
UC San Diego
Technical Reports

Title
A Modular Scheduling Approach for Grid Application Development

Permalink
https://escholarship.org/uc/item/305990dt

Authors
Dail, Holly
Casanova, Henri
Berman, Fran

Publication Date
2002-06-05

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/305990dt
https://escholarship.org
http://www.cdlib.org/

A Modular Sheduling Approah for

Grid Appliation Development Environments

Holly Dail Henri Casanova Fran Berman

San Diego Superomputer Center

University of California at San Diego

fhdail, asanova, bermang�sds.edu

Version: June 4, 2002

In this paper we propose an adaptive sheduling approah designed to improve the performane of parallel

appliations in Computational Grid environments. A primary ontribution of our work is that our design is modular

and provides a separation of the sheduler itself from the appliation-spei� omponents needed for the sheduling

proess. As part of the sheduler, we have also developed a searh proedure whih e�etively and eÆiently identi�es

desirable shedules.

As test ases for our approah, we seleted two appliations from the lass of iterative, mesh-based appliations.

For eah of the test appliations, we developed data mappers and performane models. We used a prototype of our

approah in onjuntion with these appliation-spei� omponents to perform validation experiments in prodution

Grid environments. Our results show that our sheduler provides signi�antly better appliation performane than

onventional sheduling strategies. We also show that our sheduler graefully handles degraded levels of availability of

appliation and Grid resoure information. Finally, we demonstrate that the overheads introdued by our methodology

are reasonable. This work evolved in the ontext of the Grid Appliation Development Software Projet (GrADS).

Our sheduling approah is designed to be easily integrated with other GrADS program development tools.

Key Words: sheduling, Grid omputing, programming environments, parallel omputing

1. INTRODUCTION

With vast improvements in wide-area network performane and the pervasiveness of ommodity resoures,

distributed parallel omputing an bene�t from an inreasingly rih omputational platform. However,

many foused development e�orts have shown that taking advantage of these Computational Grid environ-

ments [19℄ for sienti� omputing requires extensive labor and support by distributed omputing experts.

Grid infrastruture projets [18, 21, 27℄ have provided many of the servies needed for Grid omputing;

these middleware servies help redue programmer e�ort and an improve appliation performane on these

platforms. However, suh middleware generally does not aount for the spei� needs of appliations. For

example, eah appliation has unique resoure requirements whih must be onsidered in sheduling the

This material is based upon work supported by the National Siene Foundation under Grant #9975020.

1

appliation on Grid resoures. More generally, if a programmer wants to take advantage of Computational

Grids, they are responsible for all transations that require knowledge of the appliation at hand; examples

inlude disovering resoures, seleting an appliation-appropriate subset of those resoures, staging binaries

on seleted mahines, and, for long-running appliations, monitoring appliation progress. While many si-

entists ould bene�t from the extensive resoures o�ered by Computational Grids, appliation development

remains a daunting proposition.

One solution is to develop software that frees the user of these responsibilities. The Grid Appliation

Development Software (GrADS) Projet [7℄ seeks to provide suh a solution by developing a omprehensive

programming environment that expliitly inorporates appliation harateristis and requirements in ap-

pliation development deisions. The end goal of this projet is to provide an integrated Grid appliation

development solution that inorporates ativities suh as ompilation, sheduling, staging of binaries and

data, appliation launh, and monitoring of appliation progress during exeution.

In this paper, we are interested spei�ally in the sheduling proess required for suh a system. The

GrADS design [7, 25℄ assigns the sheduler the responsibility for disovery of available resoures, the seletion

of an appliation-appropriate subset of those resoures, and the mapping of data or tasks onto seleted

resoures. Appliation shedulers have long been onsidered an important tool for usage of Computational

Grids [6℄. In fat, many projets have developed suessful sheduling strategies for the Grid [1, 2, 3, 8, 9, 32,

33, 37, 40, 41℄. Most of these shedulers inorporate the spei� needs of appliations in sheduling deisions,

and would therefore seem to ful�ll the design requirements of a sheduler in GrADS. However, if the GrADS

solution is to be easy to apply in a variety of appliation-development senarios, the sheduler must be

easily applied to a variety of appliations. Unfortunately, most of the shedulers mentioned previously have

been developed for one appliation or for a spei� lass of appliations, and the designs are generally not

easily re-targeted for other appliations or lasses. The diÆulty in re-targeting suh designs arises from the

fat that appliation-spei� details or omponents are generally embedded in the sheduling software itself.

Given suh a design, it an be diÆult to determine whih omponents need to be replaed to inorporate

the needs of the new appliation.

In this paper we propose a modular sheduling approah that expliitly separates general-purpose shedul-

ing omponents from the appliation-spei� omponents needed for the sheduling proess. Spei�ally,

appliation requirements and harateristis are enapsulated in a performane model (an analytial metri

for the performane expeted of the appliation on a given set of resoures) and a data mapper (dire-

tives for mapping logial appliation data or tasks to physial resoures). The ore of the sheduler is

a general-purpose shedule searh proedure whih e�etively and eÆiently identi�es desirable shedules.

Our sheduler provides a framework in whih the shedule searh proedure an be used in onjuntion with

an appliation-spei� performane model and mapper to provide sheduling deisions that are appropriate

to the needs of the appliation.

As test ases for our approah, we seleted two appliations from the lass of iterative, mesh-based ap-

2

pliations. For eah of the test appliations, we developed data mappers and performane models. We used

a prototype of our approah in onjuntion with these appliation-spei� omponents to perform valida-

tion experiments in prodution Grid environments. Our results demonstrate that our sheduler provides

signi�antly better appliation performane than onventional sheduling strategies. We also show that our

sheduler graefully handles degraded levels of availability of appliation and Grid information. Finally, we

demonstrate that the overheads introdued by our methodology are reasonable.

We do not expet that general-purpose software will ahieve the performane of a highly-tuned appliation-

spei� sheduler; instead, the goal is to provide onsistently improved performane relative to onventional

sheduling strategies. The primary ontributions of our work are as follows.

i. Our approah is modular and an be easily instantiated for other appliations.

ii. Our sheduler graefully handles degraded levels of availability of appliation and Grid information

iii. Our sheduler simpli�es usage of the Grid by automating the sheduling proess. Furthermore, as

ompared to onventional approahes suh as user-direted sheduling, our approah provides improved

appliation performane and redued failure rates in prodution Grid environments.

iv. Although our sheduler an funtion in a stand-alone fashion (and is validated as suh in the exper-

iments presented in this paper), it is in fat an integrated omponent of the GrADS system. The

sheduler desribed in this paper was the �rst prototype sheduling omponent developed in GrADS

for usage with multiple appliations.

This paper is organized as follows. In Setion 2 we desribe the sheduler design itself. Setion 3 details

two test appliations and presents performane model and mapper designs for eah. In Setion 4 we present

the results we obtained when applying our methodology in Computational Grid environments. In Setion 5

we desribe related and future work, and then we onlude the paper.

2. SCHEDULING

This setion desribes our sheduler design. To provide ontext for the rest of this setion, we desribe

the sheduling senario we address.

Our sheduling senario begins with a user who has an appliation and wishes to shedule that appliation

on Computational Grid resoures. The appliation is parallel and may involve signi�ant inter-proess

ommuniation. The target Computational Grid onsists of heterogeneous workstations onneted by loal-

area networks (LANs) and/or wide-area networks (WANs). The user may diretly ontat the sheduler to

submit the sheduling request, or an intermediary, suh as another omponent of the GrADS system, will

ontat the sheduler to submit the user's request. In either ase, we assume that the goal of the sheduling

proess is to �nd a shedule whih minimizes total turnaround time (sheduling time + appliation run-

3

time). The seleted shedule will be used without modi�ation throughout appliation exeution (we do not

onsider resheduling).

2.1. Arhiteture

Figure 1 presents the primary omponents of our sheduler and the interations among those omponents.

We provide this �gure as a referene for the rest of the paper; we do not expet that all omponents or

interations will be ompletely lear at this point.

Final
 Schedule

 Grid
Info

 Mach
List

 Prob
Info

Mapper

Perf
Model

User

NWS

MDS

Search
Procedure

FIG. 1 Sheduler design.

The Searh Proedure is the ore of the sheduler. This proedure is responsible for searhing for

shedules whih are appropriate to the target appliation. A shedule onsists of an ordered list of mahines

and a mapping of data or tasks to those mahines. The Searh Proedure is responsible for �nding the \best"

shedule (Final Shedule in Figure 1).

Before submitting an appliation to the sheduler, the user must obtain or develop the following appliation-

spei� omponents.

� The performane model is a proedure all whih provides a predition of appliation performane on

a given set of resoures. There are a variety of performane metris that might be used for sheduling;

4

in this setion we assume that the performane model will predit appliation exeution time.

� The mapper is a proedure all whih maps logial appliation data or tasks to physial resoures.

For eah mahine in the shedule, the mapper must de�ne whih piee of the appliation data will be

assigned to that proessor.

These omponents are appliation-spei�, but run-generi. In eah appliation run, the user de�nes prob-

lem parameters suh as problem size. The performane model and mapper are then instantiated with this

information to make them appropriate to the urrent problem run. We desribe several appliation-spei�

performane models and mappers in Setion 3; in this setion we simply assume that suh omponents are

available.

The user must also submit a mahine list ontaining mahine names that the user has aess to; we

forgo further disussion of this list until Setion 2.4. For eah mahine in the mahine list, we ollet

resoure information suh as CPU speed, available physial memory, and bandwidth between hosts. This

information is retrieved from resoure information providers suh as the Network Weather System (NWS)

and the Metaomputing Diretory Servie (MDS); we disuss these servies in Setion 2.4.

2.2. Searh Proedure

The shedule searh proedure is the ore of the sheduling methodology. The goal of the searhing

proess is to �nd groups of mahines that ould prove performane-eÆient platforms for the appliation;

we all these groups andidate mahine groups (CMGs). To �nd orresponding andidate shedules,

the searh proedure identi�es CMGs and generates a data map for eah one. A performane model is then

used to selet the best andidate shedule.

The most straightforward approah for the searh proess is an exhaustive searh over all possible groups

of mahines (ignoring permutations sine ordering is de�ned by the mapper). For larger resoure set sizes or

even moderately omplex performane models and mappers, suh a searh is not feasible. A pratial searh

proedure must therefore use extensive but areful pruning of the searh spae.

Pseudo-ode for our shedule searh proedure is given in Figure 2. In eah for loop the list of target

CMGs is re�ned based on a di�erent resoure set harateristi: onnetivity in the outer-most loop, om-

putational and memory apaity of individual mahines in the seond loop, and seletion of an appropriate

resoure set size in the inner-most loop. The goal is to generate only a moderate number of CMGs while

ensuring that we do not exlude performane-eÆient CMGs.

The �rst step of our searh proedure is to all the FindSitesmethod; this method takes a list of mahines

and organizes them into disjoint subsets, or sites, suh that the network delays within eah subset are lower

than the network delays between subsets. As a �rst implementation, we group mahines into the same site if

they share the same domain name; we plan to onsider more sophistiated approahes [34, 28, 39℄ in future

work. The ComputeSiteColletions method omputes the power set of the set of sites (we exlude the

5

Algorithm : SheduleSearh(mahList; gridInfo; PerfModel;Mapper)

sites FindSites(mahList)

siteColletions ComputeSiteColletions(sites)

for eah olletion in siteColletions

for eah sortMetri in (omputation;memory; dual)

for targetSize 1 to size(olletion)

CMG FindBest(olletion; sortMetri; targetSize)

dataMap Mapper(CMG; gridInfo)

if map == V ALID

urrShed = GenerateShedule(CMG; dataMap)

if SheduleCompare(urrShed; bestShed; PerfModel) == FirstIsBetter

bestShed urrShed

return (bestShed)

FIG. 2: Shedule searh proedure.

null set). As an example, for the set of sites fA, B, Cg, there are seven site olletions: fA, B, C, A [B, A

[C, B [C, A [B [Cg. One all of the mahine olletions have been identi�ed, the outer-most loop of

the searh proedure examines eah one in turn.

In themiddle loop of the searh proedure, we seek to identify mahines that exhibit high loal memory

and omputational apaities. Generally we will not know a priori whih mahine harateristis will have

the greatest impat on appliation performane; we therefore de�ne three metris that are used to sort

the mahine list: the omputation metri emphasizes the omputational apaity of mahines, the memory

metri emphasizes the loal memory apaity of mahines, and the dual metri plaes equal weight on eah

fator.

The inner-most loop exhaustively searhes for an appropriately-sized resoure group. Resoure set

size seletion is omplex beause it depends on problem parameters, appliation harateristis, and detailed

resoure harateristis. Rather than miss potentially good resoure set sizes based on poor preditions, we

inlude all resoure set sizes in the searh. As will be desribed momentarily, an appliation performane

model an then be used to selet amongst di�erent shedules. Note that an exhaustive searh at this level of

the proedure is only feasible due to the extensive pruning performed in the �rst two loops. The FindBest

method sorts the input mahine list olletion by the mahine type metri and returns the best targetSize

number of mahines.

Next, the mapper is alled to obtain a data map for the urrent CMG; sine the mapping proess is

typially dependent on harateristis of the target resoure group, gridInfo is inluded as a parameter to the

mapper. If the mapper is unable to �nd a feasible mapping due to onstraints suh as loal mahine memory

apaities, the urrent CMG is skipped and the searh proess ontinues. If the returned map is valid, then

GenerateShedule ombines the map and the CMG to form a shedule. Finally, the SheduleCompare

6

method is alled to ompare the urrent shedule with the best shedule disovered by the searh so far.

The exat omparison mehanism depends on what type of performane model is available. By default,

we assume that the performane model provides exeution time preditions; the default SheduleCompare

therefore returns the shedule with the lowest predited exeution time.

2.3. Searh omplexity

The most straightforward shedule searh method is an exhaustive searh; suh a searh is guaranteed

to identify the optimal CMG. However, for a resoure pool of size p, the searh must examine a number of

CMGs equal to:

numCMGs =

p

X

k=1

p!

k!(p� k)!

= 2

p

: (1)

For example, a shedule searh for a 30 mahine resoure group would require evaluation of 2

30

� 10

9

CMGs.

For a reasonably sized resoure set and/or when the performane model evaluation or mapping proess is

time intensive, an exhaustive searh is simply too ostly.

In the vast majority of ases, our searh proedure provides an impressive redution in searh spae. To

demonstrate this we develop a loose upper bound on the number of CMGs onsidered by the searh

heuristi. Assuming we have s sites in the resoure set under onsideration, we obtain 2

s

site olletions

(in fat, we exlude the null-set leaving 2

s

� 1 suh olletions). We onsider three resoure orderings for

eah olletion (omputation, memory, and dual). Given these 3 � 2

s

ordered olletions, we exhaustively

searh all possible subset sizes for eah. Sine the number of resoures in eah site, and therefore in eah

topology-based olletion, is dependent on the harateristis of eah Grid environment, we an not predit

a priori the number of resoures in eah of the 3�2

s

ordered olletions. As an upper bound, we assume eah

olletion is of size p, the size of the entire resoure pool. Then, in the third loop of our searh proedure,

p distint subsets will be generated for eah ordered olletion. The upper bound on the total number of

CMGs identi�ed by the searh proedure is therefore 3p2

s

. Reall our earlier example of a 30 mahine set;

the exhaustive searh required evaluation of 10

9

CMGs in this ase. Supposing this resoure set inluded 3

sites, our searh proedure would require evaluation of at most 720 CMGs. In fat, if we assume 10 mahines

in eah of the 3 sites, our searh proedure requires evaluation of only 360 CMGs.

The improvement gained from our methodology will be greatest when the number of sites under onsid-

eration is signi�antly less than the number of mahines, whih is the ase in the vast majority of modern

Grids.

7

2.4. Use of Grid information

Computational Grids are highly dynami environments where ompute and network resoure availability

varies and Grid information soures an be periodially unstable. We strive to provide best-e�ort servie

by supporting multiple information soures, when possible, for eah type of information required by the

sheduler.

We urrently support information olletion from the two most widely used Grid resoure information

systems, the Metaomputing Diretory Servie (MDS) [10℄ and the Network Weather Servie (NWS) [43℄.

TheMDS is a Grid information management system that is used to ollet and publish system on�guration,

apability, and status information. Examples of the information that an typially be retrieved from an

MDS server inlude operating system, proessor type and speed, number of CPUs available, and software

availability and installation loations. The NWS is a distributed monitoring system designed to trak and

foreast resoure onditions. Examples of the information that an typially be retrieved from an NWS server

inlude the fration of CPU available to a newly started proess, the amount of memory that is urrently

unused, and the bandwidth with whih data an be sent to a remote host.

Our sheduling methodology an utilize several types of resoure information: a list of mahines available

for the run, loal omputational and memory apaities for eah mahine, and network bandwidth and

lateny information. The list of mahines is urrently obtained diretly from the user; one seure MDS

publishing mehanisms are available, user aount information an be published diretly in the MDS and

retrieved automatially by the sheduler. Loal mahine omputational and memory apaity data are used

to sort mahines in our searh proedure and will be needed as input to many performane model and

mapper implementations. Network bandwidth and lateny data will similarly be required as input to many

performane model and mapper implementations.

An important harateristi of our approah is that the sheduler graefully opes with degraded Grid

information availability. Whenever possible we support more than one soure for eah type of resoure

information required by the sheduler. Furthermore, when a partiular type of information is not available

for spei� mahines in the mahine list, but is required by the sheduler, the sheduler graefully exludes

those mahines from the searh proess. In our experiene, most appliation shedulers do not graefully

handle suh situations, leading to many senarios in whih the sheduler fails.

3. APPLICATION CASE STUDIES

In this setion we desribe spei� appliations that we used to demonstrate our sheduling methodology

in validation experiments. As required by our sheduling methodology, we develop performane models and

mapping strategies for eah appliation.

For eah appliation, we develop a performane model that predits both exeution time and memory

usage. We also present a strategy for omparing andidate shedules in the absene of an exeution time

8

model; this strategy demonstrates that our sheduling framework an be adjusted to aommodate alternative

performane metris or types of performane model. We also implement two mappers that an be applied to

our test appliations: a time balane mapper, whih an be used when an exeution time model is available,

and an equal alloation mapper, whih an be applied when appliation information is limited to a memory

usage model.

3.1. Case study appliations

We have hosen appliations from the lass of regular, iterative, mesh-based appliations as they are

important in many domains of siene and engineering [14, 15, 20, 5℄. Spei�ally, we fous on the Game of

Life and Jaobi. We have seleted these appliations as our initial test ases beause they are well-known,

straightforward to desribe, and share many performane harateristis with other appliations.

Conway's Game of Life is a well-known binary ellular automaton whereby a �xed set of rules are used

to determine a next generation of ells based on the state of the urrent generation [14℄. A two-dimensional

mesh of pixels is used to represent the environment, and eah pixel of the mesh represents a ell. In eah

iteration, the state of every ell is updated with a 9-point stenil. We use a 1-D strip data partitioning

strategy beause this strategy typially exhibits lower ommuniation osts than other partitioning shemes,

an important onsideration for Grid omputing. Eah proessor manages a data strip and de�nes a 1-pixel

wide set of ghost-ells along data grid edges. Eah iteration onsists of a omputational phase in whih

proessors update their portion of the data array, and a ommuniation phase in whih proessors swap

ghost ell data with their neighbors.

The Jaobi method is a simple algorithm that is often used in the ontext of Laplae's equation [5, 31℄.

Here we desribe the general linear system solver version, whih involves more ommuniation (broadasts).

The method attempts to solve a square linear system Ax = b with the following iteration formula:

x

k+1

j

=

1

a

jj

(b

j

�

X

i 6=j

a

ji

x

k

i

)

where x

k

j

is the value of the j

th

unknown at the k

th

iteration. This method is guaranteed to onverge only

if matrix A is diagonally dominant.

A popular parallel data deomposition for the Jaobi method is to assign a portion of the unknown vetor

x to eah proessor where proessors need only store retangular sub-matries of A. Eah proessor omputes

new results for its portion of x, and then broadasts its updated portion of x to every other proessor. The

�nal phase in eah iteration is a termination detetion phase. The method is stationary, meaning that the

matrix A is �xed throughout the appliation.

We implemented eah test appliation as a SPMD-style omputation using C and the Message Passing

Interfae (MPI) [30℄. To allow load-balaning we implemented support for irregular data partitions in both

9

appliations. We used the Globus-enabled version of MPICH [22, 23℄, MPICH-G [16, 17℄, in order to run

over a Computational Grid testbed.

3.2. Appliation performane modeling

Our sheduling framework is dependent on the availability of a performane model. The SheduleCompare

method desribed in the previous setion assumes a performane model that predits appliation exeution

time. Ultimately, suh performane models may be automatially generated by the ompiler in the GrADS

framework. For the moment, we develop suh a performane model for Jaobi and the Game of Life. We

also develop a memory usage model, whih will be required for the mapper disussion in Setion 3.4.

Although both appliations support retangular data grids, we assume that the full data mesh is a 2-

dimensional square. We use the following de�nitions in the rest of this setion. We refer to the size of either

dimension of the data mesh as N ; note that the number of data elements, and therefore the amount of

work, grows as N

2

. We refer to the proessors hosen for exeution as P

0

; :::; P

p�1

and the size of the data

partitions alloated to eah proessor as n

0

; :::; n

p�1

.

3.2.1. Memory usage model

Given the magnitude of performane degradation due to paging of memory to disk, we must ensure that

the appliation �ts within the available memory of the proessors seleted for exeution. We ompute the

amount of memory (in bytes) required for a data strip of size N x n

i

as:

memReq

i

= memUnit� n

i

�N; (2)

where memUnit is the number of bytes of storage that will be alloated per element of the data domain. The

Game of Life alloates 2 matries of integers and Jaobi alloates 1 matrix of doubles. For the arhitetures

we targeted in this paper, 4 bytes are alloated per integer and 8 bytes are alloated per double. Therefore,

we use memUnit = 8 for both appliations.

Reall that loal proessor available memory, mem

i

, availability an be supplied by total physial memory

values from the MDS [10℄ or free memory values from the NWS [43℄. In pratie, a lose math of memReq

i

and mem

i

provides an overly tight �t due to additional memory needed by the appliation and to memory

ontention with system or \small" user proesses. Based on early experimental results and memory usage

benhmarks, inreasingmemReq

i

by 20% provides a reasonable tradeo� for the GrADS Computational Grid

environment [7℄.

3.2.2. Exeution time model

Given that we target regular, synhronous iteration appliations, the appliation exeution time an be

assumed proportional to the iteration time on the slowest proessor. The iteration time on proessor P

i

is

10

naturally modeled as the sum of a omputation time and a ommuniation time:

itT ime

i

= ompT ime

i

+ ommTime

i

: (3)

The omputation phase for our test appliations primarily onsists of the data update proess in eah

iteration and may inlude a termination detetion operation (e.g. for Jaobi). We model omputation time

on proessor P

i

as:

ompT ime

i

=

ompUnit � n

i

�N

10

6

� omp

i

; (4)

where ompUnit is the number of proessor yles performed by the appliation per element of the data

domain. The omputational apaity of proessor P

i

, omp

i

, an be represented by raw CPU speed (from

the MDS) and the urrently available CPU (from the NWS), or a ombination thereof. To fully instantiate

this model, we need to determine an appropriate ompUnit value for eah ase study appliation. Rather

than using methods suh as soure ode or assembly ode analysis, we opted for an empirial approah:

we ran appliations on dediated resoures of known CPU speed for 100 iterations and omputed average

ompUnit values.

The Game of Life ommuniation phase onsists of the swapping of ghost ells between neighboring

mahines. We use non-bloking sends and reeives, and, in theory, all of the messages in eah iteration

ould be overlapped. In pratie, however, proessors an not simultaneously partiipate in four message

transfers at one without a redution in performane for eah message and, more importantly, proessors do

not reah the ommuniation phase of eah iteration at the same moment. As an initial approximation, we

assume that messages with a partiular neighbor an be overlapped, but that ommuniation with di�erent

neighbors ours in distint phases whih are serialized.

The Jaobi ommuniation phase involves a series of p broadasts per iteration; eah mahine in the

omputation is the root of one of these broadasts. In the MPI implementation we used in this work, the

broadast is implemented as a binomial tree [4℄. As a �rst approximation to modeling this ommuniation

struture, we alulate the average message time, msgT ime

avg

, and alulate the ommuniation time on

proessor P

i

as

ommTime

i

= p � log

2

(p) �msgT ime

avg

: (5)

Our Game of Life and Jaobi ommuniation models eah depend on a model for the ost of sending

a message between two mahines. We initially opted for the simple and popular lateny/bandwidth model

for a message sent from P

i

to P

j

:

msgT ime

i;j

= lateny

i;j

+msgSize=bandwidth

i;j

; (6)

11

where lateny and bandwidth measurements and foreasts are provided by the NWS. However, we observed

that this model signi�antly over-estimates the message transfer times of our appliations. We found that a

bandwidth-only model (lateny = 0) led to muh better preditions, possibly beause of NWS measurement

tehniques, MPI implementation, and network topologies. In the rest of the paper we use the more aurate

bandwidth-only model.

3.3. Alternative performane models and metris

In Setion 2 we presented our sheduling methodology with the assumption that an appliation-spei�

performane model would be available. What if one wanted to use a di�erent performane metri or a

di�erent performane model? Due to the modularity of our sheduling approah, the only omponent that

needs to be modi�ed is the SheduleCompare method implementation (see Figure 2).

As an example, suppose a memory usage model is available, but an exeution time model is not. The

memory usage information will be used by the mapper (see Setion 3.4) to ensure that andidate shedules

ful�ll appliation memory requirements. An alternative to a performane model for the purpose of shedule

omparisons is a series of heuristis that evaluate how well the andidate shedules satisfy a set of broad

resoure requirements suh as bandwidth or omputational apaity. Figure 3 presents a deision tree we've

employed to implement suh a series of simple heuristis. This deision tree is appropriate for Jaobi and

the Game of Life and will be used in validation experiments in Setion 4.

3.4. Appliation data mappers

The funtion of the mapper is to determine an appropriate mapping of work (i.e. strip widths n

0

; :::; n

p�1

)

onto proessors (P

0

; :::; P

p�1

). The mapping proess involves two distint subproblems. The �rst problem is

to determine a topologial arrangement of mahines (e.g. whih physial proessor should be assigned to

logial proessor position P

0

) suh that appliation ommuniation osts are minimized. The seond problem

is to �nd an alloation of work to proessors (e.g. how many rows of the data mesh should be assigned to

proess P

0

) suh that appliation resoure-requirements are met and, when possible, appliation exeution

time is minimized.

In the following setions we present two mappers: an equal alloation mapper and a time balane mapper.

3.4.1. Equal alloation mapper

In this mapper, work is simply alloated uniformly to all proessors suh that eah is assigned an equally

sized data strip of size N=p and the number of pixels assigned to eah proessor is N �N=p. Before returning

this data map, the mapper veri�es that eah proessor has suÆient loal memory to support the appliation's

memory requirements. When at least one proessor does not have suÆient memory, the mapper returns an

error. In the sheduling ontext presented in Setion 2, the urrent mahine group is removed from the list

of CMGs and the searh proess ontinues.

12

Do we have more complete resource
info for one of the schedules?

Yes, S2Yes, S1

Equivalent

Return
Second

Is Better

Return
First
Is Better

Is effective bandwidth higher
for one of the schedules?

(BW = min BW of any link in the schedule)

Yes, S1

Equivalent

Does one schedule require
fewer resources?

Yes, S2

Is effective computational capacity
higher for one of the schedules?

(power = min comp. capacity of any
resource in the schedule)

Equivalent

Yes, S1 Yes, S2

Yes, S1 Yes, S2

Equivalent

ScheduleCompare(s1,s2)

FIG. 3 An alternative shedule omparison design. This design employs a series of omparison heuristis in

plae of an exeution time model.

13

This mapper requires only a memory usage model and not a full exeution time model. In prodution

Grid sheduling systems we expet there will be many appliations for whih a full performane model is

not available. In suh a ase, our sheduling methodology an still be applied by pairing it with the equal

alloation mapper and the alternative performane model presented in the preeding setion. We explore

suh a senario in Setion 4.

3.4.2. Time balane mapper

For regular, synhronous iteration appliations, appliation exeution time is limited by the progress of

the slowest proessor. Total exeution time an be minimized by �nding a data map for whih all proessors

omplete their work in eah iteration at the same time, thereby minimizing synhronization times. The goal

of the time balane mapper is to �nd suh a data map while ensuring that appliation memory requirements

are met. Our approah is to formalize mahine resoure availabilities, appliation memory requirements, and

exeution time onsiderations as a series of onstraints. Work-alloation an then be framed as a onstrained

optimization problem; the solution is a map of data strip widths to proessors. We �rst desribe the general

operation of the mapper, and then desribe our formalization of the problem.

When alled, the time balane mapper �rst veri�es that the aggregate memory of the CMG is suÆient

for the aggregate requirements of the urrent appliation problem. If not, the mapper does not attempt to

�nd a data map and returns an error. If the CMG has suÆient aggregate memory, the mapper searhes for

a perfetly time-balaned data map; if found, the map is returned. Sometimes, one or more mahines do not

have suÆient loal memory to satisfy the memory requirements of a perfetly time balaned map. In this

ase, the mapper relaxes the time balane onstraints to seek an alternative map whih satis�es memory

requirements. The mapper uses a binary searh to �nd the map that provides the best time balane while

satisfying appliation memory requirements. The parameters of the binary searh are on�gurable; default

values are provided as follows. The default maximum relax fator is 10, meaning that for an aeptable map,

predited iteration time on the slowest proessor is no more than 10 times the predited iteration time on

the fastest proessor. The default searh tolerane is 0.01, meaning that the searh re�nement ends when

the relax fator hanges by less than 0.01 between searh steps.

We now briey desribe our spei�ation of this problem as a onstrained optimization problem; see [11℄

for a thorough explanation and [13, 36℄ for previous work that applied a similar solution for the data mapping

problem. The unknowns are the strip widths to be assigned to eah proessor: n

0

; :::; n

p�1

. Sine strip widths

are onstrained to integer values, the problem an be framed as an integer programming problem [42℄.

Unfortunately, the integer programming problem is NP-omplete, rendering the solution omputationally

expensive to ompute and unaeptable for use in our sheduling methodology. We use the more eÆient

alternative of real-valued linear programming solvers [42℄ (spei�ally, we used the lp solve pakage whih is

based on the simplex method). Although using a real-valued solver for an integer problem introdues some

error, it provides suÆient auray for our needs.

14

The problem formulation begins with the spei�ation of an objetive funtion. Sine it is impossible

to express our true objetive in a linear formulation, we instead minimize the omputation time on P

0

(see Setion 3.2.2 for our omputation time model); later we speify onstraints whih ensure that the

other proessors are time-balaned with P

0

. Next, we speify bounds on the unknown variables: eah

proessor should be assigned a non-negative number of mesh rows not to exeed the total number of rows

N : 8i 2 f0 : p � 1g; 0 � n

i

� N . The rest of the spei�ation is in the form of onstraints. First, the

total number of data mesh rows alloated must be equal to N :

P

p�1

i=0

n

i

= N . Next, the data alloated to

eah proessor must �t within that proessor's loal memory: 8i 2 f0 : p� 1g;memUnit �N � n

i

� mem

i

;

refer to Setion 3.2.1 for our memory usage model. Finally, we speify that eah proessor's predited

iteration time should equal P

0

's predited iteration time: 8i 2 f1 : p � 1g; jitT ime

i

� itT ime

0

j = 0. We

add support for relaxation of time balaning requirements with relax fator R and the onstraint beomes:

8i 2 f1 : p � 1g; jitT ime

i

� itT ime

0

j � R � itT ime

0

. After inorporating details from our exeution time

model (see Setion 3.2.2), re-arranging, and using two inequalities to speify an absolute value, our last two

sets of onstraints are:

8i 2 f1 : p� 1g;� (1 +R) � ompT ime

0

+ ompT ime

i

� (1 +R) � ommTime

0

� ommTime

i

(7)

8i 2 f1 : p� 1g;(1�R) � ompT ime

0

� ompT ime

i

� (�1 +R) � ommTime

0

+ ommTime

i

(8)

3.5. Validation results

As desribed in Setion 2, our sheduler typially utilizes a performane model to ompare andidate

shedules. The ability of our sheduler to selet the \best" shedule is therefore diretly tied to the predition

auray of the performane model.

We performed a suite of validation experiments for the exeution time model we desribed in Setion 3.2.

The goal of these experiments was to ompare predited appliation performane (predT ime) with atual

appliation performane (atualT ime). We alulate the predition error as:

predError = 100 �

predT ime� atualT ime

atualT ime

: (9)

We do not have spae here to fully desribe our experimental design; a full explanation is available in [11℄.

We tested model auray for both the Jaobi and the Game of Life appliations on both a single site testbed

15

and a three site testbed (see Setion 4.1 for details). In total, we obtained 344 omparisons of atual and

predited times. A histogram of the predition errors we measured in those experiments is shown in Figure 4.

−100 −50 0 50 100 150
0

10

20

30

40

50

60

70

Percent prediction error

S
a
m

p
le

s

FIG. 4 Histogram of predition errors measured in a total of 344 experiments. Results are aggregated from

experiments onduted with Jaobi and the Game of Life on both a single site testbed and a three site

testbed.

The predition auray of our exeution time model is moderate. The objetive of this work is not to

provide performane models for appliations, but rather to demonstrate how suh models an be utilized

as part of our sheduling strategy. More sophistiated and preise models ould be developed and used.

Our evaluation results will show how our approah behaves with reasonably aurate models. Suh are the

models we hope to obtain automatially from the GrADS ompiler when it beomes available.

4. RESULTS

In this setion we desribe experimental results obtained for the Jaobi and Game of Life appliations in

realisti Grid usage senarios. We designed these experiments to investigate the following questions.

i. Does the sheduler provide redued appliation exeution times relative to onventional sheduling ap-

proahes?

ii. Can the sheduler e�etively utilize dynami resoure information to improve appliation performane?

Can reasonable shedules still be developed in the absene of dynami resoure information?

16

iii. How is sheduler behavior a�eted by degraded appliation information? Spei�ally, an reasonable

shedules still be developed in the absene of an appliation exeution time model?

4.1. Experimental design

4.1.1. Testbeds

Our experiments were performed on a subset of the GrADS testbed omposed of workstations at the

University of Tennessee, Knoxville (UTK), the University of Illinois, Urbana-Champaign (UIUC), and the

University of California, San Diego (UCSD). Figure 5 depits our testbed and provides a snapshot of available

bandwidths on networks links. Table 1 summarizes testbed resoure harateristis. This olletion of

resoures is typial of Computational Grids: it is used by many users for an array of purposes on an everyday

basis, the resoures fall under a variety of administrative domains, and the testbed is both distributed and

heterogeneous.

UTK LAN
83.8 Mbps

UIUC LAN
88.6 Mbps

UCSD LAN
90.8 Mbps

4.4 Mbps

2.7 Mbps

3.0
Mbps

1.5
Mbps

6.0
Mbps

5.9
Mbps

WAN

FIG. 5 A heterogeneous, distributed network of workstations. Network links are labeled with available band-

width in megabits per seond; these values were olleted by Network Weather Servie network monitoring

sensors on November 1, 2001 at around 5:30 PM.

Experiments were performed on the full three-site tested and on a one-site testbed with only UCSD

resoures. We ran experiments on the one-site testbed with problem sizes of f600, 1200, 2400, 4800, 7200,

9600g and on the three-site testbed with problem sizes of f600, 4800, 9600, 14400, 16800, 19200g.

17

Cirus mahines Tor mahines Opus mahines Major mahines

Domain usd.edu s.utk.edu s.uiu.edu s.uiu.edu

Nodes 6 8 4 6

Names dralion, mystere tor1, tor2 opus13-m amajor, bmajor

soleil, quidam tor3, tor4 opus14-m major, fmajor

saltimbano tor5, tor6 opus15-m gmajor, hmajor

nouba tor7, tor8 opus16-m

Proessor 450 MHz PIII 550 MHz PIII 450 MHz PII 266 PII

dralion, nouba

400 MHz PII

others

CPUs/Node 1 2 1 1

Memory/Node 256 MB 512 MB 256 MB 128 MB

OS Debian Linux Red Hat Linux Red Hat Linux Red Hat Linux

Kernel 2.2.19 2.2.15 SMP 2.2.16 2.2.19

Network 100 Mbps 100 Mbps 100 Mbps 100 Mbps

shared ethernet swithed ethernet swithed ethernet shared ethernet

TABLE 1

Summary of testbed resoure harateristis.

4.1.2. Sheduling strategies

To help answer questions i-iii, we developed four sheduling strategies, dynami, stati, basi, and user,

eah based on a realisti Grid sheduling senario. The dynami strategy uses our sheduler design and

represents the ase when full information is available about the appliation and testbed. For this strategy,

the sheduler is oupled with the full exeution time performane model (see Setion 3.2.2) and time balane

mapper (see Setion 3.4.2). Sheduling deisions are made at run-time and are based on near real-time CPU

availability, free memory, and available bandwidth information from the NWS as well as CPU speed data

from the MDS.

The stati strategy models our sheduler's behavior when full appliation information is available, but

resoure information is degraded. Spei�ally, this strategy uses the same performane model and mapper

as the dynami strategy, but assumes dynami resoure information is not available at run-time (i.e. the

NWS server is unavailable). Sheduling deisions are made o�-line, and are based on stati information from

the MDS suh as available physial memory and total CPU speed. Estimates of available bandwidth from

the NWS are used, but are not olleted at run-time.

The basi strategy models our sheduler's behavior when resoure information is fully available, but a

omplete exeution time model is not. This strategy uses the memory usage model desribed in Setion 3.2.1

and the alternative SheduleCompare method de�ned in Setion 3.3. Mapping is done with the equal

alloation mapper de�ned in Setion 3.4.1. This mapper does not require exeution time information.

The user strategy is designed to emulate the sheduling proess that a typial Grid user might employ

18

and provides a omparison with a onventional approah. We assume that users will generally only invest

time in sheduling one per appliation on�guration; in this senario stati resoure information is suÆient

sine sheduling ours o�-line. We also assume that a user has a preferred ordering of resoures; for example,

most users will utilize their \home" resoures before resoures on whih they are a \guest". For the three-site

testbed, we assume a resoure ordering of fUCSD, UTK, UIUCg. We assume a typial user will not have a

detailed performane model, but may be able to estimate appliation memory usage. The strategy therefore

uses our memory usage model and selets the minimum number of resoures that will satisfy appliation

memory requirements. Figure 6 summarizes the appliation and Grid information usage by eah of the four

sheduling strategies.

Sophistication of
Application Information

Sophistication
of Resource
Information

User

Basic

Static

Dynamic
Memory usage
model, dynamic
resource info

Full performance
model, dynamic
resource info

Memory usage
model, static
resource info

Full performance
model, static
resource info

FIG. 6 Summary of user, basi, stati, and dynami sheduling strategies. For eah strategy we note the

availability of sophistiated appliation and resoure information. Bars orrespond to the olors used for

eah strategy in our sheduling results graphs.

Comparison of our sheduler against the performane ahieved by an automated, run-time sheduler

would learly be a desirable addition to the four strategy omparison we have de�ned. Unfortunately, there

is urrently no omparable Grid sheduler that is e�etive for the appliations and environments that we

target. We listed other Grid sheduler e�orts in Setion 1; we plan to investigate other appliations and

environments for whih a reasonable sheduler omparison ould be made.

4.1.3. Experimental proedure

A sheduling strategy omparison experiment onsists of bak-to-bak runs of the appliation as on�g-

ured by eah sheduling strategy. In eah appliation exeution, 104 iterations were performed; an average

and standard deviation of the iterations times was then taken of all but the �rst 4 \warmup" iterations.

Based on the harateristis of iterative, mesh-based appliations, we ompare appliation performane based

19

on the worst average iteration time reported by any proessor in the omputation.

To avoid undesirable interations between eah appliation exeution and the dynami information used

by the next sheduler test, we inluded a three-minute sleep phase between tests. To obtain a broad survey

of relative strategy performane, we ran sheduling strategy omparison experiments for all ombinations of

the two appliations, the two testbeds, and six problem sizes (2*2*6 = 24 testing senarios). We performed

10 repetitions of eah testing senario for a total of 240 shedule omparison experiments and 720 sheduler

/ appliation exeutions.

4.1.4. Strategy omparison metri

We use a ommon omparison metri, perent degradation from best [26℄. For eah experiment we �nd

the lowest average iteration time ahieved by any of the strategies, itT ime

best

, and ompute

degFromBest = 100 �

itT ime� itT ime

best

itT ime

best

; (10)

for eah strategy. The strategy that ahieved the minimum iteration time is thus assigned degFromBest = 0.

Note that an optimal sheduler would onsistently ahieve a 0% degradation from best.

4.2. Aggregate results

Figure 7 presents an average of the perent degradation from best ahieved by eah sheduling strategy

aross all sheduling strategy omparison experiments. Eah bar in the graph represents an average of

approximately 70 values. Table 2 presents additional statistis for the same data set. In all appliation-

testbed ombinations, the user strategy is outperformed, on average, by the three other strategies. Sine all

but the user strategy are variations of our sheduling methodology these results provide suÆient evidene

to answer question i in the aÆrmative: our approah does provide redued appliation exeution times

relative to onventional approahes. The improvement in average performane from the user to the stati

strategy partially answers question ii : reasonable shedules an still be developed in the absene of dynami

resoure information. Additionally, reall that the primary di�erene between the user and basi strategy

pair and the stati and dynami strategy pair is the usage of dynami information. Sine the basi strategy

outperforms the user strategy and the dynami strategy outperforms the stati strategy we an answer the

rest of question ii in the aÆrmative: the sheduler does e�etively utilize dynami resoure information to

improve appliation performane. Finally, in question iii we posed the query of how sheduler behavior is

a�eted by the availability of an aurate performane model. As expeted, the sheduling strategies whih

utilize an aurate appliation performane model (i.e. stati and dynami) outperform those that do not

(i.e. user and basi).

20

0

100

200

300

400

P
e

rc
e

n
t

d
e

g
ra

d
a

ti
o

n
 f

ro
m

 b
e

s
t

Game of Life Game of Life Jacobi Jacobi

One−site One−siteThree−site Three−site

User
Basic
Static
Dynamic

FIG. 7 Average perent degradation from best for eah sheduling strategy and eah appliation-testbed

ombination.

App & Testbed Statisti User Basi Stati Dynami

Game of Life Avg � std 240.0 � 152.0 204.4 � 135.6 37.3 � 40.4 5.1 � 12.9

1-site [Min, Max℄ [7.7, 507.7℄ [15.2, 433.5℄ [0, 156.9℄ [0, 69.3℄

Game of Life Avg � std 381.9 � 466.6 219.8 � 268.2 30.8 � 63.3 3.8 � 10.7

3-site [Min, Max℄ [45.3, 2748.0℄ [6.6, 1109.2℄ [0, 421.8℄ [0, 68.5℄

Jaobi Avg � std 210.3 � 130.6 186.9 � 139.8 17.2 � 28.2 5.7 � 12.6

1-site [Min, Max℄ [16.4, 466.4℄ [7.9, 487.7℄ [0, 90.5℄ [0, 69.7℄

Jaobi Avg � std 410.3 � 212.7 200.4 � 203.4 61.3 � 145.8 12.7 � 40.6

3-site [Min, Max℄ [0, 862.9℄ [0, 629.6℄ [0, 739.2℄ [0, 215.1℄

TABLE 2

Summary statistis for perent degradation from best for eah sheduling strategy over all

appliation-testbed senarios.

21

While the sheduling strategies show a lear ordering in average performane, examination of individual

experimental results shows that relative sheduler performane an be heavily inuened by run-time ondi-

tions, appliation harateristis, and other fators. In the following setions, we present a detailed analysis

of a small subset of our experiment results. We use these ase studies to provide insight as to the behavior

of eah sheduling strategy, and to highlight onditions where a spei� strategy was partiularly e�etive

or ine�etive.

4.3. Case study I: Variability with time

We �rst detail experimental results for the Jaobi appliation on the three-site testbed with a problem

size of 9600. We performed 10 experiment repetitions over the period of Ot 16 - Nov 10, 2001. Spei�ally,

we olleted repetitions 1-3 on Otober 16-17, 4-6 on November 6-7, and 7-10 on November 9-10. In this

setion, we present the resoure seletion deisions made by eah sheduling strategy, and then desribe

appliation performane results obtained for these shedules.

Figure 8 reports the shedules seleted by eah sheduling strategy in eah experiment repetition. The

number of mahines seleted is shown with grayed retangles. Mahine seletion is reported for eah site

in the testbed with UIUC mahines further di�erentiated into the Opus luster (labeled UIUC-O) and the

Major luster (labeled UIUC-M). In 38 of the 40 shedules shown in Figure 8 the shedule inludes mahines

from only a single site. While the user strategy is onstrained to selet mahines in a partiular order, the

other strategies evaluated performane tradeo�s and automatially seleted a subset of the total resoure

pool. Figure 8 also shows that the user and stati strategies eah used the same shedule for all repetitions,

while the basi and dynami strategies eah employed di�erent shedules from repetition to repetition. The

user and stati strategies perform sheduling o�-line with stati information, while the basi and dynami

strategies utilize dynami information to make run-time sheduling deisions. Notie also that the stati and

dynami strategies typially selet more mahines than do either the user or basi strategies. The dynami

and stati strategies selet a resoure set size that minimizes predited appliation exeution time; sine the

user and basi strategies model situations where an exeution time model is not available, these strategies

try to redue ommuniation osts by seleting the minimum number of resoures that satisfy appliation

memory requirements.

An interesting harateristi of Figure 8 is that UTK resoures are so frequently hosen, partiularly by

the stati and dynami strategies. In this testbed, the UTK site inludes a substantial number of mahines

(8), eah of whih is more powerful (in terms of memory and omputation) than any mahine provided by

the other sites (see Table 1). The UTK mahines are learly a good hoie when 8 mahines is suÆient for

the urrent problem run. Note, however, that when the dynami strategy seleted more than 8 mahines

(repetition 1 and 2), it did not inlude UTK mahines in the shedule. In fat, throughout the time we were

running the experiments for this paper we found that WAN performane between UTK and either UCSD or

UIUC was signi�antly worse than WAN performane between UCSD and UIUC. For example, in repetition

22

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

R
e
p
e
ti
ti
o
n
s

USER BASIC STATIC DYNAMIC

U
C

S
D

U
IU

C
−

O

U
IU

C
−

M

U
T

K

U
C

S
D

U
IU

C
−

O

U
IU

C
−

M

U
T

K

U
C

S
D

U
IU

C
−

O

U
IU

C
−

M

U
T

K

U
C

S
D

U
IU

C
−

O

U
IU

C
−

M

U
T

K

FIG. 8: Proessor seletions for eah sheduling strategy for the Jaobi appliation on the three-site testbed,

problem size of 9600. For eah experiment repetition, the proessors seleted by eah strategy are highlighted

with gray boxes.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

It
e

ra
ti
o

n
 T

im
e

s
 (

s
e

c
)

Repetition

F
a

ile
d

user
basic
static
dyn.

FIG. 9: Average and standard deviation in iteration times for the Jaobi appliation on the three-site testbed,

problem size of 9600.

23

4 of the urrent series (Jaobi appliation on the 3-site testbed with a problem size of 9600) the dynami

sheduler obtained the following bandwidth preditions from the NWS: UTK to UIUC 0.21 Mbps, UTK

to UCSD 0.14 Mbps and UIUC to UCSD 5.92 Mbps. Aordingly, our sheduler (as represented by the

basi, stati, and dynami strategies) automatially avoids shedules that use UTK mahines in a multi-site

shedule.

Figure 9 reports results obtained when the appliation was exeuted with eah of these shedules. In this

�gure, bar height indiates average iteration times, and error bars indiate standard deviation of iteration

times. In this �gure, the relative performane of the shedulers does not math the results shown in Figure 7.

No times are reported for the user strategy in the third repetition beause the appliation failed to

omplete. Upon loser examination, we found that the size of the data alloated to one of the mahines

exeeded its available physial memory, leading to serious interferene with other users' jobs. The appliation

was killed to allow normal progress for the other jobs. This experiment highlights the importane of run-time

sheduling with dynami resoure information.

The results shown for the �rst repetition in Figure 9 are striking. In this repetition, the dynami strategy

performed partiularly poorly on average, and the standard deviation in iteration times was surprisingly

high (41.2 se). Figure 10 shows the time measured for eah iteration of the appliation in eah of the

four sheduler / appliation runs. The iteration times for eah sheduler are plotted on the same

graph for omparison purposes only; the appliation runs were atually performed at di�erent

times and, possibly, under di�erent onditions. We have seleted this ase study for its usefulness in

demonstrating a few points; the behavior of the sheduling strategies seen here is in fat anomalous (refer

to Figure 7).

While the dynami strategy was the worst performer on average in this repetition, Figure 10 shows

that the dynami strategy was atually the best performer for the majority of iterations and that a few

dramati iteration time jumps were responsible for poor average performane. We investigated system

behavior during the most dramati jump (413 seonds), and found that NWS CPU availability measurements

for bmajor.s.uiu.edu, one of the mahines in this shedule, were almost ompletely missing during 320

seonds of the 413 seond iteration. We believe that during the long iteration period bmajor.s.uiu.edu was

ompletely o�-line or so disrupted that even lightweight NWS sensors, and therefore our appliation, ould

not run. We also identi�ed a orrelation between a dramati inrease in bmajor.s.uiu.edu omputation

times during the last 40 or so iterations, and the broad shift upward in appliation iteration times in the last 40

or so iterations. This ase demonstrates how sensitive the overall performane of even loosely synhronous

appliations an be to the performane of individual mahines. This ase also reveals the limitations of

reporting only average iteration times; however, average iteration times are representative of total exeution

time, whih is the appliation metri experiened by users.

24

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration Number

It
e
ra

ti
o
n
 T

im
e
 (

s
e
c
)

outlier time = 413 sec

user
basic
static
dyn.

FIG. 10 Time for eah appliation iteration as a funtion of iteration number. Eah run was performed at

a di�erent time and possibly under di�erent onditions; they are plotted together for omparison purposes

only. Results are for the Jaobi appliation on the 3-site testbed with N = 9600 and repetition = 1. The

dramati drop is performane of the dynami strategy at iteration 53 is responsible for that strategy's poor

average performane in repetition 1 of Figure 9.

25

4.4. Case study II: Variability with problem size

In the preeding ase study, we examined variations in sheduler behavior and performane aross di�erent

repetitions of the same experiment. In this setion, we again fous on experiments for the Jaobi appliation

on the 3-site testbed, but we detail experiments performed during a shorter time period (5 hours on November

4, 2001) and aross a variety of problem sizes. Figure 11 reports the mahine seletions used by eah

sheduling strategy in these experiments, and Figure 12 reports the measured appliation performane for

eah shedule. The iteration times reported in Figure 12 extend from 0.01 to 20.68 seonds per iteration, a

range of 3 orders of magnitude.

 600

 4800

 9600

14400

16800

19200

USER BASIC STATIC DYNAMIC

U
C

S
D

U
IU

C
−

O

U
IU

C
−

M

U
T

K

U
C

S
D

U
IU

C
−

O

U
IU

C
−

M

U
T

K

U
C

S
D

U
IU

C
−

O

U
IU

C
−

M

U
T

K

U
C

S
D

U
IU

C
−

O

U
IU

C
−

M

U
T

K

FIG. 11: Proessor seletions for eah sheduling strategy for the Jaobi appliation on the three-site testbed

for all six problem sizes. For eah experiment repetition, the proessors seleted by eah strategy are

highlighted with gray boxes.

Notie that while all four strategies were suessful in �nding a shedule for N = 19200 (see Figure 11),

both the user and dynami strategies failed during the launh or exeution of the appliation itself (see

Figure 12). The dynami strategy experiment failed during appliation launh due to an unidenti�ed problem

on the launhing mahine. The user strategy experiment failed beause the appliation heavily interfered

with a user's work, who then killed the appliation. When the appliation interferes with the work of other

users to this extent it suggests that (1) best estimates of available memory should be used at run-time

26

600 4800 9600 14400 16800 19200
0

5

10

15

20

25

0
.0

4

1
.9

3
 4
.6

1

1
7
.3

0

1
8
.1

2

F
a
ile

d

0
.0

3

1
.6

2

3
.3

7

3
.1

1

3
.4

5

2
0
.6

8

0
.0

1

0
.2

3

0
.9

0 3
.2

0 6
.0

2

3
.5

2

0
.0

1

0
.2

4

0
.9

3

2
.0

7

2
.7

8

F
a
ile

dIt
e
ra

ti
o
n
 T

im
e
 (

s
e
c
)

Problem Size

User
Basic
Static
Dynamic

FIG. 12: Average and standard deviation in iteration times for the Jaobi appliation on the three-site

testbed for six problem sizes.

to ensure mahine memory availability and avoid thrashing and (2) our memory usage model may be too

onservative in its estimate of how muh memory should be available for the appliation on eah mahine.

One must always onsider the bene�ts of additional memory for the appliation with the ommuniation

osts assoiated with utilizing more mahines.

There are 4 shedules shown in Figure 11 that inlude both UTK mahines and mahines at another

site: the user strategy for N = 14400, 16800, and 19200 and the basi strategy for N = 19200. These ases

orrespond exatly to the worst iteration time results shown in Figure 12; these shedules performed poorly

beause of the poor network performane between UTK and the other sites (refer to the preeding setion

for details). Sine the ordering of mahine seletion is prede�ned for the user strategy fUCSD, UTK, UIUCg,

it is not surprising that the user strategy seleted these shedules. It is surprising, however, that the basi

strategy seleted suh a shedule.

Let us investigate this behavior in some detail. A problem size of 19200 is demanding for this testbed; in

aggregate, at least 3375 MB of RAM are required. Given an equal work alloation, this translates into per

mahine available memory requirements, for example, of 140.6 MB / mahine for 24 mahines, 210.9 MB /

mahine for 16 mahines, or 421.9 MB / mahine for 8 mahines. Given unloaded onditions and an equal

work alloation, a shedule for N = 19200 an not utilize all 24 mahines beause the Major mahines at

UIUC have only 127 MB eah, 16 mahines an be utilized only if the Major mahines are exluded, and 8

mahine an be utilized only if all 8 mahines are from UTK.

Notie that the basi strategy seleted 16 mahines. Sine the basi strategy selets the smallest resoure

set that satis�es appliation memory requirements, it may seem surprising that the strategy seleted more

than just the 8 Tor mahines. Reall however that the basi strategy ollets and uses dynami resoure

27

information at shedule-time (i.e. run-time). In this experiment, the basi strategy found that some of

the UTK mahines were partially loaded and ould no longer provide the minimum 421.9 MB / mahine

needed to run the appliation on just the 8 UTK mahines. The strategy therefore seleted more mahines,

thereby reduing the minimum memory required per mahine to levels whih ould be supported by the

UTK mahines.

Looking again at Figure 11, it may now seem strange that both the stati and dynami strategies

determined that an 8 UTKmahine was an aeptable hoie. The stati strategy uses only stati information

and therefore assumes all resoures are unloaded; under unloaded onditions the 8 UTK mahines are an

appropriate hoie. Looking at the results shown in Figure 12, it appears that this hoie was also reasonable

in the onditions experiened by the stati strategy (i.e. the strategy performed reasonably). In other ases,

blindly assuming unloaded onditions an have drasti a�ets.

When the dynami strategy ran, it retrieved run-time resoure information and found that the UTK

mahines were partially loaded. However, usage of the time balane mapper provided this strategy with the

added exibility of unequal work alloations. The time balane mapper found a map whih allowed usage

of the 8 UTK mahines by shifting some work from the partially loaded mahines to the unloaded mahines.

In general, we found that the time balane mapper was not only generally suessful in reduing appliation

iteration times, but was also very useful in inreasing the number of sheduling hoies available.

4.5. Sheduler and appliation failures

During the experiments reported in this paper we enountered a number of appliation and sheduler

failures. A detailed analysis of the types of failures that our and with what frequeny an be found in [12℄;

we summarize those results here for ompleteness.

A sheduler failure ours when the sheduler an not �nd a feasible shedule for the appliation. Our

sheduling methodology redues the frequeny of sheduling failures by (1) using an e�etive searh heuristi

to ensure that feasible mahine groups are identi�ed, should they exist, and (2) using a time-balaning

mapper that adapts data alloations to math the available memory apaities of individual mahines. For

these measures to sueed, omputation and memory apaity information must be available for targeted

mahines; our methodology oasionally fails due to lak of resoure information.

We identi�ed a variety of failures whih we label \appliation failures": the appliation launh proess

oasionally failed due to unexplained sript failures; memory alloation by the appliation an fail if there is

not suÆient available memory; appliation ommuniation proesses failed oasionally due to either Globus

or soket ommuniation bugs; one of the mahines involved in the omputation an fail to partiipate in

ommuniation (either the mahine went down or o�-line); and, �nally, appliation resoure usage an

interfere with other users' work at whih time they will sometimes kill the appliation. The frequeny of

launh and run-time failures provides useful insight into the stability of program exeution on the Grid.

28

4.6. Sheduling overhead

A sheduler design is pratial only if the overhead of the sheduling proess is reasonable when ompared

to appliation exeution times. The results presented in the preeding setions of this paper have not inluded

the overheads introdued by the sheduler itself. In this setion we quantify these overheads.

We onsider the total overhead for sheduling, as well as the overhead for eah of the two ativities

performed by our sheduling methodology: (i) the olletion of resoure information from the MDS and NWS

and (ii) the searh for andidate shedules. We measured sheduling overheads for the Jaobi appliation on

the 3-site testbed with the same sheduler on�guration as was used for the dynami sheduling strategy.

While this ase study provides a reasonable overview of the overheads of our methodology, note that the ost

of sheduling is dependent on problem run on�guration, the seleted testbed, the target appliation, the

omplexity of the hosen performane model and mapper, and variable load on the GrADS NWS nameserver

and MDS server.

It is important to di�erentiate the osts of data retrieval from the MDS and NWS servers from the ost

of transferring the request for data and the response over WANs. We set up an NWS nameserver and an

MDS ahe at UCSD and we performed the tests from a mahine at UCSD; these soures of information

will be referred to as the loal NWS and the loal MDS ahe. We inlude test senarios in whih NWS

information is retrieved from either the loal NWS or from the GrADS NWS, whih was loated at UTK in

Knoxville, Tennessee. We also inlude senarios in whih MDS information is retrieved from the loal MDS

ahe or from the GrADS MDS, whih was loated at ISI in Los Angeles, California. Spei�ally, we test the

following retrieval modes.

� Mode A used the GrADS NWS nameserver and the GrADS MDS server.

� Mode B used the GrADS NWS nameserver and a loal MDS ahe. For these experiments, the loal

MDS ahe ontained all needed information (i.e. it was fully warmed).

� Mode C used the loal NWS nameserver and a fully warmed loal MDS ahe.

We ran the sheduler with eah of the three retrieval modes in a bak-to-bak manner; we ompleted 10

suh triplets. For eah run, we measured the time required for the entire sheduling exeution (TotalT ime)

and the time required for Grid information olletion (ColletT ime); we onsider the ost for the shedule

searh (SearhT ime) to be all sheduling time that is not spent in information olletion: SearhT ime =

TotalT ime� ColletT ime.

Table 3 presents summary results over all 10 repetitions for the mean and standard deviation of the

ColletT ime, SearhT ime, and the TotalT ime. For referene, when we ran sheduling experiments with

a similar experimental on�guration, the four sheduling strategies typially ahieved appliation iteration

times between 1.8 and 11 seonds. Sine we ran roughly 100 iterations in these experiments, the appliation's

iterative phase oupied 180 to 1100 seonds.

29

Mode A Mode B Mode C

Collet Time, Avg � std 1087.5 � 303.3 59.6 � 3.9 2.0 � 0.7

Searh Time, Avg � std 0.8 � 0.3 2.4 � 0.4 2.5 � 0.3

Total Time, Avg � std 1088.4 � 303.3 62.1 � 3.9 4.5 � 0.9

TABLE 3

Sheduling overheads in seonds to shedule Jaobi on the three-site testbed, N = 14400, dynami

sheduling strategy.

The ost of Grid information olletion dominates sheduling overhead in all modes exept C. In

mode C only 2 seonds, on average, were required to ollet information on all 24 mahines in this testbed.

This overhead is very reasonable when ompared with appliation run-times; we onlude that our proedure

for olleting resoure information is eÆient enough and that the ost of data retrieval from an NWS server

is reasonable. In mode B, NWS data were retrieved from a remote NWS server, whih inreased information

olletion times to approximately 60 seonds. We onlude that olletion of information from a remote

NWS server is eÆient enough for most uses of our sheduler. The overhead ould beome problemati for

a larger testbed; in this ase, our sheduler an be used without run-time resoure information as was done

for the stati strategy in this paper. Finally, mode C utilized both the remote NWS nameserver and the

remote MDS server, thus inreasing olletion times to 1087.5 seonds, or approximately 18 minutes. This

overhead is prohibitive, and, in pratie, would prevent usage of our sheduling approah. We onlude that

until retrieval times are redued for the MDS, loal ahing of MDS information will be neessary. The MDS

information that is retrieved and used by our methodology hanges on the order of weeks or months; loal

ahing is therefore an aeptable solution for this work. Note that ongoing development work in both MDS

and NWS is seeking to redue information retrieval latenies.

The ost of the shedule searh proess is less than 2.5 seonds for all three olletion modes and is

therefore an aeptable overhead for our sheduling senarios. This low searh time overhead is due to (1)

the low omputational omplexity of our exeution time model and mapping strategy and (2) the extensive

searh pruning performed during the searh proess. Notie that the average searh time in mode A is

only about 33% of the searh time for modes B and C. Mode A retrieves some resoure information from

the GrADS MDS and during these experiments that server was unable to provide muh of the required

information. Our sheduling methodology does not onsider mahines for whih no data is available, thus

leading to pruning of the shedule searh spae and a redution in searh time.

5. DISCUSSION

In this setion we desribe related work (Setion 5.1), desribe possible extensions to our work (Se-

tion 5.2), and onlude the paper (Setion 5.3).

30

5.1. Related work

The Appliation-Level Sheduling Projet (AppLeS) has developed many suessful sheduling

strategies for the Grid inluding [8, 9, 13, 37, 38℄. These e�orts provided important foundations for the ore

omponents of our sheduling approah: the shedule searh proedure, the mappers, and the performane

models.

Two of these e�orts are partiularly related to this work [8, 13℄. The �rst foused on the sheduling of a

Jaobi solver for the �nite-di�erene approximation to Poisson's equation [8℄. The seond e�ort foused on

sheduling of a parallel magnetohydrodynamis simulation (PMHD3D), whih is also lassi�ed as an iterative,

mesh-based appliation [13℄. Eah of these e�orts demonstrated signi�ant improvements in appliation

performane as ompared to onventional sheduling e�orts. The performane models and mappers presented

in Setion 3 are based in part on the models and mapping strategies used in the previous Jaobi and PMHD3D

work. We also used these e�orts as examples for the development of our searh proedure; we believe that

the searh proedure we have developed is more thorough and therefore more likely to disover desirable

mahine groups. Our searh proedure has also been developed to work with both LANs and WANs and

has been thoroughly tested in both environments; the Jaobi and PMHD3D shedulers were tested only in

LAN environments.

Many AppLeS e�orts [8, 13, 37, 38℄ have targeted spei� appliations; the most important ontribution

of our work is that we have separated the appliation-spei� omponents from the appliation-generi.

Due to this formal separation, we believe that our sheduling approah is more easily re-targeted to new

appliations than most previous AppLeS e�orts. Two AppLeS e�orts have suessfully targeted lasses

of appliations [9, 35℄. However, both of these e�orts target master-slave appliations, whereas we target

appliations whih may involve signi�ant inter-proessor ommuniations.

There are a number of other sheduling projets that are notable for targeting a variety of appliations

or an entire appliation lass; examples inlude the Condor Mathmaker [33℄, Prophet [40℄, and Nimrod/G [1℄.

The Nimrod/G e�ort fouses on embarrassingly parallel appliations and so is more omparable with other

AppLeS e�orts [9, 35℄ than with the urrent e�ort.

Prophet is a run-time sheduling system designed for parallel appliations written in the Mentat pro-

gramming language [41, 40℄. Another related e�ort is Prophet, a run-time sheduling system designed for

parallel appliations written in the Mentat programming language [41, 40℄. This sheduling system is similar

to our work in that it exploits appliation struture and system resoure information to promote appliation

performane. Prophet was demonstrated for both SPMD appliations and appliations based on task-parallel

pipelines; the sheduler design was tested in heterogeneous, loal-area environments. If possible, we would

like to ompare the performane of our strategies to those of Prophet, though it may be diÆult to �nd a

suitable senario for omparison that satis�es the requirements of eah sheduling strategy. For example,

Prophet requires the target appliation be written in Mentat and we have not used Mentat in our e�orts.

Another projet of interest is the Condor Mathmaker [33℄. In the Mathmaking system, users speify the

31

resoure requirements of their appliation to the system, resoure providers similarly speify the apabilities

of their resoures, and a entralized Mathmaker is used to math appliation resoure requirements with

appropriate resoures. This design is quite general and an therefore be applied to many di�erent types

of appliations. The Mathmaking strategy, while more general that the sheduler presented in this paper,

di�ers in that it is primarily a resoure disovery mehanism and is not able to provide detailed shedule

development.

5.2. Future work

We have an initial prototype of our sheduler whih we used to obtain the experiments presented in this

paper. We are urrently re�ning this prototype and integrating our software into the main GrADS software

base [25℄. An interesting extension to our work would inorporate in our searh proedure distint searhes

for di�erent types of mahines; for example, given a master-slave appliation, one might want to �rst �nd

the best mahine for the master proess, and then searh for mahines for the slave proesses (exluding the

mahine seleted for the master). We also plan to extend the validation of our sheduler by testing it with

other appliations and appliation lasses as well as other testbeds.

Several shedulers have been developed in the GrADS projet for use with spei� appliations [3, 32℄.

We plan to test our approah with those appliations and then ompare the performane ahieved by eah

sheduler. We are also ollaborating with the developers of these shedulers to de�ne the fundamental

harateristis of a suessful sheduling approah in the GrADS environment.

For the purposes of this work, we designed and built the appliation performane models and mapping

strategies. However, if Grid appliation development is to be aessible to a larger number of users, then

we annot expet users to provide detailed performane models and mapping strategies. Reognizing this,

other members of the GrADS researh ommunity are investigating the feasibility of ompiler generation of

appliation information and performane models [24℄ as well as the inlusion of suh models in Grid-enabled

libraries [24, 29℄. As this work matures, we plan to experiment with the usage of suh models for appliation

sheduling.

5.3. Conlusions

In this paper we proposed an adaptive sheduling approah designed to improve the performane of

parallel appliations in Computational Grid environments. In Setion 2 we presented the arhiteture of our

sheduler and we detailed our searh proedure, whih lies at the heart of the sheduler. In Setion 3 we

desribed Jaobi and the Game of Life, two iterative, mesh-based appliations whih we seleted as test ases

for our sheduler. For eah appliation, we presented data mappers and performane models appropriate for

use by a sheduler. For validation of our approah, we used a prototype of our sheduler in onjuntion with

the mappers and performane models developed in Setion 3.

In Setion 4 we presented the results of experiments where we applied our sheduling approah in realisti

32

usage senarios in prodution Grid environments. These experiments demonstrate that our sheduler pro-

vides signi�antly better appliation performane than onventional sheduling strategies. Our experiments

inluded sheduling strategies in whih appliation and/or resoure information was limited; with these

experiments we demonstrated that our sheduler graefully handles degraded levels of availability of appli-

ation and Grid resoure information. Finally, we showed that the overheads introdued by our approah

are reasonable.

ACKNOWLEDGMENTS

This work bene�ted greatly from ollaborations with the GrADS team. We espeially thank the Innovative

Computing Laboratory at UTK and the Pablo group at UIUC for allowing us to run experiments on their resoures.

We also thank Adam Birnbaum for his insightful review of the manusript.

REFERENCES

[1℄ Abramson, D., Giddy, J., and Kotler, L. High performane parametri modeling with Nimrod/G:

Killer appliation for the global Grid? In International Parallel and Distributed Proessing Symposium

(May 2000).

[2℄ Alhusaini, A. H., Prasanna, V. K., and Raghavendra, C. A uni�ed resoure sheduling frame-

work for heterogeneous omputing environments. In Proeedings of the 8th Heterogeneous Computing

Workshop (April 1999).

[3℄ Allen, G., Angulo, D., Foster, I., Lanfermann, G., Liu, C., Radke, T., Seidel, E., and

Shalf, J. The Catus Worm: Experiments with dynami resoure disovery and alloation in a grid

environment. International Journal of High Performane Computing Appliations 15, 4 (2001), 345{358.

To appear.

[4℄ Banikazemi, M., Sampathkumar, J., Prabhu, S., Panda, D. K., and Sadayappan, P. Com-

muniation modeling of heterogeneous networks of workstations for performane haraterization of

olletive operations. In Proeedings of the 8th Heterogeneous Computing Workshop (April 1999).

[5℄ Barrett, R., Berry, M. W., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,

V., Pozo, R., Romine, C., and van der Vorst, H. Templates for the Solution of Linear Systems:

Building Bloks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[6℄ Berman, F. The Grid: Blueprint for a New Computing Infrastruture. Morgan Kaufmann Publishers,

In., 1999, h. 12: High-Performane Shedulers, pp. 279{309.

[7℄ Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I., Gannon, D., Johnsson, L.,

Kennedy, K., Kesselman, C., Mellor-Crummey, J., Reed, D., Torzon, L., and Wolski,

R. The GrADS Projet: Software support for high-level Grid appliation development. International

Journal of Superomputer Appliations 15, 4 (2001), 327{344. To appear.

[8℄ Berman, F., Wolski, R., Figueira, S., Shopf, J., and Shao, G. Appliation level sheduling

on distributed heterogeneous networks. In Proeedings of Superomputing (November 1996).

[9℄ Casanova, H., Obertelli, G., Berman, F., and Wolski, R. The AppLeS Parameter Sweep

Template: User-level middleware for the Grid. In Proeedings of Superomputing (November 2000).

33

[10℄ Czajkowski, K., Fitzgerald, S., Foster, I., and Kesselman, C. Grid information servies

for distributed resoure sharing. In Proeedings of the 10th IEEE Symposium on High-Performane

Distributed Computing (August 2001).

[11℄ Dail, H. A modular framework for adaptive sheduling in grid appliation development environments.

Master's thesis, University of California at San Diego, Marh 2002. Available as UCSD Teh. Report

CS2002-0698.

[12℄ Dail, H., Casanova, H., and Berman, F. A modular sheduling framework for GrADS. Submitted

to 11th IEEE Symposium on High Performane Distributed Computing.

[13℄ Dail, H., Obertelli, G., Berman, F., Wolski, R., and Grimshaw, A. Appliation-aware shedul-

ing of a magnetohydrodynamis appliation in the Legion Metasystem. In Proeedings of the 9th Het-

erogenous Computing Workshop (May 2000).

[14℄ Flake, G. W. The Computational Beauty of Nature: Computer Explorations of Fratals, Chaos,

Complex Systems, and Adaptation. MIT Press, Cambridge, MA, 1998.

[15℄ Foster, I. Designing and Building Parallel Programs. Addison-Wesley, 1995, h. 2. Available at

http://www-unix.ms.anl.gov/dbpp.

[16℄ Foster, I., Geisler, J., Gropp, W., Karonis, N., Lusk, E., Thiruvathukal, G., and Tueke,

S. Wide-area implementation of the Message Passing Interfae. Parallel Computing 24, 12 (1998), 1735{

1749.

[17℄ Foster, I., and Karonis, N. T. A Grid-enabled MPI: Message passing in heterogeneous disributed

omputing systems. In Proeedings of Superomputing Conferene (November 1998).

[18℄ Foster, I., and Kesselman, C. The Globus Projet: A status report. In Proeedings of the 7th

Heterogeneous Computing Workshop (1998).

[19℄ Foster, I., and Kesselman, C., Eds. The Grid: Blueprint for a New Computing Infrastruture.

Morgan Kaufmann Publishers, In., 1999.

[20℄ Fox, G. C., Williams, R. D., and Messina, P. C. Parallel Computing Works! Morgan Kaufmann,

San Franiso, CA, 1994. Available at http://www.npa.syr.edu/pw.

[21℄ Grimshaw, A., Ferrari, A., Knabe, F., and Humphrey, M. Wide-Area Computing: Resoure

sharing on a large sale. IEEE Computer 32, 5 (May 1999), 29{37.

[22℄ Gropp, W., Lusk, E., Doss, N., and Skjellum, A. A high-performane, portable implementation

of the MPI message passing interfae standard. Parallel Computing 22, 6 (1996), 789{828.

[23℄ Gropp, W. D., and Lusk, E. User's guide for MPICH, a portable implementation of MPI. Mathematis

and Computer Siene Division, Argonne National Laboratory, 1996. ANL-96/6.

[24℄ Kennedy, K., Broom, B., Cooper, K., Dongarra, J., Fowler, R., Gannon, D., Johnsson,

L., Mellor-Crummey, J., and Torzon, L. Telesoping languages: A strategy for automati gener-

ation of sienti� problem-solving systems from annotated libraries. Journal of Parallel and Distributed

Computing 61, 12 (2001), 1803{1826.

[25℄ Kennedy, K., Mazina, M., Aydt, R., Mendes, C., Dail, H., and Sievert, O. GrADSoft and

its Appliation Manager: An exeution mehanism for Grid appliations. GrADS Projet Working

Doument V, available at http://hipersoft.s.rie.edu/grads/publiations_reports.htm, Ot

2001.

[26℄ Kwok, Y.-K., and Ahmad, I. Benhmarking and omparison of the task graph sheduling algorithms.

Journal of Parallel and Distributed Computing 59, 3 (1999), 381{422.

34

[27℄ Litzkow, M. J., Livny, M., and Mutka, M. W. Condor|a hunter of idle workstations. In

Proeedings of the 8th International Conferene on Distributed Computing Systems (June 1988).

[28℄ Miller, N., and Steenkiste, P. Colleting network status information for network-aware applia-

tions. In INFOCOM'00 (Marh 2000).

[29℄ Mirkovi, D., Mahasoom, R., and Johnsson, L. An adaptive software library for fast fourier

transforms. In Proeedings of the 2000 International Conferene on Superomputing (2000).

[30℄ MPI Forum webpage at http://www.mpi-forum.org.

[31℄ Paheo, P. S. Parallel Programming With MPI, seond ed. Morgan Kaufmann Publishers, In., San

Franiso, CA, 1997, h. 10, pp. 218{225.

[32℄ Petitet, A., Blakford, S., Dongarra, J., Ellis, B., Fagg, G., Rohe, K., and Vadhiyar, S.

Numerial libraries and the Grid. International Journal of High Performane Computing Appliations

15, 4 (2001), 359{374. To appear.

[33℄ Raman, R., Livny, M., and Solomon, M. Mathmaking: Distributed resoure management for high

throughput omputing. In Proeedings of the 7th IEEE Symposium on High-Performane Distributed

Computing (July 1998).

[34℄ Shao, G., Berman, F., and Wolski, R. Using E�etive Network Views to promote distributed

appliation performane. In Proeedings of the 1999 International Conferene on Parallel and Distributed

Proessing Tehniques and Appliations (1999).

[35℄ Shao, G., Wolski, R., and Berman, F. Master/slave omputing on the Grid. In Proeedings of the

9th Heterogenous Computing Workshop (May 2000).

[36℄ Smallen, S., Casanova, H., and Berman, F. Applying sheduling and tuning to on-line parallel

tomography. In Proeedings of Superomputing Conferene (November 2001).

[37℄ Smallen, S., Cirne, W., Frey, J., Berman, F., Wolski, R., Su, M.-H., Kesselman, C.,

Young, S., and Ellisman, M. Combining workstations and superomputers to support Grid ap-

pliations: The parallel tomography experiene. In Proeedings of the 9th Heterogenous Computing

Workshop (May 2000).

[38℄ Su, A., Berman, F., Wolski, R., and Strout, M. M. Using AppLeS to shedule simple SARA

on the Computational Grid. International Journal of High Performane Computing Appliations 13, 3

(1999), 253{262.

[39℄ Swany, M., and Wolski, R. Building performane topologies for omputational grids. In Pro. 11th

IEEE Symp. on High Performane Distributed Computing (2002). Submitted.

[40℄ Weissman, J. Prophet: Automated sheduling of SPMD programs in workstation networks. Conur-

reny: Pratie and Experiene 11, 6 (1999).

[41℄ Weissman, J., and Zhao, X. Sheduling parallel appliations in distributed networks. Journal of

Cluster Computing 1, 1 (1998), 109{118.

[42℄ Williams, H. Model Building in Mathematial Programming, seond ed. Wiley, Chihester, New York,

1995.

[43℄ Wolski, R., Spring, N. T., and Hayes, J. The Network Weather Servie: A distributed resoure

performane foreasting servie for metaomputing. The Journal of Future Generation Computing

Systems (1999).

35

