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ABSTRACT OF THE DISSERTATION

Chaos, observability and symplectic structure in optimal estimation

by

Daniel Rey

Doctor of Philosophy in Physics with a Specialization in Computational Science

University of California, San Diego, 2017

Professor Henry D.I. Abarbanel, Chair

Observation, estimation and prediction are universal challenges that become especially difficult

when the system under consideration is dynamical and chaotic. Chaos injects dynamical noise into
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1 Introduction

Our ability to model and understand complex dynamical behavior has greatly improved over the

last century. As our models become more refined and our computational and data collection resources

continues to grow, it brings to the forefront a fundamental problem. Using a model to identify, predict or

control a systems behavior requires knowledge of the model’s dynamical states, static parameters, and

exogenous inputs. For instance, accurate predictions require accurate estimates to initialize the model

forecasts. Typically however, many of these variables cannot be directly measured, and must therefore

instead be inferred from observational data.

At its core, the estimation process is an inverse problem. It involves the fusion of observational

data into estimates of the states and parameters of a computational model. These estimates may then be fed

back into the model to generate forecasts, which among other things may be used to validate the model or

make policy decisions. Alternatively, the estimates may also be used as input to a feedback control system,

designed to push the system towards some target trajectory.

The state and parameter estimation problem constitutes one of the grandest and most universal

scientific challenges. Its overall scope spans a wide range of disciplines and boasts virtually endless list of

practical applications. From guidance of aircraft and satellites, to magnetic resonance imaging, to forecasts

of climate, stock markets and neural activity — it is nearly impossible to identify an area of science or

engineering that does not have to confront it.

This broad applicability, coupled with the unprecedented availability of data and computational

power, has generated an explosion of algorithmic techniques for solving this problem. While the majority of

these approaches are all based in one way or another on the framework of Bayesian inference, the distinction

between them generally depends on the goals and constraints of the problem under consideration.

Among these constraints, the suitability of any given technique is largely determined by the

availability of prior information. It is worth emphasizing however, that ‘prior’ information comes in many

1
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forms. The most literal interpretation comes from the Bayesian description as an a-priori estimate of the

model variables. Here, it is often used to initialize and regularize the search for the optimal values. In

another sense however, prior information may also be viewed as the confidence one has in the mathematical

model. After all, these models are typically the result of hundreds of years of scientific and intellectual

effort. In this way, the availability of this type of prior information determines the underlying confidence

that one has in the model. And this, together with the goals and constraints of the problem being addressed,

determines the suitability of a given estimation technique.

For example, models based on physical principles, such as the transport processes underlying

earth systems, obey rather strict constraints, such as conservation of mass, energy and momentum. As such,

they are considerably more accurate and reliable than economic or social models, which must are largely

based on perceived patterns in the data and must account for the inherent uncertainty of human behavior.

High-confidence models are not always available of course. When they are not, statistical and

data driven models attempt to capture features and trends beyond the limits of first principles. When they

are available however, models based on fundamentals tend to offer more reliable forecasts. And when these

models are dynamical, their combination with time-series data provides access to a wealth of information

hidden in the system dynamics.

Dynamical information serves as a regularizing constraint, to break the degeneracy inherent in

the fact that the full state of the system simply cannot be directly observed. The best estimation methods

harness this information, to improve accuracy and reliability of the estimates and forecasts, enhance their

robustness to errors in the observations and the model, and reduce their dependence on prior information.

This thesis will describe how this is done, both in theory and through numerical simulations. It

will also introduce a general framework for comparing the observational efficiency of among observation

techniques. To begin however, the theoretical foundations for estimation will be laid out in the context of a

simple example.

1.1 Predicting the outcome of a coin toss

Consider a simple game where one is asked to predicting the outcome of a series of coin tosses.

The ability to model and predict the result inherently depends on the rules of the game, or more precisely

on the availability of information.

Suppose for instance that one must make the call before the toss, but is allowed to directly observe

the result of the coin falling directly on the floor. In this case, one might choose to model the outcome
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probabilistically. If the coin is fair (i.e., has equal likelihood of landing heads or tails) there is no edge on

prediction, and this is the best that can be done given the circumstances.

If, on the other hand, one does not with to assume the coin is fair (or perhaps there is reason to

suspect the coin might be weighted to give preference to one side over another) then one may instead try to

infer the relative probability of the coin from the data. The problem is then to estimate the parameter θ

(representing the probability of the coin landing heads up) given the result of N tosses Y 1:N := {yn}N
n=1,

where yn is the result of the nth toss (yn = 1 if heads, yn = 0 if tails). More specifically, the goal is to

construct a series of estimates θn|n, where θn|n represents the best estimate given the data up to time yn.

This allows the estimate to be updated during the course of the game, with the hope of improving one’s

odds of success in later rounds.

1.1.1 Filtered estimates

In the language of estimation theory, the estimate θn|n is known as a filtered estimate. Its

calculation involves a standard application of Bayesian inference, where the goal is to evaluate the

conditional distribution p(θn|Y 1:n). A recursive estimate can be constructed using Bayes’ rule

p(θn|Y 1:n) =
∫

dθn−1
p(θn,θn−1,yn,Y 1:n−1)

p(Y 1:n)

=
∫

dθn−1
p(yn|θn,θn−1,Y 1:n−1) p(θn|θn−1,Y 1:n−1) p(θn−1,Y 1:n−1)

p(Y 1:n)

=
p(yn|θn)

p(yn)

∫
dθn−1 p(θn|θn−1) p(θn−1|Y 1:n−1).

Three assumptions were made in the third line:

1. mutual independence of measurements

p(Y 1:n)→ p(Y 1:n−1) p(yn)

2. conditional independence of measurements

p(yn|θn,θn−1,Y 1:n−1)→ p(yn|θn)
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3. the Markov transition property

p(θn|θn−1,Y 1:n−1)→ p(θn|θn−1)

Since yn appears outside the integral, the recursion can be split into two steps: a time update

p(θn|Y 1:n−1) =
∫

dθn−1 p(θn|θn−1) p(θn−1|Y 1:n−1)

and a measurement update

p(θn|Y 1:n) =
p(yn|θn) p(θn|Y 1:n−1)

p(yn)
.

If one assumes the coin does not change between trials, this is a static parameter estimation problem. The

transition probability is therefore a delta function p(θn|θn−1)→ δ(θn−θn−1), and the time update step can

effectively be ignored since p(θn|Y 1:n−1) = p(θn−1|Y 1:n−1). Also, the conditional probability is known

p(yn|θn) = θn δ(1− yn)+(1−θn)δ(yn).

But the denominator is not. And it is not possible to determine overall probability p(yn) of a given toss.

This is not a problem however, if its value does not change between trials. In this case, it acts as a

normalizing constant to ensure the probability sums to unity. The calculation can therefore be performed

without knowledge of p(yn), provided the resulting distribution is then normalized.

To initialize the recursion, a ‘prior’ distribution is also needed. Any distribution can be selected.

But the simplest choice is perhaps a delta function p(θ1|Y 1:0) = δ(θ1 − θ0). With this choice, the

conditional probability p(θn|Y 1:n) of the parameter θn after observing m heads in n tosses is a beta

distribution

p(θn|Y 1:n) =
Γ[2+n]

Γ[1+m]Γ[1−m+n]
θ

m
n (1−θn)

n−m
δ(θn−θ0). (1.1)

Note also that here the order in which the results occur does not matter.

This distribution can be used to calculate any desired statistic of the parameter θn. But since one

must choose a specific value for the next outcome, the ‘optimal’ filtered estimate of θn|n ≡ θ∗n is chosen to

be the one that maximizes likelihood of success, given the preceding data Y 1:n. In other words, the optimal

parameter θ∗n corresponds to the peak (or conditional mode) of the distribution p(θn|Y 1:n). This value

can be found by maximizing the distribution, although in practice this often involves very large (or small)
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numbers. So it is typically better to maximize its log instead, which is also known as its log-likelihood. For

the purpose of later discussion, an equivalent formulation is used, which instead minimizes the negative log

θ
∗
n =−argmin

θ

log[p(θn|Y 1:n)] =−argmin
θ

(
m log[θ]+ (n−m) log[1−θ]

)
=

m
n
=: θn|n.

This implies rather intuitively that the most likely outcome of the next toss is the one that has appeared

most frequently thus far.1

1.1.2 Smoothed estimates

There is also another type of estimate that can be performed. Suppose after observing the outcome

of N trials one were to ask whether a better prediction of yn could have been made, given knowledge the

remaining n−N results. The corresponding estimate θn|N (i.e., given the Y 1:N) is called the smoothed

estimate. While this type of ‘reanalysis’ does not have any benefits for predicting the N +1 result, it is

useful nonetheless: e.g., for model validation purposes.

There are two predominant ways of constructing smoothed estimates. The first is a recursive

approach takes the result of the filtered estimate and propagates it backwards (i.e., from n→ n−1). This

again involves rewriting the conditional distribution using Bayes’ rule ([9]),

p(θn|Y 1:N) =
∫

dθn+1
p(θn,θn+1,Y 1:N)

p(Y 1:N)

=
∫

dθn+1 p(θn+1|Y 1:N) p(θn|θn+1,Y 1:N)

=
∫

dθn+1 p(θn+1|Y 1:N) p(θn|θn+1,Y 1:n)

= p(θn|Y 1:n)
∫

dθn+1
p(θn+1|Y 1:N) p(θn+1|θn)

p(θn+1|Y 1:n)
.

Here, the Markov transition property implies that p(θn|θn+1,Y 1:N)→ p(θn|θn+1,Y 1:n). Note that com-

puting this ‘backwards pass’ also requires the filtered result. Together, they form the basis for two-pass

recursive smoothing algorithms, which also called forward-backward, or sweep methods. These methods

will be discussed in more detail in Chap. (2).

Alternatively, one may eschew the recursive formulation altogether. Expanding the conditional

density gives

p(Θ1:N |Y 1:N) =
N

∏
n=1

exp[CMI(θn,yn|y1:n−1)] p(θn|θn−1) p(θ0), (1.2)

1Note also that the normalization constant does not affect this solution.
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where

CMI(θn,yn|y1:n−1) := log
[

p(θn,yn|y1:n−1)

p(yn|y1:n−1) p(θn|y1:n−1)

]
→ log

[
p(yn|θn)

p(yn)

]

p(Θ1:N |Y 1:N) =
N

∏
n=1

exp[CMI(θn,yn|y1:n−1)] p(θn|θn−1) p(θ0),

is the conditional mutual information between yn and θn ([41]), and the right hand limit holds when

the measurements are mutually, and conditionally independent. This form clearly distinguishes among

the influence of the prior p(θ0), the transition density p(θn|θn−1), and the information provided by the

observations. It also has a direct interpretation as a statistical path integral, which will be discussed

momentarily.

Both approaches give the same estimate for the parameter θn. In this case, the conditional

distribution is the same as Eqn. (1.1) above, except now with M heads obtained over N trials. The resulting

maximum-likelihood estimate for θn|N = M/N. While this is different than the filtered result, the overall

strategy remains the same.

If the coin is indeed fair, this type of stochastic model provides no benefits in terms of prediction

accuracy. This is related to the fact that this example is a static noiseless parameter estimation problem, so

θn+1 = θn, and that the order of events does not matter. It is possible to do better however.

An alternative situation will now be described, which involves modeling the coin physically, and

estimating its time-varying states. This requires modifying the rules of the game. But doing so can provide

a considerable edge in predictability.

1.1.3 Modeling coin physics

Consider a slight change in the rules where one is now allowed to decide the outcome of the

toss while the coin is in the air. To simplify the situation further, suppose that the coin is not allowed to

drop on the floor, but rather falls onto a pillow to minimize its bounce. Also, let there be no technological

restrictions. So one may use a camera to record the toss, and a computer to analyze the data before making

a decision. The question is then: how best to use this information to make better predictions?

A number of possible strategies come to mind. For instance, one might use the camera to

determine which side is facing up the instant before the coin hits the pillow. After many trials, it may be

possible build a statistical model that uses this information to an advantage. However, this approach does

not take into account important factors such as its center of mass position, orientation, and linear/angular

momentum. It seems likely that knowledge of these quantities will help improve the predictions, and
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perhaps even allow one to determine the outcome earlier in the trajectory, with enough time to call the result

before it lands. After all, once the coin is in the air, its trajectory is determined by rigid body mechanics.

However, it is also clear that these physical quantities are not known or directly observed (by a camera at

least). Thus, to adopt this approach, they must be inferred from the available data.

This estimation problem proceeds analogously to the one described above, with one important

difference. The relative weight of the coin was assumed to be a static parameter, whereas these physical

quantities are clearly time-varying. How then does one estimate these dynamical quantities? The answer

is to incorporate this dynamical information into the transition probability, through the development of a

state-space model.

Physical models for coin-toss mechanics were examined by [98, 45]. These models use rigid

body mechanics to develop a set of ordinary differential equations (ODEs) that describes the time evolution

of its dynamical variables, which include center of mass position and momentum, orientation, and angular

momentum. These variables may all be combined into a single, time-dependent, state vector x(t)≡ xt .

The resulting ODE may generally be represented in continuous time as

ẋt :=
dx
dt

= f(xt , t) =: ft(xt),

where ft is typically called a state-space model and incorporates all the physics of the problem.2 In

practice, the equations ft are often nonlinear, and do not have a closed-form analytical solution. Thus, the

approximately trajectory must be solved for computationally, using a suitable method of which there are

many. This effectively transforms the continuous time problem into discrete time, by breaking it into a

series of steps xn ≡ x(tn) with {tn}|Nn=1 at an increment dt, which here is assumed uniform. The model

may then be expressed in discrete time as,

xn+1 = Fn(xn),

where Fn is the discretized version of the continuous model ft . In what follows, it will often be assumed

that the model is autonomous (i.e., not explicitly time-dependent), so the time index is neglected. This

assumption is not required, but helps simplify the expressions.

In addition to the dynamic states xn, the model Fn may also include static parameters θ that

2Note that this definition of a state is similar but distinct from a thermodynamic state, in which a
number of particles may occupy the same energy state but have different positions and momenta.
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also need to be estimated. These parameters may be simply treated as additional states in the model,

with dθt/dt = 0. The estimation of dynamic parameters (also called model inputs or forcing variables) is

possible as well. But this is typically more difficult as the problem is often highly underdetermined.

1.1.4 The observation model

In addition to the dynamical forecast model F , an observation model is needed to relate the model

states xn to the observed data yn. This model may be generally written as

yn = hn(xn).

In the present context, yn is the image from the camera at time tn. In contrast to the previous example,

where yn denoted the outcome of the nth trial, here the data is a vector, of say pixel values, taken from

single toss. Together, f and h comprise the state-space estimation model.

The development of a suitable observation model is perhaps the most difficult part of this

application. One could for instance, take a direct approach that uses ray-tracing to simulate the camera

input. This would require knowledge of certain camera specifications, such as its field of view and aperture

ratio, as well as additional preprocessing to remove the background from the image, which the coin model

knows nothing about.

An alternative would be to use a computer vision algorithm to track the coin and directly estimate

the relative position and velocity of its center of mass, along with other states such as its orientation and rate

of rotation. This requires solving an accessory estimation problem to preprocess the data, by converting

pixel values into estimates of the coin states. Computer vision methods are typically built on the same

framework of Bayesian inference, but involve heuristic or phenomenological models instead of physical

ones. This is not a problem however. The Bayesian framework does not care what type of model is used,

and provides a way to interface the two methodologies.

1.1.5 The estimation action

With these definitions, Eqn. (1.2) can be rewritten as

p(X 1:N |Y 1:N) =
N

∏
n=1

exp[CMI(xn,yn|y1:n−1)] p(xn|xn−1) p(x0), (1.3)
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or equivalently as

p(X 1:N |Y 1:N) ∝ exp[−A(X 1:N)]

where

A(X 1:N ,Y 1:N) ∝−
N

∑
n=1

CMI(xn,yn|y1:n−1)︸ ︷︷ ︸
Measurement error

−
N

∑
n=1

log[p(xn|xn−1)]︸ ︷︷ ︸
Model error

− log[p(x0)]︸ ︷︷ ︸
Prior uncertainty

(1.4)

separates the respective contributions from the model, the observations, and the prior. The function

A(X 1:N ,Y 1:N)≡ A(X 1:N)
3 will be called the estimation action, in analogy to the action of a statistical path

integral ([3]).

The path integral provides a way to compute expected values of any statistical function of the

path φ(X )

〈φ(X )〉=
∫

dX φ(X ) exp[−A(X )]∫
dX exp[−A(X )]

.

But this requires evaluating a high-dimensional integral, which varies all states X at all times along the

path. There are two general approaches available for evaluating such integrals: Monte Carlo sampling, and

the Laplace approximation.

1.1.6 Evaluating the path integral

The Monte Carlo approach performs what is essentially stochastic descent on the action. In its

simplest form, it randomly chooses a new path at each iteration. If the action is lower than the previous

value, the new path is accepted. If not, it is accepted with a probability proportional to the difference

between the two action values. Allowing for relatively small increases in the action value helps mitigate

the problem of becoming stuck in local minima. While this method is guaranteed to converge eventually

to the global minimum, it may take an undesirably long time. Accelerating the convergence requires a

good choice of the proposal distribution from which the new path is selected, but this is not easy since the

distribution should ideally approximate the unknown density. This is the basic issue with Monte Carlo

methods — one often needs a good estimate to get a good estimate ([36]).

The Laplace method is an alternative approach, which makes an asymptotic approximation

of the integral by assuming most of its value is consolidated around its local minima. Therefore, it is

primarily concerned with finding minimizers X ∗ where |∇A(X ∗)|= 0 and ∇2A(X ∗) is positive definite.

3Since the data Y 1:N is fixed for the estimation, the functional dependence will be suppressed.
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The minimizers corresponding to the lowest values A(X ∗) asymptotically dominate the contribution to the

integral. The maximum likelihood estimate is the state X ∗ corresponding to the global minimum.

Both methods may be considered numerical optimization techniques that minimize the action as

an objective function. The Laplace approximation directly reformulates the path integral as an optimization

problem, for which a number of general purpose techniques exist. These techniques can utilize local

gradient and curvature information to speed up convergence, which may be a benefit or drawback,

depending on how difficult it is to implement the derivatives.

1.1.7 The effective action

Regardless of which approach is chosen, to actually perform the search requires specifying the

functional form for the distribution of measurement and model errors. This information may or may not be

available, depending on the problem at hand. If these distributions are unknown, then one must make some

assumptions both regarding the functional form and the relative magnitude of the errors. In the limit that

both models are without error, the measurement and model error terms in Eqn. (1.4) become δ functions

exp[CMI(xn,yn|y1:n−1)]→ δ
(
yn−h(xn)

)
p(xn+1|xn)→ δ

(
xn+1−Fn(xn)

)
.

But from an optimization perspective, these functions are typically difficult to work with. Alternatively, it

is often assumed that the errors are Gaussian distributed. This may be viewed as a ‘broadening’ of the delta

function, by introduce a small amount of (Gaussian) noise into the otherwise deterministic dynamics. The

result is a more tractable optimization problem, as the action becomes a (nonlinear) least squares objective

function

A(X ) ∝ |x0−xb|2Rb
+

N

∑
n=1
|yn−h(xn)|2Rm +

N−1

∑
n=0
|xn+1−Fn(xn)|2R f

.

The termsRm,R f andRb are positive definite (inverse) covariance matrices corresponding to measure-

ment, model, and prior errors. The prior error is also assumed to be specified relative to some known

‘background’ state xb. Actual values for these parameters may not be available, so in practice the choices

are often tuned to a particular problem.

These assumptions give rise to an effective action, which may or may not reflect the underlying

‘truth’ behind how the errors are generated. But the framework is general in the sense that if one has

reason to believe that the errors of any of these components obey some other distribution (e.g., Poisson

statistics), then that distribution can be simply substituted. Gaussian statistics often work fairly well
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in practice, especially for situations where the forecast model is physical and thus of relatively high

confidence. However, given no additional information about these errors, these decisions are ultimately

left up to the modeler, and inherently depend on the problem at hand.

1.1.8 Observability

The above framework provides a way of blending information from the observations and a

physical model into an estimate for the dynamical state of the coin. The goal is to balance these two factors

in a way that gives the best predictive performance. An estimate that relies too much on the data is said

to be overfit, and is susceptible to noise in the observations. On the other hand, relying too much on the

model can make the estimation process difficult and at times intractable (this will be discussed in more

detail later). In practice, the model and the measurements will are be error free. The optimal weighting of

the two terms is necessarily a judgment call, although there are empirical ways to assess whether the result

is overfit, such as the L-curve ([70]).

The success of this endeavor critically depends on the availability of information, such as the

number and type of observations. Any dynamical states that are not directly observed must instead be

inferred from the combination of the observation and forecast models. The issue of whether the given

observations are sufficient in this regard is called observability.

Even the simplest systems exhibit critical thresholds in the density of observations, below which

the estimation process routinely fails. But these thresholds are not well-understood, as they depend in a

complex manner on the three core components of the problem: the model, the data, and the estimation

algorithm. While optimal control theory offers technical conditions under which the process is guaranteed

to fail (e.g., [182]), these are not particularly useful for large complex problems. In practice, many such

systems are far too ill-conditioned to admit accurate and reliable solutions. There is therefore a need for

developing methods to analyze these critical thresholds empirically, as a function of various parameters

and constraints of the problem.

A substantial portion of this thesis is dedicated to this task. For the current example, the issue may

be posed as follows. Do cameras alone provide enough information for this task? How many cameras are

needed? What resolution is required? And cameras alone are not sufficient, what additional observations

are needed/available to meet these basic requirements? Questions like these may be addressed initially

using simulated data, by systematically testing the assumptions and constraints of the combined forecast,

observation, and analysis systems. If the chosen techniques do not work with simulated data, there is little
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chance they will succeed with real data.

1.1.9 Predictability and complexity

Once the estimates are obtained they may be fed back into the dynamical model to forecast the

state trajectory. The fidelity of these predictions inherently depends on the model. A deterministic model

will provide a deterministic prediction, while a stochastic model offers a distribution of forecasts. The

presence of stochasticity or unmodeled dynamics will shorten the prediction horizon: the length of time in

which predictions are expected to be accurate. This is not all however, as even a perfect and deterministic

model may exhibit chaotic behavior. This causes errors in the forecast to diverge exponentially in time, at

roughly a rate of exp(λmax t), where λmax is the maximum global Lyapunov exponent of the system ([2]).

The errors will eventually asymptote to a value that is roughly the size of the attractor, which effectively

puts an upper limit on predictability that depends on the accuracy of the estimate.

Returning to the problem at hand, supposing one is able to accurately estimate and predict the

coin’s trajectory, these estimates still must be translated into a prediction of the outcome. Such a model for

the outcome seems like it might be difficult to implement, especially if the coin is allowed to bounce, which

is why initially it was initially suggested the coin be allowed to fall on a pillow. A bouncing coin is chaotic,

in the sense that small changes to initial conditions produce widely different results. This uncertainty is

largely due unstable minima in its potential energy function, since a coin dropped on its edge carries more

uncertainty than a coin landing on its side. But as the outcome is binary, the process of settling into a stable

minimum may be viewed as a simple realization of spontaneous symmetry breaking.

Developing an understanding of the origins of uncertainty and limits of our ability to model

certain phenomena is one of the core goals in the field of complexity theory. It may be that certain systems

are beyond our ability to model from first principles. Consider for instance the problem of predicting the

outcome of a coin that is caught by hand. While the observation analysis system may be able guess the

result from the relative orientation between the coin and the palm, there is as of yet no conceivable way of

predicting when the tosser will begin to move to catch the coin.

On the other hand, given repeated trials it may be possible to build a statistical model that predicts

the catching patterns of a particular person. And this in conjunction with the estimated trajectory of the

coin may indeed offer an edge on prediction. The trouble is that the resulting model will likely have to

be recalibrated if conditions change: such as the person tossing the coin. Thus, while models built on

data provide a way of predicting what is beyond our ability to comprehend, they are nonetheless fragile.
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Because when the process producing the data changes, the results may no longer be reliable.

1.2 An historical perspective

Estimation is one of the most ubiquitous and fundamental problems of existence; one that even

the most primitive organisms have evolved to solve with relative ease and efficiency. Consider an insect

for example. At each instant, it collects sensory information about its external, which it analyses against

some internal ‘model’, and then uses the result to inform its decisions and movements. To us, this internal

process of fusing sensory information with prior knowledge is largely second nature.

While the mechanisms underlying the brain’s execution of this task are still very much a mystery,

the estimation problem has long been the subject of intellectual and scientific effort. The resulting

theory has connections to a remarkably broad range of mathematical disciplines. From statistics, to data

assimilation, numerical optimization, electrical computational and control engineering, and even physics —

each field has developed its own algorithms, techniques and solutions to this problem.

This section attempts to give a brief account of their historical development. It is not intended to

be comprehensive; such a treatise could fill an entire book (or perhaps several). The goal is to provide a

more global perspective on the problem that will lay the groundwork for the rest of this thesis.

1.2.1 Pre-twentieth century

It is difficult to pinpoint the exact origins of the ‘theory’ of estimation. Early curve and surface

fitting efforts date back to the dawn of civilization, with the ancient Babylonians, Egyptians, and Greeks

([142, 140]). But it was apparently Galileo who in 1632 made the first published attempts to minimize

various functions of observed errors ([87]). This served as the predecessor for the discovery of the method

of least squares early 19th century. Although first published by Legendre in 1805, Gauss claimed to have

knowledge of it as early as a teenager in 1795. These claims are supported by the fact that he famously

used it to predict the orbit of the planet Ceres in 1801. Least squares minimization has since become a

cornerstone of estimation theory.

In 1697 (not long after Galileo) Johann Bernoulli (1667-1748) published the solution to the

brachistochrone problem. From this solution, the calculus of variations was born. The theory was influenced

by some of history’s greatest mathematical minds — such as Issac Newton (1642-1726), Leonhard Euler

(1707-1783), Ludovico Lagrange (1736-1813), Pierre Laplace (1749-1827), Adrien Legendre (1752-1833),
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Carl Jacobi (1743-1819), William Hamilton (1805-1865), Karl Weierstrass (1815-1897), Henry Poincaré

(1854-1912), David Hilbert (1862-1943), Constantin Carathéodory (1873-1950), Adolph Mayer (1839-

1907) and Oskar Bolza (1857-1942). This work laid the foundations for the subsequent development of the

modern theory of optimal estimation and control ([186]).

The minister Thomas Bayes (1701-1761) also deserves to be mentioned. Bayes’ theorem on

conditional probability could arguably be the single most important contribution to estimation theory,

although this was not realized until much later.

1.2.2 The Wiener-Komogorov filter

The early 20th century witnessed the birth of least squares estimation of stochastic processes. The

first studies were made by Norbert Wiener (1894-1964), Andrey Kolmogorov (1903-1987), Mark Krein

(1907-1989). Kolmogorov gave a comprehensive treatment of the prediction problem for discrete-time

stationary processes. Krein extended these results to continuous time, and noted connections to earlier

work by Szegö regarding orthogonal polynomials on the unit circle.

Wiener independently formulated and solved the continuous-time linear predictor problem, and

also considered the construction of filtered estimates of static (i.e., linear time invariant) processes with

observation noise. The solutions may be represented as integral equations, which are either Fredholm

equations of the second kind (for smoothed estimates) or the Wiener-Hopf equation (for filtered estimates).

Both equations were known at the time, although interestingly the latter first arose in 1894 while studying

the radiation equilibrium of a star ([109]). For an in-depth survey of linear filtering and full bibliography

see [87].

1.2.3 Stochastic processes, information, and statistics

The work of Wiener and Kolmogorov along with earlier work by Andrey Markov (1855-1922) led

to the development of the rigorous theory of stochastic processes in the 1940s by Kiyoshi Itô (1915-2008)

and Rusian Stratonovich (1930-1997). This, along with the work of Cameron-Martin ([31]) (and later

Girsonov [62]) had a profound impact on the measure theoretic formulation of stochastic estimation. It

led directly to the development of the Kusher-Stratonovich equation ([104]) and the Duncan-Mortensen-

Zakai equation ([215]), which are essentially the Kolmogorov-forward equations for the normalized and

unnormalized distributions respectively.

Estimation theory was also heavily influenced by the roughly concurrent discovery of information
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theory and statistics. For the former, the innovations technique introduced by Shannon and Bode ([26]),

and later presented in its modern form by Kailath ([86, 88]), was used extensively for several decades.

Regarding the latter, the notion of a sufficient statistic — initially by Fisher and later generalized to

exponential distributions by Pitman-Koopman-Darmois ([160]) — along with the Cramér-Rao lower bound

([162]), helped formalize the fundamental limits of what one should expect from an optimal estimator.

1.2.4 Kalman, Bellman, and Pontryagin

The greatest achievements came in the 1950s. Richard Bellman (1920-1984) introduced the

Bellman equation for dynamic programming in 1952,4 and Lev Pontryagin (1908-1988) formulated the

maximum/minimum principle in 1956. These are perhaps the two most influential contributions to the

deterministic theory of optimal control and estimation.

The decade then culminated with the discovery of the single most important estimation algorithm

to date: the Kalman filter (1960) by Rudolf Kálmán (1930-2016). One of Kalman’s main innovations was

the use of state space models to generalize Wiener’s earlier results to the time-varying models. Interestingly,

his second was apparently rejected by a prominant electrical engineering journal, due to a reviewer who

purportedly stated “it cannot possible be true” ([77]). Nonetheless, it found an enormous number of

engineering applications during this time period, including guidance navigation and control of ballistic

missiles and space shuttles. It also spurred the subsequent development of Kalman smoothing techniques

(e.g., [164]), along with the identification of the inherent ties between the Kalman solution and the Bayesian

framework of least squares maximum likelihood estimation.

1.2.5 Exact finite-dimensional nonlinear filters

The success of the Kalman filter revolutionized the theory of estimation and ushered in a new

era of research that involved trying to extend it to nonlinear forecast and observation models. These

attempts may be generally classified as either exact or approximate. Exact approaches seek solutions to the

Duncan-Mortensen-Zakai equation, particularly ones where the dimension of the filter remains finite in

time. A few cases of these exact finite-dimensional filters were identified, for certain models. The first

was given by [17] for gradient models f = ∇φ, and was subsequently extended by [44] to the exponential

family of distributions.

In 1981 Brockett ([28]) and Mitter ([130]) independently introduced the concept of an estimation

4Interestingly, this had immediate connections to computational methods in radiative transfer ([16]).
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algebra, and the conjecture that an exact finite-dimensional filter exists if and only if the estimation algebra

admits a finite representation. These conditions were further elaborated in a series of papers by Stephen Yau

([212]), who showed that the structure of the antisymmetric tensor Ω := ∇f −∇†f introduced by [208]

plays a crucial role in their existence. All this culminated in the filtering algorithm given by [211], which

generalizes the Kalman-Bucy and Benes filters. Ultimately however, exact methods are only applicable to

very specific models. For most practical purposes, approximations are needed.

1.2.6 Variational methods

As mentioned, approximate techniques tend to fall in one of two categories: Monte Carlo methods,

and variational methods — although hybrid approaches also exist. Variational methods are based on the

Laplace approximation to the path integral, and effectively reduce the estimation process to the recursive

solution of a nonlinear optimization problem. This optimization based approach to state estimation

has roots in dynamical systems ([54]) and optimal control theory ([22]), with collocation methods and

direct/indirect single/multiple shooting. For a thorough overview of these techniques, see [20].

With the variational approximation, one also has to decide whether to try to optimize the full

trajectory at once, or break it into smaller parts. The former is more tractable when the estimation window

is long. But the result depends inherently on how the splitting is done.

Consider the data assimilation method known as 4DVar, which has become popular in operational

numerical weather prediction since the mid 1990s. These methods use a sliding estimation window, in

which new observations are analyzed each day, using the previous days’ forecast as a regularization term

([82]). The main benefit of this approach is computational efficiency however. The use of adjoint methods

avoids having to store and manipulate the error covariance, which reduces the memory complexity from

O(D2) to O(D) (see e.g., [40]). For linear models, the resulting estimate is equivalent to the Kalman filter,

as the length of the estimation window becomes asymptotically large ([115]).

The 4DVar approach may be viewed more generally within the context of moving horizon

estimation ([8]), which is the estimation dual to model predictive control. The use of a moving window

improves the accuracy and robustness of the filter, a fact which has apparently been rediscovered several

times in different contexts. An alternative perspective, which connects it to the theory of attractor

reconstruction ([187]), will be presented in Chap. (4).
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1.2.7 Ensemble and particle methods

The most direct nonlinear extension of the Kalman filter is the ‘extended Kalman filter’, which

uses the tangent linear approximation to the forecast model to compute the estimated error covariance.

This method has a number of drawbacks however, not the least of which is that it tends to underestimate

the error covariance. More recently, the extended Kalman filter has been replaced by a variety of sampling

methods, such as the unscented Kalman filter ([84]) and related approaches such as the ensemble Kalman

filter ([50]). These methods seek to improve accuracy and robustness by using ensemble of model states to

approximate the time evolution of the estimated error covariance. As an added benefit, the derivatives of

the model are not required, which facilitates their implementation.

On the other end of the spectrum, are particle methods. Introduced as a ‘chainless’ alternative to

Markov Chain Monte Carlo, these methods approximate the conditional distribution p(X |Y ) as a sum of

delta functions. In contrast to ensemble filtering, where the ensemble describes the mean and covariance of

a single Gaussian, particle methods can describe an arbitrary distribution. There are also approaches that

interpolate between these two extremes, by representing the target distribution as a mixture of Gaussians

([102]). Connections to the variational approximation have also been recently established ([36]).

1.2.8 Moving forward

The recent growth in computation and data collection capability has made the estimation problem

important and popular than ever. A vast number of solutions have been proposed, each with their own

strengths and weaknesses. But it is often difficult to tell a-priori which methods are most suitable for a

given problem. Moreover, there is substantial overlap between many of these algorithms, which at times

are nearly indistinguishable. This is in part due to the fact that its historical development touches such a

wide variety of mathematical disciplines that it has become increasingly difficult to get a broad overview

of both the problem and the available solutions.

There is therefore a need, moving forward, to unify both the language and shared ideas among

the various fields interested in this problem. This involves extending the focus, to emphasize not just the

novelty of a particular algorithm or approach, but also how it fits within the wider context of the existing

theory. The latter, as stated, can be difficult. It requires reaching beyond disciplinary boundaries, to

connect new ideas to the larger body of work. But the results will provide both a deeper understanding

of the fundamental limits of observation, estimation and prediction, as well as a broader foundation for

innovation, from which the next generation of algorithms will emerge.
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1.3 Overview of this thesis

This thesis seeks to begin the process of bringing together some of the less commonly known

developments in optimal estimation theory. It will focus mainly on the deterministic interpretation of the

state estimation problem. As mentioned, static parameter estimation may be viewed as a subset of this

problem, by considering the parameters as additional states, with trivial dynamics dθ/dt = 0. Dynamic

parameter estimation — i.e., inferring the dynamical inputs or forcing functions — is a more difficult task,

which will not be considered here.

Chap. (2) reexamines the original Kalman filtering/smoothing theory from this perspective, and

develops the links between optimal estimation, dynamic programming, and Hamiltonian mechanics. A

number of distinct but closely related techniques will be compared, which are all equivalent to the Kalman

filter in the linear Gaussian case, but perform quite differently in the nonlinear case. This study provides

evidence that symplectic structure plays an important role in the optimality of these methods, although this

is not formally proven.

Chap. (3) discusses the issues of observability and conditioning of dynamical inverse problems.

In particular, it aims to address the question: how many observations are needed to guarantee the accuracy

and reliability of the estimate and the resulting forecasts? A computational framework will be introduced

to assess the observational efficiency of filtering and smoothing methods, and examine how these factors

vary as a function of the three main components of the problem: the forecast and observation models,

the data, and the estimation algorithm. An instructive example will be given using the chaotic Lorenz

1996 model ([118]). The results show that Kalman methods contain an inherent mechanism for adaptively

targeting and controlling the unstable subspace of the forecasting model. This is a necessary condition for

synchronizing the model and the data into an accurate estimate.

Chap. (4) then introduces a new technique for improving the observational efficiency of existing

estimation algorithms. The method has its roots in the theory of attractor reconstruction in nonlinear

dynamics, as well as inherent connections to 4DVar methods from data assimilation, and moving horizon

estimation from optimal control. Relevant examples will be given to demonstrate that the method is capable

of effectively reducing the observational requirements of the problem, albeit at increased computational

cost.

Finally, Chap. (5) summarizes the main results, and motivates directions for future research.



2 The canonical structure of optimal

estimation

The history outlined in Chap. (1) highlights the ties between estimation and related ideas from

statistics, optimization, and physics. This chapter further investigates these connections, by revisiting

the classical theory of Kalman filtering and smoothing from a deterministic point of view. The solutions

to this problem are based (in one way or another) on Newton’s method (or variants thereof), and are all

equivalent for linear problems. However, the same cannot be said of their nonlinear extensions, and this

chapter begins the process of documenting the rather subtle differences between these approaches.

Connections to physics are also explored, with the goal of reconciling some of the shared ideas

between estimation and Hamiltonian mechanics. While both fields have shared roots in the classical

theory of calculus of variations, physics has not adopted many of the ‘modern’ extensions developed

for the theory of optimal control and estimation. On the other hand, certain foundational concepts from

physics are notably absent from estimation — such as the notions of symplectic structure and canonical

transformations. The estimation analogs of these ideas will be discussed.

This chapter offers a new perspective on a longstanding problem, which brings together shared

ideas from estimation, optimization, and physics. While still largely incomplete, the intention is that this

will lead to a broader understanding of the inherent connections between these fields, and serve as a source

of innovation and creativity for the development of the next generation of estimation algorithms.

2.1 The Hamiltonian structure of fixed-interval smoothing

As discussed in Chap. (1), the estimation of a trajectory X given a set of measurements Y may be

viewed as the statistical evaluation of expected values of an arbitrary function g(X ) of the path. These

19
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averages are taken with respect to the unnormalized conditional distribution ρ(X |Y ) and may be evaluated

as a statistical path integral

〈g(X )〉=
∫

δX g(X ) exp[−A(X )], (2.1)

where the integral is taken with respect to ‘all possible’ paths, and

A(X ) ∝− log[ρ(X |Y )]

is the estimation action or conditional log-likelihood of the path given the observations. Although its

value depends on the observations Y , these are treated as fixed within a particular instance of the problem.

So the action is written as A(X ), suppressing the explicit dependence on Y . Only estimates of the path

are considered here, so g(X ) = X , and Laplace’s approximation further reduces the problem to one of

finding minimizing paths of the action. Of these paths, only the global minimizers are of interest, which is

equivalent to choosing the maximum a posteriori (MAP) estimate, or conditional mode of the distribution.

With these assumptions, it becomes an optimization problem minX A(X ,Y ). Specifying the noise in the

measurements and the model to be Gaussian and temporally uncorrelated the action can be written (in

continuous time) as the time integral of a Lagrangian,

A(X ) ∝
1
2
|x0−µ0|2R0

+
∫ T

0
dt Ht(xt , ẋt)

Ht(xt , ẋt) :=
1
2
|yt −h(xt)|2Rm +

1
2
|ẋt −f(xt)|2R f

.

(2.2)

where the velocity ẋt := dxt/dt is treated as an independent variable in the minimization. The matrices

R0, Rm, R f are respectively the (inverse) error covariance matrices of the prior, the measurements and

the model, assumed here to be time-independent and positive definite. The problem can thus be treated

deterministically using the techniques of calculus of variations underlying classical physics and optimal

control. The latter introduces a control variable ẋt → f(xt)+ut

Ht(xt ,ut) :=
1
2
|yt −h(xt)|2Rm +

1
2
|ut |2R f

.
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and can be written in Hamiltonian form by incorporating the dynamical constraints with Lagrange

multipliers or ‘co-states’ pt into an augmented action

A(X ,U,P ) ∝
1
2
|x0−µ0|2R0

+
∫ T

0
dt Ht(xt ,ut)+ 〈pt , ẋt −f(xt)−ut〉

=
1
2
|x0−µ0|2R0

+
∫ T

0
dt 〈pt , ẋt〉−Ht(xt ,ut ,pt)

where

Ht(xt ,ut ,pt) := 〈pt ,f(xt)+ut〉−Ht(xt ,ut). (2.3)

The necessary conditions for optimality are given by considering the variations δA = 0. This produces

Hamilton’s equations ẋt = ∇pHt , − ṗt = ∇xHt along with an auxiliary equation for the control ∇uHt = 0,

which are derived in the standard fashion by taking variations with respect to xt , pt , ut equal to zero and

performing integration by parts on δẋt . Also, the equation ∇uHt = 0 gives ut =R f ·pt , which here may

be inverted to eliminate the control ut in terms of the Lagrange multiplier

Ht(xt ,pt) :=
1
2
|pt |2R−1

f
+ 〈pt ,f(xt)〉−

1
2
|yt −h(xt)|2Rm . (2.4)

The same result can be obtained from the standard approach in classical Hamiltonian mechanics, which

defines the canonical momentum pt = ∇ẋHt and the Hamiltonian via the Legendre transform Ht(xt ,pt) =

〈p, ẋt〉−Ht(xt , ẋt). However, it is worth pointing out the rather important (yet often tacit) assumption

made in Hamiltonian mechanics regarding the invertibility of the Legendre transform. In order to use

the Hamiltonian formalism, the velocity dependence must be eliminated by solving pt = ∇ẋHt to express

ẋt explicitly in terms of pt . This assumption does not always hold however. For instance, in optimal

control the model is often constrained to actuate on a subset of its total degrees of freedom, making the

Legendre transform is singular. It was with this in mind that Pontryagin developed his maximum principle

as generalization of Hamiltonian mechanics that allows for non-invertibility of the canonical momentum,

by writing the Hamiltonian in terms of H (xt ,pt ,ut). And while the physics approach can be salvaged

using the aforementioned extended coordinate description H (xt ,pt ,vt), this is not well-known. But here,

since the state of the estimate is not subject to any physical constraints, the assumptions of additive model

error together with the invertibility ofR f allow the Hamiltonian to be treated simply as H (xt ,pt).

Thus, while it is possible to treat estimation as a classical mechanics problem, it is important

to keep in mind however one fundamental difference: estimation is not an initial value problem. Unlike
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mechanics problems, where one knows both the initial position and initial momentum, in estimation both

quantities are not known at the same time. In other words Hamilton’s equations must be solved with with

separated boundary conditions

ẋt = ∇pHt = f(xt)+R
−1
f ·pt

−ṗt = ∇xHt = ∇
†f ·pt +∇

†h ·Rm · (yt −h(xt))

p0 =R0 · (x0−µ0)

pT = 0.

(2.5)

It is therefore a two-point boundary value problem, which by construction lacks the local uniqueness

properties inherent to initial value problems. Sometimes it admits many solution, and other times none. In

this case, it appears to be rather difficult to construct explicit solutions by direct integration of Hamilton’s

equations—the first order necessary conditions for optimality. The reason for this will become more clear

in Sec. (2.2). But suffice to say, these solutions are inherently unstable.

2.1.1 Canonical momentum as a Lagrange multiplier

The control formalism provides an additional interpretation of the rather basic role of the canonical

momentum — it is in fact, also a Lagrange multiplier. While this interpretation of momentum as a Lagrange

multiplier is well-known in optimization with the Karush-Kuhn-Tucker conditions as a generalization

to Hamilton’s equations, in physics it is far less familiar ([207]). The closest idea perhaps comes from

Lagrangian mechanics, where the Lagrange multipliers are used explicitly to incorporate a generalized

forces of constraint, but it is not often discussed in the Hamiltonian context despite some interesting

ramifications regarding secondary constraints [46]. It is apparent though that our conceptual understanding

of momentum must be expanded to reconcile these two fundamental points of view.

Its role as a Lagrange multiplier can be shown directly by considering the augmented action

A(X ,V ,P ) ∝

∫ T

0
dt Ht(xt ,vt)+ 〈pt , ẋt −vt〉=

∫ T

0
dt 〈pt , ẋt〉−Ht(xt ,pt ,vt).

Variations with respect to vt provides pt = ∇vHt , and with respect to pt simply gives ẋt = vt . The view

suggests an interpretation of momentum as the cost associated with violating ẋt = vt , although the physical

meaning of this is unclear. It is also evident that its choice of sign is just a matter of convention. Hamilton’s

equations are invariant to defining pt as positive or negative, although physically the direction of time
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implies a natural choice. There is however, also the choice of sign in the definition of the Hamiltonian, as

is well known in optimal control where there are two competing conventions Ht = 〈pt , ẋt〉±Ht leading to

both maximum and minimum principles. The ‘−′ convention maximizes the Hamiltonian and makes the

Legendre transform an involution, whereas the ‘+′ convention maintains the interpretation of minimizing

a cost function. The arbitrary nature of this choice seems to imply an inherent parity to the concept of

momentum that is reflected as a type of gauge symmetry in its equations. For the record, ‘−′ convention is

used here to make the connections to classical mechanics as explicit and unambiguous as possible.

2.1.2 Discrete time

In practice, measurements are not continuous, and the time evolution of the forecast model is

typically computed in discrete time steps. Let xn+1 = F (xn) be the discrete time update of the model,

which in general may be implicit although this will not be considered here. Let X (d) := {xn}|Nn=0 be the

discrete time path. The action integral in Eqn. (2.2) is typically interpreted as a sum

A(X (d)) ∝
1
2
|x0−µ0|2R0

+
1
2
|yN−h(xN)|2Rm +

N−1

∑
n=0

Hn(xn,xn+1)

Hn(xn,xn+1) :=
1
2
|yn−h(xn)|2Rm +

1
2
|xn+1−F (xn)|2R f

.

(2.6)

The discrete time description is more precise than its continuous counterpart. It arises directly from the

recursive application of Bayes’ rule, and from a stochastic point of view the time derivative ẋt in Eqn. (2.2)

is not well-defined as the paths have different forwards and backwards derivatives. The continuous

description should thus be viewed as an approximation of the discrete ([93]). While the Duncan-Mortensen-

Zakai equation ([215]) provides a rigorous mathematical framework for continuous time filtering, its

connection to the underlying variational principle (via the Laplace approximation of the path integral) are

still not well-established.

Yet this is not an issue from a deterministic point of view, in which the model and measurement

noise processes are not stochastic but evolve smoothly in time. This perspective suggests treating the

connection between the continuous and discrete time action principles using the techniques of discrete

mechanics ([119]). This typically proceeds by first discretizing the continuous time action functional

(e.g., by using a quadrature rule to form a discrete Lagrangian of the form Hn(xn,xn+1)) and applying the

discrete time version of Lagrange’s equations ∇xn Hn = ∇xn+1 Hn = 0.

However, the inclusion of the final measurement 1
2 |yN−h(xN)|2Rm

in Eqn. (2.6) makes Eqn. (2.6)
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inconsistent with a direct discretization of the continuous action integral. But if this term is omitted (and it

often is), the integral may be interpreted as a left Riemann sum discretization. This choice of discretization

appears to be tied to the choice of stochastic integration convention, with the left Riemann sum providing

Ito’s interpretation, which is most commonly adopted in stochastic filtering. Nonetheless, if these more

subtle stochastic issues are ignored, much of the machinery developed for discrete mechanics is applicable

here.

There is also some ambiguity regarding the measurement term. Since the discrete Lagrangian

only needs to be a function of xn and xn+1, it is unclear whether the observation should be included as a

function of xn or xn+1. But this choice evidently leads to different equations of motion. In this case, the

more consistent approach is given by the optimal control formulation, where the Lagrangian is a function

of xn and the control un. Specifically, it can be written as

A(X (d),U(d)) ∝
1
2
|x0−µ0|2R0

+
1
2
|yN−h(xN)|2Rm +

N−1

∑
n=0

Hn(xn,un)

Hn(xn,un) :=
1
2
|yn−h(xn)|2Rm +

1
2
|un|2R f

(2.7)

and subject to the constraints xn+1 = F (xn)+un. Substituting the constraint for un gives back Eqn. (2.6),

but this form leaves no ambiguity that the observation term is imposed at time tn. The implication of this

choice on the stochastic interpretation of the problem is not immediately clear however.

As in the continuous case, the constraints can be included by introducing a Lagrange multiplier

A(X (d),U(d),P (d)) ∝
1
2
|x0−µ0|2R0

+
1
2
|yN−h(xN)|2Rm+

N−1

∑
n=0

Hn(xn,un)+ 〈pn+1,xn+1−F (xn)−un〉

and written as a control Hamiltonian

A(X (d),U(d),P (d)) =
1
2
|x0−µ0|2R0

+
1
2
|yN−h(xN)|2Rm +

N−1

∑
n=0
〈pn+1,xn+1〉−Hn(xn,un,pn+1)

Hn(xn,un,pn+1) := 〈pn+1,F (xn)+un〉−Hn(xn,un).

The variation ∇unA = 0 provides un =R f ·pn+1, which can be inverted to eliminate un in terms of pn+1

to give

Hn(xn,pn+1) :=
1
2
|pn+1|2R−1

f
+ 〈pn+1,F (xn)〉−

1
2
|yn−h(xn)|2Rm . (2.8)
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This Hamiltonian can also be derived directly from the discrete Lagrangian Eqn. (2.6), using discrete

Hamiltonian mechanics ([110]), provided the measurement term is evaluated at xn and not xn+1. Also,

increasing the sum index by one incorporates the measurement term at the final time due to the terminal

boundary condition pN+1 = 0. This allows the action to be written more succinctly as

A(X (d),P (d)) ∝
1
2
|x0−µ0|2R0

+
N

∑
n=0
〈pn+1,xn+1〉−Hn(xn,pn+1). (2.9)

The discrete Hamilton’s equations are then given by considering the variations ∇pn+1A = ∇xnA = 0 and

reindexing the sum — the discrete analog for integration by parts (note there is no sign change in discrete

time). This leads to the discrete two-point boundary value problem

xn+1 = ∇
†
pHn = F (xn)+R

−1
f ·pn+1

pn = ∇
†
xHn = ∇

†Fn ·pn+1 +∇
†hn ·Rm · (yn−h(xn))

p1 =R0 · (x0−µ0)

pN+1 = 0.

(2.10)

Note that these equations only hold when the dynamical model is explicit. For implicit models F (xn)→

F (xn,xn+1), Hamilton’s equations are also implicit and therefore more complicated. It is also important

for the momentum to be specified at tn+1 rather than tn, otherwise the equations will be incorrect. However

in discrete Hamiltonian mechanics there is an alternative formulation that instead uses pn and xn+1 ([110]),

and produces a state update that goes backwards in time. The implications of this alternate choice on

optimal control and estimation has to my knowledge not yet been investigated.

2.1.3 The search for minimizing paths

With the Laplace approximation to the statistical path integral Eqn. (2.1) the goal is to find the

paths that locally minimize the action. Of these paths, only the lowest minimizers are of interest, as they

exponentially dominate the contribution to the path integral. The difficulty then is finding these paths in a

stable and efficient manner. Given the vast generality of the problem, an enormous number of techniques

are available for this purpose, each with its own computational trade-offs. However, as exact solutions

exist only for a few special cases, the overwhelming majority of these methods are iterative in the sense

that given an approximate solution X (i) at iteration i, they produce a more refined solution X (i+1), and the

process proceeds until some measure of convergence is met.
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At its core, the problem is simply one of numerical optimization. Thus, the most straightforward

approach is perhaps to take a discretized approximation of the optimal path X (d) and directly minimize the

action functional Eqn. (2.6), say using Newton’s method (or a variation thereof)

X (d,i+1)−X (d,i) =−[∇2
X X A(X (d,i))]−1 ·∇X A(X (d,i)). (2.11)

Techniques such as this, which optimize a discretized version of the full path trajectory by constructing

a series of estimates A(X (d,1)) < A(X (d,2)) < .. . < A(X (d,∞)), fall under the broad category of ‘direct’

methods in optimal control and estimation. They are considered typically part of the larger family of

multiple shooting and collocation methods for solving two-point boundary value problems, although as

discussed by [20], such methods can also be indirect. Indirect methods by contrast, attempt to locate

solutions that satisfy the necessary conditions for optimality by restricting the feasible set of solutions to

those satisfying the variational principle δA = 0. For instance, enforcing the constraint xn+1 =F (xn)+un

in Eqn. (2.7) reduces the search space from {X (d),U(d)} to {x0,U(d)}. So one only needs to provide a

guess for the initial state x0 and an initial or ‘nominal’ control law U(d). In other words, indirect methods

typically require the solution to be a valid trajectory ate each iteration, while for direct methods the solution

is only approximate and converges to a valid path as i→ ∞.

Each approach comes with its own trade-offs. Indirect methods tend to be more accurate given

that they can produce exact trajectories of the model, while direct methods typically require implicit

integration methods, which inherently limit their accuracy. Whether this is an issue in practice however

depends on how accurately the model equations need to be enforced. On the other hand, indirect methods

typically either need to be initialized close to the desired solution or require a good a-priori guess for

the control sequence U(d). This stems from the fact that its solutions are always a ‘true’ trajectory of

the system xn+1 = F (xn)+un and thus more susceptible to becoming trapped in local minima. Direct

methods by contrast tend to have a considerably large basin of attraction around its global minima, where

it is in fact often better to start with a random path, rather than an exact trajectory [174]. The stability and

size of this solution basin is closely tied to the overall conditioning of the problem, as Hamilton’s equations

for this system can be highly ill-conditioned. A numerical examination of this will be given in Chap. (3).

In terms of computational efficiency, since the direct Lagrangian formulation in Eqn. (2.6) is

a nonlinear least-squares problem it can be written as A(X (d,i)) = |ψ(X (d,i))|2 and minimized with the
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Gauss-Newton method

X (d,i+1)−X (d,i) =−[∇Xψ(X (d,i)) ·∇Xψ(X (d,i))]−1 ·∇Xψ(X (d,i)).

This is essentially the same as Newton’s method Eqn. (2.11), but uses an approximate Hessian that ignores

the terms ∇2
X Xψ(X

(d,i)) to avoid computing D3 derivative tensors. If this matrix were dense, it would

require O(N2 D2) storage, which would quickly get out of hand. However, the fact that xn depends only

on xn−1 and xn+1 gives this matrix block tri-diagonal structure, which requires only O(N D2) storage

and can be exploited to reduce the time required to construct its inverse from O(N3 D3) to O(N D3). An

example of this will be shown below. However, even this can be to much for large systems, such as ones

used for numerical weather prediction, which can require upwards of O(109) degrees of freedom. Memory

scaling is crucial for these applications, and implicit methods are are efficient in this regard, utilizing

adjoint models to compute the descent directions −∇Xψ(X (d,i)) in O(N D). Direct methods by contrast

do not require adjoint equations, so they are easier to implement, although recent advances in automatic

differentiation have mitigated this to some extent. Also, convergence of derivative free and gradient descent

methods tends to slower than those using an approximate Hessian.

These techniques are also not mutually exclusive. Direct and indirect approaches may be blended

into hybrid methods by expanding the search space to include U(d) and P (d) as independent variables.

For instance, one can directly optimize Eqn. (2.7) in {X (d),U(d)} coordinates, provided the constraint

xn+1 = F (xn)+un is satisfied at the solution. Enforcing these constraints requires the introduction of

Lagrange multipliers, which can either be treated explicitly, by performing the minimization directly in

{X (d),U(d),P (d)} space, or implicitly by eliminating one or the other using the variational equations

δA = 0. A subset of these choices were explored numerically by [85], and showed limited benefit to

performing the optimization with constraints in {X (d),P (d)} space versus the unconstrained approach in

X (d) space, especially given the added computational cost of evaluating the generally nonlinear constraints.

Part of the issue is related to the fact that many constrained nonlinear optimization algorithms operate by

first finding a feasible point satisfying the constraints and then minimizing the objective function in a way

that maintains feasibility of the solution. However, in this case the constraints are only intended to hold

in the neighborhood of the solution, so enforcing feasibility too early often causes the routine to become

trapped in local minima with considerably higher action levels than those identified by the unconstrained

approach.

This concludes the exposition of the basic structure of the estimation problem and its connections
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to the variational principles of optimal control and classical mechanics. It is apparent that given the

above assumptions the estimation problem strongly resembles one of classical mechanics, with the main

difference being that estimation has separated boundary conditions. This turns out to be extremely

important, as simply integrating Hamilton’s equations forward in time from some approximate initial guess

for z0 := {x0, p0} produces solutions that become rapidly unbounded. Yet when the models f(·) and

h(·) are linear, the Kalman equations provide a forward stable solution, at the cost of increasing the state

representation from 2D canonical coordinates to D(1+D) variables. The question then is what makes

these solutions inherently stable given that Hamilton’s equations are inherently not? To examine this

question, it seems appropriate to start by reexamining the solutions to the linear problem.

2.2 Optimal solutions for linear models

Solutions to the linear problem were first given in continuous time by [29]. They showed that the

optimal path could be could be computed as a linear combination of two solutions, one integrated forward

in time and the other backward. This approach was originally developed for optimal control problems,

and goes by various names including ‘sweep methods’, ‘two-pass filters’ and the ‘method of successive

approximations’. While there are an infinite number of ways to construct these solutions, one of which

simply involves integrating Hamilton’s equations forwards and backwards in time, the forward pass is

most appropriately given by the Kalman Bucy filter ([89]). This is due to its inherent stability properties

that stem from its formulation as the optimal feedback control. Their backward pass solution however,

was unstable and inefficient, and thus was never used in any practical applications [123]. This led to the

proposal of several solutions over the next decade or so, with the most notable given by Rauch Tung and

Striebel ([164]), Mayne ([121]) and Fraser ([57, 56]).

All of these solutions in one way or another reference the stochastic version of the problem. As a

main goal here is to derive these solutions from a purely deterministic perspective the original solution

by Bryson and Frazier will now be reexamined from this point of view. While it will not be possible

to completely dispense with the underlying stochastic interpretation, the only distinction between the

two approaches arises in the two-point boundary value problem for the covariance. Namely, when the

underlying system is stochastic, additional inhomogeneous forcing terms in these equations arise from its

diffusive properties.

Furthermore, as the stability of the solutions is also of particular interest here, it will be explicitly

shown how the necessary conditions for optimality are not suitable for constructing explicit solutions, as
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Hamilton’s equations are inherently unstable. Furthermore the Kalman filter, which satisfies the necessary

and sufficient conditions given by the Hamilton-Jacobi(-Bellman) equations, provides optimal stability. To

fully appreciate these results it is useful to have an illustrative example, which will now be described.

2.2.1 The simplest tracking problem

Consider the filter as an observer, with no model or measurement error, and make a change to

‘error’ coordinates qt := x∗t −xt where x∗t is the state of the ‘true’ system satisfying ẋ∗t = F
∗ ·x∗t , yt =

H∗ ·x∗t . Assuming also that the models are perfect F = F ∗ andH =H∗, the action Eqn. (2.2) becomes

the linear quadratic regulator

A ∝
1
2
|q0|2R0

+
1
2

∫ T

0
dt |H ·qt |2Rm + |q̇t −F ·qt |2R f

,

which simplifies the problem by removing the time-dependent measurements yt . Note that for the

estimation to be successful, the optimal solution needs to produce a contraction on the error, so that qt → 0

as t→ ∞.

Consider now the problem of tracking the position of a particle moving along a constant linear

trajectory with no prior information, so R0 = F = 0 and H = I . The latter assumption is needed to

make the system observable, as the model does not share any information in the directions transverse to

the equations of motion. Without loss of generality the problem may be reduced to D = 1. Given these

assumptions, Hamilton’s equations Eqn. (2.4) become

q̇t

ṗt

=

 0 R−1
f

Rm 0

 ·
qt

pt

 . (2.12)

Or in terms of second derivatives
q̈t = R−1

f Rm = ω
2 qt

p̈t = Rm R−1
f = ω

2 pt

where ω :=
√

Rm R−1
f . These equations have exponential solutions

qt = ω

√
R−1

f

(
c(+) e+ω t + c(−) e−ω t

)
pt = ω

√
Rm

(
c(+) e+ω t − c(−) e−ω t

)
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with constants c(±) to be determined based on the boundary conditions.

The solution qt = c(±) = 0 is clearly trivial. But attempting to solve it as a two-point boundary

value problem — e.g., using a ‘shooting approach’ that determines c(±) by integrating Hamilton’s equation’s

forward from 0→ T from approximate initial conditions — immediately runs into issues. While the

c(−) e−ω t term is forward stable and will approach qt → 0 as t→ ∞, the c(+) e+ω t term quickly becomes

unbounded making the problem of determining the constants c(±) highly ill-conditioned. While this issue is

often avoided in practice by breaking up the trajectories into small segments (i.e., using a ‘multiple shooting

approach’), connecting them requires running a numerical optimization algorithm that considers the entire

path (i.e., all time segments) simultaneously, which becomes increasingly difficult as the estimation window

grows.

On the other hand, the optimal two-pass solution avoids these issues altogether by transforming

Hamilton’s equations to an ‘equivalent’ form that preserves its underlying symplectic structure but is

inherently stable. For the simple example described here, this amounts to splitting the solution into forward

and backward stable modes. This feature will be shown explicitly in a moment, after discussing the general

solution.

2.2.2 Continuous time solutions

The results of [29] will now be reexamined, paying close attention to the stability of the solutions

and the distinguishing features between the stochastic and deterministic interpretations of the problem.

Consider the linear estimation system described by the deterministic models ẋt = Ft ·xt , yt =Ht ·xt

without stochastic disturbances. From Eqn. (2.4), Hamilton’s equations are

ẋt

ṗt


︸ ︷︷ ︸
żt

=

 0 +I

−I 0


︸ ︷︷ ︸

J

·

−H†
t ·Rm ·Ht F †

t

Ft R−1
f


︸ ︷︷ ︸

∇2
zzHt

·

xt

pt


︸ ︷︷ ︸
zt

+

 0

−H† ·Rm ·yt


︸ ︷︷ ︸

ξt

(2.13)

with boundary conditions p0 =R0 · (x0−µ0), pT = 0. With the above definitions, these equations may

also be written more concisely as

żt = ∇zHt = J ·∇2
zzHt ·zt +ξt
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where zt := {xt ,pt}. The differential equation is linear so its general solution can be written as a

superposition of homogeneous and particular solutions zt = z
(h)
t +z

(p)
t . Setting ξt → 0, the homogeneous

solution can be determined in a few ways. For instance, introducing a 2D×2D transition matrix Φt|t ′ such

that

z
(h)
t = Φt|t ′ ·z

(h)
t ′ =

Φ
(xx)
t|t ′ Φ

(xp)
t|t ′

Φ
(px)
t|t ′ Φ

(pp)
t|t ′

 ·
x(h)

t ′

p
(h)
t ′

 .
Its time evolution is therefore

d
dt

(
Φt|t ′ ·z

(h)
t ′

)
−J ·∇2

zzHt ·Φt|t ′ ·z
(h)
t ′ = 0

Φ̇t|t ′ = J ·∇2
zzHt ·Φt|t ′ .

It can also be used as an integrating factor. Left-multiplying by the its inverse Φ−1
t|t ′ ≡Φt|t ′ gives

Φt ′|t · (ż
(h)
t −J ·∇2

zzHt ·z
(h)
t ) =

d
dt

(
Φt ′|t ·z

(h)
t

)
= 0

−Φ̇t ′|t = Φt ′|t ·J ·∇2
zzHt

with

Φt|t = Φt ′|t ·Φt|t ′ = I.

These matrices are the fundamental solutions to the homogeneous differential equation and respectively

describe its propagation forward and backward in time. They are related to the Green’s function, allowing

the inhomogeneous solution z(p)
t can be written as

d
dt

(
Φt ′|t ·z

(h)
t

)
= ξt =⇒ z

(p)
t = Φt|t ′ ·z

(p)
t ′ +

∫ t

t ′
dsΦt|s ·ξs.

Alternatively, [29] introduces a 2D×D matrix Ψt , such that

Ψt :=

Ψ
(x)
t

Ψ
(p)
t

 Ψ̇t = J ·∇2
zzHt ·Ψt Ψ0 =

I
I


Note that Ψt reduces the total number of degrees of freedom in half from 4D2 to 2D2, and has different

algebraic properties than Φt|t ′ since it is not a square matrix. It plays an important role in the optimal

stability of the Kalman solution.

The fact that the boundary conditions have to be applied at the ends of the estimation window
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provides some freedom in how these solutions are constructed. This is in contrast to initial-value problems

where conditions are matched at a the initial time. Here, in absence of an explicit closed form solution,

Eqn. (2.13) is solved from somewhat arbitrary ‘initial’ conditions, which may generally be specified at

any point in the time interval. The choice given by [29] integrates Eqn. (2.13) forward from t = 0→ T to

construct the particular solution with z(p)
0 = {µ0,0}. To match the boundary condition p0 =R0 ·(x0−µ0),

they write the homogeneous solution as

z
(h)
t = Φt|0 ·

0 R−1
0

0 I

 ·z0 =

Ψ
(x)
t ·R−1

0

Ψ
(p)
t

 ·p0.

Note that this satisfies the boundary condition at t = 0 regardless of the value of p0, and amounts to taking

Ψt =

Ψ
(x)
t

Ψ
(p)
t

=

 Φ
(xx)
t|0 +Φ

(xp)
t|0 ·R0

Φ
(px)
t|0 ·R

−1
0 +Φ

(pp)
t|0

 .
The terminal condition pT = 0 is then enforced by taking z0→Φ0|T ·zT , and the solution is

zt = z
(p)
t −Φt|0 ·

0 R−1
0

0 I

 ·Φ0|T ·z
(p)
T = z

(p)
t −

Ψ
(x)
t ·R−1

0

Ψ
(p)
t

 · [Ψ(p)
T ]−1 ·p(p)

T . (2.14)

Although the solution itself is unique 1, it has an infinite number of possible representations that depend

on the choice of initial conditions for the particular solution, and the choice of functional form for the

homogeneous solution. However, these representations are often unstable. This is evident in the simple

tracking problem for instance, where the analytical solutions to Hamilton’s equations contain terms that

grow exponentially in time. And although that case is simple enough to admit an analytical solution, it

makes this technique numerically intractable.

2.2.3 The Kalman-Bucy filter

On the other hand, given suitable observability assumptions the estimate of zT |T given by the

Kalman-Bucy filter is guaranteed to be stable. Starting from the previous solution Eqn. (2.14), [29] showed

1The linear action Eqn. (2.4) is a quadratic functional, with a single global minimum.
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that it can be derived by considering

zt|t =
(
I−R−1

t|t

)
·z(p)

t

where

R−1
t|t =

[R(x)
t|t ]
−1

[R
(p)
t|t ]
−1

 :=

Ψ
(x)
t ·R−1

0

Ψ
(p)
t

 · [Ψ(p)
t ]−1

and for the time beingR0→R
(x)
0 . It is useful here to define a blockwise Hadamard product � such that

A
B

�
C
D

 :=

A ·B
C ·D

 ,
soR−1

t|t can be written as

R−1
t|t = Ψt �

R−1
0

I

 · [Ψ(p)
t ]−1 =: Ψt � Ψ̃−1

t .

The time derivative ofR−1
t|t can then be written as

Ṙ−1
t|t = Ψ̇t � Ψ̃t −R−1

t|t �
˙̃Ψt � Ψ̃−1

t

= J ·∇2
zzH ·R−1

t|t −R
−1
t|t �

0 I

0 I

 ·J ·∇2
zzH ·R−1

t|t


Substituting for J ·∇2

zzH gives the Riccati equations for the covariance

Ṙ−1
t|t =

Ft · [R
(x)
t|t ]
−1 +[R

(x)
t|t ]
−1 ·F †

t +R−1
f · [R

(p)
t|t ]
−1− [R

(x)
t|t ]
−1 ·H†

t ·Rm ·Ht · [R
(x)
t|t ]
−1

(I− [R
(p)
t|t ]
−1) · (Rm · [R

(x)
t|t ]
−1−F †

t · [R
(p)
t|t ]
−1)



when [R
(p)
t|t ]
−1 = I and therefore [Ṙ

(p)
t|t ]
−1 = 0. The Kalman-Bucy equations may be derived from the

time derivative of zt

żt|t = (I−R−1
t|t ) · ż

(p)
t + Ṙ−1

t ·z
(p)
t =

 Ft ·xt +[R
(x)
t|t ]
−1 ·H†

t ·Rm · (yt −Ht ·xt)

−(I− [R
(p)
t|t ]
−1) ·

(
F †

t ·pt +H
†
t ·Rm · (yt −Ht ·xt)

)
 .
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Note the cancellation of terms required to produce this result. Also, [R(p)
t|t ]
−1 = I implies ṗt = 0, so

the canonical momentum is a constant of the motion. This fact will reappear frequently throughout the

remainder of this chapter.

2.2.4 Smoothed estimates

The Kalman-Bucy algorithm provides the filtered estimate for the state zT |T and covarianceR−1
T |T

at the final time. To get an estimate for the optimal path zt|T requires a backward pass that propagates

the observation information backwards in time. As suggested by [29], this can be accomplished by

simply integrating Hamilton’s equations backwards in time starting from zT |T = {xT |T ,0}. Once again

however, the stability of Hamilton’s equations are questionable both forward and backward in time. Some

alternatives, discussed by [123], are based on choosing to enforce

Rt|t ·pt|T = xt|T −xt|t

as an invariant of Hamilton’s equations. For instance, using this relation to eliminate pt|T from Hamilton’s

equations gives the continuous time analog of the Rauch-Tung-Striebel smoother ([164]),

ẋt|T = Ft ·xt|T +R−1
f ·R

−1
t|t · (xt|T −xt|t). (2.15)

Similarly, one can eliminate xt|T from the ṗt|T equation to obtain the ‘dual’ smoothing equations

−ṗt|T = F †
t ·pt|T +H†

t ·Rm ·
(
yt −Ht · (xt|t −Rt|t ·pt|T )

)
.

Alternatively, one can use the approach given by [121, 57, 56], which performs the backward pass

by running the Kalman filter equations backward. The optimal path is then constructed from a linear

combination of the two passes. Namely,

xt|T =−(R+
t +R−t )

−1 · (x+
t +x−t )

where x+
t , x

−
t andR+

t , R
−
t are respectively the state and (inverse) covariance estimates for the forward

and backward paths. It will be shown later how these methods are related to minimizing the Eqn. (2.4)

using Newton’s method and linearizing around the filtered path.
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2.2.5 The smoothed covariance

As for the smoothed covariance, [29] considered the covariance matrix

Pt =

P (xx)
t P

(xp)
t

P
(px)
t P

(pp)
t

 :=

δxt

δpt

 ·
δxt

δpt

†

.

of fluctuations δzt = J ·∇2Ht ·δzt about the optimal path. Its time evolution is given by

Ṗt = F t ·Pt +Pt ·F †
t +Ξt

with boundary conditions

P
(xx)
0 −R−1

0 ·P
(px)
0 −P (xp)

0 ·R−1
0 +R−1

0 ·P
(pp)
0 ·R−1

0 =R−1
0

P
(pp)
T = P

(xp)
T = P

(px)
T = 0

where

F t := J ·∇2
zzHt =

 Ft R−1
f

Rm −F †
t

 Ξt :=

R−1
f 0

0 H†
t ·Rm ·Ht

 .
Thus, the optimal smoothed covariance is also the solution to a two-point boundary value problem.

Note that the inhomogeneous term Ξt is purely a result of the probabilistic interpretation. Specifically,

defining Pt = E[δzt ·δz†
t ] as an expectation value, it arises from stochastic fluctuations in the model and

measurements

E[δut ·δu†
t ′ ] =R

−1
f δ(t− t ′) E[δyt ·δy†

t ′ ] =R
−1
m δ(t− t ′) E[δyt ·δu†

t ′ ] = 0.

This is, to my knowledge, the only departure between the deterministic and stochastic interpretations of the

linear problem. And while the optimal filtered estimate is the same regardless of the choice of interpretation

(though the value of the optimal cost function is not [132]) it is not clear whether this is also true for the

smoothed solution. While this has likely been addressed somewhere in the literature, I have not been able

to locate it.

The solution proposed by [29] is to run the Kalman-Bucy filter forward to construct the filtered

covariance estimate, and then integrate Hamilton’s equations backward to get the smoothed covariance. As

previously noted however, this has numerical stability issues. On the other hand, the alternatives mentioned
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above give stable algorithms for the smoothed covariance. See [123] for some interesting connections

between the various approaches.

2.2.6 Discrete time

Solutions to the discrete problem Eqn. (2.9) can be constructed in similar fashion using the

discrete analogs of Ψn, Φn. The main departure is that in discrete time, the two-point boundary value

problem Eqn. (2.10) mixes the time indices between xn+1, pn, rather than having both ẋt , ṗt defined

at the same time as in the continuous case. This means that constructing the transition matrix Φn by

direct integration of (the homogeneous) Hamilton’s equations requires the discrete model to be invertible.

Namely, solving for pn in terms of pn+1 gives

xn+1

pn+1

= =

I R−1
f

0 I

 ·
Fn 0

0 F−†
n

 ·
 I 0

Rm I

 ·
xn

pn


plus inhomogeneous terms that depend on yn. This Schur factorization in terms of upper and lower

triangular matrices will show up again later. While perhaps not a serious constraint if the Fn is a numerical

discretization of a continuous model fn(xn), the existence of F−†
n is nonetheless not required by the

Kalman solution ([90]) or its smoothing counterparts ([164, 121, 57, 56]). This has likely contributed to

why (to my knowledge) the discrete time analog to Bryson and Frazier’s solution has never been published.

The approaches given by [90, 164, 121, 57] all to some extent use the statistical structure of the problem to

obtain their result. Mayne’s solutions ([121]) rely on these properties the least, as they are primarily based

on the discrete Hamilton-Jacobi-Bellman equations. These solutions will be discussed in more detail in

Sec. (2.3).

Also, recently [10] showed that all these methods may be derived from direct solution of

∇A(X (d)) = 0 from Eqn. (2.6), by exploiting the block tridiagonal structure of ∇2A(X (d)). Specifically,

sequential blockwise Gauss-Jordan elimination on the lower diagonal blocks ∇2A(X (d)) can be directly

interpreted as a modified form of the Kalman filter. The resulting system then is upper block tridiagonal,

which can then be solved by simple back-substitution to obtain the smoothed solution. This technique can

be applied forward, backward, and both forward and backward, respectively giving generalizations of the

Rauch-Tung-Striebel ([164]), Mayne ([121]), and Mayne-Fraser two-filter solutions ([121, 57, 56]). This

result connects Kalman filtering/smoothing with Newton’s method ([14, 14, 77]). It will be discussed in

more detail in Sec. (2.3), and generalized to nonlinear models, and connect with the Gauss-Newton method.
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It is worth pointing out however, that while all these solutions are indeed equivalent in the linear case

(since the action Eqn. (2.6) has an unique global minimum), this is not true in general. In particular, it will

be shown numerically in Chap. (3) that methods that fully exploit the sequential and recursive properties of

the Kalman solution can perform considerably better, especially when the observations are spatially sparse.

2.2.7 The simplest tracking problem revisited

This section now concludes by revisiting the simplest tracking problem described above to show

that the Kalman smoothing solution is indeed stable. In order to treat the case where R0 = 0 the solution

must be modified to use its information form, which instead propagates the information state q̃t := Rt qt . It

also uses the Riccati equation for the (inverse) covariance. Namely, in this case,

−Ṙt = Rt R−1
f Rt −Rm.

This Riccati equation can be solved by introducing the change of variables Rt → Pt Q−1
t , where Q, P are

D×D matrices. The above equation becomes

−Ṙt = Pt Q−1
t Q̇t Q−1

t − Ṗt Q−1
t = Pt Q−1

t R−1
f Pt Q−1

t −Rm,

where even though D = 1, these expressions have not been simplified so as to facilitate its generalization

to higher dimensions. Equating terms provides the well-known linearization of the Riccati equation

Q̇t

Ṗt

=

 0 R−1
f

Rm 0

 ·
Qt

Pt

 ,
which is equivalent to its vector-valued version given above by Eqn. (2.12). Its solutions are also described

by exponentials,

Qt = ω

√
R−1

f

(
C (+) e+ω t +C (−) e−ω t

)
Pt = ω

√
Rm

(
C (+) e+ω t −C (−) e−ω t

)
.
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The Kalman filter solution requires R0 = 0, but there are an infinite number of ways to satisfy this. The

simplest choice is arguably P0 = 0, Q0 = 1, giving C(+) =C(−) = (2ω

√
R−1

f )−1, and therefore

Qt = cosh(ω t)

Pt =
√

RmR f sinh(ω t)

Rt =
√

RmR f tanh(ω t).

With this, the Kalman filter equation for ẋt becomes

q̇t = ẋ∗t − ẋt =−R−1
t Rm qt =−

ωqt

tanh(ω t)
=⇒ qt = q0 csch(ω t),

which is forward stable, but is undefined at t = 0. As mentioned above, this issue can be avoided using the

information form q̃t = Rt qt . Multiplying both sides by Rt gives

˙̃qt = (Ṙt −Rm)qt =−Rt R−1
f q̃t =−ω tanh(ω t) =⇒ q̃t = q̃0 sech(ω t),

which is both forward stable and well-defined at t = 0. However, the fact that

Rt =⇒ q̃0 = 0 =⇒ qt = 0

makes this case less interesting, as there is no need for a backwards pass since the true solution qt = 0 is

found automatically. Also, the ‘classic’ information filter scheme only really applies when the model f(·)

is linear, otherwise one has to linearize the dynamics to determine the evolution for the information state. 2

Consider now a slightly more illuminating case where one still has no idea of the initial state (so

q0 is chosen arbitrarily) but decides to set R0 = 1 so that the Kalman filter can be run without singularity

issues. The solution to the Riccati equation for the covariance is

R−1
t =

tanh(ω t +φ0)√
Rm R f

φ0 := tanh−1(
√

Rm R f )

and thus

q̇t =−R−1
t Rm qt = ω tanh(ω t +φ0)qt =⇒ qt = q0 sech(ω t +φ0).

2But see [33, 143, 203] for modern examples of nonlinear information filters.
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Despite the incorrect choice of R0, the Kalman filter still asymptotically approaches the correct solution

for all possible values of q0, and is forward stable.

As for the backwards pass, directly integrating Hamilton’s equations backwards in time is still

unstable. By contrast, the Rauch-Tung-Striebel solution Eqn. (2.15) in this case gives

−q̇t|T = R−1
f R−1

t|t (qt|t −qt|T ).

It has an even more complicated closed form solution, which is backwards stable but not explicitly given

here. This solution may however be viewed as backwards synchronization with of the smoothing solution

with the filtered solution. Moreover, it is also evident that the two-filter solution (i.e., running a Kalman

filter backwards from qt|t) will continue to refine the estimate. So one does not have to take t → ∞ to

achieve qt → 0, but can rather iterate forwards and backwards passes until convergence is achieved.

Thus, although this is possible the most trivial estimation problem; one where the answer is

already known. It nonetheless has a nontrivial solution that provides insight into the structure of the

solutions and highlights some rather important features. For instance, the Hamiltonian system that defines

the two-point boundary-value-problem is inherently unstable, and cannot be explicitly integrated. This

more or less rules out any type of single shooting method for matching the boundary conditions, as the

solutions quickly become numerically unstable. Rather, one must use multiple shooting techniques, in

which the estimation window is broken up into small subintervals and then solved together as one large

optimization problem.

Alternatively, one could use the Kalman technique to transforms the problem into an equivalent

one that is numerically stable and can be explicitly integrated forwards and backwards in time to achieve

a highly accurate estimate. In this case, the problem has the structure of an harmonic oscillator, except

for a sign difference. Its solutions are hyperbolic transcendental functions that exponentially decay at a

rate of ω−1 determined by the choice Rm, R f . Despite the statistical foundations of the problem, only the

relative ratio Rm/R f matters. When ω is large, the solutions decay quickly, as the solutions tend towards

the data, which in this case is perfect. Likewise, when ω is small, they decay slowly, as the solutions prefer

to follow the model. In the more realistic situation, where the model and the data both have errors, these

values can be tuned to optimally dampen this noise.

Finally, at an informal level it is interesting to note that the Kalman filter involves the solution

of two Hamiltonian systems. One of these systems is the standard vector-valued Hamilton’s equations,

operating on the gradient of the Hamiltonian żt = J ·∇zHt , with the observations providing the time-
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dependent forcing. The other is matrix-valued, Φ̇t =J ·∇2
zzHt ·Φt . It describes the behavior of neighboring

extremals around the optimal solution, and linearizes the Riccati equation for the covariance by way of a

linear fractional transformation. By themselves, these two systems are inherently unstable, and cannot

be explicitly integrated for an appreciable amount of time without becoming numerically unstable. The

Kalman solution transforms these two systems, by embedding one inside the other in a way that stabilizes

the resulting solution through a rather fortuitous cancellation of terms. The remarkable structure of its

solutions has far-reaching implications, and a rather direct interpretation in terms of Newton’s method

for minimizing the action. These ideas will now be explored in the context of its extension to nonlinear

systems.

2.3 Nonlinear extensions

The example given in the previous section outlined the difficulty associated with applying

the necessary conditions for optimality to the solution of two-point boundary value problems. Namely,

Hamilton’s equations appear to be inherently unstable, even for the simplest problems in optimal estimation.

Kalman’s solution on the other hand is inherently stable given some rather basic assumptions. It may be

viewed as a nonlinear transformation of Hamilton’s equations that increases the number of independent

variables from 2D to D(D+ 1), and inherits some truly remarkable properties that make it widespread

across a broad range of topics in applied mathematics.

This section explores the nonlinear extension of these solutions and their connections to second

variation methods in calculus of variations, and the technique of differential dynamic programming in

optimal control. Both approaches use local linearizations of the models f(·), h(·) to refine an initial

approximate trajectory, and may be viewed as working in a local ‘tube’ around the proposed solution.

While these techniques have been used rather extensively in optimal control, its estimation analog does not

seem to have been reported in the literature. The results will provide deeper insight into the structure of the

problem, including its inherent connections to Newton’s method in optimization, as well as the role the

canonical momentum plays in the optimality of its solutions.

2.3.1 Two-pass smoothing and Newton’s method

The term differential dynamic programming was given to techniques developed by Jacobson

([79]) and Mayne ([120]) in the mid 1960s for computing approximate solutions to nonlinear optimal
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control problems. The techniques were developed as nonlinear extensions to the seminal work of Bellman

([15]), which avoid some of the issues regarding the ‘curse of dimensionality’ associated with the numerical

solution of PDEs. A closely related solution was also proposed Mitter ([133]), but derived from second

variation method in classical calculus of variations.

While these solutions are all equivalent for linear problems, subtle but important differences exist

in the nonlinear case. These distinctions are mainly due to how the linearization is performed and how the

iterations are initialized. At the time, the results of [80] appeared to be the most accurate. Yet a recent

resurgence of ‘new’ but closely related methods ([114, 191]) suggests the book may not be entirely closed

on the subject. At the very least, these new methods should be reinterpreted in Jacobson’s framework,

which appears to be the most general of these results.

The core algorithm is based on Newton’s method, but utilizes the Hamiltonian structure of the

problem to restrict the set of solutions in a way that provides inherent stability properties based on locally

optimal feedback control. In the control theoretic formulation, the Hamiltonian action Eqn. (2.3) is

expanded at each iteration i around a nominal trajectory X (i) generated by the current best guess for

the initial state x(i)
0 and the dynamical controls U(i). While the linearization is often performed around

X (i), [79] showed this can be generalized by splitting the perturbation U(i+1) = U(i)+δU(i,∗)+δU and

X (i+1) = X (i)+δX (i), where δU(i,∗) is the ‘optimal’ perturbation at iteration i given X (i), and δX (i),δU(i)

are corrections computed by linearizing about the ‘optimal’ trajectory, computed with U(i)+δU(i,∗). The

role of the Lagrange multipliers P (i) and their perturbations δP (i) are mostly ignored however in these

treatments.

For estimation, the linear solution implies a natural splitting of the perturbation δX (i) = X (i,−)−

X (i,+), into filtered X (i,+) := {x(i)
t|t }|

T
t=0 and smoothed δX (i,−) = {x(i)

t|T}|
0
t=T components. The filtered

solution is generated by running the extended extended Kalman filter forward in time from initial conditions,

given by the previous iteration. Once x(i)
t|t is known, the problem is to determine p(i)t|T given the boundary

conditions pT |T = 0. This is solved by propagating the perturbation δx
(i)
t = p

(i)
t|T backwards in time, in a

process that is equivalent to Newton’s method ([83]). The result of each iteration is a new initial estimate

x
(i+1)
0 := x(i)

0|T , andR(i+1)
0 :=R(i)

0|T .

Thus, the role of the canonical momentum is thus limited to the smoothing step. Indeed, it will be

shown that the Kalman solution requires p(i)t|t = 0 everywhere. This is a somewhat unexpected revelation,

which has been largely ignored in the filtering literature. While this statement will not be proven formally,

several justifying arguments will be provided. A more intuitive interpretation of this fact, in terms of the
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optimality of the filtered estimate, will also be provided.

2.3.2 The second variation and Hamilton’s equations

The derivation begins by writing the action in 2D canonical coordinates Z = {X ,P}, z = {x,p}

and expanding to

A(Z(i,−),δZ(i))≈ A(Z(i,−))+δA(i,−)+
1
2

δ
2A(i,−).

Suppressing the iteration index i, the first and second variations are given by

δA = 〈∇δZA,δZ〉

= 〈δxT ,pt|T 〉−〈δx0,p0|T −R0|0 · (x0|T −x0|0)〉+
∫ T

0
dt
〈

δzt|T ,J
† · żt|T −∇zHt|T

〉

δ
2A = 〈δZ,∇2

δZ2A ·δZ〉

= 〈δxT ,δpT 〉−〈δx0,δp0−R0|0 ·δx0〉+
∫ T

0
dt
〈

δzt ,J
† ·δżt −∇

2
zzHt|T ·δzt

〉
.

Note the anti-symmetry property J =−J† gives

1
2

∫
dt ∇δz〈δzt ,J

† ·δżt〉=
1
2

∫
dt
(
J† ·δżt +∇δz

d
dt
|δzt |2J† −J ·δżt

)
=

∫
dtJ† ·δżt .

Enforcing the variational principle δA = δ2A = 0 thus results in a pair of nested two-point boundary value

problems

J† · żt|T = ∇zHt|T p0|T =R0|0 · (x0|T −x0|0) pt|T = 0

J† ·δżt = ∇
2
zzHt|T δp0 =R0|0 ·δx0 δpT = 0.

These are Hamilton’s equations (and its linearization) evaluated along the smoothed solution zt|T =

zt|t +δzt .

2.3.3 The Riccati transformation

The linearized two-point boundary value problem implied by δ2A may be solved by making the

Riccati transformation δp=Rt|t ·δxt +δrt , which converts it to an initial value problem at the expense of

an extra system of D×D ordinary differential equations. The additional variation δrt is not standard, but

introduced here to maintain the dimension of the problem and to imply that it should be small. Letting



43

δz̃t := {δxt ,δrt}, δ2A becomes

δ
2A = 〈δxT ,Rt|t ·δxT −δrT 〉+ 〈δx0,δr0〉+

∫ T

0
dt 〈δz̃t ,J

† ·δ ˙̃zt〉− |δz̃t |2Ξt

where

Ξt :=

 Ṙt|t +Θt(xt|T ,Rt|t) ∇2
xpHt|T +Rt|t ·∇2

ppHt|T

∇2
pxHt|T +∇2

ppHt|T ·Rt|t ∇2
ppHt|T


where

Θt(xt|T ,Rt|t) := ∇
2
xxHt|T +Rt|t ·∇2

pxHt|T +∇
2
xpHt|T ·Rt|t +Rt|t ·∇2

ppHt|T ·Rt|t . (2.16)

Setting the derivative of δ2A with respect to δz̃t equal to zero gives the Riccati equation for the inverse

covariance propagation in the upper left block of Ξt with Ht evaluated along the smoothed solution. The

filtered estimateRt|t can be obtained by expanding the derivatives of ∇2Ht about the filtered solution and

ignoring all third order terms, so that effectively ∇2Ht|T → ∇2Ht|t . The lower left and upper right blocks

give equations for δẋt and −δṙt respectively. The lower right block gives R−1
f ·δrt = 0, which implies

that δrt = 0 everywhere. This observation is further supported by the fact that the δṙ equation is linear and

homogeneous and has a boundary condition δr0 = 0.

2.3.4 The filtered solution

Introducing the Riccati transformation into the first variation δA gives

〈 I 0

Rt|t I

 ·
δxt

δrt

 , J† · żt|T −∇zHt|T

〉

inside the integral. Taking the variation with respect to δxt and δrt results in a linear combination of

Hamilton’s equations

I Rt|t

0 I

 · (J† · żt|T −∇zHt|T
)
=

Rt|t · (ẋt|T −∇pHt|T )− (ṗt|T +∇xHt|T )

ẋt|T −∇pHt|T

=

0

0

 .
At first glance, this appears to imply Hamilton’s equations must hold along the smoothed path

ẋt|T = ∇pHt|T =⇒−ṗt|T = ∇xHt|T .
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But since the bottom row is the variation with respect to δr, which is zero everywhere, the condition

ẋt|T = ∇pHt|T does not have to be met. This provides some freedom to shape the equations of motion as

desired, while still satisfying the variational principle provided the following condition is met

Rt|t · (ẋt|T −∇pHt|T )− (ṗt|T +∇xHt|T ) = 0. (2.17)

Substituting expressions for the derivatives of the Hamiltonian gives

Rt|t ·
(
ẋt|T −f(xt|T )−R−1

f ·pt|T
)
−
(
ṗt|T +∇

†ft|T ·pt|T +∇
†ht|T ·Rm · (yt −h(xt|T ))

)
= 0.

Linearizing this equation around the filtered estimate zt|T → zt|t +δzt and rearranging terms, the zeroth

order approximation is simply

Rt|t ·
(
ẋt|t −f(xt|t)−R−1

t|t ·∇
†ht|t ·Rm · (yt −h(xt|t))

)
−
(
ṗt|t +(∇†ft|t +Rt|t ·R−1

f ) ·pt|t
)
= 0.

Choosing these equations to hold independently gives

ẋt|t = f(xt|t)+R
−1
t|t ·∇

†ht|t ·Rm · (yt −h(xt|t))

−ṗt|t = (∇†ft|t +Rt|t ·R−1
f ) ·pt|t .

(2.18)

The ẋt is immediately recognized as the equation for the extended Kalman-Bucy filter ([89]). Note that the

filtered estimate evolves according to the full nonlinear models f and h, not their linearization. The ṗt

equation has the same form as δṙt above. The boundary conditions

p0|T = p0|0 +R0|0 ·δx0 =R0|0 · (x0|T −x0|0) =⇒ p0 = pT = 0

imply that the Kalman filter solution is special in the sense that it enforces pt|t = ṗt|t = 0 everywhere.

More evidence for this will be presented shortly.
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2.3.5 The backwards pass

The smoothed solution requires computing the perturbation δxt . Proceeding as before by collect-

ing the first order terms gives

Rt|t ·
(
δẋt −∇ft|t ·δxt −R−1

f ·δpt
)
−
(
δṗt +∇

†ft|t ·δpt −∇
†ht|T ·Rm ·∇ht ·δxt

)
= 0.

Substituting δpt → Rt|t · δxt + δrt reproduces the equations given above for Ṙt and δṙt . Thus, the

variational principle is satisfied to first order in δzt . However, simply integrating the linearized Hamilton’s

equations backwards in time with boundary conditions δxT = δpT = 0 implies δxt = δpt = 0 everywhere.

Thus, another approach is needed.

Recognizing that these equations make the action a function of δx0 alone, the backwards pass is

equivalent to an application of Newton’s method

δx0 = x0|0−x0|T =−[∇2
δx2

0
A]−1 ·∇δx0A =R−1

0|0 ·p0|T .

Moreover, the fact that pt|t = δrt = 0 implies the following relations

Rt|t · (xt|T −xt|t) =Rt|t ·δxt = δpt = pt|T −pt|t = pt|T .

These expressions can be used to derive a variety of methods for determining xt|T . For instance, following

Bryson and Frazier’s original solution one could directly integrate Hamilton’s equations

ẋt|T = f(xt|T )+R
−1
f ·pt|T

−ṗt|T = ∇
†ft|T ·pt|T +∇

†ht|T ·Rm ·
(
yt −h(xt|T )

)
backwards in time from xt|T = xt|t , pt|T = 0. In practice however, these equations are often numerically

unstable ([123]). Alternatively, eliminating pt|T →Rt|t · (xt|T −xt|t) in the ẋt|T gives the state equation

for the extended Rauch-Tung-Striebel smoother ([42])

ẋt|T = f(xt|T )+R
−1
f ·Rt|t ·

(
xt|T −xt|t

)
.

Note how this equation may be interpreted as backwards synchronization between the filtered and smoothed

estimate. Likewise, the dual approach expands h(xt|T )≈h(xt|t)+∇ht|t ·δxt =h(xt|t)+∇ht|t ·R−1
t|t ·pt|T
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to eliminate xt|T from the ṗt|T equation. Ignoring higher order derivatives, one obtains

−ṗt|T = ∇ft|t ·pt|T +∇
†ht|t ·Rm ·

(
yt −h(xt|t)−∇ht|t ·R−1

t|t ·pt|T
)
,

which is essentially a linearization of the successive sweep method ([122]). Suppressing the ∇ht|t ·R−1
t|t ·

pt|T leads to the 4DVar approximation, which integrates Hamilton’s equations for ṗt|T backwards in time,

substituting xt|T → xt|t along the way.

The distinctions between these techniques all arise from how Hamilton’s equations are linearized,

with different choices giving to different algorithms. Thus, like the filtering solution, there is a great deal

freedom to how the backwards pass is implemented. Unlike the filtering case however, no one solution

stands out in terms of stability, particularly for nonlinear problems. But it is clear that certain choices are

inherently unstable. And properly assessing the relative strengths and weaknesses between these methods

requires a more comprehensive understanding of how they are connected.

2.3.6 The Hamilton-Jacobi solution

The optimality condition Eqn. (2.17) is now revisited from the point of view of classical Hamilton-

Jacobi theory. Bellman’s extension of this theory for optimal control problems is not required here since

the controls are eliminated by imposing ∇uH̃ t = 0 =⇒ ut = R
−1
f ·pt . Hamilton-Jacobi theory takes

At|T := A(xt|T , t) as a function of xt|T and substitutes pt|T → ∇At|T . Using the Hamilton-Jacobi equation

dAt(xt)

dt
= 〈∇xAt , ẋt〉+∂tAt(xt) = 〈pt , ẋt〉−Ht(xt ,pt) =⇒−∂tA(xt) = Ht(xt ,pt),

one can derive the Riccati equation by taking its second derivative (ignoring higher order terms)

−∂t
(
∇

2At|T
)
= ∇

2
xxHt|T +∇

2
xpHt|T ·∇2At|T +∇

2At|T ·∇pxHt|T +∇
2At|T ·∇2

ppHt|T ·∇2At|T

and identifying ∇2At|T →Rt|T . Making these substitutions and rearranging terms, Eqn. (2.17) becomes

ṗt|T = ∇
2At|T · ẋt|T −∇xHt|T −∇

2At|T ·∇pHt|T

= ∇
2At|T · ẋt|T −∇xHt(xt|T ,∇A(xt|T ))

= ∇
2At|T · ẋt|T +∂t

(
∇At|T

)
=

d
dt

(
∇At|T

)
.
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Thus, in this context the optimality condition Eqn. (2.17) reduces to the slightly tautological statement

ṗt|T −
d
dt

(
∇At|T

)
= 0. (2.19)

Furthermore, given the earlier remark that pt|t = ṗt|t = 0, the Kalman filter can be derived directly from

the relation ([131])
d
dt

(
∇At|t

)
= 0.

The result,

ẋt|t =−[∇2At|t ]
−1 ·∇x

(
∂tAt|t

)
= [∇2At|t ]

−1 ·∇xH (xt|t ,∇At|t), (2.20)

bears strong resemblance to continuous formulation Newton’s method. Moreover, identifying pt|t → ∇At|t

as the gradient of an objective function the assumptions pt|t = ṗt|t = 0 may be interpreted geometrically as

assuming optimality of the estimate xt|t by enforcing ∇At|t = 0 everywhere along the forward pass.

Intuitively, this makes sense if one considers a locally quadratic expansion of the action around

the filtered estimate xt|t . These constraints specify that xt|t should always lie at a local minimum ∇At = 0,

thereby enforcing the estimate to be ‘optimal’ and unbiased at all times. It is tantamount to treating each

additional measurement as its own two-point boundary value problem that expands the current observation

horizon, and is the geometric manifestation of the statistical property that xt|t is the best linear unbiased

estimate given yt ′<t . It is closely tied to the concept of sequential quadratic programming, and carries a

uniquely recursive feedback structure, which is even more explicit in discrete time.

2.4 Discrete time solutions

The analogous discrete time formulas can be derived in a number of ways. Many of these deriva-

tions however rely heavily on statistical properties of the problem, such as orthogonality of innovations

and linearity of error covariances. Although insightful, these techniques do not always generalize to the

nonlinear case, and can obscure structural and geometric features of the solution.

This section pursues several derivations of discrete time Kalman filtering and smoothing, from

a deterministic point of view that stems from its interpretation as a least squares minimization problem.

Results from the previous section will be revisited, using discrete time versions of the variational principle

([119]) and Hamilton-Jacobi theory ([145]). And connections to the Gauss-Newton method will be made

explicit ([14, 77]).
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2.4.1 The one-step action

From a deterministic perspective as a least squares estimation, perhaps the most straightforward

derivation of the Kalman filter involves rewriting Eqn. (2.6) recursively, as a pair of one-step actions for

the measurement

An|n(x) = An|n−1(xn|n−1,x)+
1
2
|yn−h(x)|2Rm

and time updates respectively

An+1|n(xn+1|n,x) = An|n(x)+
1
2
|xn+1|n−F (x)|2R f

.

The filtered solution may be derived by minimizing these objective functions as follows. For the measure-

ment update, let

An|n−1(xn|n−1,x)≈ |δxn|n−1|2Rn|n−1

with δxn|n−1 := x−xn|n−1, and expand h(x)→ h(xn|n−1)+∇h ·δxn|n−1. Setting ∇An|n = 0 and solving

for δxn|n−1 gives

δxn|n−1 =R
−1
n|n ·∇

†hn|n−1 ·Rm · (yn−hn|n−1).

The covariance

Rn|n =Rn|n−1 +∇
†hn|n−1 ·Rm ·∇hn|n−1

is obtained by separation of variables to complete the square so that

An|n ≈ |x−xn|n|2Rn|n
,

where approximation is valid to first order, up to an additive constant.

Likewise, for the time update the gradient is

∇An+1|n =

Rn|n−1 · (x−xn|n)−∇†F ·R f ·
(
xn+1|n−F (x)

)
R f ·

(
xn+1|n−F (x)

)
.


Taking x→ xn|n and xn+1|n → F (x) gives ∇An+1|n = 0. The covariance update can be obtained by

findingRn+1|n such that

An+1|n(xn+1|n,x)≈ |x−xn+1|n|2Rn+1|n
.
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This may be accomplished by block diagonalizing the Hessian

∇
2An+1|n =

Rn|n−1 +∇†Fn|n ·R f ·∇Fn|n −∇†Fn|n ·R f

−R f ·∇Fn|n R f

 ,
by multiplying on the left and the right by the Schur ‘transition’ matrices

 I 0

−B ·A−1 I

 ·
A B†

B C

 ·
 I 0

−B ·A−1 I

=

A 0

0 C−B ·A−1 ·B†

 (2.21)

Applying the Sherman-Morrison-Woodbury matrix identity ([209]),3 gives the desired result:

Meas. update:


xn|n =R

−1
n|n ·∇

†hn|n−1 ·Rm ·
(
yn−h(xn|n−1)

)
Rn|n =Rn|n−1 +∇

†hn|n−1 ·Rm ·∇hn|n−1

Time update:


xn+1|n = F (xn|n)

R−1
n+1|n = ∇Fn|n ·R−1

n|n ·∇
†Fn|n +R

−1
f

(2.22)

2.4.2 Two-pass smoothing, Newton’s method, and canonical structure

The above result has close ties to Newton’s method. For instance, [14] showed the measurement

update can be derived from the Gauss-Newton method. And [77] later gave a similar result for the time

update. Smoothing results were also given in [13, 77, 10]. In particular, [10] show that the forward and

backward passes arise from block diagonalization of the Hessian ∇2A, whose block tridiagonal structure

stems from its formulation as a discrete-time path integral.

These connections are now examined from the Hamiltonian point of view, by using a variant of

Newton’s method to directly minimize Eqn. (2.9) in canonical coordinates z = {x,p}. Tt each iteration i

the system

∇
2H (i) · (Z(i+1)−Z(i)) =−∇H (i)

3 (A+U ·C ·V )−1 =A−1−A−1 ·U · (C−1 +V ·A−1 ·U)−1 ·V ·A−1



50

is solved. For N = 2:

∇
2H (i) :=



R0|0 −∇†F
(i)
0

−∇F
(i)
0 −R−1

f I

I ∇†h
(i)
1 ·Rm ·∇h

(i)
1 −∇†F

(i)
1

−∇F
(i)
1 −R−1

f I

I ∇†h
(i)
2 ·Rm ·∇h

(i)
2



∇H (i) :=



R0 · (x
(i)
0 −µ0)−∇xH (i)

0

x
(i)
1 −∇pH (i)

0

p
(i)
1 −∇xH (i)

1

x
(i)
2 −∇pH (i)

1

p
(i)
2 −∇†h(i) ·Rm ·

(
yn−h

(i)
n
)


Z(i+1)−Z(i) :=



x
(i+1)
0 −x(i)

0

p
(i+1)
1 −p(i)1

x
(i+1)
1 −x(i)

1

p
(i+1)
2 −p(i)2

x
(i+1)
2 −x(i)

2


,

with H (i)
n := Hn(x

(i)
n ,p

(i)
n+1). Note that this is essentially Newton’s method, without the second order

derivative tensors ∇2h, ∇2F . Alternatively, it may be viewed as a modification of the Gauss-Newton

method to handle the ‘non-square’ terms 〈pn+1,xn+1−F (xn)〉.

Following [10], this system may be solved in two passes, by using the discrete time transition

operators given above in Eqn. (2.21) to block diagonalize the Hessian ∇2H . On the forward pass, the

lower diagonal blocks are eliminated in a process that reproduces the Kalman filter solution. The resulting

linear system is block upper-diagonal, and may be solved using back substitution in the backwards pass.

In continuous time, the extended two-pass smoother was derived by linearizing the action around

the around the EKF trajectory. However, there are problems with this approach in discrete time. Notably,

the terms ∇†h
(i)
n ·Rm ·∇h

(i)
n and ∇F

(i)
n must be evaluated at distinct points: xn|n−1 and xn|n respectively.

Also, the continuous time implies the initial conditions should be chosen such that p(i)n = 0, and x(i)
n

coincides with the EKF solution. But this does not produce the correct result.

To reproduce Eqn. (2.22) in the forward pass, the algorithm needs to run sequentially, evaluating

the Hamiltonian at different points for the time and measurement updates. Although this might appear

problematic, since only x(0)
0 = µ0 is known initially, the recursive structure of the Kalman solution allows

each n > 0 term to be determined in succession. Since it is not immediately clear how to modify Newton’s

method to achieve this result, the linear case is treated instead. With that restriction, these issues no longer

apply.
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The correct result may be obtained by choosing Z(i)→ 0 and associating x(i+1)
n →xn|N , p

(i+1)
n →

pn|N . With these specifications the linear system becomes,



R0|0 −F †
0

−F0 −R−1
f I

I H†
1 ·Rm ·H1 −F †

1

−F1 −R−1
f I

I H†
2 ·Rm ·H2


·



x0|2

p1|2

x1|2

p2|2

x2|2


=



R0|0 ·x0|0

0

H† ·Rm ·y1

0

H† ·Rm ·y2


.

Using the information identity

Rn|n ·xn|n =Rn|n−1 ·xn|n−1 +H
† ·Rm ·yn,

and the fact that xn+1|n = Fn ·xn|n, the forward pass reproduces the Kalman filter:



I −R−1
0|0 ·F

†
0

0 −R−1
1|0 I

I H†
1|0 ·Rm ·H1 −F †

1

−F1|1 −R−1
f I

I H†
2 ·Rm ·H2


·



x0|2

p1|2

x1|2

p2|2

x2|2


=



x0|0

x1|0

H† ·Rm ·y1

0

H† ·Rm ·y2




I −R−1
0|0 ·F

†
0

0 −R−1
1|0 I

0 I −R−1
1|1 ·F

†
1

−F1 −R−1
f I

I H†
2 ·Rm ·H2


·



x0|2

p1|2

x1|2

p2|2

x2|2


=



x0|0

x1|0

x1|1

0

H† ·Rm ·y2




I −R−1
0|0 ·F

†
0

0 −R−1
1|0 I

0 I −R−1
1|1 ·F

†
1

0 −R−1
2|1 I

I H†
2 ·Rm ·H2


·



x0|2

p1|2

x1|2

p2|2

x2|2


=



x0|0

x1|0

x1|1

x2|1

H† ·Rm ·y2


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

I −R−1
0|0 ·F

†
0

0 −R−1
1|0 I

0 I −R−1
1|1 ·F

†
1

0 −R−1
2|1 I

0 I


·



x0|2

p1|2

x1|2

p2|2

x2|2


=



x0|0

x1|0

x1|1

x2|1

x2|2


Setting pN+1|N = 0, the backward pass is described by the recursion relations

xn|N = xn|n +R
−1
n|n ·F

†
n ·pn+1|N

pn|N =Rn|n−1 · (xn|N−xn|n−1).

Eliminating the filtered solutions reproduces the discrete time Hamilton equations from Eqn. (2.10)

xn+1|N = Fn ·xn|N +R−1
f ·pn+1|N

pn|N = F †
n ·pn+1|N +H†

n ·Rm · (yn−Hn ·xn|N).

And eliminating pn|N produces the discrete time analog of the Rauch-Tung-Striebel smoother Eqn. (2.15),

xn|N−xn|n−1 = F
−1
n · (I−R−1

f ·Rn+1|n) · (xn+1|N−xn+1|n).

It is also interesting to note how the two-pass solution impacts the computational complexity of the problem.

Whereas a typical implementation of Newton’s method would require inverting a sparse N D×N D matrix,

the block diagonalization procedure reduces this to 2N inversions of D×D matrices. As the computational

complexity of inverting a D×D matrix is roughly O(D3), the two-pass algorithm reduces the computational

overhead by roughly O(N2) by exploiting the block tridiagonal structure of the discrete-time path integral.

2.4.3 The second variation in discrete time

Starting from Eqn. (2.8) the derivation proceeds similarly to the continuous time solution given in

Sec. (2.3.2). Expanding the action to second order gives

δA = 〈δx0,R0 · (x0|T −x0|0)−p0|T −∇xH0|T 〉+ 〈δxN ,pn|N−∇xHn|N〉+

+
N−1

∑
n=0

〈 δxn

δpn+1

 ,
 pn|N

xn+1|N

−
∇xHn|N

∇pHn|N

〉 .
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δ
2A = 〈δx0,(R0−∇xxH0|T )−∇xpH0|T ·δp1−δp0)+ 〈δxN ,δpN−∇xxHn|N〉

+
N−1

∑
n=0

〈 δxn

δpn+1

 ,
 δpn

δxn+1

−
∇2

xxHn|N ∇2
xpHn|N

∇2
pxHn|N ∇2

ppHn|N

 ·
 δxn

δpn+1

〉 .

These expressions have been resummed so that the time indices of the derivatives of the discrete Hamiltonian

are consistent,

N−1

∑
n=0

〈δxn+1

δpn+1

 ,
pn+1|N

xn+1|N

−
∇xHn+1|N

∇pHn|N

〉−〈δx0,∇xH0|T 〉

→
N−1

∑
n=0

〈 δxn

δpn+1

 ,
 pn|N

xn+1|N

−
∇xHn|N

∇pHn|N

〉−〈δx0,p0|T 〉−〈δpN ,xn|N〉.

This is the discrete time version of integration by parts [110]. Note that in contrast to the analogous

expressions in continuous time, these cannot be written in compact notation involving zn := {xn,pn} and

J , due to the mixed time indexing. Also, without this regrouping of terms the following derivation does

not produce the correct result for the covariance update.

Evaluating the second variation δ2A along the filtered path, and introducing the discrete Riccati

transformation δpn =Rn|n ·δxn +δrn into gives (for arbitrary n inside the sum),

∣∣∣∣∣∣∣∣∣∣∣∣∣

δrn

δxn

δrn+1

Rn+1|n+1 ·δxn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

∇2Hn

with

∇
2Hn =



0 1
2I 0 0

1
2I Rn|n−∇2

xxHn|n −∇2
xpHn|n −∇2

xpHn|n

0 −∇2
pxHn|n −∇2

ppHn|n
1
2R
−1
n+1|n+1−∇2

ppHn|n

0 −∇2
pxHn|n

1
2R
−1
n+1|n+1−∇2

ppHn|n R−1
n+1|n+1−∇2

ppHn|n


The factors of 1/2 come from using the symmetric form

〈δxn,δpn+1〉+ 〈δpn,δxn+1〉 →
1
2

(
〈δxn,δpn+1〉+ 〈δpn+1,δxn〉+ 〈δpn,δxn+1〉+ 〈δxn+1,δpn〉

)
.



54

Restricting δrn = δrn+1 = 0 simplifies the above expression

〈 δxn

Rn+1|n+1 ·δxn+1

 ,
Rn|n−∇2

xxHn|n −∇2
xpHn|n

−∇2
pxHn|n R−1

n+1|n+1−∇2
ppHn|n

 ·
 δxn

Rn+1|n+1 ·δxn+1

〉 .

Setting the derivatives of this term with respect to δxn, δxn+1 equal to zero gives a linear system, which

can be solved forRn+1|n+1

R−1
n+1|n+1 = ∇

2
pxHn|n ·

(
Rn|n−∇xxHn|n

)−1 ·∇2
xpHn|n +∇

2
ppHn|n. (2.23)

This is the discrete time Riccati equation for the propagation of the approximate error covariance with

Rn+1|n+1→Rn+1|n

R−1
n+1|n = ∇Fn|n ·R−1

n|n ·∇
†Fn|n +R

−1
f

Rn|n =Rn|n−1 +∇
†hn|n ·Rm ·∇hn|n.

Likewise, expanding δA to first order around the filtering solution gives the following expression inside the

sum 〈 δxn

δpn+1

 ,
 pn|n +δpn

xn+1|n+1 +δxn+1

−
∇xHn|n

∇pHn|n

+
∇2

xxHn|n ∇2
xpHn|n

∇2
pxHn|n ∇2

ppHn|n

 ·
 δxn

δpn+1

〉 .

The Riccati transformation enforces Hamilton’s equations on the variations δxn, δpn+1 simplifying this

expression 〈 δxn

Rn+1|n+1 ·δxn+1

 ,
 pn|n

xn+1|n+1

−
∇xHn|n

∇pHn|n

〉 .

Setting equal to zero its derivatives with respect to δxn, δxn+1 gives the discrete analog of Eqn. (2.17)

pn|n−∇xHn|n =Rn+1|n+1 · (xn+1|n+1−∇pHn|n) = 0. (2.24)

Substituting for ∇Hn|n and rearranging terms gives

xn+1|n+1 = F (xn|n)+R
−1
n+1|n+1 ·

(
yn−h(xn|n)

)
−R−1

n+1|n+1 ·
(
pn|n− (∇†Fn|n +Rn+1|n+1 ·R−1

f ) ·pn+1|n+1
)
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Choosing to enforce these expressions independently gives a discrete analog of Eqn. (2.18)

xn+1|n+1 = F (xn|n)+R
−1
n+1|n+1 ·

(
yn−h(xn|n)

)
pn|n =

(
∇

†Fn|n +Rn+1|n+1 ·R−1
f

)
·pn+1|n+1.

(2.25)

Note, as in the continuous case, homogeneity of the pn|n equation together with the boundary conditions

p0|0 = pN+1|N = 0 implies that pn|n equals zero for all n.

The filtered estimate for xn|n is similar to the discrete time extended Kalman filter, with a few

crucial differences. First, the forecast model operates on the result of the previous time updatexn|n =xn|n−1,

instead of on the analysis xn|n, which includes the measurement yn. The covariance is also evaluated at

Rn+1|n+1 =Rn+1|n, instead of at Rn|n. These differences are important, as this result does not provide

recursive separation between the measurement and time updates.

2.4.4 The discrete Hamilton-Jacobi solution

While it is not immediately apparent how to modify the previous derivation to obtain the desired

solution, looking at the problem from the point of view of discrete Hamilton-Jacobi theory ([145]) provides

some clues. Defining the action as a function of n

An′ ≡ An′(X 0:n′ ,P 0:n′) :=
n′−1

∑
n=0
〈pn+1,xn+1〉−Hn(xn,pn+1),

the sum can be eliminated through the following recursion

An+1−An = 〈pn+1,xn+1〉−Hn(xn,pn+1).

Assuming An(xn) (i.e., a function of xn alone) and substituting pn+1→∇An+1 gives the discrete Hamilton-

Jacobi equation,

An+1−An = 〈∇An+1,xn+1〉−Hn(xn,pn+1). (2.26)

As in continuous time, the Riccati equation can be derived from the Hessian of Eqn. (2.26) and ignoring

any terms with derivatives higher than second order,

∇
2An +∇

2An+1 = ∇
2
xxHn +∇

2An+1 ·∇2
ppHn ·∇2An+1

+∇
2
xpHn ·∇2An+1 +∇

2An+1 ·∇2
pxHn.
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All expressions in this equation are evaluated around the filtered solution. Unlike the continuous case

however, this derivation requires enforcing Hamilton’s equation

xn+1 = ∇pHn
(
xn,∇An+1(xn)

)
=: Φ(xn).

Thus,

∇
2An−∇

2
xxHn =−∇Φn ·∇2An+1 ·

(
[∇2An+1]

−1−∇
2
ppHn

)
·∇2An+1 ·∇Φn

+∇
2
xpHn ·∇2An+1 ·∇Φn +∇Φn ·∇2An+1 ·∇2

pxHn.

Substituting for

∇Φn =
(
I−∇

2
ppHn ·∇2An+1

)−1 ·∇pxHn

gives

∇
2An−∇

2
xxHn = ∇Φn ·∇2An+1 ·

(
[∇2An+1]

−1−∇
2
ppHn

)
·∇2An+1 ·∇Φn

= ∇Φn ·∇2An+1 ·∇2
pxHn

= ∇
2
xpHn ·∇2An+1 ·

(
I−∇

2
ppHn ·∇2An+1

)−1 ·∇2
pxHn

= ∇
2
xpHn ·

(
[∇2An+1]

−1−∇
2
ppHn

)−1 ·∇2
pxHn.

Assuming ∇2
pxHn = ∇Fn is invertible, gives the discrete Riccati equation

[∇2An+1]
−1 = ∇

2
pxHn · (∇2An−∇

2
xxHn)

−1 ·∇2
xpHn +∇

2
ppHn.

This assumption is not necessary however, considering that it was not required in Eqn. (2.23).

Attempting now to perform a similar derivation of the Kalman filter, the gradient of the discrete

Hamilton-Jacobi equation is

∇Φn|N ·∇2An+1|N ·
(
xn+1|N−∇pHn|N

)
+
(
∇An|N−∇xHn|N

)
= 0.

Substituting expressions for ∇Hn, expanding around the filtered path, and rearranging terms gives

(
[∇Φn|n ·∇2An+1|n+1] ·xn+1|n+1−F (xn|n)−∇

†hn|n ·Rm · (yn−h(xn|n))
)

+
(
∇An|n− (∇†Fn|n +[∇Φn|n ·∇2An+1|n+1] ·R−1

f ) ·An+1|n+1
)
= 0.
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Enforcing these two expressions separately, and using

∇Φn|n ·∇2An+1|n+1 = ∇xpHn|n ·
(
I−∇

2An+1 ·∇2
ppHn

)−1 ·∇2An+1|n+1

= ∇xpHn|n ·
(
[∇2An+1|n+1]

−1−∇
2
ppHn

)−1

=
(
[∇2An|n]

−1−∇
2
xxHn

)−1 · [∇2
pxHn|n]

−1

=Rn|n · [∇Fn|n]
−1

gives

xn+1|n+1 = F (xn|n)+∇Fn|n ·R−1
n|n ·∇

†hn|n ·Rm · (yn−h(xn|n))

pn|n =
(
∇

†Fn|n +Rn|n · [∇Fn|n]
−1 ·R−1

f

)
·pn+1|n+1.

The top equation is again similar to discrete time Kalman filter. Compared with Eqn. (2.25) above, the

additional factor ∇Φn pulls the covariance back in time Rn+1|n+1→Rn|n, making this result closer to

the desired solution. However, the measurement term is still propagated using the tangent linear model

∇Fn|n, instead of the full nonlinear model. So when the forecast model linear, this result is equivalent to

the Kalman filter. But it is worth noting however, that linearity was not required in the continuous time

derivation of the extended Kalman filter.

Once again, the boundary conditions p0|0 = pN+1|N = 0 imply pn = 0 for all n. However, the

momentum equation also contains an additional factor [∇Fn|n]
−1, requiring invertibility of ∇Fn|n, which is

not usually necessary.

2.5 Canonical transformations for two-point boundary value prob-

lems

In physics, solutions to the Hamilton-Jacobi equation are viewed as a special type of coordinate

mapping known as canonical transformation. Canonical transformations are change of canonical coor-

dinates {xt ,pt} → {x̃t ′ , p̃t ′} that preserves the form of Hamilton’s equations, and thereby satisfies the

necessary conditions for a stationary action path. The freedom to construct such a transformation stems

from the fact that choice of generalized coordinates is not unique. The Lagrangian, for instance, is invariant

to the addition of a total derivative. This amounts to a change of gauge, which is itself a type of canonical

transformation, although this point has been disputed ([176]).

Within the set of possible canonical transformations, the Hamilton-Jacobi solution is particularly
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singular. It represents a change of coordinates in which the new Hamiltonian is zero, rendering the new

coordinates (of this generally time-dependent transformation) stationary. Consequently, if the original

Hamiltonian say describes the trajectory of a particle, the new coordinates are expressed in the frame of

reference of the particle.

This type of canonical transformation may described rather succinctly, through the use of canon-

ical generating functions. 4 In physics, this longstanding approach is typically used to derive solutions

to Hamilton’s equations with certain desired properties. Generating functions play a fundamental role in

perturbation theory of nonlinear systems, and has been used by [110] to derive the discrete time formulation

of Hamiltonian mechanics.

Recently however, the idea has been introduced to the optimal control community ([151, 152, 150])

as an analytical technique to construct feedback solutions to two-point boundary value problems, such as

Eqn. (2.5). The method simplifies the treatment of the separated boundary conditions, and offers additional

insight into the problem.

The estimation analog is quite similar, albeit slightly more general due to non-homogeneous

forcing terms in the Hamiltonian. But it has not yet been presented in the literature. Therefore, a derivation

will now be given to complement the techniques discussed above.

2.5.1 Generating functions of canonical transformations

The idea behind the generating function approach is to construct a transformation between

canonical coordinates {xt ,pt} → {x̃t ′ , p̃t ′} at times t and t ′ that preserves the structure of the original

Hamiltonian Ht(xt ,pt) by adding a scalar function Gt(·, ·) to the transformed Hamiltonian H̃ t ′(x̃t ′ , p̃t ′).

Specifically, stationary paths of the action are invariant to the addition of a total time derivative

δ

[∫
dt 〈pt , ẋt〉−Ht(xt ,pt)

]
≡ δ

[∫
dt

dt ′

dt

(
〈p̃t ′ , ˙̃xt ′〉− H̃ t ′(x̃t ′ , p̃t ′)

)
+

dG(·, ·)
dt

]

where t has been chosen as the independent variable. The function Gt(·, ·) has two arguments that determine

the type of generating function. One argument must be from the original coordinate and one from the

transformed coordinate, and thus there are four possibilities:

G(1)
t (xt , x̃t ′), G(2)

t (xt , p̃t ′), G(3)
t (pt , x̃t ′), G(4)

t (pt , p̃t ′).

4The term ‘canonical’ is used to distinguish from ‘mathematical’ generating functions, which have an
entirely different meaning.
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The choice of argument determines the differential relations that G(·, ·) must satisfy to ensure δA = 0.

Namely, enforcing

〈pt ,dxt〉−〈p̃t ′ ,dx̃t ′〉−
(
Ht(xt ,pt)− H̃ t ′(x̃t ′ , p̃t ′)

)
= dG(·, ·)

gives the following relations

Type 1: pt = ∇x G(1)
t −p̃t ′ = ∇x̃G(1)

t −∂t G(1)
t = Ht(xt ,∇x G(1)

t )− H̃ t ′(x̃t ′ ,−∇x̃G(1)
t )

Type 2: pt = ∇x G(2)
t x̃t ′ = ∇p̃G(2)

t −∂t G(2)
t = Ht(xt ,∇x G(2)

t )− H̃ t ′(∇p̃G(2)
t , p̃t ′)

Type 3: −xt = ∇p G(3)
t −p̃t = ∇x̃G(3)

t −∂t G(3)
t = Ht(−∇p G(3)

t ,pt)− H̃ t ′(x̃t ′ ,−∇x̃G(3)
t )

Type 4: −xt = ∇p G(4)
t x̃t ′ = ∇p̃G(4)

t −∂t G(4)
t = Ht(−∇p G(4)

t ,pt)− H̃ t ′(∇p̃G(4)
t , p̃t ′)

using the Legendre transform to relate the differentials

∫
〈pt ,dxt〉=

∫ (
d〈pt ,xt〉−〈xt ,dpt〉

)
= constant−

∫
〈xt ,dpt〉.

The choice of generating function determines the form of the coordinate transformation, and is usually

selected with some design goal in mind. A few simple cases stand out. For instance, G(1)
t = 〈xt , x̃t ′〉

exchanges the generalized coordinates for the position and momenta {x̃t ′ , p̃t ′}→ {pt ,−xt}, demonstrating

their equivalence. Also, choosing G(2)
t = 〈p̃t ′ ,gt(xt)〉 results in a point change of coordinates x̃t ′ = gt(xt)

with gt(xt) = xt giving the identity transformation. A similar result can be obtained using G(3)
t , but

not G(1)
t and G(4)

t . These latter two cannot produce identity transformations. This fact can be seen by

considering the Legendre transformation relating G(1)
t = G(2)

t −〈p̃t ′ , x̃t ′〉= 0 as t ′→ t. In this limit, the

Lagrangian is zero and the arguments of G(1)
t and G(4)

t lose their independence ([151]). Furthermore,

considering a type two transformation that is sufficiently close to the identity

G(2)
t (xt , p̃t ′) = 〈p̃t ′ ,xt〉+δt gt(xt , p̃t ′)

pt = ∇x G(2)
t = p̃t ′ +δt ∇x gt

x̃t ′ = ∇p̃G(2)
t = xt +δt ∇p̃ gt ,
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that taking gt = Ht
(
xt ,∇x G(2)

t (xt , p̃t ′)
)

gives to first order

x̃t ′ = xt +δt ∇pHt ·∇2
x p̃G(2)

t = xt +δt ∇pHt +O(δt2)≈ x(t +δt)

p̃t ′ = pt −δt
(
∇xHt +∇pHt ·∇2

xx G(2)
t
)
= pt +δt ∇xHt +O(δt2)≈ p(t +δt).

Thus, G(2)
t is the infinitesimal generator of time translations along the vector field of the original Hamilto-

nian. Applied recursively these infinitesimal time translations endow the solutions with a group structure

that connects the solution at time t to the solution at any other time t ′. It is worth mentioning that the

generating functions described above may also be modified to include time dependence by mapping to

time-extended phase space x′ := {xt , t}, p′ := {pt ,Ht}, but this generalization is not needed here. Rather,

it can be shown directly (following e.g., [110]) that a (time-independent) type two generating function of

the form

G(2)(xt , p̃t ′) = 〈p̃t ′ , x̃t ′〉−
∫ t ′

t
ds〈ps, ẋs〉−Hs(xs,ps)

connects the solutions at times t and t ′. Specifically,

∇p̃G(2) = ∇p̃

(
〈p̃t ′ , x̃t ′〉−〈ps,xs〉

∣∣t ′
s=t

)
−

∫ t ′

t
ds∇p̃zs · (J† · żs−∇zHs) = x̃t ′ −∇p̃xt ·pt = x̃t ′

where ∇p̃xt = 0 since xt and p̃t ′ are assumed independent, and

∇xG(2) = ∇x
(
〈p̃t ′ , x̃t ′〉−〈ps,xs〉

∣∣t ′
s=t

)
−

∫ t ′

t
ds∇xzs · (J† · żs−∇zHs) = pt .

It is this time propagation property that makes the G(2) (and also G(3)) type generating functions particularly

useful for solving the two-point boundary value problems arising in optimal estimation and control.

2.5.2 Application to fixed interval smoothing

Consider now the continuous time estimation action Eqn. (2.4). The necessary conditions for a

local minimum require solving Hamilton’s equations żt|T = J ·∇zHt|T with separated boundary conditions

p0|T = R0 · (x0|T −x0|0) and pt|T = 0. The solution is naturally described by a type four generating

function, which connects solutions at the endpoints of the integral by specifying their canonical momenta

p0, p̃T . The trouble with this approach however comes in trying to construct an explicit solution as it

requires a near-identity transformation, which as discussed above, is singular for type one and type four

generating functions. The solution, discussed by [151] for control problems, is to first construct the solution
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using type two or three generating functions and then Legendre transform back to a type one or four.

Consider a second order Taylor expansion of a type two generating function G(2)(xt|T , p̃t ′|T )

around the filtered path

G(2)(xt|T , p̃t ′|T ≈ At|t +

〈δxt

δp̃t ′

 ,
 ∇At|t

∇p̃At|t

+ 1
2

∇2
xxAt|t ∇2

xp̃At|t

∇2
p̃xAt|t ∇2

p̃p̃At|t

 ·
δxt

δp̃t ′

〉 .

Also expanding the Hamiltonians to second order, neglecting any order derivatives ∇3A, gives

Ht(xt|T ,∇xG(2))≈Ht|t+〈 I 0

∇2
xxAt|t ∇2

xp̃At|t

 ·
δxt

δp̃t ′

 ,∇zHt|t +
1
2

∇
2
zzHt|t ·

 I 0

∇2
xxAt|t ∇2

xp̃At|t

 ·
δxt

δp̃t ′

〉

H̃ (∇p̃G(2), p̃t ′|T )≈ H̃ t ′|t ′+〈∇2
p̃xAt|t ∇2

p̃p̃At|t

0 I

 ·
δxt

δp̃t ′

 ,∇z̃H̃ t ′|t ′ +
1
2

∇
2
z̃z̃H̃ t ′|t ′ ·

∇2
p̃xAt|t ∇2

p̃p̃At|t

0 I

 ·
δxt

δp̃t ′

〉 .

Writing the time dependence as

−∂t G(2)
t (xt|T , p̃t ′|T ) =

[
1 H̃ t ′(∇p̃G(2)

t , p̃t ′|T )
]
·

 0 1

−1 0

 ·[1 Ht(xt|T ,∇xG(2)
t )

]
,

and matching terms in the expansion gives

−∂t

∇xAt|t

∇p̃At|t

=

I ∇2
xxAt|t

0 ∇2
p̃xAt|t

 ·
∇xHt|t

∇pHt|t

−
∇2

xp̃At|t 0

∇2
p̃p̃At|t I

 ·
∇x̃H̃ t ′|t ′

∇p̃H̃ t ′|t ′



−∂t

∇2
xxAt|t ∇2

xp̃At|t

∇2
p̃xAt|t ∇2

p̃p̃At|t

=

I ∇2
xxAt|t

0 ∇2
p̃xAt|t

 ·
∇2

xxHt|t ∇2
xpHt|t

∇2
pxHt|t ∇2

ppHt|t

 ·
 I 0

∇2
xxAt|t ∇2

xp̃At|t


−

∇2
xp̃At|t 0

∇2
p̃p̃At|t I

 ·
∇2

x̃x̃H̃ t ′|t ′ ∇2
x̃p̃H̃ t ′|t ′

∇2
p̃x̃H̃ t ′|t ′ ∇2

p̃p̃H̃ t ′|t ′

 ·
∇2

px̃At|t ∇2
p̃p̃At|t

0 I


Note that the fact the second equation involves the Hessian of a scalar function immediately implies the

symmetry of the matrices ∇2
p̃p̃At|t and ∇2

p̃p̃At|t , as well as ∇2
p̃xAt|t = [∇2

xp̃At|t ]
†.

The filtering solution is obtained by assuming H̃t ′|t ′(x̃t ′ , p̃t ′) is constant, so ˙̃zt ′ = 0, which may be
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interpreted as a canonical transformation z̃t ′ → zt from fixed initial conditions z̃t ′ to moving coordinates

zt , in the reference frame of the estimate. This choice also coincides with the Hamilton-Jacobi equation

−∂tG(2)(xt , t) = Ht(xt ,∇xG(2)). 5 Making this substitution in the second derivative equation above gives,

−∂t
(
∇

2
xxAt|t

)
= ∇

2
xxHt|t +∇

2
xxAt|t ·∇pxHt|t +∇xpHt|t ·∇2

xxAt|t +∇
2
xxAt|t ·∇ppHt|t ·∇2

xxAt|t

−∂t
(
∇

2
xp̃At|t

)
=
(
∇

2
xpHt|t +∇

2
xxAt|t ·∇2

ppHt|t
)
·∇2

xp̃At|t

−∂t
(
∇

2
p̃xAt|t

)
= ∇

2
p̃xAt|t ·

(
∇

2
pxHt|t +∇

2
ppHt|t ·∇2

xxAt|t
)

−∂t
(
∇

2
p̃p̃At|t

)
= ∇

2
p̃xAt|t ·∇2

ppHt|t ·∇2
xp̃At|t .

The equation for −∂t∇
2
xxAt|t is the continuous time Riccati equation for the inverse covariance, given in

Eqn. (2.16) above with Rt|t → ∇2
xxAt|t . The other three equations also correspond to the other entries

in the matrix in Eqn. (2.16), with the addition of ‘transition matrices’ ∇2
xp̃At|t . The generating function

framework thus generalizes the previous results, although the meaning behind these matrices is still not

totally clear.

Regarding initial conditions, correspondence with the Riccati equation gives ∇2
xxA0|0 =R0. As

this equation also does not depend on the matrices ∇2
xp̃At|t or ∇2

p̃p̃At|t , their initial values do not matter,

at least for the filtering solution. It is interesting to note however, that one might expect (e.g., following

[151]) G(2)(xt|T , p̃t|T ) to generate an identity transformation as t→ t ′. But this would require ∇2
xp̃A0|0 =

∇2
p̃xA0|0 = I and ∇2

xxA0|0 = ∇2
p̃p̃A0|0 = 0, thereby contradicting ∇2

xxA0|0 =R0. Thus, the interpretation of

a simple unitary transformation from fixed initial conditions to is not quite correct here.

The filtering solution comes from the equation

−∂t
(
∇xAt|t

)
= ∇xHt|t +∇

2
xxAt|t ·∇pHt|t .

For instance, substituting −∇xHt|t → ṗt|t and ∇pHt|t → ẋt gives Eqn. (2.19) and thus Eqn. (2.17). The

Kalman filter solution follows from the assumption pt|t = 0. An more direct (but less obvious) route is

to substitute −∂t At|t → ∇2
xxAt|t · ẋt|t from Eqn. (2.20). Replacing the derivatives of the Hamiltonian and

assuming pt|t = 0 gives the desired result.

The other equation

−∂t
(
∇p̃At|t

)
= ∇

2
p̃xAt|t ·∇pHt|t

5Note that the same Hamilton-Jacobi equation can also be obtained from G(1), along with related
versions from G(3) and G(4).
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evidently has no impact on the filtering solution. It involves the term ∇2
p̃xAt|t whose initial condition was

unable to be identified, and has no effect on the Riccati equation. Also, the fact that

∂t
(
∇p̃At|t

)
= ˙̃xt|t = ∇p̃H̃ t|t = 0

seems to imply

∇
2
p̃xAt|t ·∇pHt|t = ∇

2
p̃xAt|t · (f(xt|t)+R

−1
f ·pt|t) = ∇

2
p̃xAt|t ·f(xt|t) = 0.

everywhere along the filtering solution, which can be satisfied trivially by setting the initial condition

∇2
p̃xA0|0 = 0.

It is therefore apparent that the Kalman filter solution is highly singular in the sense that it

constrains several of the fundamental quantities appearing in the generating function solution to be

identically zero. It is worth noting however, that this did not require any assumptions on the values of

x̃t ′ , p̃t ′ , only that H̃t ′ = constant requires their time derivatives to be zero. One rough interpretation of this

is that the Kalman filter solution, being the optimal stabilizing feedback control, provides optimal damping

of any disturbances introduced at time t ′ by the variables x̃t ′ and p̃t ′ . In other words, the filtering solution

is still optimal regardless of the values for x̃t ′ , p̃t ′ . Obviously, more work is needed to show this explicitly,

but the interpretation is intuitive and of all the techniques discussed here, the generating function approach

seems to provides the clearest and most general description.

As for the backwards pass, there are several options. Taking xt|t , ∇2
xxAt|t as initial conditions

one could use the same approach with G(2) or G(3) generating functions to run an extended Kalman filter

backwards in time. This gives the two filter solution of Mayne and Fraser ([121, 57, 56]), although the

problem of blending the solutions to form the optimal smoothed trajectory still must be addressed.

Alternatively, one could use Legendre transform to G(4)(pt|T , p̃t|T ), which is more appropriate

given the boundary conditions pt|T = 0, p̃0|T =R0 · (x0|T −x0|0). Using the Legendre transform

G(4)(pt|T , p̃t ′|T ) = G(2)(xt , p̃t ′|T )−〈pt|T ,xt|T 〉,

with

〈pt|T ,xt|T 〉= 〈pt|t +δpt ,xt|t +δxt〉= 〈pt|t ,xt|t〉 +

〈xt|t

pt|t

+ 1
2

δxt

δpt

 ,
0 I

I 0

 ·
δxt

δpt

〉
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δxt

δpt

=

 I 0

∇2
xxAt|t ∇2

xp̃At|t

 ·
δxt

δp̃t ′


δxt

δp̃t ′

=

[∇2
xxAt|t ]

−1 −[∇2
xxAt|t ]

−1 ·∇2
xp̃At|t

0 I

 ·
δpt

δp̃t ′


and using pt|t = ∇At|t = 0, ∇p̃At|t = x̃t ′|t ′ , gives

G(4)(pt|T , p̃t ′|T )≈ At|t +

〈δpt

δp̃t ′

 ,
−xt|t

+x̃t ′|t ′

+ 1
2
Ξt|t ·

δpt

δp̃t ′

〉 .

Ξt|t :=

 −[∇2
xxAt|t ]

−1 [∇2
xxAt|t ]

−1 ·∇2
xp̃At|t

∇2
p̃xAt|t · [∇2

xxAt|t ]
−1 ∇2

p̃p̃At|t −∇2
p̃xAt|t · [∇2

xxAt|t ]
−1 ·∇2

xp̃At|t

 .
Note that the lower right block is the Schur complement of the Hessian matrix

∇2
xxAt|t ∇2

xp̃At|t

∇2
p̃xAt|t ∇2

p̃p̃At|t

 .

2.6 Symplectic structure and optimal stability

The preceding discussion points to the role of symplectic structure in the stability of solutions to

the two-point boundary value problem described by Eqn. (2.5). As mentioned, boundary value problems

do not inherit the same local uniqueness properties found in initial value problems, and may thus have

many solutions. Moreover, even when a unique solution exists, its representation is unique only up to a

canonical transformation. These representations are not at all equivalent, as many (if not most) choices

produce solutions that are highly unstable, and cannot be directly integrated for an appreciable length of

time. For instance, integrating Hamilton’s Eqns. (2.5) (which itself is a canonical transformation) produces

a solution that quickly becomes numerically unbounded. While this phenomenon is present in physics —

where for instance even the simple harmonic oscillator requires symplectic integration methods to keep its

total energy constant and bounded — in estimation, it appears to be much more severe. It is evident then,

considering the set of all possible canonical transformations, that only a subset are stable enough to be

explicitly integrated.

This stability is a result of combining symplectic structure and the Riccati transformation, as
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illustrated by the Hamiltonian approach to steady-state Kalman filtering ([200, 177, 42]). These constraints

are imposed not just on the canonical state δzt , but also on the fluctuations δzt linearized about the filtered

path. Recall that these fluctuations are described by the ‘accessory’ two-point boundary value problem

δzt|t = J ·∇2Ht|t , obtained from enforcing the second variation δ2A = 0. Imposing symplectic structure on

the neighboring extremals, splits the eigenvalues of the (linearized) Hamiltonian into positive and negative

real pairs. The Riccati transformation then inverts the positive poles, resulting in a feedback control law

that shifts the eigenvalues of the error system inside the unit circle.

While this result has been known for some time, it is perhaps not as widely publicized as it should

be. The fact that it makes explicit the role of symplectic structure in the optimal stability of the Kalman

filter suggests there is more to be learned from viewing the problem in this way. Symplectic structure

provides a great deal of geometric and group-theoretic insight into the problem ([147]), which may be

leveraged to construct better fast approximation algorithms. For instance, one might consider relaxing the

constraint pt = 0 when the filtered solution is far from the truth, and explicitly tracking xt and pt using

a symplectic integration algorithm. For this and other related ideas, it would be especially helpful if the

Hamiltonian technique could be extended to the time-dependent case, which to my knowledge has not yet

been done.

Chapter 2, in part is being prepared for submission for publication of the material. Rey, Daniel.

The dissertation author was the primary investigator and author of this material.



3 Observability and conditioning in

dynamical inverse problems

Inverse problems vary in their degree of difficulty from trivial to impossible. Exactly where

a particular problem falls on this spectrum depends on a variety of factors, all of which contribute to

its conditioning. At its core, conditioning describes the sensitivity of the output (the solution) to small

variations in the inputs (the data). Loosely speaking, for inverse problems it may be interpreted as the

availability of information.

For static parameter estimation problems with linear models, this sensitivity is fully determined

by the condition number of the observation matrixH , which is the ratio of its largest and smallest singular

values. It is an intrinsic property of the model, which in this case is just a matrix, and is independent of the

choice of algorithm. This separation of the problem from its solution (i.e., the algorithm) is a common

approach in optimization and numerical analysis, where the goal is mainly to suppress round-off errors. It

assumes however that the problem itself is well-posed, which is often not the case for inverse problems.

If however the matrix H is singular then its condition number will be infinite and the problem satisfy

Hadamards third requirement for well-posedness: i.e., that the solution should change continuously with

the data ([68]).

It therefore requires regularization, which broadly speaking is the process of introducing additional

‘prior’ information in the form of constraints that the solution unique. Where this additional information

comes from depends on the problem, and may at its simplest just give priority to solutions that have desired

properties like smoothness or smallest magnitude. The latter falls under the generalized framework of

Tikhonov regularization ([189]) and by definition affects the conditioning of the problem, and thus the

stability of the solution. These choices go both ways, in the sense that although the intent of regularization

is to make the problem easier to solve, a poor choice of hyper-parameters can render even the most trivial

66
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problem unsolvable in practice.

This is especially true in the dynamic case, where one has time-series observations and a model

describing the time-evolution of the underlying state of the system. The observations are typically partial so

that the observation operator is rank-deficient and therefore requires regularization, which may be provided

by the model. That is, the model dynamics provides a tremendous source of additional information that

allows one to distinguish between trajectories that are otherwise given what can be observed. Under certain

circumstances, the information inherent in the system’s dynamics allows the hypothetical ‘true’ state of the

system to be reconstructed from noisy observations and imperfect dynamics without any additional prior

knowledge of its initial state. In other cases however it can have the opposite affect, making an otherwise

trivial problem computationally intractable.

The problem arises when the system is chaotic. That is, when the model contains dynamical

instabilities that make its trajectories highly sensitive to perturbations in initial conditions. Chaos in

the system injects dynamical noise into the estimation process that makes identifying the ‘true’ solution

inherently more difficult ([159, 51]). While such behavior is quite common in the study of nonlinear

dynamical systems, nonlinearity is not a requirement. Take for instance, the classic example of the diffusion

equation, which is linear but quickly becomes numerically intractable when integrated backwards in time.

The inverse problem of determining the initial condition for a final observed temperature distribution is

therefore regarded as ill-posed. However, the solution will remain bounded for short enough periods of

time, so the distinction between ill-posed and ill-conditioned problems is not always clear.

There is thus a need for a better understanding of degree of difficulty associated with inverse

problems, as well as how this relates to the notion of its conditioning, the overall probability of success, and

how this depends on its three elemental components: namely the model, the data, and the algorithm. With

this in mind, this chapter aims to begin a discussion of the complicated trade-offs inherent in constructing

the solution to ill-posed inverse problems. Beginning with a short overview of the mathematical theory of

conditioning that focuses specifically on the solution to linear and nonlinear state and parameter estimation

problems, these ideas are explored through a series of numerical experiments that seek to identify the

strengths, weaknesses and connections between some of the most basic algorithms developed for solving

these problems. Particular emphasis will be placed on the density of observations required for success,

and the overall impact of dynamical instability in the model. The results will highlight some fundamental

limitations of certain algorithms, and demonstrate that while some algorithms are better than others at

dealing with poorly observable systems, they tend to be more computationally intensive. Thus, there is an
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inherent trade-off between accuracy of solution and the efficiency of the calculation that must be addressed

on a problem-specific basis.

3.1 Conditioning, regularization and numerical stability

This section begins with a brief introduction to the linear theory of conditioning and its nonlinear

extensions. Special emphasis is placed on its application to inverse problems, including the issue of

regularization and its effect on conditioning. It then concludes with a brief discussion of algorithmic

stability, consistency and convergence and their relation to conditioning.

3.1.1 Conditioning

The conditioning of a problem is a measure of the sensitivity of its solution to errors in the

input. Although the concept is typically introduced in numerical analysis of linear systems, where the

goal is to suppress errors due to finite numerical precision, it applies equally well to the estimation of the

parameters x∈RD from a linear modelH ∈RD×L, given observations y ∈RL such thatH ·x= y. In this

situation, the unknown parameters can be found by matrix inversion x=H−1 ·y, provided the matrixH

is nonsingular. The goal is to understand the sensitivity of the solution x due to errors in the observations

y, which are determined in practice by the experimental apparatus used to record the measurements, and is

typically many orders of magnitude larger than machine precision.

In the linear case, a worst case estimate of this relative sensitivity is given by the condition number

κ of the model H . From a parameter estimation perspective however, it is worthwhile to distinguish

the hypothetical ‘true’ model H∗, data y∗ and solution x∗ from their approximations H :=H∗−δH ,

y := y∗−δy, and x := x∗−δx, which are assumed to have errors δH, δy, δx. Following [78], if we

assumeH∗ is invertible with |[H∗]−1| |δH|< 1, it can be shown that the relative error in the solution δx

is bounded by
|δx|
|x∗|

≤ κ∗

1−κ∗ |δH|/|H∗|

(
|δy|
|y∗|

+
|δH|
|H∗|

)
where

κ[H∗]≡ κ
∗ := |[H∗]−1| |H∗|= σmax

σmin
≥ 1

is the condition number of the matrixH∗ and σmax, σmin are respectively its largest and smallest singular

values.
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Note that this is the condition number of the hypothetical ‘true model, which is usually unknown.

If we instead consider the limit δH → 0 that the model is perfect, the above expression simplifies to

|H∗ ·δx|
|δy|

≤ κ
∗,

which involves only known quantities, since the model H∗ is assumed known the error |δy| in the

measurement apparatus can typically be measured. Thus, when the model is perfect, the condition number

gives an upper bound on the ratio of the observed error in the estimate |H∗ · δx| to the error in the

observations δy. In other words, the solution becomes more unreliable as the condition number grows.

Although in the linear case the condition number is a global property of the model H , it is

not invariant to the choice of coordinates. Rescaling variables, for instance by changing measurement

units, changes the condition number of the problem. This process is called preconditioning, and generally

involves choosing a matrix P such that P−1 ·H is better conditioned and solving the modified problem

P−1 ·H ·x= y ([82, 199]). Roughly speaking, P should be chosen to be close (in some sense) toH , but

easier to invert. Note that choosing P =H the modified problem is just as difficult as the original. Thus,

there are a number of trade-offs to consider when choosing a preconditioning matrix, so one often has to

resort to heuristics, developed on an application specific basis.

Systems of nonlinear equations h(x) = y are more difficult. The condition number is no longer a

global property of the model, although suitable analogs were proposed by [168, 21]. Using upper and lower

Lipschitz bounds function in a neighborhood of a solution x∗, [168] showed that when this neighborhood

shrinks to a point, the condition number of the Jacobian κ[∇h∗(x∗)] coincides with the linear case. Note

however that this definition assumes the solution is known a-priori, so this analysis cannot be applied

experimentally.

3.1.2 Regularization

The assumption that the observation modelH was non-singular and thus invertible at the solution

x requires the mappingH to be square, so the number of states D has to equal the number of measurements

L. But this is typically not the case for inverse problems, where the the measurements are sparse L� D

and the model is degenerate, in the sense that an infinite number of solutions satisfy h(x) = y.

To remedy the situation, one must supply some additional prior information, to constrain the

problem thereby removing the singularity in the model, and making the solution unique. This can be as
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simple as selecting solutions with ‘nice’ qualities such as smoothness or continuity. Or, if one has some

prior knowledge of where the solution should lie, such as the result of a previous analysis, or long-term

averaged behavior, this information can be used to choose solutions that are closest (in some sense) to this

background or prior estimate. This process of removing degeneracy in the model by selecting solutions

with desired properties is known as regularization, and is generally described using the framework given

by [190], which is now briefly discussed.

The linear parameter estimation problem can be reformulated as a quadratic optimization problem

min
x

A(x) :=
1
2
|y−H ·x|2Rm ,

by noting that the stationary points require ∇A(x) =H† ·Rm · (y−H ·x) = 0, where the matrixRm of

inverse covariances has been added to weight the measurements based on their relative uncertainty and is

assumed to be positive definite. This expression implies eitherH ·x= y, or the observed error y−H ·x

(also known as the innovation) lies in the null space of H† ·Rm. In other words, the solution x either

solvesH ·x= y, or the error y−H ·x lies in a direction that is not resolved by the observation operator.

Tikhonov regularization introduces an additional term into the objective function

min
x
Ã(x) :=

1
2
|y−H ·x|2R+

1
2
|b−x|B,

where b is an a-priori or background estimate of the state x, and B is its weight or uncertainty in the

initial guess. Since b ∈ RD, when the matrixB is positive definite the problem will have a unique solution.

The regularization selects for solutions that are close, in a least-squares sense, to b. The choice of B

determines how this selection process is weighted. For instance, when |B| �H the solution x is skewed

more towards the background estimate x≈ b. Likewise, when |B| � |H| it is skewed more towards the

data y. Also, the choice b= 0 and B = αI imposes a filter on the singular values of H , which can be

seen by writing the model in terms of its singular value decompositionH =U ·S ·V †. The solution is

given by

x= V · [S† ·S+αI]−1 ·S ·U † ·y,

which in the limit α→ 0 this reduces to the pseudoinverseH+, selecting the solution with the minimum

norm |x|.

In this context, the condition number is given by κ[∇2Ã] =
√

λmax/λmin, where λmax, λmin are
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the eigenvalues of the Hessian ∇2Ã=H† ·H+B† ·B. This follows from the fact that the eigenvalues λi

ofH† ·H are the the squares of the singular values σi ofH . So without regularization (i.e., whenB = 0)

the condition number is infinite, since σmin = 0 unless the modelH happens to be full rank.

Furthermore, the optimization perspective provides a geometric interpretation of this problem.

Since the eigenvalues of the Hessian are the principal curvatures of the objective function, when H is

singular there are directions in which the objective function is flat, so the solution is degenerate in the

sense that any perturbation along these directions is also a minimizer. The regularization term lifts this

degeneracy, since it is assumed positive definite, to provide a single, unique global minimum. Also, along

these lines, the preconditioning process can be viewed as rescaling the curvature of the objective function

around the solution x∗ to unity, so it is isotropic in all dimensions. For quadratic problems (i.e., linear

models), the optimal preconditioner is the Hessian ∇2A(x∗) ([198]) and is independent of x∗, though its

inverse can be costly to compute for large dimensional systems.

In the nonlinear case, the corresponding optimization problem is no longer quadratic, so multiple

local minima may exist. Also, the Hessian is more complicated, involving terms terms like ∇2h ·(y−h(x))

that depend on the data. Many nonlinear optimization methods, such as the Gauss-Newton method, ignore

these terms due to their added complexity. But the validity of this approximation is difficult to determine

a-priori, although they may be expected to hold near a local minimum where h(x)≈ y.

Thus, it is evident that, like preconditioning, the choice of regularization also affects the con-

ditioning of the problem. This suggests the question of whether this choice should be considered part

of the problem statement or the algorithm, since in many cases the choice of regularization is a defining

feature of the algorithm. This somewhat philosophical question will not be addressed here, although it is

worth noting that the answer will likely be application dependent. The point however is that regularization

plays a critical role in the determining conditioning of an inverse problem, and will be a main focus of our

subsequent investigation.

3.1.3 Stability, consistency and convergence

It is apparent from this discussion that the notion of conditioning is closely related to the stability

of the problem, as defined by the sensitivity of its solution to changes in both the parameters of the model

(e.g., dimension, grid-size) and its inputs (i.e., observations). This definition of stability is akin to the

idea of ‘well-posedness’, and can be studied, for instance using the framework described by [169], which

applies to most techniques used for approximating solutions to differential equations as well as dynamical
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inverse problems, including shooting methods, finite-difference, Galerkin, and spectral methods. These

ideas are now briefly outlined, with some slight notational changes to fit the present discussion.

Most inverse problems can be formulated as a nonlinear system of equations Ψ∗(x∗) = 0 where

x∗ ∈Ω∗. In estimation for instance, the variational approximation to expectation values of the conditional

probability distribution involves finding stationary points of a scalar objective function. In practice however,

these expressions are abstract and cannot be evaluated unless an analytical solution is available. To make

them concrete, the problem and its solution must be discretized, which involves the introduction of a small

parameter ∆ such as the step size. The solution x∆ to the discretized problem Ψ∆(x∆) = 0, with x∆ ∈Ω∆,

is then iteratively approximated by x(i)
∆

, with x(i)
∆
→ x∆ as i→ ∞.

The global error in the approximate solution x(i)
∆

may be measured by e(i)
∆

:= |x∗
∆
−x(i)

∆
|, which

provides a means to define convergence. That is, the algorithm is then said to be convergent if there exists

some finite critical value ∆c > 0 such that for all ∆ < ∆c it produces a result such that e(i)
∆
→ 0 as i→ ∞

and ∆→ 0

Note that the concept of global error requires two choices. The first is the selection of an ‘optimal’

discretization x∗
∆

the ‘hypothetical’ solution x∗. The optimality of this solution is a choice that depends

on several factors including the problem, the discretization, and the algorithm. No rigorous definition

is given, although some choices are natural, such as taking x∗
∆

to coincide with x∗ at nodal values. The

second is the choice of metric, which may be constrained by practical considerations. Such is the case for

inverse problems, where the full state of the system is not generally known, so predictability must be used

to distinguish between solutions.

The convergence of an algorithm depends on two factors: its consistency and its stability. Consis-

tency depends on the discretization of both the problem Ψ∆ and target solution x∗
∆

, in that the discretization

is said to be consistent if the residual |Ψ∆(x
∗
∆
)| → 0 as ∆→ 0. Also, convergence and consistency are said

to be of order p if e(i)
∆

and |Ψ∆(x
∗
∆
)| are O(∆p) respectively, as ∆→ 0 and i→ ∞. Stability, on the other

hand, is related to boundedness of the approximate solutions. A number of definitions have been proposed,

many of which have significant overlap. For instance, the N-stability condition requires the existence of a

finite ‘stability’ constant S such that

|x∆− x̃∆| ≤ S |Ψ∆(x∆)−Ψ∆(x̃∆)| (3.1)

for all x∆, x̃∆ ∈Ω∆ and ∆≤ ∆c. This definition, includes as particular cases the notions of Lax-stability

for linear initial value problems in partial differential equations and 0-stability in numerical ordinary
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differential equations. Furthermore, when taken together, these properties establish the rather well-known

fact that convergence and stability imply convergence.

However, the definition of stability in Eqn. (3.1) is somewhat limited due to the fact that it is

required to hold globally — i.e., for all x∆ ∈ Ω∆. This has lead to the introduction of various local

definitions, two of which were compared by [116], where it was concluded that the definition given by [97]

should be favored. Keller’s definition restricts the domain so that Eqn. (3.1) is only required to be bounded

within a ball B(x∗
∆
,ρ) of radius ρ centered around the ‘optimal’ solution x∗

∆
. The value ρ is called the

stability threshold. It is infinite for linear problems, recovering the global condition Eqn. (3.1). But the

nonlinear case generally exhibits a critical value ρc above which stability is no longer guaranteed. The

complementary limit — an upper bound above which the problem is guaranteed to be unstable — is not

considered here.

Local stability measures cannot be applied to experimental data, as they require a-priori knowl-

edge of the ‘true’ solution x∗
∆
. But this does not mean they are not useful. For instance, one can use

simulated data approximate x∗
∆

given the best model available, and then test these assumptions and con-

straints to arrive at an lower bound on the probability of success, as defined by the convergence to the

desired solution.

While it is not necessarily evident that consistency and stability imply convergence in this case,

[169] gives a proof based on the inverse mapping theorem, which shows that a unique solution exists

within the ball B(x∗
∆
,ρ). But this proof assumes that the mapping Ψ∆ is continuous, and between spaces

of identical dimension. Further work is required to see if these conditions may be relaxed.

3.1.4 Dynamical regularization

The previous section was mainly limited to the estimation of parameters from a static model, in

which the regularization is derived from some a-priori knowledge about the solution, such as its smoothness

properties or where the solution is located. When no such information is available the problem typically

becomes very difficult (if not impossible), since one has no way of distinguishing between various solutions

that are all equivalent with respect to the observation operator. In these cases, it is often necessary to break

this degeneracy by making heuristic assumptions about how the solution should behave. Furthermore, even

when prior information is available, overreliance on it can be dangerous at times. Its accuracy is often quite

difficult to evaluate objectively, which can produce poor predictive performance especially long-term.

Dynamic processes on the other hand, where the measurements are recorded as a time-series
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y(t), contain a substantial amount of information in the system dynamics. That is, if one can describe

the underlying dynamical process with a mathematical model, this model can be used to regularize the

problem by selecting solutions that best interpolate between the model and the data. Under some cases,

this framework can provide accurate estimates of the system’s trajectory, even when little or no prior

information about its state.

While this dynamical regularization does utilize a type of prior information, but not in the usual

sense of a prior distribution that reflects uncertainty in the initial conditions. Rather, the regularization

comes from our a-priori belief in how the system evolves in time. Its accuracy depends on the chosen

application. For instance, a deterministic model based on physical processes (such as transport or elec-

tromagnetism) and obeying strict rules (such as conservation of mass, energy, or momentum) carries

considerably more confidence than a stochastic model describing say economic policies or voting ten-

dencies, which are inherently more unreliable. The latter, while interesting in its own right, will not be

considered here. Instead, the scope of this discussion will be limited to deterministic dynamical processes,

where the time evolution of the system is known with absolute certainty. That is, the dynamical model is

known precisely, and is without error.

3.2 Methodology

This study examines how the conditioning of the problem impacts our ability to observe, estimate,

and predict complex chaotic behavior by establishing approximate lower bounds on the probability of

success of the combined observation-analysis-forecast system. In general, this success rate depends on its

three core components: the model, the data, and the algorithm. So a primary goal is to how the likelihood

of success scales with key parameters of the problem — such as the choice of algorithm, number of

measurements L, the length of the estimation window T = N dt — and identify critical values at which the

probability of success drops sharply.

A computational framework will be introduced to estimate these values numerically, through

a series of Monte-Carlo calculations. It may be viewed as an extension of earlier work by [174]. In

addition to providing insight into the complex relationships underlying predictability, observability, and

conditioning, the results will also demonstrate the existence of fundamental limits to these endeavors,

which persist even under near-perfect conditions.

These results will be illustrated using the simple (yet instructive) dynamical model known as

Lorenz 96, which is now described.
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3.2.1 Lorenz 96 and extensive chaos

The Lorenz 96 model was introduced in [118] to study the predictability of the atmosphere, as

described by a field of D≥ 3 scalars discretized on a periodic lattice, so xD+1 = x1. In their simplest form,

the model equations are given by

dxi

dt
= xi−1(t)

(
xi+1(t)− xi−2(t)

)
− xi(t)+θ(t),

where the first term is a crude model of advection, the second term models dissipation and the parameter θ(t)

describes external forcing. Despite its relative simplicity, this model displays a wide range of dynamical

behavior. For small values of the forcing parameter solutions decay to a fixed point xi = θ. For intermediate

values, most solutions are periodic, and for larger values of θ the system is chaotic. For all the numerical

experiments performed here, the numerical value of θ(t) is constant 8.17, so the system is chaotic. All

simulations are numerically integrated using an explicit fourth-order Runge Kutta scheme with uniform

time step dt = 0.01.

This model was chosen both for its simplicity and for the fact that it exhibits extensive chaos

[94]. That is, for large enough forcing the fractal dimension of the attractor grows linearly with the model

dimension D. This is shown in Fig. (3.1b), which plots the Kaplan-Yorke dimension ([92]) as a function of

D computed from distinct initial conditions on the attractor. This metric roughly coincides with the number

of positive global Lyapunov exponents (GLEs), and indicates that it scales linearly as Da ∼ 0.69D. On

the other hand, the value of the maximum GLE λmax behaves nonlinearly. The asymptotic region begins

around D ≈ 20 and approaches λmax ∼ 1.8 as D gets large. It is thus important to understand that for

D < 20 the chaotic properties of the system may not yet be fully developed.

3.2.2 The average dimension of the unstable subspace

A related statistic that is of particular interest here is the average dimension of the unstable

subspace Du. It is calculated by averaging the number of locally unstable directions along a given trajectory.

For instance, rewriting the system as a discrete time map xn+1 = F (xn), at each time step the Jacobian of

the discrete map ∇F (xn) can be decomposed in terms of its singular values σn. The number of unstable

directions at time tn is obtained by counting the number of components of σn that are greater than unity.
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The statistic Du is then the time average of this quantity along a trajectory. Namely,

Du =
1
N

N

∑
n=0

D

∑
i=1

Θ[σi(tn)+ ε]

where Θ[x] = 1 if x≥ 1 and 0 otherwise is the Heaviside theta function, and ε = 10−3 is a small tolerance

to include any directions that are near stable.

The value of Du is also plotted in Fig. (3.1b). It scales linearly Du ∼ 0.40D with the model

dimension, although at a different rate than Da. Thus, the average dimension of the unstable subspace is

not equivalent to the Kaplan-Yorke dimension, which is roughly the number of positive GLEs.

Although the discrete time version is perhaps more intuitive, the same calculation can be done

in continuous time. Consider the discrete map of an Euler step, xn+1 = F (xn) = xn+1 +dt f(xn). The

singular values of ∇Fn = I+dt ∇fn are the square root of the eigenvalues of the positive definite matrix

|∇Fn|2 = I+dt (∇fn +∇
†fn)+dt2 |∇fn|2.

The symmetric matrix ∇fn +∇†fn describes the local expansion and contraction of phase space and the

quantity Du can be computed by counting the number of its positive eigenvalues. Of these three terms, it is

the only one that can have negative eigenvalues. Yet surprisingly not much is known about the spectrum of

the sum of an arbitrary matrix and its transpose.

This dynamical model instability turns out to be rather important when constructing filtered

estimates. It generates localized error growth, which must be stabilized to achieve accurate estimates.

Controlling this instability requires information from the observations, and becomes increasingly difficult

when measurements are sparse. The most effective filtering algorithms perform this task efficiently and

robustly, without destabilizing the underlying model.

3.2.3 Twin experiments

The Lorenz 96 model offers a unique testbed for assessing how predictability, observability and

the performance of various algorithms scale with the dimension of the model. A framework for this

is now introduced. The approach involves a series of twin-experiments, or numerical experiments with

simulated data. This provides the ‘true solution, or solutions, though here it is generally assumed that the
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solution is unique.1 The merits of twin-experiments have long been established in the geophysical and data

assimilation community, as they provide a systematic way of testing various assumptions and constraints

of the estimation problem. When successful, these tests provide confidence that the methods will also

succeed with real data, which will inevitably be more difficult.

The probability of success for a given algorithm is estimated through a series of Monte Carlo runs.

These runs may be viewed as a set of Bernoulli trials having exactly two outcomes ‘success’ or ‘failure’,

which provide a direct estimate of the success ratio or the number of successful runs over the number of

trials. Trials can be performed both locally, on a given data trajectory sampling various initial conditions,

or globally, over various data trajectories sampled around the attractor.

How the sampling is performed depends on the chosen algorithm. Different methods have

different ways of representing the solution, and therefore different search spaces. The requisite details will

therefore be given in the context of each specific type of algorithm.

3.2.4 Observations and observability

The following experiments are designed to assess the impact of system observability on various

standard algorithms for dynamic state estimation. However, the term observability is used loosely here.

That is, although the system is ‘observable’ in the sense that its Lie derivatives are always full rank (see

e.g., [103]), in practice as the number of observations become sparse the distinction between an observable

and unobservable system is not always clear. This situation occurs, for instance when one state is only

weakly coupled to the rest of the system, so it may be analytically observable but unobservable from a

practical standpoint ([136]). Such problems may be considered dynamically ill-conditioned. Their solution

typically requires the inversion of a poorly conditioned matrix at some point during the estimation process.

Generally speaking, as the observations become increasingly sparse one eventually looses the

ability to resolve the ‘true’ state of the system, even when the model is known perfectly and the observations

contain very little noise. To be clear, the term ‘sparse’ here refers to spatially sparse. Observations are

generated at every time-step dt = 0.01, and frequent enough in time that the model is only weakly

nonlinear.2 The observations are also assumed to be projections onto a uniformly distributed set of states.

That is, h(x)→H ·x= {x`1 , . . . ,x`L} where the indices `n are chosen to distribute the observations as

1Roughly speaking, this follows from the assumption the that model is perfect and deterministic and
the estimation window is long enough to break any degeneracy associated with a non-injective observation
operator h(·).

2For a related study using temporally sparse observations, see [146, 73]
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evenly as possible across the D states with `1 = 1. Many other interesting observation schemes are available

(e.g., lumped or random observations), but these will be pursued elsewhere. Furthermore, the study of each

particular algorithm begins with arguably the simplest case, where the model and the measurements are

perfect, without error (at least to machine precision). The results are then reassessed after adding simulated

noise in the observations. The impact of errors in the model will be considered as part of a future study.

3.2.5 Critical values

One of the primary goals of this investigation is the identification of critical values of certain

parameters at which the problem becomes ill-conditioned enough that the algorithm fails to identify

the ‘true’ solution. Specifically, the two parameters of interest here are: 1) the critical ‘number’ of

measurements Lc and 2) the critical radius ρc = |x(0)−x∗| between the initial guess and the true solution.

These parameters describe fundamental limits in our ability to estimate and predict the system’s behavior.

The goal is to understand how their values depend on other parameters of the problem, such as the degree

of dynamical instability in the model and the choice of algorithm.

The search for these critical parameters uses a modified form of exponential search ([18]) in

which the same estimation procedure is rerun several times, changing the parameter logarithmically until

failure occurs. This then gives an upper and lower bound on its value that can be further refined by binary

search. For example to determine Lc, the algorithm is rerun several times until failure occurs, starting with

full observations L = D and systematically reducing the number of measurements by half on each iteration.

The critical value is then found by running binary search on the interval [Lc− ,Lc+ ].

Similarly, for the critical radius ρc a perturbation direction ρ̂ is chosen at random from a unit

hypersphere. The initial condition is set to x(0) = x∗+ r ρ̂, where the distance r starts small enough that

the result converges. The radius is then doubled at each iteration until failure occurs, or r gets large enough

to span the entire attractor, at which point the algorithm terminates. The interval [rc− ,rc+ ] can then be

refined to get ρc.

This procedure relies on the assumption that the output is ordered, so there is only one transition

between success and failure. This is not always true however. For instance, with some additional restrictions

(e.g., on the signal-to-noise ratio) one expects that with L = D the algorithm will always be successful, and

generally speaking the success ratio should increase with the number of measurements. Nevertheless, it is

possible for a successful run to fail as more measurements are added, although this is not common, at least

for the cases considered here.
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The critical radius on the other hand, will likely have several transitions as the radius r is increased,

since the basin of attraction for an optimization algorithm is generally fractal. Consequently, the focus here

is restricted to approximating only the region in the immediate vicinity of a solution for which convergence

is guaranteed.3 The estimate ρc therefore offers a lower bound on the probability of success, provided r is

initialized to be sufficiently small.

3.2.6 Two criteria for success

It remains however to specify how ‘success’ is determined. Since ultimately these algorithms will

be applied to real data, where the solution is unknown, two criteria are used:

1. The true RMS error at the end of the estimation window

RMSE :=

√
1
D
|x(Nest)− x∗(Nest)|2

2. The observed RMS deviations averaged across the prediction window

RMSD :=

√√√√ 1
L(Npred +1)

Nest+Npred

∑
n=Nest

|yn−h(xn)|2Rm
.

where Nest and Npred are the respective lengths of the estimation and prediction windows, andRm is the

inverse covariance matrices of the measurement error. Note that the true RMSE is only valid in a twin

experiment, where the true solution x∗ is known. Whereas the predictive RMSD is applicable to real data.

The determination of ρc (as described above) also requires knowing x∗ and is therefore only valid in a

twin experiment.

For the purposes of identifying the critical parameters Lc and ρc, the estimate is considered

successful when the true RMSE drops below a prescribed threshold. This cutoff necessarily depends on the

choice of algorithm — e.g., whether it performs filtering or smoothing. For the prediction error however,

some additional work is needed to quantify success as only a subset of the model state can be directly

observed. However, a rough estimate of the accuracy of the solution can be obtained by measuring the

time ∆ it takes for the prediction error to saturate. The fact that the prediction error grows roughly as

expλmax t allows us to estimate the magnitude of the true error at the end of the estimation window as

roughly σ2
x exp−λmax ∆, where σx is variance of the measured states after saturation.

3The existence of this immediate basin of attraction will be discussed more in more detail in Sec. (3.4.5)
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An example is shown in Fig. (3.2), which plots the prediction error as a function of Npred ,

for D = 20, L = 1 for observations contaminated with a small amount of noise, drawn from a normal

distribution with N(0,1). The black line shows the growth of the true RMSE and the red dashed line shows

the observed RMSD. Their growth is well-approximated by exp[λmax ∆] where ∆ is the time it takes for the

prediction error to saturate at roughly σx ≈ 5. In the following section, it will be shown that this empirical

measure of success provides a reasonably accurate approximation to the ‘true’ Lc, computed using the

RMSE.

Of course in practice the situation is much more complicated. The measurements and model have

errors, dynamical variables have different scaling, the observation operator may be a complicated nonlinear

function ,and the system may not even have global Lyapunov exponents. While it is difficult to see how this

argument may be extended to the general case, this issue of estimating the true error of a solution using an

empirically viable metric such as prediction has been remarkably absent from the literature. Furthermore,

it is worth pointing out that this is in fact a benefit of a chaotic system. Namely, (at least in the simple

case considered here) one can use λmax as a natural measure for the growth rate of errors to estimate the

magnitude of the true error based on predictability.

The use of prediction RMSD to evaluate success reflects the broader fact that twin experiments

admit two paradigms of study: theoretical and empirical. A theoretical study assumes knowledge of

the true solution, whereas an empirical study does not. While this assumption of course precludes any

application to real data, it is useful nonetheless, as the results provide important information about the

constraints of the problem — such as the required number of observations or the accuracy of the initial

guess needed for convergence. This information can then be used to inform the design of real experiments.

3.3 The number of observations required for synchronization

The critical minimum number of observations Lc is now assessed for a few simple filtering

schemes. Recall that such methods estimate only the final state xN|N given the observations Y 0:N . In

discrete time, they may be generally written in terms of an observe-analyze-forecast cycle

xn|n = xn|n−1 +Kn · (yn−H ·xn|n−1)

xn+1|n = F (xn|n).

(3.2)
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The first equation incorporates the information from the measurement at time tn to produce the ‘analysis’

xn|n. The second equation evolves the estimate using the discrete time version of the full nonlinear model

F (·).

This observation error feedback form is quite universal among the various approaches devised for

treating this problem. In optimal estimation it describes the Luenberger observer, the Kalman filter, and

their various nonlinear extensions. In data assimilation, it is shared by optimal interpolation and 3DVar. In

dynamical systems theory if forms the basis for a variety of feedback synchronization methods. These

methods are mainly distinguished by their choice of the coupling gain matrixKn, which often determines

both the accuracy and the computational efficiency of the algorithm.

Although the number of approaches that have this general form is truly vast, the focus here is

restricted to three specific techniques: 1) the extended Kalman filter 2) 3DVar and 3) the synchronization

method of [157]. In this order, each method may be viewed as an approximation of its predecessor that

reduces the computational overhead associated with the matrixKn. That is, the extended Kalman filter

computesKn dynamically, by integrating as set of D×D ordinary differential equations and is therefore

the most computationally intensive, but also the most accurate. By contrast, given the assumptions made

here 3DVar uses a static Kn →K, so it does not require any additional integration. Pecora-Carroll

synchronization takes this approximation one step further, and may be viewed as a limit of 3DVar where

K→∞. It is thus slightly more efficient as it avoids the additional matrix multiplication needed to compute

the coupling term.

3.3.1 Kalman filtering, 3DVar, and synchronization

Of the three methods considered here, the extended Kalman filter (ExtKF) has the most rigorous

theoretical foundations. It is worth pointing out however that it is typically derived from statistical

considerations, where both the model and the observations are subject to Gaussian noise processes, it is

equally valid (and often works quite well) for deterministic problems. Although it took quite a while from

its initial discovery in the early 1960s for its properties as an exponential observer to be proven [181].

However, the fact that we are still finding fundamental features of this solution — one of which will be

demonstrated shortly — suggests parts of it are still not as well-understood as perhaps they should be,

given its undeniable importance.

There are quite a few versions of the ExtKF in the literature. So many in fact, that it is often

difficult to determine a-priori which one is most appropriate for a given situation. However, since the focus
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is on poorly observable systems, a square-root factorization method will be used to improve the stability of

the Riccati equation for the covariance, which can often become highly ill-conditioned as the number of

observations becomes increasingly sparse. The covariance matrices are stored and manipulated using their

symmetric square roots or Cholesky decompositions, defined here asR−1 =R−†/2 ·R−1/2 whereR−1/2

is an upper-right triangular matrix. Following [153], the respective time and measurement updates of the

covariance can be computed directly using QR decomposition,

Θ ·

R−1/2
n+1|n

0

= QR

R−1/2
n|n ·∇†Fn

R
−1/2
f



Θ ·

C−1/2
n C

−1/2
n ·K†

n

0 R
−1/2
n|n

= QR

 R
−1/2
m 0

R
−1/2
n|n−1 ·H

†
n R

−1/2
n|n−1

 .
In these equations, Θ is a unitary matrix, and

C−1
n :=R−1

m +H ·R−1
n|n−1 ·H

†

Kn :=R−1
n|n−1 ·H

† ·Cn =R
−1
n|n ·H

† ·Rm.

Furthermore, using the fact that Θ† ·Θ = I along with the Sherman-Morrison-Woodbury matrix identity

([209]),4 one can verify the update equations

R−1
n+1|n = ∇Fn ·R−1

n|n ·∇F
†
n +R−1

f

Rn|n =Rn|n−1 +H
† ·Rm ·H

Note that for the measurement update, the QR decomposition provides both the updated covarianceR−1/2
n|n

as well as the coupling gainKn. It only requires the inverse of C−1/2
n , which can be efficiently computed

using back-substitution since it is an upper-right triangular matrix.

One also has to specify the covariance matrices for the model and observation errorsR−1
f , R−1

m

as well as the initial covarianceR−1
0 . Tuning these parameters is one of the most time-consuming tasks

involved in implementing an ExtKF. This is especially so here, given the assumptions that the model and

data are perfect, and that one has no prior knowledge about the initial state x0. The latter assumption also

technically requires using an information filter, sinceR−1
0 is undefined. But this comes with its own issues

as it is not possible to evolve the information state zn :=Rn|n ·xn|n without linearizing the dynamics. In the

4 (A+U ·C ·V )−1 =A−1−A−1 ·U · (C−1 +V ·A−1 ·U)−1 ·V ·A−1
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end, the best and most consistent results were obtained using the simple choiceR−1
f =R−1

m =R−1
0 = I .

This also held true when simulated noise was added to the data, albeit with one important caveat that will

be discussed in the context of those results.

By contrast, 3DVar methods approximate the solution to the ExtKF by ignoring the covariance

update altogether. Instead, they use a fixed prior ‘background’ distributionRb that penalizes deviations

from a state bn, which typically is the result of the previous forecast bn→ xn|n−1. With these assumptions,

the measurement update can be recast as an optimization problem

x
(3DVar)
n|n = argmin

x

1
2
|yn−H ·x|2Rm +

1
2
|xn|n−1−x|2Rb

,

which amounts to performing Tikhonov regularization on the measurement term ([82]). When the observa-

tion operator is linear, the optimization problem is convex and thus admits a closed form solution

x(3DVar)
n|n = (H† ·Rm ·H+Rb)

−1 ·H† ·Rm · (yn +Rb ·xn|n−1)

=: xn|n−1 +K
(3DVar) · (yn−H ·xn|n−1).

The coupling gain matrix is time-independent

K(3DVar) = (H† ·Rm ·H+Rb)
−1 ·H† ·Rm

=R−1
b ·H

† · (R−1
m +H ·R−1

b ·H
†)−1,

and the latter result again follows from the Sherman-Morrison-Woodbury matrix identity.

As with the ExtKF, the most difficult part of implementing this solution is arguable determining

the proper values forRb andRm. In practice, estimatingRm tends to be easier as one usually has some

idea of the noise processes underlying the observations. The background matrixRb on the other hand, must

be determined from the statistics of the system. Although a number of methods exist for approximating its

value, no one technique stands out above the rest.

Here however, two limits are of interest. AssumingR−1
m → αI andR−1

b → βI , the limit α→ 0

with constant β gives

x
(3DVar-FB)
n|n = lim

α→0+
H† ·

(
α

β
I+H ·H†

)−1

· (yn−H ·xn|n−1) =H
† · (yn−H ·xn|n−1)

so xn|n =H
† · (yn−H ·xn). This results follows from that fact that the pseudoinverse of a general matrix
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can be represented as A+ = lim
δ→0+

A† · (δI +A ·A†)−1. Furthermore since H is a unitary projection

matrix, it follows thatH+ ≡H†.

With these assumptions, this limit of 3DVar essentially coincides with feedback synchronization

techniques found in the dynamical systems literature ([4, 1]). These methods are often combined the

analysis and forecast updates into one equation5

x(3DVar-FB)
n+1 = F (xn)+ γH† · (yn−H ·xn). (3.3)

The strength of the coupling is controlled by a scalar parameter γ and must be chosen appropriately. It it is

too large, it will destabilize the system. And if it is too small, its impact will be negligible. Here a value

of γdt = 0.01 is used, which is known to be successful with Lorenz 96 when it is sufficiently observed

([101]). Also note that no matrix calculations are needed to compute the perturbation, so the method is less

computationally intensive than the EKF.

Alternatively, one may also consider the limit β−1→ 0 with α fixed, which gives

x
(3DVar-PC)
n|n = lim

β−1→0+
(H† ·H+

α

β
I)−1 ·H† · (yn +β

−1xn|n−1) =H
† ·yn.

At each observation time, the measured components of xn|n are simply replaced with the observations

yn, while the unmeasured components are identically zero. If instead the unmeasured components are

left unchanged, this limit would coincide with the method of Pecora and Carroll ([157]) — one of the

first techniques developed to demonstrate synchronization in chaotic dynamical systems. It is one of the

simplest estimation techniques available, as it does not require tuning any parameters, and even avoids

having to compute the innovation: yn−H ·xn|n−1.

3.3.2 The minimum observability threshold Lc

Approximate values for the critical minimum number of observations Lc are now computed as

described above as a function of D for the three methods: the extended Kalman filter (EKF), feedback

synchronization (3DVar-FB), and Pecora-Carroll synchronization (3DVar-PC). The initial conditions of the

estimates are selected either: 1) locally, as a a random perturbation N(0,10−3) from the true state, or 2)

5There is a difference between Eqns. (3.2) and 3.3 regarding whether the perturbation is applied to the
state itself or as a perturbation to the model equations. This may be considered as distinguishing between
jump and drift processes in the underlying probability distribution, although it is unclear which approach is
better, as they have never been directly compared.
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globally, from an arbitrary point on the attractor.

These choices respectively reflect best and worst case scenarios, with the local case corresponding

to an exceptionally lucky initial guess. It is meant to test the difference between the number of observations

required to bring the system to a synchronized state, versus the number required to keep the system in a

synchronized state. That is, it tests whether the algorithm is capable of controlling the localized chaotic

instabilities in the model to keep the estimate close, given limited information from the observations.

The estimation process is repeated several times, sampling different initial conditions until the statistics

converge.

All simulations are performed using the same dataset taken from a single random location on

the attractor. Two situations are considered; the data is either: 1) without noise, or 2) contains additive

uncorrelated Gaussian noise N(0,1). While it would be interesting compare results in a ‘global’ sense,

where the data is also sampled randomly across the attractor, this will not be considered. Preliminary tests

show the results given here are indicative of the attractor as a whole, and do not vary much based on the

chosen initial conditions for the data.

Estimates are considered successful if their final ‘true’ RMSE is either within the noise ball or

below 10−3. For predictability estimates, the same holds true except that the ‘true’ RMSE is estimated

from predictive RMSD as described above. The length of the estimation and prediction windows are scaled

by the largest Lyapunov exponent λmax for each value of of D. Estimates are given ample time to converge

(up to 100λmax) and simulations are terminated early if convergence occurs before this time. Similarly,

predictions are run until the RMSD saturates, so that the RMSE can be estimated from the time ∆ it takes

for this to occur.

Results shown in Fig. (3.3) depict six of eight possible combinations. Local estimates based on

predictive RMSD are not given since these cannot be constructed in a true experiment. As expected, local

estimates perform slightly better than global estimates. Predictability estimates based on RMSD provide

a reasonable approximation of the true RMSE, but slightly underestimate the mean critical threshold Lc,

computed by linear regression. This is especially so when observation noise is present.

In all cases, Lc increases linearly with the resolution of the model. Without noise, the EKF does

better than both 3DVar methods. But this efficiency requires an extra D×D coupled ODEs. Among the

simpler approaches, 3DVar-FB consistently outperforms 3DVar-PC, and all methods require less than the

analytical upper bound Lc < 2/3D given by [106, 105] for a specific static observation operator.

The addition of observation noise effectively erases any benefits of the EKF, regardless initial
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conditions. And the 15% decrease in the 3DVar-FB threshold is somewhat surprising, given the simplicity

of the algorithm. These issues will be addressed further momentarily.

For 3DVar methods, the mean Lc also falls roughly in the range Du < Lc < Da given in Fig. (3.1b).

That is, it lies between the time-averaged number of unstable dimensions in the model, and the number

of positive global Lyapunov exponents. This supports the earlier statements about the role of chaos in

determining Lc, and suggests that its linear scaling with the resolution D is no accident, but a direct

consequence of extensive chaos in the forecast model.

3.3.3 Synchronization, phase transitions, and the role of the unstable subspace

Constructing successful estimates using a dynamical filtering scheme requires the estimate and

truth to synchronize in a way that the RMSE remains small and bounded. Although somewhat obvious

in hindsight, this remarkable fact has been rediscovered and reinterpreted in many different domains and

contexts. For instance, in control theory one often constructs ‘observer’ systems that seek to drive the error

to zero asymptotically. While this term is typically reserved for cases where the underlying systems are

deterministic, without modeling errors in the observations or the dynamics, it is nonetheless useful here for

understanding the basic limits of system observability.

For this it is convenient to rewrite Eqn. (3.2) in a form analogous to Eqn. (3.3), namely

xn+1 = F (xn)+Kn · (yn−H ·xn).

Also, let the true state be described by x∗n+1 = F (x∗n) and the observations yn =H ·x∗n. The the error

en := x∗n−xn evolves as

en+1 = F (x∗n)−F (xn)−Kn ·H ·en

≈
(
∇Fn(xn)−Kn ·H

)
·en.

(3.4)

The above expansion is performed around the estimated state x∗n→ xn +en and is expected to hold when

the error is small. The coupling matrix Kn affects the Lyapunov structure of the error dynamics, and

should be selected to produce a contraction that drives it to zero asymptotically. When the system dynamics

are linear and time-invariant this amounts to choosingK so that the eigenvalues of the resulting matrix

F −K ·H are all inside the unit circle in the complex plane.6 This is rather easy when the observation

operator H is full rank, as choosing K → (F −G) ·H−1 will produce any desired error dynamics G.

6In continuous time they must all be in the left half of the complex plane.
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Of course, this is not very useful as assuming H is invertible implies the exact true solution is known

immediately from the first set of measurements.

The more realistic case is not so straightforward. Restricting the rank of H constrains the

directions along which the resulting closed loop feedback can be applied. To put it another way, let

K =:A ·H† and rewrite Eqn. (3.4) in the following form

en+1 =
(
F −A

)
·en +A ·P ·en.

Given our assumptions onH , the matrix P := I−H† ·H is the projection onto the unobserved subspace.

The matrixA can be chosen at will, but if it contains elements in this subspace it can potentially destabilize

the solution. On the other hand, ifA is constrained to be orthogonal to this subspace so thatA ·P = 0 then

this term will not affect the solution. Thus, the problem of choosingK comes down to a structured inverse

eigenvalue problem ([39]) otherwise known in optimal control as pole placement or pole assignment for

which a variety of robust algorithms exist (e.g., [96]).

The situation becomes more complicated however when the dynamics are nonlinear or time-

varying. As pointed out by [180], simply choosingKn such that the eigenvalues of Fn−Kn are inside the

unit circle at all times tn does not guarantee the overall product will go to zero. On the other hand, if one

selects Kn so that the singular values of Fn−Kn are all less than unity, the sequence is guaranteed to

converge. Thus, it may be considered an inverse singular value problem, which as noted by [38] can always

be converted to an inverse eigenvalue problem by using the fact that the eigenvalues of the symmetric

matrix  0 ∇Gn

∇†Gn 0

 (3.5)

are plus and minus the singular values of the matrix ∇Gn := ∇Fn−Kn ·H . This augmentation from

D→ 2D is reminiscent of the mapping to canonical coordinates discussed in Chap. (2). This idea will be

revisited in a moment.

When the system is chaotic, the matrix Kn must be selected to control the unstable subspace

of the dynamics so that the conditional Lyapunov exponents (i.e., the GLEs of the coupled system) are

all negative. This condition is necessary to synchronize two chaotic systems ([157]), and proceeds like

a phase transition in L, in that either: (1) this condition is met and the systems can synchronize or (2) it

is not and they do not. There is considerable freedom however as to how this condition may be satisfied.

For instance, choosingKn such that the singular vales of ∇Gn are less than one at every tn will guarantee
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convergence at least locally — provided the error is small enough that expansion in Eqn. (3.4) is valid. Yet

this condition is a still bit strict, as it only needs to hold in the asymptotic sense. In other words, at any

given time the largest singular value of ∇Gn may be greater than one, as long as the overall product tends

to zero.

3.3.4 Approximate bounds on Lc

Note for both 3DVar methods, the accuracy of the approximation Lc ≈ Du ≈ 0.4D. The marked

increase in performance shown by all three methods when L is above Du indicates the latter may be useful

as an approximate upper bound on Lc. The threshold Lc ≈ 0.4D also coincides with the transition of the

maximum conditional Lyapunov exponent to a negative value, as shown in Fig. (3.4a). While this result

may not hold in general for models without the homogeneous scaling and symmetry properties of Lorenz

96, it nonetheless highlights the need for adequate observations to control the unstable subspace.

The correspondence between Lc and Du also suggests that perhaps each additional measurement

stabilizes an additional component of the unstable subspace. This hypothesis is tested now averaging

the number of singular values of ∇Gn := ∇Fn−Kn that satisfy σm ≤ 1− ε, with ε = 1.e− 3. This

adimensionalized conditional fraction of the unstable subspace D ′u/D is plotted in Fig. (3.4b) and shows

no remarkable change at this value however. This reiterates the important but subtle point made above.

Although the observational feedback aims to control the growth of errors along these unstable directions,

the necessary conditions for convergence are established by the time ordered product of local Jacobian

matrices T N
n=0 ∇Gn. Interestingly though, the values of D ′u/D are quite consistent across dimensions.

Regarding an approximate lower bound on Lc, [106, 105] used an adaptive observation operator

Hn that stabilizes only the first r components of the unstable subspace. This requires full observations

L = D, but the rank of the observation operator Hn is limited to r. A similar calculation is performed

here. Results are shown in Fig. (3.5) for local initial conditions with no noise. This provided the lowest

thresholds, with 3DVar-FB only needing rc ≈ 0.14D, and the EKF requiring even fewer rc ≈ 0.015D.

Note also that under similar conditions but without the adaptive observation operator, the EKF requires

Lc ≈ 0.04D. This suggests that it is operating near optimal efficiency when the estimate is initialized near

the truth.

For 3DVar-FB, these results are consistent with those of [105], who estimated Lc ≈ 0.15D. But

they only reported a marginal reduction Lc ≈ 0.12D for their adaptive EKF, whereas here it is roughly

ten-fold. This large discrepancy is partially due to the choice of local initial conditions. For global initial
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conditions, the adaptive EKF requires roughly Lc ≈ 0.08D. While this is still lower the previous estimate,

the difference is not nearly as large.

3.3.5 Assimilation in the unstable subspace (AUS)

Although it is not possible to construct this adaptive observation operator for systems that are

only partially observed, these results suggest that targeting unstable manifold may help effectively reduce

Lc. This idea is the basis for a recent strategy known as assimilation in the unstable subspace (or AUS,

[196]) that projects the control perturbations to the unstable (and null) subspace. The justification is that

by ignoring the stable directions where the error is naturally contracting, this approach avoids introducing

unnecessary errors into the analysis.

The effect of this technique on Lc is now examined, for both 3DVar-FB and the EKF. Both

algorithms project their resulting control perturbation into the locally unstable (and null) subspace, but the

EKF does so by projecting the analysis covariance. Results shown in Fig. (3.6) indicate that this approach

improves the observational efficiency of 3DVar-FB by 5−10%.

With the EKF however, the results are markedly worse. The degraded performance disappears

gradually as the tolerance distinguishing between the stable and unstable/null modes is decreased, thereby

increasing the effective rank of the estimated error covariance. But the best results are obtained using the

full rank EKF, without AUS.

This statement is somewhat at odds with that of [195], who suggest that AUS does not degrade

the performance of the EKF. That study assumed sufficient observability however (L = 0.5D), and did not

consider the observational efficiency of the method. The results here suggest that under ideal circumstances,

the full rank EKF operates close to the peak observational efficiency given by the approximate lower bound

in Fig. (3.5). Artificially projecting the analysis covariance into the unstable subspace appears to disrupt

the observational benefits of using the EKF.

3.3.6 The collapse of the error covariance

The mechanism underlying the observational efficiency of the EKF is now further examined.

While the precise origins of this phenomenon are not well understood, the answer is almost certainly

related to the fact that, whenR−1
f = 0, the Riccati equation for the estimated error covariance collapses

around the unstable subspace. Notwithstanding over half a century of dedicated research into the Kalman

filter, it was reported in the literature only quite recently ([194]) with numerical evidence from simulations
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with the Lorenz 96 model. Formal proofs were then given by [66, 23] for the linear discrete-time case,

although the numerical evidence implies these results generalize to the nonlinear case as well.

These calculations are repeated here, by running the EKF withR−1
f = 0 along the known solution

until the rank of R−1
n (computed with SVD) converged. The results shown in Fig. (3.7) indicate the

asymptotic rank of the filter r∞ ∼ 0.39D is in excellent agreement with Du. Choosing |R−1
f |> 0 inflates

the error covariance, putting a lower bound on the singular values of R−1
n associated with the stable

subspace. This improves the conditioning and stability of the filter by preventing it from becoming singular

([177]). The same idea is also used to stabilize ensemble Kalman methods ([51]).

Thus, the Riccati equation adaptively targets the unstable subspace of the dynamics, converging

to it in the limitR−1
f → 0. But this is not all. It also controls the growth of errors along these directions in

a way that requires fewer observations than other methods. While this process appears to adaptively solve

the extended inverse eigenvalue problem described by Eqn. (3.5), by shifting the poles of the linearized

error matrixGn to negate the maximum conditional GLE, the precise mechanism for this remains unclear.

This underscores an important limitation of current Kalman filtering theory. While its statistical

properties have been exhaustively studied, its geometric aspects are not nearly as well established. Indeed,

it took several decades before the extended Kalman filter was even proven to be an asymptotic observer

([181]). Nowhere is this more evident than in the fact that this rather fundamental property regarding the

collapse of the error covariance to the unstable subspace has only just been discovered, and remains to be

proven in the nonlinear case.

Thus, it is perhaps worth revisiting some of the original Kalman theory with the goal elucidating

the inherent ties between its probabilistic and geometric interpretations. Based on the discussion in

Chap. (2), it appears that symplectic structure plays a role in this observational efficiency, although the

details are still unclear. Forging stronger links between the problem’s statistical foundations and its optimal

geometric substructure, will not only improve our overall understanding of one of the most singularly

important algorithms ever devised, but will also motivate new and innovative approaches that exploit these

optimal characteristics in a computationally efficient way.

3.3.7 Filtering observation noise through adaptive annealing ofR f

Returning now to the poor performance of the EKF with observation noise, further examination

showed many cases in which the true RMSE stabilizes to a value well below the average attractor distance,

but slightly higher than the noise level. The results are therefore considered a failure, even though it does a
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reasonable job of locating and tracking the truth. While this issue could be fixed by simply modifying the

tolerance for success, it is perhaps better to look for a more systematic solution.

These results indicate that the observation noise is not being adequately filtered. This is a rather

common issue with the EKF, indicating poorly balanced covariance matrices Rm, R f where too much

weight is put on the observations. The obvious solution is to increase the relative value ofR f , to put more

emphasis on the dynamics. But doing so too early on in the estimation process can destabilize the results.

While the optimal tuning of these parameters has received widespread attention in the literature

([125, 126, 19]), a simpler approach will be pursued here. The idea is to give the observations more weight

initially, and then slowly increase the influence of the dynamics as the filter converges. This improves

stability of the estimate, when it is far from the truth, and filters out the observational noise as the solution

converges.

This technique may be seen as a form of numerical continuation ([7]) or equivalently an ‘annealing’

of the model error. A similar approach has been recently used to improve the stability and convergence

of variational estimation algorithms ([213, 214]), which will be discussed in Sec. (3.4). But this idea

has not to my knowledge been applied to the EKF, although it is closely related to covariance inflation

techniques needed to stabilize and improve the performance of ensemble Kalman filtering methods. The

difference however is that, covariance inflation decreasesR f by introducing a small amount of artificial

model error, whereas hereR f is increased increased as the estimate converges to reduce its reliance on the

noisy observations.

While a variety of implementations were considered, one stood out both in terms of improved

performance and overall simplicity. The idea is to link magnitude of the model error covariance to the

observed RMSD, |R−1
f |=

α√
L
|yn−H ·xn|Rm , where α is a scale factor. This simple feedback rule passes

the basic limiting tests. For instance, when the estimate is poor |R−1
f | is large, say roughly on the scale

of the size of the attractor. As the filter converges, the RMSD will tend towards unity, so |R−1
f | → α. In

addition, when |Rm| is relatively large the RMSD will be small. This pushes |R−1
f | lower to help rebalance

the contributions between the observations and the model.

The benefits of this technique on Lc in the presence of observation noise (σm = 1) are shown

in Fig. (3.8). For these simulations, α = 1 was sufficient. Compared with Figs. (3.3b) and (3.3d), the

annealing technique reduces Lc from 0.37D to 0.25D. Although not quite as low as the noiseless case,

it nonetheless reduces the value well below the approximate threshold of Du ≈ 0.4D for non-adaptive

methods.
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These results were included as a brief example of how the adaptive tuning of the model error

covarianceR−1
f . The idea will be revisited in the next section, within the context of variational smoothing

methods.

3.4 Conditioning and observability in 4DVar methods

The discussion now shifts from filtering to methods for solving the fixed-interval smoothing

problem. Similar questions regarding conditioning and observability will be examined for a certain subset

of techniques, known in the geophysics and numerical weather prediction literature as 4DVar. Estimates of

both Lc and the critical radius ρc will be given for three distinct but closely related formulations of 4DVar.

The latter provides a way to estimate of the minimum guaranteed success rate of a given algorithm, and

can also be compared with an analytical lower bound on the radius of their basin of attraction.

In the smoothing context, another important parameter emerges from the fact that the observations

are now assumed to be recorded over a (relatively short) finite time interval. The length of the estimation

window plays an important role determining both the observability of a given problem and overall success

rate of a particular algorithm. A key issue here is the regularity of the 4DVar objective function. Of the

three techniques examined here, one will be shown to be particularly unstable when system is chaotic

the estimation window is long, relative to the time scale of the chaos. This instability manifests itself

in the form of exponentially many local minima, and can seriously impede the search, rendering even a

trivial problem intractable. The other two methods avoid this instability, but are more computationally

intensive. Each however has its own strengths and weaknesses in terms of accuracy, conditioning and

overall probability of success.

3.4.1 Three formulations of 4DVar

Like 3DVar methods, 4DVar methods optimize a (generally nonlinear) least squares objective

function that seeks to minimize a balanced measure of uncertainty between the observations and the

model. The distinguishing feature of 4DVar however, is that it performs the optimization over a finite time

estimation window.7 Recall from Chap. (2) that applying Laplace’s method to the statistical path integral

for the conditional density P(X |Y ) leads to the variational approximation, which involves the direct

minimization of the log-likelihood or action functional A(X ) ∝− log[P(X |Y )]. Making the simplifying

7Hence the ‘4D’, with the fourth dimension being time.
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assumption that the errors in the system dynamics and observation process are assumed to be uncorrelated

and Gaussian distributed with respective covariancesR−1
f andR−1

m , the action can be written in discrete

time as

A(X ) ∝ |x0−xb|2Rb
+

N

∑
n=0
|yn−h(xn)|2Rm +

N−1

∑
n=0
|xn+1−F (xn)|2R f

. (3.6)

Note, as in 3DVar, the addition of the ’background’ term |x0−xb|2Rb
penalizing deviations from the prior

estimate xb. While this study is mainly concerned with the limit Rb→ 0, this term is often needed to

ensure positive definiteness of ∇2A. The discrete time map may also be implicit F (xn,xn+1), although

this will not be needed here. Furthermore, in keeping with the previous section, the observation model

is assumed to be a linear projection h(x) =H ·x. The functional is not quadratic however, since here

F (xn) is nonlinear, and may therefore contain multiple local minima.

The problem therefore comes down to finding the paths that minimize the action. These min-

imizing paths exponentially dominate the estimate, and the lowest minimizer gives the the maximum

a-posteriori estimate, or conditional mode of the distribution. As previously discussed, there are a variety

of iterative methods available for constructing its solution. Despite computational tradeoffs, many if not

most of these techniques are formally equivalent for linear problems. Yet these methods often give vastly

different results in general. This is a reflection of the fact that, in the nonlinear case, the conditioning of the

problem depends on how these solutions are found. This section will focus on examining the differences

between three common techniques for solving Eqn. (3.6). These differences are primarily due to choices

regarding the constraints of the problem and how the solution is represented, and also give rise to their

inherent computational tradeoffs.

The most straightforward approach is perhaps to minimize Eqn. (3.6) directly, as a function

of the discretized path X := {xn}|Nn=0. This formulation, as an unconstrained nonlinear program, is

common in control theory ([20]). Alternatively, as discussed in Chap. (2), the solution can instead be

represented in terms of an initial condition x0 and a set of dynamical perturbations ([27]) or control

variables U := {un}|N−1
n=0 , by imposing the constraint un := xn+1−F (xn). With these assumptions,

Eqn. (3.6) becomes a constrained nonlinear program, minimizing

A(x0,U) ∝ |x0−xb|2Rb
+

N

∑
n=0
|yn−h(xn)|2Rm +

N−1

∑
n=0
|un|2R f

s.t. xn+1 = F (xn)+un.

(3.7)

A variety of methods exist for solving such problems. It can be minimized directly, as a function
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of {x0,U}. Or, the constraints can be included as Lagrange multipliers P := {pn}|Nn=0, forming the

augmented functional

A(x0,U,P ) ∝ |x0−xb|2Rb
+

N

∑
n=0
|yn−h(xn)|2Rm +

N−1

∑
n=0
|un|2R f

+
N−1

∑
n=0
〈pn,xn+1−F (xn)+un〉.

This can be then minimized directly as a function of {(x0,U,P )}— e.g., using Newton’s method with

Lagrange multipliers. This approach has convergence issues however, related to the fact that the Hessian

is not positive definite ([144]). One can also enforce ∇uA = 0 and eliminate either U in terms of P , or

vice-versa, sinceR f is assumed invertible. There are, in addition to these techniques, a variety of other

methods have been devised to treat general optimization problems with constraints — see e.g., [61, 202].

Given these seemingly limitless options, this study focuses on two simple approaches: namely, the direct

minimization of Eqn. (3.6) and Eqn. (3.7) using the Gauss-Newton algorithm. The details of these methods

will be given shortly.

It is worth noting however that these techniques have not been used much in very high dimensional

problems, such as those encountered operational weather forecasting, where the number of state variables

now frequently exceed D > 109 ([32]). This is due to its excessive memory requirements. Both techniques

require storage of O(D(N +1)) state variables, which makes them unsuitable for these applications. These

storage requirements may be reduced by assuming that the dynamical model is nearly perfect, which

corresponds to the limitR−1
f → 0, where both Eqn. (3.6) and Eqn. (3.7) reduce to the following constrained

optimization problem of minimizing

A(x0) ∝ |x0−xb|2Rb
+

N

∑
n=0
|yn−h(xn)|2Rm

s.t xn+1 = F (xn).

(3.8)

Under this assumption, the trajectory may be represented in terms of the initial condition alone. This

reduces the storage requirements to O(D), and together with the use of adjoint methods for scalable

evaluation of derivatives, makes this methods suitable for very large systems ([40]).

The limitR−1
f → 0 is known in the data assimilation literature as ‘strong constraint’ 4DVar, due

to the fact that the model constraints are assumed to hold exactly. The formulations given in Eqn. (3.6) and

Eqn. (3.7) are likewise known as ‘weak constraint’ 4DVar. Strong constraint methods assume the model

is perfect, without error, while weak constraints attempt to account for model error in a systematic way.

Given that the experimental setup assumes the data is generated without model error, the strong constraint
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formulation is particularly applicable here. In practice however, no model is perfect. Nonetheless, strong

constraint methods often perform remarkably well, and have been used extensively in operational weather

forecasting centers like the ECMWF ([161]). But as with most simplifying assumptions, it has its inherent

limitations. Consequently, a key goal of this study is to identify these tradeoffs, and suggest ways in which

they may be avoided or improved.

3.4.2 The Gauss-Newton method

The objective functionals in Eqns. (3.6), (3.7), and (3.8) all describe nonlinear least squares

problems. That is, they all have the form

A(ξ) = |ψ(ξ)|2Γ. (3.9)

The minimization problem min
ξ∈Ω

A(ξ) can be solved using a generalized version of Newton’s method, which

iteratively constructs a series of estimates ξ(i) from the following rule

ξ(i+1)−ξ(i) =−γ
(i) [Ξ(ξ(i))]−1 ·∇A(ξ(i)). (3.10)

In this expression, γ(i) ∈ (0,1] is a line-search parameter that must be chosen appropriately to ensure a

suitable decrease in the objective function value, i.e., A(ξ(i))−A(ξ(i+1))> ε.

The choice of the matrix Ξ determines the type of method. For instance, Ξ→ I gives gradient

descent, and Ξ→ ∇2A gives the standard Newton’s method. The former is essentially guaranteed to

converge, albeit slowly, to some local minimum of A. The latter has faster convergence but is more

computationally intensive, largely due to the need to evaluate the second order derivative tensor ∇2ψ. A

third option, known as the Gauss-Newton method, neglects this term by using a first order approximation

of the Hessian ∇2A(ξ(i))≈ ∇†ψ(i) ·Γ ·∇ψ(i). It may thus be written as,

ξ(i+1)−ξ(i) =−γ
(i) [∇†ψ(i) ·Γ ·∇ψ(i)]−1 ·∇†ψ(i) ·Γ ·ψ(ξ(i)). (3.11)

This assumption simplifies the problem, improving computational efficiency and making the method

particularly well suited for variational data assimilation problems ([64, 108]).

As such, it is the method of choice here. Explicit formulations will now be given for the methods

described by Eqns. (3.6), (3.7), and (3.8), which will respectively be called WC-4DVar-X, WC-4DVar-U,
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and SC-4DVar — beginning with the latter, as it is the simplest of the three.

For SC-4DVar, the objective function given in Eqn. (3.8) is minimized over initial conditions

only: so ξ→ x0 and Ω→ RD. WC-4DVar-U has a similar form, but is extended to include the dynamical

perturbations: so ξ→{x0,U} and Ω→R(N+1)D. Likewise, WC-4DVar-X has ξ→ X , and Ω =R(N+1)D.

With the following definitions,

Y :=



y0

y1

...

yN


H :=



h(x0)

h(x1)

...

h(xN)


M :=



x0−xb

x1−F (x0)

...

xN−F (xN−1)



R f :=


R f

. . .

R f

 R m :=


Rm

. . .

Rm

 ,
the vectors ψ can be written in block form as

ψ(x0) =

x0−xb

Y −H


︸ ︷︷ ︸

SC-4DVar

Γ ∝

Rb

R m



ψ(x0,U) =


x0−xb

U

Y −H


︸ ︷︷ ︸
WC-4DVar-U

Γ ∝


Rb

R f

R m



ψ(X ) =

 M

Y −H


︸ ︷︷ ︸
WC-4DVar-X

Γ ∝


Rb

R f

R m



The partial derivatives of ∇ψ may also be expressed in block form. When F (·) is explicit, it can be shown
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that ([48])

∇ψ(x0) =

 I

∇0H


︸ ︷︷ ︸
SC-4DVar

∇ψ(x0,U) =

 I

−∇X H · [∇X M ]−1


︸ ︷︷ ︸

WC-4DVar-U

∇ψ(X ) =

 ∇X M

−∇X H


︸ ︷︷ ︸
WC-4DVar-X

where

∇X M =



I 0

−∇F0 I
. . .

0 −∇F1 I
. . .

. . . . . . . . . 0

0 −∇FN−1 I



[∇X M ]−1 =



∇Φ0,0 0

∇Φ1,0 ∇Φ1,1 0

...
. . . . . . . . .

∇ΦN,0 ∇ΦN,1 · · · ∇ΦN,N


and Φn,m ≡ Φ(xm, tn, tm) := Fn ◦Fn−1 ◦ . . . ◦Fm(xm) is the map from xm → xn for n > m. Its partial

derivatives ∇Φn,m := ∂xn/∂xm may be computed from the discrete time variational equation

∇Φn+1,m = ∇Fn ·∇Φn,m ∇Φn,n = I. (3.12)

In other words, F maps X →{x0,U} and vice-versa. The inverse relationship between these two operators

leads to solutions with quite distinct properties, which will be examined shortly. Also, both are expected to

reduce to SC-4DVar in the perfect model limit (R−1
f → 0), although this has not been explicitly shown.

3.4.3 Implementation details

The data and initial conditions are constructed as before. All three methods use explicit fourth-

order Runge-Kutta. This avoids introducing artificial modeling errors, since the data is both generated

and estimated using the same model. Also, since no prior knowledge of initial conditions is assumed, the

background covariance is set toRb = 0, with xb taken as the result of the previous iteration. This choice

ensures all background entries in ψ are zero. If ∇ψ becomes singular, the iteration is terminated.

The Jacobian matrices are evaluated directly using the variational Eqn. (3.12). Although not the
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most computationally efficient approach, this study can be easily extended to analyze the impact of adjoint

methods, whose accuracy have recently been brought into question ([170]). Also, the Jacobians here are

expected to be highly ill-conditioned, their inverses need to be constructed carefully. Since SC-4DVar uses

dense matrices, its inverse is computed via rank-truncated SVD. But this technique is not applicable to

the sparse Jacobians used by the WC-4DVar methods, so their inverses are computed using sparse QR

decomposition algorithms available in Matlab.

In addition, since smoothing methods are under consideration here, success is evaluated by

comparing RMSE (or RMSD) across the entire estimation window. The RMSE is computed in relation to

the optimal trajectory, is the same as the true solution when the observations are noiseless. But when the

data has errors, these solutions no longer coincide. In this case, the optimal solution taken as the result of

the optimization procedure, when initialized from the ‘true’ solution.

3.4.4 The collapse of the solution basin

The numerical study begins by examining the impact that the length of the estimation window has

on the critical radius ρc. Recall that this is an approximation of the maximum distance between the initial

guess and optimal solution at which the estimation no longer succeeds. Results shown in Fig. (3.9) plot

estimated values of ρc as a function of the length of the estimation window for the three 4DVar methods,

with D = 20 and noiseless data that is both fully and partially observed L = {D,D/2,1}.

Consider first the limit T → 0. For the fully observed case ρc is O(1), so the optimal solution is

globally accessible and may be found from roughly any initial point on the attractor. This is expected, as

the problem is essentially trivial under these conditions. The ‘true’ solution is known immediately from

the first set of observations. By contrast, with partial observations the critical radius decreases sharply, as

the problem becomes highly ill-posed since the observation operator h is not full rank. Note also that the

contraction is steeper for L = 1 than it is for L = D/2, indicating that the problem is more singular with

less observations.

In this limit, the estimation window is not long enough to allow for the sufficient transfer of

information from the dynamical model to the unobserved variables. The solution is therefore highly

degenerate, in the sense that there are many trajectories that reproduce the observed data. This is shown

explicitly in Fig. (3.10b), which plots a cross-section of the SC-4DVar action as a function of the initial

deviation |x∗0−x0| for various values of T . The slice is taken along an unobserved direction, so when the

window is short the action surface is flat. As T increases, the degeneracy is broken, and the landscape
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becomes nearly convex before growing highly irregular.

On the other hand, in the long T limit, ρc contracts exponentially for both SC-4DVar and WC-

4DVar-U, while for WC-4DVar-X it is asymptotically stable. The rate of collapse is roughly proportional

to the largest global Lyapunov exponent, for reasons that will be described shortly. The contracting basin

of support around the global minimum is shown more explicitly in Fig. (3.10a). For small T its surface is

nearly quadratic, but grows more rugged as T is increased, becoming filled with exponentially many local

minima. Eventually, the landscape becomes so sharply peaked that it exhibits fractal structure, in which

one has to zoom in very close to see the global minimum. All this occurs despite the fact that the solution

is fully observed, and therefore already known at T = 0. The result is that, in this limit, it is virtually

impossible to find the global minimum without a highly accurate initial guess, which indicates that for

certain algorithms a poor choice of certain parameters can render even a trivial problem intractable.

Thus, for SC-4DVar and WC-4DVar-U there are two competing factors: lack of observability

in short term limit and dynamical instability in the asymptotic limit. Together these lead to an ‘optimal’

window length of roughly T ∗ ≈ 2/λmax where ρc is as large as possible, although the precise value clearly

depends on the number of observations. Moreover, even at the optimal length, the value ρc is still relatively

small and requires unreasonable accuracy in the initial guess to achieve successful estimates. By contrast,

no such peak is evident for WC-4DVar-X. This suggests the likelihood of success should improve as the

length of the window is increased, at least until about T ≈ 2−4/λmax where ρc begins to level off.

These results highlight the use of the model dynamics to regularize the solution, by breaking

the inherent degeneracy in partial observability. While intuitively it makes sense to try to incorporate as

much of this dynamical information as possible, by using the longest available T , the choice of algorithm

is crucial as T gets long. Indeed, SC-4DVar and WC-4DVar-U are all but guaranteed to fail, if T is

chosen inappropriately. In some sense, the issue is that too much information is being passed to the

estimate at once, causing the conditional density to collapse around the true trajectory. . On the other hand,

WC-4DVar-X can evidently handle much longer estimation windows. While this seems beneficial — and it

is in many circumstances — it nonetheless requires more computational resources, so there are additional

tradeoffs to be considered.

The catastrophic collapse of the solution basin when T is long relative to the timescale λ−1
max of

the chaos in the forecast model is a well-known limitation of SC-4DVar ([159, 51]). The workaround, in

practice, is to use shorter windows and cycle the process, advancing the estimation window after each

iteration. This approach has been widely used in many different contexts. In data assimilation, it is known
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simply as ‘cycling’ ([115]). In estimation theory it is essentially a ‘fixed-lag’ smoother, and is related to

the concept of ‘moving horizon’ estimation in control theory. It may be viewed as a hybrid filter/smoother

that directly extends the dynamic filtering approach used in 3DVar to non-zero T . This approach will be

discussed in more detail in Chap. (4).

An analytical measure of the region of guaranteed success around the global minimum is now

introduced, with the goal of understanding both the mechanism behind the collapse of the solution basin in

SC-4DVar, as well as the properties of the SC-4DVar-X that prevent this from occurring.

3.4.5 Convergence and uniqueness balls for the Gauss-Newton method

Optimization algorithms such as Newton’s method and its generalizations/approximations may be

viewed as discrete dynamical mappings ξ(i)→ ξ(i+1) that, when successful, converge to a fixed point ξ∗.

Each method therefore has its own basin of attraction, defined as the set of initial conditions {ξ(0)} that

converges to ξ∗. It is by now well-established that these basins, in general, exhibit fractal structure. Their

complex topology, when visualized as a Julia set by drawing the boundaries between different basins of

attraction, produces intricate patterns even for relatively simple functions — e.g., polynomials in D = 1 of

degree three or higher ([12]).

The notion of bounding the region of convergence for Newton’s method for root-finding goes

back at least as far as Kantorovich ([91]) and has been subsequently extended (e.g., [192, 204, 179, 72]).

However, most of the literature pertaining to the study of its basins of attraction as an optimization method

has been focused exclusively on Newtons method in D = 1 ([75, 128]). An a priori lower bound on the

size of the ‘Newton basin’ was given in [210], citing earlier work by [178, 58]. But these results were only

given for polynomial functions in D = 1. Indeed, with the exception of [183], which examines higher order

methods, a cursory search of the literature did not turn up any reference to bounds on basins of attraction

for optimization methods in higher dimensions.

On the other hand, there exists another, more recent, body of literature that gives separate bounds

on the convergence and uniqueness balls for Newtons method and its variants. Whereas Kantorovich’s

theorems assume the solution is unknown and bound the region of convergence based on global Lipschitz

constants of the function, these results assume the solution is known and viewing the problem as an

application of Banachs fixed-point theorem ([11]) provide local bounds based on generalized Lipschitz

conditions (see e.g., [205, 206]).

This analysis has been extended to the Gauss-Newton method as well ([113, 34, 35, 112]),
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providing an upper bound on the region of guaranteed convergence and uniqueness for the solution. As

these results are rather similar, the focus here will be on uniqueness ball, since it is the simpler of the two.

In particular, the following bound was given by [113] in Corollary 5.2 (see also App. (3.5)).

Suppose ξ∗ is a solution to Eqn. (3.9), and the derivative ∇ψ satisfies the following conditions:

1. ∇ψ(ξ) is continuous in the ball B(ξ∗,r)

2. ∇ψ(ξ) is full rank at the solution ξ→ ξ∗,

3. and satisfies the center Lipschitz condition

|Γ1/2 · (∇ψ(ξ)−∇ψ(ξ∗))| ≤ Λ|ξ−ξ∗| (3.13)

for all ξ in the open ball B(ξ∗,r) with Γ†/2 ·Γ1/2 := Γ. The solution of Eqn. (3.9) is unique in the ball

B(ξ∗,r) with

ρc =
2

|[Γ1/2 ·∇ψ∗]+|

(
1
Λ
−|[∇†ψ∗ ·Γ ·∇ψ∗]−1| |Γ1/2 ·ψ∗|

)
(3.14)

where ψ∗ ≡ ψ(ξ∗) and M+ := [M † ·M ]−1 ·M † is the pseudoinverse.8 Using the relation κ[M ] =

|M+| |M | this expression may be rewritten in terms of the condition number

ρc =
2

κ[Γ1/2 ·∇ψ∗]

(
|Γ1/2 ·∇ψ∗|

Λ
−|[∇†ψ∗ ·Γ ·∇ψ∗]−1| |Γ1/2 ·∇ψ∗| |Γ1/2 ·ψ∗|

)
. (3.15)

This version gives a more balanced result as |∇ψ∗| gets large, and provides a direct connection with the

discussion of nonlinear conditioning given in Sec. (3.1).

Although the complexity of the expressions involved in Eqn. (3.15) makes it difficult to obtain

analytic bounds, the terms involving ψ∗, ∇ψ∗ may be directly computed, so long as the optimal solution

is assumed known. The leading order behavior to r appears to be determined by the condition number

κ[Γ1/2 ·∇ψ∗]. The second term is proportional to |ψ∗|, whose value is roughly proportional to magnitude

of the errors in the dynamics and the observations. Its value is therefore expected to be small given the

assumptions of this study.

It remains however to determine the Lipschitz constant Λ, in particular the ratio |∇ψ∗|/Λ, which

sets the overall length scale of r.9 As discussed in App. (3.6), the calculation of Λ depends on the second

derivative tensor |∇2ψ∗|. While the tensor itself is easily computed, its norm is not. For instance, computing

8[113] also gives an argument that suggests this r optimal in the scalar case (D = 1).
9Recall that the condition number is just a ratio.
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the spectral norm is known to be NP-hard for a rank 3-tensor ([74]). Although the Frobenius norm can

be used instead, because it is easily computable for arbitrary tensors an gives an upper bound on the

spectral norm, but the tightness of this bound is not known in general. Overestimating this bound can be

problematic, as leading to negative values of r when |ψ∗| 6= 0 — i.e., when the measurements or dynamics

contain nonzero noise.

3.4.6 The inverse condition number of the Hessian

Given these difficulties, the additional terms in Eqn. (3.15) are neglected by making the approxi-

mation

ρc ≈
1

κ[Γ1/2 ·∇ψ∗]
. (3.16)

In other words, the radius of the uniqueness ball is taken to be the (square-root of the) inverse condition

number of the approximate Hessian evaluated at the global minimum, ∇2A∗ ≈ |Γ1/2 ·∇ψ∗|2. This value is

easily computed. This estimate for ρc is meant to be somewhat conservative, in the sense that many initial

conditions outside this region that also converge to ξ∗. It also only captures the relative scaling behavior

of the solution basin, as its overall size is determined by the neglected terms. Also, the fact that when κ

is large ρc is small, and vice-versa, underscores the intuition that well-conditioned problems have larger

solution basins, and thus a higher inherent likelihood of success. It also provides geometric motivation for

the process of preconditioning, in that lowering the condition number of the problem broadens the width

the solution basin, thereby increasing the probability of success.

The lines in Fig. (3.9) show calculated values of ρc taken from Eqn. (3.16). The absolute scale

is determined by a least squares fit to the sampled estimates. The results follow the basic trends in the

data in the long time limit, capturing both the collapse of the SC-4DVar and WC-4DVar-U objective

functions, as well as the asymptotic stability of WC-4DVar-X. The singularity in the short T limit (for

partial observations) is also shown, although the collapse appears to be somewhat overpredicted — more

so for L = D/2 than L = 1. This anomaly remains unexplained, but may be due to the higher order terms

not calculated in Eqn. (3.15). It may be possible to analyze these terms to bound their significance in the

limit T → 0, but this is left for future work.

The stability issues exhibited by SC-4DVar can be understood by by examining the largest and

smallest eigenvalues of the Hessian ∇2A∗ (or equivalently the singular values of ψ∗). These are plotted

in Fig. (3.11) as a function of T . In the short T limit the smallest singular value behaves the same for all

three methods. With partial observations it tends towards zero in the limit T → 0, as the problem becomes



103

unobservable.

Conversely, in the long T limit, the smallest singular value is roughly constant, while for SC-

4DVar and WC-4DVar-U the largest grows asymptotically. The largest singular value thereby provides

the dominant contribution to the condition number κ[∇ψ∗] in the asymptotic limit. This is a reflection of

the fact that |∇ψ∗| = |∇hn ·∇Φ∗n,0| ∼ exp[λmax T ], in accordance with Oseledec’s theorem ([148]), and

occurs regardless of the number of observations.

With WC-4DVar-X on the other hand, the largest eigenvalue remains roughly constant, which

suggests that this method naturally controls the growth of dynamical instabilities in the forecast model.

This is similar to what was discussed in Sec. (3.3) for filtering algorithms. And moreover, in the linear

case, it is known that WC-4DVar methods correspond to the optimal Kalman (smoothing) solution. It

is interesting however, that despite being a weak constraint method, the ‘control’ variant WC-4DVar-U

does not share the desirable asymptotic stability properties of WC-4DVar-X. This is due to the fact that, in

the limit U = 0, the formulation reduces to SC-4DVar, and thereby inherits its properties of asymptotic

instability. Thus, although both WC-4DVar-X and WC-4DVar-U utilize weak constraints, they implement

them in decidedly different ways, which results in dramatically distinct performance of the two methods.

3.4.7 Weak constraints, synchronization, and stability

The connections between weak constraints and asymptotic stability is now described from a

synchronization perspective. These connections are perhaps most evident in the method proposed by

[4], and discussed in a meteorological context by [185]. The idea is to introduce adds a coupling term

(analogous to Eqn. (3.3)) into the dynamical constraints of Eqn. (3.8)

A(x0) ∝

N

∑
n=0
|yn−H ·xn|2Rm

xn+1 = F (xn)+Kn · (yn−H ·xn).

(3.17)

As discussed in Sec. (3.3), the coupling term modifies the Jacobian of the dynamical model so that, with

enough observations, it stabilizes the error dynamics in a neighborhood around the true solution by forcing

all (conditional) global Lyapunov exponents become negative.

The inclusion of this coupling term has a similar effect on the objective function for SC-4DVar, as

shown in Fig. (3.12) for both full and partial observations. Here the coupling gain matrixK is chosen to

be identical to the 3DVar-FB method described in Sec. (3.3). Note that the control term causes the action
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to remain convex, so its global minimum can be easily found regardless of the window length. Similar

result holds ifK is restricted to target only the unstable subspace, although these results are not shown.

However, as in Sec. (3.3) the effectiveness of this procedure depends on the system being

sufficiently observable. As shown in Fig. (3.12), L = D/4 = 5 measurements are not enough to fully

control the inherent chaos, resulting in an irregular objective function as T gets long. While the observability

requirement of roughly Lc ≈ 0.4D can be further reduced, e.g., by using the extended Kalman filter to

adaptively choose K, this idea will not be pursued here in the context of Eqn. (3.17). Rather, another

way of optimizing the coupling gain is now introduced, that leads to a more intuitive understanding of the

benefits of using weak constraints.

Consider now including the coupling matrix in the optimization problem, by lettingKn = γnH
†

as in Eqn. (3.3) and rewriting the optimization problem in Eqn. (3.17) as

A(x0) ∝

N

∑
n=0
|yn−H ·xn|2Rm + γ

2
n

s.t. xn+1 = F (xn)+ γnH
† · (yn−H ·xn).

The objective function now includes the magnitude of the time-dependent coupling γn, which may be con-

sidered independent variables in the optimization. This term is added to keep the dynamical perturbations

small and consistent, so thatK→ 0 as the estimate converges. As in Eqn. (3.3), the scalar coupling γn can

be generalized to a vector, which applies different weights to different components of the observations.

Even more generally, it can be written as a matrix Γn, by including off-diagonal coupling components.

This method of dynamic state and parameter estimation ([4]) bears a strong resemblance to the

constrained nonlinear program for weak constraint 4DVar given in Eqn. (3.7). The primary difference

being that the former explicitly constrains its dynamical perturbations ut to have the feedback form

un =Kn ·(yn−H ·xn). Although the tradeoffs associated with this choice are not be investigated here, by

penalizing un instead of γn, weak constraint 4DVar applies coupling to both the observed and unobserved

states, without having to expand the search space to include the full matrix Γn. The resulting feedback

control attempts to synchronize the estimate with the data, to enhance the stability of the the basin of

convergence around the global minimum by suppressing dynamical stabilities in the forecast model.
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3.4.8 Critical observability limits

The critical observability limits of these methods are now examined, to understand how they scale

with both: 1) the length of the estimation window T , and 2) the resolution of the forecast model D. Recall

that the analogous results for filtering methods given in Sec. (3.3) used an excessively long estimation

window to reduce its impact on the calculated Lc. For these fixed interval 4DVar methods however, T

must be much shorter due to the computational cost of inverting matrices of O(DN) for weak constraint

methods, as well as to avoid the more fundamental issues illustrated in Fig. (3.9) regarding dynamical

instability in SC-4DVar and WC-4DVar-U.10

Critical thresholds Lc are compared as a function of T for D = 20. As expected, when T = 0

all methods require full observations. Both SC-4DVar and WC-4DVar-U begin to fail consistently above

T ≈ 0.5/λmax, while WC-4DVar-X remains stable regardless of T , reaffirming the results of Fig. (3.9).

Selecting T = 0.5/λmax, Fig. (3.13) plots observability limits of these three methods as a function

of D. With no observation noise, and a highly accurate initial guess for all (even unobserved) state

components, the observability requirements on all three methods are quite low (Lc ≈ 0.08D). Such low

thresholds are rather atypical however. For instance, the addition of observation noise increases them to

roughly Lc ≈ Du, which further justifies its use as a baseline estimate for Lc.

Global initial conditions pushes these limits even higher — well above their filtering counterparts.

This is not surprising however, as the estimation windows are significantly shorter. Reduced in temporal

information raises the spatial observability limits, and produces significant differences between local and

global initial conditions.

Increasing the length of the estimation window to T = 1 causes SC-4DVar and WC-4DVar-U to

become more unstable, especially for global initial conditions. This instability does not impact the results

from local initial conditions, which become more concentrated around Lc ≈ 0.07 and Lc ≈ Du, with and

without observation noise respectively. This implies that the initial conditions are still within the basin of

attraction for these methods at T = 1.

If T is increased further, the local results eventually become unstable as well. So neither WC-

4DVar-U nor SC-4DVar will converge for any value of L. In comparing these two methods, it is also

interesting that SC-4DVar remains stable for slightly higher values of T . This suggests that inflating the

search space, from D→ N D, may increase the likelihood of the estimate converging to a local minimum,

10When a long estimation window is desired, a moving horizon or fixed-lag approach is typically
adopted. These techniques will be examined in Chap. (3).
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and the initial choice U = 0 in effect constrains the search for the solution to nearby trajectories. It is

well-known that control formulations like WC-4DVar-U require accurate initial guesses for both the initial

condition x0 and the control law U ([30]). The latter are typically not easy to determined, although in this

case one might instead consider initializing U with say the synchronizing feedback control law given in

Eqn. (3.3). However, even with a good initial guess for U, the problem of determining the optimal control

trajectory can still be highly ill-conditioned ([20]), even more-so than its SC-4DVar counterpart.

Similar observations were recently made by [48] regarding the stability of WC-4DVar-X with the

length of the estimation window. They also noted an inverse correlation between the number of spatial

observations and the condition number. That is, for WC-4DVar-U, the condition number increases with the

spatial resolution, whereas for WC-4DVar-X it decreases. This trend was not observed here however. To

the contrary, all three methods showed improved conditioning of ∇ψ∗ as the resolution of the observations

increased. In addition, based on comparing the number of iterations required for convergence, it was

concluded that WC-4DVar-U performs more efficiently for the range of cases considered, which included

simulations with Lorenz 96. But global errors in the initial estimate were not considered, and the results

here point to WC-4DVar-X as being most efficient in this case. Moreover, the number of iterations is not

always the best indicator of algorithmic efficiency. For instance, the Jacobian WC-4DVar-X is more sparse

than that of WC-4DVar-U, so it may be inverted more efficiently.

This is not to say however that WC-4DVar-X is ideal for all situations. It is expected for instance,

to be more sensitive than WC-4DVar-U to the frequency of observations, which here was taken to be

sufficiently dense. A more detailed assessment of these tradeoffs will the subject of a future study.

3.4.9 AnnealingR f

An analog to the annealing method described in Sec. (3.3) is now discussed, as a way of improving

the performance of WC-4DVar-X. This idea of tuning the magnitude of R f to gradually enforce the

dynamical constraints of the model was first introduced in [213, 214]. In contrast to the filtering case,

whereR f was increased gradually as the filtered estimate converged in time, here it is done over multiple

iterations of the minimization algorithm, using the solution from the previous run to initialize the next.

Let i denote the iteration and choose R(i)
f = α(i)R

(0)
f , where α > 1.0 is the rate at which the

annealing is performed. Initially, the model error is prescribed to take some small value |R(0)
f | � |Rm|, so

that after the first iteration the estimated path closely matches the observations. As mentioned, with partial

observations the solution is nearly degenerate in this limit. This degeneracy is lifted as R f is gradually
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increased at each iteration. This process continues, until a prescribed stopping point where |R f | � |Rm|.

At this point, model dynamics are penalized so heavily that the estimated path approximately describes a

natural model trajectory.

As the value of |R f | increases, the solution basin splits into several isolated local minima.

Annealing |R f | slowly, over multiple minimization runs, attempts to track the lowest minima throughout

this transition. This idea of guiding a dynamical system through a phase transition or bifurcation by

gradually annealing its parameters has roots in numerical continuation methods (see e.g., [7]). The

technique also resembles the approach given by [159], called quasi-static variational assimilation, which

tries to track global minima by annealing the length of the assimilation window between subsequent

iterations of SC-4DVar — a comparison between the two methods appears in [214].

A few practical considerations are worth also mentioning. First, the rate of annealing must be

chosen, although this can be tuned empirically by decreasing α until the results converge. However, a

smaller α reduces computational efficiency, so there is a trade-off that must be considered. The limit

R f → ∞ also cannot be realized numerically due to finite precision, so one has to decide how to choose

the final value of |R f |. An ‘optimal’ value of |R f | can be estimated using the L-curve ([70]) obtained

from plotting the model and measurement errors on separate axes. Alternatively, one could also choose the

‘optimal’ stopping value based on the forecast deviations.

In addition, a decision needs to be made regarding how to set the relative values ofR f andRm.

There are two obvious ways to do this: 1) annealR f with fixedRm, and 2) annealR f andRm together.

The former approach was used by [213, 214], where it Rm was assumed to be known. This choice is

motivated in part by statistical filtering theory, where these covariance matrices have an absolute (as

opposed to relative) value. The latter approach is discussed in [27, 174], where the annealing is performed

with a homotopy continuation, by setting |Rm|= γ and |R f | → 1− γ, and annealing γ from 0→ 1. This

idea makes use of the fact that the action is scale invariant, in the sense that it may be renormalized

without changing the structure of any of the local minima, so only the relative values ofRm andR f matter.

Also, keeping the values ofR f andRm relatively small should help prevent the objective function from

becoming too poorly scaled.

Illustrative results from the annealing procedure are shown in Fig. (3.14), for Lorenz 96 with

D = 20 and L = {15,5}. The simulations are initialized randomly over an estimation window of length

T = 1/λmax, and include additive observation noise that is Gaussian distributed with mean zero and

standard deviation σ = 1. The measurement error covariance remains fixed atRm = 1, while the model
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error is annealed fromR f = 10−4→ 104 in 9 equally spaced steps, so α = 101/5.

Final action levels are plotted as a function of |R f | in Fig. (3.14a). They increase logarithmically

with |R f | until leveling off at roughly
√
|R f |/|Rm|= 3. As |R f | is further increased, the L = 15 action

levels do not change, indicating they have found the global minimum. By contrast, the L = 5 action levels

begin to diverge as different initial paths settle into various local minima.

The dashed line indicates the value of |R f | where the Hessian of the action is most well-

conditioned. This is shown more explicitly in Fig. (3.14b), which plots the inverse condition number as a

function of |R f |. The peak occurs at roughly the same value of |R f | for both L = 15 and L = 5.

The L-curve for the model error regularization is shown in Fig. (3.14c), which plots the model

error ∑
N−1
n=0 |xn+1−F (xn)|2 and measurement error ∑

N
n=0 |yn−h(xn)|2 on an inverted log scale. Note

that by convention ([70]), the error covariancesRm, R f are not included in these terms. The large dots

indicate that the optimal values of |R f | are concentrated near the bend of the L-curve, as well as the point

where the action plot levels off. Thus, the L-curve criteria rather intuitively corresponds to values of |R f |

for which the objective function is optimally well-conditioned.

It is also worth noting however, that in contrast to the EKF annealing technique, this method was

observed to slightly degrade the observational efficiency of WC-4DVar-X by roughly 5-10%. While this

comes as a bit of a surprise, the results of [213, 214] rely heavily on sampling, and should therefore not

be expected to improve Lc in general. A precise explanation for this slight performance reduction is not

known. However, starting with the initial path so close to the observations may increase the odds of falling

into a local minimum. Similar observations were made by [174], although more work is needed to verify

this claim. Nonetheless, this annealing procedure is still a valuable tool for examining the landscape of the

action as a function of |R f |.

3.5 The uniqueness ball for the Gauss-Newton method

We now give a proof of Eqns. (3.14) and (3.15) for the uniqueness ball of the Gauss-Newton

method. The original proofs are given under more general Lipschitz conditions in Theorem 4.1 and

Corollary 5.2 in [113], but are simplified here for clarity.

Recall the Gauss-Newton method for solving nonlinear least squares minimization problem

min
x

1
2
|ψ(x)|2Γ
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involves an iteration x(i)→ x(i+1)

x(i+1) = x(i)− [∇†ψ(x(i)) ·Γ ·∇ψ(x(i))]−1 ·∇†ψ(x(i)) ·Γ ·ψ(x(i)).

Let x∗ be a solution and assume the Jacobian ∇ψ(x) is continuous in the ball B(x∗,r), is full rank at x∗,

and satisfies the center Lipschitz condition

|Γ1/2 · (∇ψ(x)−∇ψ(x∗))| ≤ Λ |x−x∗| (3.18)

for all x ∈ B(x∗,r).

The proof is by contradiction. Suppose there exists another solution x̃ 6= x∗ in B(x∗,r) and

consider the iteration

x(i+1) = x(i)− [∇†ψ(x∗) ·Γ ·∇ψ(x∗)]−1 ·∇†ψ(x(i)) ·Γ ·ψ(x(i))

with x(0) = x̃. Subtracting, x∗ from both sides and using the fact that

[∇†ψ(x∗) ·Γ ·∇ψ(x∗)]−1 ·∇†ψ(x∗) ·Γ ·ψ(x∗) = 0,

gives after some rearranging

x(i+1)−x∗ = x(i)−x∗− [∇†ψ(x∗) ·Γ ·∇ψ(x∗)]−1 ·∇†ψ(x(i)) ·Γ ·ψ(x(i))

= [∇†ψ(x∗) ·Γ ·∇ψ(x∗)]−1 ·
((

∇
†ψ(x∗)−∇

†ψ(x(i))
)
·Γ ·ψ(x(i))

+∇
†ψ(x∗) ·Γ ·

(
∇ψ(x∗) · (x(i)−x∗)+ψ(x∗)−ψ(x(i))

))
= [∇†ψ(x∗) ·Γ ·∇ψ(x∗)]−1 ·

((
∇

†ψ(x∗)−∇
†ψ(x(i))

)
·Γ ·ψ(x(i))

+∇
†ψ(x∗) ·Γ ·

∫ 1

0
ds
(
∇ψ(x∗)−∇ψ(x∗+ s(x(i)−x∗))

)
· (x(i)−x∗)

)
.
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Taking the norm of both sides and using Eqn. (3.18) gives

|x(i+1)−x∗| ≤ |[∇†ψ(x∗) ·Γ ·∇ψ(x∗)]−1| |(∇†ψ(x∗)−∇
†ψ(x(i))) ·Γ†/2| |Γ1/2 ·ψ(x(i))|

+|[Γ1/2 ·∇ψ(x∗)]+|
∫ 1

0
ds |Γ1/2 · (∇ψ(x∗)−∇ψ(x∗+ s(x(i)−x∗)))| |x(i)−x∗|

≤ Λ |[∇†ψ(x∗) ·Γ ·∇ψ(x∗)]−1| |Γ1/2 ·ψ(x(i))| |x(i)−x∗|+ Λ

2
|[Γ1/2 ·∇ψ(x∗)]+| |x(i)−x∗|2

=: q |x(i)−x∗|.

Setting

q := Λ |[∇†ψ(x∗) ·Γ ·∇ψ(x∗)]−1| |Γ1/2 ·ψ(x(i))|+ Λ

2
|[Γ1/2 ·∇ψ(x∗)]+| |x(0)−x∗| ≤ 1

gives a contraction mapping

|x(i)−x∗| ≤ qi |x(0)−x∗|

for all i = 0,1, . . ., which implies limi→∞x
(i) = x∗ and therefore x∗ = x(0). Solving for r := |x(0)−x∗|

gives Eqn. (3.14)

r ≤ 2
|[Γ1/2 ·∇ψ(x∗)]+|

(
1
Λ
−|[∇†ψ(x∗) ·Γ ·∇ψ(x∗)]−1| |Γ1/2 ·ψ(x∗)|

)

3.6 The Lipschitz constant Λ

To get an expression for Λ, one approach is to assume ∇ψ(ξ) is differentiable in B(ξ∗,r) and

rewrite Eqn. (3.13) as a line integral between the convex combination ξ∗+ s(ξ−ξ∗). Explicitly,

|Γ1/2 ·∇ψ(ξ)−Γ1/2 ·∇ψ(ξ∗)|=
∣∣∣∣∫ 1

0
dsΓ1/2 ·∇2ψ(ξ∗+ s(ξ−ξ∗)) · (ξ−ξ∗)

∣∣∣∣
≤

∫ 1

0
ds |Γ1/2| |∇2ψ(ξ∗+ s(ξ−ξ∗))| |ξ−ξ∗|= Λ |ξ−ξ∗|

or

Λ =
∫ 1

0
ds |Γ1/2| |∇2ψ(ξ∗+ s(ξ−ξ∗))|. (3.19)
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It therefore requires computing the second derivative tensor ∇2ψ. For weak constraint 4DVar this tensor is

easy to compute but cumbersome to display. For SC-4DVar, it is given by

∇
2ψ(x0) =−∇

2hn ·∇Φn,0 ·∇Φn,0−∇hn ·∇2Φn,0→ ∇hn ·∇2Φn,0,

where ∇2hn is ignored since the measurement operator is assumed to be a projection. The term ∇2Φn,0 :=

∂2xn/∂x2
0 is given by second order the variational equation

∇
2Φn+1,0 = ∇Fn ·∇2Φn,0 +∇

2Fn ·∇Φn,0 ·∇Φn,0 ∇
2Φ0,0 = 0. (3.20)

There is added difficulty however in bounding Eqn. (3.19) within B(ξ∗,r), as it requires an expression for

|∇2ψ(ξ∗+ s(ξ−ξ∗))| as a function of r = |ξ−ξ∗|. One option is to approximate it as a constant by its

value at the solution |∇2ψ∗|.11 Or one can make an ergodic approximation, in which case Λ is proportional

to the average rate of growth of ∇2Φn,0. This may be described using the second order Lyapunov exponents

λ(2) introduced by [52, 53] to analyze the affect of strong nonlinearities on the growth of errors in the

forecast.

As discussed in [47] however, care must be taken to ensure these calculations are stable. For

strong constraints, the recursion relation in Eqn. (3.20) can be solved by introducing a discrete integration

factor pn, where pn = pn+1 ·∇Fn and pn+1 = I , so that pm = ∇Φn−m,0 for m≤ n

pn+1 ·∇2Φn+1,0 = pn+1 ·∇Fn ·∇2Φn,0 +pn+1 ·∇2Fn ·∇Φn,0 ·∇Φn,0

= pn ·∇2Φn,0 +pn+1 ·∇2Fn ·∇Φn,0 ·∇Φn,0.

Expanding recursively gives

pn+1 ·∇2Φn+1,0 =
n

∑
m=0

pm+1 ·∇2Fm ·∇Φm,0 ·∇Φm,0

=
n

∑
m=0

∇
†Φn−m,0 ·∇2Fm ·∇Φm,0 ·∇Φm,0

11This is related to the idea introduced by [179] of using ‘point estimates’ to analyze convergence of
Newton’s method, which has subsequently become known as Smale’s α-theory and γ-theory, and was later
generalized to the Gauss-Newton method in [175] and [113]. Roughly speaking, these results guarantee
convergence based on the assumption ψ(ξ) is analytic with a bound on higher derivatives in its Taylor
expansion about a single point.
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If one assumes global Lipschitz constants |∇F | ≤ ν and |∇2F | ≤ µ then |∇Φn,0| ≤ νn and

|∇2Φn+1,0| ≤ (µν
n)

n

∑
m=0

νm = (µν
n)

1−νn+1

1−ν
,

which means the term |∇ψ∗|/Λ in Eqn. (3.15) scales as

|∇ψ∗|
Λ
≈ |∇ψ

∗|
|∇2ψ∗|

∼ 1−ν

µ(1−νn+1)
.

But these expressions are unbounded for chaotic systems, where ν > 1, even though the limit

λ
(1)
max = lim

N→∞

1
N

N−1

∑
n=0

log[|∇Φn,0|]

is guaranteed to exist under the conditions of the multiplicative ergodic theorem ([148]). On the other

hand, [52, 53] conjectured the relationship λ
(2)
max ≈ 2λ

(1)
max between the maximum first and second order

global Lyapunov exponents (λ(1)
max and λ

(2)
max respectively). This hypothesis was further justified by [47],

who gave an analysis the case for fixed points and periodic orbits as well as a numerical calculation for

chaotic trajectories. This was later proved by [188] for the scalar case. All this suggests that the ergodic

average
|∇ψ∗|

Λ
≈ exp

[
lim

N→∞

N−1

∑
n=0

(
log[|∇Φ∗n|]− log[|∇2Φn|]

)]
= exp

[
(λ

(1)
max−λ

(2)
max)N

]
,

is expected to converge to a constant that is independent of initial conditions x0.

Chapter 3, in part is being prepared for submission for publication of the material. Rey, Daniel;

Abarbanel, Henry DI. The dissertation author was the primary investigator and author of this material.
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(a) Maximum GLEs λmax
(b) Fractal dimension Da (black) and unstable
subspace dimension Du (blue).

Figure 3.1: Chaotic properties of Lorenz 96 model. The Kaplan-Yorke fractal dimension Da of
the attractor, and the average dimension of the unstable subspace Du, both scale linearly with the
model dimension D. The magnitude of the maximum global Lyapunov exponents λmax exhibits
transient behavior for D < 20.

Figure 3.2: The magnitude of the ‘true’ error can be estimated using λmax and measuring the
time ∆ it takes for the observed RMS deviations in the prediction to stabilize. This provides a
way to quantify success with experimental data.
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(a) Local estimates, RMSE, no noise (b) Local estimates, RMSE, with noise

(c) Global estimates, RMSE, no noise (d) Global estimates, RMSE, with noise

(e) Global estimates, RMSD, no noise (f) Global estimates, RMSD, with noise

Figure 3.3: The critical minimum number of observations Lc required to construct a successful
estimate, for three related filtering methods.
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(a) Max. conditional Lyapunov exponent (b) Fractional unstable subspace Du/D

Figure 3.4: Maximum conditional Lyapunov exponent, and fractional dimension of the unstable
subspace Du/D, plotted as a function of observation density L/D. 3DVar-FB crosses the
synchronization threshold at Lc ≈ 0.4D, while the EKF is more efficient at Lc ≈ 0.1D. Du does
not change much with the model resolution D.

Figure 3.5: The critical rank of an adaptive observation operator with L = D that targets and
stabilizes only the largest r components of the unstable subspace.
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(a) Global estimates, no noise (b) Global estimates, with noise

Figure 3.6: The critical number of observations using assimilation in the unstable subspace
(AUS), where the control perturbations are projected down onto the largest r components of the
unstable manifold.

(a) Singular values ofR−1
n for D = 20 (b) Asymptotic rank ofR−1

n as a function of D

Figure 3.7: Collapse of the estimated error covariance for the EKF withR−1
f = 0. Fig. (3.7a)

plots the singular values ofR−1
n as a function of time for D= 20. Fig. (3.7b) plots the asymptotic

rank r∞ of R−1
n as a function of D. The latter agrees well with the average dimension of the

unstable subspace Du.
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(a) Local estimates, with noise (b) Global estimates, with noise

Figure 3.8: Annealing the model error covarianceR−1
f places more weight on the model as the

EKF converges. This improves its ability to filter observation noise, and reduces Lc compared
with Figs. (3.3b) and (3.3d)
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(a) Full observations L = D

(b) Partial observations L = D/2 (c) Partial observations L = 1

Figure 3.9: Critical radius ρc at which the estimation no longer succeeds, plotted as a function
of the estimation window length T . Dots are sampled estimates, and the lines plot the inverse
condition number of the Hessian ∇2A. Note that WC-4DVar-X method is stable in the long T
limit, but SC-4DVar and WC-4DVar-U are not.
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(a) Full observations L = D (b) Partial observations L = D/2

Figure 3.10: Cross-sections of the SC-4DVar objective function for various values T plotted
as a function of the initial error between the estimate and the optimal solution |x∗0−x0|. As
the length of the estimation window T grows, the basin around the global minimum collapses,
making it virtually impossible to find.

(a) Full observations L = D (b) Partial observations L = 1

Figure 3.11: Largest and smallest eigenvalues of the inverse Hessian ∇2A(ξ∗) as a function of
estimation window length T . With partial observations, the smallest tends toward zero as T → 0
for all three methods. In the long T limit, the largest grows exponentially for SC-4DVar and
WC-4DVar-U. For WC-4DVar-X, it is asymptotically stable.
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(a) Partial observations L = D/2 (b) Partial observations L = D/4

Figure 3.12: Cross-sections of the SC-4DVar objective function, analogous to Fig. (3.10) but
including a coupling term in the dynamical constraints. When L > Lc, dynamical instabilities in
the forecast model are suppressed, and the objective function is regular.

(a) Local estimates, no noise (b) Local estimates, with noise

(c) Global estimates, no noise (d) Global estimates, with noise

Figure 3.13: Calculated values of the critical minimum number of observations Lc required to
construct a successful estimate, for three fixed-interval 4DVar methods with T = 0.5/λmax.



121

(a) Action level plot (b) Inverse condition number

(c) L-curve

Figure 3.14: Model error annealing for WC-4DVar-X. Dashed lines and large dots indicate
values of |R f | where the action is optimally conditioned.



4 Moving horizon estimation for

poorly observable systems

The previous chapter developed a framework for analyzing empirical observability thresholds

that arise in state and parameter estimation of nonlinear dynamical systems. It showed that for a certain

chaotic model, these limits grow linearly with its resolution, at a rate that is roughly proportional to the

time averaged dimension of the unstable subspace. Although the precise value of this cutoff depends in

a complex way on various aspects of the problem’s three core components — the forecast model, the

observation system, and the data assimilation algorithm — certain estimation methods were also shown to

use the available observations much more efficiently than others.

The latter point will now be explored in further detail, by examining the question: what can be

done when the number of available observations are too few to reliably provide accurate estimates of the

system’s initial state? For instance, it is evident that Kalman-based methods are markedly more efficient in

this regard, and this benefit is apparently linked to properties of the Riccati equation for the estimated error

covariance. But although methods like the Ext KF are apparently capable of reducing these limits, they

nonetheless contain a number of inherent tradeoffs. For one, the Ext KF simply does not scale up to very

large problems, due to the memory requirements of constructing a D×D matrix. But perhaps more to the

point, the method tends to become unstable as the density of observations is decreased. So that when it

fails, the filtered estimate often becomes unbounded.

This chapter will focus on a technique that can both reduce the critical observability requirements

and simultaneously improve the stability of existing data assimilation techniques. The idea is quite simple.

Instead of using data from a single time point, use a sliding window of observations localized around the

current filtered estimate. It may thus be viewed as a hybrid technique that generalizes standard smoothing

and filtering methods, which are recovered in the respective long and short limits of the length of the sliding

122
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window. This effectively enriches the set of observations using information from the forecast model, to

enhance the accuracy and stability of the algorithm, albeit at some additional computational cost.

Like many good ideas, this has been rediscovered several times, in many different contexts. In

optimal estimation, the linear theory of fixed-lag smoothing goes at least as far back as the late 1960s

([124]). The concept of ‘moving horizon estimation’ was introduced in the mid 1990s as the estimation

dual to model predictive control ([8]), both of share the same motivating framework. In data assimilation,

the idea of temporally extending the analysis to ‘four-dimensions’ was first introduced by [171], and since

the 1990s has become one of the more popular techniques for generating operational numerical weather

forecasts.

This idea was unknowingly rediscovered by us rather recently, although from a much different

perspective. The objective was to determine whether the aforementioned observability limits of 3DVar

methods may be reduced by better utilizing information in the time series of the observations. This was

motivated by discrete time embedding theorems ([187, 5, 172]), developed by the nonlinear dynamics

community to reconstruct the topological structure of the attractor from noisy time series observations. The

resulting algorithms, which we have called time delay methods, bear strong resemblance to incremental

SC-4DVar, the fixed lag Kalman smoother, and various related techniques from moving horizon estimation.

Nonetheless, the theoretical connections to the discrete time embedding theorems are important, as they

provide a unifying perspective that links these well-established techniques.

This chapter aims to further explicate the connections between approaches, as well as highlight

some of the more subtle differences in implementation, such as the use of long overlapping estimation

windows appears. The impact of these choices will be examined, to assess how it affects the overall

stability of the algorithm, and its ability to reduce the number of required observations. The progression is

organized much in the same way that these ideas were discovered. Starting with a discussion of the original

implementation given in [166, 167], the ideas will be further generalized to connect with the EKF, 4DVar,

and other methods from moving horizon estimation. Various related generalizations and extensions will

then be examined, and the benefits of reusing observational data in overlapping estimation windows will

be demonstrated.

4.1 Extracting information from the time series of observations

When the number of measurements at each time step L is below the critical threshold Lc, one

must find another means to overcome the observability deficit. While the most straightforward solution
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is to simply make more observations, this may not be possible due to the constraints of the problem.

An alternative approach is reduce Lc, by recognizing that there is additional information residing in the

temporal derivatives of the observations. However, this derivative information often cannot be directly

measured. And while it may instead be approximated via finite differences, the derivative operation acts as

a high-pass filter, which makes the result sensitive to noise in the measurements. Alternatively, it has been

known for some time in the nonlinear dynamics literature that this derivative information is also available

in the time delay of the observations. That is, given a suitable choice of delay time τ = mdt where m is

an integer, the new information beyond y(tn) lies in y(tn± τ). The derivative is just another (albeit less

numerically robust) way of accessing this information. The process can be repeated as many times as

needed to construct an Mdimensional vector Y .

4.1.1 Time delay embedding and attractor reconstruction

This idea forms the conceptual basis for the well-established technique of attractor reconstruction

([55, 2]), in which this methodology is employed as a means of identifying unambiguous orbits of a

partially observable system. Mapping to a proxy space of time delayed observations inverts the projection

associated with the fact that the rank ofH is L < D. There are also discrete time extension of the Whitney

embedding theorem ([187, 5, 172]) that give sufficient conditions on the number of time delays M needed

to ensure that the map between the two spaces is invertible. Namely, taking M > 2Da is guaranteed to

be enough where Da is the fractal dimension of the attractor. No analogous theorem is available for the

lower bound, and this estimate is often much larger than necessary. But there are well-known methods for

computing the necessary condition, for instance by testing for false-nearest neighbors ([100]).

While these theorems suggest that any pair of uni-directionally coupled dynamical systems can

be synchronized via almost all scalar observations of the driving system’s state ([184]), they assume the

data is noiseless. In practice, the success of this procedure depends crucially on the choice of τ. If τ is too

small, then not enough time has passed to allow the dynamics to adequately inform y(tn± τ). Likewise,

when τ is too large, chaotic behavior in the system will eventually cause the state to decohere and inject

dynamical noise into the analysis. The optimal choice lies somewhere in between these two extremes, and

useful heuristics exist for selecting this value, such as the first minimum of the average mutual information

between subsequent measurements ([2]). But often a suitable choice can be found simply by trial and error.

In the estimation context, the time delays are not needed to reconstruct the entire phase space.

Rather, they are used to enrich the set of existing observations, to enhance control over localized dynamical
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instabilities, and thereby reduce the observability threshold Lc. Further, under certain constraints, the

number of time delays M required to achieve synchronization roughly corresponds to the dimension of the

unstable subspace of the attractor.

4.1.2 Time delay feedback control synchronization

The original time delay formulation described by [166, 167] was given in the context of feedback

control synchronization, described in Sec. (3.3) of Chap. (3). The objective is to produce a filtered estimate

of the system state x(T ) at the end of the observation window. This may be achieved by introducing a

feedback control term into the dynamical equations, which in discrete time reads

xn+1 = F (xn)+Kn ·
(
yn−h(xn)

)
. (4.1)

As in Chap. (3), to simplify the exposition, observations are made at each dt, and the operator h(·)→H

is taken to be a static linear projection. But the formulation is easily extended to the general case. Also,

Kn→H† ·K is taken to be static with entries only along the diagonal, which effectively restricts the

coupling term to only perturb the observed model states.

The idea is to perform the estimation in the embedding space, using time delay feedback control

term. Construct a set of time delayed observations Y n, as well as a set of time-delayed model states S n

and its observed outputs H n

Y n :=



yn

yn+m

...

yn+(M−1)m


S n :=



x̃n

x̃n+m

...

x̃n+(M−1)m


H (S n) :=



h(x̃n)

h(x̃n+m)

...

h(x̃n+(M−1)m)


.1

Note that these are not time ‘delays’ in the usual sense, but rather a time advanced coordinates, which

for positive τ uses observations at later times. The reasoning for this stems from the need for the filter

to control error growth forward in time. Both approaches are valid however, as well as a mixture of the

two. These ideas are further explored in Sec. (4.3), along with a discussion of what to do at the end of the

estimation window.
1These expressions will need to be modified to include time-dependence of F , but this is straightfor-

ward.
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By analogy with Eqn. (4.1), the time delay coupling can be introduced as follows

S n+1 = F (S n)+K n ·
(
Y n−H (S n)

)
.

It remains to specify how the estimate xn is related to the embedded states x̃n. The simplest approach

is perhaps to choose xn = x̃n, and set the delays x̃n+m arbitrarily. In this case, one can choose a fixed

coupling matrix K̃ with nonzero elements in its off-diagonal blocks to permit the passage of information

between states at different times. This idea was pursued by [156] and offers some benefits over standard

3DVar methods.

Alternatively, one can choose to impose the model constraints x̃n+1 = F (x̃n) so that S n is a

function of xn. The issue however, is that once the coupling is applied, the model constraints are no

longer satisfied. To repeat the procedure at the next step, requires inverting H n ≡H n(S n(xn)). But the

global inverse is in general not explicitly known. Locally however, the map can be approximated by its

linearization ∇H n, and inverted by solving the linear system

∇H n ·δxn = K n ·
(
Y n−H n

)
, (4.2)

where the right-hand side the desired control coupling in time delay space. In general, the linearized

‘observability map’ ∇H n will not a square matrix, but a stable least squares solution may be obtained using

singular value decomposition (SVD) to compute its pseudoinverse [∇H n]
+. The theorems ([187, 5, 172])

guarantee this map is locally invertible, so long as M > 2Da. They make no guarantees however about the

sensitivity of this map, which may be highly ill-conditioned, imposing practical limits on the solution due

to observation noise.

Using the localized inverse [∇H n]
+ to map the time delayed coupling perturbation back to ‘state

space’ coordinates at xn produces the time-delayed feedback control scheme described by [166, 167]

xn+1 = F (xn)+Kn · [∇H n]
+ ·K n ·

(
Y n−H (xn)

)
. (4.3)

Note there are now two coupling gain matrices Kn, K n, which respectively operate in state space and

time delay space. Rules for choosing these matrices will be given momentarily, when the connections with

4DVar and the Kalman filter are described. Also, as with the other methods in Sec. (3.3), the magnitudes of

theseKn, K n should be rescaled with the step size dt.
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The local Jacobian may be represented in block form

∇H n =



∇hn ·∇Φn,n

∇hn+m ·∇Φn+m,n

...

∇hn+(M−1)m ·∇Φn+(M−1)m,n


. (4.4)

The matrix ∇Φn′,n := ∂x̃n′/∂x̃n may be directly computed from the variational equation

x̃n+1 = F (x̃n) x̃n = xn

∇Φn′+1,n = ∇F (x̃n′) ·∇Φn′,n ∇Φn,n = I.

(4.5)

But this requires storage and manipulation of D×D matrices, which is unsuitable for very large dimensional

problems. An adjoint approach that avoids this limitation will be described in Sec. (4.3).

The estimation process proceeds recursively as follows:

1. At each time step xn, compute S(xn) and ∇S(xn) by integrating from tn→ tn +(M−1)τ Eqn. (4.5)

2. Use S(xn) and ∇S(xn) to construct H (xn) and ∇H (xn)

3. Solve Eqn. (4.2) e.g., , by computing the pseudoinverse [∇H (xn)]
+

4. Use Eqn. (4.3) to compute xn+1. Repeat from step 1.

To improve the robustness of the solution, the pseudoinverse in Step 3 is computed using rank truncated

SVD. The rank of [∇H n]
+ needs to chosen carefully however. Useful heuristics for this are discussed

in Sec. (4.3), along with related techniques for improving the conditioning of the map. Also, for large

problems the SVD is to costly to compute. Other regularization techniques are available however, which

will be discussed shortly.

Also, note that when M = 1, the time delay approach reduces to the standard feedback control

given in Eqn. (4.1). Three important differences are realized however when M > 1.

1. It incorporates information from the time delays of the observations, which allows the coupling

to act not only at given observation times, but also in between them if needed. This is useful for

instance, to control nonlinear instabilities in the model that arise when the time between subsequent

observations is long relative to the timescale of the dynamics.
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2. All components of the model state x(t) are influenced by the control term, not just the observed

components. This permits estimation of the model’s fixed parameters θ, by simply treating them as

additional state variables, and is accomplished without having to choose the off-diagonal components

of the coupling matrixKn.

3. It extracts additional information from existing measurements, effectively lowering the critical

observability threshold Lc.

Connections to other estimation methods

This idea of using a sliding window of observations to enhance the accuracy and stability of esti-

mation algorithms, appears frequently in the optimal estimation and data assimilation literature. However,

the ties between these methods and time delay embedding are rarely mentioned. These connections will

now be discussed.

4.1.3 Moving horizon estimation

Shortly after the introduction of the Kalman filter in 1960, it was recognized that performing

‘fixed-lag’ smoothing with a sliding observation window can significantly improve accuracy and stability

([99, 134, 135]). A related technique, known as the ‘Gauss-Newton filter’, was also proposed by Morrison

around the same time as the Kalman filter, but was supposedly ignored due to its high computational

demands ([138]). If so, this method may be one of the first to establish this idea, for which the linear theory

dates back to [6]. These methods apparently offer a number of benefits, including the generality of the

problems considered, lower demands on filter initialization accuracy, as well as better consistency with the

Cramer-Rao lower bound.

Related ideas ideas were also discussed by [76], in which methods from optimal control were

used to construct an observer that utilizes time delay information. However, as this approach involves

computing an analytical inverse of the ‘observability map H (xn), its applicability is limited by the size

and complexity of the problem. Nevertheless, the motivating idea behind the method is essentially the

same as the one given here.

A more general method using local inverses was proposed earlier by [65, 137, 136]. These

‘Newton observers’ are effectively identical the time delay filtering method given in Eqn. (4.3). And

several useful results were proved regarding existence and uniqueness of the inverse, and convergence

of the observer. This work also highlighted the connections between dynamical observer design and the
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inversion of nonlinear maps (see e.g., [141, 60]), and also helped provide the foundation for the subsequent

development of ‘moving horizon estimation’ ([8, 163]), which is the estimation dual of ‘model predictive

control’. The latter was developed in the early in the 1980s, and is essentially the control formulation of

the idea for using a sliding window (or a moving horizon) of observations. The theoretical development of

moving horizon estimation provided a number of valuable results, including a Bayesian derivation ([71]),

and extension to problems with constraints ([163]). Consistent handling of these constraints is one of the

main arguments for adopting the moving horizon approach, which may be seen as a generalization of

Kalman methods.

4.1.4 The extended Kalman Filter

The connection to the EKF was also given by [137], who suggested the observation space may be

similarly enriched by substituting the embedded quantities yn→ Y n and hn→H n. In the limitRm→ ∞

with fixed R f ∝ I , the Kalman gain becomes the pseudoinverse Kn→ [∇H (xn)]
+ and reduces to the

time delay filtering technique described in Eqn. (4.3). The derivation is straightforward, and starts with the

error covariance update

R−1
n+1|n = ∇Fn ·

(
Rn|n +∇

†H n ·Rm ·∇H n
)−1 ·∇†Fn +R

−1
f

LetR−1
m = µI andR−1

f = εI for positive scalars µ and ε. As long asR−1
n|n is positive definite,R−1

n+1|n = εI

in the limit µ→ 0. In this limit, the Kalman gain then becomes

Kn =R
−1
n|n−1 ·∇

†H n ·
(
∇H n ·R−1

n|n−1 ·∇
†H n +R

−1
m
)−1

= ∇
†H n ·

(
∇H n ·∇†H n +

µ
ε
I
)−1→ [∇H n]

+.

4.1.5 Strong constraint 4DVar

The connection with 4DVar is also quite direct, by noting that the SC-4DVar objective function

given in Eqn. (3.8) can also be written as

A(xn) ∝ |xn−xb|2Rb
+ |Y n−H (xn)|2R m

, (4.6)

where R m is a time embedded version observation error matrix, with Rm on the block diagonal. Off-

diagonal elements may also be included, to account for temporal correlations in the measurement errors.
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LetR−1
m → µI andR−1

b → βI . Performing Gauss-Newton minimization on this functional and taking the

limit µ→ 0 gives

δxn =
(
Rb +∇

†H n ·R m ·∇H n
)−1 ·

(
Rb · (xn−xb)+∇

†H n ·R m · (Y n−H n(xn))
)

=

(
µ
β
I+∇

†H n ·∇H n

)−1

·∇†H n ·
(
Y n−H (xn)

)
→ [∇H n]

+ ·
(
Y n−H (xn)

)
.

Strong constraint 4DVar is therefore effectively equivalent to Eqn. (4.3), except for the following differ-

ences:

1. Strong constraint 4DVar does not include the notion of a time delay or embedding dimension. But

this is implicit in the choice of R m. So in this way, SC-4DVar may be viewed as a generalization.

2. The time delay filter uses truncated singular-value decomposition to regularize the perturbation δxn,

while SC-4DVar performs Tikhonov regularization with a background term. This makes SC-4DVar

amenable for large problems, for which the SVD is too costly to compute.

3. With the time delay method, the estimate is propagated in small increments dt between analyses

and observations are re-used. Strong constraint 4DVar on the other hand, typically propagates the

observation window by its full length, so that observations are only used once. Despite increased

computational cost and statistical arguments that caution against reusing data, propagating the

window in small overlapping increments has benefits, which will be discussed in Sec. (4.2).

4.1.6 Weak constraint 4DVar

These connections also motivated a search for an analogous form for fixed interval smoothing

with the weak constraint action (WC-4DVar-X). But while a many ideas were discussed (and several

implemented) a clear reduction in Lc was never observed. Moreover many of these methods required

excessive computational resources, which made them unfit for even the simplest problems.

Ultimately, the connections to SC-4DVar and moving horizon estimation brought about a realiza-

tion that the main benefit of these methods is that one does not have to estimate the whole window at once.

But rather, by including an appropriate background term (or ‘cost to-go’) that in effect summarizes the past

information, the use of a sliding window (or moving horizon) of observations can improve algorithmic

efficiency, accuracy, and stability, to effectively reduce the critical observability limits of the system.

From this point of view, the generalization to include weak constraints is quite straightforward.
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And a number of published formulations already exist in the literature on moving horizon estimation

(e.g., [163]).

The time delay filtering method thus shares a number of core features with the EKF and 4DVar. It

brings together related ideas from a variety of fields, and adds to the base of knowledge surrounding this

problem, and provides a framework for comparing new and existing algorithms.

4.2 Time delay methods for reducing observability limits

The effectiveness of using time delay to reduce the observability limits of the Lorenz 96 model

will now be examined. This study will use a framework similar to the one described in Sec. (3.3). Two

additional parameters must be selected however: the time delay τ = mdt and the embedding dimension M.

Unless otherwise specified, the former is chosen to be a constant τ = 0.1 = 10dt (so m = 10). This value is

roughly consistent with the average mutual information criterion, and the overall results were not sensitive

to varying it a few dt in either direction. The choice embedding dimension is more subtle however, as each

additional time delay acts effectively as an additional measurement. Since the goal here is to characterize

the minimum observational requirements, the search is performed first over M, for fixed L. Only when this

fails for all values 1≤M ≤ 2D, is the number of ‘physical’ observations L increased.

To clarify the exposition and provide baseline values for the reduction of Lc, results involving the

two time delay methods discussed above (feedback synchronization and the EKF) are given first. These

methods will then be compared against fixed-lag versions of 4DVar. The tradeoffs associated with long

overlapping analysis windows will also be examined.

4.2.1 Time delay synchronization and the EKF

The minimum number of observations for time delay feedback synchronization (TDVar-FB) and

the time delay EKF (TD-EKF) are plotted in Fig. (4.1) as a function of model dimension D. Compared with

the M = 1 results from the previous chapter, the use of time delays reduces the observational requirements

of both methods. The reduction is most pronounced for TDVar-FB, which drops from Lc≈ 0.45D→ 0.06D

with local initial conditions and no observation noise. With noise, it is reduced roughly by half, from

Lc ≈ 0.41D→ 0.24D.

The TD-EKF also shows some improvement, although not as much as TDVar-FB. Without

observation noise, the results are roughly the same as the M = 1 case. When observation noise is present,
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time delays reduce Lc by roughly a third for both local and global initial conditions. These values are

similar to those obtained from the adaptive R f annealing technique described at the end of Sec. (3.3),

suggesting that time delays provide an alternative (albeit more computationally intensive) approach to

improving robustness to observation noise.

Note how the use of time delays reduces the effective observability thresholds for TDVar-FB

to levels commensurate with the TD-EKF. In contrast to the M = 1 case, where the EKF significantly

outperforms 3DVar-FB with no observation noise, this appears to hold regardless of initial conditions and

the presence or absence of observation noise. That TDVar-FB also shows similar performance, is not

totally surprising. Recall that it is the |Rm| → ∞ limit of SC-4DVar, which for linear problems is known to

be equivalent to the EKF provided a moving horizon approach is adopted ([115]). And here, the time step

dt is short enough that the problem is ‘almost’ linear.

There is also a rough correspondence between the total number observations LM (i.e., including

time delays) and the average dimension of the unstable subspace Du. This is shown in Fig. (4.2) for local

initial conditions, with no observation noise. Note in particular that up to D≈ 40, TDVar-FB follows the

trend rather closely. Since L = 1 in this regime, the number of time delays roughly satisfies Mc ≈ Du. For

D > 40, L > 1 observations are needed, and the pattern somewhat dissipates. The TD-EKF also exhibits

lower values of Mc up to D≈ 40, although it becomes more erratic as the dimension grows higher. On the

other hand, it succeeds with L = 1 observation until D≈ 80, reaffirming that enhanced efficiency comes at

the cost of stability.

With global initial conditions, or when observation noise is present, values of Lc Mc are typically

above 2D, and Mc appears to be uniformly distributed between 5 and 15. The analogy to SC-4DVar

means that similar restrictions apply regarding the length of the horizon T ′ := (M−1)τ and chaos in the

forecast model. As M increases, so does T ′/λ−1
max, which causes the condition number of ∇H n to grow

exponentially. There are many ways to improve this ill-conditioning, the majority of which fall under the

framework of Tikhonov regularization. This will be discussed in more detail in Sec. (4.3).

These results indicate the extent to which the time delays act as additional measured state

components, although there are limits to this interpretation. Specifically, as D and M grow, the problem

eventually becomes ill-conditioned enough to require an increase in the number of ‘physical’ observations

L. Nonetheless, the use of time delays — and in particular, the re-use of data in overlapping windows —

provides an effective way to reduce the observational requirements of a given problem.
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4.2.2 The choice of τ

In phase space reconstruction, a suitable choice of τ is needed to distinguish between neighboring

points on the attractor. When τ is too small, the dynamics have not been allowed enough time to

provide adequate separation between neighboring points, and the embedding is highly susceptible to noise.

Likewise, if τ is too large, neighboring points may be too far decorrelated to be of any use.

As these noise canceling properties are also be desirable in the estimation context, the choice of

time delay is now examined by rerunning the previous analysis with τ = dt. With this selection, there is

effectively no delay. All measurements within the window are utilized at each step. And one expects ∇H n

to be more ill-conditioned, as its rows are now more collinear.

Results shown in Fig. (4.3) indicate that without observation noise, the shorter delay does not

make much of a difference. Somewhat surprising however, is that for global initial conditions, Lc for the

TD-EKF is reduced by about 25%, from 0.20D→ 0.15D. This again points to the regularizing capability

of the estimated error covariance. On the other hand, when observation noise is present, the efficiency

of both algorithms are largely reduced to M = 1 levels. Indeed, 70% of these runs find critical values at

M = 1.

This implies that the embedding is substantially more ill-conditioned with τ = dt than with

τ = 10dt, and thus more sensitive to observation noise. This conclusion is further supported by Fig. (4.4),

which plots the singular value spectrum of ∇H n sampled across the attractor for D = M = 20 and L = 1.

Also, for comparison purposes, the singular values are rescaled so that σ1 = 1. Evidently, τ = 10dt is the

most well conditioned, followed by τ = dt and then τ = 100dt. Note also how the spectrum decreases

exponentially, at roughly uniform intervals. This makes it difficult to determine where to truncate rank of

the pseudoinverse, although some useful heuristics will be discussed in Sec. (4.3). But the main point here

is that when observation noise is present — and it always is in practice — the success of the time delay

embedding technique requires an appropriate choice of τ.

4.2.3 Overlapping estimation windows

Operational implementations of SC-4DVar typically do not use overlapping observation windows

for two primary reasons. First, reanalyzing the data in small increments dt requires additional computational

power, which may become prohibitively expensive for large problems. Second, there is a statistical

argument made against reusing data in that, if the observations contain biased noise, those biases are

introduced multiple times into the analysis.
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For linear models with Gaussian errors, assimilating the data multiple times is equivalent to

assimilating the same data once, provided Rm is scaled appropriately ([49]). From a fixed interval

smoothing perspective, reuse of observations amounts to using a power of the conditional distribution

P(X |Y ) ∝ exp[−A(X )]γ. This amounts to a rescaling of the objective function, and the geometry of the

problem is not altered in any appreciable way.

In the nonlinear case however, the benefits of iterative methods that reanalyze the same data

multiple times are quite well-established ([81, 14]. There is also more recent evidence suggesting that

multiple data assimilation with long overlapping observation windows improves stability and accuracy of

the analysis ([25]).

This motivates an examination of the impact of overlapping estimation windows on the minimum

observability limits. The results Fig. (4.1) with τ = 10dt are now rerun, but after each analysis the resulting

estimate is integrated forward the length of the sliding window T ′ = ((M−1)m+1)dt. This choice makes

the windows disjoint, so each observation is used only once.

Results displayed in Fig. (4.5) exhibit sharply reduced performance compared with Fig. (4.1),

and coincide almost exactly with the M = 1 results from Chap. (3). Indeed, with the exception of a few

outliers, Mc = 1 for all cases. So the best results are obtained from running the analysis at every dt.

A thorough examination of critical thresholds in the temporal resolution of measurements will

not be given here. However, preliminary results with D = 20 indicate that the observational benefits are

lost once the time between subsequent analyses rises above 5dt. And both methods fail when this period

reaches roughly 15−20dt, even when fully observed.

The frequency of observations is evidently just as critical to the analysis as the spatial resolution.

Both exhibit critical thresholds at which estimates consistently fail. And both issues be mitigated through

the use of time extended observations. Time delays effectively act as additional measurements. They

improve observability by enriching the observation space with information from the forecast model. And

increase the temporal frequency of the observations by allowing the analyses to be performed in between

measurement times.

It is somewhat surprising these benefits seem to require the reuse of data with overlapping analysis

windows, as this has no analog in the linear theory. And certainly, there are tradeoffs between accuracy,

robustness and computational efficiency, which have to be addressed in the context of the particular applica-

tion. But putting these issues aside, when the data is spatiotemporally sparse, time-embedded measurements

appear capable of improving the effective observational limits of a given estimation algorithm.
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4.2.4 Moving horizon estimation with 4DVar

As mentioned, the time delay feedback synchronization method is a special case of cycled

SC-4DVar with a few differences, notably: 1) all observations are used (although time delays may be

included by generalizing to a time-dependent R m), 2) the analysis increment δx is found using Tikhonov

regularization instead of rank-truncated SVD, and 3) observation windows are typically disjoint. The

impact of the first two on Lc is now investigated — the effect of disjoint analysis windows will be examined

momentarily. So for now, all methods use overlapping estimation windows that move in increments of dt.

The observational efficiency of the three smoothing variants from Chap. (3) is now compared

using a fixed-lag approach. As before, no adjoints are used. The derivatives are all calculated directly, and

minimization is performed using the full Gauss-Newton procedure. The length of the analysis window is

chosen relatively short, T = 0.25/λmax, to avoid instability issues with SC-4DVar and WC-4DVar-U. The

state variables are initialized with x0 as the random initial guess, with remaining path components X and

U set to zero. After each measurement update, the resulting values are reused in the subsequent analysis,

after shifting them by one dt.

As before,Rm andR f are set to the identity. However, in this case the results were observed to

benefit from the addition of a background termRb = I . In Chap. (3), the background term was neglected

under the assumption that nothing is known about the accuracy of the initial guess. Here however, this

accuracy will ideally improve with each iteration. Adding the background term helps regularize the

solution, by keeping the analysis from deviating too far form the previous estimate.

Calculated values of Lc shown in Fig. (4.6) indicate robustness both to observation noise and

the accuracy of initial conditions. Contrasting this with the fixed interval results from Fig. (3.13), where

low noise and accurate initial estimates were required to reduce these limits below Lc ≈ Du, further

highlights the benefits of the moving horizon approach. The resulting thresholds of WC-4DVar-X and

WC-4DVar-U are roughly on par with the 3DVar-FB results in Fig. (3.3), with values approximately equal

to Du. Although SC-4DVar evidently does much better, with thresholds around Lc ≈ 0.2D, this is likely

related to the absence of model error from the simulated data. More realistic tests, which include model

error, are needed to provide a more useful comparison.
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4.3 Optimizations and extensions

Several implementation issues with time delay methods are now examined. These issues include:

the solution to Eqn. (4.2), the choice of embedding parameters and the rank of the pseudoinverse.

4.3.1 Rank considerations for the pseudoinverse

There are many approaches available for solving the linear system Eqn. (4.2). Recall that since

∇H n is generally not square, a pseudoinverse must be used. This can be done simply by direct inversion

[∇H n]
+ := [∇†H n ·∇H n]

−1 ·∇†H n,

but this technique has numerical stability problems when ∇H n is ill-conditioned. Specifically, if ∇H n has

condition number κ then ∇†H n ·∇H n has condition number κ2. When applicable, a more robust approach

is to compute the SVD of ∇H n =Un ·Σn ·V †
n , and construct the pseudoinverse

[∇H n]
+ = Vn ·Σ+

n ·U †
n .

The rectangular diagonal matrix Σ+
n is defined by taking the reciprocal of each nonzero element, leaving

the zeros in place. In practice, this means inverting elements whose values are above a small tolerance ε.

Elements below this threshold are replaced with zeros. The choice of tolerance therefore determines the

rank r of the matrix [H n]
+, which as shown above plays an important role in the convergence and stability

of the filter.

The default tolerance for most pseudoinverse routines in on the order of machine precision. But

for this application, this choice may produce excessively large control perturbations δxn that destabilize

the filter. This highlights an inherent tradeoff between numerical stability and performance. While one

could simply reduce the coupling termsK, this was not shown to be an effective approach. Alternatively,

raising this tolerance (e.g., to ε∼ 10−3) stabilize the calculations, but degrade its performance by reducing

the rank [H n]
+ below the critical threshold rc ≈ Du. These results suggest that a static tolerance may not

be the best approach, prompting an exploration of other ways to choose the r.

One option is to choose a constant r throughout the whole estimation process. As shown in the

examples above, this choice provides insight into the role that r plays in stabilizing the synchronization

manifold. Restricting to a constant rank also makes the pseudoinverse differentiable [63]. These derivatives
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may be used to calculate the conditional Lyapunov exponents and prove convergence under certain

conditions. The main drawback is that this choice must be made conservatively to avoid destabilization

along the entire trajectory.

A number of ideas for adaptively choosing r were also explored. Of these, the best performance

was obtained by choosing r as large as possible so that the resulting perturbation is below a threshold set

relative to the unperturbed model. That is,

r = argmax
1≤i≤rmax

[
δxi(tn)

Fi(x(tn))
≤ ε

]
.

The advantage of choosing r relative to the Fn is that it sets the scale of the perturbation, assuming the

dynamics are assumed to be inherently stable. It also normalizes the effective threshold to account for

different scales of the state variables, so the resulting choice is effectively invariant to say the choice of

units. The main drawback of this technique is that it requires recomputing the perturbation for several

choices of r, although the SVD only has to be computed once.

4.3.2 Tikhonov regularization

While SVD may be the most numerically robust way of solving Eqn. (4.2), many other viable

options are available. One option to improve computational efficiency, is to rewrite Eqn. (4.2) as a least

squares objective function and perform Tikhonov regularization,

δxn = argmin
δx

|Y n−H n−∇H n ·δx|2 + |δx|2Γn . (4.7)

The matrix Γn is chosen to give preference to solutions with desired properties. For instance, Γn = εI

gives the pseudoinverse in the limit ε→ 0, although it differs from both the approaches above in that the

singular values are not truncated below a certain value. Rather, the solution

δxn = Vn · (εI+Σ†
n ·Σn)

−1 ·Σ†
n ·U †

n ·Y n

acts as a spectral filter that puts more weight components of Vn with singular values above ε, and less

weight on those below.

Substituting Γn→Rb and introducing a measurement error R m term gives incremental SC-4DVar

([40]). This was shown by [82] to perform Tikhonov regularization using the background error covariance
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Rb as the filter. A main benefit of this formulation is that it allows δxn to be computed efficiently, using

gradient descent and adjoint methods that only require O(D) memory. This makes it a viable method for

high dimensional problems such as operational numerical weather forecasting, where direct computation

of ∇H n is not feasible.

The EKF also performs a variant of Tikhonov regularization, except with Γn→Rn. The estimated

error covariance has some desirable properties, as exhibited by the EKF’s low Lc. As a filter for ∇H n, it

targets the locally unstable subspace, reducing sensitivity to noise as well as errors in the forecast, On the

other hand, it is not possible to computeRn directly for large problems, as the Riccati equation requires

storage and manipulation of O(D2) matrices. This has prompted the recent development of ‘hybrid’

SC-4DVar methods, which blend the static backgroundRb with ensemble techniques that aim to capture

the forecast sensitivity ([117]). While a thorough comparison of Lc among these methods is the topic of

future work, there is much to be gained from studying the observability properties of these algorithms, and

their relation to the full EKF.

4.3.3 A parallelized adjoint formulation of the Gauss-Newton method

A benefit of Tikhonov regularization is that the perturbation δxn can be found by directly

minimizing Eqn. (4.7). This makes this approach suitable for high dimensional problems, provided the

derivatives ∇A needed by the optimization procedure are calculated using adjoint methods.

Adjoint methods may be viewed in the Hamiltonian formalism developed in Chap. (2), wherein

the model constraints through the addition of a Lagrange multiplier pn, which shares the same role as

the canonical momentum in Hamiltonian mechanics. Enforcing the necessary conditions for stationarity

(i.e., ∇A = 0) gives the analog of Hamilton’s equations, in the form of a two-point boundary value problem.

Using these equations to integrate xn forward from 0→ T , and pn backward from T → 0, produces the

gradient of the objective function p0 = ∇A. The benefit of this approach is that it uses only O(D) memory.

It avoids having to compute and store the D×D matrices Φn,0 required by the direct approach, using the

variational Eqn. (4.5).

For instance, consider the SC-4DVar objective function given in Eqn. (3.8). Relaxing the con-

straints by including the constraints using a Lagrange multiplier gives

A(X ,P ) ∝ |x0−xb|2Rb
+

N

∑
n=0
|yn−h(xn)|2Rm + 〈pn+1,xn+1−F (xn)〉.
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Setting ∇A(X ,P ) = 0 yields Hamilton’s equations,

xn+1 = F (xn)

pn = ∇
†Fn ·pn+1 +∇

†hn ·Rm ·
(
yn−h(xn)

)
+Rb · (xb−x0)δ(n),

where δ(n) is a delta function. Enforcing these equations makes A(X ,P ) a function of x0 and pN+1 alone.

Setting pN+1 = 0, the gradient reduces to

∇A(x0) ∝

N

∑
n=0

(
Φn+1,0 ·pn+1−Φn,0 ·pn

)
= p0.

The same procedure can may be used for WC-4DVar-X and WC-4DVar-U as well ([193]). For WC-

4DVar-U, the derivative with respect to the initial condition is the same as for SC-4DVar, except that now

the trajectory is evaluated along the approximate model trajectory, that includes the control terms. The

derivatives with respect to the control un is obtained from restricting the sum to times n′ ≥ n. The full

gradient ∇A is still therefore computed from one forward integration of the model, and one backward

integration of the adjoint. On the other hand, for WC-4DVar-X the estimated path is not an approximate

model trajectory. Therefore it does not require a forward integration from 0→ T . The adjoint model can

still be used to efficiently compute the derivatives with respect to xn. These calculations may also be

parallelized, with each derivative being calculated in its own thread.

While adjoint methods enable the scalable computation of gradients, there is still the issue of

how to perform the optimization. For large problems, this has led to the development of ‘incremental’

algorithms ([40, 193]), which split the procedure into two loops. In the ‘outer loop’, the full nonlinear

model is run forward from the previous estimate. The problem is then linearized around the resulting

trajectory, and used to initialize the ‘inner loop’, which minimizes

δxn = argmin
δx

|xb−xn−δx|2Rb
+ |Y n−H n−∇H n ·δx|2R m

. (4.8)

to find the optimal perturbation δxn. The inner loop is then iterated, to refine the estimate for δxn until

some prescribed stopping criteria is reached. Control then passes back to the outer loop, which constructs

the new estimated trajectory from the resulting estimate xn← xn +δxn. The entire analysis process may

then repeated using xn as the new initial guess.

The inner loop minimization minimization can be carried in a number of ways. Most simply,

gradient descent should (eventually) reach a local minimum, and can be done directly, avoiding the need
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to invert any large matrices. Alternatively, faster convergence may be obtained from a Gauss-Newton

approach, which involves solving a linear system,

(Rb +∇
†H n ·R m ·∇H n) ·δx

(i+1)
n =Rb · (xb−xn−δx

(i)
n )

+∇
†H n ·R m · (Y n−H n−∇H n ·δx

(i)
n ),

(4.9)

where i denotes the inner loop iteration. The solution is often obtained using a preconditioned conjugate

gradient method ([139]), which exploits sparsity in the approximate Hessian. However, this still requires

evaluating the product of a vector with the approximate Hessian. While ∇H n can be computed directly

from Eqn. (4.5), or using a second order adjoint method ([149]), these approaches require storage and

manipulation of O(D2) matrices (or higher for weak constraint methods), making them unsuitable for large

problems.

How the Hessian is implemented in practice is rarely mentioned in the literature, especially in

connection with the Gauss-Newton method. Evidently, the inner loop is run at a lower spatial resolution

to accelerate the calculations ([107]), but whether this makes computation of ∇H n tractable remains

uncertain. Also, the preconditioning transformations are constructed from the background covariance

Rb ([67]), which effective ignores any dynamical information contained in ∇H n. Thus, while ([108])

showed that minimizing Eqn. (4.8) is equivalent to an approximate solutionEqn. (4.9), it is unclear how the

Gauss-Newton method would actually be implemented without a scalable way to evaluate ∇H n.

One way to do this stems from the time embedding interpretation of SC-4DVar. The rows of ∇H n

in Eqn. (4.4) correspond to the derivatives with respect to the time delayed model state. These sensitivities

may be computed row by row using the adjoint model ∇†Fn. Setting pm+1 equal to the `th row of ∇hm, the

corresponding row (L(m−1)+ `) in ∇H n can be calculated from the recursion pn = ∇†Fn ·pn+1. This

gives a way of computing ∇H n without having to compute the matrices Φn,0. The drawback of this is that

it must be carried out for all M L rows of the time delayed measurement operator. The upshot however,

is that it be massively parallelized, by independently computing the contribution of each row on its own

processor.

The benefits and feasibility of this technique for large-scale problems must still be demonstrated.

It would be interesting for instance, to see if there is a discernible difference in Lc among optimization

techniques, such as gradient descent and Gauss-Newton, both with and without adjoint derivatives. The

above results indicate the rank of the time embedded observation operator ∇H n is important to its success.

For gradient descent, these results may translate to additional criteria on the number of iterations required
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by the inner and outer loops. Furthermore, as the implementation of the adjoint model is (at times) difficult

and cumbersome, it would also be useful to compare these results against those obtained from derivative

free methods, such as the Ensemble Kalman filter. All this will be explored in future work.

4.3.4 Optimizing the embedding

The choice of embedding is now addressed. In the simplest case, two parameters must be selected:

a uniform delay τ and the embedding dimension M. As mentioned above, useful heuristics exist for this

choice ([55, 2]). There is however no need to restrict consideration to a fixed, uniform τ. This choice is

expedient and works well in practice. While some more recent efforts have focused generalizing these

ideas to non-scalar signals with non-uniform delays, this is still an active area of research ([59, 158, 201]).

In estimation, the goals are different however. Attractor reconstruction is concerned with dis-

cerning the model from the data. But in estimation, the model is assumed known and may therefore be

used to inform the choice of embedding. An idea for using the dynamical model to optimize the choice of

embedding will now be explored.

Recall that a forward embedding was chosen for the time delay methods based on the intuition

that this would enhance observation and control of the forward instabilities in the model. There is no

reason however, why a backward embedding (or a mixture of the two) could not be used instead. The goal

is to choose an embedding dimension M and a set of delays {τ1,τ2, . . . ,τM} to optimize a local measure of

observability.2 Similar ideas have been explored in ([154, 155, 173]), as a way to guide the optimal choice

of parameters τ, M for a static uniform embedding. This idea is now generalized to consider a non-uniform

time embedding. Given the ‘full’ ∇H̃ n matrix that contains all measurements within the estimation window,

the problem is to choose a subset of its rows to minimize the condition number κn = σmax
n /σmin

n of ∇H n,

where σn are its singular values.3

Optimization problems involving singular values tend to be difficult, as the operation is in general

discontinuous. To avoid the need for derivatives, a simple Markov Chain Monte Carlo approach will

be adopted here, based on the Metropolis-Hastings algorithm ([127]). The method proceeds as follows.

Choosing M = 2D+ 1 based on Takens’ theorem, construct the partial ∇H n corresponding to a non-

uniform set of delays {τ1,τ2, . . . ,τM} and compute its κn. Randomly choose one delay τm to increase or

decrease by one dt. Calculate the new κ′n. If it is lower than the previous value, accept the step. Otherwise,

the step is rejected with probability min(1,exp[β∗ (κn−κ′n)]). The parameter β controls the ‘temperature’

2Also known as an ‘observability index’ ([111]).
3This problem is also known as ‘column subset selection’ ([197]).
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of the ensemble, helps prevent it from becoming stuck in local minima. The sampling process is then

repeated, until κn converges to within some prescribed variance.

Tests using Lorenz 96 with D = 20 show evidence for clusters of measurements within the

embedding space both forward and backwards in time. These clusters produce local minima of the

condition number, although since the procedure is random, different results are obtained for different initial

distributions. The overall patterns are reasonably consistent however, as certain times are clearly targeted

and roughly spaced at 50dt, five times larger than the τ used above.

These results offer proof of concept that this ‘observability sampling’ scheme may be useful for

selecting an optimal embedding with non-uniform delay and supports the claim that M = 2D+1 delays

are not needed. Indeed, smaller condition numbers are typically obtained with lower M, although there are

limits to this, as a single observation (or equivalently, taking M identical delays) will produce a condition

number of κn = 1. For this reason, the objective ∑i σi
n/σmax

n was observed to work somewhat better than

κn.

The method may also be used ‘on-line’, by first optimizing the embedding at a fixed reference

time t0, then evolving forward in time by one dt and repeating the sampling process. The hope is that once

the initial optimization is performed, fewer iterations would be needed to update it. The conditioning of

∇H n is tied to this reference time, so the sampling procedure will update the embedding accordingly as t0

is increased. This approach can also be used to help mitigate the effects at the beginning and end of the

estimation window, by simply restricting τm to be positive and negative respectively.

Certain limitations must be overcome however for this to be a viable approach for real problems.

For instance, only scalar (L = 1) observations are considered here. With multivariate time series, a choice

has to be made about how to distribute the delays across the L variables. This could be handled by the

Markov chain itself, by allowing transitions from one observed component to another. But this adds an

additional layer of complexity to the method, and was not considered here.

The approach also has some obvious problems with scalability, not the least of which is the

computational expense of computing the singular values of the matrix ∇H n at each iteration. One option is

to use a fast approximation method for condition numbers, such as the one given by [69]. Or alternatively,

use a different objective function that requires less computation. These ideas will be explored in more

detail elsewhere. Also, if the matrices ∇Φn,m can be stored, the trajectory does not need to be recalculated

at each iteration, but rather extended as needed. Otherwise, the required rows of ∇H n can be computed in

parallel using the adjoint approach described above.
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Chapter 4, in part is being prepared for submission for publication of the material. Rey, Daniel;

Abarbanel, Henry DI. The dissertation author was the primary investigator and author of this material.
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(a) Local and global estimates, no noise (b) Local and global estimates, with noise

Figure 4.1: The critical minimum number of observations Lc for time delay estimation methods,
with τ = 10dt.

Figure 4.2: The critical minimum number of total observations Lc Mc, for local initial conditions
with no observation noise. The trend for TDVar-FB follows Du until roughly D ≈ 40, above
which additional ‘physical’ measurements are required. By contrast, the TD-EKF requires only
L = 1 until D > 80.
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(a) Local and global estimates, no noise (b) Local and global estimates, with noise

Figure 4.3: The effect of the time delay is examined by repeating the experiments from Fig. (4.1)
with τ = dt.

Figure 4.4: Singular value spectra of ∇H rescaled so that σ1 = 1, for different values of τ.
Points are sampled across the attractor, with D = M = 20, L = 1.

(a) Local and global estimates, no noise (b) Local and global estimates, with noise

Figure 4.5: Repeating Fig. (4.1) using disjoint estimation windows. The vast majority of
results find Mc = 1 as the critical threshold, indicating that overlapping windows are needed for
enhanced observational efficiency.
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(a) Local and global estimates, no noise (b) Local and global estimates, with noise

Figure 4.6: Critical observability limits of moving horizon estimation methods, using the three
4DVar techniques from Chap. (3).



5 Conclusions and future work

Estimation is one of the most ubiquitous and fundamental problems of existence. Its theoretical

development goes back hundreds (if not thousands) of years, and has been shaped by many of history’s

greatest scientists and mathematicians. With the growing availability of both computational and data

collection resources, the problem is now more important than ever.

Yet despite its undeniable importance and the overwhelming amount of attention it has received

of late, there is evidently much that is still not understood about this most fundamental problem. This

thesis attempts to improve this situation by examining it from a broader perspective that seeks to initiate

the process of unifying shared concepts among the various fields interested in this problem. At the same

time, it also proposes a number of new ideas, and tries to interpret them within this broader context.

What follows is a brief summary of the main results of each chapter. These synopses emphasize

both what has been done and what is left to do. Indeed there is no shortage of remaining work. But the

intention of this thesis has been to focus on the proposal and development of new ideas, leaving a more

exhaustive treatment for future publications. The main ideas are brought back together in the end, to give a

personal view on the future of estimation.

5.1 The canonical structure of optimal estimation

Chap. (2) reexamines the Kalman solution to the optimal filtering and smoothing problems from

a deterministic perspective that focuses on the intersection of calculus of variation, optimal control, and

classical mechanics. For fixed-interval smoothing, a number solutions have been proposed over the years.

While these methods all give identical results for linear problems, this is evidently not true of their nonlinear

extensions.

In particular, it appears that sequential (or two-pass, feasible path) smoothing algorithms have

some inherent benefits. For one, they reduce computational complexity, by performing N inversions

147
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of O(D2) matrices. Compare this with direct optimization techniques e.g., based on the Gauss-Newton

method, which require solving linear systems of size O(N D2). Sequential methods scale better when

the estimation window is long. Of course, when D is extremely large inverting O(D2) matrices is also

not feasible. Although there are other ways to work around this issue (e.g., using adjoints or ensemble

methods), these were largely left for future discussion.

More to the point however, sequential methods are unique in the sense that their recursive

substructure propagates the state between observation times using the full nonlinear forecast model ([83]).

By contrast, Newton’s method (and its various generalizations and approximations) generates the transition

using the tangent linear model. This result was derived explicitly, in both continuous and discrete time,

from the estimation analog of differential dynamic programming. And it was shown how subtle differences

in the various choices or assumptions in the problem statement can lead, at times, to widely different

results.

This recursive substructure allows these algorithms to operate on a nearly feasible trajectory of

the system. As shown in Chap. (3), this permits the forward (i.e., filtering) pass to be interpreted as a

dynamic form of feedback synchronization. The Kalman solution also evidently contains an inherent

mechanism to target and control the unstable modes of the system, to make more efficient use of the

available observations. This targeted control mechanism does not appear to be possible an approach such

as WC-4DVar-X (or variants thereof), where the path is not constrained to be an approximate system

trajectory.

Evidence was also presented to suggest that this recursive structure and the adaptive instability

control mechanism are both a result of the role played by symplectic structure in the Kalman solution.

While the Hamiltonian formulation of the optimal control problem is well-established, this representation

is highly unstable. Although Hamilton’s equations may be ostensibly viewed as a type of feedback

synchronization, they cannot be integrated for an appreciable amount of time before the solution becomes

numerically intractable. This phenomenon has been noted previously (e.g., [133]), but has not garnered

much attention.

Here it was shown that the Kalman solution may be derived by imposing symplectic structure

on both the path xt , pt , and the first order fluctuations around it δxt , δpt . The latter in particular leads

the Riccati equation for the approximate error covariance. And the Kalman filter emerges as an implicit

solution to the conspicuously tautological equations pt = ṗt = 0, upon making the Riccati transformation

pt → ∇†At(xt). From physical point of view, this transformation expresses the controls in the coordinate
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system of the estimate and may be considered a type of gauge fixing. It implies that the Kalman filter

solution enforces the canonical momentum (or adjoint/costate variables) to be zero everywhere, a result

that is perhaps somewhat intuitive in hindsight. If one views pt as the gradient of a dynamic objective

function, the gradient must be zero for the estimate to be optimal with respect to the previously observed

data.

This result was further elaborated from the point of view of Hamilton-Jacobi theory, both in

continuous and discrete time. Although the latter approach, which is based on the discrete time action

principle, clearly needs further attention. The use of generating functions was also discussed as a technique

for solving two-point boundary value problems. And the previous work of ([151, 152, 150]) for feedback

control systems was extended to the linear estimation problem.

Although the theoretical work described in this section is still largely incomplete, it nonetheless

an alternative perspective on the problem that ties together a number of foundational ideas in estimation

theory, optimization, and physics. A number of new research directions stand out in this research, most

notably: 1) investigating the impact of the subtle choices that distinguish between various algorithms, 2)

the use of generating functions for deriving stable feedback control/estimation algorithms, and 3) the role

that symplectic structure and the canonical momentum play in the Kalman solution.

Notwithstanding the widespread use of Kalman filters/smoothers along with over half a century

of dedicated theoretical efforts, there is evidently much that is still not understood about these equations

— particularly, the relationship between their statistical properties and optimal geometric substructure.

Unraveling these mysteries and forging connections across disciplinary boundaries will lead not only to a

better understanding of what is perhaps the most elegant and important solution to the estimation problem

to date, but also help fortify the theoretical foundation on which the next generation of algorithms will be

built.

5.2 Observability and conditioning in dynamical inverse problems

The condition number of a matrix is a measure of the stability of solutions to linear systems that is

independent of both the data and the algorithm. Chap. (3) discusses its extension to the nonlinear systems,

with a particular emphasis on its application to dynamical inverse problems found in optimal estimation.

In the estimation context, the condition number can be viewed as measuring the inherent difficulty in

constructing a solution. Typically such problems are not fully observed, and are thus inherently ill-posed.

These problems therefore require regularization to break the degeneracy inherent in partial
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observations, and make the solution unique. Regularization may be viewed as incorporating additional

‘prior’ information into the problem. This information can have many forms. For static problems, it is

often simply some a-priori constraints or bounds on the parameters to be estimated. But for dynamical

problems, knowledge of the system dynamics can also be used to constrain the solution.

Dynamical regularization can be a powerful tool, especially when the underlying processes are

based on established scientific principles. Such ‘high-confidence’ models constrain the set of possible

solutions, and thereby reduce the dependence of the solution on the accuracy of the initial estimate. In

some cases, the hypothetical ‘true’ path can be reconstructed from totally arbitrary initial conditions. In

other cases however, it can have the opposite effect. Thus, unlike for linear systems, the conditioning of

dynamical inverse problems cannot be considered independently from the method for finding the solution,

as it depends in a complex way on the three core components: the forecast and observation models, the

data, and the estimation algorithm.

This chapter introduced techniques for analyzing these complicated dependencies. Broadly

speaking, these methods may be categorized as either: 1) empirical, using only observed quantities, or

2) theoretical, using simulated data. While only the former is applicable to real experiments, the latter

techniques not without benefit. They provide a way to examine the adequacy of the combined observation-

analysis-modeling system under controlled conditions. Presumably, if the estimates are not successful

under these rather idealized circumstances, there is little chance that they will be successful in practice.

Several estimation algorithms were compared in terms of their probability of success, as defined

by when the filtered (or smoothed) RMSE drops below the noise level. A series of Bernoulli trials were

repeated from random initial conditions distributed both locally (i.e., near the solution) and globally across

the attractor. This methodology directly compares algorithmic performance under near ideal conditions,

to establish how the likelihood of constructing a successful estimate varies with certain aspects of the

problem, such as: 1) the resolution of the forecast model and observations, 2) the choice of algorithm, and

3) the length of the estimation window. The results of this investigation and have led us to the following

conclusions.

5.2.1 Filtering methods

Filtering methods necessarily require ‘enough’ observations to control the local dynamical

instability in the model, so that the linearized error is asymptotically stable when averaged along the

trajectory. This statement may be summarized in terms of the well-known necessary conditions for chaotic
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synchronization given by [157], which states that the largest global Lyapunov exponent of the error system

(otherwise known as the conditional LEs) must be negative.

However, the resolution of observations required to both satisfy this condition and achieve syn-

chronization depends on the choice of algorithm. For instance, the static 3DVar filtering schemes examined

here require at least roughly Lc ≈ 0.4D observations of the Lorenz 96 model produce synchronized

estimates. This value scales linearly with the resolution of the model. It also happens to coincide with the

attractor averaged dimension of the locally unstable subspace Du, which turns out to provide an adequate

baseline estimate for most of the methods tested here.

On the other hand, the extended Kalman filter can evidently do much better. In particular, when

used as an adaptive observer under low observation noise conditions, it requires only Lc ≈ 0.04D for local

initial conditions, and Lc ≈ 0.17D for global initial conditions. This value falls within the range of the

approximate lower bound rc ≈ 0.02D on the rank of the observation operator, with full L = D observations.

And it is the only method to show a significant boost in performance from starting in the vicinity of the

truth.

This reduction in Lc is attributed in part to the recently discovered fact that the Riccati equation

for the estimated error covariance adaptively targets the unstable subspace, concentrating around it as the

estimate converges. Numerical simulations show that when the EKF is run along the true solution with

R f → 0, the asymptotic rank of the covariance matrix is r∞ ≈ 0.39D, which almost exactly coincides with

Du.

This benefit all but disappears however when observation noise is added. Under these conditions,

the critical threshold increases to Lc ≈ 0.37D, which is roughly commensurate with Du. This increase is in

part due to poor tuning of the model and measurement error covariance matricesR−1
m , R−1

f . To remedy

this, an annealing procedure was introduced that adaptively reduces the magnitude of |R−1
f | as the estimate

converges. This technique improves the observational efficiency to Lc ≈ 0.25D.

5.2.2 Fixed-interval smoothing

A similar investigation was performed on three fixed-interval smoothing variants of 4DVar. One

is the standard ‘strong constraint’ description SC-4DVar, in which the forecast model is expected to

hold exactly. The others are dual versions of ‘weak constraint’ 4DVar, which include model errors. The

WC-4DVar-X variant uses a collocated approach that performs the optimization directly in ‘path space’ by

treating each state at each measurement time as an independent variable. By contrast, WC-4DVar-U uses
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an alternative description, which involves the initial state x0 and a discretized set of additive controls U.

The minimization was performed using a basic Gauss-Newton approach with no line-search.

A approximate measure of the critical radius ρc of the basin of convergence was introduced as

a means to compare these methods. This value represents the initial distance to the global minimum

above which convergence is no longer guaranteed. Both SC-4DVar and WC-4DVar-U show an exponential

collapse in ρc as the length T of the estimation window is increased. The collapse proceeds at a rate

roughly equal to the largest global Lyapunov exponent, suggesting chaos in the forecast model as a primary

cause.

This conclusion was supported by an analysis based on the radius of the uniqueness ball for the

Gauss-Newton method. In particular, the relative scaling of the basin was shown to be dominated by the

condition number of the Hessian of the objective function. For both SC-4DVar and WC-4DVar-U when

U ≈ 0, the magnitude of the Hessian depends directly on the variational matrix, whose magnitude is

known to grow at a rate commensurate with λmax.

This result clearly illustrates the well-known limitation of single shooting methods like SC-4DVar

— that the length of the estimation window is inherently limited by the timescale of the chaos in the forecast

model. However, it also makes a more subtle point that, in the context of dynamical inverse problems,

the success of the estimate depends crucially on how the model constraints are implemented. Chaotic

sensitivity to initial conditions injects dynamical instability into the estimation process. This instability

must be controlled by the algorithm, to prevent extreme ill-conditioning that can render trivial problems

computationally intractable.

This can be accomplished by either limiting the length of the estimation window, or using a

more stable but also more computationally intensive algorithm, such as WC-4DVar-X whose basin of

convergence appears to be asymptotically stable with increasing T . This stability is ostensibly one of the

main reasons for using a weak constraint method, especially in a situation like this where model error is

not explicitly added. But these results make it clear that this benefit depends on the chosen formulation.

Indeed, without an adequate initial guess for the ‘control’ variables U, WC-4DVar-U performs markedly

worse than both WC-4DVar-X and SC-4DVar.

This defect is particularly evident in the observability calculations. With local initial conditions,

all three methods give similar results. But with global initial conditions, WC-4DVar-U is not able to find

the global minimum for any value of L — even without observation noise.

Global initial conditions also increases the thresholds of the other two smoothers, which require
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more observations than any of the filters. However, the smoothers are working with a much smaller

estimation window. And their success is measured by the average RMSE across the entire window, which

is a considerably more difficult task than just identifying the final state.

5.2.3 Limitations and future work

The methodology described here is meant to serve as a framework to guide future investigation into

the complex issues regarding observability and conditioning of dynamical inverse problems, particularly

those related to optimal estimation. As with any preliminary effort however, a number of limitations must

be overcome for this approach to be applied to more realistic systems.

For instance, one of the benefits of the the Lorenz 96 model is that it is nearly isotropic, in the

sense that the dynamical behavior of each variable is roughly identical. This property is particularly

convenient, as it allows the sampled perturbations to be chosen randomly from a unit sphere. This approach

is not expected to work as well for more complex models where the variables are scaled differently. Such

applications may require many more samples for the statistics to converge.

Another remaining challenge will to design more realistic observation schemes based on limited

number of parameters. Again, the Lorenz 96 model is particularly convenient, in the sense that one

parameter is needed to capture its spatial resolution — at least given the ‘uniform’ observation scheme

chosen here. Among other things, this allows for the use of binary search, which is not possible with more

than one parameter. If more than one parameter must be optimized, a more complex procedure is needed

(e.g., branch and bound).

A number of other observation schemes could also be investigated with Lorenz 96, such as

random, localized, or dynamic measurements that simulate the orbits of satellites over a rotating earth.

These options may be directly compared using the techniques described here, and will be the subject of a

future study.

Model error was also not considered here. As such, an important open question is how best to

extend this analysis to systematically include these errors. From a deterministic perspective, they could

be simulated by injecting prescribed disturbances into the model. There is an extension to the Lorenz

96 model that does just this, which may serve as a good starting point. One could also examine other

models of varying dimensionality, to investigate how finite cutoffs in model resolution affect model error

statistics. Similar comparisons have been used in computational fluid dynamics, to inform the development

of sub-grid scale models of turbulent flow. The use of data assimilation methods to validate such models
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seems promising, and may also help improve estimation techniques for multi-scale coupled earth systems.

More generally, within the variational approximation to the statistical path integral, there are two

fundamental questions:

1. How many solutions (i.e., isolated local minima of the estimation action) are needed to achieve

desired levels of uncertainty?

2. What is the likelihood of finding those solutions?

The present methodology attempts to address the latter, while the former is the subject of an entire field of

uncertainty quantification. Connecting the two has obvious benefits, but determining how best to proceed

appears somewhat difficult.

For example, the path integral formulation dictates that the statistical weight of any given solution

is exponentially proportional to its action level. A multi-modal conditional distribution p(X |Y ) will

therefore exhibit localized solutions whose action levels are in some sense ‘close to’ the global minimum.

Formalizing this notion of proximity runs into problems however. This is largely due to the fact that the

distribution p(X |Y ) is not normalized. As such, the geometry of the action manifold (i.e., the location of

the local minima) is not altered by additive and multiplicative scale factors. This scale invariance of the

action is often exploited by optimization techniques, which typically try to rescale the objective function to

improve the conditioning of the problem. However, a multiplicative scale factor changes the separation

between local minima, and thus also the relative statistical weight of the solutions. Furthermore, since

the error covariance matricesR−1
m , R−1

f are rarely known a-priori, it seems unrealistic to rely on them to

have precise values.

Despite these concerns, it would not be difficult to include model error in the numerical studies

presented here. Among other things, this would again provide an empirical characterization of both the

adequacy of the observation scheme and the efficacy of the data assimilation algorithms. How useful

these results are in practice relies heavily on how closely the parameterized model error reflects the

truth, which is unknown. But this does not mean the results are not useful, because as mentioned, if

the combined observation-analysis-forecast system is incapable of generating accurate estimates under

simulated conditions, there is little hope that they will be successful in operational ones.

Regarding the second issue, the analytical results presented here are largely incomplete. Recall

for instance that the additional terms in the uniqueness ball were not able to be accurately computed. These

terms are likely important, as they set the overall scale for the solution basin and include the impact of

errors in the model and observations. The problem of bounding the basin of guaranteed convergence around
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a local minimum should also be treated from the empirical point of view, where prior knowledge of the

solution is not assumed. This will likely involve revisiting some of these ideas on dynamical optimization

from the point of view of Kantorovich’s theorem on Newton’s method ([91]), which gives conditions for

the existence of a root from an arbitrary initial guess, so prior knowledge of the solution is not required.

These results on the convergence/uniqueness balls are also only applicable to static, unconstrained

implementations of the Gauss-Newton method. They therefore need to be extended to both algorithms with

constraints, such as augmented Lagrangian or barrier methods, as well as dynamic optimization methods

such as two pass smoothers. Indeed, given the rather remarkable observable efficiency of Kalman based

methods, it would be beneficial to have a definition of conditioning that is updated dynamically with the

filter, which could perhaps be accomplished by using the action as a Lyapunov function.

While Kalman methods are known to be formally equivalent to the Gauss-Newton method ([14]),

they are apparently capable of using the available observations more efficiently than any other technique

examined here. The evidence for this stems from the fact that, under certain conditions, the observability

thresholds for the EKF are considerably below Du. This suggests that the estimated error covariance acts as

an ‘optimal’ dynamic preconditioner: a claim supported by its recently discovered targeting of the locally

unstable modes of the forecast model. The work of [95] also appears to support this conclusion, albeit in a

control context. But this point of view does not appear to be common in the literature.

Although the precise mechanism for this observational efficiency remains unclear, consider the

remarks at the end of Chap. (2) that describe the role of symplectic structure in the placement of the

poles of the optimal closed-loop control feedback matrix. These remarks suggest that symplectic structure

may also be responsible for its observational efficiency. Proof of this conjecture however requires a more

comprehensive understanding of how symplectic structure impacts the conditioning of the resulting gain

matrix. For this, it would be useful to develop a dynamical version of the Hamiltonian arguments made in

Sec. (2.6).

The existence of critical observability thresholds, below which the probability of reliably gen-

erating an accurate estimate becomes effectively zero, suggests a basic limit in our ability to reconstruct

the state of the system from partial observations. The fundamental nature of these limits is supported by

the fact that they persist even under otherwise ideal circumstances (i.e., no model or observation errors),

scale linearly with the resolution of the present model, and are well-approximated by the attractor averaged

dimension of its unstable subspace. While in certain cases the effective limit can admittedly be reduced

below this baseline threshold, it comes at the expense of robustness, stability, and additional computational
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overhead.

This perspective on observability is a considerable departure from the well-established control

theoretic measures, which for nonlinear problems tend to be stated in the form of local necessary conditions

([103]). If these conditions are not satisfied, state reconstruction is guaranteed to fail — at least locally. Yet

there are inherent limitations to this. For one, it does not take into account the dynamics of the estimate,

which may be observable on certain parts of the attractor, an unobservable on others. More to the point

however, there appears to exist a large number of problems (such as the ones considered here) that satisfy

these conditions, but are nonetheless too ill-conditioned to admit accurate and reliable estimates.

Thus, the rapidly increasing size and complexity of our mathematical models has created a

demand for more precise empirical and analytical techniques to validate the adequacy of the observation

system. The methodology introduced here is intended to serve as a preliminary step towards realizing these

goals. While it may not for all situations, it has already identified some important limitations to the current

state of the art, as well as some ways in which these may be overcome.

5.3 Moving horizon estimation for poorly observable systems

One way to improve the observational efficiency of a given estimation algorithm involves tem-

porally extending the observation space, to include the measurements not just at the current time, but

neighboring times as well. This idea was introduced in Chap. (4), from the point of view of discrete time

embedding theorems found in optimal control and nonlinear dynamics ([187, 5, 172]). These theorems

were historically developed in conjunction with methods for reconstructing the topological structure of

chaotic attractors from discrete scalar time-series observations.

In estimation however, these theorems are used quite differently. The differences are largely due

to the assumption that, in estimation, one has knowledge of an approximate dynamical forecast model

describing the time evolution of observed time series. In attractor reconstruction, the embedding procedure

provides a way to distinguish between otherwise ambiguous orbits of the partially observed dynamical

system. Given a low dimensional system with enough data, it can be used to build an empirical model or

map to predict roughly where the next observation will occur, and may therefore be viewed as a way of

inferring the system dynamics from the data. In estimation, by contrast, a known forecast model is used to

enrich the set of existing observations, by exploiting latent information in their time delays. That is, it uses

measurements not just time of the current estimate, but in a sliding window around the current time.

The technique itself is not new. The use of time extended observations is evidently well-known to
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improve the accuracy and stability of a number of filtering algorithms, including the Kalman filter (which

becomes the fixed-lag Kalman smoother), and 3DVar (which becomes 4DVar). It is also the motivating

idea behind moving horizon estimation, which is the estimation dual of model predictive control. The fact

that these relatively well-established ideas were not known to us prior to the development of this technique

underscores a central theme of this thesis: namely, the need for better communication of shared ideas

among the various fields interested in the optimal estimation problem.

The novelty of our contributions are therefore based upon the following aspects. From an

analytical point of view, it unifies these existing algorithms with the discrete time embedding theorems,

and the notion of feedback-based control synchronization in the proxy space of time delays. However

despite their rather profound theoretical importance, these theorems are of limited use in practice since the

maps they generate are often too ill-conditioned to be inverted when observation noise present — which is

always.

Nevertheless, applying the methodology developed in Chap. (3) demonstrates quite clearly

how the use of time extended measurements reduces the effective observational requirements on the

system. Most notably, under near optimal conditions, the time delay extended Kalman filter (TD-EKF)

requires observing only 0.03D states of the Lorenz 96 system, up to D = 100. Under similar conditions,

time delay synchronization (TDVar-FB) requires only slightly more observations (0.06D). And when

observation noise is present, the two methods are indistinguishable. So TDVar-FB produces threshold

levels commensurate with the TD-EKF, without the additional O(D×D) overhead of the estimated

error covariance. This exceptional combination or observational and computational efficiency has likely

contributed to the popularity of fixed-lag SC-4DVar methods in applications such as operational weather

forecasting.

The inclusion of a time delay between observations appears to be beneficial, particularly when

observation noise is present. Lower thresholds are also obtained by reusing observations between subse-

quent analyses. Disjoint estimation windows, by contrast, did not show any improvement in observational

efficiency over the non-time-embedded case. Similar observations regarding the re-use of observations

were made by [25], although critical observability thresholds were not considered. Despite some inherent

tradeoffs, such as increased computational overhead and somewhat reduced noise filtering capability, the

reuse of data appears to improve the odds of success when the observations are spatiotemporally sparse.

This chapter connects the use of time extended observations in optimal estimation with discrete

time embedding theorems and attractor reconstruction techniques from nonlinear dynamics. The results
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provide evidence to support the claim that the use of time delayed observations is capable of reducing the

effective observability requirements of the system. Furthermore, the broad applicability of this approach

suggests that it may help guide the development of a new generation of estimation algorithms, which

targets problems with sparse observations. The next steps along this line of research will be to incorporate

these ideas into more modern algorithms, and determine their respective observability thresholds. For the

Ensemble Kalman Filter, this appears to already have been accomplished by [24, 25]. For particle filters

and related Gaussian mixture models, this has not yet been done, although the implicit framework laid out

by [37, 36] appears to be amenable for this task. To summarize the conclusions of [165], the combination

of these methods may permit using the power of particle methods for representing general multi-modal

densities, and the power of time delays for accurately tracking the locations of the modes.

5.4 A personal view on the future of estimation

The estimation problem is a fundamental challenge that touches a wide range of mathematical

and scientific disciplines. Yet its broad applicability poses some inherent problems in its dedicated study,

as it is increasingly difficult to get a global perspective on the problem that encompasses the full spectrum

of existing results. The number of new algorithms has exploded over the past few decades, but many of

these ideas are proposed without adequate comparison or connection to the broader base of literature. This

has made it difficult to determine a-priori which techniques are best for a given problem. And perhaps

more concerning, the stovepiped nature of these results has produced situation where the same idea gets

reinvented several times, within different contexts. As a newcomer to this field, I can attest to this from

personal experience.

This thesis begins the process of bringing together some of these shared ideas. In particular,

Chap. (2) revisits the classical theory of optimal estimation from a deterministic perspective, forging

new ties with Hamiltonian mechanics. Indeed, the parallels between estimation and physics are quite

extraordinary ([43]), with considerable overlap between many subfields, including: classical mechanics,

electromagnetism, as well as statistical and quantum mechanics. Estimation has always been an important

part of physics, particularly for model validation. While viewing the estimation problem as an extension

of the physics has potential to unlock a number of new research directions, as as noted by Mitter ([129]):

“it is best to proceed by analogy with care”. Concepts such as unitarity and causality, which play such

an important role in physics, may be irrelevant to estimation, as estimated state is not required to obey

physical laws. But the evidence presented here suggests that there are certain benefits to satisfying these
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constraints, at least approximately. And fully realizing these advantages requires a more comprehensive

understanding of their similarities and differences.

Furthermore, it is also apparent that the practical limits to observation, estimation, and prediction

are not well established. Moreover, the current theory, which is based largely on ideas from optimal control,

does not adequately resolve these limits. This issue was explored in Chap. (3) using a computational

framework that identifies these limits as a phase transition to a synchronized state. These thresholds can

be reduced to an extent — e.g., using time extended observations methods described in Chap. (4). But

even under near perfect conditions, there still appears to be a basic limit to our ability to observe, estimate,

and predict complex dynamical behavior. Understanding where this threshold lies with respect to our

current technological capability, and determining how best to address any shortcomings identified from

this analysis, will undoubtedly be of the utmost importance in the years to come.
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[17] VE Beneš. Exact finite-dimensional filters for certain diffusions with nonlinear drift. Stochastics:
An International Journal of Probability and Stochastic Processes, 5(1-2):65–92, 1981.

[18] Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded searching.
Information processing letters, 5(3):82–87, 1976.

[19] Tyrus Berry and Timothy Sauer. Adaptive ensemble kalman filtering of non-linear systems. Tellus
A, 65, 2013.

[20] J.T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming:
Second Edition. Advances in Design and Control. SIAM, 2010.

[21] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. The condition number for nonlinear
problems. In Complexity and Real Computation, pages 217–236. Springer, 1998.

[22] Hans Georg Bock and Karl-Josef Plitt. A multiple shooting algorithm for direct solution of optimal
control problems. Proceedings of the IFAC World Congress, 1984.

[23] Marc Bocquet, Karthik S Gurumoorthy, Amit Apte, Alberto Carrassi, Colin Grudzien, and Christo-
pher KRT Jones. Degenerate kalman filter error covariances and their convergence onto the unstable
subspace. arXiv preprint arXiv:1604.02578, 2016.

[24] Marc Bocquet and Pavel Sakov. Joint state and parameter estimation with an iterative ensemble
kalman smoother. Nonlinear Processes in Geophysics, 20(5):803–818, 2013.

[25] Marc Bocquet and Pavel Sakov. An iterative ensemble kalman smoother. Quarterly Journal of the
Royal Meteorological Society, 140(682):1521–1535, 2014.

[26] Hendrik Wade Bode and Claude Elwood Shannon. A simplified derivation of linear least square
smoothing and prediction theory. Proceedings of the IRE, 38(4):417–425, 1950.
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