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In this paper we propose an adaptive s
heduling approa
h designed to improve the performan
e of parallel

appli
ations in Computational Grid environments. A primary 
ontribution of our work is that our design is modular

and provides a separation of the s
heduler itself from the appli
ation-spe
i�
 
omponents needed for the s
heduling

pro
ess. As part of the s
heduler, we have also developed a sear
h pro
edure whi
h e�e
tively and eÆ
iently identi�es

desirable s
hedules.

As test 
ases for our approa
h, we sele
ted two appli
ations from the 
lass of iterative, mesh-based appli
ations.

For ea
h of the test appli
ations, we developed data mappers and performan
e models. We used a prototype of our

approa
h in 
onjun
tion with these appli
ation-spe
i�
 
omponents to perform validation experiments in produ
tion

Grid environments. Our results show that our s
heduler provides signi�
antly better appli
ation performan
e than


onventional s
heduling strategies. We also show that our s
heduler gra
efully handles degraded levels of availability of

appli
ation and Grid resour
e information. Finally, we demonstrate that the overheads introdu
ed by our methodology

are reasonable. This work evolved in the 
ontext of the Grid Appli
ation Development Software Proje
t (GrADS).

Our s
heduling approa
h is designed to be easily integrated with other GrADS program development tools.

Key Words: s
heduling, Grid 
omputing, programming environments, parallel 
omputing

1. INTRODUCTION

With vast improvements in wide-area network performan
e and the pervasiveness of 
ommodity resour
es,

distributed parallel 
omputing 
an bene�t from an in
reasingly ri
h 
omputational platform. However,

many fo
used development e�orts have shown that taking advantage of these Computational Grid environ-

ments [19℄ for s
ienti�
 
omputing requires extensive labor and support by distributed 
omputing experts.

Grid infrastru
ture proje
ts [18, 21, 27℄ have provided many of the servi
es needed for Grid 
omputing;

these middleware servi
es help redu
e programmer e�ort and 
an improve appli
ation performan
e on these

platforms. However, su
h middleware generally does not a

ount for the spe
i�
 needs of appli
ations. For

example, ea
h appli
ation has unique resour
e requirements whi
h must be 
onsidered in s
heduling the

This material is based upon work supported by the National S
ien
e Foundation under Grant #9975020.
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appli
ation on Grid resour
es. More generally, if a programmer wants to take advantage of Computational

Grids, they are responsible for all transa
tions that require knowledge of the appli
ation at hand; examples

in
lude dis
overing resour
es, sele
ting an appli
ation-appropriate subset of those resour
es, staging binaries

on sele
ted ma
hines, and, for long-running appli
ations, monitoring appli
ation progress. While many s
i-

entists 
ould bene�t from the extensive resour
es o�ered by Computational Grids, appli
ation development

remains a daunting proposition.

One solution is to develop software that frees the user of these responsibilities. The Grid Appli
ation

Development Software (GrADS) Proje
t [7℄ seeks to provide su
h a solution by developing a 
omprehensive

programming environment that expli
itly in
orporates appli
ation 
hara
teristi
s and requirements in ap-

pli
ation development de
isions. The end goal of this proje
t is to provide an integrated Grid appli
ation

development solution that in
orporates a
tivities su
h as 
ompilation, s
heduling, staging of binaries and

data, appli
ation laun
h, and monitoring of appli
ation progress during exe
ution.

In this paper, we are interested spe
i�
ally in the s
heduling pro
ess required for su
h a system. The

GrADS design [7, 25℄ assigns the s
heduler the responsibility for dis
overy of available resour
es, the sele
tion

of an appli
ation-appropriate subset of those resour
es, and the mapping of data or tasks onto sele
ted

resour
es. Appli
ation s
hedulers have long been 
onsidered an important tool for usage of Computational

Grids [6℄. In fa
t, many proje
ts have developed su

essful s
heduling strategies for the Grid [1, 2, 3, 8, 9, 32,

33, 37, 40, 41℄. Most of these s
hedulers in
orporate the spe
i�
 needs of appli
ations in s
heduling de
isions,

and would therefore seem to ful�ll the design requirements of a s
heduler in GrADS. However, if the GrADS

solution is to be easy to apply in a variety of appli
ation-development s
enarios, the s
heduler must be

easily applied to a variety of appli
ations. Unfortunately, most of the s
hedulers mentioned previously have

been developed for one appli
ation or for a spe
i�
 
lass of appli
ations, and the designs are generally not

easily re-targeted for other appli
ations or 
lasses. The diÆ
ulty in re-targeting su
h designs arises from the

fa
t that appli
ation-spe
i�
 details or 
omponents are generally embedded in the s
heduling software itself.

Given su
h a design, it 
an be diÆ
ult to determine whi
h 
omponents need to be repla
ed to in
orporate

the needs of the new appli
ation.

In this paper we propose a modular s
heduling approa
h that expli
itly separates general-purpose s
hedul-

ing 
omponents from the appli
ation-spe
i�
 
omponents needed for the s
heduling pro
ess. Spe
i�
ally,

appli
ation requirements and 
hara
teristi
s are en
apsulated in a performan
e model (an analyti
al metri


for the performan
e expe
ted of the appli
ation on a given set of resour
es) and a data mapper (dire
-

tives for mapping logi
al appli
ation data or tasks to physi
al resour
es). The 
ore of the s
heduler is

a general-purpose s
hedule sear
h pro
edure whi
h e�e
tively and eÆ
iently identi�es desirable s
hedules.

Our s
heduler provides a framework in whi
h the s
hedule sear
h pro
edure 
an be used in 
onjun
tion with

an appli
ation-spe
i�
 performan
e model and mapper to provide s
heduling de
isions that are appropriate

to the needs of the appli
ation.

As test 
ases for our approa
h, we sele
ted two appli
ations from the 
lass of iterative, mesh-based ap-
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pli
ations. For ea
h of the test appli
ations, we developed data mappers and performan
e models. We used

a prototype of our approa
h in 
onjun
tion with these appli
ation-spe
i�
 
omponents to perform valida-

tion experiments in produ
tion Grid environments. Our results demonstrate that our s
heduler provides

signi�
antly better appli
ation performan
e than 
onventional s
heduling strategies. We also show that our

s
heduler gra
efully handles degraded levels of availability of appli
ation and Grid information. Finally, we

demonstrate that the overheads introdu
ed by our methodology are reasonable.

We do not expe
t that general-purpose software will a
hieve the performan
e of a highly-tuned appli
ation-

spe
i�
 s
heduler; instead, the goal is to provide 
onsistently improved performan
e relative to 
onventional

s
heduling strategies. The primary 
ontributions of our work are as follows.

i. Our approa
h is modular and 
an be easily instantiated for other appli
ations.

ii. Our s
heduler gra
efully handles degraded levels of availability of appli
ation and Grid information

iii. Our s
heduler simpli�es usage of the Grid by automating the s
heduling pro
ess. Furthermore, as


ompared to 
onventional approa
hes su
h as user-dire
ted s
heduling, our approa
h provides improved

appli
ation performan
e and redu
ed failure rates in produ
tion Grid environments.

iv. Although our s
heduler 
an fun
tion in a stand-alone fashion (and is validated as su
h in the exper-

iments presented in this paper), it is in fa
t an integrated 
omponent of the GrADS system. The

s
heduler des
ribed in this paper was the �rst prototype s
heduling 
omponent developed in GrADS

for usage with multiple appli
ations.

This paper is organized as follows. In Se
tion 2 we des
ribe the s
heduler design itself. Se
tion 3 details

two test appli
ations and presents performan
e model and mapper designs for ea
h. In Se
tion 4 we present

the results we obtained when applying our methodology in Computational Grid environments. In Se
tion 5

we des
ribe related and future work, and then we 
on
lude the paper.

2. SCHEDULING

This se
tion des
ribes our s
heduler design. To provide 
ontext for the rest of this se
tion, we des
ribe

the s
heduling s
enario we address.

Our s
heduling s
enario begins with a user who has an appli
ation and wishes to s
hedule that appli
ation

on Computational Grid resour
es. The appli
ation is parallel and may involve signi�
ant inter-pro
ess


ommuni
ation. The target Computational Grid 
onsists of heterogeneous workstations 
onne
ted by lo
al-

area networks (LANs) and/or wide-area networks (WANs). The user may dire
tly 
onta
t the s
heduler to

submit the s
heduling request, or an intermediary, su
h as another 
omponent of the GrADS system, will


onta
t the s
heduler to submit the user's request. In either 
ase, we assume that the goal of the s
heduling

pro
ess is to �nd a s
hedule whi
h minimizes total turnaround time (s
heduling time + appli
ation run-
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time). The sele
ted s
hedule will be used without modi�
ation throughout appli
ation exe
ution (we do not


onsider res
heduling).

2.1. Ar
hite
ture

Figure 1 presents the primary 
omponents of our s
heduler and the intera
tions among those 
omponents.

We provide this �gure as a referen
e for the rest of the paper; we do not expe
t that all 
omponents or

intera
tions will be 
ompletely 
lear at this point.

Final
 Schedule 

  Grid  
Info

  Mach  
List

  Prob  
Info

Mapper

Perf
Model

User

NWS

MDS

Search
Procedure

FIG. 1 S
heduler design.

The Sear
h Pro
edure is the 
ore of the s
heduler. This pro
edure is responsible for sear
hing for

s
hedules whi
h are appropriate to the target appli
ation. A s
hedule 
onsists of an ordered list of ma
hines

and a mapping of data or tasks to those ma
hines. The Sear
h Pro
edure is responsible for �nding the \best"

s
hedule (Final S
hedule in Figure 1).

Before submitting an appli
ation to the s
heduler, the user must obtain or develop the following appli
ation-

spe
i�
 
omponents.

� The performan
e model is a pro
edure 
all whi
h provides a predi
tion of appli
ation performan
e on

a given set of resour
es. There are a variety of performan
e metri
s that might be used for s
heduling;
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in this se
tion we assume that the performan
e model will predi
t appli
ation exe
ution time.

� The mapper is a pro
edure 
all whi
h maps logi
al appli
ation data or tasks to physi
al resour
es.

For ea
h ma
hine in the s
hedule, the mapper must de�ne whi
h pie
e of the appli
ation data will be

assigned to that pro
essor.

These 
omponents are appli
ation-spe
i�
, but run-generi
. In ea
h appli
ation run, the user de�nes prob-

lem parameters su
h as problem size. The performan
e model and mapper are then instantiated with this

information to make them appropriate to the 
urrent problem run. We des
ribe several appli
ation-spe
i�


performan
e models and mappers in Se
tion 3; in this se
tion we simply assume that su
h 
omponents are

available.

The user must also submit a ma
hine list 
ontaining ma
hine names that the user has a

ess to; we

forgo further dis
ussion of this list until Se
tion 2.4. For ea
h ma
hine in the ma
hine list, we 
olle
t

resour
e information su
h as CPU speed, available physi
al memory, and bandwidth between hosts. This

information is retrieved from resour
e information providers su
h as the Network Weather System (NWS)

and the Meta
omputing Dire
tory Servi
e (MDS); we dis
uss these servi
es in Se
tion 2.4.

2.2. Sear
h Pro
edure

The s
hedule sear
h pro
edure is the 
ore of the s
heduling methodology. The goal of the sear
hing

pro
ess is to �nd groups of ma
hines that 
ould prove performan
e-eÆ
ient platforms for the appli
ation;

we 
all these groups 
andidate ma
hine groups (CMGs). To �nd 
orresponding 
andidate s
hedules,

the sear
h pro
edure identi�es CMGs and generates a data map for ea
h one. A performan
e model is then

used to sele
t the best 
andidate s
hedule.

The most straightforward approa
h for the sear
h pro
ess is an exhaustive sear
h over all possible groups

of ma
hines (ignoring permutations sin
e ordering is de�ned by the mapper). For larger resour
e set sizes or

even moderately 
omplex performan
e models and mappers, su
h a sear
h is not feasible. A pra
ti
al sear
h

pro
edure must therefore use extensive but 
areful pruning of the sear
h spa
e.

Pseudo-
ode for our s
hedule sear
h pro
edure is given in Figure 2. In ea
h for loop the list of target

CMGs is re�ned based on a di�erent resour
e set 
hara
teristi
: 
onne
tivity in the outer-most loop, 
om-

putational and memory 
apa
ity of individual ma
hines in the se
ond loop, and sele
tion of an appropriate

resour
e set size in the inner-most loop. The goal is to generate only a moderate number of CMGs while

ensuring that we do not ex
lude performan
e-eÆ
ient CMGs.

The �rst step of our sear
h pro
edure is to 
all the FindSitesmethod; this method takes a list of ma
hines

and organizes them into disjoint subsets, or sites, su
h that the network delays within ea
h subset are lower

than the network delays between subsets. As a �rst implementation, we group ma
hines into the same site if

they share the same domain name; we plan to 
onsider more sophisti
ated approa
hes [34, 28, 39℄ in future

work. The ComputeSiteColle
tions method 
omputes the power set of the set of sites (we ex
lude the

5



Algorithm : S
heduleSear
h(ma
hList; gridInfo; PerfModel;Mapper)

sites FindSites(ma
hList)

siteColle
tions ComputeSiteColle
tions(sites)

for ea
h 
olle
tion in siteColle
tions

for ea
h sortMetri
 in (
omputation;memory; dual)

for targetSize 1 to size(
olle
tion)

CMG FindBest(
olle
tion; sortMetri
; targetSize)

dataMap Mapper(CMG; gridInfo)

if map == V ALID


urrS
hed = GenerateS
hedule(CMG; dataMap)

if S
heduleCompare(
urrS
hed; bestS
hed; PerfModel) == FirstIsBetter

bestS
hed 
urrS
hed

return (bestS
hed)

FIG. 2: S
hedule sear
h pro
edure.

null set). As an example, for the set of sites fA, B, Cg, there are seven site 
olle
tions: fA, B, C, A [ B, A

[ C, B [ C, A [ B [ Cg. On
e all of the ma
hine 
olle
tions have been identi�ed, the outer-most loop of

the sear
h pro
edure examines ea
h one in turn.

In themiddle loop of the sear
h pro
edure, we seek to identify ma
hines that exhibit high lo
al memory

and 
omputational 
apa
ities. Generally we will not know a priori whi
h ma
hine 
hara
teristi
s will have

the greatest impa
t on appli
ation performan
e; we therefore de�ne three metri
s that are used to sort

the ma
hine list: the 
omputation metri
 emphasizes the 
omputational 
apa
ity of ma
hines, the memory

metri
 emphasizes the lo
al memory 
apa
ity of ma
hines, and the dual metri
 pla
es equal weight on ea
h

fa
tor.

The inner-most loop exhaustively sear
hes for an appropriately-sized resour
e group. Resour
e set

size sele
tion is 
omplex be
ause it depends on problem parameters, appli
ation 
hara
teristi
s, and detailed

resour
e 
hara
teristi
s. Rather than miss potentially good resour
e set sizes based on poor predi
tions, we

in
lude all resour
e set sizes in the sear
h. As will be des
ribed momentarily, an appli
ation performan
e

model 
an then be used to sele
t amongst di�erent s
hedules. Note that an exhaustive sear
h at this level of

the pro
edure is only feasible due to the extensive pruning performed in the �rst two loops. The FindBest

method sorts the input ma
hine list 
olle
tion by the ma
hine type metri
 and returns the best targetSize

number of ma
hines.

Next, the mapper is 
alled to obtain a data map for the 
urrent CMG; sin
e the mapping pro
ess is

typi
ally dependent on 
hara
teristi
s of the target resour
e group, gridInfo is in
luded as a parameter to the

mapper. If the mapper is unable to �nd a feasible mapping due to 
onstraints su
h as lo
al ma
hine memory


apa
ities, the 
urrent CMG is skipped and the sear
h pro
ess 
ontinues. If the returned map is valid, then

GenerateS
hedule 
ombines the map and the CMG to form a s
hedule. Finally, the S
heduleCompare
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method is 
alled to 
ompare the 
urrent s
hedule with the best s
hedule dis
overed by the sear
h so far.

The exa
t 
omparison me
hanism depends on what type of performan
e model is available. By default,

we assume that the performan
e model provides exe
ution time predi
tions; the default S
heduleCompare

therefore returns the s
hedule with the lowest predi
ted exe
ution time.

2.3. Sear
h 
omplexity

The most straightforward s
hedule sear
h method is an exhaustive sear
h; su
h a sear
h is guaranteed

to identify the optimal CMG. However, for a resour
e pool of size p, the sear
h must examine a number of

CMGs equal to:

numCMGs =

p

X

k=1

p!

k!(p� k)!

= 2

p

: (1)

For example, a s
hedule sear
h for a 30 ma
hine resour
e group would require evaluation of 2

30

� 10

9

CMGs.

For a reasonably sized resour
e set and/or when the performan
e model evaluation or mapping pro
ess is

time intensive, an exhaustive sear
h is simply too 
ostly.

In the vast majority of 
ases, our sear
h pro
edure provides an impressive redu
tion in sear
h spa
e. To

demonstrate this we develop a loose upper bound on the number of CMGs 
onsidered by the sear
h

heuristi
. Assuming we have s sites in the resour
e set under 
onsideration, we obtain 2

s

site 
olle
tions

(in fa
t, we ex
lude the null-set leaving 2

s

� 1 su
h 
olle
tions). We 
onsider three resour
e orderings for

ea
h 
olle
tion (
omputation, memory, and dual). Given these 3 � 2

s

ordered 
olle
tions, we exhaustively

sear
h all possible subset sizes for ea
h. Sin
e the number of resour
es in ea
h site, and therefore in ea
h

topology-based 
olle
tion, is dependent on the 
hara
teristi
s of ea
h Grid environment, we 
an not predi
t

a priori the number of resour
es in ea
h of the 3�2

s

ordered 
olle
tions. As an upper bound, we assume ea
h


olle
tion is of size p, the size of the entire resour
e pool. Then, in the third loop of our sear
h pro
edure,

p distin
t subsets will be generated for ea
h ordered 
olle
tion. The upper bound on the total number of

CMGs identi�ed by the sear
h pro
edure is therefore 3p2

s

. Re
all our earlier example of a 30 ma
hine set;

the exhaustive sear
h required evaluation of 10

9

CMGs in this 
ase. Supposing this resour
e set in
luded 3

sites, our sear
h pro
edure would require evaluation of at most 720 CMGs. In fa
t, if we assume 10 ma
hines

in ea
h of the 3 sites, our sear
h pro
edure requires evaluation of only 360 CMGs.

The improvement gained from our methodology will be greatest when the number of sites under 
onsid-

eration is signi�
antly less than the number of ma
hines, whi
h is the 
ase in the vast majority of modern

Grids.
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2.4. Use of Grid information

Computational Grids are highly dynami
 environments where 
ompute and network resour
e availability

varies and Grid information sour
es 
an be periodi
ally unstable. We strive to provide best-e�ort servi
e

by supporting multiple information sour
es, when possible, for ea
h type of information required by the

s
heduler.

We 
urrently support information 
olle
tion from the two most widely used Grid resour
e information

systems, the Meta
omputing Dire
tory Servi
e (MDS) [10℄ and the Network Weather Servi
e (NWS) [43℄.

TheMDS is a Grid information management system that is used to 
olle
t and publish system 
on�guration,


apability, and status information. Examples of the information that 
an typi
ally be retrieved from an

MDS server in
lude operating system, pro
essor type and speed, number of CPUs available, and software

availability and installation lo
ations. The NWS is a distributed monitoring system designed to tra
k and

fore
ast resour
e 
onditions. Examples of the information that 
an typi
ally be retrieved from an NWS server

in
lude the fra
tion of CPU available to a newly started pro
ess, the amount of memory that is 
urrently

unused, and the bandwidth with whi
h data 
an be sent to a remote host.

Our s
heduling methodology 
an utilize several types of resour
e information: a list of ma
hines available

for the run, lo
al 
omputational and memory 
apa
ities for ea
h ma
hine, and network bandwidth and

laten
y information. The list of ma
hines is 
urrently obtained dire
tly from the user; on
e se
ure MDS

publishing me
hanisms are available, user a

ount information 
an be published dire
tly in the MDS and

retrieved automati
ally by the s
heduler. Lo
al ma
hine 
omputational and memory 
apa
ity data are used

to sort ma
hines in our sear
h pro
edure and will be needed as input to many performan
e model and

mapper implementations. Network bandwidth and laten
y data will similarly be required as input to many

performan
e model and mapper implementations.

An important 
hara
teristi
 of our approa
h is that the s
heduler gra
efully 
opes with degraded Grid

information availability. Whenever possible we support more than one sour
e for ea
h type of resour
e

information required by the s
heduler. Furthermore, when a parti
ular type of information is not available

for spe
i�
 ma
hines in the ma
hine list, but is required by the s
heduler, the s
heduler gra
efully ex
ludes

those ma
hines from the sear
h pro
ess. In our experien
e, most appli
ation s
hedulers do not gra
efully

handle su
h situations, leading to many s
enarios in whi
h the s
heduler fails.

3. APPLICATION CASE STUDIES

In this se
tion we des
ribe spe
i�
 appli
ations that we used to demonstrate our s
heduling methodology

in validation experiments. As required by our s
heduling methodology, we develop performan
e models and

mapping strategies for ea
h appli
ation.

For ea
h appli
ation, we develop a performan
e model that predi
ts both exe
ution time and memory

usage. We also present a strategy for 
omparing 
andidate s
hedules in the absen
e of an exe
ution time

8



model; this strategy demonstrates that our s
heduling framework 
an be adjusted to a

ommodate alternative

performan
e metri
s or types of performan
e model. We also implement two mappers that 
an be applied to

our test appli
ations: a time balan
e mapper, whi
h 
an be used when an exe
ution time model is available,

and an equal allo
ation mapper, whi
h 
an be applied when appli
ation information is limited to a memory

usage model.

3.1. Case study appli
ations

We have 
hosen appli
ations from the 
lass of regular, iterative, mesh-based appli
ations as they are

important in many domains of s
ien
e and engineering [14, 15, 20, 5℄. Spe
i�
ally, we fo
us on the Game of

Life and Ja
obi. We have sele
ted these appli
ations as our initial test 
ases be
ause they are well-known,

straightforward to des
ribe, and share many performan
e 
hara
teristi
s with other appli
ations.

Conway's Game of Life is a well-known binary 
ellular automaton whereby a �xed set of rules are used

to determine a next generation of 
ells based on the state of the 
urrent generation [14℄. A two-dimensional

mesh of pixels is used to represent the environment, and ea
h pixel of the mesh represents a 
ell. In ea
h

iteration, the state of every 
ell is updated with a 9-point sten
il. We use a 1-D strip data partitioning

strategy be
ause this strategy typi
ally exhibits lower 
ommuni
ation 
osts than other partitioning s
hemes,

an important 
onsideration for Grid 
omputing. Ea
h pro
essor manages a data strip and de�nes a 1-pixel

wide set of ghost-
ells along data grid edges. Ea
h iteration 
onsists of a 
omputational phase in whi
h

pro
essors update their portion of the data array, and a 
ommuni
ation phase in whi
h pro
essors swap

ghost 
ell data with their neighbors.

The Ja
obi method is a simple algorithm that is often used in the 
ontext of Lapla
e's equation [5, 31℄.

Here we des
ribe the general linear system solver version, whi
h involves more 
ommuni
ation (broad
asts).

The method attempts to solve a square linear system Ax = b with the following iteration formula:

x

k+1

j

=

1

a

jj

(b

j

�

X

i 6=j

a

ji

x

k

i

)

where x

k

j

is the value of the j

th

unknown at the k

th

iteration. This method is guaranteed to 
onverge only

if matrix A is diagonally dominant.

A popular parallel data de
omposition for the Ja
obi method is to assign a portion of the unknown ve
tor

x to ea
h pro
essor where pro
essors need only store re
tangular sub-matri
es of A. Ea
h pro
essor 
omputes

new results for its portion of x, and then broad
asts its updated portion of x to every other pro
essor. The

�nal phase in ea
h iteration is a termination dete
tion phase. The method is stationary, meaning that the

matrix A is �xed throughout the appli
ation.

We implemented ea
h test appli
ation as a SPMD-style 
omputation using C and the Message Passing

Interfa
e (MPI) [30℄. To allow load-balan
ing we implemented support for irregular data partitions in both

9



appli
ations. We used the Globus-enabled version of MPICH [22, 23℄, MPICH-G [16, 17℄, in order to run

over a Computational Grid testbed.

3.2. Appli
ation performan
e modeling

Our s
heduling framework is dependent on the availability of a performan
e model. The S
heduleCompare

method des
ribed in the previous se
tion assumes a performan
e model that predi
ts appli
ation exe
ution

time. Ultimately, su
h performan
e models may be automati
ally generated by the 
ompiler in the GrADS

framework. For the moment, we develop su
h a performan
e model for Ja
obi and the Game of Life. We

also develop a memory usage model, whi
h will be required for the mapper dis
ussion in Se
tion 3.4.

Although both appli
ations support re
tangular data grids, we assume that the full data mesh is a 2-

dimensional square. We use the following de�nitions in the rest of this se
tion. We refer to the size of either

dimension of the data mesh as N ; note that the number of data elements, and therefore the amount of

work, grows as N

2

. We refer to the pro
essors 
hosen for exe
ution as P

0

; :::; P

p�1

and the size of the data

partitions allo
ated to ea
h pro
essor as n

0

; :::; n

p�1

.

3.2.1. Memory usage model

Given the magnitude of performan
e degradation due to paging of memory to disk, we must ensure that

the appli
ation �ts within the available memory of the pro
essors sele
ted for exe
ution. We 
ompute the

amount of memory (in bytes) required for a data strip of size N x n

i

as:

memReq

i

= memUnit� n

i

�N; (2)

where memUnit is the number of bytes of storage that will be allo
ated per element of the data domain. The

Game of Life allo
ates 2 matri
es of integers and Ja
obi allo
ates 1 matrix of doubles. For the ar
hite
tures

we targeted in this paper, 4 bytes are allo
ated per integer and 8 bytes are allo
ated per double. Therefore,

we use memUnit = 8 for both appli
ations.

Re
all that lo
al pro
essor available memory, mem

i

, availability 
an be supplied by total physi
al memory

values from the MDS [10℄ or free memory values from the NWS [43℄. In pra
ti
e, a 
lose mat
h of memReq

i

and mem

i

provides an overly tight �t due to additional memory needed by the appli
ation and to memory


ontention with system or \small" user pro
esses. Based on early experimental results and memory usage

ben
hmarks, in
reasingmemReq

i

by 20% provides a reasonable tradeo� for the GrADS Computational Grid

environment [7℄.

3.2.2. Exe
ution time model

Given that we target regular, syn
hronous iteration appli
ations, the appli
ation exe
ution time 
an be

assumed proportional to the iteration time on the slowest pro
essor. The iteration time on pro
essor P

i

is

10



naturally modeled as the sum of a 
omputation time and a 
ommuni
ation time:

itT ime

i

= 
ompT ime

i

+ 
ommTime

i

: (3)

The 
omputation phase for our test appli
ations primarily 
onsists of the data update pro
ess in ea
h

iteration and may in
lude a termination dete
tion operation (e.g. for Ja
obi). We model 
omputation time

on pro
essor P

i

as:


ompT ime

i

=


ompUnit � n

i

�N

10

6

� 
omp

i

; (4)

where 
ompUnit is the number of pro
essor 
y
les performed by the appli
ation per element of the data

domain. The 
omputational 
apa
ity of pro
essor P

i

, 
omp

i

, 
an be represented by raw CPU speed (from

the MDS) and the 
urrently available CPU (from the NWS), or a 
ombination thereof. To fully instantiate

this model, we need to determine an appropriate 
ompUnit value for ea
h 
ase study appli
ation. Rather

than using methods su
h as sour
e 
ode or assembly 
ode analysis, we opted for an empiri
al approa
h:

we ran appli
ations on dedi
ated resour
es of known CPU speed for 100 iterations and 
omputed average


ompUnit values.

The Game of Life 
ommuni
ation phase 
onsists of the swapping of ghost 
ells between neighboring

ma
hines. We use non-blo
king sends and re
eives, and, in theory, all of the messages in ea
h iteration


ould be overlapped. In pra
ti
e, however, pro
essors 
an not simultaneously parti
ipate in four message

transfers at on
e without a redu
tion in performan
e for ea
h message and, more importantly, pro
essors do

not rea
h the 
ommuni
ation phase of ea
h iteration at the same moment. As an initial approximation, we

assume that messages with a parti
ular neighbor 
an be overlapped, but that 
ommuni
ation with di�erent

neighbors o

urs in distin
t phases whi
h are serialized.

The Ja
obi 
ommuni
ation phase involves a series of p broad
asts per iteration; ea
h ma
hine in the


omputation is the root of one of these broad
asts. In the MPI implementation we used in this work, the

broad
ast is implemented as a binomial tree [4℄. As a �rst approximation to modeling this 
ommuni
ation

stru
ture, we 
al
ulate the average message time, msgT ime

avg

, and 
al
ulate the 
ommuni
ation time on

pro
essor P

i

as


ommTime

i

= p � log

2

(p) �msgT ime

avg

: (5)

Our Game of Life and Ja
obi 
ommuni
ation models ea
h depend on a model for the 
ost of sending

a message between two ma
hines. We initially opted for the simple and popular laten
y/bandwidth model

for a message sent from P

i

to P

j

:

msgT ime

i;j

= laten
y

i;j

+msgSize=bandwidth

i;j

; (6)

11



where laten
y and bandwidth measurements and fore
asts are provided by the NWS. However, we observed

that this model signi�
antly over-estimates the message transfer times of our appli
ations. We found that a

bandwidth-only model (laten
y = 0) led to mu
h better predi
tions, possibly be
ause of NWS measurement

te
hniques, MPI implementation, and network topologies. In the rest of the paper we use the more a

urate

bandwidth-only model.

3.3. Alternative performan
e models and metri
s

In Se
tion 2 we presented our s
heduling methodology with the assumption that an appli
ation-spe
i�


performan
e model would be available. What if one wanted to use a di�erent performan
e metri
 or a

di�erent performan
e model? Due to the modularity of our s
heduling approa
h, the only 
omponent that

needs to be modi�ed is the S
heduleCompare method implementation (see Figure 2).

As an example, suppose a memory usage model is available, but an exe
ution time model is not. The

memory usage information will be used by the mapper (see Se
tion 3.4) to ensure that 
andidate s
hedules

ful�ll appli
ation memory requirements. An alternative to a performan
e model for the purpose of s
hedule


omparisons is a series of heuristi
s that evaluate how well the 
andidate s
hedules satisfy a set of broad

resour
e requirements su
h as bandwidth or 
omputational 
apa
ity. Figure 3 presents a de
ision tree we've

employed to implement su
h a series of simple heuristi
s. This de
ision tree is appropriate for Ja
obi and

the Game of Life and will be used in validation experiments in Se
tion 4.

3.4. Appli
ation data mappers

The fun
tion of the mapper is to determine an appropriate mapping of work (i.e. strip widths n

0

; :::; n

p�1

)

onto pro
essors (P

0

; :::; P

p�1

). The mapping pro
ess involves two distin
t subproblems. The �rst problem is

to determine a topologi
al arrangement of ma
hines (e.g. whi
h physi
al pro
essor should be assigned to

logi
al pro
essor position P

0

) su
h that appli
ation 
ommuni
ation 
osts are minimized. The se
ond problem

is to �nd an allo
ation of work to pro
essors (e.g. how many rows of the data mesh should be assigned to

pro
ess P

0

) su
h that appli
ation resour
e-requirements are met and, when possible, appli
ation exe
ution

time is minimized.

In the following se
tions we present two mappers: an equal allo
ation mapper and a time balan
e mapper.

3.4.1. Equal allo
ation mapper

In this mapper, work is simply allo
ated uniformly to all pro
essors su
h that ea
h is assigned an equally

sized data strip of size N=p and the number of pixels assigned to ea
h pro
essor is N �N=p. Before returning

this data map, the mapper veri�es that ea
h pro
essor has suÆ
ient lo
al memory to support the appli
ation's

memory requirements. When at least one pro
essor does not have suÆ
ient memory, the mapper returns an

error. In the s
heduling 
ontext presented in Se
tion 2, the 
urrent ma
hine group is removed from the list

of CMGs and the sear
h pro
ess 
ontinues.
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Do we have more complete resource 
info for one of the schedules? 

Yes, S2Yes, S1

Equivalent

Return
Second

Is Better

Return
First
Is Better

Is effective bandwidth higher 
for one of the schedules?

(BW = min BW of any link in the schedule)

Yes, S1

Equivalent

Does one schedule require
fewer resources?

Yes, S2

Is effective computational capacity 
higher for one of the schedules?

(power = min comp. capacity of any 
resource in the schedule)

Equivalent

Yes, S1 Yes, S2

Yes, S1 Yes, S2

Equivalent

ScheduleCompare(s1,s2)

FIG. 3 An alternative s
hedule 
omparison design. This design employs a series of 
omparison heuristi
s in

pla
e of an exe
ution time model.

13



This mapper requires only a memory usage model and not a full exe
ution time model. In produ
tion

Grid s
heduling systems we expe
t there will be many appli
ations for whi
h a full performan
e model is

not available. In su
h a 
ase, our s
heduling methodology 
an still be applied by pairing it with the equal

allo
ation mapper and the alternative performan
e model presented in the pre
eding se
tion. We explore

su
h a s
enario in Se
tion 4.

3.4.2. Time balan
e mapper

For regular, syn
hronous iteration appli
ations, appli
ation exe
ution time is limited by the progress of

the slowest pro
essor. Total exe
ution time 
an be minimized by �nding a data map for whi
h all pro
essors


omplete their work in ea
h iteration at the same time, thereby minimizing syn
hronization times. The goal

of the time balan
e mapper is to �nd su
h a data map while ensuring that appli
ation memory requirements

are met. Our approa
h is to formalize ma
hine resour
e availabilities, appli
ation memory requirements, and

exe
ution time 
onsiderations as a series of 
onstraints. Work-allo
ation 
an then be framed as a 
onstrained

optimization problem; the solution is a map of data strip widths to pro
essors. We �rst des
ribe the general

operation of the mapper, and then des
ribe our formalization of the problem.

When 
alled, the time balan
e mapper �rst veri�es that the aggregate memory of the CMG is suÆ
ient

for the aggregate requirements of the 
urrent appli
ation problem. If not, the mapper does not attempt to

�nd a data map and returns an error. If the CMG has suÆ
ient aggregate memory, the mapper sear
hes for

a perfe
tly time-balan
ed data map; if found, the map is returned. Sometimes, one or more ma
hines do not

have suÆ
ient lo
al memory to satisfy the memory requirements of a perfe
tly time balan
ed map. In this


ase, the mapper relaxes the time balan
e 
onstraints to seek an alternative map whi
h satis�es memory

requirements. The mapper uses a binary sear
h to �nd the map that provides the best time balan
e while

satisfying appli
ation memory requirements. The parameters of the binary sear
h are 
on�gurable; default

values are provided as follows. The default maximum relax fa
tor is 10, meaning that for an a

eptable map,

predi
ted iteration time on the slowest pro
essor is no more than 10 times the predi
ted iteration time on

the fastest pro
essor. The default sear
h toleran
e is 0.01, meaning that the sear
h re�nement ends when

the relax fa
tor 
hanges by less than 0.01 between sear
h steps.

We now brie
y des
ribe our spe
i�
ation of this problem as a 
onstrained optimization problem; see [11℄

for a thorough explanation and [13, 36℄ for previous work that applied a similar solution for the data mapping

problem. The unknowns are the strip widths to be assigned to ea
h pro
essor: n

0

; :::; n

p�1

. Sin
e strip widths

are 
onstrained to integer values, the problem 
an be framed as an integer programming problem [42℄.

Unfortunately, the integer programming problem is NP-
omplete, rendering the solution 
omputationally

expensive to 
ompute and una

eptable for use in our s
heduling methodology. We use the more eÆ
ient

alternative of real-valued linear programming solvers [42℄ (spe
i�
ally, we used the lp solve pa
kage whi
h is

based on the simplex method). Although using a real-valued solver for an integer problem introdu
es some

error, it provides suÆ
ient a

ura
y for our needs.
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The problem formulation begins with the spe
i�
ation of an obje
tive fun
tion. Sin
e it is impossible

to express our true obje
tive in a linear formulation, we instead minimize the 
omputation time on P

0

(see Se
tion 3.2.2 for our 
omputation time model); later we spe
ify 
onstraints whi
h ensure that the

other pro
essors are time-balan
ed with P

0

. Next, we spe
ify bounds on the unknown variables: ea
h

pro
essor should be assigned a non-negative number of mesh rows not to ex
eed the total number of rows

N : 8i 2 f0 : p � 1g; 0 � n

i

� N . The rest of the spe
i�
ation is in the form of 
onstraints. First, the

total number of data mesh rows allo
ated must be equal to N :

P

p�1

i=0

n

i

= N . Next, the data allo
ated to

ea
h pro
essor must �t within that pro
essor's lo
al memory: 8i 2 f0 : p� 1g;memUnit �N � n

i

� mem

i

;

refer to Se
tion 3.2.1 for our memory usage model. Finally, we spe
ify that ea
h pro
essor's predi
ted

iteration time should equal P

0

's predi
ted iteration time: 8i 2 f1 : p � 1g; jitT ime

i

� itT ime

0

j = 0. We

add support for relaxation of time balan
ing requirements with relax fa
tor R and the 
onstraint be
omes:

8i 2 f1 : p � 1g; jitT ime

i

� itT ime

0

j � R � itT ime

0

. After in
orporating details from our exe
ution time

model (see Se
tion 3.2.2), re-arranging, and using two inequalities to spe
ify an absolute value, our last two

sets of 
onstraints are:

8i 2 f1 : p� 1g;� (1 +R) � 
ompT ime

0

+ 
ompT ime

i

� (1 +R) � 
ommTime

0

� 
ommTime

i

(7)

8i 2 f1 : p� 1g;(1�R) � 
ompT ime

0

� 
ompT ime

i

� (�1 +R) � 
ommTime

0

+ 
ommTime

i

(8)

3.5. Validation results

As des
ribed in Se
tion 2, our s
heduler typi
ally utilizes a performan
e model to 
ompare 
andidate

s
hedules. The ability of our s
heduler to sele
t the \best" s
hedule is therefore dire
tly tied to the predi
tion

a

ura
y of the performan
e model.

We performed a suite of validation experiments for the exe
ution time model we des
ribed in Se
tion 3.2.

The goal of these experiments was to 
ompare predi
ted appli
ation performan
e (predT ime) with a
tual

appli
ation performan
e (a
tualT ime). We 
al
ulate the predi
tion error as:

predError = 100 �

predT ime� a
tualT ime

a
tualT ime

: (9)

We do not have spa
e here to fully des
ribe our experimental design; a full explanation is available in [11℄.

We tested model a

ura
y for both the Ja
obi and the Game of Life appli
ations on both a single site testbed
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and a three site testbed (see Se
tion 4.1 for details). In total, we obtained 344 
omparisons of a
tual and

predi
ted times. A histogram of the predi
tion errors we measured in those experiments is shown in Figure 4.

−100 −50 0 50 100 150
0
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20

30

40

50

60

70
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S
a
m

p
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s

FIG. 4 Histogram of predi
tion errors measured in a total of 344 experiments. Results are aggregated from

experiments 
ondu
ted with Ja
obi and the Game of Life on both a single site testbed and a three site

testbed.

The predi
tion a

ura
y of our exe
ution time model is moderate. The obje
tive of this work is not to

provide performan
e models for appli
ations, but rather to demonstrate how su
h models 
an be utilized

as part of our s
heduling strategy. More sophisti
ated and pre
ise models 
ould be developed and used.

Our evaluation results will show how our approa
h behaves with reasonably a

urate models. Su
h are the

models we hope to obtain automati
ally from the GrADS 
ompiler when it be
omes available.

4. RESULTS

In this se
tion we des
ribe experimental results obtained for the Ja
obi and Game of Life appli
ations in

realisti
 Grid usage s
enarios. We designed these experiments to investigate the following questions.

i. Does the s
heduler provide redu
ed appli
ation exe
ution times relative to 
onventional s
heduling ap-

proa
hes?

ii. Can the s
heduler e�e
tively utilize dynami
 resour
e information to improve appli
ation performan
e?

Can reasonable s
hedules still be developed in the absen
e of dynami
 resour
e information?
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iii. How is s
heduler behavior a�e
ted by degraded appli
ation information? Spe
i�
ally, 
an reasonable

s
hedules still be developed in the absen
e of an appli
ation exe
ution time model?

4.1. Experimental design

4.1.1. Testbeds

Our experiments were performed on a subset of the GrADS testbed 
omposed of workstations at the

University of Tennessee, Knoxville (UTK), the University of Illinois, Urbana-Champaign (UIUC), and the

University of California, San Diego (UCSD). Figure 5 depi
ts our testbed and provides a snapshot of available

bandwidths on networks links. Table 1 summarizes testbed resour
e 
hara
teristi
s. This 
olle
tion of

resour
es is typi
al of Computational Grids: it is used by many users for an array of purposes on an everyday

basis, the resour
es fall under a variety of administrative domains, and the testbed is both distributed and

heterogeneous.

UTK LAN
83.8 Mbps

UIUC LAN
88.6 Mbps

UCSD LAN
90.8 Mbps

4.4 Mbps

2.7 Mbps

3.0
Mbps

1.5
Mbps

6.0
Mbps

5.9
Mbps

WAN

FIG. 5 A heterogeneous, distributed network of workstations. Network links are labeled with available band-

width in megabits per se
ond; these values were 
olle
ted by Network Weather Servi
e network monitoring

sensors on November 1, 2001 at around 5:30 PM.

Experiments were performed on the full three-site tested and on a one-site testbed with only UCSD

resour
es. We ran experiments on the one-site testbed with problem sizes of f600, 1200, 2400, 4800, 7200,

9600g and on the three-site testbed with problem sizes of f600, 4800, 9600, 14400, 16800, 19200g.
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Cir
us ma
hines Tor
 ma
hines Opus ma
hines Major ma
hines

Domain u
sd.edu 
s.utk.edu 
s.uiu
.edu 
s.uiu
.edu

Nodes 6 8 4 6

Names dralion, mystere tor
1, tor
2 opus13-m amajor, bmajor

soleil, quidam tor
3, tor
4 opus14-m 
major, fmajor

saltimban
o tor
5, tor
6 opus15-m gmajor, hmajor

nouba tor
7, tor
8 opus16-m

Pro
essor 450 MHz PIII 550 MHz PIII 450 MHz PII 266 PII

dralion, nouba

400 MHz PII

others

CPUs/Node 1 2 1 1

Memory/Node 256 MB 512 MB 256 MB 128 MB

OS Debian Linux Red Hat Linux Red Hat Linux Red Hat Linux

Kernel 2.2.19 2.2.15 SMP 2.2.16 2.2.19

Network 100 Mbps 100 Mbps 100 Mbps 100 Mbps

shared ethernet swit
hed ethernet swit
hed ethernet shared ethernet

TABLE 1

Summary of testbed resour
e 
hara
teristi
s.

4.1.2. S
heduling strategies

To help answer questions i-iii, we developed four s
heduling strategies, dynami
, stati
, basi
, and user,

ea
h based on a realisti
 Grid s
heduling s
enario. The dynami
 strategy uses our s
heduler design and

represents the 
ase when full information is available about the appli
ation and testbed. For this strategy,

the s
heduler is 
oupled with the full exe
ution time performan
e model (see Se
tion 3.2.2) and time balan
e

mapper (see Se
tion 3.4.2). S
heduling de
isions are made at run-time and are based on near real-time CPU

availability, free memory, and available bandwidth information from the NWS as well as CPU speed data

from the MDS.

The stati
 strategy models our s
heduler's behavior when full appli
ation information is available, but

resour
e information is degraded. Spe
i�
ally, this strategy uses the same performan
e model and mapper

as the dynami
 strategy, but assumes dynami
 resour
e information is not available at run-time (i.e. the

NWS server is unavailable). S
heduling de
isions are made o�-line, and are based on stati
 information from

the MDS su
h as available physi
al memory and total CPU speed. Estimates of available bandwidth from

the NWS are used, but are not 
olle
ted at run-time.

The basi
 strategy models our s
heduler's behavior when resour
e information is fully available, but a


omplete exe
ution time model is not. This strategy uses the memory usage model des
ribed in Se
tion 3.2.1

and the alternative S
heduleCompare method de�ned in Se
tion 3.3. Mapping is done with the equal

allo
ation mapper de�ned in Se
tion 3.4.1. This mapper does not require exe
ution time information.

The user strategy is designed to emulate the s
heduling pro
ess that a typi
al Grid user might employ
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and provides a 
omparison with a 
onventional approa
h. We assume that users will generally only invest

time in s
heduling on
e per appli
ation 
on�guration; in this s
enario stati
 resour
e information is suÆ
ient

sin
e s
heduling o

urs o�-line. We also assume that a user has a preferred ordering of resour
es; for example,

most users will utilize their \home" resour
es before resour
es on whi
h they are a \guest". For the three-site

testbed, we assume a resour
e ordering of fUCSD, UTK, UIUCg. We assume a typi
al user will not have a

detailed performan
e model, but may be able to estimate appli
ation memory usage. The strategy therefore

uses our memory usage model and sele
ts the minimum number of resour
es that will satisfy appli
ation

memory requirements. Figure 6 summarizes the appli
ation and Grid information usage by ea
h of the four

s
heduling strategies.

Sophistication of
Application Information

Sophistication
of Resource
Information

User

Basic

Static

Dynamic
Memory usage
model, dynamic
resource info

Full performance
model, dynamic
resource info

Memory usage
model, static
resource info

Full performance
model, static
resource info

FIG. 6 Summary of user, basi
, stati
, and dynami
 s
heduling strategies. For ea
h strategy we note the

availability of sophisti
ated appli
ation and resour
e information. Bars 
orrespond to the 
olors used for

ea
h strategy in our s
heduling results graphs.

Comparison of our s
heduler against the performan
e a
hieved by an automated, run-time s
heduler

would 
learly be a desirable addition to the four strategy 
omparison we have de�ned. Unfortunately, there

is 
urrently no 
omparable Grid s
heduler that is e�e
tive for the appli
ations and environments that we

target. We listed other Grid s
heduler e�orts in Se
tion 1; we plan to investigate other appli
ations and

environments for whi
h a reasonable s
heduler 
omparison 
ould be made.

4.1.3. Experimental pro
edure

A s
heduling strategy 
omparison experiment 
onsists of ba
k-to-ba
k runs of the appli
ation as 
on�g-

ured by ea
h s
heduling strategy. In ea
h appli
ation exe
ution, 104 iterations were performed; an average

and standard deviation of the iterations times was then taken of all but the �rst 4 \warmup" iterations.

Based on the 
hara
teristi
s of iterative, mesh-based appli
ations, we 
ompare appli
ation performan
e based
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on the worst average iteration time reported by any pro
essor in the 
omputation.

To avoid undesirable intera
tions between ea
h appli
ation exe
ution and the dynami
 information used

by the next s
heduler test, we in
luded a three-minute sleep phase between tests. To obtain a broad survey

of relative strategy performan
e, we ran s
heduling strategy 
omparison experiments for all 
ombinations of

the two appli
ations, the two testbeds, and six problem sizes (2*2*6 = 24 testing s
enarios). We performed

10 repetitions of ea
h testing s
enario for a total of 240 s
hedule 
omparison experiments and 720 s
heduler

/ appli
ation exe
utions.

4.1.4. Strategy 
omparison metri


We use a 
ommon 
omparison metri
, per
ent degradation from best [26℄. For ea
h experiment we �nd

the lowest average iteration time a
hieved by any of the strategies, itT ime

best

, and 
ompute

degFromBest = 100 �

itT ime� itT ime

best

itT ime

best

; (10)

for ea
h strategy. The strategy that a
hieved the minimum iteration time is thus assigned degFromBest = 0.

Note that an optimal s
heduler would 
onsistently a
hieve a 0% degradation from best.

4.2. Aggregate results

Figure 7 presents an average of the per
ent degradation from best a
hieved by ea
h s
heduling strategy

a
ross all s
heduling strategy 
omparison experiments. Ea
h bar in the graph represents an average of

approximately 70 values. Table 2 presents additional statisti
s for the same data set. In all appli
ation-

testbed 
ombinations, the user strategy is outperformed, on average, by the three other strategies. Sin
e all

but the user strategy are variations of our s
heduling methodology these results provide suÆ
ient eviden
e

to answer question i in the aÆrmative: our approa
h does provide redu
ed appli
ation exe
ution times

relative to 
onventional approa
hes. The improvement in average performan
e from the user to the stati


strategy partially answers question ii : reasonable s
hedules 
an still be developed in the absen
e of dynami


resour
e information. Additionally, re
all that the primary di�eren
e between the user and basi
 strategy

pair and the stati
 and dynami
 strategy pair is the usage of dynami
 information. Sin
e the basi
 strategy

outperforms the user strategy and the dynami
 strategy outperforms the stati
 strategy we 
an answer the

rest of question ii in the aÆrmative: the s
heduler does e�e
tively utilize dynami
 resour
e information to

improve appli
ation performan
e. Finally, in question iii we posed the query of how s
heduler behavior is

a�e
ted by the availability of an a

urate performan
e model. As expe
ted, the s
heduling strategies whi
h

utilize an a

urate appli
ation performan
e model (i.e. stati
 and dynami
) outperform those that do not

(i.e. user and basi
).
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FIG. 7 Average per
ent degradation from best for ea
h s
heduling strategy and ea
h appli
ation-testbed


ombination.

App & Testbed Statisti
 User Basi
 Stati
 Dynami


Game of Life Avg � std 240.0 � 152.0 204.4 � 135.6 37.3 � 40.4 5.1 � 12.9

1-site [Min, Max℄ [7.7, 507.7℄ [15.2, 433.5℄ [0, 156.9℄ [0, 69.3℄

Game of Life Avg � std 381.9 � 466.6 219.8 � 268.2 30.8 � 63.3 3.8 � 10.7

3-site [Min, Max℄ [45.3, 2748.0℄ [6.6, 1109.2℄ [0, 421.8℄ [0, 68.5℄

Ja
obi Avg � std 210.3 � 130.6 186.9 � 139.8 17.2 � 28.2 5.7 � 12.6

1-site [Min, Max℄ [16.4, 466.4℄ [7.9, 487.7℄ [0, 90.5℄ [0, 69.7℄

Ja
obi Avg � std 410.3 � 212.7 200.4 � 203.4 61.3 � 145.8 12.7 � 40.6

3-site [Min, Max℄ [0, 862.9℄ [0, 629.6℄ [0, 739.2℄ [0, 215.1℄

TABLE 2

Summary statisti
s for per
ent degradation from best for ea
h s
heduling strategy over all

appli
ation-testbed s
enarios.
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While the s
heduling strategies show a 
lear ordering in average performan
e, examination of individual

experimental results shows that relative s
heduler performan
e 
an be heavily in
uen
ed by run-time 
ondi-

tions, appli
ation 
hara
teristi
s, and other fa
tors. In the following se
tions, we present a detailed analysis

of a small subset of our experiment results. We use these 
ase studies to provide insight as to the behavior

of ea
h s
heduling strategy, and to highlight 
onditions where a spe
i�
 strategy was parti
ularly e�e
tive

or ine�e
tive.

4.3. Case study I: Variability with time

We �rst detail experimental results for the Ja
obi appli
ation on the three-site testbed with a problem

size of 9600. We performed 10 experiment repetitions over the period of O
t 16 - Nov 10, 2001. Spe
i�
ally,

we 
olle
ted repetitions 1-3 on O
tober 16-17, 4-6 on November 6-7, and 7-10 on November 9-10. In this

se
tion, we present the resour
e sele
tion de
isions made by ea
h s
heduling strategy, and then des
ribe

appli
ation performan
e results obtained for these s
hedules.

Figure 8 reports the s
hedules sele
ted by ea
h s
heduling strategy in ea
h experiment repetition. The

number of ma
hines sele
ted is shown with grayed re
tangles. Ma
hine sele
tion is reported for ea
h site

in the testbed with UIUC ma
hines further di�erentiated into the Opus 
luster (labeled UIUC-O) and the

Major 
luster (labeled UIUC-M). In 38 of the 40 s
hedules shown in Figure 8 the s
hedule in
ludes ma
hines

from only a single site. While the user strategy is 
onstrained to sele
t ma
hines in a parti
ular order, the

other strategies evaluated performan
e tradeo�s and automati
ally sele
ted a subset of the total resour
e

pool. Figure 8 also shows that the user and stati
 strategies ea
h used the same s
hedule for all repetitions,

while the basi
 and dynami
 strategies ea
h employed di�erent s
hedules from repetition to repetition. The

user and stati
 strategies perform s
heduling o�-line with stati
 information, while the basi
 and dynami


strategies utilize dynami
 information to make run-time s
heduling de
isions. Noti
e also that the stati
 and

dynami
 strategies typi
ally sele
t more ma
hines than do either the user or basi
 strategies. The dynami


and stati
 strategies sele
t a resour
e set size that minimizes predi
ted appli
ation exe
ution time; sin
e the

user and basi
 strategies model situations where an exe
ution time model is not available, these strategies

try to redu
e 
ommuni
ation 
osts by sele
ting the minimum number of resour
es that satisfy appli
ation

memory requirements.

An interesting 
hara
teristi
 of Figure 8 is that UTK resour
es are so frequently 
hosen, parti
ularly by

the stati
 and dynami
 strategies. In this testbed, the UTK site in
ludes a substantial number of ma
hines

(8), ea
h of whi
h is more powerful (in terms of memory and 
omputation) than any ma
hine provided by

the other sites (see Table 1). The UTK ma
hines are 
learly a good 
hoi
e when 8 ma
hines is suÆ
ient for

the 
urrent problem run. Note, however, that when the dynami
 strategy sele
ted more than 8 ma
hines

(repetition 1 and 2), it did not in
lude UTK ma
hines in the s
hedule. In fa
t, throughout the time we were

running the experiments for this paper we found that WAN performan
e between UTK and either UCSD or

UIUC was signi�
antly worse than WAN performan
e between UCSD and UIUC. For example, in repetition
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essor sele
tions for ea
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heduling strategy for the Ja
obi appli
ation on the three-site testbed,
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h experiment repetition, the pro
essors sele
ted by ea
h strategy are highlighted

with gray boxes.
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4 of the 
urrent series (Ja
obi appli
ation on the 3-site testbed with a problem size of 9600) the dynami


s
heduler obtained the following bandwidth predi
tions from the NWS: UTK to UIUC 0.21 Mbps, UTK

to UCSD 0.14 Mbps and UIUC to UCSD 5.92 Mbps. A

ordingly, our s
heduler (as represented by the

basi
, stati
, and dynami
 strategies) automati
ally avoids s
hedules that use UTK ma
hines in a multi-site

s
hedule.

Figure 9 reports results obtained when the appli
ation was exe
uted with ea
h of these s
hedules. In this

�gure, bar height indi
ates average iteration times, and error bars indi
ate standard deviation of iteration

times. In this �gure, the relative performan
e of the s
hedulers does not mat
h the results shown in Figure 7.

No times are reported for the user strategy in the third repetition be
ause the appli
ation failed to


omplete. Upon 
loser examination, we found that the size of the data allo
ated to one of the ma
hines

ex
eeded its available physi
al memory, leading to serious interferen
e with other users' jobs. The appli
ation

was killed to allow normal progress for the other jobs. This experiment highlights the importan
e of run-time

s
heduling with dynami
 resour
e information.

The results shown for the �rst repetition in Figure 9 are striking. In this repetition, the dynami
 strategy

performed parti
ularly poorly on average, and the standard deviation in iteration times was surprisingly

high (41.2 se
). Figure 10 shows the time measured for ea
h iteration of the appli
ation in ea
h of the

four s
heduler / appli
ation runs. The iteration times for ea
h s
heduler are plotted on the same

graph for 
omparison purposes only; the appli
ation runs were a
tually performed at di�erent

times and, possibly, under di�erent 
onditions. We have sele
ted this 
ase study for its usefulness in

demonstrating a few points; the behavior of the s
heduling strategies seen here is in fa
t anomalous (refer

to Figure 7).

While the dynami
 strategy was the worst performer on average in this repetition, Figure 10 shows

that the dynami
 strategy was a
tually the best performer for the majority of iterations and that a few

dramati
 iteration time jumps were responsible for poor average performan
e. We investigated system

behavior during the most dramati
 jump (413 se
onds), and found that NWS CPU availability measurements

for bmajor.
s.uiu
.edu, one of the ma
hines in this s
hedule, were almost 
ompletely missing during 320

se
onds of the 413 se
ond iteration. We believe that during the long iteration period bmajor.
s.uiu
.edu was


ompletely o�-line or so disrupted that even lightweight NWS sensors, and therefore our appli
ation, 
ould

not run. We also identi�ed a 
orrelation between a dramati
 in
rease in bmajor.
s.uiu
.edu 
omputation

times during the last 40 or so iterations, and the broad shift upward in appli
ation iteration times in the last 40

or so iterations. This 
ase demonstrates how sensitive the overall performan
e of even loosely syn
hronous

appli
ations 
an be to the performan
e of individual ma
hines. This 
ase also reveals the limitations of

reporting only average iteration times; however, average iteration times are representative of total exe
ution

time, whi
h is the appli
ation metri
 experien
ed by users.
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4.4. Case study II: Variability with problem size

In the pre
eding 
ase study, we examined variations in s
heduler behavior and performan
e a
ross di�erent

repetitions of the same experiment. In this se
tion, we again fo
us on experiments for the Ja
obi appli
ation

on the 3-site testbed, but we detail experiments performed during a shorter time period (5 hours on November

4, 2001) and a
ross a variety of problem sizes. Figure 11 reports the ma
hine sele
tions used by ea
h

s
heduling strategy in these experiments, and Figure 12 reports the measured appli
ation performan
e for

ea
h s
hedule. The iteration times reported in Figure 12 extend from 0.01 to 20.68 se
onds per iteration, a

range of 3 orders of magnitude.
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FIG. 11: Pro
essor sele
tions for ea
h s
heduling strategy for the Ja
obi appli
ation on the three-site testbed

for all six problem sizes. For ea
h experiment repetition, the pro
essors sele
ted by ea
h strategy are

highlighted with gray boxes.

Noti
e that while all four strategies were su

essful in �nding a s
hedule for N = 19200 (see Figure 11),

both the user and dynami
 strategies failed during the laun
h or exe
ution of the appli
ation itself (see

Figure 12). The dynami
 strategy experiment failed during appli
ation laun
h due to an unidenti�ed problem

on the laun
hing ma
hine. The user strategy experiment failed be
ause the appli
ation heavily interfered

with a user's work, who then killed the appli
ation. When the appli
ation interferes with the work of other

users to this extent it suggests that (1) best estimates of available memory should be used at run-time
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FIG. 12: Average and standard deviation in iteration times for the Ja
obi appli
ation on the three-site

testbed for six problem sizes.

to ensure ma
hine memory availability and avoid thrashing and (2) our memory usage model may be too


onservative in its estimate of how mu
h memory should be available for the appli
ation on ea
h ma
hine.

One must always 
onsider the bene�ts of additional memory for the appli
ation with the 
ommuni
ation


osts asso
iated with utilizing more ma
hines.

There are 4 s
hedules shown in Figure 11 that in
lude both UTK ma
hines and ma
hines at another

site: the user strategy for N = 14400, 16800, and 19200 and the basi
 strategy for N = 19200. These 
ases


orrespond exa
tly to the worst iteration time results shown in Figure 12; these s
hedules performed poorly

be
ause of the poor network performan
e between UTK and the other sites (refer to the pre
eding se
tion

for details). Sin
e the ordering of ma
hine sele
tion is prede�ned for the user strategy fUCSD, UTK, UIUCg,

it is not surprising that the user strategy sele
ted these s
hedules. It is surprising, however, that the basi


strategy sele
ted su
h a s
hedule.

Let us investigate this behavior in some detail. A problem size of 19200 is demanding for this testbed; in

aggregate, at least 3375 MB of RAM are required. Given an equal work allo
ation, this translates into per

ma
hine available memory requirements, for example, of 140.6 MB / ma
hine for 24 ma
hines, 210.9 MB /

ma
hine for 16 ma
hines, or 421.9 MB / ma
hine for 8 ma
hines. Given unloaded 
onditions and an equal

work allo
ation, a s
hedule for N = 19200 
an not utilize all 24 ma
hines be
ause the Major ma
hines at

UIUC have only 127 MB ea
h, 16 ma
hines 
an be utilized only if the Major ma
hines are ex
luded, and 8

ma
hine 
an be utilized only if all 8 ma
hines are from UTK.

Noti
e that the basi
 strategy sele
ted 16 ma
hines. Sin
e the basi
 strategy sele
ts the smallest resour
e

set that satis�es appli
ation memory requirements, it may seem surprising that the strategy sele
ted more

than just the 8 Tor
 ma
hines. Re
all however that the basi
 strategy 
olle
ts and uses dynami
 resour
e
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information at s
hedule-time (i.e. run-time). In this experiment, the basi
 strategy found that some of

the UTK ma
hines were partially loaded and 
ould no longer provide the minimum 421.9 MB / ma
hine

needed to run the appli
ation on just the 8 UTK ma
hines. The strategy therefore sele
ted more ma
hines,

thereby redu
ing the minimum memory required per ma
hine to levels whi
h 
ould be supported by the

UTK ma
hines.

Looking again at Figure 11, it may now seem strange that both the stati
 and dynami
 strategies

determined that an 8 UTKma
hine was an a

eptable 
hoi
e. The stati
 strategy uses only stati
 information

and therefore assumes all resour
es are unloaded; under unloaded 
onditions the 8 UTK ma
hines are an

appropriate 
hoi
e. Looking at the results shown in Figure 12, it appears that this 
hoi
e was also reasonable

in the 
onditions experien
ed by the stati
 strategy (i.e. the strategy performed reasonably). In other 
ases,

blindly assuming unloaded 
onditions 
an have drasti
 a�e
ts.

When the dynami
 strategy ran, it retrieved run-time resour
e information and found that the UTK

ma
hines were partially loaded. However, usage of the time balan
e mapper provided this strategy with the

added 
exibility of unequal work allo
ations. The time balan
e mapper found a map whi
h allowed usage

of the 8 UTK ma
hines by shifting some work from the partially loaded ma
hines to the unloaded ma
hines.

In general, we found that the time balan
e mapper was not only generally su

essful in redu
ing appli
ation

iteration times, but was also very useful in in
reasing the number of s
heduling 
hoi
es available.

4.5. S
heduler and appli
ation failures

During the experiments reported in this paper we en
ountered a number of appli
ation and s
heduler

failures. A detailed analysis of the types of failures that o

ur and with what frequen
y 
an be found in [12℄;

we summarize those results here for 
ompleteness.

A s
heduler failure o

urs when the s
heduler 
an not �nd a feasible s
hedule for the appli
ation. Our

s
heduling methodology redu
es the frequen
y of s
heduling failures by (1) using an e�e
tive sear
h heuristi


to ensure that feasible ma
hine groups are identi�ed, should they exist, and (2) using a time-balan
ing

mapper that adapts data allo
ations to mat
h the available memory 
apa
ities of individual ma
hines. For

these measures to su

eed, 
omputation and memory 
apa
ity information must be available for targeted

ma
hines; our methodology o

asionally fails due to la
k of resour
e information.

We identi�ed a variety of failures whi
h we label \appli
ation failures": the appli
ation laun
h pro
ess

o

asionally failed due to unexplained s
ript failures; memory allo
ation by the appli
ation 
an fail if there is

not suÆ
ient available memory; appli
ation 
ommuni
ation pro
esses failed o

asionally due to either Globus

or so
ket 
ommuni
ation bugs; one of the ma
hines involved in the 
omputation 
an fail to parti
ipate in


ommuni
ation (either the ma
hine went down or o�-line); and, �nally, appli
ation resour
e usage 
an

interfere with other users' work at whi
h time they will sometimes kill the appli
ation. The frequen
y of

laun
h and run-time failures provides useful insight into the stability of program exe
ution on the Grid.
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4.6. S
heduling overhead

A s
heduler design is pra
ti
al only if the overhead of the s
heduling pro
ess is reasonable when 
ompared

to appli
ation exe
ution times. The results presented in the pre
eding se
tions of this paper have not in
luded

the overheads introdu
ed by the s
heduler itself. In this se
tion we quantify these overheads.

We 
onsider the total overhead for s
heduling, as well as the overhead for ea
h of the two a
tivities

performed by our s
heduling methodology: (i) the 
olle
tion of resour
e information from the MDS and NWS

and (ii) the sear
h for 
andidate s
hedules. We measured s
heduling overheads for the Ja
obi appli
ation on

the 3-site testbed with the same s
heduler 
on�guration as was used for the dynami
 s
heduling strategy.

While this 
ase study provides a reasonable overview of the overheads of our methodology, note that the 
ost

of s
heduling is dependent on problem run 
on�guration, the sele
ted testbed, the target appli
ation, the


omplexity of the 
hosen performan
e model and mapper, and variable load on the GrADS NWS nameserver

and MDS server.

It is important to di�erentiate the 
osts of data retrieval from the MDS and NWS servers from the 
ost

of transferring the request for data and the response over WANs. We set up an NWS nameserver and an

MDS 
a
he at UCSD and we performed the tests from a ma
hine at UCSD; these sour
es of information

will be referred to as the lo
al NWS and the lo
al MDS 
a
he. We in
lude test s
enarios in whi
h NWS

information is retrieved from either the lo
al NWS or from the GrADS NWS, whi
h was lo
ated at UTK in

Knoxville, Tennessee. We also in
lude s
enarios in whi
h MDS information is retrieved from the lo
al MDS


a
he or from the GrADS MDS, whi
h was lo
ated at ISI in Los Angeles, California. Spe
i�
ally, we test the

following retrieval modes.

� Mode A used the GrADS NWS nameserver and the GrADS MDS server.

� Mode B used the GrADS NWS nameserver and a lo
al MDS 
a
he. For these experiments, the lo
al

MDS 
a
he 
ontained all needed information (i.e. it was fully warmed).

� Mode C used the lo
al NWS nameserver and a fully warmed lo
al MDS 
a
he.

We ran the s
heduler with ea
h of the three retrieval modes in a ba
k-to-ba
k manner; we 
ompleted 10

su
h triplets. For ea
h run, we measured the time required for the entire s
heduling exe
ution (TotalT ime)

and the time required for Grid information 
olle
tion (Colle
tT ime); we 
onsider the 
ost for the s
hedule

sear
h (Sear
hT ime) to be all s
heduling time that is not spent in information 
olle
tion: Sear
hT ime =

TotalT ime� Colle
tT ime.

Table 3 presents summary results over all 10 repetitions for the mean and standard deviation of the

Colle
tT ime, Sear
hT ime, and the TotalT ime. For referen
e, when we ran s
heduling experiments with

a similar experimental 
on�guration, the four s
heduling strategies typi
ally a
hieved appli
ation iteration

times between 1.8 and 11 se
onds. Sin
e we ran roughly 100 iterations in these experiments, the appli
ation's

iterative phase o

upied 180 to 1100 se
onds.
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Mode A Mode B Mode C

Colle
t Time, Avg � std 1087.5 � 303.3 59.6 � 3.9 2.0 � 0.7

Sear
h Time, Avg � std 0.8 � 0.3 2.4 � 0.4 2.5 � 0.3

Total Time, Avg � std 1088.4 � 303.3 62.1 � 3.9 4.5 � 0.9

TABLE 3

S
heduling overheads in se
onds to s
hedule Ja
obi on the three-site testbed, N = 14400, dynami


s
heduling strategy.

The 
ost of Grid information 
olle
tion dominates s
heduling overhead in all modes ex
ept C. In

mode C only 2 se
onds, on average, were required to 
olle
t information on all 24 ma
hines in this testbed.

This overhead is very reasonable when 
ompared with appli
ation run-times; we 
on
lude that our pro
edure

for 
olle
ting resour
e information is eÆ
ient enough and that the 
ost of data retrieval from an NWS server

is reasonable. In mode B, NWS data were retrieved from a remote NWS server, whi
h in
reased information


olle
tion times to approximately 60 se
onds. We 
on
lude that 
olle
tion of information from a remote

NWS server is eÆ
ient enough for most uses of our s
heduler. The overhead 
ould be
ome problemati
 for

a larger testbed; in this 
ase, our s
heduler 
an be used without run-time resour
e information as was done

for the stati
 strategy in this paper. Finally, mode C utilized both the remote NWS nameserver and the

remote MDS server, thus in
reasing 
olle
tion times to 1087.5 se
onds, or approximately 18 minutes. This

overhead is prohibitive, and, in pra
ti
e, would prevent usage of our s
heduling approa
h. We 
on
lude that

until retrieval times are redu
ed for the MDS, lo
al 
a
hing of MDS information will be ne
essary. The MDS

information that is retrieved and used by our methodology 
hanges on the order of weeks or months; lo
al


a
hing is therefore an a

eptable solution for this work. Note that ongoing development work in both MDS

and NWS is seeking to redu
e information retrieval laten
ies.

The 
ost of the s
hedule sear
h pro
ess is less than 2.5 se
onds for all three 
olle
tion modes and is

therefore an a

eptable overhead for our s
heduling s
enarios. This low sear
h time overhead is due to (1)

the low 
omputational 
omplexity of our exe
ution time model and mapping strategy and (2) the extensive

sear
h pruning performed during the sear
h pro
ess. Noti
e that the average sear
h time in mode A is

only about 33% of the sear
h time for modes B and C. Mode A retrieves some resour
e information from

the GrADS MDS and during these experiments that server was unable to provide mu
h of the required

information. Our s
heduling methodology does not 
onsider ma
hines for whi
h no data is available, thus

leading to pruning of the s
hedule sear
h spa
e and a redu
tion in sear
h time.

5. DISCUSSION

In this se
tion we des
ribe related work (Se
tion 5.1), des
ribe possible extensions to our work (Se
-

tion 5.2), and 
on
lude the paper (Se
tion 5.3).
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5.1. Related work

The Appli
ation-Level S
heduling Proje
t (AppLeS) has developed many su

essful s
heduling

strategies for the Grid in
luding [8, 9, 13, 37, 38℄. These e�orts provided important foundations for the 
ore


omponents of our s
heduling approa
h: the s
hedule sear
h pro
edure, the mappers, and the performan
e

models.

Two of these e�orts are parti
ularly related to this work [8, 13℄. The �rst fo
used on the s
heduling of a

Ja
obi solver for the �nite-di�eren
e approximation to Poisson's equation [8℄. The se
ond e�ort fo
used on

s
heduling of a parallel magnetohydrodynami
s simulation (PMHD3D), whi
h is also 
lassi�ed as an iterative,

mesh-based appli
ation [13℄. Ea
h of these e�orts demonstrated signi�
ant improvements in appli
ation

performan
e as 
ompared to 
onventional s
heduling e�orts. The performan
e models and mappers presented

in Se
tion 3 are based in part on the models and mapping strategies used in the previous Ja
obi and PMHD3D

work. We also used these e�orts as examples for the development of our sear
h pro
edure; we believe that

the sear
h pro
edure we have developed is more thorough and therefore more likely to dis
over desirable

ma
hine groups. Our sear
h pro
edure has also been developed to work with both LANs and WANs and

has been thoroughly tested in both environments; the Ja
obi and PMHD3D s
hedulers were tested only in

LAN environments.

Many AppLeS e�orts [8, 13, 37, 38℄ have targeted spe
i�
 appli
ations; the most important 
ontribution

of our work is that we have separated the appli
ation-spe
i�
 
omponents from the appli
ation-generi
.

Due to this formal separation, we believe that our s
heduling approa
h is more easily re-targeted to new

appli
ations than most previous AppLeS e�orts. Two AppLeS e�orts have su

essfully targeted 
lasses

of appli
ations [9, 35℄. However, both of these e�orts target master-slave appli
ations, whereas we target

appli
ations whi
h may involve signi�
ant inter-pro
essor 
ommuni
ations.

There are a number of other s
heduling proje
ts that are notable for targeting a variety of appli
ations

or an entire appli
ation 
lass; examples in
lude the Condor Mat
hmaker [33℄, Prophet [40℄, and Nimrod/G [1℄.

The Nimrod/G e�ort fo
uses on embarrassingly parallel appli
ations and so is more 
omparable with other

AppLeS e�orts [9, 35℄ than with the 
urrent e�ort.

Prophet is a run-time s
heduling system designed for parallel appli
ations written in the Mentat pro-

gramming language [41, 40℄. Another related e�ort is Prophet, a run-time s
heduling system designed for

parallel appli
ations written in the Mentat programming language [41, 40℄. This s
heduling system is similar

to our work in that it exploits appli
ation stru
ture and system resour
e information to promote appli
ation

performan
e. Prophet was demonstrated for both SPMD appli
ations and appli
ations based on task-parallel

pipelines; the s
heduler design was tested in heterogeneous, lo
al-area environments. If possible, we would

like to 
ompare the performan
e of our strategies to those of Prophet, though it may be diÆ
ult to �nd a

suitable s
enario for 
omparison that satis�es the requirements of ea
h s
heduling strategy. For example,

Prophet requires the target appli
ation be written in Mentat and we have not used Mentat in our e�orts.

Another proje
t of interest is the Condor Mat
hmaker [33℄. In the Mat
hmaking system, users spe
ify the
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resour
e requirements of their appli
ation to the system, resour
e providers similarly spe
ify the 
apabilities

of their resour
es, and a 
entralized Mat
hmaker is used to mat
h appli
ation resour
e requirements with

appropriate resour
es. This design is quite general and 
an therefore be applied to many di�erent types

of appli
ations. The Mat
hmaking strategy, while more general that the s
heduler presented in this paper,

di�ers in that it is primarily a resour
e dis
overy me
hanism and is not able to provide detailed s
hedule

development.

5.2. Future work

We have an initial prototype of our s
heduler whi
h we used to obtain the experiments presented in this

paper. We are 
urrently re�ning this prototype and integrating our software into the main GrADS software

base [25℄. An interesting extension to our work would in
orporate in our sear
h pro
edure distin
t sear
hes

for di�erent types of ma
hines; for example, given a master-slave appli
ation, one might want to �rst �nd

the best ma
hine for the master pro
ess, and then sear
h for ma
hines for the slave pro
esses (ex
luding the

ma
hine sele
ted for the master). We also plan to extend the validation of our s
heduler by testing it with

other appli
ations and appli
ation 
lasses as well as other testbeds.

Several s
hedulers have been developed in the GrADS proje
t for use with spe
i�
 appli
ations [3, 32℄.

We plan to test our approa
h with those appli
ations and then 
ompare the performan
e a
hieved by ea
h

s
heduler. We are also 
ollaborating with the developers of these s
hedulers to de�ne the fundamental


hara
teristi
s of a su

essful s
heduling approa
h in the GrADS environment.

For the purposes of this work, we designed and built the appli
ation performan
e models and mapping

strategies. However, if Grid appli
ation development is to be a

essible to a larger number of users, then

we 
annot expe
t users to provide detailed performan
e models and mapping strategies. Re
ognizing this,

other members of the GrADS resear
h 
ommunity are investigating the feasibility of 
ompiler generation of

appli
ation information and performan
e models [24℄ as well as the in
lusion of su
h models in Grid-enabled

libraries [24, 29℄. As this work matures, we plan to experiment with the usage of su
h models for appli
ation

s
heduling.

5.3. Con
lusions

In this paper we proposed an adaptive s
heduling approa
h designed to improve the performan
e of

parallel appli
ations in Computational Grid environments. In Se
tion 2 we presented the ar
hite
ture of our

s
heduler and we detailed our sear
h pro
edure, whi
h lies at the heart of the s
heduler. In Se
tion 3 we

des
ribed Ja
obi and the Game of Life, two iterative, mesh-based appli
ations whi
h we sele
ted as test 
ases

for our s
heduler. For ea
h appli
ation, we presented data mappers and performan
e models appropriate for

use by a s
heduler. For validation of our approa
h, we used a prototype of our s
heduler in 
onjun
tion with

the mappers and performan
e models developed in Se
tion 3.

In Se
tion 4 we presented the results of experiments where we applied our s
heduling approa
h in realisti
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usage s
enarios in produ
tion Grid environments. These experiments demonstrate that our s
heduler pro-

vides signi�
antly better appli
ation performan
e than 
onventional s
heduling strategies. Our experiments

in
luded s
heduling strategies in whi
h appli
ation and/or resour
e information was limited; with these

experiments we demonstrated that our s
heduler gra
efully handles degraded levels of availability of appli-


ation and Grid resour
e information. Finally, we showed that the overheads introdu
ed by our approa
h

are reasonable.
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