may be called an entanglement
castle.

5.5 Cosmological Evolution

Consider a Cauchy surface Ξ in the global spacetime. The existence of a non-empty island
I for a subregion R of Ξ implies that the information about the semiclassical state in IΞ =
D(I) ∩ Ξ is encoded in the fundamental degrees of freedom associated with R. Therefore,
physics at the semiclassical level can be fully described by the fundamental degrees of freedom
associated with the partial Cauchy surface IΞ = Ξ \ IΞ.
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Figure 5.7: Several effective Cauchy surfaces for a given geometry are depicted by red lines.
A microstate of the fundamental degrees of freedom on an effective Cauchy surface can
describe the full semiclassical physics of the multiverse.

In the eternally inflating multiverse, an inverted island I appears for sufficiently large
R. This implies that the semiclassical physics of the multiverse, which is all that we need
to make cosmological predictions, is described by the fundamental degrees of freedom in a
finite volume portion of a Cauchy slice that involves R. We call such a surface an effective
Cauchy surface.

Here we make two general comments about effective Cauchy surfaces. First, the location
of the island D(I), or ∂I, depends on the Cauchy surface. For example, since R is spacelike
separated from I, a Cauchy surface describing the state of the parent bubble cannot have
∂I around the central bubble as seen in the previous section. However, in this case there
exists a region Rp in the parent bubble such that an island Ip appears around the parent
bubble, so that the effective Cauchy surface is given by Ξ \ (D(Ip) ∩ Ξ). In general, when
we consider a Cauchy surface describing the state of an earlier bubble, the relevant island
appears around that bubble.

Second, when two or more (non-surrounding) bubbles collide, we may want to consider
Cauchy surfaces spanning all of these bubbles to describe the collision. In this case, we can
choose a region Rc spanning the colliding bubbles such that the island Ic encloses all the
colliding bubbles. This allows us to describe the bubble collision directly without relying on
reconstruction from microscopic information in the fundamental degrees of freedom in R.

A sketch of the global multiverse illustrating the above points is given in Fig. 5.7, where
possible effective Cauchy surfaces are depicted by red lines. For a given gauge choice, the
state on an effective Cauchy surface Υ1 can uniquely determine the state on an effective
Cauchy surface Υ2 that is in the future domain of dependence of Υ1. In general, the final
state of this time evolution is given by a superposition of states in different geometries Mi:

|Ψ(Υ1)⟩
time−−−−−→

evolution

∑
i∈geometries

ci|Ψ(Υ2,i)⟩Mi
. (5.20)
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Here, all Mi’s share the surface Υ1 and the state on it, and Υ2,i is an effective Cauchy surface
on the geometry Mi which is in the future domain of dependence of Υ1.

It is worth noting that the evolution equation in Eq. (5.20) takes the form that once the
knowledge of the current state, |Ψ(Υ1)⟩, is given, we can predict its future, more precisely
what an observer who is a part of the state can in principle see in their future. Note that
the equation does not allow us to infer from |Ψ(Υ1)⟩ the global state of the multiverse in
the past. This structure is the same as time evolution of states in the Schrödinger picture
of quantum mechanics.

Our approach solves the measure problem in the sense described above: once we are
given the initial state on an effective Cauchy surface, we can in principle predict any future
observations. The existence of the inverted island implies that the necessary information for
this prediction, i.e. the physics of matter excitations over semiclassical spacetimes, is fully
encoded in the microstate of the fundamental degrees of freedom associated with the effective
Cauchy surface. As discussed in [100] for a dS spacetime, this information is expected to
be encoded in quantum correlations between the matter and Unruh radiation degrees of
freedom.

5.6 Discussion

We have shown that a Cauchy surface Ξ in an eternally inflating multiverse has an entan-
glement island for a sufficiently large subregion R ⊂ Ξ. The island IΞ on Ξ is, in fact, an
inverted island surrounding the region R, implying that the semiclassical physics of the mul-
tiverse is fully described by the fundamental degrees of freedom associated with the finite
region IΞ, the complement of IΞ on Ξ. This provides a regularization of infinities which
caused the cosmological measure problem.

As in the case of a black hole, the emergence of an island is related to the existence of a
singularity in the global spacetime; in the multiverse, this role is played by the big crunch
singularities in the collapsing AdS bubbles. This picture is consistent with the interpretation
of singularities in [99, 100, 157]: their existence signals that a portion of the global spacetime
is intrinsically semiclassical, arising only as an effective description of more fundamental
degrees of freedom associated with other spacetime regions.

Our results strongly suggests the existence of a description of the multiverse on finite
spatial regions. Proposals for such descriptions include [182, 183, 184] and [166, 168, 51]
in which the fundamental degrees of freedom are associated with the spatial infinity of an
asymptotic Minkowski bubble and the (stretched) cosmological horizon, respectively. It
would be interesting to explore precise relations between these holographic descriptions and
the description based on the global spacetime presented in this chapter.
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Chapter 6

The Effect of Graybody Factors on
Entanglement Islands

6.1 Introduction

Entanglement entropy for 2d free fermions

Entanglement entropy is an important quantity not just for finite or discrete quantum sys-
tems [216] but also for continuum quantum field theories and holography [217, 218]. In the
continuum setting, however, entanglement entropies are notoriously hard to calculate and
only few exact results exist. Lucky exceptions are provided by 2d conformal field theories
[145] and the 2d free fermion [219, 220]. The 2d free fermion system is a particularly fruitful
playground since not only the entanglement entropy, but exact expressions for the modular
Hamilotonian of multicomponent regions can be computed [220, 221, 222]. In particular,
the recent papers [221, 222] considered entanglement entropy and modular Hamiltonians for
the 2d free fermion in the presence of a boundary or defect. In [222], the intervals that were
considered were symmetric about a semitransparent defect that separates 2d flat space into
two half-spaces.

We extend this repertoire of results by computing the entanglement entropy of 2d free
fermions in the presence of a semitransparent defect, but allowing for the region under
consideration to be asymmetric about the defect. Let (x0, x1) be flat coordinates on 2d
Minkowski space, and let the defect be located at x1 = 0. The t be the transmission
coefficient through the defect, and let r = 1− t be the reflection coefficient. Let us focus on
a single interval [−L−, L+] that straddles the defect (and so L− and L+ are both positive real
numbers). We are not able to compute the entanglement entropy of this interval in general,
but we obtain results in three limits:

• When the defect is almost completely transmitting, so that r is small

• When the defect is almost completely reflecting, so that t is small
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• When the interval is almost symmetric about the defect, so that γ = L−−L+

L−+L+
is small.

These results are presented in Sec. 6.3. In order to obtain these results, we have used the
method of [219] and used the results in [223, 224, 225] for free fermion determinants in the
presence of a boundary with non-translation invariant boundary conditions. This method
can be used to obtain the entropies of any region, and most of our formal setup carries
over to the more general case, but we focus on the particular application at hand to obtain
explicit results.

Intuitively, the entropy should increase monotonically with the transmission coefficient t
since the defect acts as a coupling between left and right, and hence the increasing coupling
increases the entanglement entropy. Our results (6.109), (6.126) and (6.120) are consistent
with this intuitive behavior.

Earlier results on von Neumann entropy in the presence of interfaces include [226, 227,
228]. See Sec. 3.2.1 of the review [145] for pointers to a few more results. See, for example,
[136] for a study of the boundary entropy in holography.

Entanglement islands and graybody factors of black holes

Recent progress in the black hole information paradox has involved the semiclassical compu-
tation of the von Neumann entropy of Hawking radiation, reproducing the Page curve [16,
17]. The main player is the existence of a nontrivial Quantum Extremal Surface (QES) [13]
at times larger than the Page time, whose generalized entropy tracks the shrinking area of the
black hole horizon. The entanglement wedge of the Hawking radiation after the Page time
contains a disconnected region deep in the gravitating spacetime, dubbed the entanglement
island in [88].

Reference [229] exhibited the presence of entanglement islands in much simpler contexts
that also play a role in avoiding an entropy paradox that exists in the eternal Schwarzschild
geometry, due to Mathur [230]. By now, the presence of entanglement islands is well es-
tablished in a wide variety of settings [231, 212, 98, 179, 181, 176, 97, 237, 238, 232, 233,
115, 117, 118, 113, 234, 235, 236, 21]. It has also been established that the nontrivial QES
arises because spacetime wormholes dominate the computations of Rényi entropies [89, 90].
See the recent reviews [151, 153] for more on the black hole information problem and an
overview of recent progress.

It is well-known that there are graybody factors in Hawking radiation [239]. It is hard to
include graybody factors in the computations of the von Neumann entropy of bulk matter
fields, and thus in the setups of [17, 229], which couple a flat space bath to AdS space, the
interface is taken to be fully transparent. This is rightly so, since graybody factors are not
expected to affect the qualitative features of the Page curve. Ref. [16] contained a qualitative
discussion of graybody factors. The effect of graybody factors is also implicitly included in
the higer-dimensional doubly-holographic setup of [231]. However, one would like to be more
computationally explicit about graybody factors.
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We take up this challenge in this chapter in what is perhaps the simplest example of an
entanglement island: the static zero temperature setup in Sec. 2 of [229]. It was shown that
when a zero-temperature AdS2 black hole is coupled to flat, non-gravitating half-space via
a fully transparent boundary, the QES of the boundary of AdS2 does not lie at the Poincaré
horizon, but lies at a finite value of the Poincaré radial coordinate. In other words, the
entanglement wedge of the flat space region contains an entanglement island: the region
between the Poincaré horizon and the QES.

In this work, instead of taking the AdS2-flat space interface to be fully transparent, we
take it to have a transmission coefficient t and a reflection coefficient r = 1− t. This is a toy
model for graybody effects in the atmosphere of a black hole. In the fully transparent case,
reference [229] found a nontrivial QES and an entanglement wedge. In the fully reflecting
case, the QES is at the Poincaré horizon: this is easy to see, since the AdS2 and flat space
regions are not coupled at all in this case, the entanglement wedge of the boundary of AdS2

better be the entire Poincaré patch of AdS2.
We take the bulk matter to be 2d free fermions, and use our results (6.109), (6.126) and

(6.120) for the entanglement entropy of free fermions in the presence of a defect to see how
the QES moves as we vary the reflection coefficient. What we find is that if we perturb away
from fully transmitting case, the QES moves towards the Poincaré horizon from its location
in [229]. If we perturb away from the fully reflecting case, the QES moves from the Poincaré
horizon towards the boundary of AdS2.

In brief, our results support the hypothesis that the location of QES behaves monotoni-
cally and smoothly interpolates between its locations at t = 1 (the fully transmitting case)
and t = 0 (the fully reflecting case).

As future work, it would be interesting to extend our results to the islands in the eternal
Schwarzschild geometry at finite temperature [229] and also the evaporating case [16, 17]. We
suspect that the location of the QES behaves monotonically with the strength of graybody
effects in all these cases.

Overview

In Secs. 6.2 and 6.3, we outline the computation of the entanglement entropy of free
fermions in the presence of a semitransparent interface and present the results. In Sec. 6.4,
we recap the zero temperature entanglement island of [229] and show that the entanglement
island behaves monotonically with the strength of graybody effects.

6.2 Entanglement Entropy of Free Fermions with a

Semitransparent Interface

The 2d massless Dirac fermion is a simple theory where one can explicitly compute not just
the entanglement entropies of a region consisting of multiple intervals, but also the associated
modular hamiltonians [219, 220, 222, 221].
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To study the entanglement problem in the presence of a defect, we take the fermions to
live on the line, with the defect placed at x1 = 0. We denote the region x1 > 0 by Ω+ and
the region x1 < 0 by Ω−. Fields living in the respective half-planes will carry a + or −
superscript. The defect is only partially transparent, with a transmission coefficient t. We
will be more precise in specifying the boundary conditions below.

We take the γ-matrices to be in the Weyl basis,

γ0Lor =

(
0 −i
−i 0

)
, γ1 =

(
0 i
−i 0

)
, γ∗ = γ0Lorγ

1 =

(
−1 0
0 1

)
. (6.1)

Here γ∗ denotes the chirality matrix and it is diagonal in the Weyl basis. The Dirac operator
is

iγµLor∂µ =

(
0 ∂0 − ∂1

∂0 + ∂1 0

)
. (6.2)

The two-component fermions are taken to have components

ψ =

(
ψR
ψL

)
. (6.3)

The equation of motion says that ψL is only a function of x0 + x1, which represents a left-
moving wave, hence the subscript L for ψL; a similar logic applies for ψR.

From now on, we work in Euclidean signature using the convention x2 = ix0. The ordering
of the Euclidean coordinates will be (x1, x2). For future use, we also note that

γ2 = iγ0Lor =

(
0 1
1 0

)
. (6.4)

The boundary condition imposed at the defect is(
ψ+
R(0, x2)

ψ−
L (0, x2)

)
= S

(
ψ+
L (0, x2)

ψ−
R(0, x2)

)
, (6.5)

where S is the unitary scattering matrix

S =

(
c1 c2
c3 c4

)
=

(
c1 −eiϕc∗3
c3 eiϕc∗1

)
. (6.6)

These boundary conditions are energy conserving, and preserve one copy of Virasoro algebra
after folding the plane along the defect. As can be seen in figure 6.1, the modes ψ+

R and ψ−
L

are outgoing from the defect, whereas ψ+
L and ψ−

R are incoming. The quantity t = |c2|2 = |c3|2
is interpreted as a transmission coefficient, while r = 1− t = |c1|2 = |c4|2 is interpreted as a
reflection coefficient. The purely transmitting and the purely reflecting S matrices are

St =

(
0 1
1 0

)
, Sr =

(
1 0
0 1

)
. (6.7)
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Figure 6.1: Setup for the fermion problem with a semitransparent interface.

It will be helpful to rewrite the boundary condition (6.5) as

Bψ(0, x2) = 0, (6.8)

where

B =


1 −c1 −c2 0

−c∗1 1 0 −c∗3
−c∗2 0 1 −c∗4
0 −c3 −c4 1

 , ψ(0, x2) =


ψ+
R(0, x2)

ψ+
L (0, x2)

ψ−
R(0, x2)

ψ−
L (0, x2)

 . (6.9)

Note that B is a Hermitian matrix with rank two.
We consider the fermions to be in their ground state and focus on the reduced density

matrix ρA of a given subset A ⊂ R. We specify A as a collection of disjoint intervals [ui, vi]
with i ∈ {1, . . . , p}. We will mostly be interested in the case of a single interval [−L−, L+]
that straddles the defect (both L− and L+ are positive real numbers). See figure 6.1 for the
setup. We intend to compute the entanglement entropy S(A) given by

S(A) = −Tr(ρA log ρA) = lim
n→1

Sn(A), (6.10)

where Sn(A) is the Rényi entropy,

Sn(A) =
1

1− n
log Tr (ρnA) . (6.11)

Decoupling the replicas with gauge fields

We use the replica trick to compute Tr (ρnA). Our treatment closely follows [219]. The trace
of ρnA is given by the functional integral Z[n] on the replica manifold,

Tr ρnA =
Z[n]

Z[1]n
, (6.12)
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where Z[1] serves as a normalization factor that sets Tr ρA = 1.
When evaluating this trace for a fermionic field, we need to introduce a minus sign

in the path integral boundary condition connecting the fields between the first and last
replica copies [240]. Moreover, there is an additional factor of −1 for every copy because of
non-trivial Lorentz rotation around the points ui and vi which is present in the Euclidean
Hamiltonian when expressing Tr ρnA as a path integral [241]. Thus, we get an overall factor
of (−1)n+1 when connecting the fields along the first and last cuts.

Instead of dealing with the fields on the non-trivial replica manifold, we can work on a
single plane by using the n-component field

ψ⃗ =

ψ1(x)
...

ψn(x)

 , (6.13)

where ψj is the fermion field on the jth sheet of the replica manifold. The vector ψ⃗ is not

single valued: If we go in a circuit around ui, the vector ψ⃗ gets multiplied by the matrix

T =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1

(−1)n+1 0 0 · · · 0 0

 , (6.14)

whereas if we go in a circuit around vi, it gets multiplied by T−1.
We can diagonalize T by performing a unitary transformation. Note that the eigenvalues

of T are e2πik/n with k ∈ {−n−1
2
,−n−1

2
+ 1, . . . , n−1

2
}. After this unitary transformation we

end up with the decoupled fields ψk living on a single plane. The fields ψk are multivalued
and get multiplied by e2πik/n when encircling ui, and by e−2πik/n when encircling vi. Note
that this unitary transformation acts identically on the components of ψ⃗, so the boundary
condition for ψk is still

Bψk(0, x2) = 0. (6.15)

We can get rid of the multivaluedness of ψk by introducing an external gauge field Ak,µ(x).
The gauge field is vortex-like near the end-points of the intervals:∮

ui

Ak = −2πk

n
,

∮
vi

Ak =
2πk

n
, (6.16)

where the integrals are over closed contours encircling ui or vi. These holonomies are captured
by the field strength

Fk,12(x) = −2πk

n

p∑
i=1

(
δ(2)(x− ui)− δ(2)(x− vi)

)
. (6.17)
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where ui = (ui, 0) and vi = (vi, 0). Requiring that Aµk vanishes at infinity, we get the explicit
formula

Ak,µ(x) =
k

n
ϵµν

p∑
i=1

(
(x− ui)

ν

|x− ui|2
− (x− vi)

ν

|x− vi|2

)
, (6.18)

where we use the standard ϵ12 = −ϵ21 = 1.
In presence of the gauge field, the fermion action is

Ik[ψk,ψk;Ak] =

∫
Ω+

d2xψ
+

k γ
µ (∂µ + iAk,µ)ψ

+
k +

∫
Ω−

d2xψ
−
k γ

µ (∂µ + iAk,µ)ψ
−
k . (6.19)

The functional integral factorizes into

Z[n] =

(n−1)/2∏
k=−(n−1)/2

Zk, (6.20)

where Zk is the functional integral over {ψk,ψk} with the background gauge field Ak given
by (6.18) and with boundary conditions (6.15); the matrix B is given in (6.9).

Computing the functional integral Zk

In this subsection, we outline the calculation of the functional integral

Zk =

∫
Dψ

±
kDψ

±
k exp

(
−
∫
Ω+

d2xψ
+

k

(
/∂ + i /Ak

)
ψ+
k −

∫
Ω−

d2xψ
−
k

(
/∂ + i /Ak

)
ψ−
k

)
, (6.21)

with the background gauge field Ak given by (6.18) and with boundary conditions (6.15);
the matrix B is given in (6.9). An essential fact is that the chiral anomaly in two dimensions
completely determines the dependence of the functional integral on the gauge field [242].1

A general gauge field in two dimensions can be expressed as a sum of a gradient and a
curl

Ak,µ = ∂µηk − ϵµν ∂νΦk. (6.22)

For the gauge field profile in (6.18), we can choose

ηk(x) = 0, Φk(x) = −k
n

p∑
i=1

log
|x− ui|
|x− vi|

. (6.23)

Note that Φk ∼ 1
|x| as |x| → ∞.2 Given a background gauge field of the form (6.22), we

can decouple the fermions ψ+
k from the background gauge field Ak by a change of variables

which is a combination of gauge and chiral transformations

ψ+
k = exp (iηk + γ∗Φk)χ

+
k . (6.24)

1An equivalent method is to bosonize the fermions.
2This decomposition of the gauge field as the sum of a gradient and a curl is not unique. In the purely

reflecting case, we use a different decomposition which allows us to easily calculate the results in the purely
reflecting case.
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Essentially, we are changing variables from ψ+
k to χ+

k in the functional integral. The change
in the fermionic measure under this transformation is nontrivial

Dψ
+

kDψ
+
k = J+

k Dχ
+
kDχ

+
k , (6.25)

where J+
k is the Jacobian of the transformation. For fermions living on the full line, the

result for this Jacobian is well-known [242]. In case of manifolds with boundaries, we need
to be careful about possible boundary contributions.

To separate the bulk and boundary contributions, we divide the positive real line into two
intervals (0, ϵ+) and (ϵ+,∞). For the interval (ϵ+,∞), we can obtain the bulk contribution
using the result for closed manifolds [242],

(
J+
k

)
bulk

= exp

(
− 1

2π

∫
Ω+(ϵ+)

d2x ∂µΦk(x)∂
µΦk(x)

)
, (6.26)

where Ω+(ϵ+) = {(x1, x2) : x1 > ϵ+}. The boundary contribution is [225]

(
J+
k

)
bdry

= exp

(
− 1

4ϵ+

∫
R
dx2Φk(0, x2)

)
. (6.27)

A similar treatment can be done for the fermions on Ω− to get the full Jacobian

Jk = exp

(
− 1

2π

∫
Ω+(ϵ+)∪Ω−(ϵ−)

d2x ∂µΦk(x)∂
µΦk(x)−

(
1

4ϵ+
+

1

4ϵ−

)∫
R
dx2Φk(0, x2)

)
,

(6.28)
with ϵ− < 0. Once we do the sum over k, the boundary terms will vanish (since Φk is linear
in k) and henceforth they will be omitted.3 Taking the limit ϵ+, ϵ− → 0, we get

Jk = exp

(
− 1

2π

∫
Ω

d2x ∂µΦk ∂
µΦk

)
. (6.29)

This is the result for the Jacobian on the entire plane in [242].
The integral in (6.29) is easily evaluated by substituting Φk from (6.23), integrating by

parts once and using the fact that ∇2Φ is a sum of delta functions. The result is

Jk = exp

(
−2k2

n2
Ξ({ui}, {vj})

)
, (6.30)

where [219]

Ξ({ui}, {vj}) :=
∑
i,j

log |ui − vj| −
∑
i<j

log |ui − uj| −
∑
i<j

log |vi − vj| − p log ε. (6.31)

3We can also choose ϵ+ = −ϵ−, and then this term automatically vanishes.
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Here, we have introduced the short-distance cutoff ε to split the coincidence points |ui−ui|,
|vi − vi| → ε, and the sum over i, j is over all the intervals comprising the region A.

So far, we changed variables from ψk to χk (6.24) in the functional integral and obtained
the Jacobian for this transformation. Since the Jacobian (6.30) is independent of χk, the
functional integral can be expressed as

Zk = JkZ̃k, (6.32)

where Z̃k is the path integral over χk, now without any gauge fields

Z̃k =

∫
Dχ±

kDχ
±
k exp

(
−
∫
Ω+

d2xχ+
k
/∂χ+

k −
∫
Ω−

d2xχ−
k
/∂χ−

k

)
. (6.33)

This integral gives a nontrivial contribution to the partition function (that depends on the
interval endpoints ui and vi) because of the boundary conditions obeyed by χk. Using the
definition of χk in (6.24) and the boundary condition (6.15) for ψk, we see that the boundary
condition for χk is

B
(
eγ∗Φk(0,x2) 0

0 eγ∗Φk(0,x2)

)
χk(0, x2) = 0, (6.34)

where we have combined the two-component objects χ+
k and χ−

k into a four component object
χk along the lines of the second relation in (6.9). We can rewrite this boundary condition as

B


eHk(x2) 0 0 0

0 1 0 0
0 0 eHk(x2) 0
0 0 0 1

χk(0, x2) = 0, with Hk(x2) := −2Φk(0, x2). (6.35)

6.3 Computing the Dirac Determinant on the

Half-plane

In this section, we will compute the functional integral

Z̃ =

∫
Dχ±Dχ± exp

(
−
∫
Ω+

d2xχ+/∂χ+ −
∫
Ω−

d2xχ−/∂χ−
)
. (6.36)

where the fermionic fields satisfy the boundary conditions

B eH(x2) χ(0, x2) = 0, (6.37)

with the matrices

B =


1 −c1 −c2 0

−c∗1 1 0 −c∗3
−c∗2 0 1 −c∗4
0 −c3 −c4 1

 , H(x2) =


H(x2) 0 0 0

0 0 0 0
0 0 H(x2) 0
0 0 0 0

 , (6.38)
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and the vector χ will be specified shortly. The matrix B has rank two.
The general computation can be done by using a theorem due to Forman [223], which

was also used in [224, 225], in order to relate the fermion determinant with the position-
dependent boundary condition (6.35) to the fermion determinant with the much simpler
boundary condition Bχk(0, x2) = 0. In the process, one still needs to compute the trace
of an infinite matrix, and we have been unable to solve this problem in general. We have
however been able to obtain results in the three limits described in the introduction.

Purely Transmitting Case

In the purely transmitting case corresponding to St in (6.7), the boundary condition in (6.35)
is equivalent to Bχk(0, x2) = 0, so Z̃k = Z[1]. Thus, the entropies come purely from the
Jacobians Jk given in (6.30) [219]. The result for the von Neumann entropy is

S(A) =
1

3
Ξ({ui}, {vj}), (6.39)

where Ξ was defined in (6.31). This is just the result of [219]. For a single interval [−L−, L+],
the answer has the familiar logarithmic expression dependence,

S([−L−, L+]) =
1

3
log

L+ + L−

ε
. (6.40)

Purely Reflecting Case

In the purely reflecting case corresponding to Sr in (6.7), we can compute the functional
integral by using a different decomposition for the gauge field in terms of ηk and Φk.

Instead of performing the gauge and chiral transformations given by (6.23), we now
perform different transformations on the two half-planes. For later convenience, we take the
Φ-functions for the two half-planes to satisfy Φ±

k (0, y2) = 0. It is easy to obtain such a Φk

using the method of images

Φ+
k (x) = −k

n

p+∑
i=1

log

(
|x− u+

i ||x− vi
+|

|x− v+
i ||x− ui

+|

)
, (6.41)

with a similar expression for Φ−
k (x). Here, A+ =

⋃p+

i=1[u
+
i , v

+
i ] refers to the subset of A on

the positive real axis and A− =
⋃p−

i=1[u
−
i , v

−
i ] refers to the subset of A on the negative real

axis. The η-functions can be obtained using (6.18) and (6.22),

η+k (x) = −k
n

[
p+∑
i=1

(
arctan

x2
x1 + u+i

− arctan
x2

x1 + v+i

)

+

p−∑
i=1

(
arctan

x2
x1 − u−i

− arctan
x2

x1 − v−i

)]
, (6.42)
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with a similar expression for η−k (x).
The Jacobian for the transformation (6.24) with this choice of Φk and ηk is

log J+
k = −2k2

n2
ξ
(
{u+i }, {v+j }

)
, log J−

k = −2k2

n2
ξ
(
{u−i }, {v−j }

)
, (6.43)

where we have defined

ξ ({ui}, {vj}) = Ξ ({ui}, {vj})−
1

2

∑
i,j

log

(
|ui + vj||vi + uj|
|ui + uj||vi + vj|

)
. (6.44)

The quantity Ξ was defined in (6.31) [219]. The functional integral thus becomes Zk =

J+
k J

−
k
˜̃Zk, where

˜̃Zk =

∫
Dζ

+

kDζ
+
k Dζ

−
kDζ

−
k exp

(
−
∫
Ω+

d2x ζ
+

k
/∂ζ+k −

∫
Ω−

d2x ζ
−
k
/∂ζ−k

)
. (6.45)

Since Φ±
k (0, x2) = 0, the boundary condition for the transformed fermionic field ζk =

exp(−iηk − γ∗Φk)ψk is

B


eiH̃k(x2) 0 0 0

0 eiH̃k(x2) 0 0
0 0 1 0
0 0 0 1

 ζk(0, x2) = 0, with H̃k(x2) := η+k (0, x2)− η−k (0, x2). (6.46)

In the purely reflecting case corresponding to Sr in (6.7), the boundary condition in

(6.46) is equivalent to Bζk(0, x2) = 0, and so so ˜̃Zk = Z[1]. Thus, the entropy is

S(A) =
1

3
ξ
(
{u+i }, {v+j }

)
+

1

3
ξ
(
{u−i }, {v−j }

)
. (6.47)

This expression agrees with the results in [221] and, as expected, breaks up into a sum of
two terms that just depend on A+ and A− respectively. For a single interval on one side
of the boundary, one can check that the the reflecting answer reduces to the transmitting
answer if the interval is far from the boundary.

For the interval [−L−, L+], which is our case of interest, the entropy is

S([−L−, L+]) =
1

6
log

2L−

ε
+

1

6
log

2L+

ε
. (6.48)

Notice that the entropy in the fully reflecting case is a sum of entropies on the left and right
side of the defect, since the two half-planes are completely decoupled.

We now turn to our results for the entropy with nonzero reflection and transmission
coefficients.
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General Computation

Let us begin by folding the left half plane, Ω−, to the right half-plane, Ω+. This fold-
ing changes the coordinate x = (x1, x2) ∈ Ω− to x := (−x1, x2) ∈ Ω+, so we have the
transformation for derivatives (∂1, ∂2) → (∂1, ∂2) = (−∂1, ∂2) and for the fermionic fields

χ−
R(x) → χ−

L(x), χ
−
L(x) → χ−

R(x). In this folded geometry, the Dirac operator is i/∂ ⊕ i/∂. In
contrast to (6.9), after the folding, the fermion field has components in the following order:

χ =


χ+
R

χ+
L

χ−
L

χ−
R

 (6.49)

with all fields having a position argument belonging to the right half plane Ω+.
We also remind the reader that for the application needed in the main text, Hk(x2) =

−2Φk(0, x2) and Φk(x) is given in (6.23). The main tools needed to compute the partition
function are described in references [223, 224, 225].

The fermion path integral (6.36) can be written as the functional determinant det(i/∂⊕i/∂),
subject to the boundary condition (6.37). To compute this determinant we will employ a
theorem by Forman [223]. The idea is to consider a one-parameter family of boundary
conditions labelled by τ such that τ = 0 corresponds to the boundary condition Bχ(0, x2) =
0, and τ = 1 corresponds to the boundary condition (6.37) that we are interested in. This
gives rise to a family of functional determinants

Z̃(τ) = det(i/∂ ⊕ i/∂)BU(τ), U(τ) := eτ H(x2). (6.50)

where the subscript labels the modified boundary condition BU(τ)χ = BeτH(x2)χ = 0. For-
man’s theorem (theorem 2 of [223], see also [224]) states that4

d

dµ
log

Z̃(τ + µ)

Z̃(µ)
=

d

dµ
log detΦµ(τ). (6.51)

We will explain the definition of the operator Φ below.

The Dirac operator i/∂ ⊕ i/∂ is given in the Weyl basis ((6.1) and (6.4)) by

i/∂ ⊕ i/∂ =


0 −∂1 + i∂2 0 0

∂1 + i∂2 0 0 0
0 0 0 ∂1 + i∂2
0 0 −∂1 + i∂2 0

 . (6.52)

We will denote the elements of the kernel of this operator by χ and we take them to satisfy
a fake boundary condition on the far-right side of the half-plane

Bχ(L, x2) = 0, (6.53)

4Please note that the operator Φµ(τ) has nothing to do with the function Φk(x).
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with L ≫ 1. This boundary condition is arbitrary and is chosen for convenience, following
[224]. Notice that we maintain translation symmetry along the line x1 = L in this fake
problem (in contrast to the actual boundary condition (6.37) where the function H(x2)
explicitly depends on x2). We further compactify x2 on a large circle of length T , and
impose antiperiodic boundary conditions χ(x1,−T/2) = −χ(x1, T/2). The elements of the
kernel of (6.52) satisfying the boundary condition (6.53) and having definite Matsubara
frequencies wn = (2n+ 1)π/T with n ∈ Z can be easily found

χAn(x1, x2) =
e−iwnx2√

2 cosh(2wnL)


e−wn(x1−L)

c∗1e
wn(x1−L)

c∗2e
wn(x1−L)

0

 , χBn(x1, x2) =
e−iwnx2√

2 cosh(2wnL)


0

c∗3e
wn(x1−L)

c∗4e
wn(x1−L)

e−wn(x1−L)

 .

(6.54)

Note that {χAn,χBn} satisfy the orthonormality condition 1
T

∫ T/2
−T/2 dx2 χ

†
I(0, x2)χJ(0, x2) =

δIJ , with I ∈ {A,B}×Z. The vectors in (6.54) when evaluated on the true boundary x1 = 0
will not satisfy the boundary condition (6.37). Now we ask the question: By how much
do χI(0, x2) fail to satisfy the true boundary condition (6.37)? This will be proportional to
BU(τ)χI(0, x2). We now pick a fixed basis of functions on the line x1 = 0 that also satisfy
Bχ̃ = 2χ̃.5 Explicitly, these are

χ̃An(x2) =
e−iwnx2
√
2


1

−c∗1
−c∗2
0

 , χ̃Bn(x2) =
e−iwnx2
√
2


0

−c∗3
−c∗4
1

 . (6.55)

With the two sets of vectors defined in (6.54) and (6.55), the matrix h(τ) is defined to have
matrix elements

hIJ(τ) :=
1

T

T/2∫
−T/2

dx2 χ̃
†
I(x2)B e

τH(x2) χJ(0, x2), (6.56)

with I, J ∈ {A,B}×Z. The intuition is that the matrix h measures the failure of χJ(x1, x2)
to satisfy the correct boundary condition (6.37) for our problem. The quantity Φµ(τ) in
(6.51) is defined via [223, 224, 225]

h(µ+ τ) = Φµ(τ)h(µ) . (6.57)

Our goal is to calculate Z̃ at τ = 1. Let us take a τ derivative of Forman’s result, (6.51),

d

dµ

d

dτ
log

Z̃(µ+ τ)

Z̃(µ)
=

d

dµ

d

dτ
Tr log

(
h(µ+ τ)h−1(µ)

)
. (6.58)

5Since the vector BU(τ)χI(0, x2) is of the form B(·), and B has eigenvalues 0 and 2, it lies in the subspace
that has eigenvalue 2 under B. Thus the inner product of BU(τ)χI(0, x2) and χ̃J measures the amount by
which the boundary condition is violated.
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On the LHS the τ derivative kills log Z̃(µ), whereas the RHS can be simplified by using
d
dτ

Tr logA(τ) = Tr(Ȧ(τ)A−1(τ)) and cyclicity of the trace. So (6.58) simplifies to

d2

dτdµ
Z̃(µ+ τ) =

d

dµ
Tr

(
dh(µ+ τ)

dτ
h−1(µ+ τ)

)
. (6.59)

Notice that the µ derivatives can now be traded for τ derivatives and, after setting µ = 0,
we end up with the differential equation

d2

dτ 2
log Z̃(τ) =

d

dτ
Tr

(
dh(τ)

dτ
h(τ)−1

)
. (6.60)

To solve for Z̃(τ), we integrate this twice and hence we need the value of Z̃ ′(τ = 0). We
claim that Z̃(τ) is an even function of τ so Z̃ ′(τ = 0) = 0. This is because the boundary
condition for Z̃(−τ) is equivalent to

B


1 0 0 0
0 eτH(x2) 0 0
0 0 1 0
0 0 0 eτH(x2)

χ(0, x2) = 0, (6.61)

upto an overall phase factor. This can be converted to the boundary condition for Z̃(τ)
by interchanging the fermionic fields χ+ ↔ χ−. The action remains unchanged under this
interchange, so Z̃(−τ) = Z̃(τ). Hence we find,

log

(
Z̃(1)

Z̃(0)

)
=

1∫
0

dτ Tr

(
dh(τ)

dτ
h(τ)−1

)
. (6.62)

Note that Z̃(τ = 0) = Z[n = 1], with Z[n] being the original path integral over the ψ
variables in the main text. This is because when n = 1, the gauge field is zero, and so
Z[n = 1] and Z̃(τ = 0) are both free fermion path integrals with the same boundary
conditions.

So now our goal is to compute Tr(dh
dτ
h−1), and then do the integral on the right hand

side of (6.62). A major difficulty is that h is an infinite matrix and its determinant or traces
must be regularised. Our strategy is to find explicit expressions for the matrix elements of
h, take the large L limit and then construct the inverse and compute Tr(dh

dτ
h−1). The final

result is given in (6.98).
Computing the matrix elements of h is straightforward. In the large L limit, using (6.56),
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we get for instance,

hAm,An(τ) =

√
2

T

T/2∫
−T/2

dx2 e
i(wm−wn)x2

{
eα(x2) if wn > 0

−|c1|2 − |c3|2eα(x2) if wn < 0
, (6.63)

hAm,Bn(τ) =

√
2

T

∫ T/2

−T/2
dx2 e

i(wm−wn)x2

{
0 wn > 0

c1c
∗
3 e

α(x2) − c1c
∗
3 wn < 0

, (6.64)

hBm,An(τ) =

√
2

T

∫ T/2

−T/2
dx2 e

i(wm−wn)x2

{
0 wn > 0

c∗1c3 e
α(x2) − c∗1c3 wn < 0

, (6.65)

h2Mm,2Mn(τ) =

√
2

T

∫ T/2

−T/2
dx2 e

i(wm−wn)x2

{
1 wn > 0

−|c1|2eα(x2) − |c3|2 wn < 0
. (6.66)

where, for brevity and following [225], we defined

α(x2) := τH(x2). (6.67)

Other similar calculations give us the matrix

h(τ) =
√
2


[eα]++ −|c3|2[eα]+− 0 c1c

∗
3[e

α]+−
[eα]−+ −|c3|2[eα]−− − |c1|2 1 0 c1c

∗
3[e

α]−− − c1c
∗
3 1

0 c∗1c3[e
α]+− 1 −|c1|2[eα]+−

0 c∗1c3[e
α]−− − c∗1c3 1 0 −|c1|2[eα]−− − |c3|2 1

 , (6.68)

where the row and column indices are valued in {A,B}×{+,−} = {A+, A−, B+, B−} and
each entry in (6.68) is itself an infinite matrix with rows and columns indexed by the positive
integers. Essentially, because the positive and negative frequencies behave differently, as
in (6.63), we need to treat them separately. Also, following [225], we have introduced a
square-bracket notation for the matrix elements in the Matsubara basis

[f ]m,n =
1

T

T/2∫
−T/2

dx2 e
i(wm−wn)x2f(x2). (6.69)

It is important to note that this is a Toeplitz matrix since [f ]m,n = [f ]m−n.
The derivative dh/dτ and the inverse h−1 can be obtained using the identities given in

appendix B of [225]. The derivative can be obtained using

d

dτ
[eα]++ =

1

τ
([α]++[e

α]++ + [α]+−[e
α]−+) , (6.70)

d

dτ
[eα]+− =

1

τ
([α]++[e

α]+− + [α]+−[e
α]−−) , (6.71)

d

dτ
[eα]−+ =

1

τ
([α]−+[e

α]++ + [α]−−[e
α]−+) , (6.72)

d

dτ
[eα]−− =

1

τ
([α]−+[e

α]+− + [α]−−[e
α]−−) . (6.73)
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After a brute force explicit calculation, we find that the h−1 is composed of the block
matrices

√
2 (h−1)A+,A+ = ([eα]++)

−1[M ]++, (6.74)
√
2 (h−1)A+,A− = −|c3|2([eα]++)

−1[M ]++[e
α]+−([e

α]−−)
−1, (6.75)

√
2 (h−1)A+,B+ = 0, (6.76)

√
2 (h−1)A+,B− = c1c

∗
3([e

α]++)
−1[M ]++[e

α]+−([e
α]−−)

−1, (6.77)
√
2 (h−1)A−,A+ =

(
|c1|21 + |c3|2([eα]−−)

−1
)
[N ]−−[e

α]−+([e
α]++)

−1, (6.78)
√
2 (h−1)A−,A− = −

(
|c1|21 + |c3|2([eα]−−)

−1
)
[N ]−−, (6.79)

√
2 (h−1)A−,B+ = 0, (6.80)

√
2 (h−1)A−,B− =

c1
c3

(
|c1|21 + |c3|2([eα]−−)

−1
)
[N ]−− − c1

c3
1, (6.81)

√
2 (h−1)B+,A+ = −c∗1c3[eα]+−([e

α]−−)
−1[N ]−−[e

α]−+([e
α]++)

−1, (6.82)
√
2 (h−1)B+,A− = c∗1c3[e

α]+−([e
α]−−)

−1[N ]−−, (6.83)
√
2 (h−1)B+,B+ = 1, (6.84)

√
2 (h−1)B+,B− = −|c1|2[eα]+−([e

α]−−)
−1[N ]−−, (6.85)

√
2 (h−1)B−,A+ = c∗1c3

(
1 − ([eα]−−)

−1
)
[N ]−−[e

α]−+([e
α]++)

−1, (6.86)
√
2 (h−1)B−,A− = −c∗1c3

(
1 − ([eα]−−)

−1
)
[N ]−−, (6.87)

√
2 (h−1)B−,B+ = 0, (6.88)

√
2 (h−1)B−,B− = −1 + |c1|2

(
1 − ([eα]−−)

−1
)
[N ]−−, (6.89)

where we have defined

[M ]++ :=
(
1 − |c3|2[eα]+−([e

α]−−)
−1[eα]−+([e

α]++)
−1
)−1

, (6.90)

[N ]−− :=
(
1 − |c3|2[eα]−+([e

α]++)
−1[eα]+−([e

α]−−)
−1
)−1

. (6.91)

Using dh
dτ

and h−1 so computed, we get

τ Tr

(
dh

dτ
h−1

)
= |c1|2Tr

(
[α]−+[e

α]+−([e
α]−−)

−1[N ]−−
)

+ |c1|2Tr
(
[α]+−[e

α]−+([e
α]++)

−1[M ]++

)
. (6.92)

We can simplify this further by using the following identities for quantities that appear in
the definitions (6.90) and (6.91)

[eα]+− ([eα]−−)
−1 [eα]−+ ([eα]++)

−1 = 1 −
(
[e−α]++

)−1
([eα]++)

−1 , (6.93)

[eα]−+ ([eα]++)
−1 [eα]+− ([eα]−−)

−1 = 1 −
(
[e−α]−−

)−1
([eα]−−)

−1 , (6.94)
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and perform a binomial series expansion, to get6

τ Tr

(
dh

dτ
h−1

)
=

∞∑
p=0

(−1)p+1|c1/c3|2p+2Tr
(
[α]−+[e

α]++

(
[e−α]++[e

α]++

)p
[e−α]+−

)
+

∞∑
p=0

(−1)p+1|c1/c3|2p+2Tr
(
[α]+−[e

α]−−
(
[e−α]−−[e

α]−−
)p

[e−α]−+

) (6.95)

= τ
d

dτ
Tr log

(
1 + |c1/c3|2[eα]−−[e

−α]−−
)

(6.96)

= τ
d

dτ
Tr log

(
1 − |c1|2[eα]−+[e

−α]+−
)
. (6.97)

Recalling that r = |c1|2 is the reflection coefficient and α(x2) = τH(x2), we get

Tr

(
dh

dτ
h−1

)
= − d

dτ

∞∑
m=1

rm

m
Tr
((
[eτH(x2)]−+[e

−τH(x2)]+−
)m)

. (6.98)

Substituting (6.98) into (6.62) and doing the τ integral, we get the result for the functional
determinant

log

(
Z̃(1)

Z̃(0)

)
= −

∞∑
m=1

rm

m
Tr
((
[eH ]−+[e

−H ]+−
)m)

. (6.99)

Notice that the lower limit of the integral in (6.62) at τ = 0 does not contribute on the right
hand side, because the indices of the matrices [eα]−+ and [e−α]+− are purely off-diagonal and
so [1]+− and [1]−+ vanish.

We were unable to evaluate the expression on the right hand side of (6.99) in general.
Thus, we will focus on computing the functional determinant Z̃k for the case needed in
Sec. 6.4, which is a single interval [−L−, L+] across the defect.

Perturbing away from the fully transmitting case

The goal of this subsection is to obtain the first order term in r in the von Neumann entropy
of the interval [−L−, L+], perturbing away from the fully transmitting case r = 0.

The coefficient of the linear in r term in (6.99) is

Tr
(
[eH ]−+[e

−H ]+−
)
=

∑
n≥0,l<0

∫
dy1dy2
T 2

e
2πi
T

((y1−y2)(l−n))eH(y1)−H(y2) (6.100)

= −
∫

R2

dy1dy2
4π2

eH(y1)−H(y2)

(y1 − y2)2
, (6.101)

6One needs to use identities of the form [eα]−−[e
−α]−− + [eα]−+[e

−α]+− = 1, see appendix B of [225]
for more on such relations.
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where we have taken the T → ∞ limit and the contours of integration for y1 and y2 are such
that Im [y]1 < 0 and Im [y]2 > 0, so the geometric series in (6.100) converges. If we now
expand in powers of H, we see that only terms at second order or higher will contribute,
because for the constant and first order term, there is always one integral that vanishes after
we close the contour in the respective half planes (the y1 integral is closed in the lower half
plane and the y2 integral in the upper half plane).

Let us denote the O(r) term in (6.99) by f
(1)
k (with k being the replica index), then

f
(1)
k = r

∫
R2

dy1dy2
4π2(y1 − y2)2

(
eHk(y1)−Hk(y2) − 1−Hk(y1) +Hk(y2)

)
. (6.102)

To compute the entropy, we plug in the expression for Hk from (6.35) and (6.23), which we
write as Hk = −2Φk =

k
n
log ϕ, with

ϕ(y) =
y2 + L2

−

y2 + L2
+

. (6.103)

We now sum over k and take the n = 1 limit,

S(1) = lim
n→1

1

1− n

(n−1)/2∑
k=−(n−1)/2

f
(1)
k = r

∫
R2

dy1dy2
4π2(y1 − y2)2

(
1− 1

2

ϕ(y1) + ϕ(y2)

ϕ(y1)− ϕ(y2)
log

(
ϕ(y1)

ϕ(y2)

))
.

(6.104)
Because of the logarithm in (6.104), we get branch cuts in the complex y1 and y2 planes.
Let us assume, without loss of generality, that L− > L+. Since y1 integration contour
has a negative imaginary part, we deform the contour in the lower half plane and pick up a
discontinuity from the branch cut that runs from y1 = −iL− to y2 = −iL+. The discontinuity
of the integrand of (6.104) is

− iπ

L2
− − L2

+

2y21y
2
2 + 2L2

+L
2
− + (L2

+ + L2
−)(y

2
1 + y22)

4π2(y1 − y2)2(y21 − y22)
, (6.105)

which when integrated over y1 from y1 = −iL− to y1 = −iL+ gives

− 1

16π(L2
− − L2

+)y
3
2

(
L2
−L

2
+π

2 − 2L−L+(L− − L+)y2 + (L2
− + L2

+)πy
2
2 − 2(L− − L+)y

3
2

+ πy42 + i(L2
− + y22)(L

2
+ + y22) log

(
(y2 + iL+)(iL− − y2)

(y2 − iL+)(iL− + y2)

))
. (6.106)

Now, we need to do the y2 integral, whose contour has a small positive imaginary part and
can be deformed in the upper half-plane. The discontinuity comes from the logarithm in
(6.106) and equals

−1

8

(L2
− + y22)(L

2
+ + y22)

(L2
− − L2

+)y
3
2

. (6.107)
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Integrating this over y2 from y2 = iL+ to y2 = iL− gives

S(1) =
r

8

(
1 +

L2
− + L2

+

L2
− − L2

+

log
L+

L−

)
. (6.108)

Thus, to O(r), the entropy is given by

S([−L−, L+]) =
1

3
log

L+ + L−

ε
+
r

8

(
1 +

L2
− + L2

+

L2
− − L2

+

log
L+

L−

)
+O(r2) . (6.109)

Higher order terms in the reflection coefficient can be computed in a similar way, but involve
more integrals and a more complicated branch cut structure.

Perturbing in the asymmetry

In this subsection, we will perform a different approximation. While still working with a
single interval [−L−, L+] that straddles the defect, we will compute the functional integral
Z̃k perturbatively in the asymmetry parameter

γ =
L− − L+

L− + L+

=
L− − L+

2L
, (6.110)

where 2L = L− + L+ is the length of the interval.
We start with the following series expansion for Hk,

Hk(y) = −2Φk(0, y) =
2k

n

∑
j∈odd

(iγL)j

j

(
1

(y + iL)j
− 1

(y − iL)j

)
. (6.111)

The advantage of this expansion is that at any finite order in γ, we have poles in the complex
plane instead of branch cuts.

The m = 1 term of (6.99) is given by

Tr
(
[eHk ]−+[e

−Hk ]+−
)
=

1

T 2

T/2∫
−T/2

dy1dy2
eHk(y1)−Hk(y2)

sin2(π(y2 − y1)/T )
, (6.112)

where Im [y]1 < 0 and Im [y]2 > 0 as mentioned earlier.
To evaluate these integrals, we will use the residue theorem. We close the contour for

y1 in the lower half-plane and for y2 in the upper half-plane. This ensures that the only
residues come from the pole at y1 = −iL for the y1 integral and the pole at y2 = iL for the y2
integral. We also get some contribution from integrals that were used to close the contours
in the complex plane but these contributions vanish in the T → ∞ limit.

In the limit T → ∞, we have the leading order result in γ

Tr
(
[eHk ]−+[e

−Hk ]+−
)
=
k2

n2
γ2τ 2 +O(γ4). (6.113)
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It is worth mentioning that the final answer must be even in γ. This is indeed the case for
the above calculation.

In general, we want to compute Tr
((
[eHk ]−+[e

−Hk ]+−
)p)

. In the T → ∞ limit, this is
given by a contour integral

Tr
((
[eHk ]−+[e

−Hk ]+−
)p)

=
(−1)p

π2p

∞∫
−∞

2p∏
i=1

dyi
eHk(y1)−Hk(y2)+···+Hk(y2p−1)−Hk(y2p)

(y2 − y1) . . . (y2p − y2p−1)(y1 − y2p)
, (6.114)

where Im [y]1 , Im [y]3 , . . . Im [y]2p−1 < 0 and Im [y]2 , Im [y]4 , . . . Im [y]2p > 0. We close the
contours for y1, y3, . . . y2p−1 in the lower half plane and the contours for y2, y4, . . . y2p in the
upper half plane. This ensures that the contour does not enclose the poles coming from the
yi+1 − yi terms in the denominator.

For Hk given in (6.111), each factor of γ corresponds to exactly one pole in the complex
plane. Therefore, at order γj

#(y1) + #(y2) + . . .#(y2p) = j, (6.115)

where #(yi) denotes the total number of poles (with multiplicity) for the yi variable in the
numerator eHk(y1)−Hk(y2)+···+Hk(y2p−1)−Hk(y2p). If j < 2p, there is at least one variable that has
no pole in the entire complex plane. If we do the contour integral over this variable first,
the result is zero. Therefore, Tr(

(
[eHk ]−+[e

−Hk ]+−
)p
) only contributes non-trivially starting

at O(γ2p).

To summarize, the γj term in log
(
Z̃k/Z[1]

)
vanishes if j is odd. If j is even, we get a

non-zero contributions to the γj term from Tr(
(
[eHk ]−+[e

−Hk ]+−
)p
) only if p = 1, 2, . . . j/2.

Using (6.113), we have the full result at order γ2,

log
Z̃k
Z[1]

= −γ2 k
2

n2
r +O

(
γ4
)
, (6.116)

so the Rényi entropy is

Sn
(
[−L−, L+]

)
=
n+ 1

6n

[
log

L+ + L−

ε
− γ2r

2

]
+O

(
γ4
)
. (6.117)

Similarly, we can determine the contribution at higher orders in γ,

log
Z̃k
Z[1]

=r
k2

n2

(
γ2 +

γ4

2
+
γ6

3
+
γ8

4

)
+ rt

k4

n4

(
γ4

2
+
γ6

2
+

65γ8

144

)
− rt(r − t)

k6

n6

(
γ6

6
+
γ8

4

)
+ rt

k6

n6

γ8

72
+ rt(r − 5t)(5r − t)

k8

n8

γ8

144
+O

(
γ10
)
,

(6.118)
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We can now easily do the sum over k to get the Rényi entropies and also take the n → 1
limit to get the entanglement entropy.

Sn
(
[−L−, L+]

)
=
n+ 1

6n

[
log

L+ + L−

ε
+
r

2

(
−γ2 − γ4

2
− γ6

3
− γ8

4

)]
+

(n+ 1)(7− 3n2)

240n3

[
rt

(
γ4

2
+
γ6

2
+

65γ8

144

)]
+

(n+ 1)(31− 18n2 + 3n4)

1344n5

[
rt(r − t)

(
γ6

6
+
γ8

4

)
− rt

γ8

72

]
+

(n+ 1)(381− 239n2 + 55n4 − 5n6)

11520n7

[
rt(r − 5t)(5r − t)

γ8

144

]
+O

(
γ10
)
,

(6.119)

S
(
[−L−, L+]

)
=
1

3
log

L+ + L−

ε
− r

6

(
γ2 +

γ4

2
+
γ6

3
+
γ8

4

)
+
rt

30

(
γ4

2
+
γ6

2
+

65γ8

144

)
+
rt

42

[
(r − t)

(
γ6

6
+
γ8

4

)
− γ8

72

]
+
rt(r − 5t)(5r − t)

30

(
γ8

144

)
+O

(
γ10
)
.

(6.120)

It is worth mentioning that the series multiplying r adds up to

−1

6
log(1− γ2) = −1

6
log

4L−L+

(L+ + L−)2
, (6.121)

so these terms linearly interpolate between the purely transmitting limit, r = 0, and the
purely reflecting limit, r = 1. All the other terms vanish at these two limits, and represent
the deviation from this linear interpolation.

Perturbing away from the fully reflecting case

In this subsection, we will perform a third approximation to obtain the first order term in t,
perturbing away from the fully reflecting case t = 0. . A calculation similar to those above
gives us the result analogous to (6.99)

log
˜̃Zk
Z[1]

= −
∞∑
p=1

tp

p
Tr
((

[eiH̃k ]−+[e
−iH̃k ]+−

)p)
. (6.122)

Again, we restrict ourselves to computing the functional determinant ˜̃Zk which corresponds
to a single interval across the defect, A = [−L−, L+].

We can compute the O(t) piece in the von Neumann entropy by perturbing away from
the fully reflecting case. The result is

S(1) = t

∫
R2

dy1dy2
4π2(y1 − y2)2

(
1− 1

2

ϕ(y1) + ϕ(y2)

ϕ(y1)− ϕ(y2)
log

(
ϕ(y1)

ϕ(y2)

))
. (6.123)
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where

ϕ(x) =
(x− iL−)(x+ iL+)

(x+ iL−)(x− iL+)
. (6.124)

Using a similar contour deformation argument as above, we find,

S(1) =
t

8

(
1 +

L2
− − 6L−L+ + L2

+

2(L− − L+)
√
L−L+

arctan

(
L− − L+

2
√
L−L+

))
. (6.125)

The full answer for the entropy to order t2 is then

S([−L−, L+]) =
1

6
log

4L+L−

ε2
+
t

8

(
1 +

L2
− − 6L−L+ + L2

+

2(L− − L+)
√
L−L+

arctan

(
L− − L+

2
√
L−L+

))
+O(t2) .

(6.126)
We can also do a small γ expansion similar to the previous subsection. We just quote

the final result

S
(
[−L−, L+]

)
=
1

6
log

4L+L−

ε2
+
t

6

(
γ2 +

γ4

2
+
γ6

3
+
γ8

4

)
+
rt

30

(
γ4

2
+
γ6

2
+

65γ8

144

)
+
rt

42

[
(r − t)

(
γ6

6
+
γ8

4

)
− γ8

72

]
+
rt(r − 5t)(5r − t)

30

(
γ8

144

)
+O

(
γ10
)
.

(6.127)

This matches with (6.120) at the appropriate order in γ.

6.4 Entanglement Islands with Graybody Factors

In this section, we will apply our results for the von Neumann entropy to the zero temperature
entanglement island calculations of [229]. The new component is the introduction of a
reflection/transmission coefficient at the interface between AdS2 and flat space. We will first
quickly review the setup (see figure 6.2) and then show that the entanglement island behaves
in a monotonic fashion as a function of the reflection/transmission coefficient.

The gravitational theory is taken to be AdS-JT gravity coupled to matter, whose action
is given by [243]

I[g, ϕ, ψ] = ϕ0 +
1

4π

∫
d2x

√
g ϕ (R + 2) + ICFT[g, ψ], (6.128)

where we have put 4GN = 1, the constant ϕ0 gives the extremal entropy, and we have omitted
the Gibbons-Hawking boundary term. The CFT matter action is given by ICFT and we take
the matter fields ψ to not couple to the dilaton. For the gravity variables, we put the usual
boundary conditions guu|bdy = 1/ε2 and ϕ|bdy = ϕr/ε.

Using coordinates (x0, x1) with x1 < 0, the zero temperature solution of JT gravity is
given by

ds2 =
−(dx0)2 + (dx1)2

(x1)2
, ϕ =

ϕr
−x1

. (6.129)
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Figure 6.2: Setup for the QES calculation for a partially reflecting AdS2 boundary is shown
on the left. In the gray region, gravity is dynamical and we will consider the Poincaré patch
with its horizon drawn in orange. This region is glued along the AdS2 boundary to a flat
space region on the right. The free fermion matter lives in both the AdS2 and flat space
regions, but there is partial reflection at the interface. A candidate entanglement wedge
[−a, b] is shaded orange and its complement is shaded blue. The dual SYK + wire system
is shown on the right. The fundamental computation we are doing is of the entropy and the
entanglement wedge of the interval [0,b] in this non-gravitational description.

The JT boundary conditions imply that the AdS2 boundary is at x1 = −ε. We now couple
the AdS2 region to half of 2d flat-space, which is non-gravitating. The matter fields are taken
to be free fermions and they propagate on both the AdS and the flat space regions, but we
choose the boundary conditions for them so that they see a partially transmitting interface
at x1 = −ε, see equation (6.5). This is how our work differs from the previous papers [17,
229].

As emphasized in [229], one should think of the entropies as being fundamentally defined
in a candidate dual description that does not involve gravity. This will look something like
an SYK model coupled to a wire. The transmission coefficient encodes some property of
the coupling between the SYK model and the wire, and the zero temperature equilibrium
geometry corresponds to the ground state of the coupled Hamiltonian.

The goal is to compute the entanglement wedge of the region [0,b] in the SYK+wire
description. A candidate for a QES is the point (x0, x1) = (0,−a) in the AdS2 region (with
a > 0). The entanglement wedge of [0,b] will be the region (−a∗, b) where a∗ is the location
of the QES. We need to compute the generalized entropy functional Sgen() of a region [−a, b]
that is partially in the bath region and partially in the gravity region, see figure 6.2. For this,
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we need the dilaton profile given in (6.129) and also an expression for the entropy of bulk
matter fields in the semiclassical description, which were obtained in the previous section.

The generalized entropy of the interval [−a, b] is given by

Sgen(a) = ϕ0 +
ϕr
a

+ c SDirac, flat([−a, b])−
c

6
log a, (6.130)

where the second term corresponds to the entropies we computed in Sec. 6.2 and the final
term comes from the Weyl factor in the metric (6.129) at the left end-point of the interval
[−a, b]. As already noted, the boundary conditions on the matter fields preserve one copy of
the Virasoro algebra, so the Weyl factor term takes into account the fact that the interface
is now between AdS space and flat space, rather than between two flat half-spaces. We have
also taken c copies of the free Dirac fermion system, and as usual c is taken to be large so
that the entropy coming from fluctuations in the gravity sector can be ignored. Let us define
a quantity k with dimensions of length as

k :=
6ϕr
c
. (6.131)

Extremizing Sgen(a) with respect to a gives us the location a∗ of the QES. As before, we
specialize to three cases:

• When the reflection coefficient r is small, we use (6.109) for SDirac, flat and we get

a∗(r) = a0 + r
3a20 (a

4
0 − b4 − 4a20b

2 log(a0/b))

4(a0 − b)2 ((a0 + b)2(a0 + 2k)− 2a30)
+O(r2), (6.132)

where a0 is the location of the island in the purely transmitting case [229],

a0 = a∗(r = 0) =
1

2

(
b+ k +

√
b2 + 6bk + k2

)
. (6.133)

It is also instructive to look at the extreme limits for b in this expression.

a⋆ =
6ϕr
c

+ r
9ϕr
2c

+O(b, r2) (small b), (6.134)

a⋆ =

(
b+

12ϕr
c

)
+ r

12ϕr
c

+O(b−1, r2) (large b). (6.135)

We would like to argue that the second term in (6.132) in always positive, so that the
QES moves from its location a0 in the fully transmitting case towards the Poincaré
horizon, where it lies in the fully reflecting case. It is easy to plot the second term of
(6.132) as a function of b and k and check that it is positive, but we would like to give
a more illuminating argument. First, note that a0 > b, which as observed in [229] is
a condition that is imposed by the Quantum Focusing Conjecture [73]. The function
S ′
gen(a) at full transmission is positive to the left of the QES, and negative to the right

of the QES. As noted earlier, the correction term in (6.109) is negative definite and
has a maximum value of 0 when L− = L+, or a = b in the notation of this section.
These facts dictate that the QES can only move leftwards from a0.
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• When the transmission coefficient t is small, we use (6.126) for SDirac, flat and we get

a∗(r) =

(
1024 bk2

9π2

) 1
3

t−
2
3 +O(t0). (6.136)

The QES goes to infinity as t → 0. In the fully reflecting case, the QES is at the
Poincaré horizon: the AdS2 and flat space regions are not coupled at all in this case,
and so the entanglement wedge of the boundary of AdS2 better be the entire Poincaré
patch of AdS2.

Note that since a∗ is getting large, we might worry that the coefficient of the O(t)
term in the bulk entropy formula (6.126) is getting large. However, the overall size of

the O(t) term at the extremization point is seen to be t
2
3 , which is small. In general,

entropies cannot grow faster than linearly in the interval size, and so, if the expansion
in t is well-behaved, we do not expect large powers of L− to show up at higher orders
in (6.126).

• Taking b to be very large, we expect, as in [229], that the quantity a∗−b
a∗+b

is small.

Keeping terms up to order γ2 in (6.120), we find

a∗(r) = b

(
1 +

1

1− r

2k

b
+O

(
k2

b2

))
. (6.137)

This matches with the small r result (6.132) in the common domain of validity, but
we should not trust the exact form of this answer in the r → 1 limit, since γ is getting
large in that limit.

6.5 Discussion

In summary, within the particular setup and the various limits that we have considered, we
have shown that the location of the QES (and thus the size of the entanglement island) is
a monotonic function of the transmission strength of the interface between the gravitating
region and faraway flat space region. It would be interesting to extend our results to various
other setups in which islands are known to exist, for instance in the T > 0 non-evaporating
setup in [229]. It would also be nice to find way to incorporate explicitly-tunable greybody
factors in the setup of double-holography [88], especially in higher dimensions [231]. Our
prejudice is that such monotonicity should always hold. In the case of an evaporating black
hole, specifically using the setup of [17], one should see the QES move from inside the horizon
towards the horizon as one turns on graybody effects. This has to do with the fact that when
the black hole is evaporating, the matter fields are taken to be in the Unruh state, and not
the Hartle-Hawking state. That changes the formulas for the matter entanglement entropy.
In this situation, if the interface is fully reflecting, the QES would be at the black hole
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horizon. When we turn on a coupling between the AdS and the bath regions, thus making
r < 1, the QES moves inwards, as discussed in [16, 17].

Independently of the motivation from black hole physics, it would also be valuable to
go beyond the limits we have considered obtain exact results for the 2d free fermion von
Neumann entropy and the modular Hamiltonian for a general set of intervals in the presence
of a defect.
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Part II

Top-down Approach
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Chapter 7

Normalization of ZZ Instanton
Amplitudes in Minimal String Theory

7.1 Introduction

The duality between minimal string theory and double-scaled matrix integrals [244] is the
earliest known example of a duality between a gravitational and a non-gravitational system.
The term minimal string theory refers to two-dimensional gravity coupled to c < 1 minimal
models. These are non-critical string theories where the Liouville mode does not decouple.
More precisely, the worldsheet theory consists of the (p′, p) minimal model plus Liouville
theory, with total central charge 26, together with the usual bc-ghosts. Here p′ and p are
relatively-prime positive integers, and we work with the convention that p > p′ ≥ 2. The
models with (2, p) matter are dual to matrix integrals over just one matrix. The p → ∞
limit of the (2, p) family is JT gravity [245], a subject which has been of much recent interest.

While the minimal string theories are toy models, one of the lessons from them that
generalizes to even critical superstring theories is the existence of stronger-than-expected
non-perturbative effects [246, 247]. Let gs be the closed string coupling. Then the non-
perturbative effects are of order exp (−Cg−1

s ), rather than the exp (−Cg−2
s ) expected from

field theory. In the language of JT gravity, gs ∝ e−S0 where S0 is the coefficient of the
Euler characteristic term in the action. Given this identification, these effects are “doubly-
nonperturbative” in the parameter S0 [245].

These non-perturbative effects are known to arise from ZZ branes on the string theory
side [143]. In the matrix integral, these effects correspond to one-eigenvalue instantons.
A one-eigenvalue instanton refers to a subleading saddle point configuration in the matrix
integral which differs from the leading saddle point by pulling one eigenvalue out of the
droplet of eigenvalues and placing it at an extremum of the one-eigenvalue effective action
[246, 248].

Let us consider the computation of the matrix integral Z itself. Let T denote the action
of the one-eigenvalue instanton or the “tension” of the ZZ brane, which is a positive quantity
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of order g−1
s . The quantity Z admits an expansion of the form

Z = Z(0) + Z(1) + . . . = Z(0)
(
1 +N e−T + . . .

)
. (7.1)

Here Z(0) is the perturbative contribution to the matrix integral and Z(1) is the contribution
to the matrix integral when one eigenvalue is in the classically forbidden region. One can
also write (7.1) in terms of the free energy as logZ = logZ(0) +N e−T + . . ..

The object of interest to us in this chapter is the normalization constant N . Roughly
speaking, in string theory, N is the exponential of the worldsheet annulus with ZZ boundary
conditions on both ends. This annulus amplitude has been computed using the worldsheet
theory [249, 250] and is divergent. However, starting with [251, 252], many papers have
computed a finite value for N using matrix integral technology [251, 252, 253, 254, 255, 256,
245], with ref. [256] containing the result for general (p′, p).

This state of affairs is very reminiscent of the recent computations in the c = 1 system,
where the annulus amplitude between ZZ branes is also divergent, while the matrix side of
the duality provides a finite unambiguous answer [25]. It has been shown by one of us [257]
that string field theory techniques allow us to compute N in this case and the result matches
with the matrix computation.

The purpose of this note is to apply these string field theory tools to the (2, p) minimal
string theories and compute the value of N in these theories. We find perfect agreement
with the matrix integral computations [251, 252, 253, 254, 255, 245]. We record the final
result

N = T− 1
2

i√
32π

cot(π/p)√
p2 − 4

. (7.2)

Let us make a few comments about the form of this answer. First, the combination N T
1
2

is natural to consider since the dependence on gs cancels out in this combination. This is
important since it is impossible to fix the multiplicative constant between the genus counting
parameters on the two sides of the duality, since we can always add the Euler characteristic
term to the worldsheet action with an arbitrary coefficient. So, when trying to match precise
numerical constants, one should compute quantities that are independent of gs, like N T

1
2

rather than N or T separately.1 On the matrix integral side, the gaussian integral around the
one-eigenvalue instanton gives a multiplicative factor in N that is proportional to T− 1

2 . On
the string theory side, this factor arises because the proper volume of the rigid U(1) gauge

group on the instanton is proportional to T
1
2 [257]. Division by this gauge group volume

in the path integral produces the factor of T− 1
2 . Second, the overall sign of the right hand

side of (7.2) is ambiguous on both sides of the duality, as it depends on a two-fold choice of
the contour of integration over one unstable mode. One should make this choice so that the
result is the same for the matrix integral and the string theory. Third, the normalization

1Another quantity like this would be the ratio of the disk amplitude to the square-root of the sphere
amplitude [258]. See also [259, 260].
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constant N is purely imaginary and the instanton correction we are studying computes the
leading imaginary part of the free energy. In this sense, this correction is similar to the case
of “bounce” solutions in instanton physics [261] and the instanton correction is meaningful.
Finally, note that the coefficient on the right hand side of (7.2) is finite in the JT gravity
limit p→ ∞.

Overview

In Section 7.2, we present the computation of N in the double-scaled one-matrix integral,
which is dual to the (2, p) minimal string. The results of this section are not new, and we are
including them to illustrate the relevant tools in the simpler setting of the one-matrix integral.
In Section 7.3, we first present a general string field theory analysis of the divergences in the
cylinder diagram with both boundaries lying on a D-instanton. We then apply these tools
to the (2, p) minimal string and obtain a finite answer that agrees with the matrix integral
result. In Section 7.4, we make a few remarks about the extension of these results to the
more general (p′, p) minimal string.

7.2 Matrix Integral Computation

In this section, we will compute the normalization constant N for the one-matrix integrals
that are dual to the (2, p) minimal string. The results in this section are not new and can
be found in many papers, including [245, 251, 252, 253, 254, 255, 256, 262]. We choose to
follow the streamlined presentation given in the recent work [245].

We start by explaining the setup. The starting point is an integral over all L×L hermitian
matrices

Z =

∫
dH e−LTrV (H) . (7.3)

Here V is a potential which can be taken to be an even polynomial of degree p + 1. The
matrix integral Z is a function of the coefficients in this polynomial. In the large L limit, we
can talk about a smooth density of eigenvalues and it is supported on a finite interval on the
real axis. The double-scaling limit refers to a procedure where, in addition to taking L→ ∞,
we zoom in near the left edge of the spectrum and tune the coefficients of the potential such
that the dominant double-line Feynman diagrams in the perturbation expansion of (7.3)
resemble continuum surfaces [244] . In this limit, the density of states is non-normalizable
and is supported on the entire positive real axis.

We focus on the so-called “conformal background” [263], where the leading density of
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states in the double-scaling limit reads2

⟨ρ(E)⟩(0) = eS0

π
sinh

(
p arcsinh

√
E

2κ

)
Θ(E) . (7.4)

Here Θ(E) denotes the Heaviside theta function. This is the density of states that is dual to
standard Liouville theory with only the cosmological constant term in the action turned on.
See, for example, [258] for an explicit family of potentials that lead to the density of states
(7.4) in the double scaling limit. Here, eS0 is the genus counting parameter after taking the
double-scaling limit and κ is an arbitrary energy scale.

Using the relationship between the form of the density of states and the spectral curve,
we conclude that the spectral curve is given by [264, 250]

y(z) = sin

(
p arcsin

z√
2κ

)
= (−1)

p−1
2 Tp

(
z√
2κ

)
, (7.5)

where Tp denotes the p-th Chebyshev-T polynomial. One way to see this is to note that
the leading density of states ⟨ρ(E)⟩(0) is determined from the spectral curve as ⟨ρ(E)⟩(0) =
−iπ−1eS0y(i

√
E) for E > 0. It is also a standard result in one-matrix integrals that the

derivative V ′
eff(E) of the one-eigenvalue effective potential Veff(E), that includes contributions

from both the potential V that appears in (7.3) and the Vandermonde determinant, is
proportional to y(

√
−E) in the forbidden region E < 0 (see, for example, [245] for a recent

exposition). The precise relationship is

V ′
eff(E) = eS0

(
−2y

(√
−E
))

(for E < 0) . (7.6)

Integrating this using (7.5) and taking Veff(E = 0) = 0 we get, for E < 0 that

Veff(E) = −2 eS0 κ

[
1

p+ 2
sin

(
(p+ 2) arcsin

√
−E
2κ

)
− 1

p− 2
sin

(
(p− 2) arcsin

√
−E
2κ

)]
(7.7)

= 2 eS0 κ (−1)
p−1
2

[
1

p+ 2
Tp+2

(√
−E
2κ

)
− 1

p− 2
Tp−2

(√
−E
2κ

)]
. (7.8)

Let us now look at the extrema of the one-eigenvalue effective action. From (7.6) and
(7.5), we see that as we move towards negative energies starting at E = 0, the first zero of
V ′
eff(E) occurs at

E⋆ = −2κ sin2 π

p
. (7.9)

2To get to the density of states in JT gravity, we need to take κ ∼ p2 as p→ ∞ [245].
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We record the values of Veff(E
⋆) and V ′′

eff(E
⋆), which are obtained from (7.7) and (7.6) using

(7.5):

Veff(E
⋆) = eS0κ

4p sin(2π/p)

p2 − 4
, (7.10)

V ′′
eff(E

⋆) = −eS0κ−1 p

sin(2π/p)
. (7.11)

Now we organize various contributions to the integral (7.3) depending on how many
eigenvalues are in the classically allowed region E > 0 and how many are in the classically
forbidden region E < 0. The leading contribution Z(0) comes from the integration region
where all eigenvalues are in the classically allowed region. The next important contribution
Z(1) comes from the integration region when only one eigenvalue is in the forbidden region.
Next, we borrow a couple of results from [245, 252, 253, 255], which in the notations of [245]
are as follows:

Z(1)

Z(0)
=

∫
F

dE ⟨ρ(E)⟩ , (7.12)

⟨ρ(E)⟩ = 1

−8πE
exp(−Veff(E)) for E < 0 . (7.13)

Here the subscript F on the integral denotes integration over the classically forbidden region
E < 0. The formula (7.13) captures the small amount of quantum mechanical leakage of
eigenvalues into the classically forbidden region.3

We now plug in (7.13) into (7.12) and use the saddle point approximation about E⋆ to
compute the integral (along a contour to be specified momentarily):

Z(1)

Z(0)
=

1

−8πE⋆
exp (−Veff(E⋆))

∫
dE exp

[
1

2
|V ′′

eff(E
⋆)| (E − E⋆)2

]
(7.14)

=
1

−8πE⋆
exp (−Veff(E⋆))× i

2

√
2π

|V ′′
eff(E

⋆)|
. (7.15)

It is important to note from (7.11) that V ′′
eff(E

⋆) < 0 and thus the steepest descent contour
is parallel to the imaginary-E axis. Furthermore, we only integrate over half of the steepest
descent contour, since, in the perturbative region E ≫ κ, the defining contour must lie
along the real axis [245]. Figure 7.1 shows this contour. On the string theory side, this
“unstable mode” is the open string tachyon and one has a similar contour of integration over
the tachyon mode [257].4 These facts give us the factor of i/2 in the gaussian integral.5

3As commented upon in [245], the expression for Veff in (7.8) is negative for certain intervals on the
negative real axis. However, in the regime E ∈ [E⋆, 0], with E⋆ as in (7.9), this issue does not arise, and this
interval is all that we will need. See the discussion of the integration contour below.

4In fact, such a contour is common in decay rate computations using bounce solutions. See, for example,
[261].

5Since we are only interested in computing the imaginary part, we don’t need to worry about the part
of the contour along the real axis, which contributes something real.
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Figure 7.1: The contour of integration for the eigenvalues showing that we only need to
include “half” of the steepest descent contour for the instanton saddle point. We have
shown the numbers for the case p = 3 with κ = 1

2
but it is qualitatively similar for all p. In

string theory, the integration contour for the open string tachyon also looks like this.

Comparing (7.15) to (7.1) and using equations (7.9), (7.10) and (7.11), we get

T = Veff(E
⋆) = eS0κ

4p sin(2π/p)

p2 − 4
, (7.16)

N = e−
S0
2 κ−

1
2

i

16
√
π

√
cos(π/p)

p sin3(π/p)
. (7.17)

As explained in the introduction, it is natural to factor out T− 1
2 from the expression for N ,

and so we write the above result as

N = T− 1
2

i√
32π

cot(π/p)√
p2 − 4

. (7.18)

Refs. [251, 252, 253, 254] contain this result for p = 3, while the result for general p can be
found in [255].6 Ref. [245] was interested in the limit p→ ∞.

We would like to explain one subtlety in the above analysis. One can explicitly check
that the effective potential given in equation (7.8) has (p− 1)/2 extrema on the negative-E
axis. Roughly half of them are maxima and half are minima. The extremum at E⋆ in (7.9)
is the one closest to the origin and is a local maximum. However, even among the local

6Note that some of these references are computing an integral over the full steepest contour through
the saddle point, and others are including contributions from both ends of the eigenvalue cut, and thus the
pre-factors quoted there are a multiple of the value in (7.18).
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maxima, this is not the one with the smallest value of the effective potential, in general.
This raises the question of why we have chosen the saddle point E⋆ in (7.9) as the relevant
saddle. The point is that we want the perturbation series of the matrix integral to match
with the vacuum string perturbation theory, and so we should not allow the integration
contour for the matrix eigenvalues to pass through regions on the real axis with Veff < 0,
since these regions will give real contributions to the matrix integral that are much larger
than the terms in perturbation theory around the saddle point (7.4). This can be avoided
by turning the integration contour along the steepest descent contour once it reaches E∗.

7.3 String Theory Computation

In this section we shall describe the string theory computation of the leading imaginary part
of the partition function, arising from a single ZZ-instanton contribution.

The string theory that is dual to the double-scaled one-matrix integral described in
Section 7.2 is Liouville theory coupled to the (2, p) minimal model and the bc-ghost system.
The b parameter that appears in the Liouville lagrangian is determined by p and is such that
the total central charge of Liouville, the matter CFT and ghosts adds up to zero. One finds
b =

√
2/p.

The cylinder diagram and its divergences

We shall begin by describing some general issues that arise in the analysis of the cylinder
diagram with boundaries lying on a D-instanton (whose analog in non-critical string theory
is the ZZ instanton). We can express the cylinder partition function in the open string
channel as:

A =

∫ ∞

0

dt

2t
F (t) , (7.19)

where F (t) has the structure

F (t) =
∑
b

e−2πhbt −
∑
f

e−2πĥf t , (7.20)

with hb and ĥf being the L0 eigenvalues of the bosonic and fermionic states of the open
string with any ghost number and subject to the Siegel gauge condition. A state |χ⟩ is said
to satisfy the Siegel gauge condition if

b0|χ⟩ = 0 (Siegel gauge condition). (7.21)

The states are taken to be fermionic if they carry even ghost number and bosonic if they
carry odd ghost number – this is the correct assignment of statistics when we regard the
coefficients of these states as modes of the open string field on the D-instanton. The Siegel
gauge condition (7.21) is needed, since without this condition there will be an equal number
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of bosonic and fermionic states related by the action of the ghost zero modes b0 or c0, and the
partition function will vanish. The way this gets implemented in the worldsheet computation
is via the insertion of b0c0 to soak up the ghost zero modes on the cylinder [265].

In theories of interest to us, the integral (7.19) has no divergence in the t → 0 limit,
indicating that the (regulated) number of fermionic and bosonic states are equal. In the
hypothetical situation where hb and ĥf are all positive, there are no divergences in the
t→ ∞ limit either, and A is given by

A =
1

2
ln

∏
f ĥf∏
b hb

. (7.22)

For positive hb, ĥf this can be used to express the normalization factor N accompanying the
instanton amplitude as an integral,

N = eA =

(∏
f ĥf∏
b hb

) 1
2

=

∏′
f ĥf∏
b h

1/2
b

=

∫ ∏
b

dϕb√
2π

∏
f

′
dpfdqf exp

[
−1

2

∑
b

hbϕ
2
b −

∑
f

′
ĥfpfqf

]
,

(7.23)

where ϕb are grassmann even variables and pf , qf are grassmann odd variables. The prime

on the summation and the product symbols indicate that, since ĥf ’s occur in pairs,7 we let
the sum and product over f run over half the number of original variables, and for each f
introduce a pair of grassmann odd variables pf , qf . The final expression in (7.23) may be
regarded as the path integral over open string fields in Siegel gauge, with the understanding
that open string fields live on the zero dimensional worldvolume of the D-instanton and
therefore are just ordinary variables. Our conventions for the open string field action are
described at the end of this section.

As long as hb and ĥf are positive, (7.19), (7.22) and (7.23) are all well defined and are
identically equal. However in most situations, some of the hb’s are negative or zero, and some
of the ĥf ’s may vanish. In that case (7.19) and (7.22) are ill-defined. The final expression in
(7.23) is also ill-defined but we can try to make sense of this using insights from string field
theory. We shall now describe this procedure.

First we note that, for hb, hf > 0, we can pick any non-negative integer n and write

7This can be seen as follows. For any choice of basis states {|a⟩} for Siegel gauge states with a fixed
L0 eigenvalue, ⟨a|c0|b⟩ gives a non-degenerate inner product matrix. Since this inner product pairs states of
ghost number n and (2 − n), we see that for every n other than n = 1, the L0 eigenvalues occur in pairs

in sectors with ghost numbers n and (2− n). Since fermions arise from even ghost number sector, the ĥf ’s
always occur in pairs.
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State L0 eigenvalue Ghost In Siegel Field Grassmann parity
number gauge? name of field

c1|0⟩ −1 1 Yes ϕ1 even
c0c1|0⟩ −1 2 No - odd
|0⟩ 0 0 Yes p1 odd
c0|0⟩ 0 1 No ψ even

c1c−1|0⟩ 0 2 Yes q1 odd
c0c1c−1|0⟩ 0 3 No - even

Table 7.1: A list of states that are relevant for the discussion of divergences in the cylinder
diagram. We have ordered the states first by their L0 eigenvalues and then by their ghost
numbers. A state and the corresponding field appear multiplied together in the expansion
of the open string field as |Ψ⟩ = ϕ1c1|0⟩+ . . ..

hybrid expressions for A and N as

A =

∫ ∞

0

dt

2t

[
F (t)−

2n∑
b=1

e−2πthb +
2n∑
f=1

e−2πtĥf

]
+

∫ ∞

0

dt

2t

[
2n∑
b=1

e−2πthb −
2n∑
f=1

e−2πtĥf

]

=

∫ ∞

0

dt

2t

[
F (t)−

2n∑
b=1

e−2πthb +
2n∑
f=1

e−2πtĥf

]
+

1

2
log

[∏2n
f=1 ĥf∏2n
b=1 hb

]
,

(7.24)

N = eA = exp

[∫ ∞

0

dt

2t

[
F (t)−

2n∑
b=1

e−2πthb +
2n∑
f=1

e−2πtĥf

]]

×
∫ 2n∏

b=1

dϕb√
2π

n∏
f=1

dpfdqf exp

[
−1

2

2n∑
b=1

hbϕ
2
b −

n∑
f=1

ĥfpfqf

]
.

(7.25)

Now, when some of the hb’s or ĥf ’s are negative or zero, we shall choose n to be such that

for b, f > 2n all the hb’s and ĥf ’s are positive. Then the term in the first line of (7.25) is

finite since we have subtracted the ‘bad’ contributions involving hb, ĥf ≤ 0 terms from F (t).
Furthermore, since the subtraction term vanishes as t→ 0, the integral is free of divergences
from the t → 0 end as well. Thus, we are left with the goal of making sense of the integral
over the modes ϕb for b ≤ 2n and pf , qf for f ≤ n.

For the D-instantons that we shall discuss, the bad modes consist of one bosonic mode –
the tachyon mode ϕ1 corresponding to the state c1|0⟩ with hb = −1, and a pair of fermionic
modes p1, q1 corresponding to the states i|0⟩ and ic1c−1|0⟩ with ĥf = 0. The coefficients i
in these states have been chosen to ensure that the modes multiplying these states are real.
Since there is only one bad bosonic mode and two bad fermionic modes, we can choose n = 1
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in (7.25). See Table 7.1 for a list of the states that are relevant for the discussion and their
basic properties.

First we shall discuss the integration over the bosonic modes ϕ1 and ϕ2. Since h2 >
0, the integration over ϕ2 gives a standard gaussian integral. The integration over ϕ1 is
problematic since the exponent takes the form exp(ϕ2

1/2). We shall carry out this integral
by regarding this as a contour integral in the complex ϕ1 plane as follows[257]. Since the
vacuum without any D-instanton is represented by a particular solution of the open string
field theory corresponding to some positive value β of ϕ1, the integration contour must pass
through β. For this reason we take the integration contour to lie along the positive real axis
for Re [(]ϕ1) > 0. However once we reach ϕ1 = 0, we take the contour to be along (half of)
the steepest descent contour – either from −i∞ to 0, or from i∞ to 0. The integration along
the real axis is real and can be regarded as the perturbative contribution since the contour
passes through the perturbative vacuum. The leading imaginary part comes from the part
of the contour from ±i∞ to 0. These two choices differ by a sign – an ambiguity that is also
present in the matrix model. Choosing the contour to be from −i∞ to 0 for definiteness, we
can write (the leading imaginary part of) the bosonic part of the integral as:∫ 0

−i∞

dϕ1√
2π
eϕ

2
1/2

∫ ∞

−∞

dϕ2√
2π
e−h2ϕ

2
2/2 =

i

2
h
−1/2
2 . (7.26)

Next we turn to integration over the fermion zero modes p1, q1. We can get physical
insight into the origin of these modes if, instead of a D-instanton, we consider a Dp-brane
extending along some directions in space-time in any bosonic string theory. In that case the
gauge field aµ(k) living on the brane appears in the expansion of the open string field as a
term proportional to

∫
dp+1k aµ(k)α

µ
−1c1|k⟩ where αµn are the oscillators associated with the

scalars Xµ describing coordinates tangential to the brane and |k⟩ = eik·X(0)|0⟩ are momen-
tum carrying states. In string field theory, gauge transformations appear as BRST exact
states QB|Λ⟩ (plus higher order terms), and |Λ⟩ is referred to as the “gauge transforma-
tion parameter”. For instance, usual spacetime gauge transformations of the gauge field
δaµ(k) ∝ ikµθ(k) appear via the term i

∫
dp+1k θ(k)|k⟩ in |Λ⟩. Note that this term in |Λ⟩ has

ghost number zero. Then the linearized gauge transformation QB|Λ⟩ produces a term pro-
portional to i

∫
dp+1k θ(k)kµα

µ
−1c1|k⟩. Comparing to the state representing the gauge field,

we see that this generates the usual gauge transformation law δaµ(k) ∝ i kµθ(k).
The gauge transformation QB|Λ⟩ also produces a state proportional to i

∫
dp+1k θ(k)k2

×c0|k⟩. This translates to a transformation δψ(k) ∝ k2θ(k) where ψ(k) is the field multiply-
ing the state ic0|k⟩. The Siegel gauge choice corresponds to setting ψ(k) = 0. This produces
a Jacobian proportional to k2, which is represented by a pair of Fadeev-Popov ghosts p1(k),
q1(k) multiplying the states ic1c−1|k⟩ and i|k⟩. Since these states have conformal weight
ĥ1 = k2, integration over p1 and q1 will precisely produce the required Fadeev-Popov deter-
minant k2, for k ̸= 0.

Now, the issue is that, on a D-instanton we have k = 0. Thus, neither the “gauge field”
nor the field ψ multiplying ic0|0⟩ transforms, showing that the Siegel gauge choice breaks
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down. This is a reflection of the fact that the usual local U(1) symmetry on the Dp-brane
becomes a rigid symmetry on the D-instanton. The remedy is to go back to the “original”
form of the path integral where we carry out integration over all the “classical” modes of
the theory and explicitly divide by the volume of the gauge group. In string field theory
language, fields that multiply states of ghost number one are referred to as classical since the
physical open string states belong to this sector. Concretely, among the states in table 7.1,
this means that instead of integrating over {ϕ1, p1, q1}, we integrate over {ϕ1, ψ} and divide
by the volume of gauge group. The precise normalization of the integration measure can be
fixed by carefully following the line of argument described above and gives the replacement
rule[257]: ∫

dp1dq1 −→
∫
dψ e−ψ

2∫
dθ

=

√
π∫
dθ

. (7.27)

The −ψ2 in the exponent is the result of evaluating the open string field theory action
for the out-of-Siegel-gauge grassmann-even mode ψ,8 . The quantity θ can be related to
the rigid U(1) symmetry paramater θ̃, under which an open string with one end on the

instanton picks up a phase eiθ̃, by comparing the string field theory gauge transformation to
the rigid U(1) transformation. For canonically normalized fields and gauge transformation
parameters, the transformation law of a charged field Φ is proportional to igo θΦ, as in
conventional quantum field theories. Here go is defined to be the coefficient of the cubic
term in the open string field theory action, with conventions as described at the end of this
section. This should be equated to the transformation law δΦ = i θ̃Φ under infinitesimal
rigid U(1) transformation. A detailed calculation of the constant appearing in the string
field theory gauge transformation law leads to θ = θ̃/go[257]. On the other hand, the open

string coupling go is related to the instanton action T via go = (2π2T )−
1
2 .9 Therefore we

have ∫
dθ = g−1

o

∫
dθ̃ = 2πg−1

o = 2
3
2π2T

1
2 , (7.28)

since θ̃ has period 2π.
Substituting (7.26), (7.27) and (7.28) into (7.25) we get:

N = exp

[∫ ∞

0

dt

2t

[
F (t)−

(
e2πt + e−2πht − 2

)]]
× i 2−

5
2π− 3

2 h−
1
2 T− 1

2 , (7.29)

where h = h2. One can easily check that the expression is independent of h by taking
derivative with respect to h. Therefore we do not need to choose h = h2, any choice of h > 0
will give the same result.

8The generalization of this term to a Dp-brane would be −
∫
dp+1x (ψ + γ ∂µa

µ)2, where the constant γ
is chosen such that the combination ψ + γ ∂µa

µ is gauge invariant.
9There are many ways to derive this result, but the one that holds universally is from the observation

that the tachyon vacuum solution in open string field theory has action T − (2π2g2o)
−1 [266, 267]. Since this

describes the vacuum, we must equate this to zero, leading to T = (2π2g2o)
−1.
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Specialization to minimal string theory

We shall now use (7.29) to compute the normalization of the instanton amplitude in the
(2, p) minimal string theory. The form of the integrand F (t) for the cylinder diagram in
minimal string theory is well-known [249]. Since we are studying the cylinder diagram, we
need to specify boundary conditions for the worldsheet fields. For the Liouville CFT, we
pick the “(m,n) = (1, 1)” ZZ boundary condition [143], as this is the one that corresponds
to the saddle point E⋆ in equation (7.9) in the matrix integral [250, 259]. For the matter
CFT, we pick the Cardy state on both ends so that the open string channel only contains
the identity character [268].10

Let t be the modulus of the cylinder that corresponds to time in the open string channel
and let q = e−2πt. The partition function of Liouville theory on the cylinder with (m,n) =
(1, 1) ZZ boundary conditions on both ends is [143]

ZLiouville(t) =
(
q−1 − 1

)
q−

1
4
(b−1−b)2 η(it)−1 =

(
q−1 − 1

)
q−

(p−2)2

8p η(it)−1 . (7.30)

The partition function of the matter CFT with the given boundary conditions equals the
identity character in the minimal models, which is given by [269, 270]

Zmatter(t) = η(it)−1

∞∑
k=−∞

(
q

(4pk+p−2)2

8p − q
(4pk+p+2)2

8p

)
. (7.31)

Multiplying the contribution η(it)2 from the ghosts (see, for example, [265]), we find

F (t) =
(
e2πt − 1

) ∞∑
k=−∞

(
e−2πtk(2pk+p−2) − e−2πt(pk+1)(2k+1)

)
. (7.32)

It is important to note that the leading terms in F (t) as t→ ∞ are the ones with k = 0:

F (t) =
(
e2πt − 1

) (
1− e−2πt +O(e−4πt)

)
= e2πt − 2 +O(e−2πt) . (7.33)

As discussed earlier, the e2πt term arises from the open string tachyon, while the −2 arises
from the two ghost zero modes.11

If we substitute (7.32) into (7.29) and choose h = 1, we can see that the k = 0 term in
the sum exactly cancels the subtraction term (e2πt + e−2πt − 2). The rest of the terms may
be analyzed using the general result:∫ ∞

0

dt

2t

(
e−2πh1t − e−2πh2t

)
=

1

2
ln
h2
h1
. (7.34)

10For the (2, p) minimal string, there are (p − 1)/2 possible ZZ brane boundary conditions [264]. By
comparing the relative tensions of these branes (given in, for example, [250]), to the relative heights of the
extrema of the matrix effective potential (7.8), one can establish that it is the (m,n) = (1, 1) ZZ brane, with
identity character from the matter CFT, that corresponds to the matrix saddle point at E⋆ in (7.9) with
Veff(E

⋆) as in (7.16).
11In the c = 1 case, we have F (t) = e2πt − 1 exactly. The change of coefficient in the L0 = 0 sector comes

from an additional bosonic zero mode that corresponds to time translations of the D-instanton [25, 257].
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Using this we can rewrite (7.29) as

N = i 2−
5
2π− 3

2T− 1
2

∞∏
k=−∞
k ̸=0

[
(pk + 1)(2k + 1)− 1

k(2pk + p− 2)− 1

k(2pk + p− 2)

(pk + 1)(2k + 1)

] 1
2

= i 2−
5
2π− 3

2T− 1
2

 ∞∏
k=−∞
k ̸=0

1− 4
p2(2k+1)2

1− 1
p2k2


1
2

.

(7.35)

We now use

sin πx = πx

∞∏
k=1

(
1− x2

k2

)
, cos πx =

sin 2πx

2 sinπx
=

∞∏
k=1

(
1− 4x2

(2k − 1)2

)
(7.36)

to write

cot
π

p
=
p

π

∞∏
k=1

1− 4
p2(2k−1)2

1− 1
p2k2

. (7.37)

Using this it is easy to see that product over terms in (7.35) for k < 0 produces π
p
cot π

p
.

For positive k, (7.35) is missing the 1− 4/p2 term from the cosine infinite product in (7.36).
Thus the infinite product term in (7.35) produces

π

p
cot

π

p
× 1

1− 4
p2

× π

p
cot

π

p
=

π2

p2 − 4
cot2

π

p
. (7.38)

Using this result in (7.35) yields

N = T− 1
2

i√
32π

cot(π/p)√
p2 − 4

, (7.39)

in perfect agreement with the matrix integral result (7.18).

Conventions for the open string field theory action

Let us denote by |Ψ⟩ the open string field which takes the form

|Ψ⟩ = ϕ1c1|0⟩+ iψc0|0⟩+ . . . (7.40)

The vacuum state is normalized so that

⟨0|c−1c0c1|0⟩ = 1 . (7.41)

Our starting point is the path integral over fields with ghost number one, divided by the
volume of the gauge group. In the string field theory literature, the fields with ghost number
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one are known as “classical” fields since the physical open string states belong to this sector.
We take the weight in the path integral to be exp(−S) with the quadratic part of the action
being

S =
1

2
⟨Ψ|QB|Ψ⟩ . (7.42)

The BRST charge QB is given by

QB =

∮
dz

2πi
(c Tm+:b c ∂c :) , (7.43)

where Tm is the matter stress tensor. There is also a cubic term in the action[271]. See
for example, [266] for a detailed form of this coupling. If we normalize the string field so
that the kinetic term is independent of the coupling as in (7.42), then the cubic term has an
explicit factor of the open string coupling go.

From the above equations, one can see, for example, that the contribution of the tachyon
field ϕ1 to the quadratic action is

S ⊃ 1

2
⟨0|ϕ1c−1QB ϕ1c1|0⟩ = −1

2
ϕ2
1 , (7.44)

and thus the weight in the path integral is exp(ϕ2
1/2). The action for ψ is similarly seen to

be ψ2.

7.4 Generalization to (p′, p) Models

A more general class of minimal string models is Liouville theory coupled to the (p′, p)
minimal model and the bc-ghost system. Here p and p′ are relatively-prime integers with
p > p′ ≥ 2. The b parameter of Liouville theory is determined by the requirement that the
total central charge vanishes; the result is b =

√
p′/p.

The Liouville sector admits ZZ boundary conditions labeled by two integers (m,n) [143].
We leave a general analysis to future work, but for illustration purposes, we note here that
the computation in Section 7.3 can be extended to the (p′, p) minimal string with the same
boundary conditions. That is, we pick the (m,n) = (1, 1) ZZ state for Liouville, and for the
matter CFT, we pick the Cardy state on both ends so that the open string channel only
contains the identity character [268]. This gives the partition functions [143, 269, 270]

ZLiouville(t) =
(
q−1 − 1

)
q
− (p−p′)2

4pp′ η(it)−1 , (7.45)

Zmatter(t) = η(it)−1

∞∑
k=−∞

(
q

(2pp′k+p−p′)2
4pp′ − q

(2pp′k+p+p′)2
4pp′

)
. (7.46)
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Combining the Liouville, matter and ghost contributions to F (t), using (7.29), and following
the same steps as earlier, we get

N = i 2−
5
2π− 3

2T− 1
2

∞∏
k=−∞
k ̸=0

[
(pk + 1)(p′k + 1)− 1

k(pp′k + p− p′)− 1

k(pp′k + p− p′)

(pk + 1)(p′k + 1)

]1/2

= i 2−
5
2π− 3

2T− 1
2

∞∏
k=1

[(
1− 1

k2

(
1

p
− 1

p′

)2
)(

1− 1

k2

(
1

p
+

1

p′

)2
)

×
(
1− 1

k2p2

)−2(
1− 1

k2p′2

)−2
] 1

2

= T− 1
2

i√
32π

 sin
(
π
p
+ π

p′

)
sin
(
π
p′
− π

p

)
sin2(π/p) sin2(π/p′) (p2 − p′2)


1
2

= T− 1
2

i√
32π

√
cot2(π/p)− cot2(π/p′)

p2 − p′2
.

(7.47)

This agrees with (7.39) when p′ = 2.
For p > p′ ≥ 3, these string theories are dual to the double-scaled limit of a two-matrix

integral [272, 273]. The two-matrix integral is more complicated, so we won’t go into the
full analysis of the eigenvalue instanton in this case [260, 256], and just note that the result
(7.47) agrees with the m = n = 1 expression given in [256].12 We leave a fuller investigation
of the two-matrix case to future work.

12In carrying out this comparison, following the comment in footnote 6, we have divided the result of
[256] by two. However, since the saddle point corresponding to m = n = 1 is not the dominant saddle point
in general, we need to carefully analyze the full integration contour to figure out how the steepest descent
contour fits in. Since this issue exists both in the matrix model and in string theory, we expect any additional
factor to affect both sides in the same way. Hence it should not affect the comparison.



129

Chapter 8

Multi-instantons in Minimal String
Theory and in Matrix Integrals

8.1 Introduction

Minimal string theories are toy models of string theory where the worldsheet CFT consists of
a minimal model, the Liouville field and the bc ghosts [244, 274]. These theories admit a dual
description in terms of double-scaled matrix integrals [244]. An insight from these toy models
that generalizes to even critical superstring theory is the existence of “D-instanton” effects,
which are nonperturbative effects of order exp(−Ag−1

s ) [246, 248, 247] for some constant A,
rather than exp(−Ag−2

s ) that might be expected from field theory considerations. Here gs
is the closed string coupling. In minimal string theory, these objects were later identified as
ZZ branes [143]. From the perspective of the matrix integral, these nonperturbative effects
correspond to one-eigenvalue instantons [246].

Motivated by the study of instanton effects in the c = 1 string theory [25, 275, 257,
276], as well as critical (superstring) theories [277, 278, 279, 280, 281], in our previous
work [23] we used tools from string field theory to compute the normalization constant that
multiplies these instanton contributions to various physical quantities. In particular, the
genus expansion of the free energy F reads

F =
∞∑
g=0

Fg g
−2+2g
s +N exp

(
−Ag−1

s

)
+ . . . (8.1)

and we are interested in computing the constant N . We have indicated the perturbative
contribution and one particular instanton contribution. The dots indicate other nonpertur-
bative corrections. Physically, Ag−1

s is the tension of the ZZ brane and N is the exponential
of the annulus diagram. The annulus diagram between two ZZ branes is known [143, 249,
250], but, unfortunately, is ill-defined when the two boundaries of the annulus lie on the
same ZZ brane. The dual matrix integral, on the other hand, predicts a finite value for N
[248, 252, 255, 253, 254, 256, 282, 283, 245]. In [23], we resolved this tension by noting that
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the exponentiated ZZ annulus is, in fact, finite. This is done by identifying the source of the
divergence as a pair of Majorana zero modes, which are zero modes because Siegel gauge
breaks down in the presence of D-instantons [257]. In particular, this happens because the
usual U(1) gauge symmetry on the worldvolume of D-branes is a rigid U(1) symmetry in
the case of D-instantons. Reverting back to a non gauge-fixed form of the path integral then
yields meaningful results which agree with the matrix integral [257, 23].

Since the perturbation series given in (8.1) is not Borel summable, the significance of
non-perturbative instanton corrections is not a priori clear. In [23] we addressed this issue
by noting that while the coefficients Fg are all real, the normalization constant N is purely
imaginary. Therefore instanton corrections give the leading imaginary contribution to the
free energy, and this can be reliably computed using D-instanton physics. In this chapter,
we shall take a somewhat different point of view that was already present in the early papers
on this subject, for example in [252]. In the matrix model, once we express the integral over
matrices as integration over eigenvalues, the effective potential of the eigenvalues develops
various saddle points. We can then choose to integrate all the eigenvalues over the Lefschetz
thimble (generalization of steepest descent contour for multi-dimensional integrals [284, 285,
286]) of the perturbative saddle point, or we can choose to integrate all but a finite number
of eigenvalues along the Lefschetz thimble of the perturbative saddle point and distribute
the integration over the rest of the eigenvalues along the Lefschetz thimbles of various non-
perturbative saddle points. This gives a definition of the general multi-instanton contribution
to the matrix model partition function. Eventually, the complete non-perturbative result is
obtained by expressing the actual integration contour as sum over the Lefschetz thimbles
of different saddle points with appropriate weights, but this involves a separate analysis.
From this view point, the analysis of [23] involved the contribution from the integration
contour where all but one of the eigenvalues are integrated over the Lefschetz thimble of the
perturbative saddle point and one of the eigenvalues is integrated over the Lefschetz thimble
of a non-perturbative saddle point. One minor difference between these two perspectives is
that in the analysis of [23], since we focused on the full integration contour that happened to
contain only half of the Lefschetz thimble of the non-perturbative saddle point, the instanton
contribution had an extra factor of half that will be absent in the new perspective.

We believe that a similar perspective should also exist in string (field) theory, but since
at present we do not have an independent non-perturbative definition of string theory, we
cannot give a fully rigorous description of what the D-instanton contributions represent.
Nevertheless, we can offer the following limited perspective. Formally, D-branes with differ-
ent boundary conditions, as well as the perturbative vacuum, are expected to be different
classical solutions in a parent open string field theory that can be the open string field theory
on a particular D-brane configuration [266, 287, 267, 288].1 We can then regard the contri-
bution from a given set of D-instantons as the result of path integral in the open (+ closed)

1In the critical superstring theory, the role of the parent theory could be played by the open string field
theory on a set of unstable space-filling D-branes or brane-anti-brane systems. Various D-branes, including
D-instantons, as well as the perturbative vacuum, can be regarded as classical solutions in this theory [289,
290, 291].
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string field theory along the Lefschetz thimble of one of these saddle points. Irrespective of
the details, the conformal field theory approach gives a systematic procedure for computing
the contribution due to the D-instantons, and this is what is needed for comparison with the
matrix integral results.

In this article, we continue our analysis of such nonperturbative effects in the partition
function of both the matrix integral and the minimal string theory, and extend our results to
include a general configuration of instantons. By a general configuration, we mean that we
can have ℓ1 instantons of one type, ℓ2 instantons of another type, and so on. We present both
the string theory and the matrix integral computations for completeness, although various
special cases of the matrix integral computation have been discussed earlier. For a single
instanton in the one-matrix integral, the matrix integral computation has been considered
by many authors [248, 252, 255, 253, 254, 282, 245]. For a single instanton in the two-matrix
model, see [256, 260]. For ℓ identical instantons in the one-matrix model, see [283, 292]. We
review and extend these results to a general configuration of instantons in the two-matrix
integral.

We find perfect agreement between the string theory result and the matrix model result.
The structure of the results, equation (8.31) in the string theory case and equation (8.137)
in the matrix integral case, are identical. Further, the quantities appearing in these formulas
also match precisely.

To prevent the reader from getting lost in the technical details, we end this introduction
by highlighting the key qualitative ideas in our computation.

• When we place ℓ eigenvalues at an extremum of the one-eigenvalue effective potential,
the result does not vanish despite the presence of the Vandermonde determinant. This
is because we need to do an ℓ× ℓ Gaussian matrix integral exactly.

• In the matrix computation of the normalization constant for the two-matrix integral,
we need to take into account a slight subtlety that the expansion of logZ contains
terms that are proportional to N logN [256].

• We compute the matrix integral results before taking the double-scaling limit, for
which we need to take into account some 1/N corrections in the one-eigenvalue effective
potential and the perturbative free energy [282].

• On the string theory side, the cylinder between identical ZZ branes requires a string
field theory analysis to get a finite meaningful answer [257, 23]. Instead of using Siegel
gauge, one needs to do the path integral over the fields with ghost number one, and
explicitly divide by the volume of the gauge group. The rigid gauge group on the
worldvolume of ℓ ZZ branes is U(ℓ) and we need to carefully compute the proper
volume of this group [293].

• In the presence of non-identical instantons, the result depends on the cylinder connect-
ing two different ZZ branes. This cylinder is finite [249, 250] and we do not need to
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resort to any string field theory analysis. For the sake of completeness, we re-derive
these results from a different perspective.

Overview

Section 8.2 discusses the string theory computation of the multi-instanton contribution to
the partition function in (p′, p) minimal string theory. Section 8.3 discusses the computation
in one-matrix integrals that are dual to (2, p) minimal string theory. Section 8.4 discusses
the same computation in two-matrix integrals that are dual to general (p′, p) minimal string
theory. The appendices contain various technical details of the computations as well as some
background material.

8.2 String Theory Computation

The worldsheet CFT for the minimal string theory of interest consists of the (p′, p) minimal
model serving the role of a matter sector, the Liouville field and the bc-ghosts [274]. Here
p′ and p are two relatively prime integers with p′ < p. The central charge of the minimal
model and Liouville sectors is

cmatter = 1− 6(p− p′)2

pp′
, cLiouville = 1 +

6(p+ p′)2

pp′
. (8.2)

The b parameter of Liouville theory is given by b =
√
p′/p.

Minimal string theory contains ZZ-branes [143] which are akin to D-instantons. These
branes have the ZZ boundary conditions [143] for the Liouville sector and Cardy boundary
conditions [268] for the minimal model. They give rise to nonperturbative effects proportional
to exp(−Ag−1

s ), realizing the fact that closed string worldsheets can develop boundaries non-
perturbatively [247]. There are some BRST equivalences between these boundary conditions,
and an independent set of boundary conditions can be obtained by restricting to the (m,n)
ZZ boundary condition for the Liouville field [143] and the most basic Cardy state for the
minimal model (the one that only contains the identity character in the open string channel)
[260, 264]. The integers m,n are restricted to the range 1 ≤ m ≤ p′ − 1, 1 ≤ n ≤ p− 1 with
further identification under (m,n) → (p′ −m, p− n).

In general, minimal string theory is dual to the double-scaling limit of a two-matrix
integral [272, 273]. When p′ = 2, one of the matrix potentials is Gaussian and the matrix
integral can be reduced to a one-matrix integral.

Cylinder with identical boundary conditions

We begin by quoting our result from [23] about the exponential of the ZZ annulus with (1, 1)
boundary conditions on both ends. This requires un-gauge fixing back out from Siegel gauge
and using a form of the string field theory path integral with an explicit division by the
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volume of the rigid gauge group on the worldvolume of the ZZ instanton. The result takes
the form:

N1,1 = (T1,1)
− 1

2
i√
8π

(
cot2(π/p)− cot2(π/p′)

p2 − p′2

) 1
2

. (8.3)

As remarked in Section 8.1, compared to [23], we have integrated over the full steepest
descent contour, rather than only half of it.

The annulus diagram between two identical ZZ branes, both labelled by (m,n), is given
by [143]

ZLiouville
m,n (t) =

m∑
k=1

n∑
l=1

χ2k−1,2l−1(t) , with (8.4)

χk,l(t) = η(it)−1 (q−kl − 1) q−(kp−lp′)2/4pp′ , q := e−2πt . (8.5)

The contribution from the minimal model Cardy state is [268, 270]

Zmatter
1,1 (t) = η(it)−1

∞∑
j=−∞

(
q

(2pp′j+p−p′)2
4pp′ − q

(2pp′j+p+p′)2
4pp′

)
, (8.6)

and the contribution from the ghosts is η(it)2 [265]. The net result is a contribution∑m
k=1

∑n
ℓ=1 F2k−1,2l−1(t) with

Fk,l(t) := (q−kl − 1) q−(kp−lp′)2/4pp′
∞∑

j=−∞

[
q(2pp

′j+p−p′)2/4pp′ − q(2pp
′j+p+p′)2/4pp′

]
. (8.7)

The exponentiated annulus thus becomes a product

Nm,n = exp

[
m∑
k=1

n∑
l=1

∫ ∞

0

dt

2t
F2k−1,2l−1(t)

]
=

m∏
k=1

n∏
l=1

M2k−1,2l−1 (8.8)

where we have defined

Mk,l := exp

[∫ ∞

0

dt

2t
Fk,l(t)

]
. (8.9)

Note that F1,1 has a small q expansion that reads q−1 − 2 + O(q), which causes M1,1 to
be ill-defined. There are two issues: The tachyon gives the q−1 and the two fermionic zero
modes give the −2. These need to be dealt with using insights from string field theory, as
was explained in detail for the case of minimal string theory in [23].

The main identity that we need to compute M2k−1,2l−1 is∫ ∞

0

dt

2t

(
e−2πh1t − e−2πh2t

)
=

1

2
log

h2
h1
. (8.10)
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This identity is valid for h1, h2 > 0. If either h1 or h2 is negative, we can use the right
hand side to compute the analytic continuation of the left hand side. The use of analytic
continuation may be justified by noting that in string field theory the steepest descent contour
for a mode with negative h runs along the imaginary axis instead of the real axis.

When (k, l) ̸= (1, 1), we can use the analytically continued version of (8.10) to perform
the integral over t, which gives us2

Mk,l =
∏
j∈Z

[{
(2pp′j + p+ p′)2 − (kp+ lp′)2

(2pp′j + p+ p′)2 − (kp− lp′)2

}{
(2pp′j + p− p′)2 − (kp− lp′)2

(2pp′j + p− p′)2 − (kp+ lp′)2

}] 1
2

=
∏
j∈Z

[
(2pp′j + (k + 1)p+ (l + 1)p′)(2pp′j − (k − 1)p− (l − 1)p′)

(2pp′j + (k + 1)p− (l − 1)p′)(2pp′j − (k − 1)p+ (l + 1)p′)

× (2pp′j + (k + 1)p− (l + 1)p′)(2pp′j − (k − 1)p+ (l − 1)p′)

(2pp′j + (k + 1)p+ (l − 1)p′)(2pp′j − (k − 1)p− (l + 1)p′)

] 1
2

=
∏
j∈Z

[
(j + k+1

2p′
+ l+1

2p
)(j − k−1

2p′
− l−1

2p
)(j + k+1

2p′
− l+1

2p
)(j − k−1

2p′
+ l−1

2p
)

(j + k+1
2p′

− l−1
2p

)(j − k−1
2p′

+ l+1
2p

)(j + k+1
2p′

+ l−1
2p

)(j − k−1
2p′

− l+1
2p

)

] 1
2

=
∏
j∈Z

[
(j + l+1

2p
+ k+1

2p′
)(j + l−1

2p
+ k−1

2p′
)(j + l+1

2p
− k+1

2p′
)(j + l−1

2p
− k−1

2p′
)

(j + l−1
2p

− k+1
2p′

)(j + l+1
2p

− k−1
2p′

)(j + l−1
2p

+ k+1
2p′

)(j + l+1
2p

+ k−1
2p′

)

] 1
2

.

(8.11)

In the last step we have made a j → −j transformation in the second and third factors in
the numerator, and in the first and fourth factors in the denominator. Now we can use the
infinite product identity

∏
j∈Z

j + a

j + b
=
a

b

∏
j∈Z∗

1 + a
j

1 + b
j

=
a

b

∏
j∈Z+

1− a2

j2

1− b2

j2

=
sin(πa)

sin(πb)
(8.12)

to get

Mk,l =

[
sin(π( l+1

2p
+ k+1

2p′
)) sin(π( l−1

2p
+ k−1

2p′
)) sin(π( l+1

2p
− k+1

2p′
)) sin(π( l−1

2p
− k−1

2p′
))

sin(π( l−1
2p

− k+1
2p′

)) sin(π( l+1
2p

− k−1
2p′

)) sin(π( l−1
2p

+ k+1
2p′

)) sin(π( l+1
2p

+ k−1
2p′

))

] 1
2

=


(
sin2(π(l+1)

2p
)− sin2(π(k+1)

2p′

)(
sin2(π(l−1)

2p
)− sin2(π(k−1)

2p′

)
(
sin2(π(l−1)

2p
)− sin2(π(k+1)

2p′

)(
sin2(π(l+1)

2p
)− sin2(π(k−1)

2p′

)


1
2

.

(8.13)

2As discussed at the end of this section, for special values of (p′, p) we get some vanishing exponents of
q even for (k, ℓ) ̸= (1, 1). For now we shall ignore this problem and simply use the fact that the problematic
terms cancel pairwise. However we should keep in mind that for these special values of (p′, p), our string
theory results remain somewhat formal.
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Armed with this formula for Mk,l, we can see that the product formula for Nm,n in
equation (8.8) telescopes. We first do the product over all values of (2k − 1, 2l − 1) except
(1, l).

Nm,n =

(
n∏
l=1

M1,2l−1

)
m∏
k=2

n∏
l=1

M2k−1,2l−1

=

(
n∏
l=1

M1,2l−1

)
m∏
k=2

n∏
l=1


(
sin2(πl

p
)− sin2(πk

p′
)
)(

sin2(π(l−1)
p

)− sin2(π(k−1)
p′

)
)

(
sin2(π(l−1)

p
)− sin2(πk

p′
)
)(

sin2(πl
p
)− sin2(π(k−1)

p′
)
)


1
2

=

(
n∏
l=1

M1,2l−1

)
(
sin2(πn

p
)− sin2(πm

p′
)
)(

sin2( π
p′
)
)

(
sin2(πm

p′
)
)(

sin2(πn
p
)− sin2( π

p′
)
)


1
2

=

(
n∏
l=1

M1,2l−1

)[
cot2(πn

p
)− cot2(πm

p′
)

cot2(πn
p
)− cot2( π

p′
)

] 1
2

.

(8.14)

Now we compute the remaining product over l, but leaving out M1,1.

n∏
l=1

M1,2l−1 = M1,1

n∏
l=2


(
sin2( π

p′
)− sin2(πl

p
)
)(

sin2(π(l−1)
p

)
)

(
sin2(πl

p
)
)(

sin2( π
p′
)− sin2(π(l−1)

p
)
)


1
2

= M1,1

n∏
l=2

[
cot2( π

p′
)− cot2(πl

p
)

cot2( π
p′
)− cot2(π(l−1)

p
)

] 1
2

= M1,1

[
cot2( π

p′
)− cot2(πn

p
)

cot2( π
p′
)− cot2(π

p
)

] 1
2

.

(8.15)

Combining (8.14) and (8.15), we get

Nm,n = M1,1

[
cot2(πm

p′
)− cot2(πn

p
)

cot2( π
p′
)− cot2(π

p
)

] 1
2

. (8.16)

Now, we need to treat M1,1 using string field theory. Each brane, labeled by the integers
(m,n), has a worldvolume theory. There is an action for this theory, which is the standard
cubic action of open string field theory [271]. The overall coefficient in front of this action is(
g
(m,n)
o

)−2

, and the tension of the brane is related to this coupling via [266]

Tm,n =
1

2π2

(
g(m,n)o

)−2
. (8.17)

Minimal string theories are known to have branes with negative tension. We expect that
the relation (8.17) will continue to hold in that case as well if we demand that the universal
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‘tachyon condensation’ on those branes continue to give the perturbative vacuum as usual.
Note that for negative tension branes the universal tachyon has positive mass-squared and
‘tachyon condensation’ actually raises the tension instead of lowering it.

We will not repeat the steps of the string field theory analysis, but the main insight is
that the two zero modes arise due to the failure of Siegel gauge, which, in turn, is related
to the fact that the usual gauge symmetry on a D-brane worldvolume is a rigid symmetry
in the case of D-instantons. So we need to work with the string field theory path integral
over fields with ghost number one, and explicitly divide by the volume of the rigid symmetry
group. The proper volume of that group equals 2π/g

(m,n)
o = 2

√
2π2T

−1/2
m,n [257]. Following

these steps gives us the result identical to (8.3), except for the replacement of T1,1 by Tm,n:

M1,1 = (Tm,n)
− 1

2
i√
8π

(
cot2(π/p)− cot2(π/p′)

p2 − p′2

) 1
2

. (8.18)

Equation (8.16) now gives

Nm,n = (Tm,n)
− 1

2
i√
8π

(
cot2(πn/p)− cot2(πm/p′)

p2 − p′2

) 1
2

. (8.19)

Cylinder with non-identical boundary conditions

Let us extend the result to the annulus diagram with the one boundary lying on an (m,n)
ZZ brane and the other on an (m′, n′) ZZ brane. In some sense, this computation is easier
since the worldsheet computation yields a finite answer, and there is no need to resort to
string field theory. This computation has already been done [249, 250], but we reproduce
the result here using a different method.

The Liouville contribution is [143]

ZLiouville
(m,n)(m′,n′)(t) =

m+m′−1∑
k=|m−m′|+1,2

n+n′−1∑
l=|n−n′|+1,2

χk,l(t) , (8.20)

where the 2 in the subscript of the summation sign indicates that we sum over every other
value of the indices k and l. The normalization constant is given by

C(m,n),(m′,n′) = exp

[∫ ∞

0

dt

t
ZLiouville

(m,n)(m′,n′)(t)Z
Matter
(1,1) (t) η(it)2

]
. (8.21)

Note that the measure for the t-integral is now dt
t
as opposed to dt

2t
because the two sides

of the annulus are distinct. If (m,n) ̸= (m′, n′), this can be written as a product of the
contributions Mk,l given in (8.13) which telescopes
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C(m,n),(m′,n′) =
m+m′−1∏

k=|m−m′|+1,2

n+n′−1∏
l=|n−n′|+1,2

(Mk,l)
2

=
m+m′−1∏

k=|m−m′|+1,2

n+n′−1∏
l=|n−n′|+1,2

(
sin2(π(l+1)

2p
)− sin2(π(k+1)

2p′
)
)

(
sin2(π(l−1)

2p
)− sin2(π(k+1)

2p′
)
)

×

(
sin2(π(l−1)

2p
)− sin2(π(k−1)

2p′
)
)

(
sin2(π(l+1)

2p
)− sin2(π(k−1)

2p′
)
)

=

(
sin2(π(n+n

′)
2p

)− sin2(π(m+m′)
2p′

)
)(

sin2(π|n−n
′|

2p
)− sin2(π|m−m′|

2p′
)
)

(
sin2(π|n−n

′|
2p

)− sin2(π(m+m′)
2p′

)
)(

sin2(π(n+n
′)

2p
)− sin2(π|m−m′|

2p′
)
) .

(8.22)

This agrees with the result of [250] for the annulus between two different ZZ branes after
using some trigonometric identities. An important point is that the annulus between two
different ZZ branes is finite and completely well-defined. As we will see, this is the case for
matrix integrals as well.

General multi-instanton contribution to the partition function

We shall now determine the ratio of the contribution to the partition function from ℓ ZZ
branes of type (m,n) to the perturbative contribution to the partition function in the (p′, p)
minimal string theory. The ℓ = 1 case has already been discussed in [23], and our goal will
be to express the result for general ℓ in terms of quantities that already appear in the result
for ℓ = 1. For this let us express the result for ℓ = 1 as

Z(1)

Z(0)
= exp [−Tm,n] B̃m,n

g
(m,n)
o

2π
, (8.23)

where, from (8.17) and (8.19), we have

B̃m,n =
2π

g
(m,n)
o

Nm,n = iπ3/2

(
cot2(πn/p)− cot2(πm/p′)

p2 − p′2

) 1
2

. (8.24)

An important point to recall is that in (8.23) the g
(m,n)
o /(2π) term comes from division by

the volume of the U(1) gauge group and the B̃m,n factor comes from integration over the
tachyon, all the massive modes and the out-of-Siegel-gauge mode.

For ℓ instantons, the action is ℓ Tm,n. Furthermore, the open string spectrum gets re-
peated ℓ2 times. So the contribution from massive states, tachyon as well as the out-of-
Siegel-gauge mode gets repeated ℓ2 times. This produces a net factor:

exp [−ℓ Tm,n]
(
B̃m,n

)ℓ2
. (8.25)



CHAPTER 8. MULTI-INSTANTONS IN MINIMAL STRING THEORY AND IN
MATRIX INTEGRALS 138

The slightly non-trivial part of the calculation is division by the volume of the gauge
group. For this we follow the logic of [293]. We denote by θa the string field theory gauge
transformation parameters and by θ̃a the U(ℓ) gauge transformation parameters on the D-
instanton worldvolume. Then we have the relation [293]

θa = θ̃a/g(m,n)o . (8.26)

Now, using (8.26) we see that division by the gauge group volume generates a factor of

(g(m,n)o )ℓ
2

/VU(ℓ) , (8.27)

where VU(ℓ) denotes the volume of the group U(ℓ) as measured by the parameters θ̃a. The
volume VU(ℓ) in this normalization was found in [293]. The result is3

VU(ℓ) =
(2π)

1
2
(ℓ2+ℓ)

G2(ℓ+ 1)
, (8.28)

where G2(ℓ + 1) =
∏ℓ−1

i=1 i! is the Barnes-G double gamma function. In particular, in the

normalization convention for θ̃a in which (8.26) is valid, the volume of the U(1)ℓ diagonal
subgroup of U(ℓ) is (2π)ℓ. In Section 8.3 we have computed the volume of U(ℓ) using the
same normalization and reproduced the result in (8.28).

Multiplying (8.25) by (8.27) and using (8.28), we get the net normalization factor:

Z(ℓ)

Z(0)
= exp [−ℓ Tm,n] (Bm,n)

ℓ2 G2(ℓ+ 1)

(2π)
1
2
(ℓ2+ℓ)

, (8.29)

Bm,n := B̃m,n g
(m,n)
o = 2πNm,n = (Tm,n)

− 1
2 i

√
π

2

(
cot2(πn/p)− cot2(πm/p′)

p2 − p′2

) 1
2

. (8.30)

We shall see in Sections 8.3 and 8.4 that this result agrees with the matrix model result for
ℓ-instantons. For ℓ = 1 and (m,n) = (1, 1) this agreement was observed in [23].

One can now easily generalize the result to the case where we have ℓα instantons of type
α, where α takes values over different pairs (m,n). The result is:

Z{ℓα}

Z(0)
=
∏
α

{
exp [−ℓαTα] (Bα)

ℓ2α
G2(ℓα + 1)

(2π)
1
2
(ℓ2α+ℓα)

} ∏
α,β:α<β

(Cα,β)
ℓαℓβ , (8.31)

where Bα is as in (8.30) and Cα,β, given in (8.22), accounts for the contribution from the
exponential of the annulus amplitude with one boundary on the instanton of type α and the
other boundary on the instanton of type β. The exponent ℓαℓβ represents the trace over the
Chan-Paton factors on the two boundaries.

3The relation between θa and θ̃a in [293] had an extra factor of 2 compared to (8.26), but this can be
traced to an extra factor of 2 in the definition of the SFT gauge transformation parameters and in fact
cancels against a factor of 2 coming from the out-of-Siegel-gauge mode integral. So as far as the volume of
U(ℓ) is concerned, there is no difference and we can directly take the result of [293].
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Integer dimensions in the open string spectrum

Our analysis in the following sections will show that the string theory results for the instanton
partition function agree perfectly with the matrix model results. However we shall now argue
that for some class of instantons this agreement is somewhat formal.

For (m,n) type ZZ branes, the spectrum of open strings is built by the action of ghost
oscillators and matter and Liouville Virasoro generators on Liouville × matter primaries ×
ghost vacuum c1|0⟩ of dimension:

hkℓ = − 1

4pp′
{(2m− 2k − 1)p+ (2n− 2ℓ− 1)p′}2 + 1

4pp′
(p− p′)2,

0 ≤ k ≤ m− 1, 0 ≤ ℓ ≤ n− 1 .

(8.32)

If hkℓ is a negative integer for any k, ℓ, then by acting with ghost oscillators and matter
Virasoro generators we shall produce zero modes. This means that in (8.7), the power
series expansion in q will have some constant terms. This in turn will produce logarithmic
divergence in the integration over t. The finiteness of the final result (8.13) shows that the
net coefficient of the logarithmically divergent term vanishes, but in the spirit of string field
theory the correct procedure is to interpret the divergences caused by individual terms as
arising from integration over zero modes and to carry out the integration over these zero
modes carefully. Since our analysis ignores this subtlety, our results remain somewhat formal.
We shall now determine under what condition we get such additional zero modes.

The expression for hk,ℓ may be written as

hk,ℓ = − 1

4pp′
[(2m− 2k − 2)p+ (2n− 2ℓ)p′] [(2m− 2k)p+ (2n− 2ℓ− 2)p′]

= − 1

pp′
[ap+ (b+ 1)p′][(a+ 1)p+ bp′]

= −ab− (a+ 1)(b+ 1)− a(a+ 1)
p

p′
− b(b+ 1)

p′

p
, with

a := m− k − 1, b := n− ℓ− 1, 0 ≤ a ≤ m− 1, 0 ≤ b ≤ n− 1 .

(8.33)

Since p, p′ are relatively prime, in order that hk,ℓ is a negative integer, we must have

p′ | a(a+ 1), p | b(b+ 1) . (8.34)

A simple solution is a = b = 0 with hk,ℓ = −1. This corresponds to the product of the identity
fields from the matter and Liouville sector and the ghost vacuum c1|0⟩. The zero modes
produced from this sector correspond to ghost zero modes associated with the breakdown of
the Siegel gauge. These have already been taken into account in our analysis. But there are
other solutions. Here are some examples:

p′ = 2, p = 15, a = 0, b = 5,

p′ = 6, p = 55, a = 2, b = 10,

p′ = 6, p = 35, a = 2, b = 14 .

(8.35)
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For such pairs (p′, p), the string theory results remain formal for (m,n) type ZZ instantons
with m ≥ a+ 1, n ≥ b+ 1.

8.3 One-matrix integrals

The one-matrix integral (in the double-scaling limit) is dual to the (2, p) family of minimal
string theories, where p ≥ 3 is an odd integer. The computation of the normalization
constant for the case of ℓ identical instantons in the one-matrix integral was done in [283]
using a degeneration limit of the two-cut solution to the matrix integral. We will present a
simpler approach that is similar to [254, 282]. We follow the conventions of [294, 282] and
we refer to them for more details, whose notations we also use.

The quantity of interest is the integral over N ×N Hermitian matrices M :

Z(N, t) :=
1

VU(N)

∫
dM exp

[
−N
t
TrV (M)

]
(8.36)

=
1

N !

∫ N∏
i=1

dxi
2π

N∏
i,j=1:i<j

(xi − xj)
2 exp

[
−N
t

N∑
i=1

V (xi)

]
. (8.37)

As usual, the large-N limit is taken keeping the ’t Hooft coupling t fixed.4 The measure
dM is defined as the volume measure that is induced by the metric ds2 = Tr(dM2) on the
space of Hermitian matrices. We diagonalize M = Udiag(xi)U

† and change variables to
the eigenvalues xi and U . Here VU(N) denotes the volume of the U(N) group, with a local
measure that is induced on the space of U ’s by the above change of variables. The factor
(N ! (2π)N)−1 on the right hand side denotes the volume of U(1)N × SN which corresponds
to rotating the phase of each column of U and the permutations of the eigenvalues. This
subgroup is left “unfixed” when we change variables fromM to the xi’s and U . Also note that
even though we have chosen a convenient normalization of Z(N, t) in (8.36), this choice will
not affect our final result since we shall be computing the ratio of two different contributions
to Z(N, t).

The large-N limit

We consider the aforementioned integrals over an N ×N hermitian matrix M . We take the
potential to be an even polynomial, for simplicity. The planar free energy F0 is defined as

F0(t) := lim
N→∞

1

N2
t2 logZ(N, t) . (8.38)

4Hopefully, there is no confusion between using the same letter t for the ’t Hooft coupling in the matrix
integral and the open string modulus in string theory.
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We work with the one-cut solution in which the resolvent takes the form

ω0(x) := lim
N→∞

1

N

〈
Tr

1

x−M

〉
=

∫ b

−b
dy

ρ(y)

x− y
, (8.39)

The support of the eigenvalue density ρ(y) is on the interval [−b, b]. One can show that [282]

2t ω0(x) = V ′(x)−M(x)
√
x2 − b2 , (8.40)

where, if V (x) is a polynomial of degree d+1, then M(x) is a polynomial of degree d− 1. It
will be understood that

√
x2 − b2 ≃ x for large |x| on the physical sheet. Both M(x) and b

can be determined using the fact that ω0(x) = 1/x+O(x0) as x→ ∞ on the physical sheet;
they depend on t. An important relation that will be useful for us is [294]

∂

∂t
(tω0(x)) =

1√
x2 − b2

. (8.41)

The holomorphic effective potential is defined via [282]

Veff(x) := V (x)− 2t

∫ b

−b
dy ρ(y) log(y − x) = V (x)− 2t

∫ x

−Λ

dx′ ω0(x
′)− 2t log Λ , (8.42)

where the limit Λ → ∞ is understood in the last expression. Since we shall define the
double-scaling limit by zooming in near the region x ≃ −b, we have defined Veff(x) such that
it is real on the negative x-axis. A consequence of the large-N saddle point equation is that
the real part of the effective potential is constant on the interval [−b, b]. Using (8.41) we get
the derivative of the derivative of the effective potential with respect to t:

∂tVeff(x) = −2

∫ x

−Λ

dx′
1√

x′2 − b2
− 2 log Λ = −2 log

(
−x−

√
x2 − b2

2

)
. (8.43)

It follows from (8.39) that the imaginary part of ω0 in the interval [−b, b] is given by
πρ(x). On the other hand we see from (8.40) that the imaginary part of 2tω0 in the same
interval is given by M(x)

√
b2 − x2. This gives

ρ(x) =
1

2πt
M(x)

√
b2 − x2 Θ(b− |x|) . (8.44)

From (8.42) and (8.40) we also have

V ′
eff(x) = V ′(x)− 2tω0(x) =M(x)

√
x2 − b2. (8.45)

Next, we collect the following results for the planar free energy and its t-derivatives [282,
295]

F0(t) = − t

2

∫ b

−b
dx ρ(x)V (x)− t

2
Veff(−b) , (8.46)

∂tF0(t) = −Veff(−b) , (8.47)

∂2t F0(t) = 2 log
b

2
. (8.48)
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To derive (8.46), we need to use the fact that the real part of Veff is constant on the cut,
and so V (x) − 2t

∫
dy ρ(y) log |x − y| = Veff(−b) for x ∈ [−b, b]. Using this to simplify the

Coulomb-repulsion term in the on-shell action for the defining integral (8.37), we get

1

t2
F0(t) = −1

t

∫ b

−b
dxρ(x)V (x) +

∫ b

−b

∫ b

−b
dxdy ρ(x)ρ(y) log |x− y|

= − 1

2t

∫ b

−b
dxρ(x)V (x)− 1

2t
Veff(−b) ,

(8.49)

as desired. To derive (8.47), we use the relation ∂t logZ = N2

t2

∫ b
−b dx ρ(x)V (x) which follows

directly by taking a t-derivative in the definition (8.37). Using the large-N approximation
logZ = N2F0/t

2 and (8.46), we get (8.47). To derive (8.48), we take a t-derivative in (8.47)
and use (8.43), together with the fact that V ′

eff(−b) = 0 so that ∂tb does not contribute.
We also need the connected correlator of two resolvent operators [296, 297] (see, for

example, [245], for a recent exposition)

R0,2(x1, x2) :=

〈
Tr

1

x1 −M
Tr

1

x2 −M

〉
c

=
1

2(x1 − x2)2

(
x1x2 − b2√

x21 − b2
√
x22 − b2

− 1

)
.

(8.50)

We integrate this twice to get the connected correlator that we need

A0,2(x1, x2) := ⟨Tr log(x1 −M) Tr log(x2 −M)⟩c . (8.51)

We first integrate over x2 and get∫ x2

−∞
dx′2R0,2(x1, x

′
2) =

(
1

2(x2 − x1)
− 1

2(x2 − x1)

√
x22 − b2

x21 − b2

)
+

1

2
√
x21 − b2

. (8.52)

At large x1, this expression behaves as x−2
1 so we should not have any problems integrating

it. The final answer is

A0,2(x1, x2) = −1

2
log

[
2(x1x2 − b2 +

√
x21 − b2

√
x22 − b2)

(x1 +
√
x21 − b2)(x2 +

√
x22 − b2)

]
. (8.53)

Eventually, we will need the following combination, which we get using (8.43), (8.48) and
(8.53)

exp
(
∂2t F0 + ∂tVeff(x1) + ∂tVeff(x2) + 4A0,2(x1, x2)

)
=

(
b

x1x2 − b2 +
√
x21 − b2

√
x22 − b2

)2

.

(8.54)
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A more geometrical perspective

We will now recast some of the above formulas in terms of a more formal perspective, using
the language of algebraic curves. This will help us in understanding the generalization to
the two-matrix case. We follow the notations of [298].

The starting point is to define a function Y (x) via

Y (x) := V ′(x)− 2t

N

〈
Tr

1

x−M

〉
. (8.55)

Using (8.42), we note that Y (x) = V ′
eff(x). We can use a Schwinger-Dyson equation in the

defining matrix integral to show that Y (x) satisfies a polynomial equation

Y (x)2 = V ′(x)2 − 4tP (x) , where (8.56)

P (x) :=
1

N

〈
Tr

(
V ′(x)− V ′(M)

x−M

)〉
. (8.57)

Let us define the spectral curve Σ as

Σ := {(u, v) ∈ C2 | v2 − V ′(u)2 + 4tP (u) = 0} . (8.58)

We can restate the Schwinger-Dyson equation as the statement that the point (x, Y (x)) lies
on Σ, with Y (x) defined in (8.55).

If V (x) is a polynomial of degree d+1, then P (x) is a polynomial of degree d− 1, which
makes the right hand side of (8.56) a polynomial of degree 2d. Note, in particular that if
V (x) = x2/2, then P (x) = 1. If we do not insist on using an even polynomial, then we can
take d = p− 1 in order to describe the (2, p) minimal string. The “one-cut assumption” can
be rephrased as the condition that d− 1 of the roots of the polynomial V ′(x)2− 4tP (x) have
multiplicity two, so that V ′(x)2 − 4tP (x) =M(x)2(x− a)(x− b). The roots of M(x), which
are d− 1 in number, are precisely the locations of the one-eigenvalue instantons.5 Note also
that, in the immediate neighborhood of a one-eigenvalue instanton, the equation defining
the spectral curve looks like y2− c (x−x∗)

2 = 0 (for some constant c), clearly exhibiting the
“double-point” singularity [264].

If all the roots of V ′(x)2 − 4tP (x) were distinct, the spectral curve Σ would have genus
d−1, and we would have an eigenvalue density supported on d distinct arcs in the complex-x
plane. In the one-cut solution, d− 1 of these arcs have length zero, giving us d− 1 distinct
one-eigenvalue instantons, as also argued in the previous paragraph.

Let us now specialize to the one-cut case. The curve defined by (8.56) admits a uni-
formization parameter z with the projection to the x-coordinate given by

x =
a+ b

2
+ γ

(
z + z−1

)
, γ :=

b− a

4
. (8.59)

5Not all of these one-eigenvalue instantons survive in the double-scaling limit. To get the conformal
background of (2, p) minimal string theory, we can take a polynomial of degree d+ 1 = p, or we could also
take an even polynomial of degree d + 1 = p + 1. In either case, only (p − 1)/2 of the d − 1 one-eigenvalue
instantons will survive in the double-scaling limit.
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The special property of the above map is that the cut end-points x = a and x = b get
mapped to z = −1 and z = 1. These are also the points where dx/dz = 0. We need two
copies or sheets of the x-plane to cover the z-plane, the “physical sheet” is the one whose
z-image contains z = ∞, the second sheet is the one whose z-image contains z = 0. The
boundary dividing the z-image of these two sheets is the unit circle in the complex-z plane.

Further specializing to an even potential, so that b = −a > 0 and b = 2γ, we see that,
on the physical sheet we have

x = γ
(
z + z−1

)
,
√
x2 − 4γ2 = γ

(
z − z−1

)
. (8.60)

Thus, we see that many of the formulas in the previous section would be somewhat simpler
when written in terms of z. For instance, we can rewrite (8.43), (8.53) and (8.54) as

∂tVeff = −2 log(−γz) , (8.61)

A0,2(x1, x2) = − log
x1 − x2
γz1 − γz2

= log
z1z2

z1z2 − 1
, (8.62)

exp
(
∂2t F0 + ∂tVeff(x1) + ∂tVeff(x2) + 4A0,2(x1, x2)

)
=

(
z1z2

γ(z1z2 − 1)2

)2

. (8.63)

Gaussian matrix integral

The Gaussian matrix integral corresponds to the potential V (x) = x2

2
, and it is given by

[294]

ZG(ℓ) :=
1

ℓ!

∫ ℓ∏
i=1

dxi
2π

∆(x)2 exp

(
−N
t

ℓ∑
i=1

x2i
2

)
=
G2(ℓ+ 1)

(2π)ℓ/2

(
t

N

)ℓ2/2
. (8.64)

Here G2 denotes the Barnes-G double gamma function. This equation is exact, and, in
particular, is true even if ℓ is of order N . This can be derived using the fact that Hermite
polynomials are orthogonal with respect to the Gaussian measure [294]. We note that the
asymptotic expansion of ZG(N) reads [294]

logZG(N) = N2

(
1

2
log t− 3

4

)
+O(logN) . (8.65)

We identify the first term as N2F0,G(t)/t
2. In particular, note that terms of order N logN

or N are absent. This will no longer be the case in the two-matrix integral. The above
expression implies the following result that we need for our calculations

log
ZG(N − ℓ, t− tℓ/N)

ZG(N, t)
=
N2

t2
(F0,G(t− tℓ/N)− F0,G(t)) +O

(
1

N

)
. (8.66)

We can use the result (8.64) and the equality between the two integrals (8.36) and (8.37)
to check the expression (8.28) for the volume of the group U(ℓ). The gaussian integral over
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the matrix in (8.36) can be done in a trivial fashion by doing ℓ2 separate gaussian integrals
over the individual matrix elements of M . The upshot is that

ZG(ℓ) =
1

VU(ℓ)

(
2πt

N

)ℓ2/2
. (8.67)

Equating the right hand side of this equation to (8.64), we get

VU(ℓ) =
(2π)

1
2
(ℓ2+ℓ)

G2(ℓ+ 1)
. (8.68)

Matrix integral dual to (2, p) minimal string theory

Next we consider a more general class of matrix integrals where the potential is an even
polynomial, with degree p+ 1,

V (x) =
x2

2
+

(p−1)/2∑
k=1

g2k+2

2k + 2
x2k+2 . (8.69)

We focus on the case where the perturbative contribution to the free energy comes from the
so-called one-cut saddle point. The one-cut saddle point is the one where the eigenvalues of
the matrix are distributed on a single interval [−b, b]. The cut end-point b depends on t and
on all the coefficients g2k+2 appearing in the potential.

It is expected that logZ(N, t) has an asymptotic expansion in powers of N−2 [295, 299,
244]:

logZ(N, t)
?
=

∞∑
g=0

(
N

t

)2−2g

Fg(t) . (8.70)

This is almost correct. However, a more precise statement is that, in order to get this
asymptotic series, one needs to divide by the Gaussian matrix integral (the matrix integral
with all the coefficients g2k+2 set to zero), see the rigorous mathematical treatment in [300].

log
Z(N, t)

ZG(N, t)
=

∞∑
g=0

(
N

t

)2−2g

(Fg(t)− Fg,G(t)) . (8.71)

The subtlety has to do with the fact that the logZG contains terms proportional to logN
(see equation (8.65)), and every matrix integral contains these same terms. An intuitive
reason for this is that if we compute the integral via perturbation theory in the couplings
g2k+2, we get the Gaussian matrix integral as an overall factor [295].

More rigorously, consider a general potential V (M) of the form given in (8.69). Here
F0(t) differs from the result for quadratic potential, but the logarithmic terms remain un-
changed. One way to see this is as follows. Introducing the function r(ξ) satisfying the
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“string equation” [299, 294, 244]

t ξ = r(ξ) +

(p−1)/2∑
k=1

g2k+2

(
2k + 1

k + 1

)
r(ξ)k+1 , (8.72)

the planar part of the free energy can be written as

F0(t) = t2
∫ 1

0

dξ (1− ξ) log r(ξ) . (8.73)

This integral is obtained as a continuum approximation to a discrete sum [299, 294, 244],
with errors potentially given by the Euler-Maclaurin formula. Note that r(ξ) ≈ tξ as ξ → 0.
The relation r(ξ) = tξ would be exact for the Gaussian matrix integral. The integrand
in (8.73) thus behaves as log ξ near the lower limit ξ = 0. It is for this reason that the
combination

F0(t)− F0,G(t) = t2
∫ 1

0

dξ (1− ξ) log
r(ξ)

tξ
(8.74)

is better behaved and log Z(N,t)
ZG(N,t)

has a good asymptotic expansion without logarithmic terms

[299, 294, 300].
We intend to go beyond the perturbative expansion (8.70) and include effects from one-

eigenvalue instantons [246, 248]. A single eigenvalue in the matrix integral (8.37) at position
xi feels an effective potential

V (xi)−
2t

N

∑
j:j ̸=i

log |xi − xj| . (8.75)

In the large-N limit, it is useful to introduce a holomorphic effective potential defined as
[282]

Veff(x, t) := V (x)− 2t

∫ b

−b
dy ρ(y) log(y − x) , (8.76)

where ρ(y) is the eigenvalue density normalized according to
∫ b
−b dy ρ(y) = 1. The actual

potential felt by an eigenvalue is the real part of the holomorphic effective potential. For a
review of some basic properties of the effective potential and more features of the large-N
one-cut saddle point. Here, we just mention the following important relations [294], reviewed
in (8.44), (8.45),

V ′
eff(x) =M(x)

√
x2 − b2 , (8.77)

ρ(x) =
1

2πt
M(x)

√
b2 − x2 Θ(b− |x|) , (8.78)
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where Θ(x) is the Heaviside step function and M(x) is a polynomial determined from the
potential by the requirement that the resolvent ω0(x) =

1
2t
(V ′(x)−M(x)

√
x2 − b2) behaves

as 1/x as x→ ∞ on the physical x-sheet.
The one-eigenvalue instantons correspond to the extrema of Veff(x) with x being outside

the interval [−b, b]. Once we have identified these extrema {xα}, we can define a general
ℓ-instanton partition function Z{ℓα}(N, t) as follows. Let {ℓα} be a finite sequence of non-
negative integers (all being O(N0), not all zero) satisfying

∑
α ℓα = ℓ. Then Z{ℓα}(N, t)

is defined as the contribution to the integral (8.37) where a number ℓα of eigenvalues are
integrated along the steepest descent contour of the particular extremum xα and (N−ℓ) of the
eigenvalues are integrated along the interval [−b, b] corresponding to the perturbative regime.
The quantity Z(0) denotes the contribution to the matrix integral where the integration range
of each eigenvalue extends over the perturbatively allowed region [−b, b]. Once we have
chosen a particular integration contour for the xi’s in (8.37), we can express this contour as
a weighted sum of the steepest descent contours. Accordingly, the partition function is given
by a weighted sum of the Z{ℓα}’s.

Unlike [257, 23, 245], in this chapter we will not be careful about the defining contour for
the eigenvalues for the full partition function, and what linear combination of the steepest
descent contours is homologous to the defining contour. In particular, the question of the
existence of the double-scaling limit, at finite values of the double-scaled coupling constant,
is beyond the scope of this work. Hence, we will simply compute Z{ℓα} by integrating the
eigenvalues along the full steepest descent contours.

Identical instantons

We will consider the most general instanton configuration in the next subsection, but for now
we consider ℓ identical instantons. To be more precise, we integrate ℓ eigenvalues along the
steepest descent contour corresponding to the extremum x⋆ of the one-eigenvalue effective

potential, and we want to compute the ratio Z(ℓ)(N,t)

Z(0)(N,t)
.

The definition of Veff(x, t) given in (8.76) was in the strict large-N limit. Since we want
to compute the answer including the one-loop correction, we need to carefully keep track of
1/N corrections. For this we need to take into account the fact that the original cut now
only contains N−ℓ eigenvalues. Since the overall coefficient in front of the potential remains
N/t, if we want to interpret the second term in (8.76) as an expectation value in the matrix
model, this integral over N − ℓ eigenvalues must be evaluated at a shifted value of the ’t
Hooft coupling, namely t′ = t− tℓ/N . This is so that N/t can be rewritten as (N − ℓ)/t′.

An important remark is that we need to properly treat the Vandermonde repulsion be-
tween the ℓ eigenvalues. If ℓ > 1 and we naively substitute x⋆ for each of the ℓ eigenvalues,
the result will vanish. This means that there is an ℓ × ℓ Gaussian matrix integral that we
need to compute exactly.

Separating out ℓ eigenvalues to be placed near x⋆ in the integral (8.37), we get the
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expression

Z(ℓ)(N, t) =
1

N !

(
N

ℓ

) ∫
C0

N−ℓ∏
i=1

dxi
2π

N−ℓ∏
i,j=1
i<j

(xi − xj)
2 exp

[
−N
t

N−ℓ∑
i=1

V (xi)

]

×
∫
C1

N∏
i=N−ℓ+1

dxi
2π

N∏
i,j=N−ℓ+1

i<j

(xi − xj)
2 exp

[
− N

t

N∑
i=N−ℓ+1

Veff(xi, t− tℓ/N)

+ 2
N∑

i=N−ℓ+1

N∑
j=N−ℓ+1

A0,2(xi, xj, t− tℓ/N) + · · ·
]

(8.79)

where

Veff(x, t− tℓ/N)) = V (x)− 2t

N

〈
N−ℓ∑
j=1

ln(x− xj)

〉
, (8.80)

A0,2(x, x
′, t− tℓ/N) =

N−ℓ∑
i=1

N−ℓ∑
j=1

⟨ln(x− xi) ln(x
′ − xj)⟩c . (8.81)

We used the fact that ⟨eX⟩ = e⟨X⟩+ 1
2
⟨X2⟩c+.... Here C0 is the perturbatively allowed range for

the eigenvalues and C1 is the steepest descent contour of the effective potential around the
non-perturbative saddle point. In the large-N limit with t fixed, the quantities Veff and A0,2

are of order unity with corrections of order 1/N2. The quantity A0,2 denotes the connected
two-point function of the Vandermonde potential exerted by the N − ℓ eigenvalues. It
contributes at the same order as the one-loop Gaussian integral around the non-perturbative
saddle point.

Recall that x⋆ denote the location of an extremum of Veff(x, t) and let us denote the
derivative with respect to x with a prime.6 We now approximate the term Veff(xi, t− ℓt/N)
appearing in (8.79) as follows

Veff(xi, t− ℓt/N) ≈ Veff(x
⋆, t) +

1

2
V ′′
eff(x

⋆, t) (xi − x⋆)2 − ℓt

N
∂tVeff(x

⋆, t) . (8.82)

Since we are interested in the answer up to one-loop order, we need to keep the last term
[282]. We also replaced xi with x

⋆ in this last term, since we will be evaluating the xi integral
by saddle point. As far as the term A0,2(x, x

′, t− tℓ/N) is concerned, we can replace it with
A0,2(x

⋆, x⋆, t).

6The quantity x⋆ depends on t and so the shift in the argument t→ t− ℓt/N causes a shift of order 1/N
in the value of x⋆. However the effect of this is suppressed by inverse powers of 1/N compared to the terms
we keep. Hence we shall ignore this effect.
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Using these ingredients, we get

Z(ℓ)(N, t) = Z(0)(N − ℓ, t− tℓ/N) exp

[
−N
t
ℓ Veff(x

⋆, t) + ℓ2∂tVeff(x
⋆, t) + 2ℓ2A0,2(x

⋆, x⋆, t)

]
× 1

ℓ!

∫
C1

N∏
i=N−ℓ+1

dxi
2π

N∏
i<j

i,j=N−ℓ+1

(xi − xj)
2 exp

[
−N
t
V ′′
eff(x

⋆, t)
N∑

i=N−ℓ+1

1

2
(xi − x⋆)2

]
.

(8.83)

We now recognize the second line as a Gaussian matrix integral over ℓ × ℓ matrices, so we

can use (8.64). Writing Z(0)(N−ℓ, t− tℓ/N) ≈ exp
(
N2

t2
F0(t− tℓ/N)

)
and Taylor expanding

F0(t− tℓ/N) to second order we get7

Z(ℓ)(N, t)

Z(0)(N, t)
= exp

[
−N
t
ℓA
]
Bℓ2 G2(ℓ+ 1)

(2π)
1
2
(ℓ2+ℓ)

, (8.84)

where we have defined

A := Veff(x
⋆, t) + ∂tF0(t) , (8.85)

B := exp

[
1

2
∂2t F0(t) + ∂tVeff(x

⋆, t) + 2A0,2(x
⋆, x⋆, t)

](
2πt

NV ′′
eff(x

⋆)

) 1
2

, (8.86)

and G2(ℓ + 1) =
∏ℓ

i=1 i
ℓ−i is the Barnes-G double gamma function. The quantity NA/t is

interpreted as the tension of a single instanton. The exponential expression appearing in the
quantity B turns out to have a simple formula in terms of the perturbative one-cut saddle
point, see (8.54). As described in (8.47), the quantity ∂tF0(t) is equal to minus the real part
of the effective potential on the cut. This implies that

A =

∫ x⋆

−b
dxV ′

eff(x) . (8.87)

We shall see that the quantities NA/t and B stay finite in the double-scaling limit.

General multi-instanton configuration

Suppose we integrate ℓ1 of the eigenvalues along the steepest descent contour of the extremum
x⋆1 (of the one-eigenvalue effective potential), ℓ2 of the eigenvalues along the steepest descent
contour of the extremum x⋆2, and so on. Let ℓ =

∑
α ℓα denote the total number of eigenvalues

7As discussed below (8.71), logZ(0)(N, t) has logarithmic terms that invalidate the expansion in power
series in N−2. However these logarithmic terms are the same as those that appear in the gaussian ma-
trix integral ZG(N, t). We show in (8.66) that the effect of the logarithmic terms drops out in the ratio
ZG(N−ℓ,t−tℓ/N)

ZG(N,t) , and hence it also drops out in the ratio Z(0)(N−ℓ,t−tℓ/N)
Z(0)(N,t)

.
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that have been pulled out of the original cut, which now contains N − ℓ eigenvalues. First
of all, we get a factor like the one on the right hand side of (8.84) for each α. Besides this,
we get four new types of contributions involving each pair (α, β) for α ̸= β:

• The term ℓ2 ∂2t F0 now contains terms proportional to ℓαℓβ ∂
2
t F0.

• There will be a contribution proportional to ℓαℓβ A0,2(x
⋆
α, x

⋆
β, t) with A0,2 given by

the connected correlator (8.81) of the Vandermonde potential exerted by the N − ℓ
eigenvalues in the cut [−b, b].

• For each x⋆α, the last term of (8.82) is still proportional to ℓ. Therefore, in (8.83) it
generates a term proportional to ℓ ℓα ∂tVeff(x

⋆
α, t). After writing ℓ =

∑
β ℓβ this leads

to terms of the form ℓαℓβ ∂tVeff(x
⋆
α, t).

• There are an ℓαℓβ number of factors of (x⋆α − x⋆β)
2 in the Vandermonde determinant.

Keeping these four things in mind and repeating the steps in the previous subsection, we get

Z{ℓα}(N, t)

Z(0)(N, t)
= exp

[
−N
t

∑
α

ℓαAα

] ∏
α

{
(Bα) ℓ

2
α
G2(ℓα + 1)

(2π)
1
2
(ℓ2α+ℓα)

} ∏
α<β

(Cα,β)
ℓαℓβ , (8.88)

where

Aα := Veff(x
⋆
α, t) + ∂tF0(t) =

∫ x⋆α

−b
dxV ′

eff(x) , (8.89)

Bα := exp

[
1

2
∂2t F0(t) + ∂tVeff(x

⋆
α, t) + 2A0,2(x

⋆
α, x

⋆
α, t)

](
2πt

NV ′′
eff(x

⋆
α)

) 1
2

, (8.90)

Cα,β := (x⋆α − x⋆β)
2 exp

[
∂2t F0(t) + ∂tVeff(x

⋆
α, t) + ∂tVeff(x

⋆
β, t) + 4A0,2(x

⋆
α, x

⋆
β, t)

]
. (8.91)

The quantities Aα and Bα are the same as in (8.85) and (8.86) with x⋆ replaced by x⋆α, but
we have reproduced them here for completeness.

The quantities Bα and Cα,β turn out to have a simple formula in terms of the perturbative
one-cut saddle point, even outside of the double-scaling limit [254, 282]. Using (8.54) we get,

Bα =
b

2((x⋆α)
2 − b2)

(
2πt

NV ′′
eff(x

⋆
α)

) 1
2

, (8.92)

Cα,β = (x⋆α − x⋆β)
2

 b

x⋆αx
⋆
β − b2 +

√
(x⋆α)

2 − b2
√

(x⋆β)
2 − b2

2

. (8.93)



CHAPTER 8. MULTI-INSTANTONS IN MINIMAL STRING THEORY AND IN
MATRIX INTEGRALS 151

The double-scaling limit

The double-scaling limit refers to a procedure where we tune the parameters of the potential
and simultaneously zoom in near an edge of the eigenvalue spectrum, say the left one,
such that the Feynman diagrams dominating the partition sum resemble continuum surfaces
[244]. We define the energy variable E via x = −b + εE, and also introduce the variable
z via E = −z2. The double-scaling limit is taken by sending ε to zero and N to infinity
keeping the combination 8

eS0 := Nε
p
2
+1 (8.94)

fixed. At the same time, we tune the coefficients of the polynomial potential V in a suitably
analytic fashion such that Nρ(x) dx approaches eS0 dE times a finite function of E in this
limit. This function of E is supported on the entire positive real axis. There is some freedom
in this process. We want to focus on the so-called “conformal background” [263] of minimal
string theory, where only the cosmological constant operator is turned on. In this case the
density of states ρ(E) takes the form:9

ρ(E) = ε
p
2
+1 1

π
sinh

(
p arcsinh

√
E
)
+O

(
ε

p
2
+2
)
. (8.95)

In this limit, e−S0 becomes the genus expansion parameter and the perturbative contribution
to the partition function has an expansion in even powers of e−S0 . The precise relation
between e−S0 and the string coupling gs may be found by comparing the matrix model
results with the string theory results. From now on, we shall use E instead of x as the
argument of Veff and ρ, and by an abuse of notation, we will denote derivatives with respect
to E also by a prime.

From (8.77) and (8.78) we see that the analytic continuation of 2πitρ(E) from the interval
[−b, b] on the real line to the complex plane gives V ′

eff(E). Using the form of ρ(E) given in
(8.95) we get the effective potential

Veff(E) = −t ε
p
2
+1

[
1

p+ 2
sin
(
(p+ 2) arcsin

√
−E
)
− 1

p− 2
sin
(
(p− 2) arcsin

√
−E
)]

.

(8.96)

We have chosen the additive constant in the potential such that Veff vanishes at E = 0. Note
that Veff(E) introduced here differs from that of [23] by an overall normalization factor. See
figure 8.1 for a plot of Veff(E) for the case p = 7.

8In the z coordinate introduced in (8.60), the double-scaling limit is defined by zooming in near x = −2γ
or z = −1. Using the relation x = −2γ + γ(z+1)2 + . . . in the neighborhood of z = −1, and x = −2γ + εE,
we see that in this limit z ≃ −1 +

√
−εE/γ.

9See, for example, [245] for a recent discussion on this and [258] for explicit potentials that lead to the
above density of states in the double-scaling limit. Compared to the conventions of [23], we have set the
constant κ appearing there to be κ = 1/2.



CHAPTER 8. MULTI-INSTANTONS IN MINIMAL STRING THEORY AND IN
MATRIX INTEGRALS 152

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

E

V
ef
f

Figure 8.1: A plot of Veff(E) ε
−1− p

2 in equation (8.96) for the case p = 7. We have set t = 1.
In general there are p−1

2
extrema in the forbidden region, given by (8.97). These extrema are

in a one-to-one correspondence with the (1, n) ZZ branes in the (2, p) minimal string theory.
The extremum closest to E = 0 is always a maximum and corresponds to the simplest (1, 1)
ZZ brane.

Since the zeros of V ′
eff(E) on the negative real axis give the locations of the instanton, we

conclude that the instantons are located at

E⋆
n = −

(
sin

nπ

p

)2

, n ∈
{
1, . . . ,

p− 1

2

}
. (8.97)

The index n is the same as the one that appears in the label (1, n) for the ZZ branes in the
(2, p) minimal string (see more on this below). From (8.97) and (8.96) we conclude that

Veff(E
⋆
n) = (−1)n+1 t ε

p
2
+12p sin(2πn/p)

p2 − 4
, (8.98)

V ′′
eff(E

⋆
n) = (−1)n t ε

p
2
+1 2p

sin(2πn/p)
. (8.99)

It follows from (8.88), (8.89) and the relation Veff(0) = 0, that the tension Tα of the α-th
ZZ brane is given by,

Tα =
N

t
Aα =

N

t
Veff(E

⋆
α) = (−1)n+1 eS0

2p sin(2πn/p)

p2 − 4
for α = (1, n) . (8.100)

Since the right hand side does not involve N or ε, this has finite double-scaling limit. In
order to compare this with the string theory result, we need to find the explicit relation
between eS0 and gs via perturbative computation. We shall not attempt to do this here.
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Instead we shall follow [23] and express our result for the other quantities in terms of the
tension of the instanton given in (8.100).

Next, we need to work out the quantities Bα and Cα,β in the double-scaling limit. The
expression for Bα before taking this limit is given in (8.92). In the double-scaling limit,
the first factor in (8.92) equals 1

−4εE
. This ε in the denominator combines with the ∂2xVeff

appearing in (8.92) to convert the ∂2x into an ∂2E. Thus, the combination 1
ε2

t
N ∂2xVeff(x

⋆)
equals

t
N∂2EVeff(E

⋆)
. This gives

Bα =
1

−4E⋆
α

(
2πt

NV ′′
eff(E

⋆
α)

) 1
2

=
1

4 sin2(nπ/p)

(
(−1)n π sin(2πn/p)

eS0p

)1/2

for α = (1, n).

(8.101)
There are no subtleties in taking the double-scaling limit for Cα,β, since the expression given
in (8.93) remains finite in this limit. The final result takes the form:

Cα,β =

(√
−E⋆

α −
√

−E⋆
β√

−E⋆
α +

√
−E⋆

β

)2

⇒ C(1,n),(1,n′) =

(
sin nπ

p
− sin n′π

p

sin nπ
p
+ sin n′π

p

)2

. (8.102)

To compare these with the string theory results, we note that (8.88) has the same struc-
ture as (8.31) with Bα replaced by Bα and Cα,β replaced by Cα,β. Therefore we need to
compare Bα with Bα and Cα,β with Cα,β. First, we see from (8.22) with p′ = 2, m = m′ = 1
that,

C(1,n),(1,n′) =
cos2

(
π(n+n′)

2p

)
sin2

(
π|n−n′|

2p

)
cos2

(
π|n−n′|

2p

)
sin2

(
π(n+n′)

2p

) = C(1,n),(1,n′). (8.103)

Next, using (8.100), we can express (8.101) as

B1,n = (T1,n)
− 1

2 i

√
π

2

cot(πn/p)√
p2 − 4

. (8.104)

On the other hand, from (8.30) with p′ = 2, m = 1, we get

B1,n = (T1,n)
− 1

2 i

√
π

2

(
cot2(πn/p)

p2 − 4

) 1
2

. (8.105)

Therefore, we see that there is perfect agreement between the result in (2, p) minimal string
theory and the double-scaled one-matrix model.

We remind the reader that the result presented here for BT 1
2 is twice that quoted in our

previous work [23], which only dealt with the case n = 1. This is because we are integrating
over the full steepest descent contour of the saddle point, and we are not worrying about what
linear combination of the steepest descent contours is homologous to the defining contour.

Let us remark that we can perform a consistency check of (8.100) by comparing the
dependence on n to that obtained from the string theory computation. In string theory, the
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tension of the ZZ branes can be obtained, up to an overall proportionality constant, using the
formulas for the boundary state wavefunction Ψ1,n(P ) [143]. Indeed, the entire dependence
on n is given by a multiplicative factor sinh(2πnbP ) (see equation (5.15) of [143]). Here P
represents the Liouville momentum, which labels the exponential Liouville operators e2αϕ

with α = (b+ b−1)/2+ iP . Therefore we set P to −i(b− b−1)/2 in order to get the one-point
function of the cosmological constant operator e2bϕ [259, 250]. Since ⟨e2bϕ⟩ = ∂µZdisk and
Zdisk is proportional to the tension of the ZZ brane, we see that T1,n ∝ sinh(2πnbP ) with

P = −i(b− b−1)/2. Using the fact that b =
√

2/p, we get T1,n ∝ (−1)n−1 sin(2πn/p). This
reproduces the n-dependence of the matrix integral formula (8.100).

8.4 Two-matrix integrals

The general (p′, p) minimal string theory is dual to a matrix integral over two matrices [272,
273]. Denoting the matrices by M1 and M2, the action is N

t
Tr(V1(M1) + V2(M2)−M1M2).

Here M1 and M2 are Hermitian matrices, both of size N × N . Using the Harishchandra-
Itzykson-Zuber formula [301, 302, 303], it is possible to reduce this integral, up to an overall
constant, to the following integral over the eigenvalues

Z(N, t) :=
1

N !

∫ N∏
i=1

dxidyi
2π

∆(x)∆(y) exp

[
−N
t

N∑
i=1

(V1(xi) + V2(yi)− xiyi)

]
. (8.106)

Here, the xi are the eigenvalues of M1 and yi are the eigenvalues of M2. Note that there is
only one power of the Vandermonde determinant for each set of eigenvalues.

The two-matrix Gaussian integral is given by [304]

ZG,2(ℓ) :=
1

ℓ!

∫ ℓ∏
i=1

dxidyi
2π

∆(x)∆(y) exp

(
−N
t

ℓ∑
i=1

(
c1x

2
i

2
+
c2y

2
i

2
− c3xiyi

))
(8.107)

= G2(ℓ+ 1)

(
t

N

) 1
2
(ℓ2+ℓ)

(c1c2 − c23)
− 1

2
ℓ2c

1
2
(ℓ2−ℓ)

3 . (8.108)

The lemma in the appendix of [304] allows us to reduce this integral to the one-matrix
Gaussian integral. Alternatively, one can derive it using two-matrix orthogonal polynomial
technology; the orthogonal polynomials are still the Hermite polynomials. Again, this ex-
pression is exact and can be used for ℓ of order N . The asymptotic expansion of ZG,2(N)
reads

logZG,2(N) = N2

(
1

2
log t− 1

2
log

c1c2 − c23
c3

− 3

4

)
− 1

2
N logN +

1

2
N log

2πt

c3
+O(logN) .

(8.109)
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We identify the first term on the right hand side as N2F0,G(t)/t
2. Note the presence of terms

of order N logN and N . Using the above expression we see that

log
ZG,2(N − ℓ, t− tℓ/N)

ZG,2(N, t)
=
N2

t2
(F0,G(t− tℓ/N)− F0,G(t))−

ℓ

2
log

2πt

c3N
+O

(
1

N

)
.

(8.110)

Comparing this to (8.66), we see the presence of an extra logarithmic term [256], which will
be important in our analysis.

Now let us consider more general class of matrix integrals obtained by varying. While
doing this, we choose to keep the coefficients of the quadratic terms fixed. For much the
same reasons as discussed in Section 8.3, we obtain a nice asymptotic expansion in powers
of 1/N2 after dividing by the Gaussian matrix integral

log
Z(N, t)

ZG(N, t)
=

∞∑
g=0

N2−2g(Fg(t)− Fg,G(t)) . (8.111)

We are interested in corrections to logZ that are of order e−N . A single instanton would
correspond to placing one pair (xi, yi) at an extremum of the effective potential that this
pair feels. Explicitly, from (8.106), this effective potential is

Veff(xi, yi) := V1(xi)−
t

N

∑
j:j ̸=i

log(xi − xj) + V2(yi)−
t

N

∑
j:j ̸=i

log(yi − yj)− xiyi . (8.112)

Reference [256] obtained the normalization constant for a single instanton in the two-
matrix integral. We shall now generalize this to the case of multiple instantons, possibly
of different types. Our results at the intermediate stages will differ from that of [256] since
we express our results in terms of correlation functions in the theory with N eigenvalues
while [256] expresses the results in terms of correlation functions in the theory with (N − 1)
eigenvalues [282].

The large-N limit

Recall that, we have defined the two-matrix integral via

Z(N, t) :=
1

N !

∫ N∏
i=1

dxidyi
2π

∆(x)∆(y) exp

[
−N
t

N∑
i=1

(V1(xi) + V2(yi)− xiyi)

]
. (8.113)

Up to an overall normalization, this integral is proportional to

Z(N, t) ∝
∫

dM1dM2 exp

[
−N
t
Tr (V1(M1) + V2(M2)−M1M2)

]
, (8.114)
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via the Harishchandra-Itzykson-Zuber formula [301, 302, 303]. In order to get to the (p′, p)
minimal string, we can take V1 to be a polynomial of degree p and V2 to be a polynomial of
degree p′ [273]. To get back the one-matrix case, one can set p′ = 2 and integrate out the
matrix M2.

We define two functions Y (x) and X(y) as follows [305]

Y (x) := V ′
1(x)−

t

N

〈
Tr

1

x−M1

〉
, (8.115)

X(y) := V ′
2(y)−

t

N

〈
Tr

1

y −M2

〉
. (8.116)

Note that in terms of V1,eff(x) and V2,eff(y) defined in (8.124) and (8.125), we have

V ′
1,eff(x) = Y (x), V ′

2,eff(y) = X(y) . (8.117)

We have suppressed the dependence on t, with the understanding that both sides will have
the same dependence on t. Let us define the spectral curve Σ via

Σ := {(u, v) ∈ C2 | (V ′
1(u)− v)(V ′

2(v)− u)− P (u, v) + t = 0} , where (8.118)

P (u, v) :=
t

N

〈
Tr

(
V ′
1(u)− V ′

1(M1)

u−M1

V ′
2(v)− V ′

2(M2)

v −M2

)〉
. (8.119)

It can be shown, via Schwinger-Dyson equations, that both the points (x, Y (x)) and (X(y), y)
lie on the spectral curve Σ [305]. Generically, we can use either x or y as the local coordinate
on Σ. The projection to x ceases to be a good coordinate when dY (x)/dx = ∞. Typically,
this will happen when Y (x) has a square root behavior near some x. A similar remark holds
for projection to y.

Like in the one-matrix case, we work with the case when Σ has genus zero (apart from
the singular points to be discussed below). Denoting the uniformization parameter by z ∈
C ∪ {∞}, we can coordinatize Σ as [305, 306]

(X (z),Y(z)) ∈ Σ , (8.120)

X (z) = γz +

p′−1∑
k=0

αk z
−k , Y(z) = γz−1 +

p−1∑
k=0

βk z
k . (8.121)

This means that for given x, we can find a z such that x = X (z), Y (x) = Y(z), and for
given y, we can find a z′ such that X(y) = X (z′), y = Y(z′). The map X : z 7→ x is,
generically, a p′-to-1 map except at p′ values of z where dX (z)/dz = 0. This means that we
need p′ number of x-sheets to cover the z-plane, or, equivalently, to cover Σ. The “physical”
x-sheet contains the point z = ∞, near which the resolvent 1

N
⟨Tr 1

x−M1
⟩ behaves as 1

x
. The

boundary of the physical x-sheet on Σ is where the eigenvalues of M1 are distributed. Of
course, analogous comments apply to the map Y(z) : z 7→ y, with p′ replaced by p. The
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important distinction is that the physical y-sheet contains the point z = 0, near which the
resolvent 1

N
⟨Tr 1

y−M2
⟩ behaves as 1

y
.

If y = Y (x), then (x, y) ∈ Σ. On the other hand, (X(y), y) is also on Σ. However it does
not follow from this that x = X(y), since in general (x, y) and (X(y), y) belong to different
Riemann sheets. Exceptions are the “one-eigenvalue instantons” since it follows from (8.129)
and (8.117) that they are located at the points (x⋆, y⋆) satisfying

x⋆ = X(y⋆), y⋆ = Y (x⋆) . (8.122)

It then follows that if X (z⋆) = x⋆, then Y(z⋆) = Y (x⋆) = y⋆. These represent ZZ branes
in minimal string theory after taking the double-scaling limit [264]. However, in the neigh-
borhood of (x⋆, y⋆) the points (x, Y (x)) and (X(y), y) belong to different branches and there
will exist two distinct values of z, call them z⋆(1) and z⋆(2), such that

(x⋆, y⋆) = (X (z⋆(1)) ,Y(z⋆(1))) = (X (z⋆(2)) ,Y(z⋆(2))) . (8.123)

In the neighborhood of these points the equation defining Σ looks like α(x−x⋆)2−β(y−y⋆)2 =
0 and the surface is singular.10

Identical instantons

In this section, we shall analyze the contribution due to ℓ instantons of the same type. The
main idea is similar to that in Section 8.3. We pull out ℓ pairs (xi, yi) and place them at one
particular extremum of Veff(xi, yi). Let us denote this extremum by (x⋆, y⋆).

We define the following quantities

V1,eff(x, t− tℓ/N)) = V1(x)−
t

N

〈
N−ℓ∑
j=1

ln(x− xj)

〉
, (8.124)

V2,eff(y, t− tℓ/N)) = V2(y)−
t

N

〈
N−ℓ∑
j=1

ln(y − yj)

〉
, (8.125)

10As a simple example, consider the “figure-8” curve defined by x4 = x2 − y2, embedded in R2 and
parametrized as (x, y) = (sin t, sin t cos t). The point (0, 0) is a double point, and corresponds to both t = 0
and t = π. In the discussion of the one-matrix case, the two values of the uniformizing coordinate at the
instanton locations are related as z⋆(2) = 1/z⋆(1).
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and also the connected correlators of the Vandermonde potentials

A
(1)
0,2(x, x

′, t− tℓ/N) =
N−ℓ∑
i=1

N−ℓ∑
j=1

⟨ln(x− xi) ln(x
′ − xj)⟩c , (8.126)

A
(2)
0,2(y, y

′, t− tℓ/N) =
N−ℓ∑
i=1

N−ℓ∑
j=1

⟨ln(y − yi) ln(y
′ − yj)⟩c , (8.127)

A
(3)
0,2(x, y, t− tℓ/N) =

N−ℓ∑
i=1

N−ℓ∑
j=1

⟨ln(x− xi) ln(y − yj)⟩c . (8.128)

It follows from (8.112)-(8.125) that (x⋆, y⋆) are determined from the equations

V ′
1,eff(x

⋆, t) = y⋆, V ′
2,eff(y

⋆, t) = x⋆ , (8.129)

up to corrections that do not affect the result to the order of 1/N expansion that we are
interested in.

Qualitatively, we have the same terms as in the one-matrix case: since there are N − ℓ
pairs of eigenvalues that are integrated on the perturbative contour, and the coefficient N/t
does not change, the ’t Hooft coupling is shifted to t− ℓt/N . This contributes t-derivatives
of F0, V1,eff and V2,eff. We also get the connected correlators of the Vandermonde potentials.
There is an ℓ× ℓ two-matrix Gaussian integral that one needs to do exactly. So we have

Z(ℓ)(N, t) =
1

N !

(
N

ℓ

) ∫
C0

N−ℓ∏
i=1

dxidyi
2π

N−ℓ∏
i<j
i,j=1

(xi − xj)(yi − yj)

exp

[
−N
t

N−ℓ∑
i=1

{V1(xi) + V2(yi)− xiyi}

]

×
∫
C1

N∏
i=N−ℓ+1

dxidyi
2π

N∏
i<j

i,j=N−ℓ+1

(xi − xj)(yi − yj)

exp

[
− N

t

N∑
i=N−ℓ+1

{V1,eff(xi, t− tℓ/N) + V2,eff(yi, t− tℓ/N)− xiyi}

+
1

2

N∑
i,j=N−ℓ+1

{A(1)
0,2(xi, xj, t) + A

(2)
0,2(yi, yj, t) + 2A

(3)
0,2(xi, yj, t)}+ · · ·

]
.

(8.130)

Here C0 is the perturbatively allowed range for the eigenvalues and C1 is the Lefschetz thimble
of the effective potential around the non-perturbative saddle point. Just as in the one-matrix
case (8.82), we need to Taylor expand V1,eff(xi, t−tℓ/N) and V2,eff(yi, t−tℓ/N) to first order in
ℓ/N , while the shift in t can be ignored in the connected correlators; indeed we have already
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replaced t− tℓ/N with t for these terms. Also, we need to Taylor expand V1,eff(xi, t− tℓ/N)
and V2,eff(yi, t− tℓ/N) to second order in xi − x⋆ and yi − y⋆, while we can replace xi and yi
by their saddle point values in the connected correlators. The integral over C1 now forms a
two-matrix Gaussian integral that is given in (8.108). Thus, we get

Z(ℓ)(N, t) = Z(0)(N − ℓ, t− tℓ/N)

× exp

[
ℓ2

2

(
A

(1)
0,2(x

⋆, x⋆, t) + A
(2)
0,2(y

⋆, y⋆, t) + 2A
(3)
0,2(x

⋆, y⋆, t)
)]

× exp
[
ℓ2 (∂tV1,eff(x

⋆, t) + ∂tV2,eff(y
⋆, t))

]
× exp

[
−N
t
ℓ Veff(x

⋆, y⋆)

]
×G2(ℓ+ 1)

(
t

N

) 1
2
(ℓ2+ℓ) (

V ′′
1,eff(x

⋆, t)V ′′
2,eff(y

⋆, t)− 1
)−ℓ2/2

.

(8.131)

Now we would like to compute the ratio Z(ℓ)(N,t)

Z(0)(N,t)
. From the above equation we see that this

involves the ratio Z(0)(N−ℓ,t−tℓ/N)

Z(0)(N,t)
. The main novelty as compared to the one-matrix case is

that we need to worry about the division by the Gaussian matrix integral. As we remarked

in (8.111), it is Z(0)(N,t)
ZG,2(N,t)

that has a nice asymptotic expansion, and from (8.110) we see that

log
ZG,2(N − ℓ, t− tℓ/N)

ZG,2(N, t)
=
N2

t2
(F0,G(t− tℓ/N)− F0,G(t))−

ℓ

2
log

2πt

N
+O

(
1

N

)
.

(8.132)

We want to emphasize the term − ℓ
2
log 2πt

N
in this equation, which is novel in the two-matrix

case.11 This means that in the large-N limit we should write

Z(0)(N − ℓ, t− tℓ/N)

Z(0)(N, t)
= exp

[
N2

t2

(
− ℓt

N
∂tF0(t) +

1

2

ℓ2t2

N2
∂2t F0(t)

)] (
N

2πt

) ℓ
2

. (8.133)

The multiplicative power of N ℓ/2 is important since it combines with N− 1
2
(ℓ2+ℓ) in (8.131) to

give N−ℓ2/2. It is important to get this power, otherwise the answer would not agree with
the string theory result.

Thus, the final result is

Z(ℓ)(N, t)

Z(0)(N, t)
= exp

[
−N
t
ℓA
]
Bℓ2 G2(ℓ+ 1)

(2π)
1
2
(ℓ2+ℓ)

(8.134)

11We can see from (8.66) that the correction is order 1/N in the one-matrix case, and hence not important
to the order that we are working at. This was discussed in footnote 7.
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with the quantities A and B defined as

A := Veff(x
⋆, y⋆) + ∂tF0(t) , (8.135)

B :=

(
2πt

N

1

V ′′
1,eff(x

⋆, t)V ′′
2,eff(y

⋆, t)− 1

) 1
2

exp

[
1

2
∂2t F0(t) + ∂tV1,eff(x

⋆, t)

+∂tV2,eff(y
⋆, t) +

1

2
A

(1)
0,2(x

⋆, x⋆, t) +
1

2
A

(2)
0,2(y

⋆, y⋆, t) + A
(3)
0,2(x

⋆, y⋆, t)

]
.

(8.136)

These quantities are similar to (8.85) and (8.86) in the one-matrix case. They represent
the on-shell action and the total one-loop contribution about the instanton configuration.
Furthermore, we shall see later that NA/t and B are finite in the double-scaling limit,
representing the tension of the ZZ brane and the exponential of the annulus between a ZZ
brane and itself.

General multi-instanton configuration

We now follow the logic of one-matrix case and generalize to an arbitrary configuration of
instantons. Let us integrate an ℓ1 number of (x, y) pairs along the Lefschetz thimble of the
saddle point (x⋆1, y

⋆
1), an ℓ2 number of (x, y) pairs along the Laefscetz thimble of the saddle

point (x⋆2, y
⋆
2), and so on. Let ℓ =

∑
α ℓα be the total number of instantons. For each α we

shall get a factor of the form (8.134). Besides this, there are four types of contributions that

give rise to a multiplicative factor Cℓαℓβα,β . They are similar to the ones we enumerated in one-
matrix case, except that we have more functions to keep track of. Also, the Vandermonde
contribution is now a power of (x⋆α − x⋆β)(y

⋆
α − y⋆β).

After a straightforward, though perhaps slightly tedious calculation, we arrive at the
result

Z(ℓ1,ℓ2,...)(N, t)

Z(0)(N, t)
= exp

[
−N
t

∑
α

ℓαAα

] ∏
α

{
(Bα) ℓ

2
α
G2(ℓα + 1)

(2π)
1
2
(ℓ2α+ℓα)

} ∏
α<β

Cℓαℓβα,β , (8.137)

with the definitions

Aα := Veff(x
⋆
α, y

⋆
α) + ∂tF0(t) , (8.138)

Bα :=

(
2πt

N

1

V ′′
1,eff(x

⋆
α)V

′′
2,eff(y

⋆
α)− 1

) 1
2

exp

[
1

2
∂2t F0(t) + ∂tV1,eff(x

⋆
α) + ∂tV2,eff(y

⋆
α)+

+
1

2
A

(1)
0,2(x

⋆
α, x

⋆
α) +

1

2
A

(2)
0,2(y

⋆
α, y

⋆
α) + A

(3)
0,2(x

⋆
α, y

⋆
α)

]
,

(8.139)

Cα,β := (x⋆α − x⋆β)(y
⋆
α − y⋆β) exp

[
∂2t F0(t) + ∂tV1,eff(x

⋆
α) + ∂tV2,eff(y

⋆
α) + ∂tV1,eff(x

⋆
β)

+∂tV2,eff(y
⋆
β) + A

(1)
0,2(x

⋆
α, x

⋆
β) + A

(2)
0,2(y

⋆
α, y

⋆
β) + A

(3)
0,2(x

⋆
α, y

⋆
β) + A

(3)
0,2(x

⋆
β, y

⋆
α)
]
.

(8.140)
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The quantities Aα and Bα are the same as what we derived in the previous section, but
we have included them in this result for the sake of convenience. Comparing (8.137) with
(8.29) we see that the matrix model results agree with the string theory results provided we
identify Tα with NAα/t, Bα with Bα and Cα,β with Cα,β. We shall verify these in the next
subsection.

Now we come to the calculation of the objects that we need, namely those that appear
in the formulas (8.138), (8.139) and (8.140). Using the expressions in [306], it was shown in
[256] that

Aα = Veff(x
⋆, y⋆) + ∂tF0 =

∫ z⋆(1)

z⋆(2)
dz Y(z)

dX (z)

dz
. (8.141)

It was shown in [306] that

∂2t F0 = 2 log γ , (8.142)

which is directly analogous to the equation (8.48) in the one-matrix case. Further, we have
the following equality of one-forms [306]

∂tY (x)|x=X (z) dX (z) = − ∂tX(y)|y=Y(z) dY(z) = −dz

z
(8.143)

In the one-matrix case, the analog of this equation would be (8.41). To get an expression
for the t-derivatives of the effective potentials, note that the definition (8.124) implies that

V1,eff(x) =

∫ x

Λx

dx′ Y (x′) + (V1(Λx)− t log Λx) , (8.144)

where the limit Λx → ∞ on the physical x-sheet is understood. Using (8.143) we see that if
we introduce the variable z′ via x′ = X (z′) then,

∂tV1,eff(x) = −
∫ x

Λx

dx′
1

z′
dz′

dx′
− log Λx = −

∫ z

Λx/γ

dz′

z′
− log Λx = − log(zγ) , (8.145)

where we used the fact that x ≈ γz near x = ∞ on the physical x-sheet, see (8.121). This
equation is the direct analog of (8.61) in the two-matrix case. Similarly, we have

∂tV2,eff(y) =

∫ y

Λy

dy′
1

z′
dz′

dy′
− log Λy =

∫ z

γ/Λy

dz′

z′
− log Λy = − log(γ/z) , (8.146)

where we used the fact that y ≈ γ/z near y = ∞ on the physical y-sheet, see (8.121). Finally,
the connected two-point correlators of the Vandermonde potential, defined in (8.126), (8.127)
and (8.128) are given by [273, 256]

A
(1)
0,2(x1, x2) = − log

X (z1)−X (z2)

γz1 − γz2
, for x1 = X (z1), x2 = X (z2) , (8.147)

A
(2)
0,2(y1, y2) = − log

Y(z1)− Y(z2)

γ/z1 − γ/z2
, for y1 = Y(z1), y2 = Y(z2) , (8.148)

A
(3)
0,2(x1, y2) = − log

(
1− z2

z1

)
, for x1 = X (z1), y2 = Y(z2) . (8.149)
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These formulas generalize (8.62) to the two-matrix case. From now on we shall drop the ⋆’s
and add a subscript α to a variable to denote its value at the α-th saddle point.

Using these formulas, let us compute the quantity Cα,β defined in (8.140) that appears in
the general multi-instanton contribution to the partition function:

log Cα,β = log[(xα − xβ)(yα − yβ)] + 2 log γ − log(z(1)α γ)− log(z
(1)
β γ)

− log(γ/z(2)α )− log(γ/z
(2)
β )− log

xα − xβ

γz
(1)
α − γz

(1)
β

− log
yα − yβ

γ/z
(2)
α − γ/z

(2)
β

− log

(
1−

z
(2)
β

z
(1)
α

)
− log

(
1− z

(2)
α

z
(1)
β

)
. (8.150)

In writing these formulas, we have to pick the branch z
(1)
α for xα and the branch z

(2)
α for yα.

We now see that the log γ terms cancel and the contribution log[(xα − xβ)(yα − yβ)] from

the Vandermonde factors also cancels with the corresponding factors from A
(1)
0,2 and A

(2)
0,2.

Simplifying a bit, we find12

log Cα,β = log
z
(1)
α − z

(1)
β

z
(1)
α − z

(2)
β

z
(2)
α − z

(2)
β

z
(2)
α − z

(1)
β

. (8.151)

Now let us come to the computation of Bα defined in (8.139). Again, we have to pick

the branch z
(1)
α for xα and the branch z

(2)
α for yα. We first simplify the exponential piece

appearing in (8.139):

1

2
∂2t F0 + ∂tV1,eff + ∂tV2,eff +

1

2
A

(1)
0,2 +

1

2
A

(2)
0,2 + A

(3)
0,2

= log γ − log(γz(1)α )− log(γ/z(2)α )− 1

2
log

(
1

γ

dX
dz

(z(1)α )

)
− 1

2
log

(
−1

γ
(z(2)α )2

dY
dz

(z(2)α )

)
− log

(
1− z

(2)
α

z
(1)
α

)
. (8.152)

We see again that the log γ cancels out and the expression simplifies to

exp

[
1

2
∂2t F0 + ∂tV1,eff + ∂tV2,eff +

1

2
A

(1)
0,2 +

1

2
A

(2)
0,2 + A

(3)
0,2

]
=

1

z
(1)
α − z

(2)
α

(
−dX

dz
(z(1)α )

dY
dz

(z(2)α )

)− 1
2

. (8.153)

12As a consistency check, we can see that this expression is consistent with the one-matrix results where

z
(2)
α = 1/z

(1)
α . To see this, we multiply (8.63) with the contribution from the Vandermonde (xα − xβ)

2

and use xα = γ(zα + 1/zα) and the corresponding relation for xβ . This gives Cα,β =
zα−zβ

zα−1/zβ

1/zα−1/zβ
1/zα−zβ

in

agreement with (8.151).
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The prefactor term in (8.139) combines nicely with the second term in the above equation.
To see this note that V ′′

1,eff(x) =
dY
dx

and V ′′
2,eff(y) =

dX
dy
. Thus, we get

Bα =

√
2πt

N

1

z
(1)
α − z

(2)
α

(
dX
dz

(z(1)α )
dY
dz

(z(2)α )− dX
dz

(z(2)α )
dY
dz

(z(1)α )

)− 1
2

. (8.154)

The double-scaling limit

Finally we discuss the double-scaling limit. The double-scaling limit is defined by zooming in
near a point on Σ that corresponds to an end point of the distribution of the eigenvalues ofM1

(the symmetry between M1 and M2 is broken by which potential has a higher degree). This
is a point that lies on the boundary of the z-image of the physical x-sheet. We appropriately
choose the parameters in the potentials V1 and V2 and introduce new variables x, y, z and
new functions X̃, Ỹ , X̃ and Ỹ as,

x = cx + dxε
p′
2 x̃, y = cy + dyε

p
2 ỹ, z = cz + dzε

1
2 z̃ ,

X(y) = cx + dxε
p′
2 X̃(ỹ) , Y (x) = cy + dyε

p
2 Ỹ (x̃),

X (z) = cx + dxε
p′
2 X̃ (z̃) , Y(z) = cy + dyε

p
2 Ỹ(z̃) ,

(8.155)

for appropriate constants cx, cy, cz, dx, dy, dz. We now take the limit N → ∞, ε → 0, while
keeping fixed the combination

eS0 :=
N

t
dxdy ε

p
2
+ p′

2 . (8.156)

The analog of the conformal background for the one matrix case is a special choice of the
parameters of the potential V1, V2 and the parameters cx, cy, cz, dx, dy, dz such that [264, 250]

X̃ (z̃) = Tp′(z̃), Ỹ(z̃) = Tp(z̃) . (8.157)

Here Tp denotes the Chebyshev polynomial of the first kind which is defined by the relation

cos pθ = Tp(cos θ). Equation (8.157) also implicitly defines the functions X̃ and Ỹ after
eliminating z̃. In the new variables the spectral curve of the conformal background of the
(p′, p) minimal string is the following curve [264]

Σ = {(x̃, ỹ) ∈ C2 |Tp(x̃)− Tp′(ỹ) = 0} , (8.158)

with z̃ being the uniformization parameter of this surface. This follows as

Tp (X (z̃)) = Tp (Tp′(z̃)) = Tpp′(z̃) = Tp′ (Tp(z̃)) = Tp′ (Y(z̃)) . (8.159)

The relations (8.122), (8.123) defining the instanton locations now take the form:

x̃⋆ = X̃(y⋆), ỹ⋆ = Ỹ (x⋆) , (8.160)
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(x̃⋆, ỹ⋆) = ( X̃ (z̃⋆(1)) , Ỹ(z̃⋆(1)) ) = ( X̃ (z̃⋆(2)) , Ỹ(z̃⋆(2)) ) . (8.161)

These represent locations of the instantons which are also the singular points of Σ. Explicitly,
there are (p′ − 1)(p− 1)/2 singular points on Σ given by

(x̃m,n, ỹm,n) =

(
(−1)m cos

πnp′

p
, (−1)n cos

πmp

p′

)
, with (8.162)

m ∈ {1, . . . , p′ − 1} , n ∈ {1, . . . , p− 1} , (8.163)

and subject to the identification (m,n) ≡ (p′ − m, p − n) since these two labels give the
same point on the curve Σ. We have omitted the stars from the notation to reduce the
clutter; the subscripts m,n make it clear that these values refer to the singular points. Each
of these singular points corresponds to two distinct values of the uniformizing coordinate z.
Explicitly, these are

z̃(1)m,n = cos

(
πm

p′
+
πn

p

)
, z̃(2)m,n = cos

(
πm

p′
− πn

p

)
. (8.164)

From the analysis given above, we cannot determine which of the two values cos(πm
p′

± πn
p
)

corresponds to z̃
(1)
m,n and which to z̃

(2)
m,n. However, exchanging them changes the signs of

Tα = NAα/t and (Bα)2 computed from (8.141) and (8.154), respectively, and leaves Cα,β
computed from (8.151) unchanged. Since we only compare the combinations BαT 1/2

α and
Cα,β with the string theory results, this ambiguity does not affect our analysis. Ref. [256]
resolves this ambiguity using a physical input.

Let us now compute the on-shell action of the instanton labeled by (m,n). Using (8.155)
and (8.156), we can recast (8.141) as

N

t
Am,n = eS0

∫ z̃
(1)
m,n

z̃
(2)
m,n

dz̃ Ỹ(z̃)
dX̃ (z̃)

dz̃
. (8.165)

In particular since X̃ (z̃
(1)
m,n) = X̃ (z̃

(2)
m,n) = x̃m,n, the constant terms cx and cy in (8.155)

drop out of this equation. To evaluate this, we first compute the indefinite integral of
Tp(z̃)

d
dz̃
Tp′(z̃):∫ z̃

duTp(u)
d

du
Tp′(u) =

p′

2

(
1

p+ p′
Tp+p′(z̃)−

1

p− p′
Tp−p′(z̃)

)
+ C , (8.166)

where C is the constant of integration. Taking the difference between this indefinite integral
expression evaluated at the two values of z̃ in (8.164), we get

Tm,n :=
N

t
Am,n = eS0 (−1)m+n 2pp′

p′2 − p2
sin

πmp

p′
sin

πnp′

p
. (8.167)



CHAPTER 8. MULTI-INSTANTONS IN MINIMAL STRING THEORY AND IN
MATRIX INTEGRALS 165

We now take the double-scaling limit in the formula (8.154) for Bα. The result is

Bm,n = e−S0/2

√
2π

z̃
(1)
α − z̃

(2)
α

(
dX̃
dz̃

(z̃(1)α )
dỸ
dz̃

(z̃(2)α )− dX̃
dz̃

(z̃(2)α )
dỸ
dz̃

(z̃(1)α )

)− 1
2

= e−S0/2

√
2π

2 sin πm
p′

sin πn
p

(
2p′p (−1)m+n sin πmp

p′
sin πnp′

p

sin2 πm
p′

− sin2 πn
p

)− 1
2

.

(8.168)

Using (8.167), we see that

Bm,n = (Tm,n)
− 1

2 i

√
π

2

(
cot2(πn/p)− cot2(πm/p′)

p2 − p′2

) 1
2

, (8.169)

agreeing precisely with the string theory result (8.30). Note that the overall sign of Bm,n can
be changed by changing the orientation of the steepest descent integration contour in the
complex eigenvalue plane. This sign is not significant since the string theory computation
also has a similar ambiguity.

Finally, we discuss the double-scaling limit of Cα,β. Since z just undergoes a shift and

rescaling by ε
1
2 , we get from (8.151) that

Cα,β =
z̃
(1)
α − z̃

(1)
β

z̃
(1)
α − z̃

(2)
β

×
z̃
(2)
α − z̃

(2)
β

z̃
(2)
α − z̃

(1)
β

, (8.170)

with z̃α given in (8.164). This yields

C(m,n)(m′,n′) =
cos
(
πm
p′

+ πn
p

)
− cos

(
πm′

p′
+ πn′

p

)
cos
(
πm
p′

+ πn
p

)
− cos

(
πm′

p′
− πn′

p

) ×
cos
(
πm
p′

− πn
p

)
− cos

(
πm′

p′
− πn′

p

)
cos
(
πm
p′

− πn
p

)
− cos

(
πm′

p′
+ πn′

p

) .
(8.171)

After some simplification using basic trigonometric identities, we see that this agrees with
the string theory result (8.22).

Finally, let us make a remark about the ratio of the tensions of the various ZZ branes.
From (8.167) we see that the matrix integral predicts that

Tm,n
T1,1

= (−1)m+n
sin πmp

p′
sin πnp′

p

sin πp
p′
sin πp′

p

. (8.172)

Similar to the remarks in Section 8.3, this agrees with the results from the the string the-
ory side [143, 259, 250]. The boundary state wavefunction Ψm,n(P ) ∝ sinh(2πmPb−1)×
sinh(2πnPb) which for P = −i(b− b−1)/2 equals (−1)m+n sin πmp

p′
sin πnp′

p
.
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Chapter 9

The ZZ Annulus One-point Function
in Non-critical String Theory

9.1 Introduction

The study of non-perturbative effects due to ZZ instantons [143] in two-dimensional string
theory by Balthazar, Rodriguez, and Yin [25] has motivated a string field theory analysis
of IR divergences in instanton amplitudes. The agreement between the string field theory
analyses and the predictions from the dual matrix quantum mechanics is impressive [26, 307,
257]. The string field theory analysis of instanton amplitudes has been extended to other
non-critical string models [23, 24, 276, 308, 309] where the computations agree precisely
with the predictions from the dual matrix models. It has also been extended to critical
superstrings [281, 277, 293, 278, 279] where the D-instanton effects match precisely with the
predictions from superstring dualities. In [280], worldsheet computations of instanton effects
were performed in Calabi-Yau orientifold compactifications, which is a new result and was
not previously known from a dual description.

Among all these successes, there is one particular observable that stands out and does
not match with the dual prediction. This is the annulus one-point amplitude in the original
c = 1 string theory computation of [25], which is relevant for computing the first subleading-
in-gs correction to the D-instanton induced n-point amplitude of closed-string operators.
This amplitude receives divergent contributions from integration over the worldsheet moduli
near the boundaries of moduli space. This leads to an additive ambiguous term in the
amplitude. Extracting the finite part of the worldsheet amplitude via numerical integration
over the moduli space, and comparing this with the amplitude from the dual matrix quantum
mechanics leads to a prediction for the ambiguous piece of the worldsheet amplitude [25, 310].
In [307], a string field theory analysis was performed to determine the ambiguous piece, but
the result was found to not match with [25, 310], leading to a puzzle.

In the present work, we resolve this mismatch. We first simplify the model by working
with the c < 1 non-critical string, and we study the integrated correlation functions of the
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cosmological constant operator. The first simplification is that one does not have to worry
about the translation zero mode of the c = 1 scalar. Second, the one-point annulus amplitude
of the cosmological operator has a simple form that can be obtained by differentiating the
partition function with respect to the world-sheet cosmological constant µ. Third, because
of the Liouville equation of motion, the cosmological operator is a total derivative and
the moduli space integral reduces to just boundary contributions, obviating the need for
numerical integration over the moduli space. In trying to compute the one-point annulus
amplitude in this simpler model, we were able to identify a subtle issue in the computation
in appendix D of [307], which analyzed the disk amplitude with one closed string puncture
and three open string punctures. This was needed for finding the relation between the string
field theory gauge transformation parameter and the rigid U(1) transformation parameter
under which an open string with one end on the instanton picks up a phase.

Let us briefly explain the subtlety. The disk amplitude with one closed string puncture
and three open string punctures has a two-dimensional moduli space. String field theory
instructs us to integrate a two-form on a subset S of this moduli space that excludes certain
regions around the boundaries. The two-form turns out to be exact. Let’s denote it by
dJ , so that the moduli-space integral reduces to the integral of J over the boundary ∂S
of S. It so happens that in appendix D of [307], when we go once around ∂S, the open
string punctures do not return to their original position, but to a configuration related to
the initial one by the one-parameter subgroup of PSL(2,R) that keeps the point z = i in the
upper half plane fixed. In such a situation, one must make sure that the contraction of J
with the tangent vector along the orbits of this PSL(2,R) transformation is zero, something
that was not true for the J chosen in [307]. It turns that one can add an exact one-form to
J so that it satisfies the desired property. (Alternatively, one can reduce the orbits under
discussion to points by fixing the location of one of the punctures and work directly with
the two-dimensional moduli space.) After this fix, the mismatch goes away and one-finds
agreement with predictions from the dual matrix models both in the c < 1 and the c = 1
case.

Now we present the main result of this work. Let V = e2bϕ denote the bulk cosmological
constant vertex operator in minimal string theory. The integrated correlation functions of V
can be obtained by taking µ-derivatives of the partition function. Let g−1

s be the tension of
the ZZ brane. Further, let gsf denote the disk two-point of V , divided by the square of the
disk one-point function of V , and let gsg denote the annulus one-point of V , divided by the
disk one-point function of V . By taking µ-derivatives of the partition function and setting
µ = 1

π
, one finds

f =
2b

Q
− 1 , g =

1

2
. (9.1)

Our goal will be to reproduce both of these results via explicit integrals over the relevant
moduli spaces, using string field theory to regulate divergences from the boundaries.
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Overview

The rest of the paper is devoted to setting up the problem in the c < 1 case and explaining
the above remarks in more detail. In Section 9.2, we briefly review the c < 1 non-critical
string theory, and also certain conventions for the Liouville and ghost CFTs and for string
amplitudes that will be important for us. In Section 9.3, we provide the general analysis
that leads to a concrete prediction for the disk two-point function and the annulus one-point
function of the cosmological constant operator, leading to the predictions (9.1). The key point
is that the correlation functions of the cosmological constant operator can be related to µ-
derivatives of the partition function. In Section 9.4, we compute the disk two-point function
of the cosmological constant operator by integrating over the one-dimensional moduli space,
which matches with the prediction (9.1). The disk two-point function contributes at the same
order as the annulus one-point function, and was already found to match the matrix quantum
mechanics result in the c = 1 case [25, 310, 307]. Finally, in Section 9.5, we compute the
annulus one-point function exploiting the total derivative nature of the cosmological constant
operator to integrate over the two-dimensional moduli space. The analysis of Section 9.4 and
Section 9.5 requires computing string field theory Feynman diagrams to get finite results.
Since the analysis of [307] was quite lengthy overall, we will not repeat all the computational
details of the various contributions and instead emphasize the conceptual points that are
different in our analysis. The appendices contain details of various overall normalizations of
string amplitudes that are important for our work.

9.2 Setup and conventions

Conventions for string amplitudes

We will follow the conventions of [277]. One important convention is that the integrated
closed string vertex operators are integrated with the measure dx dy

π
. For the upper half

plane geometry, the open string punctures are integrated along the real axis with measure
dx.

We take the three-point function of the c-ghost in the upper half plane to be

⟨c(z1)c(z2)c(z3)⟩UHP = −(z1 − z2)(z2 − z3)(z1 − z3) . (9.2)

This normalization, with the string field theory path integral being weighted as
exp[1

2
⟨Ψ|QB|Ψ⟩], gives rise to the path integral weight exp[−1

2
hbϕ

2
b ] for a Siegel-gauge

bosonic field ϕb with L0 = hb.
1 For example, in the case of the the tachyon ϕ1c1|0⟩, the

action evaluates to 1
2
ϕ2
1 ⟨0|c−1 c0L0 c1|0⟩ = 1

2
ϕ2
1, which is the correct result since hb = −1 for

the tachyon. For later use, we also need the out-of-Siegel gauge field ψ that appears in the

1In our convention where the path integral is weighted by exponential of the action, an n-point interaction
term in the action gives a contribution to the n-point amplitude without any extra minus sign or factor of i.
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string field as

Ψ = ϕ1c1|0⟩+ iψc0|0⟩+ . . . (9.3)

The path integral weight of ψ is exp(−ψ2), so that the propagator of ψ equals 1
2
.

We define gs so that nonperturbative contributions to string amplitudes carry an overall
factor of exp(−g−1

s ). In other words, the action of the instanton is −g−1
s .

In the conventions of [277], the one point function of a closed string vertex operator ψc
on the upper half plane is given by

Adisk(ψc) =
1

4gs

〈
(∂c− ∂c)ψc

〉
UHP

. (9.4)

The upper half plane amplitude for n closed string punctures and m open string punctures,
with one closed puncture and one open string puncture fixed is

Adisk(ψ
n
c ψ

m
o ) =

iπ

gs

∫
⟨ψnc ψmo ⟩UHP . (9.5)

The factor of i was explained in appendix A of [278]. In this paper, we will instead be
interested in the case where the PSL(2,R) symmetry is fixed by fixing the position of one
closed string puncture at z = i and fixing the x-coordinate of another closed string puncture
to zero. This is analyzed in the next subsection.

Fixing PSL(2,R) with two closed string punctures

We want to study the integration measure for the upper half plane amplitude A(ψnc ψ
m
o )

when all the open string punctures are integrated, one closed string puncture is fixed at i,
and another closed string puncture is fixed at iy.

The only non-trivial part is the overall normalization since the y dependence of the
measure is captured by the correlation function where appropriate ghost factors are included
in the definition of the unintegrated vertex operators. We start with the original configuration
with one open string vertex operator fixed at the origin and one closed string vertex operator
fixed at z = i. For convenience, let us consider the case where we have only one open string
vertex operator and two closed string vertex operators. We take the unintegrated form of
the closed and open string vertex operators to be ψc = ccVc and ψo = cVo, respectively.
(Here Vc is a dimension (1, 1) bulk operator, and Vo is a dimension 1 boundary operator in
the worldsheet theory.) Let the integrated closed string vertex operator be at z = x+ iy. In
this case the integrand is

dxdy

π

iπ

gs
⟨ψc(i)Vc(z)ψo(0)⟩ . (9.6)

Now we shall make a PSL(2,R) transformation

z′ =
z − a

1 + az
. (9.7)
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Denoting z′ = x′ + iy′, we adjust a so that x′ vanishes. This will move the open string at
the origin to x′′ = −a. The new configuration is labelled by x′′ and y′ and our goal will be
to rewrite the original measure as

C g−1
s dx′′dy′⟨ψc(i)(c+ c)Vc(iy

′)Vo(x
′′)⟩ . (9.8)

It is the constant C that we want to determine. This can be done by taking (x, y) to be
close to the origin so that x′ = 0 can be achieved by an infinitesimal transformation with
a = x. This gives x′′ = −a = −x and y′ = y. Therefore we have dxdy = dx′′dy′, and both
x′ and x′′ are integrated from −∞ to +∞. Using (9.2), the ghost correlator in (9.6) is

⟨cc̄(i)c(0)⟩ = −2 i , (9.9)

while that in (9.8) is
⟨cc̄(i)(c(iy′) + c̄(iy′))⟩ ≈ −4 i for y′ ≈ 0 . (9.10)

Equality of (9.6) and (9.8) now gives

C =
i

2
. (9.11)

Even though we have derived this in the special case of only two closed strings and one open
string, we can now generalize this to give the amplitude of n closed strings and m open
strings, keeping fixed one closed string vertex operator at z = i and integrating another
closed string vertex operator along the imaginary axis with measure dy from y = 0 to y = 1:

Adisk(ψ
n
c ψ

m
o ) =

i

2gs

∫
⟨ψnc ψmo ⟩UHP . (9.12)

The important point about (9.12) is the precise overall numerical factor.

Minimal string theory and Liouville CFT

The term minimal string theory refers to a worldsheet model where the matter sector consists
of the (p′, p) minimal model [244, 274]. Here p′ and p are two relatively prime integers and our

convention is that p′ < p. The minimal model is a CFT with central charge c = 1− 6(p−p′)2
pp′

.
The conformal mode of the metric does not decouple and gives rise to the Liouville CFT
with central charge 26− c. Together with the bc-ghosts we have an anomaly free worldsheet
theory. These theories have a dual description via an integral over two Hermitian matrices
in the double-scaling limit [272, 273]. When p′ = 2, the integral over one of the matrices is
purely Gaussian and it can be integrated out giving rise to a one-matrix integral.

The path integral of Liouville field theory on a two-dimensional Euclidean manifold with
metric g is given by [143]∫

[Dϕ] exp

[
−
∫

dx dy
√
g

(
1

4π
gµν∂µϕ∂νϕ+

1

4π
QRϕ+ µ e2bϕ

)]
, where (9.13)

Q =
1

b
+ b , b =

√
p′

p
. (9.14)
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We will be interested in the correlation function of the marginal operator V := e2bϕ.
Fixing the background metric to be flat, one sees that the equation of motion of the Liouville
field is

1

4π
(∂2x + ∂2y)ϕ = µ b e2bϕ . (9.15)

So we see that the operator e2bϕ is a total derivative. While this derivation holds in the
semi-classical limit b → 0, the result holds even for finite b [311]. In fact, this equation
of motion is only the first in an infinite series of “higher” equations of motion in Liouville
theory [311]. These equations of motion have been previously used to compute integrated
correlation functions in minimal string theory on the sphere topology [312, 313, 314, 315].
It will be useful for us to introduce a rescaled cosmological constant

µ̃ := πµ (9.16)

so that the interaction term in the Liouville action takes the form
∫

dxdy
π
µ̃ e2bϕ. This will

be useful, since we will be integrating closed string punctures with the measure dxdy
π

, as in
[277]. With the definition of µ̃ and changing to complex coordinates z = x + iy, we rewrite
(9.15) as

V = e2bϕ =
1

µ̃ b
∂∂ϕ . (9.17)

Another fact that we will need is the following. Because of the term in the action
proportional to QRϕ, the operators ∂ϕ and ∂ϕ are not conformal primaries but transform
as

∂ϕ(z, z) → Q

2

f ′′(z)

f ′(z)
+ f ′(z) ∂ϕ(f(z), f(z)) , (9.18)

with a similar relation for ∂ϕ. We will also need the following OPE between the operators
∂ϕ and V

∂ϕ(z, z)V (i) = − b

z − i
V (i) + . . . . (9.19)

Instanton effects in minimal string theory are represented by open string worldsheets
with ZZ boundary conditions, which are labeled by a pair of integers [143]. In this paper we
will only work with one ZZ brane of the simplest (1, 1) type. The boundary state for the
matter sector will be taken to be the Cardy state that contains only the identity operator in
the open string channel [268, 108]. Denoting by 2πt the Euclidean time in the open string
channel and letting

v := e−2πt , (9.20)
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the annulus partition function of the minimal string with the desired boundary conditions
is given by [143, 269, 249]

C2 :=

∫ ∞

0

dt

2t
Z(v) , with (9.21)

Z(v) = (v−1 − 1) v−(p−p′)2/4pp′
∞∑

j=−∞

[v(2pp
′j+p−p′)2/4pp′ − v(2pp

′j+p+p′)2/4pp′ ] (9.22)

= v−1 − 2 +O(v) . (9.23)

In the last line we have displayed the terms that give rise to divergent contributions from the
t = ∞ end of the integral. The v−1 term arises from the open string tachyon that multiplies
the state c1|0⟩ with L0 = −1, and the −2 arises from two Grassmann-odd modes p1 and q1
that multiply the states |0⟩ and c−1c1|0⟩ with L0 = 0. One of the insights of [26] was that
p1 and q1 are ghost zero modes that arise because of the breakdown of Siegel gauge. This is
related to the fact that the worldvolume of a D-instanton is zero dimensional. One needs to
instead integrate over the ghost-number one field ψ that multiplies the state c0|0⟩ and divide
by the volume of the “gauge group” of the worldvolume theory of the D-instanton, which is
finite: ∫

dp1dq1 →
∫
dψ exp(−ψ2)∫

dθ
. (9.24)

In particular, the open string field ψ can run in internal propagators; such contributions
to string amplitudes are not captured by the worldsheet analysis and need to be explicitly
added [307].

Let us now discuss the bulk-boundary OPE with ZZ boundary conditions. Working with
the upper half plane coordinate system, this takes the form [143]

∂ϕ(z, z) = − Q

z − z
+O(z − z) (9.25)

∂ϕ(z, z) = +
Q

z − z
+O(z − z) . (9.26)

The coefficient of the leading term is fixed by using the equation of motion (9.17) and the
fact that the one-point function of V (z, z) is given by Q

µ̃b
1

|z−z|2 [143]. Setting µ̃ = 1, note in
particular that

⟨V (i)⟩UHP =
Q

4b
. (9.27)

That the expression for the one-point function of V (z, z) resembles the metric of hyperbolic
space H2 (represented using the upper half plane) and with the correct radius of curvature
in the semi-classical limit is tied to the fact that physically the ZZ boundary conditions
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represent the Liouville field theory placed on the pseudosphere. Note also that there are
no O((z − z)0) terms in (9.25) and (9.26) since the boundary theory in the Liouville sector
does not have any state of conformal weight 1 (the only boundary operator is the identity,
so that the L−1 descendant is null). Finally, we note that (9.18), (9.25), (9.26) and the scale
invariance of the upper half plane imply that

⟨∂ϕ(z, z)⟩UHP = − Q

z − z
, ⟨∂ϕ(z, z)⟩UHP =

Q

z − z
. (9.28)

9.3 General predictions for the disk two-point

function and the annulus one-point function

In perturbation theory, the string partition function is given by a sum over closed string
worldsheets, organized by genus. This series is asymptotic and contains non-perturbative
corrections due to instanton effects [246, 316, 252], which, in the case of critical strings can be
thought as being due to worldsheets with Dirichlet boundaries in all target space directions
[317]. In the context of minimal strings, the relevant boundary conditions are of the ZZ type
[143], which are analogous to Dirichlet boundary conditions in the critical string. As already
mentioned, throughout this paper we will focus on a single ZZ brane of the simplest (1, 1)
type, and also the simplest Cardy state for the matter sector.

The string partition function including the one-instanton contribution is given by

Z (⃗t, gs) = Z(0)(⃗t, gs) + Z(1)(⃗t, gs) + . . . , (9.29)

Z(1)(⃗t, gs) = Z(0)(⃗t, gs) exp

[
g−1
s A(⃗t) +

1

2
log gs +B(⃗t) + C (⃗t)gs + · · ·

]
, (9.30)

where gs is the closed string coupling, t⃗ are the set of parameters that label the various
possible deformations of minimal string theory or the dual double-scaled matrix model, and
Z(0)(⃗t, gs) is the perturbative contribution to the partition function. The dots in (9.29)
denote contributions from multi-instantons, which we do not study in this paper.2 The
point t⃗ = 0⃗ represents the conformal background, with only the worldsheet cosmological
constant switched on [263]. The coefficient 1

2
multiplying the log gs term is special to the

c < 1 minimal string [23].
Taking derivatives of Z(1)(⃗t, gs) with respect to the ti’s, we can get the one-instanton con-

tribution to the n-point function. The full diagrammatics of the one-instanton contribution
was discussed in section 2 of [318]. In taking the derivatives, there will be terms in which one
or more derivatives hit the Z(0)(⃗t, gs) factor in (9.30). Such terms will produce closed-string
worldsheet components without boundaries and will not be the subject of interest in our

2Even though the gs dependence of Z (⃗t, gs) can be determined from its t⃗ dependence, we regard gs as
an independent variable.
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work, so we shall not write them. So we have

1

Z(0)

∂nZ(1)

∂ti1 · · · ∂tin

∣∣∣∣
t⃗=0

⊃ eg
−1
s A(⃗0)+ 1

2
log gs+B(⃗0) g−ns

{
n∏

α=1

∂A

∂tiα

}

×

1 + gs

n∑
β,γ=1
β<γ

∂2A

∂tiβ∂tiγ

/(
∂A

∂tiβ

∂A

∂tiγ

)
+ gs

n∑
β=1

∂B

∂tiβ

/
∂A

∂tiβ
+ gsC +O(g2s)

 .

(9.31)

It is understood that all quantities on the right hand side are evaluated at t⃗ = 0⃗, and we
have only displayed those terms on the right hand side in which all the derivatives act on
the explicit exponential factor in (9.30).

We now compare various terms in (9.31) with the expected string amplitudes. The
quantity g−1

s A(⃗0) is the instanton action and exp[1
2
log gs + B(⃗0)] is the exponential of the

annulus partition function studied in [23].
Ignoring all contributions with vertex operators inserted on closed-string worldsheets,

since they represent terms where some of the derivatives act on the Z(0) factor in (9.30), the
leading term for the n-point correlation function comes from the product of n disk one-point
functions (times the exponentials of the instanton action and the cylinder partition function
that accompany all correlation functions).3 This takes the form

eg
−1
s A(⃗0)+ 1

2
log gs+B(⃗0) g−ns

n∏
α=1

hiα , (9.32)

where g−1
s hi has the interpretation of the disk one-point function of the vertex operator

associated with the ti deformation.4 This matches the leading term in (9.31) if we identify

hi =
∂A

∂ti
. (9.33)

For a given instanton, we choose to pick tiα ’s on the left hand side of (9.31) such that the
disk one-point function of the operator associated with the tiα deformation does not vanish.

At the next order, again ignoring terms with vertex operators inserted on closed-string
worldsheets, we expect three types of contributions:5

• Product of (n−2) disk one-point functions and a disk two-point function. If we denote
by gsfij the ratio of the disk two-point function of operators associated with the ti, tj

3In non-critical string theory, one- and two-point functions on the sphere are non-zero, so contributions
that are more important than this contribution exist.

4We normalize the closed string vertex operators in such a way that they do not carry any factor
proportional to gs.

5So we are not studying contributions from, for instance, a three-punctured sphere times (n − 3) one-
punctured disks, and the one-punctured torus times (n− 1) one-punctured disks.
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deformations to the product of the disk one-point functions of the same operators, then
this contribution takes the form:

eg
−1
s A(⃗0)+ 1

2
log gs+B(⃗0) g−(n−1)

s

{
n∏

α=1

∂A

∂tiα

}
n∑

β,γ=1
β<γ

fiβiγ . (9.34)

• Product of (n− 1) disk one-point functions and an annulus one-point function. If we
denote by gs gi the ratio of the annulus one-point function and the disk one-point func-
tion of the vertex operator associated with the ti deformation, then this contribution
takes the form:

eg
−1
s A(⃗0)+ 1

2
log gs+B(⃗0) g−(n−1)

s

{
n∏

α=1

∂A

∂tiα

}
n∑
β=1

giβ . (9.35)

• Product of n disk one-point functions with the O(gs) corrections to the instanton action

coming from the three-holed sphere and the handle-disk. If we denote by gsC̃ this O(gs)
correction to the instanton action, this contribution takes the form

eg
−1
s A(⃗0)+ 1

2
log gs+B(⃗0) g−(n−1)

s

{
n∏

α=1

∂A

∂tiα

}
C̃ . (9.36)

Comparing these three contributions to the three O(gs) terms inside the square brackets in
(9.31), we arrive at the prediction:

fij =
∂2A

∂ti∂tj

/(
∂A

∂ti

∂A

∂tj

)
, gi =

∂B

∂ti

/
∂A

∂ti
, C̃ = C . (9.37)

So far our analysis involved a general n-point function, but now we specialize to the
main case of interest in our work. Consider a special case where all ti’s appearing in (9.31)
correspond to deformations of the cosmological constant µ̃ from its background value, which
we shall take to be 1. The Liouville action (9.13) tells us that taking a µ̃ derivative brings
down an insertion of−

∫
dxdy
π
e2bϕ on the worldsheet. Thus, the vertex operator corresponding

to the µ̃ deformation is −V .
The DDK-KPZ [319, 320, 321] scaling, that follows from the shift of the zero mode of

the Liouville field in the action (9.13), implies that the partition function depends on µ̃ and
gs through the combination g−1

s µ̃Q/(2b). Therefore we can take

g−1
s A(⃗t) = −g−1

s µ̃Q/(2b) , (9.38)

1

2
log gs +B(⃗t) =

1

2
log gs −

Q

4b
log µ̃+B0 , (9.39)
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where B0 is a constant that is independent of µ̃ and gs. As already mentioned, we normalize
gs so that the instanton action at µ̃ = 1 equals −1/gs. Using these results in (9.37) and
denoting the fij and gi for ti = tj = µ̃− 1 by f and g respectively, we get,

f =
∂2A

∂µ̃2

/(
∂A

∂µ̃

)2 ∣∣∣∣
µ̃=1

=
2b

Q
− 1, g =

∂B

∂µ̃

/
∂A

∂µ̃

∣∣∣∣
µ̃=1

=
1

2
. (9.40)

Our goal will be to verify these relations by explicit worldsheet computations, using string
field theory to regularize divergences from the boundaries of moduli space.

We remind the reader that gsf is the ratio of the disk two-point function to the square of
the disk one-point function, and gsg is the ratio of the annulus one-point function to the disk
one-point function. In particular the mismatch that was observed in [307] is in the quantity
g. Here, we have a simple prediction that g = 1/2, and this will serve as our lamppost to fix
the mismatch. In the end, the direct worldsheet computation, aided by string field theory,
leads to perfect agreement with both the predictions f = 2b/Q− 1 and g = 1/2.

As a preliminary sanity check, let us verify that the worldsheet formula (9.4) gives us the
disk one-point function of V = e2bϕ that we expect based on the analysis in this section. We
can use (9.33) and (9.38) to get the one-point function of V on the disk, and so we have the
prediction

Adisk(V ) = −g−1
s

∂A

∂µ̃

∣∣∣∣
µ̃=1

= g−1
s

Q

2b
. (9.41)

On the other hand, using (9.27) and (9.2), the formula (9.4) with ψc = ccV yields Adisk(V ) =
1

4gs
× Q

4b
× 4 × 2 = g−1

s
Q
2b
, as expected. (The final factor of two is due to the fact that the

two terms in (9.4) involving ∂c and ∂c give equal contributions.)

9.4 The disk two-point function

In this section we compute the disk two-point of the cosmological constant operator V = e2bϕ

directly from the worldsheet correlation function and show that we reproduce the value of f
given in (9.40).

Using (9.12) we write the disk two-point amplitude as

Adisk(V V ) =
i

2gs

∫ 1

0

dy ⟨ccV (i) (c(z) + c(z))V (z, z)⟩UHP , (9.42)

where it is understood that the second insertion is at z = iy. We shall analyze this by
dividing the integration region over y into two parts: the range ϵ ≤ y ≤ 1 and the range
0 ≤ y ≤ ϵ for some small number ϵ. We treat the 0 ≤ y ≤ ϵ region using string field theory
Feynman diagrams to deal with the potential divergence from the y → 0 region. Let us call
these two contributions A

(1)
disk(V V ) and A

(2)
disk(V V ), respectively.
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First we consider the contribution A
(1)
disk(V V ) from the region y ≥ ϵ. We use the equation

of motion (9.17) and holomorphicity of c to write this as

A
(1)
disk(V V ) =

i

2bgs

∫ 1

ϵ

dy ⟨ccV (i)
{
∂(c∂ϕ(z, z)) + ∂(c∂ϕ(z, z))

}
⟩UHP (9.43)

=
i

4bgs

∫ 1

ϵ

dy
〈
ccV (i)

{
∂x(c∂ϕ(z, z) + c∂ϕ(z, z))

+ i ∂y(c∂ϕ(z, z)− c∂ϕ(z, z))
}〉

UHP

(9.44)

where we have converted to Cartesian derivatives in the second line. The term involving ∂y
can be converted to a total derivative, but we need to be a bit more careful with the term
involving ∂x.

For this, note that the PSL(2,R) transformation z → z−a
1+az

fixes the puncture at i but,
for small a, moves the puncture at (0, y) to (−a(1 − y2), y). That is, it moves the second
puncture in the x-direction. If ∂ϕ and ∂̄ϕ had been primaries of dimension (0, 1) and (1, 0)
respectively, then c∂ϕ and c̄∂̄ϕ would have both been dimension zero primaries, and so
PSL(2,R) invariance of the correlation function would imply that the x derivative term in
(9.44) would vanish. However, the term proportional to Q in (9.18) spoils this argument,
since the second derivative with respect to z of z−a

1+az
does not vanish for z = iy.

We could fix this problem by taking into account the Q-dependent terms in (9.18) for
f(z) = z−a

1+az
, but we shall follow a slightly different approach. Imagine starting with the

disk geometry with the coordinate w = 1+iz
1−iz

. Also, let w = reiθ in polar coordinates on the
disk. In this geometry, one puncture is located at w = 0 while the second is placed on the
real-w axis at w = 1−y

1+y
. On the disk geometry, the PSL(2,R) transformation that moves the

second puncture off the real axis while keeping the first puncture at the origin fixed is simply
a rotation of w. Since this is linear in w, the inhomogeneous term in (9.18) vanishes, and
hence the θ derivative of the correlation function of dimension zero fields vanishes. So we
can first transform (9.42) to the w-coordinate system using the fact that V is a dimension
(1, 1) primary, use manipulations analogous to (9.43) and (9.44) to express the result in the
(r, θ) coordinates, drop the θ derivatives, and finally transform it back to the upper half
plane using w = 1+iz

1−iz
. Using (9.18), we get

c ∂ϕ(w,w) = c ∂ϕ(z, z) +
Q

z + i
c(z) , (9.45)

c ∂ϕ(w,w) = c ∂ϕ(z, z) +
Q

z − i
c(z) . (9.46)
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Plugging these back into the analog of (9.44) in the w-coordinate system, we get

A
(1)
disk(V V ) = − 1

4bgs

∫ 1

ϵ

dy

〈
ccV (i) ∂y

(
c∂ϕ(z, z)

+
Q

z + i
c(z)− c∂ϕ(z, z)− Q

z − i
c(z)

)〉
UHP

(9.47)

Now we carry out the y-integral in A
(1)
disk(V V ) by computing the two boundary terms.

The contribution from the y = 1 boundary is given only by the c∂ϕ and the c∂ϕ terms since
only these contain the pole necessary to cancel the zero from the OPE of c(i)c(z). Thus,
using the OPE (9.19), we get

A
(1)
disk(V V )

∣∣∣
y=1

= − 1

4bgs
lim
z→i

〈
cc(i)

(
c ∂ϕ(z, z)V (i)− c∂ϕ(z, z)V (i)

) 〉
UHP

(9.48)

=
1

4gs

〈
cc
(
∂c− ∂c

)
V
〉
UHP

, (9.49)

where all the insertions in the second line are understood to be at z = i. We can evaluate
this correlator using (9.27) and (9.2) to get

A
(1)
disk(V V )

∣∣∣
y=1

= g−1
s

Q

2b
. (9.50)

The contribution from the y = ϵ boundary contains two pieces. There is a finite piece
due to the second and fourth terms in (9.47):

A
(1)
disk(V V )

∣∣∣
y=ϵ, finite

=
1

4bgs
· Q
4b

· Q
i
· (−2i)× 2 = −g−1

s

Q2

4b2
, (9.51)

where we have again used (9.27) and (9.2). Finally, the contribution from the y = ϵ boundary
contains a divergent piece due to the first and third terms in (9.47). We use the bulk boundary
OPE (9.25), (9.26) together with (9.27) and (9.2) to get

A
(1)
disk(V V )

∣∣∣
y=ϵ, div

=
1

4bgs
· Q
4b

·
(
− Q

2iϵ

)
· (−2i)× 2 +O(ϵ) = ϵ−1 g−1

s

Q2

8b2
. (9.52)

Note that we do not get any order ϵ0 contribution because of the lack of O((z − z)0) terms
in the bulk-boundary OPE (9.25), (9.26).

We now analyze the contribution A
(2)
disk(V V ) that comes from the region 0 ≤ y ≤ ϵ.

As already mentioned, we shall regard this as the contribution from a Feynman diagram
of open-closed string field theory where a pair of open-closed string interaction vertices are
joined by an open string propagator. This Feynman diagram is shown in figure 9.1(a).6

6The Feynman diagram in figure 9.1(b) yields the sum of (9.50), (9.51) and (9.52).
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× × ×

(a) (b)

Figure 9.1: The two Feynman diagrams that contribute to the disk two-point amplitude.
The thick lines denote closed strings, while the thin line denotes an open string. The first
diagram gives the moduli space integral over the range 0 ≤ y ≤ ϵ, and the second diagram
gives the contribution from the range ϵ ≤ y ≤ 1. Figure reproduced from [307].

The two relevant open string states are the tachyon c1|0⟩ with L0 = −1, and the out-of-
Siegel-gauge mode ic0|0⟩ with L0 = 0 [307]. Quite generally, in string field theory we expect
that the tachyon exchange contribution cancels the divergent piece (9.52). We verify this
explicitly in the next subsection which also serves as a simple illustration of the mechanism
by which string field theory cancels such divergences. The contribution from the exchange
of c0|0⟩ vanishes since the relevant open-closed vertex, being proportional to the correlator
⟨ccV (i) ∂c(0)⟩UHP, vanishes (as can be seen from (9.2)). The contribution from all other
states with L0 > 0 vanishes in the limit ϵ→ 0.

Thus, putting together (9.50) and (9.51) we get

Adisk(V V ) = g−1
s

Q2

4b2

(
2b

Q
− 1

)
. (9.53)

Recalling the disk one-point amplitude (9.41) and the definition of gsf , we get

gsf =
Adisk(V V )

Adisk(V )2
= gs

(
2b

Q
− 1

)
. (9.54)

Thus, we find perfect agreement with the prediction in (9.40).

Tachyon exchange contribution to the disk two-point function

The goal of this subsection is to show that the tachyon exchange explicitly cancels the
divergent term in (9.52). The open-closed interaction vertex is associated with an UHP two-
point function, with one closed string at i and one open open string at 0. Let us denote by z
and z′ the coordinates on the two UHP coordinates representing the two vertices respectively.
The closed strings are inserted at z = i and z′ = i, while the open strings are inserted at
z = 0 and z′ = 0. Since the open string insertions are part of the internal open string
propagator, they are in general off-shell and we need to specify the local coordinates w and
w′ around the insertion points z = 0 and z′ = 0. We take [307]

w = λz, w′ = λz′ , (9.55)



CHAPTER 9. THE ZZ ANNULUS ONE-POINT FUNCTION IN NON-CRITICAL
STRING THEORY 180

for some large constant λ. Then the string field theory Feynman diagram produces part of
the world-sheet moduli space where we sew the two upper half planes by the relation

ww′ = −q, 0 ≤ q ≤ 1 . (9.56)

Using (9.55) we get the relation z = −q/(λ2z′), so that the two closed-string vertex operators
are inserted in the z-plane at z = i and z = iq/λ2. Calling the second position iy we see
that the range 0 ≤ q ≤ 1 translates to 0 ≤ y ≤ λ−2. Since the desired range in Section 9.4
is 0 ≤ y ≤ ϵ, we see that we should choose

λ2 = 1/ϵ . (9.57)

Once we have determined the relation between the parameters ϵ and λ, we shall forget the
Schwinger parameter representation of the propagator and directly calculate the contribution
from various open string exchange diagrams. Due to the relation (9.55) between the local
and global coordinates, the coupling of an internal open string state of conformal weight
L0 = h is scaled by a factor of λ−h. Taking into account that we have two upper half plane
amplitudes connected by an open string propagator, we get a net factor of λ−2h = ϵh.

The leading contribution, associated with the exchange of the open string tachyon c1|0⟩ =
c(0)|0⟩ with L0 = −1, is given by,

ϵ−1 · iπ
gs
⟨cc̄V (i)c(0)⟩UHP · g2o

(−1)
· iπ
gs
⟨cc̄V (i)c(0)⟩UHP . (9.58)

The two iπg−1
s ⟨cc̄V (i)c(0)⟩UHP factors are the disk correlators describing the open-closed

interaction vertex, with conventions as in (9.5). The factor of g2o can be regarded either as
part of the propagator in the convention in which g−2

o appears as an overall factor in the
open string field theory action, or from the two open-closed string vertices if we normalize
the open string field so that kinetic term has no go dependence. The −1 in the denominator
of the middle term is a reflection of the open string tachyon having mass2 = −1. Using
(9.27) and (9.2) we have

⟨cc̄V (i)c(0)⟩UHP =
Q

4b
· (−2i) = −i

Q

2b
. (9.59)

Using the relationship 1/(2π2g2o) = 1/gs [266, 287, 267, 288], we can simplify (9.58) to

−ϵ−1 g−1
s

Q2

8b2
. (9.60)

So we conclude that the exchange of the open string tachyon precisely cancels the divergent
contribution in (9.52).

Finally, we note that we could work with a more general choice of local coordinates w,w′

instead of (9.55), for instance w = λz
1−γz , w

′ = λz′

1−γz′ , for some constant γ. In this case, the
tachyon exchange contribution will be modified, but there will also be an extra contribution
from the exchange of the out-of-Siegel-gauge mode ψ multiplying the state ic0|0⟩. As in
[307], the sum of the two contributions, expressed as a function of ϵ, is independent of the
choice of local coordinates w,w′.
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(a) (b) (c) (d)

q1

q2
q1

q2

Figure 9.2: The four Feynman diagrams that contribute to the annulus one-point amplitude.
The thick line denotes a closed string, while thin lines denote open strings. The × denotes
a vertex on the upper half plane, whereas ⊗ denotes a vertex on the annulus. The variables
q1 and q2 are the plumbing fixture variables associated with the corresponding propagators.
Figure reproduced from [307].

9.5 The annulus one-point function

This section is devoted to analyzing the annulus one-point function of the cosmological
constant operator V and deriving the result g = 1

2
in (9.40) by directly integrating over the

moduli space.
We parametrize the annulus with a complex coordinate w = 2π(x + iy), with the flat

metric dwdw. As in Section 9.2, we let 2πt be the Euclidean time in the open string channel,
which means that y is periodic with period t. We can fix the translation symmetry along
the y-axis by setting the y-coordinate of the vertex operator to zero. Thus, we are left with
a two-dimensional moduli space, labeled by v = e−2πt and x. The range of v is 0 ≤ v ≤ 1.
The measure for v integration is proportional to dt or dv

v
, unlike dt

t
for the empty annulus in

(9.21), since the translation symmetry in the y-direction has been fixed. The open string has
length π, so x spans the range 0 ≤ x ≤ 1

2
. However, note that w → π−w is a diffeomorphism

of the annulus, since both boundaries lie on the same instanton. We need to quotient by
diffeomorphisms, and so the range of integration of x is in fact 0 ≤ x ≤ 1

4
.

Recall that gsg is defined as the ratio of the annulus one-point amplitude to the disk
one-point amplitude. By general principles, we have7

gs g =

∫ 1

0

dv

∫ 1
4

0

dxF (v, x) = gs
4b

Q

∫ 1

0

dv

∫ 1
4

0

dx Tr
[
V (w, w̄) b0 c0 v

L0−1
]
. (9.61)

The nontrivial proportionality constant in the final expression is determined in the next
subsection. The coordinate w should not be confused with the local coordinates around the
punctures for which we use the same symbol.

The integral (9.61) has divergences for small v and small x. As explained in detail
in [307], we need to interpret the contributions from these regions as string field theory
Feynman diagrams with internal propagators. These Feynman diagrams are shown in figure

7See, for example, section 7.3 of [265] for the analogous statement for the torus amplitude with external
closed string states.
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9.2 and the corresponding regions in the moduli space are shown in figure 9.3. The Feynman
diagram (d) represents the contributions from the “bulk” of moduli space where there is no
degeneration. Feynman diagram (c) has one internal propagator and corresponds to small
v with finite x. Feynman diagram (b) also has one internal propagator, but corresponds
to small x with finite v. Finally, Feynman diagram (a) has two internal propagators and
corresponds to small v and small x.

Normalization of the worldsheet contribution to the annulus
one-point function

The goal of this appendix is to derive the proportionality constant in (9.61), and also to
write precise expressions for the small-v and small-x behavior of the integrand.

Recall that we can write gsg as

gs g =

∫ 1

0

dv

∫ 1
4

0

dxF (v, x) , with (9.62)

F (v, x) = C Tr
[
V (w, w̄) b0 c0 v

L0−1
]
, w := 2π(x+ iy) , (9.63)

where C is the normalization constant that we want to determine. Recalling the argument
near (9.92), we can also write F (v, x) as

F (v, x) = ∂xG(v, x) , G(v, x) :=
C

16π2b
Tr
[
∂xϕ(w,w) b0 c0 v

L0−1
]
. (9.64)

Our strategy for determining C will be to compare the integrand to the contribution from the
Feynman diagram in figure 9.2 (a) for small v and small x. We would also like to compute
G(v, x) and F (v, x) in the regions of small v or small x (with the second variable being not
necessarily small).

Recall that w is the coordinate on the strip 0 ≤ Re [w] ≤ π, with Re [w] = 2πx. We can
map this to the upper half plane by the map z = eiw. The annulus is obtained from this
via the identification z ≡ vz. The transformation of ∂ϕ is given in (9.18), with a similar
transformation for ∂ϕ. We get

∂wϕ(w,w) = i
Q

2
+ iz ∂zϕ(z, z) , (9.65)

∂wϕ(w,w) = −i
Q

2
− iz ∂zϕ(z, z) . (9.66)

Thus, for small x, we can use the bulk-boundary OPEs (9.25), (9.26) to get

∂xϕ(w,w) = 2π(∂wϕ(w,w) + ∂wϕ(w,w)) = 2πi (z∂zϕ(z, z)− z∂zϕ(z, z)) ≈ −Q
x
. (9.67)
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The definition of G(v, x) in (9.64) now gives

G(v, x) ≈ −C Q

b

1

16π2x
Tr
[
b0 c0 v

L0−1
]
= −C Q

b

1

16π2x

Z(v)

v
, (9.68)

F (v, x) ≈ C
Q

b

1

16π2x2
Z(v)

v
. (9.69)

Here Z(v) is the annulus partition function, given in (9.22).
Next, we consider the small-v, finite-x region. We can evaluate this correlation function

by separating out the matter and ghost contributions. In the ghost sector, the leading and
subleading contributions to the trace are as in (9.23). In the matter sector the leading and
subleading contributions for small v come from just the vacuum state |0⟩. Therefore

Tr
[
∂xϕ(w,w) b0 c0 v

L0−1
]
≈ (v−2 − 2v−1 +O(1)) ⟨0|∂xϕ(w, w̄)|0⟩ for small v . (9.70)

Since we do not have a trace in the Liouville sector, we no longer need the identification
z ≡ vz. Using (9.65) and (9.66), and ⟨∂zϕ(z, z)⟩UHP = − Q

z−z as given in (9.28), we get

⟨0|∂xϕ(w, w̄)|0⟩ = −i 2πQ
z + z

z − z
= −2πQ cot(2πx) . (9.71)

Thus, from (9.64), we get

G(v, x) ≈ −C Q

8πb
(v−2 − 2v−1 +O(1)) cot(2πx) , (9.72)

F (v, x) ≈ C
Q

b
(v−2 − 2v−1 +O(1))

1

4 sin2(2πx)
for small v . (9.73)

We shall now fix the constant C by comparing (9.69) or (9.73) with the result g(a) of the
Feynman diagram in figure 9.2(a), which corresponds to small v and small x. For this, we
first rewrite F (v, x) in the (q1, q2) coordinates using eqs (4.73) and (4.81) of [307] for small
v and small x:

v ≈ q2
α2
, x =

q1

2πλ̃
. (9.74)

This yields

F (v, x) dv dx ≈ C
Q

b

1

16π2

dv dx

v2 x2
≈ C

Q

b

λ̃α2

8π

dq2
q22

dq1
q21

. (9.75)

The Feynman diagram of figure 9.2(a) can be analyzed as follows. The leading contribu-
tion for small v and small x comes from the propagation of the open string tachyon along
both propagators, producing the factor

∫
dq2 q

−2
2 dq1 q

−2
1 . Since the tachyon vertex operator

c is a primary of dimension −1, the open-closed and open-open-open interaction vertices
produce factors of λ and α3, respectively. The three open string vertex produces a factor of
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the open string coupling constant go. The ratio of the open-closed vertex (9.5) to the disk
one-point function (9.4) is given by

go
iπ ⟨c(0)cc̄(i)⟩UHP

1
4
⟨(∂c− ∂̄c̄)cc̄(i)⟩UHP

= πgo . (9.76)

The factor of go arises due to the presence of the extra open string. We have evaluated the
ghost correlators using (9.2). Putting all the factors together we get the following result for
gsg

(a):

gsg
(a) =

∫ ∫
dq2
q22

dq1
q21

λα3 π g2o =

∫ ∫
dq2
q22

dq1
q21

λ̃α2

2π
gs . (9.77)

In going to the second expression, we have used λ̃ = λα, and also the fact that 1/(2π2g2o) =
1/gs [266, 287, 267, 288]. Comparing (9.75) and (9.77), we get,

C =
4b

Q
gs . (9.78)

Plugging this value of C into (9.63) and (9.62), we get the desired result (9.61).
For later use, we also rewrite (9.68), (9.69), (9.72) and (9.73) using (9.78):

G(v, x) ≈

{
− gs

2π
cot(2πx) {v−2 − 2v−1 +O(1)} for small v

− gs
4π2x

Z(v)
v

for small x .
(9.79)

F (v, x) ≈

{
gs

sin2(2πx)
{v−2 − 2v−1 +O(1)} for small v

gs
4π2x2

Z(v)
v

for small x .
(9.80)

Brief review of the construction of vertices

Before diving into the computational details, we give an overview of the construction of the
various vertices that we will need. We will be brief since all the details were explained in
[307].

We will discuss the five different types of vertices that appear in figure 9.2: (1) the upper
half plane C-O vertex, (2) the upper half plane O-O-O vertex, (3) the upper half plane
C-O-O vertex, (4) the annulus O vertex, and (5) the annulus C vertex. Here C and O stand
respectively for closed and open strings.

The C-O vertex is described by the upper half plane geometry with complex coordinate
z. The closed string puncture is inserted at z = i and the open string puncture is inserted
at z = 0. There are no moduli. The local coordinate w around the open string puncture is
taken to be w = λz, with λ being a large, fixed real number.

The O-O-O vertex is described by the upper half plane geometry. Let’s again denote
the complex coordinate on the upper half plane by z, with the three open string punctures
inserted at z = 0, z = 1 and z = ∞. There are no moduli, but in computing a physical
amplitude, one needs to sum over the two distinct cyclic permutations of the three points. Let
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α be another large, fixed real parameter. The local coordinates around the three punctures
are chosen to be

w1 = α
2z

2− z
, w2 = α

2(z − 1)

z + 1
, w3 = α

2

1− 2z
. (9.81)

Next, we discuss the C-O-O vertex, which appears in figure 9.2(c). The C-O-O amplitude
on the upper half plane has a one-dimensional moduli space, and provides an example of how
the boundaries of moduli space are assigned to Feynman diagrams with internal propagators.
Denoting the complex coordinate on the upper half plane by z, we insert the closed string
puncture at z = i and the two open string punctures at z = ±β. Here β is a positive
real number that can be taken to be the coordinate on the one-dimensional moduli space.
The PSL(2,R) transformation z → −1/z keeps the puncture at z = i fixed, but sends
β → −1/β. So we can restrict β to lie in the range 0 ≤ β ≤ 1, while summing over the
two permutations of the two open string punctures. The region of small β, when the two
open string punctures collide, is covered by the Feynman diagram that consists of an upper
half plane C-O vertex (with coordinate z) joined to an upper half plane O-O-O vertex (with
coordinate z̃) with an open string propagator. The joining happens via the plumbing fixture
relation λz · α 2z̃

2−z̃ = −q1, with 0 ≤ q1 ≤ 1. Now define

λ̃ := λα . (9.82)

The open string puncture at z̃ = 1 gets mapped to z = − q1
2λ̃
, while the one at z̃ = ∞ gets

mapped to z = + q1
2λ̃
. Thus, we see that β = q1

2λ̃
. Since the range of q1 is 0 ≤ q1 ≤ 1, we

see that this Feynman diagram covers the region 0 ≤ β ≤ 1
2λ̃
. Note that λ̃ is large, so this

is the region of small β, where the two open-string punctures are close to each other. The
upper half plane C-O-O vertex is then assigned to cover the remaining region 1

2λ̃
≤ β ≤ 1.

For the range 0 ≤ β ≤ 1
2λ̃
, the local coordinates around the two open string punctures are

induced by the choice of local coordinates in the C-O and O-O-O vertices described above.
For the range 1

2λ̃
≤ β ≤ 1, we need to pick a choice of local coordinates that, at β = 1

2λ̃
,

match the ones from the β ≤ 1
2λ̃

region. The choice made in equation (4.12) of [307] involved
a real-valued function f(β) that is only constrained by the following

f

(
1

2λ̃

)
=

4λ̃2 − 3

8λ̃2
, f(1) = 0 , f(−β) = −f(β) . (9.83)

From now on, we shall work in the limit of large α and λ̃ and ignore terms that are suppressed
by inverse powers of either α or λ̃. Of course, the final result is guaranteed to be independent
of α, λ̃ and the function f(β).

Next, we discuss the vertex that corresponds to one open string puncture on the annulus.
This appears as one of the vertices in figure 9.2(b). There is one modulus, the quantity
v defined in (9.20). The full range of v is 0 ≤ v ≤ 1. As discussed in [307], the region
0 ≤ v ≤ (α2 − 1

2
)−1 of small v corresponds to the upper half plane O-O-O vertex with
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Figure 9.3: The division of moduli space of the annulus with one bulk puncture into four
regions corresponding to the four Feynman diagrams in figure 9.2. The green region describes
the Feynman diagram in figure 9.2(a) and is given in (9.84). The red region describes the
Feynman diagram in figure 9.2(b) and is given in (9.86). The blue region describes the
Feynman diagram in figure 9.2(c) and is given in (9.88)-(9.90). The remaining yellow region
describes the Feynman diagram in figure 9.2(d), and covers the bulk of the (v, x) moduli

space. We have taken λ̃ = 4, α = 2 and f(β) = 4λ̃3−3λ̃
4λ̃2−1

β(1− β2) for the purposes of plotting
this figure.

two of the three open string punctures joined with a propagator. The remaining range
(α2 − 1

2
)−1 ≤ v ≤ 1 is assigned to the annulus O vertex. The choice of the local coordinate

around the open string puncture has been described in [307].
Finally, we come to the C amplitude on the annulus. As already explained, in this case

there is a two-dimensional moduli space parametrized by v and x. We need to divide this
moduli space into four regions [307], which correspond to the four Feynman diagrams in
figure 9.2. See also figure 9.3. The Feynman diagram in figure 9.2(a) corresponds to the
region (shown in green in figure 9.3)

0 ≤ v ≤
(
α2 − 1

2

)−1

, 0 ≤ 2πx ≤ λ̃−1 2− v

2 + v
, (9.84)

with (v, x) related to the plumbing fixture variables (q1, q2) as

v =
q2
α2

(
1− q2

2α2

)−1

, 2πx =
q1

λ̃

(
1− q2

α2

)
. (9.85)

The plumbing fixture variables always vary in the range [0, 1]. The Feynman diagram in
figure 9.2(b) corresponds to the region (shown in red in figure 9.3)(

α2 − 1

2

)−1

≤ v ≤ 1 , 0 ≤ 2πx ≤ λ̃−1(1− α−2) , (9.86)
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with x related to the plumbing fixture variable q1 as

2πx =
q1

λ̃

(
1− 1

α2

)
. (9.87)

The Feynman diagram in figure 9.2(c) corresponds to the region in the (v, x) plane parame-
terized as

1

2λ̃
≤ β ≤ 1 , 0 ≤ u ≤ α−2

(
1 +

1

4λ̃2

)−2

, with (9.88)

2πx(β, u) = 2 tan−1(β)− u

βλ̃2

(
1− β2 − 2βf(β)λ̃

)
and (9.89)

v(β, u) = u
(1 + β2)2

4β2λ̃2

(
1 +

u

2β2λ̃2

(
1− β2 − 2βf(β)λ̃

)2)
. (9.90)

The parameter u is related to the plumbing fixture variable q2 via u = q2α
−2(1 + 1

4λ̃2
)−2.

Note that this corresponds to small v but finite x region, and is shown in blue in figure 9.3.
The Feynman diagram in figure 9.2(d) covers the remaining (v, x) region, not included in
the three cases above; it is shown in yellow in figure 9.3.

We will need to integrate a total derivative on region (d), and so we need to discuss the
boundaries of region (d). There are four boundary components, see figure 9.3. The boundary
between regions (d) and (b) lies at fixed x = (2πλ̃)−1(1− α−2) and is parametrized by v in
the range given in (9.86). The boundary between regions (d) and (c) is parametrized by β in
the range given in (9.88), with fixed u = α−2(1+ 1

4λ̃2
)−2 and x, v given by (9.89), (9.90). The

top boundary lies at x = 1
4
, with (λ̃α)−2(1+ 1

4λ̃2
)−2 ≤ v ≤ 1. Finally, the right boundary lies

at v = 1 with (2πλ̃)−1(1− α−2) ≤ x ≤ 1
4
.

We end this subsection with a couple of important remarks. First, in doing the compu-
tations, we will be expanding various expressions for large α and large λ̃. In doing so, we
can drop all terms that contain negative powers of either variable α or λ̃, since these cannot
contribute to the final answer [307]. The reason is that the α and λ̃ dependent terms are
supposed to cancel in the end, and if a term contains a negative power of one large variable,
there is no way for it to give a α and λ̃ independent term at higher orders. Second, for
diagrams that contain an internal propagator, we need the string field theory replacement
rules [307] ∫ 1

0

dq q−2 → −1 ,

∫ 1

0

dq q−1 → 0 . (9.91)

Here q is the parameter that enters in the plumbing fixture relation. The first replacement
rule comes from the formal Schwinger parameter representation of the propagator of a field
with L0 = −1. The second replacement rule comes from the fact that the Siegel gauge zero
modes are not part of the SFT path integral. They are replaced by the ψ field that multiples
ic0|0⟩, and the contribution of ψ exchanges is taken into account separately.
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The worldsheet contribution

In this subsection, we will compute the worldsheet contribution to g. There are two other
contributions, which we shall compute in the subsequent subsections.

Let us begin by computing the contribution from the “bulk” region of moduli space,
corresponding to the Feynman diagram in figure 9.2(d). Let us denote the region of the
(v, x)-plane covered by this diagram by S. We choose S to have the orientation given by the
two-form dv ∧ dx. We use the equation of motion (9.17) with µ̃ = 1 to replace V in (9.61)
by 1

b
∂w∂wϕ, or

1
16π2b

(∂2x + ∂2y)ϕ. The ∂
2
yϕ term does not contribute, since the transformation

that moves the vertex operator insertion in the y-direction is a simple translation for which
the anomaly term in the transformation of ∂ϕ (9.18) vanishes. Thus

g(d) =
1

4π2Q

∫
S

dv dx ∂xTr
[
∂xϕ(w,w) b0 c0 v

L0−1
]
= g−1

s

∫
dv dx ∂xG(v, x) , (9.92)

where G(v, x) has been defined in (9.64), (9.78). Since the right hand side of this equation
is a total derivative, the computation reduces to integrating Tr

[
∂xϕ(w,w) b0 c0 v

L0−1
]
along

the boundary of S.
The boundary of S has four components, as discussed at the end of the previous subsec-

tion. The top boundary at x = 1
4
does not contribute since the symmetry w → π−w implies

that ⟨∂xϕ(w = π
2
)⟩annulus = 0. There are no divergences at the v = 1 boundary, and since we

are integrating ∂x(. . .) on S, via Stokes’s theorem, this boundary also does not contribute.
So we only need to consider the two remaining boundaries: the boundary between regions
(d) and (c), and the boundary between regions (d) and (b).

Let us first consider the boundary between regions (d) and (b), and denote the contri-
bution as g(b)-(d). This boundary lies at constant small x, namely x = 1−α−2

2πλ̃
, with v lying in

the range given in the first part of (9.86). The small-x, finite-v behavior can be found from
(9.79) and yields,

g(b)-(d) =
1

2π
λ̃ (1− α−2)−1

∫ 1

(α2− 1
2
)−1

dv
Z(v)

v
. (9.93)

We could evaluate this using the known form of Z(v), but we note that this contribution
will be exactly cancelled by the contribution g(b) of the Feynman diagram in figure 9.2(b).8

Physically, this happens because there are no L0 = 1 states in the Liouville open string
sector that can leave an order-one contribution, and because the relation between x and q1
in (9.87) is linear. More precisely, to evaluate the Feynman diagram in figure 9.2(b), we use
the second line of (9.80), write x in terms of q1 using (9.87), and use the replacement rule∫ 1

0
dq1
q21

→ −1.

Now let us consider the boundary between regions (d) and (c), and denote the contribu-
tion as g(c)-(d). As discussed at the end of the previous subsection, the boundary between

8This is analogous to a similar argument made in appendix D of [307].
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regions (d) and (c) is parametrized by (v(β, u), x(β, u)) given in (9.89) and (9.90), with
1
2λ̃

≤ β ≤ 1 and u fixed to be u = α−2(1 + 1
4λ̃2

)−2. Let us denote (9.89) and (9.90) with this
fixed value of u by (v(β), x(β)). Since v is small along this boundary, we need to understand
the small-v behavior of G(v, x). This has been given in (9.79), using which we get

g(c)-(d) = − 1

2π

∫
dv (v−2 − 2v−1) cot(2πx) , (9.94)

with the direction of integration being the direction of increasing β, that is, upwards along
the boundary of the blue and yellow regions in figure 9.3. To do the integral in (9.94), it is
helpful to first rewrite it as

g(c)-(d) =
1

2π

∫ 1

(2λ̃)−1

dβ
∂

∂β

(
v(β)−1 + 2 log v(β)

)
cot(2πx(β)) . (9.95)

Then carrying out the integrations using the known expressions for v(β) and x(β) given
above, we get

g(c)-(d) =
α2λ̃2

4
− α2λ̃

π
− 3λ̃

4π
+
α2

8
− 2λ̃2

π

∫ 1

(2λ̃)−1

dβ
f(β)2

1 + β2
+

1

2
. (9.96)

Now, let us evaluate the contribution from the Feynman diagram in figure 9.2(c). This
diagram corresponds to small v but finite x, the precise domain has been specified in (9.88)-
(9.90). Using (9.89) and (9.90) we get the transformation of the measure

dv dx =

(
1 + β2

4πβ2λ̃2
+O(u)

)
dβ du, (9.97)

and so, using (9.61) and the first line of (9.80), we have

g(c) =

∫ 1

(2λ̃)−1

dβ

∫ α−2(1+(4λ̃2)−1)−2

0

du

(
1 + β2

4πβ2λ̃2
+O(u)

)
1

sin2(2πx)

(
v−2 − 2v−1 +O(v0)

)
→ −α2

(
1 +

1

4λ̃2

)2 ∫ 1

(2λ̃)−1

dβ
λ̃2

π(1 + β2)
≈ −α

2λ̃2

4
+
α2λ̃

2π
− α2

8
. (9.98)

In the second step, we used (9.89) and (9.90), replaced u by q2α
−2(1 + 1

4λ̃2
)−2, applied the

replacement rule (9.91) for the plumbing fixture variable q2, simplified a bit and ignored
terms containing inverse powers of either α or λ̃. The O(u) term from the measure can
combine with the v−2 term to give an O(1) expression proportional to

∫
du/u =

∫
dq2/q2,

but this is set to zero using the replacement rule (9.91).
The contribution from the Feynman diagram in figure 9.2(a) can be obtained by using

the expression for F (v, x) in (9.80) for small v and small x, rewriting the answer in terms of
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Figure 9.4: The two Feynman diagrams involving the loop of the out-of-Siegel-gauge mode
ψ. They both involve the upper half plane C-O-O amplitude; (a) corresponds to small β
while (b) corresponds to finite β. Figure adapted from [307].

the plumbing fixture variables q1 and q2 using (9.85), and then using the first replacement
rule in (9.91) for both q1 and q2. We get

g(a) =
1

2π
λ̃ α2 . (9.99)

Putting together all the Feynman diagrams in figure 9.2 using equations (9.99), (9.98),
(9.96), and the fact that g(b) + g(b)-(d) = 0, we get the total worldsheet contribution to g as

gws = g(a) + g(b) + g(c) +
(
g(b)-(d) + g(c)-(d)

)
(9.100)

=
1

2
− 3λ̃

4π
− 2λ̃2

π

∫ 1

(2λ̃)−1

dβ
f(β)2

1 + β2
. (9.101)

Contribution from ψ exchange

Since the two Siegel-gauge zero modes get replaced by the out-of-Siegel gauge mode ψ that
multiplies the state ic0|0⟩ = i∂c(0)|0⟩, we need to take into account the contribution from
the diagrams involving ψ propagators explicitly [307]. This is a contribution that is not
captured by the string worldsheet.

As mentioned in Section 9.4, the one-point C-O disk amplitude with one on-shell closed
string and the open string puncture corresponding to ψ vanishes. So, we only need to consider
the two Feynman diagrams shown in figure 9.4; they are analogous to figure 9.2(a) and 9.2(c).
Both diagrams involve an upper-half-plane amplitude with one closed string puncture, and
two open string punctures joined with a ψ propagator. Following the discussion of the upper
half plane C-O-O amplitude, we see that the region 0 ≤ β ≤ 1

2λ̃
corresponds to figure 9.4(a),

while the region 1
2λ̃

≤ β ≤ 1 corresponds to figure 9.4(b). As earlier, the ψ propagator equals
1
2
in our conventions.
The geometry of the upper half plane C-O-O amplitude has been discussed earlier. We

represent the upper half plane with complex coordinate z, insert the closed string puncture
at z = i and insert the two open string punctures at z1 = −β and z2 = β. Let wa, with
a ∈ {1, 2} denote the local coordinates around the two open string punctures, which we
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relate to z as

z = Fa(wa, β) = za + ga(β)wa +
1

2
ha(β)w

2
a +O(w3

a) . (9.102)

The actual amplitude, normalized to directly give the contribution to g, is given by [322,
323, 324]

gψ = −K1

∫
dβ

2∑
a=1

∮
a

dz

2πi

∂Fa
∂β

⟨b(z)F1 ◦ i∂c(0)F2 ◦ i∂c(0) ccV (i)⟩UHP , (9.103)

where
∮
a
represents an anticlockwise contour around za, and Fa◦i∂c(0) denotes the conformal

transformation of the operator i∂c by the function Fa. The constant K1 is a normalization
constant that we determine in the next subsection by comparing the right hand side of
(9.103), with ψ replaced by the tachyon, to the result for either figure 9.2(c) or 9.2(a), which
were given in (9.98), (9.99). The result is K1 = ib

2πQ
. This includes the contribution of

the ψ propagator. The β integral captures the effect of the Schwinger parameter integral
associated with the horizontal open string propagator in figure 9.4(a), and the intrinsic
integration parameter of the C-O-O vertex in figure 9.4(b).

Explicitly, the local coordinates around the open string punctures are [307]

F1(w1, β) = −β +
2β

α
w1 −

β

α2
w2

1 +O(w3
1) (9.104)

F2(w2, β) = β +
2β

α
w2 +

β

α2
w2

2 +O(w3
2) (9.105)

for 0 ≤ β ≤ 1
2λ̃
, and

F1(w1, β) = −β +
4λ̃(1 + β2)

α(4λ̃2 + 1)
w1 −

16λ̃2(1 + β2)(β + λ̃f(β))

α2(4λ̃2 + 1)2
w2

1 +O(w3
1) (9.106)

F2(w2, β) = β +
4λ̃(1 + β2)

α(4λ̃2 + 1)
w2 +

16λ̃2(1 + β2)(β + λ̃f(β))

α2(4λ̃2 + 1)2
w2

2 +O(w3
2) (9.107)

for 1
2λ̃

≤ β ≤ 1.
The evaluation of gψ given in (9.103) involves simplifying the right hand side using the

bc OPE, the explicit form of the local coordinates given above, and using (9.2) and (9.27) to
calculate the correlator. Using K1 =

ib
2πQ

, we find

gψ =
λ̃

4π
+

2λ̃2

π

∫ 1

(2λ̃)−1

dβ
f(β)2

1 + β2
. (9.108)

The first term is the contribution from the Feynman diagram in figure 9.4(a), and the second
term is the contribution from the Feynman diagram in figure 9.4(b).
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Normalization of the ψ exchange contribution

Our goal in this subsection is to compute the normalization constant appearing in (9.103).
The strategy to determine K1 is to compute the Feynman diagram in figure 9.4(b), but

with the tachyon running in the loop instead of the ψ field, and compare the result with
(9.98). Recall that figure 9.4(b) corresponds to 1

2λ̃
≤ β ≤ 1, in which the two open string

punctures are not close to each other. Evaluating the Feynman diagram in figure 9.4(b) with
the tachyon in the open string loop requires evaluating the right hand side of (9.103) with
two c operators instead of the two i∂c operators. The propagator of the tachyon field equals
−1 in our normalization as opposed to 1/2 for the ψ propagator. This yields

g(c) = 2K1

∫ 1

(2λ̃)−1

dβ
2∑

a=1

∮
a

dz

2πi

∂Fa
∂β

⟨b(z)F1 ◦ c(0)F2 ◦ c(0) ccV (i)⟩UHP (9.109)

= 2K1
iQ

b
α2λ̃2

(
1 +

1

4λ̃2

)2 ∫ 1

(2λ̃)−1

dβ

1 + β2
. (9.110)

To get to the second line, we used the bc OPE, the explicit form of Fa given in (9.106),
(9.107), and the correlators (9.2), (9.27). Comparing (9.110) to the first expression in the
second line of (9.98), we find

K1 =
ib

2πQ
. (9.111)

We can find the same result if we study the figure 9.4(a) with the tachyon running in the
loop and comparing the result to (9.99).

Gauge parameter redefinition

Finally, we also need to take into account the relation between the string field theory gauge
transformation parameter θ appearing in (9.24) and the rigid U(1) transformation parameter

θ̃ under which an open string with one end on the instanton picks up a phase eiθ̃. The gauge
transformation parameter θ is the one that multiplies the vacuum state i|0⟩. Once this

relation is found, we can evaluate the denominator of (9.24) using the fact that θ̃ has period
2π.

In order to study the gauge transformation properties, it is useful to introduce a spectator
instanton. A fundamental property of the BV formalism is that the gauge transformation
laws are encoded in the coupling terms in the master action. Let ξ be the field that multiplies

the vacuum |0⟩ in the expansion of the string field with Chan-Paton factor

(
0 1
0 0

)
. Its

conjugate anti-field ξ∗ has the vertex operator c∂c∂2c/2 and carries the Chan-Paton factor(
0 0
1 0

)
. Let ψ2 be the field that multiplies the vacuum i|0⟩ but with Chan-Paton factor
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(a) (b) (c) (d)

q1
q2

q1

q2

Figure 9.5: The four Feynman diagrams that contribute to the C-O-O-O amplitude. This
is needed to evaluate the field-dependent relationship between the string field theory gauge
parameter and the rigid gauge parameter that rotates the phase of an open string field with
one end on the instanton. Figure adapted from [307].

(
1 0
0 0

)
. Computing the trilinear coupling of ξ-ξ⋆-ψ2 using the correlator (9.2), we find the

following term in the SFT path integral [307, 257]:

exp(i go ξξ
⋆ψ2) . (9.112)

This coupling determines the infinitesimal gauge transformation of ξ to be δξ = igoθξ and,
in turn, gives the relationship between θ and θ̃ to be dθ = g−1

o dθ̃. This is needed for a precise
computation of the one-loop normalization factor (the exponential of the empty annulus)
that accompanies D-instanton amplitudes [257].

However, we are working at the first sub-leading order in gs, and the relation between θ
and θ̃ could receive corrections that are, in general, field-dependent. Let Φ be the tachyon
field that multiplies the cosmological constant operator V in the expansion of the string field,
and let iA be the C-O-O-O disk amplitude with the closed string insertion being Φ and the
three open string insertions being ξ, ξ⋆ and ψ2. Following [307], we note that this leads to

the following field-dependent relationship between θ and θ̃:

dθ̃ = go (1 +AΦ) dθ . (9.113)

Substituting this in the denominator of (9.24), and writing (1+AΦ) ≈ eAΦ, we see that the
path integral contains the extra term exp(AΦ). This leads to an additional contribution to
the one-point function of Φ proportional to A. Since this is of the same order as the annulus
one-point function, after dividing it by the disk one-point function and gs, we can interpret
this as an additive contribution to g proportional to A, which we call gghost.

So, now we turn our attention to the computation of gghost. The upper half plane C-O-O-
O amplitude has two real moduli. We insert the cosmological constant operator at z = i, and
the three open string vertex operators I, 1

2
c∂c∂2c, I are inserted at z1, z2 and z3, respectively.

We only consider one cyclic ordering of I, 1
2
c∂c∂2c, I, which is the order in which we just

wrote them. The other cyclic ordering vanishes due to the trace over the Chan-Paton factors.
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Up to permutations of the external legs, there are four Feynman diagrams contributing to
this amplitude; they are shown in figure 9.5.

Let β1 and β2 be the coordinates on the moduli space, and denote β⃗ = (β1, β2). This

means that the locations z1, z2, z3 of the open string punctures are functions of β⃗. Let the
local coordinates w1, w2, w3 around the three punctures be related to the UHP coordinate z
via

z = Fa(wa, β⃗) = fa(β⃗) + ga(β⃗)wa +
1

2
ha(β⃗)w

2
a +O(w3

a) . (9.114)

Then, by the general rules of [322, 323, 324], we have

gghost = K3

∫
dβ1∧dβ2

〈{
3∑

a=1

∮
dz

2πi

∂Fa
∂β1

b(z)

}

×

{
3∑

a=1

∮
dz

2πi

∂Fa
∂β2

b(z)

}{
1

2
c∂c∂2c(z2)

}
ccV (i)

〉
, (9.115)

where we used the fact that all three open string insertions, being dimension zero primaries,
are unaffected by the conformal transformations Fa. The constant K3 is a constant of
proportionality that will be explicitly computed in the next subsection but the result is
K3 = − ib

πQ
.9 Using (9.115) together with (9.114), the bc OPE, and equations (9.27), (9.2),

one finds

gghost = − 1

4π

∫ [
(1 + f 2

2 )g
−3
2 dh2 ∧ dg2 − 2f2g

−2
2 dh2 ∧ df2 + (2f2h2g

−3
2 + 2g−1

2 )dg2 ∧ df2
]
.

(9.116)

Note that only (f2, g2, h2) appear in the above expression since the insertions at z1 and z3
are the identity operator.

Next, we note that the two-form that appears in (9.116) is exact, and so gghost can be
written as

gghost = − 1

2π

∫
dJ (9.117)

J := −f2g−1
2 dg2 −

1

2
(1 + f 2

2 )h2g
−3
2 dg2 +

1

2
(1 + f 2

2 )g
−2
2 dh2 + df2 −

2

1 + f 2
2

df2 . (9.118)

The final two terms vanish when we compute dJ , but they are necessary. The df2 term
has been chosen so that J is invariant under the PSL(2,R) transformation z → z−c

1+cz
that

keeps the closed string puncture at the point z = i fixed but moves the three open string

9Integration over β1 and β2 includes integration over the Schwinger parameters of all the propagators
appearing in figure 9.5, so unlike in the case of K1 appearing in (9.103), we do not need to include any
propagator factors in the definition of K3.
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punctures. This ensures that there are no special contributions from the region of moduli
where the open string punctures go to infinity along the real axis. The final term in (9.118) is
PSL(2,R) invariant by itself and has been chosen so that the contraction of J with the vector
(δf2, δg2, δh2) = (1+f 2

2 , 2f2g2, 2g
2
2+2f2h2) that generates the above PSL(2,R) transformation

vanishes. This final term was missing in the analysis of [307]. Without this term J will not
be a well-defined one-form in the two-dimensional moduli space parametrized by β1, β2, and
we cannot apply Stokes’s theorem to evaluate the right hand side of (9.117) as a boundary
term.

Let us elaborate a bit more about this point. One could fix the PSL(2,R) transformation
above by working with local coordinates such that, say, f2 = 0. We can do this by making
the transformation z̃ = z−f2

1+f2z
. Applying this transformation to (9.114), we find the new local

coordinate around the second puncture to be

z̃ =
g2

1 + f 2
2

w2 +
1

2

h2 + h2f
2
2 − 2f2g

2
2

(1 + f 2
2 )

2
w2

2 +O(w3
2) =: g̃2w2 +

1

2
h̃2w

2
2 +O(w3

2) , (9.119)

where the last equality serves to define the quantities g̃2 and h̃2. In this ‘gauge’, both the
terms proportional to df̃2 in (9.118) drop out and one gets J = −1

2
h̃2g̃

−3
2 dg̃2 +

1
2
g̃−2
2 dh̃2.

Now, using the definitions of g̃2 and h̃2 from (9.119), we can transform back to the (f2, g2, h2)
variables, and one finds (9.118).

The benefit of using (9.118) is that since all the open string punctures are treated in the
same way, the three different orderings of the open string punctures on the real line (preserv-
ing the cyclic ordering) that need to be summed can be obtained by a simple permutation
of the labels. We have checked that using the gauge-fixed form of J and summing over the
three orderings gives the same final answer.

Normalization of the C-O-O-O amplitude

In this appendix, we determine the normalization constant K3 appearing in (9.115). Our
strategy to determine K3 is to study the Feynman diagram in figure 9.5(c), but with all three
open string insertions being the tachyon field, with Chan-Paton factors kept the same as in
the previous subsection. The consistency condition between two different ways of computing
this diagram will yield the value of K3. Let us denote the amplitude computed using (9.115)

with all the external states taken as c by Ã, and let Ãc denote the contribution to this
amplitude from figure 9.5(c) (with just one of the three possible assignments of the external
operators to the external legs).

First, note that figure 9.5(c) with the internal propagator also being the tachyon, is the
product of three factors: the C-O-O amplitude (with the closed string puncture being V
and the two open string punctures being tachyons), the tachyon propagator, and the O-O-O
three tachyon amplitude. The product of the C-O-O amplitude and the tachyon propagator
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appears also in figure 9.2(c) and is given by (9.98).10 The O-O-O tachyon vertex can be
computed using the local coordinates in (9.81) and the ghost correlator in (9.2) to be α3. So
we find

Ãc = − 1

π
λ̃2α5

(
1 +

1

4λ̃2

)2 ∫ 1

(2λ̃)−1

dβ

1 + β2
. (9.120)

The second way of computing this amplitude is to start with the expression analogous
to (9.115). Using Fa ◦ c(0) = g−1

a c(za), we get the following expression:

Ã = K3

∫
dβ1∧dβ2

〈{
3∑

a=1

∮
dz

2πi

∂Fa
∂β1

b(z)

}{
3∑

a=1

∮
dz

2πi

∂Fa
∂β2

b(z)

}

× (g1g2g3)
−1c(z1)c(z2)c(z3) ccV (i)

〉
= − iQ

2b
K3

∫
(g1g2g3)

−1[(1 + f 2
3 ) df2 ∧ df1 + (1 + f 2

1 ) df3 ∧ df2 + (1 + f 2
2 ) df1 ∧ df3] .

(9.121)

We used the bc OPE and equations (9.2), (9.27), (9.114) to get to the second line. Let us

use this expression to evaluate Ãc. Using the explicit form of fa, ga and ha suitable for the
region corresponding to figure 9.5(c) given in equation (D.24) of [307], we find

Ãc =
iQ

2b
K3 · 2λ̃2α5

(
1 +

1

4λ̃2

)2 ∫ 1

(2λ̃)−1

dβ

1 + β2

∫ 1

0

dq2
q22

(9.122)

→ − iQ

b
K3 λ̃

2α5

(
1 +

1

4λ̃2

)2 ∫ 1

(2λ̃)−1

dβ

1 + β2
, (9.123)

where we used the replacement rule
∫ 1

0
dq2
q22

→ −1 for the plumbing fixture variable q2 ap-

pearing in the internal propagator in figure 9.5(c).
Comparing (9.120) and (9.123) we get

K3 = − ib

πQ
. (9.124)

The C-O-O-O amplitude contribution

We now turn to the computation of the four Feynman diagrams in figure 9.5. The correspond-
ing regions in moduli space are shown in figure 9.6. Except for the overall normalization and

10Note that (9.98) includes division by gs and the disk one point function; so the normalization of the
amplitude determined this way directly yields the contribution to g.
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Figure 9.6: The regions of moduli space of the C-O-O-O amplitude (with a fixed cyclic
ordering) corresponding to the four Feynman diagrams in figure 9.5. For this figure, we have
set the location of the second puncture z2 = 0. The green region corresponds to figure 9.5(a),
the red region to figure 9.5(b), the blue region to figure 9.5(c), and the bulk of the moduli
space, shown in yellow, corresponds to figure 9.5(d). The chosen cyclic ordering (z1, 0, z3)
gives rise to three linear orderings, namely, z1 ≤ 0 ≤ z3, 0 ≤ z3 ≤ z1 and z3 ≤ z1 ≤ 0, which
can be clearly identified. The same color is used to label different regions of the moduli space
related by cyclic permutation of external open string states.

the last term in (9.118), the analysis is identical to that in appendix D of [307]. Therefore
we shall be brief.

The Feynman diagrams in figure 9.5(a) and 9.5(c) vanish. This is because, given the
choice of the three open string vertex operators, neither the tachyon nor the out-of-Siegel
gauge mode ψ can propagate along the propagator labeled by q2 in figure 9.5. The propaga-
tion of other L0 = 0 Siegel gauge states are prevented by the replacement rule (9.91), and
contributions from the L0 > 0 states are suppressed in the limit of large λ and α.

Since the integrand in (9.117) is a total derivative, we can evaluate the Feynman diagram
corresponding to the bulk of moduli space, i.e. figure 9.5(d), via Stokes’s theorem. This
region shares one boundary with the region corresponding to figure 9.5(b) (the yellow-red
boundary in figure 9.6), and one boundary with the region corresponding to figure 9.5(c)

(the yellow-blue boundary in figure 9.6). Let us denote these two contributions as g
(b)-(d)
ghost

and g
(c)-(d)
ghost , respectively.
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Next, we observe that [307]

g
(b)-(d)
ghost + g

(b)
ghost = 0 . (9.125)

This is because if we denote the relevant part of the
∫
dJ in region (b) as

∫
q−2
1 dq1∧ f(τ)dτ ,

where τ is the modular parameter in the O-O-O-O vertex, then our choice of J gives
∫
J =∫

f(τ)dτ from the (b)-(d) boundary.11 Evaluating the contribution from figure 9.5(b) using
the replacement rule (9.91), we get −

∫
dτf(τ), which cancels the contribution of

∫
J from

the (b)-(d) boundary. This is similar to the cancellations we saw when we computed the
worldsheet contribution.

Thus the only contribution to gghost comes from g
(c)-(d)
ghost . This is the boundary between

the yellow and blue regions of figure 9.6, which consists of six segments. Each of these six
segments lies at q2 = 1 and can be parametrized by the quantity β that appears in the
definition of the C-O-O vertex in the range 1

2λ̃
≤ β ≤ 1. Explicit expressions for f2, g2

and h2 for each segment can be found in equations (D.24)-(D.26) of [307]. Apart from the
normalization constant discussed above, the only change compared to [307] is due to the final
term − 2df2

1+f22
in the one-form J (9.118). This term precisely cancels the O(1) contribution to

gghost in [307]. The conclusion is that

gghost = g
(c)-(d)
ghost = − 1

π
· λ̃
∫ 1

(2λ̃)−1

dβ f ′(β) =
λ̃

2π
. (9.126)

We have added together the contribution from the six boundary segments and used (9.83)
to get to the final expression.

For comparison, note that the result of [307] was gghost =
λ̃
2π
− 1

2
. With the modification to

J that we have discussed, the function g(ω) computed in [307] will have an extra contribution
+1

2
. This precisely resolves the mismatch with the matrix model results of [25, 310].

Final result and remarks

Adding together the worldsheet contribution (9.101), the ψ-exchange contribution (9.108),
and the contribution (9.126), we find

g = gws + gψ + gghost =
1

2
, (9.127)

in perfect agreement with the general prediction (9.40).
As already mentioned, if we use the corrected form of J in (9.118) for the computation in

[307] of the annulus one-point function in c = 1 string theory, we also find a perfect match

11This was verified in [307] for the choice of J in which the last term in (9.118) was absent. We have
checked that the extra term does not affect the result. This is a consequence of the fact that, for figure
9.5(b), all the open string vertex operators remain close to the origin of the UHP, and hence the change in

f2 along the (b)-(d) boundary is small for large λ̃ and α.
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with the results of Balthazar, Rodriguez, and Yin [25, 310]. In the notation of [307], this
would mean that Ag = 0.

We conclude this article with a remark about the quantity C = C̃ in (9.37), which
represents O(gs) corrections to the instanton action. Corrections to this order have been
computed in one-matrix integrals [282, 283]. It would be interesting to compute this quantity
directly from the worldsheet of the (2, p) minimal string and check that it agrees with the
prediction from the dual one-matrix integral. The main technical challenge seems to be
that the moduli spaces of the relevant Riemann surfaces, the disk with a handle, and the
three-holed sphere, are three-dimensional, which is one higher than the ones that we have
analyzed.
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