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ABSTRACT OF THE DISSERTATION

Electron Transport, Energy Transfer, and Optical Response in Single
Molecule Junctions

by

Alexander James White

Doctor of Philosophy in Chemistry

University of California, San Diego, 2014

Professor Michael Galperin, Chair

The last decade has seen incredible growth in the quality of experiments being

done on single molecule junctions. Contemporary experimental measurements have ex-

panded far beyond simple electron transport. Measurement of vibronic effects, quantum

interference and decoherence effects, molecular optical response (Raman spectroscopy),

and molecular spintronics are just some of the continuing areas of research in single

molecule junctions. Experimental advancements demand advanced theoretical treat-

ments, which can be used accurately within appropriate physical regimes, in order to

understand measured phenomena and predict interesting directions for future study. In

this dissertation we will study systems with strong intra-system interactions using a

many-body states based approach.
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We will be focused on three related processes in molecular junctions: electron

transport, electronic energy transfer, and molecular excitation. Inelastic electron trans-

port in the regime of strong and nonlinear electron-vibration coupling within and outside

of the Born-Oppenheimer regime will be investigated. To understand their appropriate-

ness, we will compare simple semi-classical approximations in molecular redox junctions

and electron-counting devices to fully quantum calculations based on many-body system

states. The role of coherence and quantum interference in energy and electron transfer

in molecular junctions is explored.

Experiments that simultaneously measure surface enhanced Raman scattering

and electron conduction have revealed a strong interaction between conducting electrons

and molecular excitation. We investigate the role of the molecular response to a classical

surface plasmon enhanced electric field considering the back action of the oscillating

molecular dipole. Raman scattering is quantum mechanical by nature and involves strong

interaction between surface plasmons in the contacts and the molecular excitation. We

develop a scheme for treating strong plasmon-molecular excitation interactions quantum

mechanically within nonequilibrium molecular junctions. Finally we perform preliminary

calculations of the Raman spectrum of a three-ring oligophenylene vinylene terminating

in amine functional groups molecule in a molecular junction and compare our results to

experimental measurements. This work is the first steps towards full calculations of the

optical response of current-carrying molecular junction, which should combine classical

calculations of the plasmon enhanced electric field with quantum calculations for the

plasmon-molecular exciton interaction and nonequilibrium Raman scattering.
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Chapter 1

Introduction

1.1 Background

The use of molecules in electronic devices was first proposed by Aviram and Rat-

ner in 1974.1 This was the beginning of the theoretical field of molecular electronics.

Not until 1997 were the first measurements in single molecule junctions, electronic con-

ductance as a function of source-drain bias, reported.2 The single molecule junction is

a device in which a single molecule bridges two metallic electrodes. Since then, great

progress in experimental techniques at the nanoscale has driven the molecular electronics

field. Endeavours in the field were originally, and continue to be, motivated by the desire

to miniturize electronics components such as transistors, switches, and rectifiers. Today

the field has become a playground for fundamental studies, and the possibilities for novel

molecule characterization at the single molecule level can change the way we approach

problems in solar-energy harvesting, thermoelectrics, catalysis, and sensing.3

While early molecular electronics experiments were focused on elastic electron

tunneling,4 current research in the field has branched in many directions, often probing

the interaction of conducting electrons with other degrees of freedom of the molecule.5,6

Some of these directions include measurement of thermoelectric properties of molecular

devices7–9 and heat transport,10–13 molecular mechanics measurements,14,15 atomic-scale

molecular imaging,16,17 molecular spintronics,18–22 inelastic23–25 and resonant inelas-

tic26–28 electron tunneling spectroscopy and the measurement of noise.29,30 Additionally,

people measure the consequencies of quantum interference effects in transport.31–33

1
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Theoretical methods capable of simulating these nonequilibrium systems effi-

ciently and accurately are required to complement experimental measurement, both to

explain measurements and to propose new interesting systems for study. Much theoret-

ical work involves applying quantum chemistry methods with nonequilibrium transport

calculations to achieve realistic “first-principle” simulations of molecular junctions, usu-

ally based on heavy approximations. Alternatively one may apply nonequilibrium tech-

niques to toy models in an attempt to understand the fundamental physics of transport

in molecules and to develop methods for future “first-principle” simulations.

Realistic simulations for single molecule junctions require quantum chemistry cal-

culations combined with nonequilibrium methodologies for calculating transport. The

large size of the molecular junction system (with the partial inclusion of metallic leads)

and the development of hybrid-functionals capable of accurate calculations of electronic

structure of organic molecules,34 made the efficient density functional theory (DFT),35,36

and its time-dependent version (TD-DFT),37,38 a clear choice for electronic structure cal-

culations of single molecule junctions. The nonequilibrium Green function (NEGF)39,40

method had already been well established for quantum transport in mesoscopic (e.g.

quantum dots) scale systems.41,42 The NEGF method is based on “quasi-particle”43

excitations, elementry excitations which exist on top of the ground state of a large

many-body system. DFT is similarly based on effectively independent single particle

Kohn-Sham orbitals.44 Both methods work in the same language of these elementary

excitations and their combination into the NEGF-DFT(TDDFT) formalism was natu-

ral.45–47 This language is convenient when the elementary excitations are non- or weakly

interacting (as would be the case if the exchange correlation functional used was exact).

In this regime, the complex many-body problem is effectively reduced to a problem of

non- or weakly interacting single particle picture. The NEGF-DFT method has success-

fully been applied to quantum chemistry calculations of elastic48–51 and inelastic52–55

transport. Though NEGF-DFT is inconvenient for calculation of inelastic transport

in the resonant tunneling regime or when intra-system interaction is not weak (where

perturbation theory is inappropriate).56 Additionally toy model calculations based on

NEGF methods have improved our understanding of inelastic effects in transport in

the off-resonant (inelastic electron tunneling spectroscopy, IETS) and resonant (RIETS)
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tunneling regimes.23,24,26,56

While the NEGF-DFT method has been, and will continue to be, very useful

in simulation of electron transport in the off-resonant and/or weak intramolecular in-

teraction regime, it is not convenient in the physically important situation of strong

intramolecular interaction and resonant tunneling. Note that a large molecular response

to an external stimuli (e.g. current induced chemistry,57 hysteresis and switching58–60 or

negative differential resistance61–64) is required of a useful molecular electronics device.

Within this regime multiple degrees of freedom of the molecule, e.g. vibrational and

electronic, are mixed. For example, when the Born-Oppenheimer approximations breaks

down, e.g. when mixing between electronic and vibrational degrees of freedom couples

quasi-degenerate electronic orbitals,65 or when the vibrational structure of a molecule is

dependent on the charge or electronic state of the molecule,27,66 it is especially convenient

to represent the Hamiltonian in terms of the many-body, vibronic, states.

Interaction with light has great potential for the characterization and control of

molecular junctions. The field of molecular optoelectronics67–69 has developed due to

great advancements in laser technology and in fabrication techniques which have made

the production of nanoscale gaps possible. These nanoscale gaps form “hot spots” of

strong electromagnetic field enhancement allowing for the measurement of the optical re-

sponse of current carrying molecular junctions.70–73 In particular, over the past five years

surface enhanced Raman spectroscopy74 has become an important tool for characterizing

vibrational and electronic heating,75–77 molecule orientation,78,79 and structure80–83 of

single molecule junctions. Additionally correlations between electrical conductance and

Raman signal, which reveal information on the dynamics of the molecular junction, have

been observed.70,76,84

Theoretical treatment of optical response in current carrying molecular junc-

tions is complicated by the interaction of current and light scattering. Attemping to

understand this interaction, much work has been done at the simple model level85–90

Steady-state and time dependent non-equilibrium Green function methods have been

applied to the Raman problem for model systems.86,91–93 These model systems consider

the optical driving of either a two-level (HOMO-LUMO type) system (intramolecular

Raman process)86,89,90 , or between the molecule and metal (charge transfer Raman),93
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with linear coupling between the molecular electrons and vibrations. These methods

have been used to analyze the relationship between the electronic conductance and the

Raman signal. Like NEGF-DFT, these studies have used a “quasiparticle” approach.

Interaction between molecules and surface plasmon-polariton (SPP) modes is

critical to the single-molecule optical response. The field of molecular nanoplasmonics

studies this interaction. Interacting SPP-molecule systems are usually modeled using

quantum mechanics for the molecule part94–100 and numerical integration of Maxwell’s

equations101–105 for the SPP part. Usually the electromagnetic field is assumed to be an

external driving force. The NEGF technique has been used to study charge transport and

optical response of a molecular junction which is subjected to such an electromagnetic

field, taking into account the SPP modes specific to the junction geometry.106,107 How-

ever, a semi-classical description of the interaction of the SPP-molecular excitation is not

always appropriate. Quantum effects observed in strongly-hybridized plasmonic nanos-

tructures,108 and in systems of hybridized molecule-plasmon excitations,109,110 motivated

a quantum description of the interaction.111–114 Recently a mean-field equilibrium Green

function based formalism was utilized to study the plasmon absorption spectrum of a,

molecule like, quantum emitter between a pair of metallic nanoparticles.115

Charge and electronic energy transfer processes occur simultaneously in molec-

ular optoelectronic devices. A many-body representation has many advantages in the

theoretical treatment of these processes. An orbital-based representation is complicated

by the non-quadratic form of the energy transfer matrix elements, which necessitates

an approximate treatment, while this issue does not exist in a many-body state rep-

resentation. Rigorous treatment of the radiationless energy transfer between surface

plasmon-polaritons in the contacts and molecule excitations is required for the theoret-

ical description of single-molecule optical response,85,106 where enhancement of electro-

magnetic field is critical116,117 and where strongly interacting plasmonic and molecular

excitations give rise to a new “quasiparticle” - polariton.109,110,115 Additionally, molec-

ular spectroscopy and most quantum chemistry methods are naturally formulated in the

language of many-body states. Thus, a many-body state formulation is more convenient

for quantum chemistry based calculations and analysis of optical response and transport

properties in molecular electronics.
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As we have discussed, a many-body state based representation is desirable for

theoretical treament of both electron transport and optical response in molecular junc-

tions. Multiple methodologies based on many-body states are used in nonequilibrium

transport calculations. Scattering theory is often used when working at the wavefunction

level. In transport calculations,118–124 the full many-body problem is often reduced to

single-particle scattering problem (as the full many-body wavefunction may intractable)

including in the Landauer-Buttiker formalism,125 and is exact and convenient when elas-

tic scattering in a non-interacting system is considered.126 The exact mapping method127

can be used to represent inelastic transport in junctions as a single-particle scattering

problem in the space of many-body states. This can be useful in describing systems with

strong intra-system interactions, though it is not completely rigorous. Single-particle

scattering theory, including exact mapping, generally misses the blocking of scattering

channels due to the Pauli principle (Fermi distribution in the contacts).128,129

Generalization of the wavefunction based formalism to a density matrix approach,

which takes into account spatial correlations, is a natural step when using a reduced de-

scription in which the bath degree of freedom is traced out. While a formally exact

equation of motion for the density matrix, a quantum master equation (QME), can be

written,130,131 in practical applications a perturbation theory in system-bath coupling is

applied.132–134 The second order perturbation, the Redfield QME, is only appropriate

in the very high temperature regime, kbT � Γ,135 where Γ is the electron escape rate

or contact coupling strength, T is the temperature and kB is the Boltzmann constant,

and when there are no degeneracies in the system.136 Additionally, the Redfield QME

neglects hybridization of the molecular orbitals with those in the contacts (broadening

of the molecular levels)137 which may lead to qualitative failure.107,138 Higher order,

usually fourth order, perturbation theories135,139,140 are available in the literature, but

may not resolve these issues. Additionally, a nonperturbative generalized quantum mas-

ter equation (GQME) approach has been developed in the Galperin group.137,138 The

formulations starts from an exact equation of motion, which is part of an infinite chain

of equations of motion with increasingly complicated multi-time correlation functions.

The chain is truncated by expressing two-time correlation functions in terms of the re-

duced density matrix. Formulating the truncations on either the Keldysh contour, or the
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anti-contour, yields a time-nonlocal or time-local version of the GQME respectively. The

effective second order in the system bath coupling applied in Ref. 137,138 recovers the

broadening and resolves the low temperature limit. However, going beyond effective sec-

ond order coupling is required to resolve the problem of degeneracies. Alternative QME

variations which recover broadening are also available in the literature,141–143 though

they have their own limitations.137 Additionally, a sophisticated method involving the

use of the real-time renormalization group in the framework of a quantum master equa-

tion was reported recently, though it is numerically expensive.144

The time locality of the density matrix makes it suitable for the evaluation of time

local quantities. Green functions are nonlocal in space and time, which makes treatment

of system-bath hybridization and non-Markovian effects easier. The closest approach to

the usual nonequilibrium Green function that utilizes the basis of many-body states is

the Hubbard Green function approach. A spectral decomposition of the “quasiparticle”

creation operator, d̂†m =
∑

M1,M2
〈M1|d̂†m|M2〉X̂M1,M2 , shows that an elementary excita-

tion is equivalent to a weighted mixture of transitions between many-body states, |M〉,

(which differ by a single electron) defined by the Hubbard projection operator, XM1,M2 .

An exact equation of motion can be written for the Hubbard operator by introducing

auxiliary fields and using the technique of functional derivatives.40,145–149 However to

use the equations of motion in practice, the auxiliary fields must be eliminated in some

approximate way. The lowest order approximation, dropping the auxiliary fields entirely,

constitutes the Hubbard one approximation (H1A). The approach has been used to sim-

ulate transport in molecular junctions,145,150,151 including quantum chemistry based

simulations.152 However, straightforward application of the Hubbard GF to a system

with degeneracies does not guarantee Hermiticiy of the resulting density matrix (DM is

the expectation value of the transpose of the Hubbard operator).151 Systematic improve-

ment of approximations, beyond H1A, has been called into question in Ref 153 Note that

the failure of the H1A approximation is due to symmetry breaking due to truncation of

the infinite EOM chain. The problem exists even in eqyilibrium formulations of the GF

EOM method.154 This issue has attracted recent attention in transport junctions.155,156

In Sec 1.4 we describe a pseudoparticle non-equilibrium Green function approach,

which we use through most of the chapters of this dissertation. The method was originally
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developed in condensed matter physics to describe strongly correlated systems, and is

based on the language of many-body states of the system.157–159 It is a generalization of

the nonequilibrium slave-boson technique to include multiple electronic levels and other

system components, such as molecular vibrations160 and plasmon excitations.161 Interest

in the methodology was renewed162,163 due to development of the dynamical mean field

theory approach.164,165 The method is based on pseudoparticle operators with canonical

commutation relations, thus there is no problem with symmetry breaking. The method

is conceptually simple and it is straightforward to introduce systematic improvements

to the concerving approximations, based on standard diagrammatic techniques. Already

in the simplest implementation, the non-crossing approximation, the approach goes far

beyond Redfield QME, as it accounts for time non-local effects and hybridization of

molecular and contact levels, while remaining relatively inexpensive numerically. How-

ever, as is explained further in Sec 1.4, the pseudoparticle approach requires one to

work in an extended Hilbert space, and projections must be taken restricting the final

expressions to the physical subspace.

1.2 Dissertation Overview

We are interested in the theoretical treatment of electron transport, energy trans-

fer and molecular excitation in single molecule junctions. These processes are not in-

dependent, and their proper description is critical to the underlying physics of single

molecule junction optical response (absorption, emission, or Raman spectra) and con-

ductance measurements. Such treatment is epecially important when intra-molecular

interactions are strong relative to the coupling to the electronic reservoirs. This is also

the physically relevant regime for many of the most interesting single molecule junction

experiments mentioned in the previous section.

As mentioned in the previous section the NEGF-DFT/TDDFT method is the

dominant tool for conductance simulations in molecular junctions, but this method is

inconvenient in the regime of strong intramolecular interactions. We utilize a pseudopar-

ticle nonequilibrium Green function (PP-NEGF) approach that is exact in the strong

inter-system interactions. The formulation of the methodology is explained in Sec. 1.4



8

(see also the appendices of chapter 2). This methodology is based on the language of

the many-body system state, which allows us to explore strong intra-system interactions

of any form. The pseudoparticle method is a generalization of the nonequilibrium slave-

boson method of Meir and Wingreen,159 to include multiple electronic levels and other

system components, such as molecular vibrations160 and plasmon excitations.161

In chapters 2-4 we analyze the role of energy transfer and electron-electron inter-

action on electronic conductance measurements, utilizing the PP-NEGF approach. We

investigate inelastic electron transport within simple toy models, where transfer of en-

ergy between conducting electrons and molecular vibrations is visible in the conductance

measurements. While approaches to resonant inelastic transport simulation utilize lin-

ear electron-vibration coupling, this is not necessarily appropriate for single molecules.

We demonstrate that the PP-NEGF approach to calculating inelastic electron transport

and resonant inelastic electron transport is applicable to any electron-vibration coupling

strength or form (Figs. 2.2, 2.3, 2.6). Additionally, quantum interference effects are

shown in current at large bias in a two-level bridge model (Fig. 2.4). The application

of the PP-NEGF approach to inelastic transport can be thought of as a generalization

of the exact mapping method of Bonc̆a and Trugman,127 which includes information of

the Fermi-Dirac distribution of electrons in the leads and the Pauli-exclusion principle.

Electron-electron interaction between two conducting channels, which strongly

differ in their coupling to the contacts, is investigated. The channel with strong coupling

to the leads dominates the electronic conduction, but is affected through capacitive cou-

pling to the weakly coupled channel, which models a molecular redox center. In a mixed

quantum-classical approach, where the strongly coupled channel is treated quantum

mechanically, via the nonequilibrium Green’s function method and the weakly coupled

channel is treated classically via rate equations, the electron-electron interaction can be

approximately treated by an averaged charge transfer rate (Model A) or an averaged

level energy (model B). We compare these two approximate schemes to the fully quan-

tum treatment using PP-NEGF which treats the electron-electron interaction exactly.

Two timescales have to be considered, the characteristic timescale of the bath, τB, and

the dynamics of the redox level, εr(t). The dynamics of the weakly coupled channel is

controled by the rate of population change of the strongly coupled channel, which is pro-
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portional to the inverse of the strong coupling to the contacts, Γ−1
s . In our consideration

of the wideband limit, small τB, For steady state current we find that the averaged rates

approximation works well for voltage well above or below the resonance for charging

the weakly coupled channel (Figs. 3.2-3.5). When renormalization of the level is slow

relative to the bath dynamics, τB � Γ−1
s the exact electron escape rate reduces to a set

of two rates for different energies of the redox level (Model A). When renormalization

of the level is fast relative to the bath dynamics, τB � Γ−1
s the escape rate reduces to a

single rate, calculated at the average energy of the redox level (Model B). Only the fully

quantum calculation can correctly resolve the voltage threshold for charging the weakly

coupled level.

The interaction between field-induced electron and electronic energy transfer is

investigated in two models, 1) a system of two interacting pathways which leads to

quantum interference effects (Fig. 4.1a), and 2) a three terminal system in which charge

and energy transport can be separated through coherent control (Fig. 4.1b). In the

first model we consider the effect of dephasing on a “two-slit” junction, where initially

electron flux is surpressed due to destructive quantum interference between the paths,

while constructive interference promotes energy transfer. As expected, dephasing results

in an increase of current and reduction of energy transfer in the system. Surprisingly the

behavior of the energy flow is non-monotonic with dephasing rate. This effect is due to

interaction between the electron and energy transfer processes (Fig. 4.2). In the second

model we suggest the possibility of coherent control of energy transfer in single molecule

junctions. We demonstrate the possibility of spatial separation between electron and

energy fluxes in the junction. Moreover, we show that the direction of the two fluxes can

be controlled by varying the amplitude or frequency of the pumping electric field (Fig.

4.3). The theoretical demonstration of charge-energy separation in a molecular junction

is a first step in the direction of engineering low-heating stable molecular nano-scale

devices.

Chapters 5-7 are investigations of the component parts of the electromagnetic

field - metallic plasmons - molecular excitation interaction that controls the optical re-

sponse of molecular junctions. We consider a biased junction subject to a time-dependent

electromagnetic field. The local field felt by the molecule is amplified by surface plasmon-
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polariton excitations in the gold contacts. We demonstrate that the molecular response,

due to the oscillating polarization of the molecule, strongly affects the local field (Figs.

5.2-5.3) and thus the electron transport characteristics of the junction (Figs. 5.4-5.6).

The finite difference time domain method is used to propagate a classical electromagnetic

pulse using Maxwell’s equations. The molecular response is calculated quantum mechan-

ically using NEGF. The nonequilibrium Green function method for a system subject to

a general time-dependent electric field is described in Sec. 1.3.

When the interaction between the surface plasmon-polariton excitations and the

molecular excitation is strong, it must be treated quantum mechanically. We utilize the

PP-NEGF method in which the plasmon excitations are taken as part of the system,

and the plasmon-molecular excitation interaction is treated exactly. Combined energy-

electron transfer plays an important role in the plasmonic absorption spectrum in such

a system (Fig. 6.1). We demonstrate the sensitivity of the Fano resonance,166 due

to the molecule-plasmon interaction, to junction bias and intramolecular interaction,

including Coulomb repulsion (Fig. 6.1) and energy exchange (Figs. 6.3 and 6.4). We

propose that measurement of the absorption spectrum of such a system, under bias, could

provide direct measurement of intramolecular exciton coupling strength. We compare

our prediction for non-linear optical response to previous studies based on a mean-field

approximation.167

Recent experimental measurements of the optical response of junctions are fo-

cused on single molecule Raman spectroscopy. The latter is only feasible due to surface

enhancement of the electromagnetic field by the surface plasmon-polariton excitations

discussed in chapters 5 and 6. We present a formulation of Raman scattering in molecular

junctions based on the PP-NEGF approach. This provides convenient way to incorpo-

rate quantum chemistry calculations, proven for equilibrium molecular spectroscopy, into

calculations for optical spectroscopy of nonequilibrium molecular junctions, while also

going beyond previous effective single particle formalisms.86,91,92 We present quantum

chemistry simulations of Raman scattering of a three ring oligophenylene vinylene ter-

minating in amine functional groups (OPV3) junction (Fig. 7.1). The Raman spectrum

of this molecule, in a junction under bias, has been experimentally measured.77 We

propose that observed shifts in Stokes frequencies may be caused by an increased con-
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tribution from the cation OPV3 species at nonzero bias, and that the direction of the

shift depends on the renormalization of the normal modes (Fig 7.2). Additionally, we

demonstrate that the vibrational heating can be calculated and is in agreement with

experimental measurements (Fig 7.3). This developed method constitutes an important

step towards full ab initio calculations of the optical response of molecular junctions. In

the future this method should be combined with a quantum treatment of the interaction

between the molecule and plasmonic excitations and classical generation and propagation

of the plasmon enhanced electromagnetic field described in chapters 5 and 6.

1.3 Nonequilibrium Green function method for a system

subject to a general time-dependent electric field

1.3.1 Model

In Chapter 5 we consider a junction with a molecular bridge (M) connecting two

metallic leads (L and R). This molecular bridge consists of D two-level systems with

the levels representing ground (g) and excited (x) states of the molecule. Each two-level

system is subject to a classical time dependent electromagnetic field ( ~E(t)). The contacts

are assumed to be free electron reservoirs, each at their own equilibrium with a chemical

potential, µL/R. The total time dependent Hamiltonian reads (atomic units):

Ĥ(t) =ĤM (t) +
∑

K=L,R

(
ĤK + V̂K

)
(1.1)

ĤM (t) =
∑
s=g,x

[
D∑

m=1

εsd̂
†
msd̂ms −

D−1∑
m=1

ts

(
d̂†m+1sd̂ms +H.c.

)]

−
D∑

m=1

(
~µmg,mxd̂

†
mgd̂mx +H.c.

)
~Em(t) (1.2)

ĤK =
∑
k∈K

εk ĉ
†
k ĉk (1.3)

V̂K =
∑
k∈K

∑
s=g,x

(
Vk,msĉ

†
kd̂ms +H.c

)
(1.4)
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ĤM (t) and ĤK are the Hamiltonians of the molecular bridge (M) and the contacts

(K = L,R), and V̂K is coupling between them. d̂†ms (d̂ms) and ĉ†k (ĉk) are creation

(annihilation) operators for an electron on the level s of the molecular bridge site m

and state k of the contact, respectively. ~µms,ms′ = 〈ms|~̂µ|ms′〉 is the matrix element

of the transition molecular (vector) dipole operator between states |ms〉 and |ms′〉 and

~Em(t) is the local time-dependent field at bridge site m. ts (s = g, x) and Vk,mKs

are matrix elements for electron transfer in the molecular bridge and between molecule

and contacts, respectively. Note that treating the external field classically allows us to

account for arbitrary time dependence exactly (i.e. beyond perturbation theory).107

1.3.2 Time-dependent current

We are interested in calculating time-dependent current of the junction. The

current at the interface between the molecular bridge and the contact, K = L/R is:42

IK(t) =

∫ t

−∞
dt1Tr[Σ<

K(t, t1)G>(t1, t) + G>(t, t1)Σ<
K(t1, t) (1.5)

−Σ>
K(t, t1)G<(t1, t)−G<(t, t1)Σ>

K(t1, t)]

The G>/<(t, t′) matrix is the greater/lesser projection of the contour ordered single-

electron Green function in the molecular subspace,

Gms,m′s′(τ, τ
′) = 〈Tcd̂ms(τ)d̂†m′s′(τ

′)〉 (1.6)

where Tc is the contour-ordering operator and τ is the contour time variable.42 Σ
>/<
K (t, t′)

matrix is the greater/lesser projection of the self-energy due to coupling to the contact,

K,

ΣK;ms,m′s′(τ, τ
′) =

∑
k∈K

V ∗m′s′,kVk,msgk(τ, τ
′) (1.7)
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where gk is the free contact electron Green function. The real time projections of the

self-energy are given by:

Σ>
K;ms,m′s′(t, t

′) =

∫
dE

2π
[1− fK(E)]ΓK;ms,m′s′(E)e−iE(t−t′) (1.8)

Σ<
K;ms,m′s′(t, t

′) =

∫
dE

2π
fK(E)ΓK;ms,m′s′(E)e−iE(t−t′)

Σ
r/a
K;ms,m′s′(t, t

′) = ±Θ(±t∓ t′)[Σ>
K;ms,m′s′(t, t

′)− Σ<
K;ms,m′s′(t, t

′)] (1.9)

with the electronic escape rate,

ΓK;ms,m′s′(E) = 2π
∑
k∈K

V ∗m′s′,kVk,msδ(E − εk) (1.10)

, where fK(E) is the Fermi-Dirac distribution function, fK(E) = 1/[1−e(µK−Ef )/(KBT )],

defined by the chemical potential, µK , the Fermi level, Ef , the Boltzmann constant, KB,

and the temperature, T , of the contact K. We assume the wideband limit, where Γ is

assumed to be energy independent and disregard the real part of the retarded/advanced

self-energy, Eq.1.9. When the time-dependence of the total Hamiltonian is limited to

the system subspace the time-dependent current reduces to:168

IK(t) = IinK (t)− Ioutk (t) (1.11)

IinK (t) = −
∫
dE

π
fK(E)Im Tr[ΓKGr(t,E)] (1.12)

IoutK (t) =

∫
Tr[ΓKG<(t, t)] (1.13)

where Gr(t, E) is the time-dependent one-sided Fourier transfrom of the retarded Greens

function matrix,

Grms,m′s′(t, t
′) = Θ(t− t′)[G>ms,m′s′(t, t

′)−G<ms,m′s′(t, t
′)] (1.14)

Grms,m′s′(t, E) =

∫
dt′eiE(t−t′)Grms,m′s′(t, t

′) (1.15)

.
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1.3.3 Equations of Motion

The retarded and lesser Green functions in Eqs.1.12-1.13 can be obtained from

a Keldysh-contour based equation of motion approach.42

i
δ

δτ
G(τ, τ ′) = I× δ(τ, τ ′) + HM (τ)G(τ, τ ′) +

∑
K

∫
C
dτ1ΣK(τ, τ1)G(τ1, τ

′) (1.16)

where I is the unitary matrix and HM is representation of the bridge Hamiltonian op-

erator, Eq.1.2, in the single electron basis. From Eq.1.16 and the similar equation of

motion i δδτ ′ G(τ, τ ′), and using Eqs.1.8-1.9, we can obtain a system of equations for the

Greens functions in Eqs.1.12-1.13:

i
δ

δt
Gr(t, E) =I− (EI−HM (t) +

i

2
Γ)Gr(t, E) (1.17)

i
δ

δt
G<(t, t) =[HM (t); G<(t, t)]− i

2
{Γ; G<(t, t)} (1.18)

+ i
∑
K

∫
dE

2π
fK(E)(ΓKGa(E, t)−Gr(t, E)ΓK)

where Γ = ΓL + ΓR, [...; ...] and {...; ...} are the commutator and anti-commutator

and Ga(E, t) = [Gr(t, E)]†. The first order differential equations, Eqs. 1.17-1.18, are

solved numerically using the initial condition of the biased junction at steady-state in

the absense of an external electric field (E(0) = 0).

Gr(0, E) = [I− (EI−HM (0) +
i

2
Γ]−1 (1.19)

G<(0, 0) =
∑
K

∫
dE

2π
Gr(0, E)ΓKGa(E, 0). (1.20)

.

1.4 Pseudoparticle Nonequilibrium Green Functions Method

1.4.1 System and Bath Hamiltonians

Throughout this dissertation we will consider total Hamiltonians, Ĥ, which are

separated into system, a set of baths (optical, thermal, electronic) and system-bath
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interactions.

Ĥ = Ĥsys + B̂op + B̂th + B̂el + Îsys-op + Îsys-th + Îsys-el (1.21)

Where

B̂op =
∑
α∈op

ωαâ
†
αâα (1.22)

B̂th =
∑
ν∈th

ων b̂
†
ν b̂ν (1.23)

B̂el =
∑

κ∈K=L,R

εκĉ
†
κĉκ (1.24)

Îsys-op =
∑
α∈op

m,m′∈sys

Wα
m,m′D̂

†
m,m′ âα + h.c. (1.25)

Îsys-th =
∑
ν∈th
v∈sys

Xvν b̂
†
v b̂ν + h.c. (1.26)

Îsys-el =
∑
κ∈L,R
m∈sys

Vmκĉ
†
mĉκ + h.c. (1.27)

â†α(âα), b̂†ν(b̂ν), ĉ†κ(ĉκ), create (destroy) the bath photon, α, phonon, ν, and electron, κ

respectively. ĉ†m creates an electron in system molecular or atomic orbital m, D̂†m,m′ ≡

ĉ†mĉm′ excites an electron from orbital m′ to m, and b̂†v creates a molecular vibron, v.

Ĥsys may be either a model system Hamiltonian, or the Hamiltonian defined by any

quantum chemistry technique.

1.4.2 Pseudoparticle Non-Equilibrium Green Functions

The basis of the pseudoparticle non-equilibrium Green functions (PPNEGF) is

defined by the many-body states of the molecular subsystem |M〉. d̂†M (d̂M ) are the

pseudoparticle creation(annihilation) operators for the many-body molecular state M .

The pseudoparticle creation and annihilation operators are related to the effective single-
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particle orbital creation operators through:

ĉ†m =
∑

M,M ′∈sys

ξmM,M ′ d̂
†
M d̂M ′ (1.28)

Where ξmM,M ′ is the overlap of the states, M and M ′, which have NM and NM + 1

electrons in the molecular subsystem.

ξmM,M ′ ≡ 〈M |ĉ†m|M ′〉 (1.29)

Similarly, the creation operators of molecular vibration and excitation “quasipariticles”

can be expressed in terms of the pseudoparticle operators.

b̂†v =
∑

M,M ′∈sys

χvM,M ′ d̂
†
M d̂M ′ (1.30)

D̂†m2,m1 ≡ ĉ†m1
ĉm2 =

∑
M,M ′∈sys

∆m1,m2

M,M ′ d̂†M d̂M ′ (1.31)

Both χνM,M ′ and ∆m1,m2

M,M ′ are overlap tensors for states with the same molecular charge.

∆m1,m2

M,M ′ is an element of the transition density matrix. The pseudoparticle operators

satisfy the usual fermion and boson commutation relations, within an extended Hilbert

space, depending on the electron count of the molecular state. The physical subspace of

this extended Hilbert space is defined by:

Q̂ ≡
∑
M∈sys

d̂†M d̂M = 1 (1.32)

The single-pseudoparticle GF is defined on the Keldysh contour as:

GM,M ′(τ1, τ2) = −i〈Tc d̂†M (τ1)d̂M ′(τ1)〉 (1.33)

where τ1 and τ1 are contour variables and Tc is the contour time ordering operator.

Within the extended Hilbert space, these single-pseudoparticle GFs satisfies the usual
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Dyson equation:

G = g + gΣG (1.34)

where g is the pseudoparticle GF matrix in the absence of system-bath coupling. Σ is the

pseudoparticle self-energy, which includes contributions from coupling to the electronic,

thermal and optical baths. Using the Dyson and Keldysh equations for the pseudopar-

ticles we solve for the retarded, advanced, greater and lesser Green functions. At steady

state this leads to:

Gr(E) = Ga†(E) = [IE −H−Σr(E)]−1 (1.35)

G>/<(E) = Gr(E)Σ>/<(E)Ga(E) (1.36)

Projection from the extended Hilbert space to the physical Q = 1 subspace, Eq. 1.32,

is, in part, accomplished by normalizing such that:

∑
M∈sys

iζM
2π

∫ ∞
−∞

dE G<M,M (E) ≡ 1 (1.37)

where ζM is 1(-1) if M has an even(odd) number of electrons in the system.

Luttinger-Ward functional in the PPNEGF: Derivation of Pseudoparticle

Self-Energies and quasiparticle/single-particle Green functions

We follow the path integral formulation of Ref. 163 with the goal of deriving the

pseudoparticle self-energies and the usual non-equilibrium Green functions for the elec-

tron, phonons, and excitons in the system. We introduce the grand canonical partition

function, Z, as a path integral over the Keldysh contour.

Z =

∫
C

D[d̄, d, ā, a, b̄, b, c̄, c] exp(iS) (1.38)
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The measure D is defined as:

D[d̄, d, ā, a, b̄, b, c̄, c] ≡
∏
m∈sys

1

Θm
dd̄mddm ×

∏
α∈op

−i
2π
dāαdaα (1.39)

×
∏
ν∈th

−i
2π
db̄νdbν ×

∏
κ∈el

dc̄κdcκ (1.40)

Θm ≡
{

(1) for m = Fermion

(i2π) for m = Boson

}

With the contour action give by:

S =

∫
C
dτ

{ ∑
M,M ′∈sys

d̄M (τ)ĝ−1
M,M ′dM ′(τ) (1.41)

+
∑
α∈op

āα(τ)p−1
α aα(τ) +

∑
ν∈th

b̄ν(τ)o−1
ν bν(τ) +

∑
κ∈el

c̄κ(τ)l−1
κ cκ(τ)

−
∑
α∈op

m1,m2∈sys

(
Wα
m1,m2

āα(τ)Dm1,m2 [η(τ), η̄(τ)] +Wα∗
m1,m2

D̄m1,m2 [η(τ), η̄(τ)]aα(τ)
)

−
∑
ν∈th
v∈sys

(
Xν,v b̄ν(τ)bv[η(τ), η̄(τ)] +Xv,ν b̄v[η(τ), η̄(τ)]bν(τ)

)
−
∑
κ∈el
m∈sys

(Vκ,mc̄κ(τ)cm[η(τ), η̄(τ)] + Vm,κc̄m[η(τ), η̄(τ)]cκ(τ))

−
∑
m∈sys

(
η̄m(τ)dm(τ) + d̄m(τ)ηm(τ)

)}

d,a,b, and c, are the Grassman variable for Fermions and complex numbers for Bosons

representing the pseudoparticle, photon in the optical bath, phonon in the thermal bath,

and electron in the contact, respectively. d̄ is the conjugate of d. g−1
M,M ′ , p−1

α ,o−1
ν ,l−1

κ

are the matrix inverse, of the corresponding free, i.e. no system-bath coupling, system

pseudoparticle and bath photon, phonon and electron Green functions, respectively. The

Grassman variables/complex numbers for the system operators are expressed in terms
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of functional derivatives of the auxiliary fields, η.

D̄m,m′ [η(τ), η̄(τ)] ≡
∑

M,M ′∈sys

∆m,m′

M,M ′ζM
δ

δηM (τ)

δ

δη̄M ′(τ)
(1.42)

b̄v[η(τ), η̄(τ)] ≡
∑

M,M ′∈sys

χvM,M ′ζM
δ

δηM (τ)

δ

δη̄M ′(τ)
(1.43)

c̄m[η(τ), η̄(τ)] ≡
∑

M,M ′∈sys

ξmM,M ′ζM
δ

δηM (τ)

δ

δη̄M ′(τ)
(1.44)

Taking the integral over the system pseudoparticles, and bath electrons, phonons, and

photons in Eq. 1.38 leads to:

Z = Z0 exp

(
− i
∫∫

c
dτdτ ′

{
(1.45)

∑
m1,m2∈sys
m3,m4∈sys

D̄m1,m2 [η(τ), η̄(τ)]πm1,m2
m3,m4

(τ, τ ′)Dm3,m4 [η(τ ′), η̄(τ ′)]

+
∑

v,v′∈sys

b̄v[η(τ), η̄(τ)]ωv,v′(τ, τ
′) bv′ [η(τ ′), η̄(τ ′)]

+
∑

m,m′∈sys
K=L,R

c̄m[η(τ), η̄(τ)]λKm,m′(τ, τ ′) cm′ [η(τ ′), η̄(τ ′)]

})

× exp

i ∑
M,M ′∈sys

∫∫
c
dτdτ ′η̄M (τ)gm,m′(τ, τ ′)ηm′(τ ′)


where λ, π, and ω are the standard contact, photon, and phonon self-energy matricies

due to Eq 1.25-1.27:

λKm,m′(τ, τ ′) ≡
∑
κ,∈K

Vm,κ lκ(τ, τ ′)V ∗κ,m′ (1.46)

πm1m2
m3m4

(τ, τ ′) ≡
∑
α,∈K

Wα
m1,m2

pα(τ, τ ′)Wα ∗
m3,m4

(1.47)

ωv,v′(τ, τ
′) ≡

∑
ν,∈th

Xv,ν oν(τ, τ ′)X∗ν,v′ (1.48)

and Z0 is the zero-order Grand canonical partition function, which neglects system-bath

coupling.

To arive at a useful expression, the first exponent in Eq. 1.45 is expanded in a
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power series, and Eq. 1.42-1.44 are inserted into Eq. 1.45. The derivatives with respect

to the auxiliary fields are taken, and the fields are set to zero. The resulting connected

diagrams are collected into cumulant expansions, which leads to:

Z = Z0 exp(−iY ) (1.49)

Where

Y = Y ′ +
∑
N

ζNTr[ln (−G−1) + ΣG] + Tr[ln (−Π−1) + ΣΠΠ] (1.50)

+Tr[ln (−Ω−1) + ΣΩΩ]−
∑

K∈L,R
Tr[ln (−ΛK−1) + ΣΛΛK ]

Y ′ is a collection of all closed skeleton diagrams, i.e. diagrams with no self-energy

insertions that describe system-bath interaction. Σ (ΣΠ, ΣΩ, ΣΛ) is the pseudoparicle

(photon, phonon, contact electron) self-energy and G (Π, Ω, Λ) is the full pseudoparticle

(photon, phonon, contact electron) Green function . N indicates a block of the system

Hamiltonian with the N electrons in the system. The Trace is taken over both contour

variable and states. Dressing the skeleton diagrams with the full pseudoparticle Greens

functions collects all skeleton diagrams with the same number of self-energy crossings.

This results in a systematic inclusion of all diagrams of higher order that include the same

number of crossings and indistinguishable self-energy directions. Y ′ expressed in terms

of the dressed diagrams is known as the Luttinger-Ward functional.169 Y is stationary

with respect to the Green functions, G, Π, Ω,Λ. Therefore the self-energies immediatly

follow from Eq. 1.50 as:

ΣM,M ′ = ζM
δ Y ′

δ GM ′,M
δNM ,NM′ (1.51)

ΣΠm1,m2
m3,m4

= +
δ Y ′

δΠm3,m4
m1,m2

(1.52)

ΣΩ
v,v′ = +

δ Y ′

δΩv′,v
(1.53)

(1.54)

ΣΛ
m,m′ = − δ Y ′

δΛm′,m
(1.55)
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NCA-Pseudoparticle Self Energies

The pseudoparticle self-energy, Σ Eq. 1.51, is approximated to the dressed

second-order, the noncrossing approximation. At steady state:

Σ
r/<
M,M ′(E) =

i

2π

∑
M1,M2∈sys

∫ ∞
−∞

dE′G
r/<
M1,M2

(E′) (1.56)

[λ
>/<
MM1,M ′M2

(E − E′)− λ</>M2M ′,M1M
(E′ − E)

±π>/<MM1,M ′M2
(E − E′)± π</>M2M ′,M1M

(E′ − E)

±ω>/<MM1,M ′M2
(E − E′)± ω</>M2M ′,M1M

(E′ − E)]

is the retarded(lesser) pseudoparticle self energy. Note that within the physical Q = 1

subspace, Σ> = Σr − Σa and Σa = Σr † The self-energies due to coupling to the

electronic, photon, and phonon baths, respectively, in the many-body state basis are

given by:

λ
>/<
M1M2,M3M4

(E) =
∑
K=L,R
m,m′∈sys

ξmM1M2
ξm

′†
M3M4

λ
K>/<
m,m′ (E) (1.57)

π
>/<
M1M2,M3M4

(E) =
∑

m1,m2∈sys
m3,m4∈sys

∆m1,m2

M1M2
∆m3,m4†
M3M4

πm1m2>/<
m3m4

(E) (1.58)

ω
>/<
M1M2,M3M4

(E) =
∑

v,v′∈sys

χvM1M2
χv

′†
M3M4

ω
>/<
v,v′ (E) (1.59)

where λ>/<(E), π>/<(E) , and ω>/<(E) are the steady state Fourier transforms of

the greater/lesser projections of Eq. 1.46-1.48.

λ
K>/<
m,m′ (E) = ΓKm,m′(E) {[1− fK(E)] / fK(E)} (1.60)

πm1m2>/<
m3m4

(E) = γm1m2
m3m4

(E) {[1 +Nω0(E)] /Nω0(E)} (1.61)

ω
>/<
v,v′ (E) = ρv,v′(E) {[1 +Nωβ (E)] /Nωβ (E)} (1.62)



22

ΓKm,m′(E) = 2π
∑
κ∈K

VmκV
∗
κm′δ(E − εk) (1.63)

γm1m2
m3m4

(E) = 2π
∑
α∈op

Wα
m1,m2

Wα ∗
m3m4

δ(E − ωα) (1.64)

ρv,v′(E) = 2π
∑
ν∈th

XvνX
∗
νv′δ(E − ων) (1.65)

ΓK ,γ, and ρ are the electron, photon, and phonon dissipation matricies. fK(E) =

[exp(E−µKkBT
) + 1]−1 is the Fermi-Dirac distribution function, where µK is the equilibrium

chemical potential of the contact K. Nωβ (E) = [exp( E
kBT

) − 1]−1 is the Bose-Einstein

distribution function, and Nω0(E) = N0
δ2

(E−ω0)2+δ2
is the population distribution func-

tion of the bath created by the laser with frequency, ω0, and an energy bandwidth, δ.

The thermal bath is assumed to contain phonons of a single mode, ωβ , and the phonon

dissipation function is given by ρv,v′(E) = ρv,v′
ω2

ω2
β

exp(2 − 2ω
ωβ

). ΓK and γ are assumed

to be in the wide-band limit, i.e. energy independent.

1.4.3 Electrical Current in the NCA

Current through the junction is defined as the rate of change of the number of

electrons in the contact K.

IK = − d

dt

∑
κ∈K
〈ĉ†κĉκ〉 (1.66)

Following Ref .160 At steady state this leads to

IK =

∫ ∞
−∞

dE

2π
Tr[λK<(E) ΣΛ>(E)− λK>(E) ΣΛ<(E)] (1.67)

The trace is over the single particle electronic orbitals of the system. λK (>/<)(E) is

defined in Eq.1.60. Σ
Λ (>/<)
m,m′ (E) is the Fourier transform of the greater/lesser projecton

of the electronic Green function −i〈Tc ĉm(τ)ĉ†m′(τ ′)〉. Within the NCA, Σ
Λ (>/<)
m,m′ (E) is
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determined, through Eq.1.54, to be:

Σ
Λ (>/<)
m,m′ (E) =

∑
M1,M2∈sys

M′
1,M

′
2∈sys

iζM1ξ
m
M ′

1,M
′
2
ξm

′ ∗
M1,M2

∫ ∞
−∞

dE′

2π
G
>/<
M1,M ′

1
(E + E′)G

>/<
M ′

2,M2
(E′)

(1.68)

1.4.4 Absorption and Emission in the NCA

Absorption and emission are described by the flux of photons into and out of

the system, respectively. This photon current is obtained as the time derivative of the

average number of bath photons.

Iph = − d

dt

∑
α

〈â†αâα〉 (1.69)

Simillarly to Eq. 1.67, the photon current at steady state is given by

Iph = −
∫ ∞
−∞

d(t− t′)Tr[π<(t− t′) ΣΠ>(t′ − t)− π>(t′ − t) ΣΠ<(t− t′)] (1.70)

=

∫ ∞
−∞

dE

2π
Tr[π<(E) ΣΠ>(E)− π>(E) ΣΠ<(E)]

The trace in Eq. 1.70 is taken over the allowed electronic transitions (two orbitals per ma-

trix index). π(>/<)(E) is defined in Eq.1.61. Σ
m1,m2 Π (>/<)
m3,m4 (E) is the Fourier transform of

the greater/lesser projection of the electronic Green function−i〈Tc D̂m1,m2(τ)D̂†m3,m4(τ ′)〉.

The first term inside the trace in Eq.1.70 describes the flux of photons into the system,

and is proportional to the measured absorption spectrum. The second term accounts

for the flux of photons from the system to the bath, and is proportional to the emission

spectrum. To calculate the absorption/emission spectrum we use the NCA expression

for ΣΠ (>/<)(E).

Σm1,m2Π (>/<)
m3,m4

(E) =
∑

M1,M2∈sys

M′
1,M

′
2∈sys

iζM1∆m1,m2

M ′
1,M

′
2
∆m3,m4 ∗
M1,M2

∫ ∞
−∞

dE′

2π
G
>/<
M1,M ′

1
(E + E′)G

>/<
M ′

2,M2
(E′)

(1.71)
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1.4.5 Raman Scattering in the NCA

In deriving an expression for Nonequilibrium Raman Scattering we first consider

the flux of photons out of the system into the bath (second term inside the trace in Eq.

1.70).91 This term accounts for coupling of the system to the empty modes of the optical

bath. The diagram representing this emission flux is shown in Fig. 1.1a. Fig. 1.1.

Figure 1.1: Flux diagrams. Shown are (a) general flux diagram and (b) possible

flux diagrams in the fourth order perturbation theory in coupling to the radiation bath

within the non-crossing approximation. Directed solid line (black) represents dressed

pseudoparticle Green function, Eq.(6) of the paper. Non-directed zigzag lines stand for

the self-energy due to coupling to radiation bath, Eq.(8) of the paper. Both directions

have to be considered for the non-directed zigzag lines. We distinguish interactions with

filled initial (red line, squares) and empty final (blue line, circles) modes of the field.

Reprinted with permission from Nano Lett. ,DOI:10.1021/nl4039532 (2014). Copyright

2014 American Chemical Society.

Next we condsider a second order perturbation in coupling to the optical bath

and consider only flux into the system (coupling to filled modes of optical bath). Fig 1.1b.

shows the two possible diagrams within the non-crossing approximation. Self-energies

due to interactions with the contacts and the thermal bath are not shown explicitly.

However, the pseudoparticle Green functions are assumed to be dressed in these inter-

actions (within NCA). As usual, summation over all state indices and integration over

contour variables is assumed at every intersection in the diagram, with the exception of
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the circled connection, where the assigned time, t, is the time that the outgoing flux is

calculated.

We are interested in the “normal” Raman flux, the Raman scattering process

which begins in the ground state of the system, proceeds through the excited states, and

returns to the ground state. Ground and excited states here are defined by the isolated

molecule (since PP-NEGF is defined in the language of the many-body states of the

isolated molecule). In molecular junctions at low bias, where the excited states do not

become significantly populated due to electron transfer, this is the main contribution to

total Raman scattering. Fig. 8a of Ref 91 shows the contour projection relevant to the

process. Though we stress that the PP-NEGF and “quasiparticle” approach of Ref 91

are fundamentally different.

As described in Ref 162 and Ref ,163 when taking real time projections, within

the physical Q = 1 subspace, we must consider only contributions with a single lesser

pseudoparticle Green functions. Projecting the diagrams in Fig 1.1 within the physical

subspace and keeping only lesser projection for the self-energy due to coupling to initial

modes (red line), and greater projections for the self-energy due to coupling to final

modes (blue line) leads to:

J(t) = 2Re
∑

gi,x1,x2,gf
ḡi,x̄1x̄2,ḡf

ζgi

∫ t

−∞
dt′
∫ t

−∞
dt1

∫ t′

−∞
dt2

π<gix1,ḡix̄1(t1 − t2)π>gfx2,ḡf x̄2(t′ − t) (1.72)

G>x̄1x̄2(t2, t
′)G>ḡfgf (t′, t)G>x2x1(t, t1)G<giḡi(t1, t2)
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We discuss a pseudoparticle NEGF approach as a tool to describe transport in

molecular junctions in the language of many-body states of the molecule. A method

developed by Oh et al. [Phys. Rev. B 83, 205302 (2011)] is applied to inelastic trans-

port in the case of strong electron-vibron interaction. The approach can be seen as

a generalization of the exact mapping developed by Bŏnca and Trugman [Phys. Rev.

Lett. 75, 2566 (1995)] which includes information on the Pauli exclusion principle and

Fermi electron distribution in the leads. Within simple model calculations of inelastic

transport in junctions, we compare the pseudoparticle approach to other approximate

NEGF schemes.
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2.1 Introduction

Electron transfer is a fundamental process behind all oxidation-reduction reac-

tions. Thus, the theoretical description of electron transfer rates, Marcus theory,1–7 is

widely used in chemistry8–13 and biology14–19 for the description of a variety of phenom-

ena ranging from electrochemistry and processes controlling corrosion, to photosynthesis,

to vision and the sense of smell (for reviews see e.g. Refs.20–22).

While electron transfer theory is focused on donor-bridge-acceptor (DBA) sys-

tems, molecular electronics23 studies electron transfer in metal-molecule-metal (and sim-

ilar) junctions. Similar to Marcus’s expression for the DBA electron transfer rate, the

expression for the (elastic) current voltage characteristic of a molecular junction, the

Landauer formula,24–29 utilizes scattering theory considerations. A relationship between

electron transfer rates and molecular conduction was discussed in the literature30 (see

Ref.31 for a comprehensive review).

Inelastic electron and phonon (energy) transfer play an important role in trans-

port characteristics of molecular junctions due to the flexibility of the molecular species.

Since scattering theory was shown to be inadequate for the description of inelastic pro-

cesses in junctions,32,33 alternative theoretical schemes were utilized. In particular, a

common approach is the nonequilibrium Green function (NEGF) technique.34–38 This

quantum field theory method, together with density functional theory (NEGF-DFT),

provided an ab initio methodology for analysis of molecular conduction using quantum

chemistry software.39–44 While far from being rigorous45 the NEGF-DFT methodology

appeared to be quite accurate in predicting off-resonant transport characteristics.

NEGF-DFT (and similar methods) becomes inconvenient in the resonant tun-

neling regime when oxidation/reduction of a molecule leads to a significant change in

its electronic and vibrational structure,46 or when the Born-Oppenheimer approxima-

tion fails.47 In such situations, a description of transport utilizing a basis of many-body

molecular states (rather than single-particle molecular orbitals) is desirable. The latter

is an alternative way to introduce quantum chemistry methods into molecular transport

simulations.

Our recent attempt to simulate transport in molecular junctions in the language

of many-body states48 utilizes the Hubbard NEGF methodology. While this is a vi-
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able alternative to the standard NEGF methods, several problems49,50 related to the

approximations involved are yet to be resolved. In particular, Ref.50 indicates that the

Hubbard-I approximation may violate the Hermiticity of a reduced density matrix.

Another popular state oriented approach to transport simulations uses a reduced

density matrix description.51–54 Usually quantum master equations (QME) account for

system-bath coupling at a finite order of perturbation theory. Such formulations (at

least partially) miss information on the hybridization of the molecular states with the

metal states of the contacts, which may lead to inadequate prediction of junction char-

acteristics.55,56 Degeneracies in the molecular spectrum require special care within the

QME scheme.57 Finally, sometimes the standard QME treatment may lead to unphysical

results.58–62 Note that more involved QME formulations are available in the literature.

For example, Ref.63 utilizes an inifinite hierarchy of equations-of-motion, while Ref.64 is

based on a coarse graining procedure.

A state based approach to transport is also useful for the description of inelastic

effects in junctions. Initially, a consistent treatment of inelastic transport in molecular

junctions was available only for weak (relative to molecule-contact) interactions between

electronic and vibrational degrees of freedom. A standard perturbation theory within

NEGF, mostly in the form of the self-consistent Born approximation (SCBA), was em-

ployed.65,66 Later, stronger electron-vibron interaction in junctions was treated either

with rate equations32,67,68 or approximate NEGF schemes.33,69–71 The first shares ad-

vantages and limitations of the QME approaches, the latter is able to account for linear

electron-vibron coupling of moderate strength. An approach capable of treating inelastic

interaction of arbitrary type and strength was formulated in Ref.72 for zero tempera-

ture, and later generalized to finite temperatures in Ref.73 The formalism of Ref.72

is based on single-electron scattering consideration, which limits its ability to describe

junction transport, where inelastic scattering has to be treated as a many-body pro-

cess. Attempts to complement the formalism of Ref.72 include a self-consistent inelastic

scattering scheme74 and expansion in the molecule-contact coupling performed for the

retarded GF.75

Here we want to attract the attention of the molecular electronics community to

another field theory method – the pseudoparticle NEGF (the auxiliary operator repre-



38

sentation in the NEGF).76–80 Originally the method was developed to describe strongly

correlated systems (e.g. the Kondo effect). However, it can also be applied to a simpler

problem of describing transport in the molecular states language all the way down to

the Kondo temperature, TK . The pseudoparticle NEGF has several advantages: 1. The

method is conceptually simple; 2. Its practical implementations rely on a set of controlled

approximations (standard diagrammatic perturbation theory techniques can be applied);

3. Already in its simplest implementation, the non-crossing approximation (NCA), the

pseudoparticle NEGF goes beyond standard QME approaches by accounting for both

non-Markovian effects and hybridization of molecular states; 4. The method is capable of

treating transport in the language of many-body states of the isolated molecule, exactly

accounting for all the on-the-molecule interactions. As with any approximate scheme,

the pseudoparticle NEGF has its own limitations,81 however those are important mostly

for the low-temperature region T � TK . We rely on the pseudoparticle NEGF technique

as an effective way to combine generality of the scattering formalism of Refs.72,73 with

many-body character of transport in molecular junctions. Note that the applicability

of state-base approaches to realistic calculations has been demonstrated in a number

of papers (see e.g. Ref.48). Here we focus on demonstrating the capabilities of the

pseudoparticle NEGF within generic models.

The structure of the paper is as follows. After introducing the model in Sec-

tion 2.2, we present details of the pseudoparticle NEGF approach in Section 2.3. Nu-

merical examples are discussed in Section 2.4. Section 2.5 concludes.

L R

n=0

n=1

Figure 2.1: Sketch of the model. Electron transfer between the molecule and contacts,

L and R, induces transitions between vibronic states of empty (n = 0) and charged

(n = 1) molecule (solid line). Energy transfer between the molecule and thermal bath

B induces transitions within the two vibronic manifolds (dashed lines).
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2.2 Model

We consider a molecule, M , coupled to two metallic contacts, L and R, and to

a thermal bath, B. The molecule has electronic and vibrational degrees of freedom,

which are coupled to each other. The contacts L and R are assumed to be free electron

reservoirs, each at its own equilibrium. The bath B represents vibrational degrees of

freedom interacting with the molecular vibrations, but not with its electronic degrees of

freedom. For example, these may be phonons in the contacts or vibrational modes of

other molecules. The bath B is modeled as a set of free harmonic oscillators. Difference

in the contacts’ chemical potentials, µL and µR, causes charge flow through the molecule

and defines a nonequilibrium distribution of electron population on the molecule. Molec-

ular vibrations are heated by the electron flux, and dissipate the energy to the thermal

bath. Competition between these two processes defines a nonequilibrium distribution of

the molecular vibration. The system Hamiltonian in the second quantized form is (here

and below ~ = 1)

Ĥ = ĤM +
∑

K=L,R,B

(
ĤK + V̂K

)
(2.1)

where ĤM is the molecular Hamiltonian (we discuss it below),

ĤL(R) =
∑

κ∈L(R)

εκĉ
†
κĉκ (2.2)

ĤB =
∑
β∈B

ωβ b̂
†
β b̂β (2.3)

are the Hamiltonians of the baths,

V̂L(R) =
∑
ν∈M
κ∈L(R)

(
Vκ,ν ĉ

†
κĉν +H.c.

)
(2.4)

V̂B =
∑
α∈M
β∈B

(
Wαβ â

†
αb̂β +H.c.

)
(2.5)

describes electron and phonon (or vibrational excitation) transfer between the molecule

and corresponding bath, respectively. Here and below greek subscripts indicate effective

single-particle orbitals, latin subscripts will be used for molecular many-body states.
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In Eqs. (2.1)-(2.5) ĉ†ν (ĉν) and ĉ†κ (ĉκ) are electron creation (annihilation) operators on

the molecule and contacts, respectively. â†α (âα) and b̂†β (b̂β) are creation (annihilation)

operators for molecular vibration and phonon in the thermal bath.

The form of the molecular Hamiltonian ĤM can, in principle, be as general as

desired. For example, it can include electron-electron, electron-vibron, or spin-exchange

interactions of any type and strength as long as they are confined to the molecular

subspace only. In our inelastic transport calculations below, we consider three different

models:

1. A simple model of single-level (ν = 0) linearly coupled to a single molecular vibration

(α = 0)

ĤM = ε0ĉ
†
0ĉ0 + ω0â

†
0â0 +M(â0 + â†0)ĉ†0ĉ0 (2.6)

2. A two-level bridge (ν = 1, 2) with non-local electron coupling to a single molecular

vibration (α = 0)

ĤM =
∑
ν=1,2

εν ĉ
†
ν ĉν + ω0â

†
0â0 (2.7)

+
[
t+M(â0 + â†0)

]
(ĉ†1ĉ2 + ĉ†2ĉ1)

3. A simple model of a molecule (represented by a quantum dot) with molecular charging

state dependent vibrational frequency. The molecular Hamiltonian is represented in

terms of vibronic states {|ev〉} as

ĤM =
∑

e=0,↑,↓,2

∞∑
v=0

|ev〉Eev 〈ev| (2.8)

where

E0v =ω(0)(v +
1

2
) (2.9)

Eνv =εν + ω(1)(v +
1

2
) (ν =↑, ↓) (2.10)

E2v =ε↑ + ε↓ + U + ω(2)(v +
1

2
) (2.11)

Here εν is on-site energy of single-particle orbital ν and U is the on-site Coulomb repul-
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sion.

The first model, Eq.(2.6), allows us to compare the pseudoparticle NEGF calcu-

lations to results presented for the model within the standard NEGF scheme referenced

earlier.33 The second and third models, Eqs. (2.7) and (2.8), are examples where consid-

eration within standard NEGF schemes is non-trivial. Note that, contrary to the usual

NEGF treatment, where electronic and vibrational degrees of freedom are described by

their own quantum fields, our goal here is a scheme describing the molecule in a basis of

its vibronic states {|m >} (see Fig. 2.1 for a sketch).

2.3 Pseudoparticle approach to transport

A set of molecular many-body states, {|m >}, defines the set of pseudoparticles

to be considered. This set may be eigenstates obtained by diagonalizing the molecular

Hamiltonian, ĤM , or any other molecular state basis. Let d̂†m (d̂m) be the creation

(annihilation) operator for the state |m >. These operators satisfy usual commutation

relations (Fermi or Bose - depending on the type of the state) within an extended Hilbert

space. The physical subspace of the total pseudoparticle Hilbert space is defined by the

constraint

Q̂ =
∑
m

d̂†md̂m = 1 (2.12)

This constraint can be implemented e.g. by introducing a Lagrange multiplier80,82 or an

operator delta function leading to the appearance of a complex chemical potential.76,83

The electron and vibron operators in the molecular subspace can be represented

in terms of pseudoparticles as

ĉ†ν ≡
∑
m1,m2

ξνm1m2
d̂†m1

d̂m2 (2.13)

â†α ≡
∑
m1,m2

χαm1m2
d̂†m1

d̂m2 (2.14)
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where

ξνm1m2
≡〈m1|ĉ†ν |m2〉 (2.15)

χαm1m2
≡〈m1|â†α|m2〉 (2.16)

are the electron- and vibron-pseudoparticle overlap tensors.

The quantities of interest are dressed single-particle Green functions (GFs) for

the pseudoparticles, G, electrons in the contacts, CK (K = L,R), and phonons in the

thermal bath, FB, defined in the molecular subspace as

Gm1m2(τ1, τ2) =− i〈Tc d̂m1(τ1) d̂†m2
(τ2)〉 (2.17)

CKν1ν2(τ1, τ2) =
∑

κ1,κ2∈K
Vν1κ1Cκ1κ2(τ1, τ2)Vκ2ν2 (2.18)

FBα1α2
(τ1, τ2) =

∑
β1,β2∈B

Wα1β1Fβ1,β2(τ1, τ2)Wβ2α2 (2.19)

where Tc is the contour ordering operator, τ1,2 are contour variables, and

Cκ1κ2(τ1, τ2) =− i〈Tc ĉκ1(τ1) ĉ†κ2(τ2)〉 (2.20)

Fβ1,β2(τ1, τ2) =− i〈Tc b̂β1(τ1) b̂†β2(τ2)〉 (2.21)

are GFs for electrons in the contacts and phonons in the thermal bath, defined in sub-

spaces of the corresponding baths. Note that the Green functions C and F , Eqs. (2.20)

and (2.21), differ from the free particle GFs in the baths, which are routinely intro-

duced within the standard NEGF scheme, since they are dressed by interaction with

the molecular pseudoparticles. Below we will use capital letters to indicate dressed GFs,

while lower case letters will be utilized for the bare (non-interacting) GFs.

In the extended Hilbert space the single-psudoparticle GF G, Eq.(2.17), satisfies

the usual Dyson equation

G = g + gΣG (2.22)

where g is the bare GF, i.e. the GF in the absence of molecule-baths couplings, Eqs. (2.4)-

(2.5), and Σ is the pseudoparticles self-energy due to coupling to the contacts and thermal

bath, Eq.(2.44) (see Appndexes A and B for details). Similar expressions can be written
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for the GFs CK , Eq.(2.18), and FB, Eq.(2.19). Eq.(2.22) is written for the pseudoparticle

GF (2.17) defined on the Keldysh contour.

In practice, one first formulates a standard set of equations for the GFs (2.17)-

(2.19) (i.e. Eq.(2.22) and similar to it for the other GFs) in the full pseudoparticle

Hilbert space, and then projects these expressions onto the physical subspace, so that

contributions to physical observables come from the subspace Q = 1 (see e.g. Ref.76 for

details). As a result we solve equations for retarded and lesser projections of the GF. At

steady state these equations are

Gr(E) = [EI−HM −Σr(E)]−1 (2.23)

G<(E) =Gr(E) Σ<(E) Ga(E) (2.24)

Here the molecular Hamiltonian, pseudoparticle GFs and self-energies are presented as

matrices in the many-body basis of the molecule. Note that Eq.(2.23) belongs to the

Q = 0 subspace, while Eq.(2.24) is projected onto the Q = 1 subspace of the total

pseudoparticle Hilbert space. Thus self-consistent solutions for the two equations are

decoupled with Eq.(2.23) solved first. Also, projection to the Q = 1 subspace requires

normalization (see e.g. Ref.76 for details)

∑
m

iζm

∫ +∞

−∞

dE

2π
G<mm(E) = 1 (2.25)

In the calculations we enforce normalization (2.25) at each step of the self-consistent

cycle.

Eqs. (2.23) and (2.24) have to be solved self-consistently, since the self-energies,

Σr and Σ<, in these equations depend on the pseudoparticle GFs, Gr and G<, as well

as the bare GFs for electrons in the contacts and phonons in the thermal bath (see

Appendix B for details). An initial guess for the pseudoparticle GFs may be based, for

example, on the isolated molecule limit and the thermal distribution for the many-body

molecular states or taken from a QME solution for the junction.
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Figure 2.2: Conductance vs. applied bias calculated for the single-level model (2.1)-

(2.6) within the pseudoparticle NEGF approach. Shown are results for thermalized (solid

line, blue) and non-equilibirum (dashed line, red) molecular vibration. Arrow indicates

position of the elastic peak. See text for parameters.

Current at the interface K ( = L,R) is given by38

IK(t) ≡ 〈ÎK(t)〉 = − d

dt

〈∑
κ∈K

ĉ†κ(t)ĉκ(t)

〉
(2.26)

where ÎK(t) is the current operator

ÎK ≡ i
∑
κ∈K

∑
ν∈M

(
Vκν ĉ

†
κĉν − Vνκĉ†ν ĉκ

)
(2.27)

in the Heisenberg picture. Eq.(2.26) can be expressed in terms of the GF (2.18) and SE

(2.42) as (see Appendix C for the derivation)

IK(t) =
∑

ν,ν1∈M

∫ t

−∞
dt1 (2.28)

(
cK<νν1 (t, t1) ΣK>

ν1ν (t1, t) + ΣK>
νν1 (t, t1) cK<ν1ν (t1, t)

− cK>νν1 (t, t1) ΣK<
ν1ν (t1, t)− ΣK<

νν1 (t, t1) cK>ν1ν (t1, t)
)

Note that while the expression (2.28) is formally exact, our calculations are performed

within the non-crossing approximation (NCA). The corresponding diagram is shown in

Fig. 2.7b.
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Figure 2.3: Comparison between the pseudoparticle NEGF (solid line, black) and the

standard NEGF-based approach of Ref.33 (dashed line, blue - zero order; dashed line

red in panel (a) - self-consistent calculation). Conductance vs. applied bias is calculated

for the single-level model (2.1)-(2.6). Shown are results for M
ω0

= 1 (a) and 2 (b). See

text for parameters.

At steady state the current does not depend on time, the corresponding GFs and

SEs can be transformed to energy domain, which yields

IK =
∑
ν1,ν2

∫ +∞

−∞

dE

2π
(2.29)

(
cK<ν1ν2(E) ΣK>

ν2ν1(E)− cK>ν1ν2(E) ΣK<
ν2ν1(E)

)
where explicit expressions for the bare GFs for electrons in contacts, cK<(E) and cK>(E),

are given in Eqs. (2.47)-(2.48).
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2.4 Numerical results

Here we demonstrate the capabilities of the pseudoparticle NEGF approach dis-

cussed in Section 2.3 in simulations of inelastic transport for the models introduced in

Section 2.2.

Single level linearly coupled to molecular vibration.

This model, Eqs. (2.1)-(2.6), is a popular test case for approaches to transport

in molecular junctions with strong electron-vibron interactions. The Lang-Firsov (or

small polaron) transformation,84 resolving the atomic limit of the model, in the case of

junctions, shifts information on the electron-vibron interaction into the molecule-lead

electron transfer matrix elements. A subsequent approximation based on the separation

of the electron and vibration timescales allows introduction of Frank-Condon factors in a

way similar to the Marcus theory of electron transfer. Several NEGF based approaches

were formulated for this model by us33 and others.69 The approach of Ref.33 was later

generalized to multiple vibrational modes.70,71

Figure 2.2 shows conductance vs. applied bias calculated within the pseudoparti-

cle NEGF approach. Parameters of the calculation are T = 100K, ε0 = 2eV, ΓL = ΓR =

0.05eV, ω0 = 0.1eV and M = 0.2eV. Fermi energy is taken to be at the origin, EF = 0,

and bias is applied symmetrically, µL,R = EF ± Vsd/2. Calculations are performed on

an adaptive grid. We present calculations with (γ = 0.05eV, solid line) and without

(γ = 0eV, dashed line) coupling to thermal bath. The former case results in equilibrium

vibrational population, while the latter corresponds to heated molecular vibration. This

nonequilibrium vibrational population results in additional peaks in conductance to the

left from the elastic tunneling feature (indicated by the arrow). The peaks correspond to

the absoprtion of vibrational quanta by tunneling electron. Such heating of vibration by

charge flux has been observed in experiments (see e.g. Ref.85). Figure 2.2 is an analog

of Fig. 4 in Ref.33 calculated for stronger electron-vibration coupling. Note that (as

is discussed below) the latter method is not capable of treating strong electron-vibron

interaction properly.

A comparison between the pseudoparticle and standard NEGF methods is demon-
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strated in Figure 2.3. Here ΓL = ΓR = 0.02eV, ω0 = 0.2eV and γ = 0.01eV. Other

parameters are as in Fig.2.2. Fig. 2.3a compares pseudoparticle NEGF calculation (solid

line) with results of the approach presented in Ref.33 (dashed line - zero-order; dotted line

- self-consistent calculation) for moderate electron-vibration coupling M/ω0 = 1. It is

interesting that the zero-order approximation of the latter coincides with the pseudopar-

ticle NEGF calculation, while the more advanced self-consistent treatment deviates from

it considerably. The effect can be explained as follows. Since the small polaron transfor-

mation utilized in Ref.33 is exact in the atomic limit and since molecule-contact coupling

is relatively weak, error introduced by considering electron transport in the junction as

a hopping process (similar to the Marcus theory of electron transfer) is small. However,

even this small error may sum up to a substantial deviation in a self-consistent proce-

dure. For stronger electron-vibron coupling M/ω0 = 2 (see Fig. 2.3b) difference between

the two approaches is evident already in comparison to zero-order result. This results

from failure of the second cumulant approximation used to introduce a nonequilibrium

version of Frank-Condon factor in Ref.33 While this approximation becomes exact when

Γ→ 0, it fails with increasing M/ω0 at finite Γ.

Note that the pseudoparticle NEGF is free from approximation related to the

introduction of Frank-Condon factors, providing a nonequilibrium scheme more stable

for stronger electron-vibron coupling than the approach introduced in Ref.33 Note also

that strong electron-vibron interaction was proposed in a number of publications as as

possible mechanism for negative differential resistance in several molecular junctions (see

e.g. Ref.86 and references therein). Finally, within the NCA approximation employed

here, pseudoparticle NEGF is constrained to relatively weak molecule-contact couplings.

This may be considered a less important restriction (compared to restriction on strength

of electron-vibron coupling) since, for strong Γ, usual perturbation theory (e.g. the

self-consistent Born approximation) is applicable.
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Figure 2.4: A two-level bridge model with non-diagonal electron-phonon coupling,

Eqs. (2.1)-(2.5) and (2.7). Current at bias Vsd = 4V is plotted vs. ratio of the frequency

of molecular vibration ω0 to intra-molecular elastic hopping parameter t. Shown are

results of calculations within the pseudoparticle NEGF approach (solid line, red), the

exact mapping scheme of Ref.72 with oscillator initially in its ground (dashed line, blue),

third (dash-dotted line, green) and fourth (dash-double-dotted line, magenta) excited

states, and the equation of motion NEGF method of Ref.87 (dotted line, black). See

text for parameters.

Two-level bridge with non-local electron-vibron coupling.

A two-level bridge with off-diagonal coupling to a molecular vibration, Eqs. (2.1)-

(2.5) and (2.7), is a simple example where two timescales exist on the molecule: one is

related to intra-molecular electronic dynamics (the elastic hopping parameter t), the

other is due to the molecular vibration (the frequency, ω0). Note that the pseudoparti-

cle NEGF method does not rely on the Born-Oppenheimer approximation to separate

electronic and vibrational dynamics with respect to intra-molecular processes. Thus it

is an appropriate tool to apply in a regime, where timescale speration arguments do not

apply. This issue is relevant for the cases when several electronic states are coupled to a

molecular vibration(s) are considered (see e.g. Ref.70).

Figure. 2.4 shows current at Vsd = 4V as a function of the ratio of the frequency

of the molecular vibration ω0 to the intra-molecular elastic hopping parameter t. Param-

eters of the calculations are ε1 = ε2 = 0.5eV, t = 0.1eV, ΓL = ΓR = 0.01eV, M = 0.1eV,

γ = 0. Other parameters are as in Fig. 2.2.

The pseudoparticle NEGF result (solid line) demonstrates a destructive interfer-

ence feature at resonance ω0 = ΩRabi, where ΩRabi ≡
√

(ε1 − ε2)2 + 4|t|2 is the Rabi
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frequency due to elastic hopping.

Result of the exact mapping scheme72 calculation (see dashed line in Fig. 2.4)

shows qualitatively similar behavior. Note that difference between the two results (solid

and dashed lines in Fig. 2.4) is due to the fact that for the exact mapping approach

we calculated current within an assumption of the oscillator being in the ground state,

which disregards heating of the molecular vibration. Scattering theory results with the

oscillator initially in an excited state have different qualitative behavior (see dash-dotted

and dash-double-dotted lines in Fig. 2.4). Note that the heating should be essential at

high biases, and is included in the pseudoparticle NEGF calculation.

Approaches based on the Born-Oppenheimer approximation introduce nonequi-

librium analogs of Franck-Condon factors, decoupling electronic and vibrational dynam-

ics (see e.g. Refs.33,87). This results in qualitatively wrong behavior at resonance,

where the timescale separation argument is not applicable (compare dotted line to solid

and dashed lines in Fig. 2.4). Note that experimental evidence for a breakdown of the

Born-Oppenheimer approximation was reported for junctions when electronic levels in a

molecule are coupled by a molecular vibration.47
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Figure 2.5: d2I/dV 2
sd vs. bias for inelastic transport through a quantum dot model,

Eqs. (2.1)-(2.5) and (2.8), in the Kondo regime. Shown are results for M = ω0/2 (dotted

line, red), ω0 (dashed line, blue), and 2ω0 (solid line, black). See text for the parameters.

Inelastic transport in the Coulomb blockade and Kondo regimes.

The pseudoparticle NEGF approach is capable of qualitative description of the

Kondo regime in the limit of large Coulomb repulsion U → ∞,88 although at least the
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one-crossing approximation is needed to get quantitative predictions for finite U .89

Figure 2.5 demonstrates the vibrational sidebands of the Kondo peak in the

limit of U → ∞ for the quantum dot model, Eqs. (2.1)-(2.5) and (2.8). Parameters

of the calculation are εν = −2eV (ν =↑, ↓), ΓL = ΓR = 0.5eV, ω(0) = ω(1) ≡ ω0 =

0.5eV, and γ = 0. We assume linear coupling to the vibrational degree of freedom,

M(â0+â†0)
∑

ν=↑,↓ ĉ
†
ν ĉν . Other parameters are as in Fig. 2.2. As expected strong electron-

vibron coupling destroys the Kondo peak. This result is similar to the one obtained

for the same model within an equation-of-motion approach;87 however, it is free from

restrictions imposed by the Franck-Condon factors in the latter consideration.
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Figure 2.6: Conductance map for inelastic transport through a quantum dot with

charge state dependent frequencies, Eqs. (2.1)-(2.5) and (2.8). See text for the parame-

ters.

Finally, we demonstrate an example of simulating state-specific properties in

transport. Experimental data on molecular charging state dependent vibrational side-

bands in the Coulomb blockade regime is available in the literature. Simulation of such

behavior within standard NEGF methodology poses a challenge to theory. At the same

time any scheme utilizing many-body states of the system as a basis can easily treat

the problem. Here we use a quantum dot coupled to a vibrational degree of freedom

with state-specific (more precisely - molecular charge specific) frequency as a model for

a molecular junction in the Coulomb blockade regime, Eqs. (2.1)-(2.5) and (2.8). The

transport is described in the language of vibronic states of the molecular system. Note

that contrary to our previous consideration,49 we do not rely on the small polaron trans-
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formation in our calculations. Also the pseudoparticle NEGF approach is capable of

calculating both nonequilibrium populations and coherences within the system.

Figure 2.6 shows a conductance map of the model with vibrational sidebands

clearly indicating change in vibrational frequency for different charging states of the

molecule. Parameters of the calculation are εν = 0 (ν =↑, ↓), U = 1eV, ΓL = ΓR =

0.02eV, ω(0) = 0.08eV, ω(1) = 0.1eV, and ω(2) = 0.14eV, γ = 0. Other parameters as in

Fig. 2.2. In realistic simulations, overlap matrices between wavefunctions of the state-

specific vibrational mode should be evaluated taking into account the Duschinsky mixing

effect.90,91 Since our calculation is for demonstration purposes only, for simplicity, we

assign different vibrational frequencies to different charging states keeping the same form

of linear coupling as in (2.6) with M = 0.2eV. Results are similar to those presented

earlier,49 however the approach itself is more general. Note that realistic calculations on

state specific frequencies in molecular junctions were reported recently92 within a rate

equation approach. It is straightforward to incorporate the pseudoparticle NEGF method

into the framework of Ref.92 Note that rate equation based description will become

inadequate the moment two molecular levels are close in energy so that interference

effects become pronounced.

2.5 Conclusion

We discuss a pseudoparticle NEGF approach as a tool to describe transport in

molecular junctions in the language of many-body states of an isolated molecule. In

particular, we focus on inelastic transport in the regime of strong electron-vibron inter-

action on the molecule with relatively weak molecular coupling to leads. The pseudopar-

ticle NEGF approach is compared to alternative formulations. These include scattering

theory,72 generalized quantum master equation schemes,,54–56,68 standard33,69 and Hub-

bard48,49 NEGF techniques.

The Hubbard NEGF is a viable scheme, whose application is complicated by

absence of well defined rules for formulation of a conserving approximation. Since

usual (Fermi or Bose) commutation relations are fulfilled by the pseudoparticle creation

and annihilation operators, formulation of such an approximation in the pseudoparti-
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cle NEGF technique follows standard diagrammatic rules (although formulated in an

extended Hilbert space).

The pseudoparticle NEGF is more general than the GQME schemes: the per-

turbation theory in Green function schemes is formulated for a self-energy. Thus, re-

summation of an infinite series of diagrams entering in the form of the retarded SE in

the denominator of the GF assures accounting for broadening of molecular level due to

coupling to continuum of states in the contacts. This effect is (at least partially) missed

in the GQME, while it may play an important role (see Ref.56 for discussion). Note

that the GF technique has a well defined procedure for extending the consideration to

any desired order in the system-bath coupling. Such extension is not trivial in the QME

scheme (see e.g. Ref.54 for discussion). Note also that the GQME is not capable, e.g.,

of reproducing the Kondo regime (see Fig. 2.5) even qualitatively.

Consideration of inelastic transport in junctions in the regime of strong electron-

vibron coupling within standard NEGF approaches usually relies upon the Lang-Firsov

transformation with subsequent introduction of nonequilibrium analogs of the Frank-

Condon factors. Thus restrictions of these techniques are related to either inadequacy

of schemes based on small polaron transformation in the the regime of strong electron-

vibron coupling (see Fig. 2.3b), or inapplicability of the Born-Oppenheimer approxima-

tion (see Fig. 2.4). Note also that these considerations are restricted to linear electron-

vibron coupling, making e.g. description of state specific vibrational effects nontrivial.

We compare the pseudoparticle NEGF results to those of the previous NEGF formu-

lations, and demonstrate stability of the former in the strong electron-vibron coupling

regime.

The superiority of the pseudoparticle NEGF lies in its ability to treat an open

molecular system in the language of many-body (vibronic) states, which eliminates the

need to separate electronic and vibrational dynamics within the molecule. The same

idea is at the heart of the “exact mapping” approach introduced in Ref.72 However the

latter technique is a strictly single-particle scattering theory, which makes it ill-posed

to describe inelastic transport in junctions (see e.g. Ref.32). Thus the pseudoparticle

NEGF method can be seen as a generalization of the “exact mapping” approach, which

includes information on the Pauli exclusion principle and Fermi electron distribution
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in the leads. Note that the ability to describe inelastic transport in the language of

vibronic states is also important when state-specific characteristics of the molecule reveal

themselves in transport measurements (see Fig. 2.6). Incorporating the pseudoparticle

NEGF methodology into an ab initio calculation scheme (such as e.g. presented in Ref.92)

is straightforward.

Finally, we note that effects considered in this paper within simple model cal-

culations are representative of experimental observations. In particular, state-specific

frequencies have been measured in experiments on resonant inelastic tunneling spec-

troscopy,46 non-Born-Oppenheimer behavior was observed in molecular junctions with

strong electron-vibron coupling,47 and vibrational sidebands of the Kondo peak were

reported in experiments on conduction in C60 junction.93
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Figure 2.7: (a) Skeleton diagrams of the generating functional Y ′, Eq.(2.40) and (b)

the current IK(t), Eq.(2.29). Directed solid line (black) represents dressed pseudoparticle

propagator G, Eq.(2.17), directed dashed line (blue) inidicates electron Green function

of the contacts CK , Eq.(2.18), directed zigzag line (red) stands for the phonon Green

function of the thermal bath FB, Eq.(2.19). Non-directed dashed line in (b) indicates

both possible directions. Circle (blue) and square (red) represents electron- and vibron-

pseudoparticle overlap tensors, Eqs. (2.15) and (2.16), respectively. Summation over

all indices and integration over contour variables is assumes for every connection in the

diagrams except the circled connection where an assigned time is indicated in the plot.

The diagrams are presented within the non-crossing approximation (NCA).

2.6 Appendix A: Luttinger-Ward functional in the pseu-

doparticle NEGF

In order to identify self-energies of the GFs (2.17)-(2.19) induced by interactions

(2.4)-(2.5), we follow the path integral formulation of Ref.801

For future reference we also introduce the GFs for electrons in the contacts, CK

(K = L,R), and phonons in the thermal bath, FB, defined in the space of transitions

between many-body states of the molecule

CKm1m2,m3m4
(τ1, τ2) =

∑
ν1,ν2∈M

ξν1m1m2
CKν1ν2(τ1, τ2)

∗
ξν2m3m4

(2.30)

FBm1m2,m3m4
(τ1, τ2) =

∑
α1,α2∈M

χα1
m1m2

FBα1α2
(τ1, τ2)

∗
χα2
m3m4

(2.31)

We believe that the presence of single greek, as in Eqs. (2.18) and (2.19), or double

1Note that an equivalent alternative derivation is the linked cluster expansion.84
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latin, as in Eqs. (2.30) and (2.31), index is enough to avoid confusion between the two

representations.

The partition function, Z, is introduced as a path integral over the Keldysh

contour94

Z =

∫
c
D[d̄, d, c̄, c, b̄, b] eiS (2.32)

where S is the action

S =

∫
c
dτ

 ∑
m,m′∈M

d̄m(τ)ĝ−1
mm′dm′(τ) (2.33)

+
∑

κ∈{L,R}

c̄κ(τ)ĉ−1
κ cκ(τ) +

∑
β∈B

b̄β(τ)f̂−1
β bβ(τ)

−
∑
ν∈M

κ∈{L,R}

(
Vκν c̄κ(τ) cν [η(τ), η̄(τ)] + Vνκ c̄ν [η(τ), η̄(τ)] cκ(τ)

)

−
∑
α∈M
β∈B

(
Wβα b̄β(τ) aα[η(τ), η̄(τ)] +Wαβ āα[η(τ), η̄(τ)] bβ(τ)

)

−
∑
m∈M

(
η̄m(τ) dm(τ) + d̄m(τ) ηm(τ)

)]

Here d (c, b) is the Grassman variable for Fermions and complex number for Bosons

representing a pseudoparticle (electron in the contacts, phonon in the thermal bath),

d̄ (c̄, b̄) is the corresponding conjugate, and ĝ−1
mm′ (ĉ−1

κ , f̂−1
β ) is the inverse (in both

state and contour variable space) of the free Green function (i.e. when the system-

bath coupling is disregarded). Note that Grassman variables representing electrons on

the molecule, cν (c̄ν), and molecular vibrations, aα (āα), are expressed in Eq.(2.33) as

functional derivatives in auxiliary fields η of the last term in Eq.(2.33) (compare with

Eqs. (2.13)-(2.14))

c̄ν [η(τ), η̄(τ)] ≡
∑

m1,m2∈M
ξνm1m2

ζm1

δ

δηm1(τ)

δ

δη̄m2(τ)
(2.34)

āα[η(τ), η̄(τ)] ≡
∑

m1,m2∈M
χαm1m2

ζm1

δ

δηm1(τ)

δ

δη̄m2(τ)
(2.35)
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The measure in (2.32) is

D[d̄, d, c̄, c, b̄, b] ≡
∏
m∈M

1

Nm
dd̄m ddm (2.36)

×
∏

κ∈{L,R}

dc̄κ dcκ ×
1

2πi

∏
β∈B

db̄β dbβ

where Nm = 1 (2πi) for Fermi (Bose) pseudoparticle.

Performing the integration in (2.33) over the pseudoparticles, electrons in the

contacts, and phonons in the thermal bath yields95

Z =Z0 exp

(
−i
∫
c
dτ

∫
c
dτ ′ (2.37)

∑
ν,ν′∈M
K=L,R

c̄ν [η(τ), η̄(τ)] cKνν′(τ, τ
′) cν′ [η(τ ′), η̄(τ ′)]

+
∑

α,α′∈M
āα[η(τ), η̄(τ)] fBαα′(τ, τ ′) aα′ [η(τ ′), η̄(τ ′)]


)

× exp

(
i
∑

m,m′∈M

∫
c
dτ

∫
c
dτ ′η̄m(τ)gmm′(τ, τ ′)ηm′(τ ′)

)

Expanding the first exponent on the right side of (2.37), taking auxiliary field derivatives,

setting the fields to zero, and collecting terms of the connected diagrams into cumulant

expansion leads to

Z = Z0 e
−Y (2.38)

where Z0 is the partition function of the model in the absence of the system-baths

couplings and Y is the collection of all of the connected diagrams.

The final expression is obtained by dressing these diagrams, i.e. substituting full

GFs in place of the bare ones. This yields96

Y =Y ′ +
∑
Mm

ζmTr[log Ĝ−1 + Σ G] + Tr[log F̂−1
B + ΠB FB]

−
∑

K=L,R

Tr[log Ĉ−1
K + ΣKCK ] (2.39)
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Here the Tr[. . .] is a trace over both states and contour variables, Mm indicates a block

of molecular states |m > with the same number of electrons, and ζm = −1 (+1) for a

Fermi (Bose) state. G, CK , and FB are the dressed GFs defined in Eqs. (2.17), (2.18),

and (2.19), respectively. Σ, ΣK , and ΠB are the corresponding self-energies and Ĝ−1,

Ĉ−1
K , and F̂−1

B are inverses of the corresponding GFs (in the sense of both states and

contour variables).

Y ′ is the Luttinger-Ward functional – the collection of all connected skeleton dia-

grams (i.e. diagrams that have no self-energy insertions). Fig. 2.7a shows such diagrams

for the lowest non-zero (second) order in the sytem-baths interactions - the non-crossing

approximation (NCA). The explicit expression for the model (2.1)-(2.5) is

Y ′NCA =− i
∑

m1,m2

m′
1,m

′
2
∈M

ζm1

∫
c
dτ

∫
c
dτ ′ (2.40)

Gm′
1m1

(τ ′, τ)Gm2m′
2
(τ, τ ′) ∑

ν,ν′∈M
K=L,R

ξνm1m2

∗
ξν

′

m′
1m

′
2
CKνν′(τ, τ

′)

+
∑

α,α′∈M
χαm1m2

∗
χα

′

m′
1m

′
2
FBαα′(τ, τ ′)


2.7 Appendix B: Expressions for the self-energies

Since Y is stationary with respect to changes of the GFs,96 expressions for the

self-energies follow immediately from Eq.(2.39) as

Σm1m2(τ1, τ2) =− ζm1

δY ′

δGm2m1(τ2, τ1)
(2.41)

ΣK
ν1ν2(τ1, τ2) = +

δY ′

δCKν2ν1(τ2, τ1)
(2.42)

ΠB
α1α2

(τ1, τ2) =− δY ′

δFBα2α1
(τ2, τ1)

(2.43)

Using (2.40) in (2.41)-(2.43) and projecting onto the physical subspace (see e.g.
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Ref.80 for details) yields NCA expressions for the pseudoparticles SE

Σmm′(τ, τ ′) = i
∑

m1,m2∈M
Gm1m2(τ, τ ′)

[ ∑
K=L,R

cKmm1,m′m2
(τ, τ ′)− cKm2m′,m1m(τ ′, τ) (2.44)

+ fBmm1,m′m2
(τ, τ ′) + fBm2m′,m1m(τ ′, τ)

]
,

SE for the electrons in the contacts

ΣK
νν′(τ, τ

′) =− i
∑

m1,m2∈M
m′

1,m
′
2∈M

ζm1ξ
ν′

m′
1m

′
2

∗
ξνm1m2

(2.45)

×Gm1m′
1
(τ, τ ′)Gm′

2m2
(τ ′, τ),

and SE for the phonons in the thermal bath

ΠB
αα′(τ, τ ′) =i

∑
m1,m2∈M
m′

1,m
′
2∈M

ζm1χ
α′

m′
1m

′
2

∗
χαm1m2

(2.46)

×Gm1m′
1
(τ, τ ′)Gm′

2m2
(τ ′, τ).

Standard Langreth rules should be employed at this point to obtain Keldysh contour

projections.

At steady state self-energies can be Fourier transformed to energy space. Corre-

sponding expressions for the self-energies (2.44)-(2.46) contain Fourier transforms of the

GFs (2.17)-( 2.19).

The bare GF for the electrons in contacts cK is given by the usual expression

for electron self-energy within NEGF. The Fourier transform of its lesser and greater

projections is precisely

cK<ν1ν2(E) =iΓKν1ν2(E) fK(E) (2.47)

cK>ν1ν2(E) =− iΓKν1ν2(E) [1− fK(E)] (2.48)

where K = L,R, ΓKν1ν2(E) ≡ 2π
∑

κ∈K Vν1κVκν2δ(E − εκ) is the electron dissipation
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matrix and fK(E) = [exp(E−µKkBT
) + 1]−1 is the Fermi-Dirac thermal distribution.

The corresponding non-interacting GF for the phonons in the thermal bath comes

from the phonon self-energy within NEGF. The Fourier transform of its lesser and greater

projections is (ω > 0)

fB<α1α2
(ω) =− iγBα1α2

(ω)NB(ω) (2.49)

fB>α1α2
(ω) =− iγBα1α2

(ω) [1 +NB(ω)] (2.50)

where γBα1α2
(ω) =

∑
β∈BWα1βWβα2δ(ω−ωβ) is the phonon damping matrix andNB(ω) =

[exp( ω
kBT

) − 1]−1 is the Bose-Einstein thermal distribution. Specificly, in the case of a

single phonon mode with a frequency ω0, we model the phonon damping function as

γB(ω) = γ
ω2

ω2
0

exp

(
2

[
1− ω

ω0

])
(2.51)

2.8 Appendix C: Expression for the current, Eq.(2.28)

Following Ref.38 we define current at the molecule-contact interface K as

IK(t) = − d

dt

∑
κ∈K
〈ĉ†κ(t) ĉκ(t)〉 ≡ −i d

dt
CK<κκ (t, t) (2.52)

where CK<κκ (t, t) is the equal time lesser projection of the dressed electron Green function

in a state |k > of the contact K, Eq.(2.20). In order to perform the derivative in (2.52)

we write left and right equations-of-motion for the lesser projection of the GF

[
i
∂

∂t1
− εκ1δκ1,κ2

]
CK<κ1κ2(t1, t2) =

∑
κ′∈K

∫ +∞

−∞
dt′ (2.53)

[
ΣK<
κ1κ′

(t1, t
′)CK a

κ′κ2(t′, t2) + ΣK r
κ1κ′(t1, t

′)CK<κ′κ2
(t′, t2)

][
−i ∂
∂t2
− εκ2δκ1,κ2

]
CK<κ1κ2(t1, t2) =

∑
κ′∈K

∫ +∞

−∞
dt′ (2.54)

[
CK<κ1κ′

(t1, t
′) ΣK a

κ′κ2(t′, t2) + CK r
κ1κ′(t1, t

′) ΣK<
κ′κ2

(t′, t2)
]
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Here ΣK
κ1κ2 is a self-energy analogous to ΣK

ν1ν2 , Eq.(2.42), defined in the subspace of the

contact K

ΣK
κ1κ2(τ1, τ2) =

∑
ν1,ν2∈M

Vκ1ν1 Σ(K)
ν1ν2 (τ1, τ2)Vν2κ2 (2.55)

Subtracting (2.53) from (2.54) at t1 = t2 = t, and using (2.18) and (2.55) in (2.52) yields

IK(t) =
∑

ν,ν1∈M

∫ t

−∞
dt1 (2.56)

(
CK<νν1 (t, t1) ΣK>

ν1ν (t1, t) + ΣK>
νν1 (t, t1)CK<ν1ν (t1, t)

− CK>νν1 (t, t1) ΣK<
ν1ν (t1, t)− ΣK<

νν1 (t, t1)CK>ν1ν (t1, t)
)

This expression should be projected onto physical subspace of the full Hilbert space.

Taking into account that expressions for Σ(K)>,< contain the lesser projection of the

pseudoparticle GF G<, the only physical contribution in Eq.(2.56) comes from the free

term in the Dyson equation for the GF CK . This leads to Eq.(2.28).
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The transport properties of a conduction junction model characterized by two

mutually coupled channels that strongly differ in their couplings to the leads are in-

vestigated. Models of this type describe molecular redox junctions (where a level that

is weakly coupled to the leads controls the molecular charge, while a strongly coupled

one dominates the molecular conduction), and electron counting devices in which the

65
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current in a point contact is sensitive to the charging state of a nearby quantum dot.

Here we consider the case where transport in the strongly coupled channel has to be

described quantum mechanically (covering the full range between sequential tunneling

and co-tunneling), while conduction through the weakly coupled channel is a sequential

process that could by itself be described by a simple master equation. We compare the

result of a full quantum calculation based on the pseudoparticle non-equilibrium Green

function method to that obtained from an approximate mixed quantum-classical calcu-

lation, where correlations between the channels are taken into account through either

the averaged rates or the averaged energy. We find, for the steady state current, that

the approximation based on the averaged rates works well in most of the voltage regime,

with marked deviations from the full quantum results only at the threshold for charging

the weekly coupled level. These deviations are important for accurate description of

the negative differential conduction behavior that often characterizes redox molecular

junctions in the neighborhood of this threshold.
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3.1 Introduction

Transport in mesoscopic and nanoscopic junctions is usually a multichannel phe-

nomenon. Model studies of transport in junctions that comprise two, often interacting,

conduction channels have been carried out in order to describe the essential features of

different physical phenomena. Prominent examples are studies of interference effects in

quantum conduction, analysis of single electron counting, where a highly transmitting

junction (a point contact) is used to monitor the electronic state of a poorly transmit-

ting one, and redox molecular junctions, where (transient) electron localization in one

channel, stabilized by environmental polarization, determines the transition between re-

dox states that are observed by the conduction properties of another channel. These

three classes of phenomena are described by different flavors of the two-channel model.

Interference is usually discussed as a single electron problem and interaction with the

environment is minimized (often disregarded in model studies) so as to maintain phase

coherent transport. Single electron counting with a point-contact detector is by defini-

tion a many electron problem, however environmental interactions are again minimized

(and again often disregarded in theoretical analysis) by lowering the experimental tem-

perature in order to obtain detectable signals. Conduction in redox junctions is usually

observed in room temperature polar environments and is characterized by large solvent

reorganization that accompanies the electron localization at the redox site.

In recent work1–3,7 we have studied the conduction properties of junctions of the

latter type. We first analyzed, for a model involving a single conduction channel, the

consequence of large solvent reorganization in the limit where the coupling between the

molecular bridge and the metal leads is large relative to the frequency of the phonon

mode used to model the solvent dynamical response.1–3 It was shown (using a mean

field description essentially equivalent to the Born Oppenheimer approximation) that

solvent induced stabilization of different charging states of the molecule can result in

multistable operation of the junction, offering a possible rationalization of observations

of negative differential resistance (NDR) and hysteretic response in molecular redox

junctions. Such multistability was indeed observed recently in numerical simulations

that avoid the mean field approximation.8,9 Many redox junctions, however, operate in

the opposite limit of relatively small molecule-lead coupling, where a single conduction
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Figure 3.1: The two channel model discussed in the paper. Each channel comprises

one level coupled to the left and right electrodes. W and S denote weakly and strongly

coupled levels, respectively.

channel model cannot show multistable transport behavior. Two of us have recently

advanced a two channel model that can account for such observations.7 In the absence of

electron-phonon interaction (solvent polarization) this model is given by the Hamiltonian

(see Fig. 3.1)

Ĥ =
∑

m=S,W

εmd̂
†
md̂m + Un̂Sn̂W +

∑
k∈L,R

εk ĉ
†
k ĉk

+
∑
k∈L,R

(
VkW ĉ

†
kd̂W +H.c.

)
(3.1)

+
∑
k∈L,R

(
VkS ĉ

†
kd̂S +H.c.

)

where d̂†m (ĉ†k) creates electron in level m (state k of the contact), and n̂m = d̂†md̂m,

m = S,W . In this model, the two channels are coupled only capacitively (no inter-

channel electron transfer). U represents the standard Coulomb interaction between them.

Two coupled channel models such as (3.1) also characterize single electron counting

devices,10–15 where the current in a point contact (that can be represented by channel

S) measures the charging state of a quantum dot used as a bridge in a nearby junction

(channel W ). The noise properties of such junctions have been studied extensively.16–21

In this model, supplemented by electron phonon coupling that represents the

response of a polar environment to the electronic occupations in levels W and S, the
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molecular redox site dominates the properties of one channel (addressed below as “weakly

coupled” or “slow” and denoted by W ), characterized by strong transient localization

stabilized by large reorganization of the polar environment and weak coupling to the

metal leads. Transport through this channel, that is, charging and discharging of the

molecular redox site, was described by sequential kinetic processes. A second channel

(addressed below as “strongly coupled” or “fast” and denoted by S) is more strongly

coupled to the leads and is responsible for most or all of the observed current.22 Switching

between charging states of the slow channel amounts to molecular redox states that affect

the transmission, therefore the observed current, through the fast channel. Bistability

and hysteretic response on experimentally relevant timescales are endowed into the model

in a trivial way23 and, as was shown in Ref.7 (see also Refs.24–26), NDR also appears

naturally under suitable conditions.

Obviously, this behavior is generic and results from the timescale separation be-

tween the W and S channels together with the requirement that the observed current

is dominated by the S channel. In Refs.7 and,27 we have described the expected phe-

nomenology of such junction model in the limit where transport through both channels

is described by simple kinetic equations with Marcus electron transfer rates. While, as

indicated above, it is natural to model the slow dynamics (observed timescales ∼ 10−6 s)

in this way, it is also of interest to consider fast channel transport on timescales where

transport coherence is maintained. For example, one could envision a redox junction

that switches between two conduction modes, which shows interference pattern associ-

ated with the structure of the fast channel. As a prelude for such considerations, we

have studied in Ref.27 also a model in which the weakly coupled channel W is described

by Marcus kinetics, however conduction through the strongly coupled channel S is de-

scribed as a coherent conduction process by means of the Landauer formula, assuming

that the timescale of transport through this channel is fast enough to make it possible to

ignore any interaction with the polar environment. As in any mixed quantum-classical

dynamics, such description is not consistently derived from a system Hamiltonian, and

ad-hoc assumptions about the way the quantum and classical subsystems interact with

each other must be invoked, as described in Section 3.2.

In this paper we present a full quantum calculation of the current-voltage re-
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sponse of the two channel model described above, and use it to assess the approximate

solution obtained using Eqs. (3.2)-(3.6) with models A and B (see Section 3.2). The

quantum calculation is done with the pseudoparticle non-equilibrium Green function

(PP-NEGF) technique,28–31 named the slave boson technique when applied to a 3-states

system (Anderson problem at infinite U),32–35 which was recently used by two of us

to study effects of electron-phonon and exciton-plasmon interactions in molecular junc-

tions.36,37 We note that all the methods used in the paper have their own limitations. In

particular, PP-NEGF is perturbative in the system-bath coupling. However, it accounts

exactly for the intra-system interactions, and it is the role of these interactions (quantum

correlations due to system channels interactions) which is missed by the mixed quantum

classical approaches and is the focus of the present study.

In Section 3.2 we present our model, briefly review the master equation descrip-

tion and introduce two approximate descriptions of mixed classical-quantum dynamics.

The PP-NEGF technique and other details of the fully quantum calculation are de-

scribed in Section 3.3. Section 3.4 presents our results and discusses the validity of the

approximate calculations. Section 3.5 concludes.

3.2 Mixed quantum classical approximations

To account for the current-voltage behavior of a junction characterized by the

Hamiltonian (3.1), several workers16–21 have used a master equation level of description,

whereupon, for a given voltage, the dynamics of populating and de-populating the levels

S and W is described by classical rate equations involving only their populations, with

occupation and de-occupation rates given by standard expressions (see Eq. (3.4) below).

Here, in order to focus on redox junction physics, the coupling of channel W to the

contacts is assumed to be much smaller than that of channel S, so that in the absence

of correlations channel W can be assumed to be classical and treated within such rate

equations approach. At the same time channel S will be treated as quantum, as discussed

in the previous section.

In Ref.,27 we have assumed that on the timescale of interest the junction can be

in two states: 1 and 0, where the weakly coupled channel, that is the molecular redox
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site - is occupied or vacant, respectively. The probability P1 = 1− P0 that the junction

is in state 1 satisfies the kinetic equation

dP1

dt
= (1− P1) k0→1 − P1k1→0 (3.2)

where the rates k0→1 and k1→0 are electron transfer rates between a molecule and an

electrode, here the rates to occupy and vacate the redox molecular site, respectively.

These rates are sums over contributions from the two electrodes

ki→j = k
(L)
i→j + k

(R)
i→j ; i, j = 0, 1 (3.3)

and depend on the position of the redox molecular orbital energy εr relative to the Fermi

energy (electronic chemical potential) of the corresponding electrode. In Ref.27 we have

used Marcus heterogeneous electron transfer theory to calculate these rates, thus taking

explicitly into account solvent reorganization modeled as electron-phonon coupling in

the high temperature and strong coupling limit. For the purpose of the present work it

is enough to use the simpler, phonon-less, model

k
(K)
0→1 (εr) =ΓKr fK (εr)

k
(K)
1→0 (εr) =ΓKr [1− fK (εr)]

(3.4)

where εr is the energy of the “redox level” (see below), fK(E) = [exp ((E − µK)/T ) + 1]−1

(K = L,R) is the Fermi-Dirac function of the electrode K, µK is the corresponding elec-

tronic chemical potential and T is the temperature (in energy units). ΓKr , K = L,R

are the widths of the redox molecular level due to its electron transfer coupling to the

electrodes.38 In terms of the Hamiltonian, Eq. (3.1) above, these widths are given by

ΓKW = 2π
∑

k∈K |VWk|2δ (E − εk). We have assumed that in the relevant energy regions

these widths do not depend on energy.

From Eqs. (3.2) and (3.3), the steady state population of the redox site is P1 =

1 − P0 = k0→1/ (k0→1 + k1→0), and the current through the weakly coupled channel

is IW = k
(L)
0→1P0 − k

(L)
1→0P1 = k

(R)
1→0P1 − k

(R)
0→1P0. This current is however negligible

relative to the contribution from the strongly coupled channel. In each of the states 0



72

and 1, the current IS as well as the average bridge population 〈nS〉 in this channel, are

assumed to be given by the standard Landauer theory for a channel comprising one single

electron orbital of energy εS bridging the leads, disregarding the effect of electron-phonon

interaction,39,40

IS (V ; εS) =
e

~

∫ +∞

−∞

dε

2π

ΓLSΓRS [fL(E)− fR(E)]

(ε− εS)2 + (ΓS/2)2 (3.5)

〈nS (V ; εS)〉 =

∫ +∞

−∞

dε

2π

ΓLSfL(ε) + ΓRS fR(ε)

(ε− εS)2 + (ΓS/2)2 (3.6)

where ΓS = ΓLS + ΓRS and where εS and ΓKS take the values ε
(0)
S , Γ

K(0)
S in state 0, and

ε
(1)
S = ε

(0)
S + U , Γ

K(1)
S = Γ

K(0)
S in state 1. U is essentially a Coulomb energy term that

measures the effect of electron occupation in channel W , i.e. at the redox site, on the

energy of the bridging orbital in channel S. ΓLS , ΓRS , εS , and U are model parameters. The

average population and current in channel S are given by 〈nS〉 = P0〈nS〉(0) + P1〈nS〉(1);

〈IS〉 = P0I
(0)
S +P1I

(1)
S , where I

(0)
S (〈nS〉(0)) and I

(1)
S (〈nS〉(1)) are the values of IS , Eq. (3.5)

(〈nS〉, Eq. (3.6)) in system states 0 (redox level empty), and 1 (redox level populated).

Finally, the total current at a given voltage is I = IS + IW ≈ IS .

It should be noted that the rates defined by Eq. (3.4) are not completely specified,

because the “redox energy level” εr is not known: it is equal to εW only if the capacitive

interaction between the S and W channels is disregarded. To take this interaction into

account, two models were examined in Ref.:27

Model A. The rates are written as weighted averages over the populations 0 and 1 of

channel S with respective weights 1− 〈nS〉 and 〈nS〉:

k0→1 =
(

1− 〈nS〉(0)
)
k

(S0)
0→1 + 〈nS〉(0)k

(S0)
1→0

k1→0 =
(

1− 〈nS〉(1)
)
k

(S1)
0→1 + 〈nS〉(1)k

(S1)
1→0

(3.7)

where k
(S0)
0→1, k

(S1)
0→1 are the rates to occupy and vacate, respectively, the redox site when

the fast channel is not occupied, while k
(S1)
0→1, k

(S1)
1→0 are the corresponding rates when this

channel is occupied. The dependence of these rates on the occupation of the fast channel

is derived from the dependence of εr in Eq. (3.4) on the occupation of level S: εr = εW
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when this level is not occupied, and εr = εW + U when it is. That is,

k
(K,S0)
0→1 =ΓKr fK(εW )

k
(K,S0)
1→0 =ΓKr [1− fK(εW )]

k
(K,S1)
0→1 =ΓKr fK(εW + U)

k
(K,S1)
1→0 =ΓKr [1− fK(εW + U)]

(3.8)

Here K = L,R.

Model B. The rates are given by Eq. (3.4), with εr calculated as the difference be-

tween the energies of two molecular states, one with the redox level populated, E1 =(
ε

(0)
S + U

)
〈nS〉(1) + ε

(0)
2 = ε

(1)
S 〈nS〉(1) + ε

(0)
2 and the other with the redox level empty,

E0 = ε
(0)
S 〈nS〉(0):

εr =
(
ε

(1)
S 〈nS〉

(1) + ε
(0)
2

)
− ε(0)

S 〈nS〉
(0) (3.9)

These two models are associated with different physical pictures that reflect dif-

ferent assumptions about relative characteristic timescales. Model A assumes that the

switching rates between states 0 and 1 follow the instantaneous population in channel

S, while model B assumes that these switching rates are sensitive only to the average

population 〈nS〉. Model B results from a standard Hartree approximation that would

be valid if the electronic dynamics in channel W is slow relative to that of channel S

(see Appendix). From the discussion above it may appear at first glance to be the case,

since transmission through channel W is small, implying that the rates k0→1 and k1→0

are small. However, the electronic process that determines the timescale on which these

rates change is not determined by the magnitude of these rates but by the response of

the electrodes to changes in εr following changes in the bridge level population of the

strongly coupled channel. This characteristic time (or times), τB, which is bounded be-

low by the inverse electrode bandwidth, may depend also on temperature and the energy

dependence of the spectral density, and can be shorter than the timescale of order of

Γ−1
S on which population in channel S is changing (note that τB is vanishingly short

in the wide band limit). In this case model A would provide a better approximation.

For comparison, we also present below results for model C, in which the effect of the

interaction between the two channels on the electron transfer kinetics in channel W is
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Figure 3.2: (Color online) Current (panels a-c) and populations of the channels (panels

d-f). Results for the models A (panels a and d), B (panels b and e), and C (panels c and

f) are shown for the channels S (dash-dotted line, red) and W (dotted line, blue), and

compared to the PP-NEGF results for the same channels (solid, red and dashed, blue

lines, respectively). Note, the PP-NEGF data is the same in panels a-c and d-f. See text

for parameters.

disregarded so that

kK0→1 =ΓKW fK(εW )

kK1→0 =ΓKW [1− fK(εW )]
(3.10)

while the current through channel S continues to be sensitive to the difference between

states 0 and 1, as before.

3.3 The pseudoparticle Green function method

Models A and B above represent attempts to partly account for the coupling

between channels within the classical rate equations description of channel W . The ex-

istence of capacitive coupling between the channels makes such mixed quantum-classical

description potentially invalid, since it misses quantum correlations between the two

channels. To estimate the performance of these approximations we shall compare them
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to a fully quantum calculation based on the pseudoparticle nonequilibrium Green func-

tion technique.36

In the PP-NEGF approach, a set of molecular many-body states, {|N〉}, defines

the set of pseudoparticles to be considered, so that one pseudoparticle represents each

state. In particular, for the model (3.1) the molecular subspace of the problem is rep-

resented by four many-body states: |N〉 = |nW , nS〉, where nW,S = 0, 1. Let p̂†N (p̂N )

be the creation (annihilation) operator for the state |N〉. These operators are assumed

to satisfy the usual fermion or boson commutation relations depending on the type of

the state. In our case the pseudoparticles associated with the states |1, 0〉 and |0, 1〉 are

of Fermi type, while those corresponding to states |0, 0〉 and |1, 1〉 follow Bose statistics.

The PP-NEGF is defined on the Keldysh contour as

GN1,N2(τ1, τ2) ≡ −i〈Tc p̂N1(τ1) p̂†N2
(τ2)〉 (3.11)

In the extended Hilbert space it satisfies the usual Dyson equation, thereby providing a

standard machinery for their evaluation. Reduction to the physically relevant subspace

of the total pseudoparticle Hilbert space is achieved by imposing the constraint

∑
N

p̂†N p̂N = 1 (3.12)

on the Dyson equation projections. The resulting system of equations for the Green

function projections has to be solved self-consistently (see e.g. Ref.36 for details). Finally,

connections to Green functions of the standard NEGF formulation can be obtained by

using relations between the electron operators in the molecular subspace of Eq. (3.1) and

those of the pseudoparticles

d̂†m =
∑
N1,N2

〈N1|d̂†m|N2〉p̂†N1
p̂N2 (3.13)

Thus the current through the junction can be obtained either by the usual NEGF ex-

pression,40 or within its pseudoparticle analog.36

Results of calculations based on this procedure and on the kinetic schemes de-

scribed in Section 3.1 are presented and discussed next.
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Figure 3.3: (Color online) Same as Fig. 3.2 except U = 500 meV

3.4 Results and discussion

In Figures 3.2 and 3.3 we compare results from the fully quantum calculation

based on the PP-NEGF technique with those based on the kinetic approximations de-

fined by models A-C of Section 3.1. Panels (a), (b) and (c) in Fig. 3.2 show the current

through channels S (red) and W (blue) as function of voltage, while the corresponding

panels (d), (e) and (f) show, with the same color and line-forms codes, the electronic

populations in these channels. The full and dashed lines in these plots correspond to

the PP-NEGF calculations for channels S and W , respectively, and are identical in the

panels (a-c) and in panels (d-f). The dash-dotted and dotted lines show results based

on models A (panels (a) and (d)), B (panels (b) and (e)) and C (panels (c) and (f)).

The parameters used in these calculations are EF = 0, T = 300 K, ΓLW = ΓRW = 1 meV,

ΓLS = ΓRS = 100 meV, εS = 150 meV, εW = 300 meV, and U = 10 eV. For this choice

of U states S and W cannot be populated simultaneously. The corresponding panels of

Figs. 3.3 and 3.4 show similar results for the same choice of parameters, except that in

Fig. 3.3 U is taken 500 meV while in Fig. 3.4 ΓLW = 1.9 meV and ΓRW = 0.1 meV (so

ΓW = ΓLW + ΓRW = 2 meV as before). The latter choice designates level W as a block-

ing level - current goes down considerably when the voltage bias exceeds the threshold
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Figure 3.4: (Color online) Same as Fig. 3.2 except ΓLW = 1.9 meV and ΓRW = 0.1 meV.

(300 meV) needed to populate it), and has been suggested before4–7 as a model for neg-

ative differential resistance in molecular junctions. Finally, in Fig. 3.5, the parameters

are the same is in Fig. 3.2 except that T = 0 K. The voltage was changed by moving

the Fermi level of the left electrode, keeping the right electrode static. The insets in

the I/V plots show a closeup look at the contribution from channel W . The following

observations are notable:

(a) In comparison with the full quantum calculation, Model A performs considerably

better than model B and, not surprisingly, than model C. The failure of model B is

notable in view of the common practice to use the timescale separation as an argument

for applying mean field theory in such calculations; however, as argued above, it follows

from the use of the wide band limit for the electrodes in the calculations.

(b) While model A seems to be quite successful in much of the voltage regime, it fails, as

expected, near and around V = 0.3 V, the (bare) threshold to populate the W level. It

is at this point of maximal fluctuations in the W population that electronic correlation

is most pronounced, as this population is strongly correlated with that in S.

(c) The deviation of the kinetic approximation from the full quantum result is consider-

ably larger for the current and population of channel W (the redox site) than for channel
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Figure 3.5: (Color online) Same as Fig. 3.2 except T = 0 K.

S. This reflects the fact that the rates of charging and discharging the redox site are

sensitive to its correlation with the population on the strongly coupled level, while the

dynamics of the latter responds most of the time just to the static population in W . Of

course, these large deviations in the current carried by channel W have only an insignif-

icant effect on the overall observed current. To see these important quantum correlation

effects one would need to monitor directly the electronic population of the redox site,

which is possible in principle using spectroscopy probes.

(d) As a model for negative differential resistance (Fig. 3.4), model A performs qualita-

tively well, however the full calculation sets the NDR threshold considerably higher than

that predicated by the approximate calculation.

(e) As expected, the differences between the full quantum calculation and the results of

model A become more pronounced at T = 0 K. While the results of model A display

sharp threshold behavior, the full calculation is much less sensitive to temperature for

the present choice of parameters because the width of the transition region is dominated

by ΓS that is substantially greater than the thermal energy.
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3.5 Conclusion

We have examined the electronic transport behavior of a generic junction model

that comprises a bridge characterized by two interacting transport channels whose cou-

plings to the leads are vastly different from each other. This is a model for a molecular

redox junction and also for a point contact detector interacting with a weakly coupled

nanodot bridge. We have compared approximate kinetic schemes for the dynamics of this

junction to a full quantum calculation based on the pseudoparticle NEGF methodology.

We found that a kinetic model in which the electron transfer rates in the weakly coupled

channel (redox site) respond instantaneously to occupation changes in the strongly cou-

pled channel works relatively well in comparison with a mean field calculation. Still, this

model fails quantitatively when the molecular level comes close to the electrochemical

potential of the lead, reflecting the significance of electronic correlations in this voltage

range.

This paper has focused on the steady state current. Correlations between the two

channels are expected to become considerably more pronounced in the noise properties of

such junctions and, most probably, would not be amenable to analysis using the kinetic

approximation of model A. We defer this interesting issue to future work.
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3.6 Appendix: Timescale considerations leading to the mod-

els A and B

When it is reasonable to speak about rate of a channel, the formal expression for

the W channel rate is41

∫ t

−∞
dt′ ei

∫ t
t′ ds εr(s)V (t)C(t− t′)V (t′) (3.14)

where εr is the position of the redox level, V (t) is the coupling between the channel W

and the bath, and C(t− t′) is the bath correlation time.

At least two timescales have to be taken into account: one related to the dynamics

of the redox level, εr(t), the other representing characteristic timescale of the bath. Note,

that in general the bath is characterized by several timescales (e.g. the bandwidth of

the metal, temperature, and variation of spectral density). In our case the characteristic

timescale for the dynamics of the level in the W channel is given by the rate of population

change in the S channel. The latter is proportional to Γ−1
S (Coulomb interaction is

instantaneous). Let assume that the characteristic time of the bath is τB. The two

extremes are τB � Γ−1
S and τB � Γ−1

S . The former case corresponds to slow motion of

the level relative to the bath dynamics, so that expression (3.14) yields a set of rates (2

in our case) for different positions of the redox level. This corresponds to the model A

of the paper.

The other extreme, τB � Γ−1
S , corresponds to quick motion of the redox level

position, which requires averaging of the exponential factor in (3.14). This leads to

appearance of a single rate, calculated at the average position of the level, which is

model B.
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We consider the effects of dephasing on field-induced coherent charge and energy

transport in molecular junctions. Within generic models we show that dephasing controls

the relative intensities of energy and charge fluxes, and that the dependence of the energy

flux on the dephasing rate is non-monotonic. We further demonstrate the possibility

for laser-controlled charge-energy separation in multi-terminal molecular junctions, a

prerequisite for engineering low-heating stable nano-scale devices.
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4.1 Introduction

Single molecules are promising candidates for integration into nano-scale devices.

Based on the versatility in structural, electronic, optical and mechanical properties of

molecules, molecular devices can be carefully designed and controlled. The small size of

molecules implies the necessity of quantum mechanical treatment, and naturally poses

questions on the role of coherences in the response properties of molecular devices. In

molecular junctions experimental observations were attributed to interference effects in

intra-molecular electron transfer1 and elastic transport through single molecules,2,3 or

to vibrationally induced decoherence.4

Coherent control in molecules originated in studies of quantum dynamics in re-

sponse to laser pulse excitations.5,6 Advances in optics combined with molecular fabrica-

tion techniques in junctions resulted in a new field termed molecular optoelectronics.7,8

Coherent control of transport in molecular junctions is one of the focuses of research in

this field.9–14 Another focus is the dynamics of energy transfer between plasmonic and

molecular excitations.15–19 The importance of quantum coherence in energy transfer was

demonstrated recently in studies of the initial stages of photosynthesis.20–24

Theoretical studies in molecular electronics are mostly focused on the role of

coherence in elastic transport. In particular, a molecular switch based on quantum

interference was proposed in Refs.,25,26 and molecular transistors utilizing coherence to

control transport through single molecule junctions (usually containing a conjugated π

system) were discussed in Refs.27–33 Inelastic processes are usually considered as a source

of decoherence, which can both destroy34,35 or enhance35–38 transport through molecular

systems. Coherence induced by inelastic processes was observed experimentally39 and

discussed in several theoretical studies.35,40,41 Finally, coherent and incoherent exciton

transport in the Fenna-Matthews-Olson complex was studied in a number of theoretical

publications.42–46
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Figure 4.1: (Color online) A sketch of the models for coherently controlled charge-

energy (a) pump and (b) switch.

In molecular optoelectronics8 it is customary to distinguish between charge and

energy transfer processes between the molecule and contacts (as well as inside the molec-

ular complex). For example, elastic electron transport (single charges moving through

the system) is at the heart of charge transfer - surface enhanced Raman spectroscopy

(CT-SERS),47,48 while pure energy transfer (transfer of excitation without charge trans-

fer) accounts for coupling between molecular excitations and excitations of the leads

(exciton-like or neutral pairings of electron-like and hole-like excitations).17,49–53 Con-

sidering non-equilibrium transport through molecular junctions, charge and energy trans-

port processes happen simultaneously, and a rigorous description must therefore account

for this. The non-quadratic character of the energy transfer matrix elements complicates

the theoretical description and the corresponding theoretical considerations usually rely

on approximations.54,55 Recently we proposed a pseudoparticle non-equilibrium Green’s

functions (PP-NEGF) method as a tool capable to treat the processes simultaneously

and exactly.52

Contrary to previous studies where the effects of coherence in either charge or

energy transfer were discussed, here we apply the PP-NEGF approach and consider the

importance of coherences in simultaneous charge and energy transport through molecular

junctions. In particular, we demonstrate possibilities for laser-induced coherent control
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of the relative magnitude of energy and charge fluxes generated by a molecular pump.

Inspired by the known effect of charge and spin separation in molecular systems56–59 we

also demonstrate a possibility to coherently control the spatial separation of charge and

energy fluxes in properly designed multi-terminal molecular junctions.

The different response of charge and energy flows to an external field is derived

from the different underlying laser-matter interactions. Energy transport is due to dipole

coupling between molecular excitations to electron-hole or plasmon excitations in the

leads (usually treated as dipole-dipole interactions), while charge transport is modeled

as electron tunneling.49 Therefore, matrix elements for energy and charge transport be-

tween given chromophores can differ in magnitude or phase. In simple cases the different

matrix elements can be associated with different Rabi frequencies for charge and energy

transfer through the molecule, and when one of these frequencies is in resonance with

optically induced Rabi oscillations, the corresponding flux (energy or charge) is expected

to be maximal. For realistic systems the task of optimizing the external field parame-

ters for a selected process (amplitude and frequency) is more involved, but nevertheless,

we still claim that conditions can be defined in which the field selectively enhances (or

suppresses) charge flux along a given path and energy flux along another. As far as we

know, this is the first time when the possibility of such separation between charge and

energy fluxes is discussed.

In the following we consider explicitly only energy transfer within the molecule.

Heat transfer between the molecule and the leads is not accounted for, assuming a

constant junction temperature. Note that both charge transport (emission of energetic

electrons) and energy transport (emission of electron-hole pairs) can induce heating in the

leads, however these processes are external to the molecule, and take place far from the

junction.60 Thus, their effect on the transport at the molecular junction can be neglected.

As a side note we mention that the description of molecular excitation (energy transfer)

we consider is technically similar to modeling the propagation of vibrational excitation

(phonon transport) when expressed in the language of vibronic states. Thus our findings

may have implications also in the context of low heating stable nano-scale devices.

Below, after introducing two generic models for charge/energy pump and switch,

we discuss a convenient methodology for treating the combined intra-molecular electron
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and energy transfer. Our numerical simulations demonstrate different possibilities for

laser control of coherent molecular energy and charge pumps, and for spatial separation

of charge and energy fluxes in molecular junctions.

4.2 Model

We consider a network of Nm molecules, characterized by chromophores which

are coupled to several reservoirs of electrons (or contacts, C) and thermal baths (B).

The contacts are assumed to be in equilibrium (no bias), and the driving of the junc-

tions is governed by a laser field E(t) applied to one of the molecules. Each molecular

chromophore is represented by its highest occupied (HOMO) and lowest unoccupied

(LUMO) molecular orbitals (or ground, g, and excited, x, states). We consider electron

and energy transfer between neighboring chromophores and between the chromophores

and the baths. We emphasize that our models focus on energy transport through the

molecule and does not account explicitly for the thermalization process of access energy

in the leads, which happens far from the junction region.

Two systems are discussed: the first model corresponds to a molecular charge

and energy pump (Nm = 4, see Fig. 4.1a), based on bridge-mediated (1 and 2) transfer

between a donor (0) and an acceptor (3). The donor and acceptor are coupled to their

own contacts and thermal baths, and the donor is driven by an external laser field. The

bridge contains two molecules and the coherent transport reflects interference between

the two possible pathways. In order to induce decoherence, one of the bridge molecules

(1) is coupled to a local dephasing source (Bd). This type of model is frequently used in

considerations of effects of decoherence on electron transfer.34,36,40

The second model (Nm = 3, see Fig. 4.1b) corresponds to a molecular switch with

a donor (0) and two acceptors (1 and 2), each coupled to its own contact and thermal

bath. As previously, the donor is driven by an external laser field. We used this model

in our previous study14 as a prototype of coherently controlled molecular switch. Here

we extend the consideration to the case of simultaneous energy and charge transfer.
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The Hamiltonian of the system(s) is

Ĥ(t) = ĤM (t) +
∑
K

(
ĤK + V̂MK

)
(4.1)

where ĤM (t) and ĤK describe the molecular system M and bath K (K is summed over

all the baths in the model), and V̂MK is the coupling between the two. The explicit

expressions are

ĤM (t) =

Nm∑
m=0

∑
`=g,x

εm`n̂m` − µ0E0

(
d̂†0xd̂0ge

−iω0t +H.c.
)

+

Nm∑
m,m′=0

∑
`=g,x

tm`,m′`d̂
†
m`d̂m′` + Jm,m′D̂†mD̂m′ +H.c.

 (4.2)

ĤCm =
∑
κ∈Cm

εκn̂κ; ĤBm =
∑
α∈Bm

ωαn̂α (4.3)

V̂MCm =
∑

κ∈Cm
∑

`=g,x

(
Vκ,m`ĉ

†
κd̂m` +H.c.

)
V̂MBm =

∑
α∈Bm

(
Uα,mâ

†
αD̂m +H.c.

) (4.4)

In the molecular pump model (Fig. 4.1a) local dephasing is introduced by coupling the

LUMO of molecule 1 to the bath Bd

ĤBd =
∑
β

ωβn̂β; V̂MBd = M
∑
β

(
b̂β + b̂†β

)
n̂1x (4.5)

In Eqs. (4.2)-(4.5) d̂†m` and ĉ†κ create electrons in level ` of molecule m, and state κ

of contacts {Cm}, respectively, and â†α and b̂†β create phonons in the thermal baths

{Bm} and Bd, respectively. n̂m` ≡ d̂†m`d̂m`, n̂κ ≡ ĉ†κĉκ, n̂α ≡ â†αâα, and n̂β ≡ b̂†β b̂β are

population operators. D̂†m ≡ d̂†mxd̂mg is the operator of molecular excitation. εm` and εκ

are on-site electronic energies of level m` in the molecules and state k in the contacts.

ωα and ωβ are elementary excitations in the thermal baths {Bm} and Bd, respectively.

µ0 is the transition dipole moment of the donor, and E0 and ω0 are the amplitude of the

driving field and its frequency. tm`,m′` and Jm,m′ are the matrix elements of charge and
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energy transfer between the chromophores m and m′, where the pathways are indicated

by lines in Fig. 4.1. Finally, Vκ,m` and Uα,m represent electron and energy exchange

between the chromophores and the baths. and M is the dephasing strength. We note

that coupling to the driving field is written in the rotating wave approximation. Similar

models for electron and energy (exciton) transport were considered in the literature

previously.49,54,55

A transformation to the rotating frame of the field14

ˆ̄H = i

(
∂

∂t
eŜ(t)

)
e−Ŝ(t) + eŜ(t)Ĥe−Ŝ(t), (4.6)

where

Ŝ(t) ≡ iω0t

2

Nm∑
m=1

(
n̂mx − n̂mg +

∑
κ∈Cm

n̂κ +
∑
α∈Bm

n̂α

)
(4.7)

represents the model in terms of effective time-independent Hamiltonian ˆ̄H, which is

given by Eqs. (4.2)-(4.5) with εmg → εmg+ω0/2, εmx → εmx−ω0/2, and µ0E0 exp(±iω0t)→

µ0E0. As a result of the transformation one also has to consider different positions of

the electrochemical potentials in the contacts for the x (shifted by ω0/2 downward)

and the g (shifted by ω0/2 upward) molecular orbitals (see Appendix 4.5 for details).

Note that the time-independent formulation is possible only in the case of relatively

weak molecule-baths couplings, when effective second order is sufficient and bath-induced

cross-correlations between ground and excited molecular levels can be disregarded.56,61–63

As discussed in our previous publication52 the pseudoparticle nonequilibrium

Green function (PP-NEGF) formalism is especially convenient for studies where com-

bined electron and energy transfers play an important role. The PP-NEGF treats all the

interactions in the molecule exactly, by representing the molecular part of the Hamil-

tonian in the basis of many-body states of an isolated molecule. Here we employ the

PP-NEGF to the models (4.2)-(4.5). The pseudoparticles, introduced in an extended

Hilbert space, correspond to the many-body states {|S〉} of the molecular system. The

physical subspace is defined by the constraint
∑

S p̂
†
S p̂S = 1, where p̂†S (p̂S) is the opera-

tor of creation (annihilation) of the many-body state |S〉. In the extended Hilbert space

the usual rules of quantum field theory are applicable. In particular, the pseudoparticle
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Green function (GF) on the Keldysh contour

GSS′(τ, τ ′) ≡ −i〈Tc p̂S(τ) p̂S′(τ ′)〉 (4.8)

satisfies the Dyson equation. A self-consistent procedure for numerical evaluation of the

projections of the GF can be formulated in the physical subspace (see e.g. Ref.64 for

details). After the procedure converges, the resulting projections of the GF can be used

to calculate charge, Icm, and energy, IEm, currents at the interface between the molecular

system and the baths Cm and Bm, respectively. Below we perform analysis within the

non-crossing approximation (see e.g. Ref.64 for details). The approximation works

well for weak molecule-baths coupling, when the parameters describing coupling to the

baths are small relative to all other relevant energy scales in the system. In our case

the latter are the HOMO-LUMO gap and intra-molecular hopping parameters. Weak

coupling to baths makes the processes of molecule-bath interactions rare, thus justifying

a non-crossing approximation, i.e. treating the processes sequentially. At steady-state,

this leads to the following explicit expressions for the fluxes (see Appendix 4.6 for the

derivation)52,64

Icm = − e

πh

∑
S1,S2
S3,S4

Re

∫ +∞

−∞
dE

∫ +∞

−∞
dε ζ2G

<
24(E)

(
ΣCm,<

12,34 (ε)Gr31(E + ε) + ΣCm,>
43,21 (ε)Gr31(E − ε)

)
(4.9)

IEm =
1

πh

∑
S1,S2
S3,S4

Re

∫ +∞

−∞
dE

∫ ∞
0

dω ω ζ2G
<
24(E)

(
ΠBm,<

12,34 (ω)Gr31(E + ω) + ΠBm,>
43,21 (ω)Gr31(E − ω)

)
(4.10)

where G
r(<)
pq (E) ≡ G

r(<)
SpSq

(E) is the Fourier transform of the retarded (lesser) projection

of the GF (4.8), ζp = 1 (−1) for the bosonic (fermonic) state |Sp〉,64 and ΣCm,≷ (ΠBm,≷)

are greater/lesser projections of the molecular system self-energy due to coupling to bath
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Cm (Bm)

ΣCm,≷
12,34 (ε) ≡∓ i

∑
m`,m′`′

ξm`12 ΓCm`
∗
ξm

′`′
34 F≷

Cm
(ε) (4.11)

ΠBm,≷
12,34 (ω) ≡− i

∑
m,m′

χm12ΩBm ∗χm
′

34 F
≷
Bm

(ω) (4.12)

Here F>Cm(ε) ≡ 1− fCm(ε), F<Cm(ε) ≡ fCm(ε), F>Bm(ω) ≡ 1 +NBm(ω) F<Bm(ω) ≡ NBm(ω);

fCm(ε) and NBm(ω) are Fermi-Dirac and Bose-Einstein distributions,

ΓCm` ≡2π
∑
κ∈Cm

|Vκ,m`|2δ(ε− εκ) (4.13)

ΩBm ≡2π
∑
α∈Bm

|Uα,m|2δ(ω − ωα) (4.14)

are dissipation rates due to coupling to baths Cm and Bm, ξm`pq ≡ 〈Sp|d̂
†
m`|Sq〉 and

χmpq ≡ 〈Sp|D̂
†
m|Sq〉.
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Figure 4.2: (Color online) Molecular pump (Fig. 4.1a). Shown are the charge (Ic3,

Eq.(4.9) - solid line, blue), and energy (IE3 , Eq.(4.10) - dashed line, red) fluxes on the

right interface as functions of dephasing rate γBd , Eq.(4.15). See text for parameters.

4.3 Numerical results

Here we consider charge, Eq.(4.9), and energy, Eq.(4.10), fluxes in the molecular

pump and switch models (Figs. 4.1a and b), Eqs. (4.2)-(4.5). Unless stated otherwise the

calculations are performed for the following ‘standard’ set of parameters: T = 300 K,
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ε0g = −1 eV, ε0x = 1 eV, ω0 = 2 eV, tmg,m′g = 0, tmx,m′x = Jm,m′ = 10 meV,

ΓCm` = ΩBm = 2.5 meV (m,m′ ∈ {1, . . . , Nm}). The Fermi energy is taken at the origin

EF = 0 and the calculations are performed on an adaptive energy grid.

We note that these model parameters are chosen to be in a physically relevant

range. In particular, the molecular HOMO-LUMO gaps, εmx− εmg, are assigned typical

values of 2 eV, which is accessible by lasers in the near infrared part of the spectrum.

The escape rates ΓCm are chosen in accordance with experimental data on lifetime for

the decay of an excess electron on molecule near metal surface.65 These parameters lead

to charge fluxes on the order of nA and heat fluxes on the order of nW, both are well

within the measurable region (see e.g. Refs.66 and67 for measurable charge and heat flux

estimates, respectively).

4.3.1 Molecular pump

First we consider the charge-energy pump model. In the absence of dephasing

at the bridge the transport of both charge and energy through the molecule is coherent,

and depends on interference between two independent paths from the donor (0) to the

acceptor (3) through molecules 1 and 2 (see Fig. 4.1a). For the case of identical (de-

generate) chromophores as considered here, the interference is controlled by the relative

magnitudes and phases of the coupling matrix elements (the “J”s and the “t”s) along

the different paths. In the particular design considered in Fig. 4.1a, destructive inter-

ference does not allow charge flux through the system, whereas energy flux is favored

in this case due to constructive interference. The spatial separation between the two

bridge chromophores allows one to selectively control the transport by coupling one of

the chromophores to a local source of dephasing. The latter is introduced by coupling

the LUMO of one of the bridge chromophores (1) to a bath (Bd, Eq.(4.5)) of harmonic

oscillators, assumed to be in their ground state. To restrict the effect of this perturba-

tion to pure dephasing, a limit of ωβ → 0 is taken (such that energy exchange with this

particular bath is excluded). This results in a self-energy (see Appendix 4.7 for details)

ΣBd,≷
12,34 ≡ −iη

1x
12 γ

Bd ∗η1x
34 (4.15)
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where γBd ≡ 2πM2ρBd is the dephasing rate, ρBd is density of modes in the bath Bd, and

η1x
pq ≡ 〈Sp|n̂1x|Sq〉. Note that the resulting expression is similar to the Buttiker probe

model, which is widely used for introducing dephasing.

Fig. 4.2 demonstrates the effect of increasing the dephasing rate on the two fluxes.

As expected, the electric current (solid line) increases when destructive interference is

suppressed. The energy flux (dashed line) shows a non-monotonic behavior. An initial

decrease in the flux with increasing dephasing rate, related to the suppression of con-

structive interference, is followed by an unexpected increase at higher dephasing rates.

We attribute this behavior to competition between energy and charge transfer processes

at molecule 1 for the same electronic population of its LUMO. Indeed, for weak de-

phasing, the charge delocalization among the LUMOs of chromophores 0, 1, and 3, is

expected to hinder energy transfer between those molecules. Transition from coherent

to hopping mechanism of charge transfer takes place at rates of dephasing γBd ∼ t1x,0x

(t1x,3x), leading to localization of electronic population at the bridge site 1x and (as a re-

sult) to an increase in energy flux. It is interesting to note that controlling the dephasing

can tune the molecular device between energy and charge pumping regimes.
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Figure 4.3: (Color online) Molecular switch (Fig. 4.1b). Shown are charge (Ic1 - solid

line, blue; Ic2 - dotted line, dark blue; Eq.(4.9)), and energy (IE1 - dashed line, red; IE2
- dash-dotted line, magenta; Eq.(4.10)) fluxes as functions of (a) the driving amplitude

µ0E0 and (b) frequency ω0, Eq.(4.2). See text for parameters.

4.3.2 Molecular switch

Having introduced the possibility of control over charge and energy fluxes, which

are present simultaneously, we turn to examine the possibility of charge-energy separation

in coherent ransport through molecular devices. Note that effects of quantum coherence

were observed experimentally (separately) for charge and energy (exciton) transport in

molecular junctions. In some cases, such as in CT-SERS, charge and energy transfer are

mixed coherently to define the overall optical response of a junction. Our consideration

below suggests another possibility of observing coherence induced effects in charge and

energy (exciton) transport in molecular junctions.

We consider a model of a molecular switch (4.1b), where a single donor, driven

by an external field, is coupled to two different acceptors. The versatility of molecular

chromophores allows the design of different acceptors with different orbital energies and
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different coupling matrix elements to the donor. Therefore, coherent transport from the

donor to each acceptor would be associated with characteristic Rabi frequencies, defined

by the t and J hopping parameters for exchanging charge and energy with the donor.

Our aim is to define conditions in which charge and energy fluxes are directed to different

acceptors.

Fig. 4.3a demonstrates a possibility of charge-energy separation in a molecular

switch. The calculation is performed for T = 10 K, ε1g = −1.25 eV, ε1x = 1.05 eV,

ε2g = −0.95 eV, ε2x = 1.15 eV, and ΩBm = 10 meV. For these parameters at µ0E0 ∼

50 meV charge flux is directed to acceptor 1 (solid line), while energy flux - to acceptor

2 (dash-dotted line). By tuning the amplitude of the laser field so that µ0E0 ∼ 150 meV

the direction of the fluxes is switched. Fig. 4.3b demonstrates the possibility of control

by the driving field frequency. Here ε1g = −1.1 eV, ε1x = 1.05 eV, ε2g = −0.9 eV,

ε2x = 1.15 eV, and µ0E0 = 10 meV. As one can see, also in this case charge and energy

fluxes are picked at different field frequencies which facilitates their separation.

Notice that the results of Fig. 3, obtained by the PP-NEGF scheme can be

regarded as a numerically exact solution of the simultaneous charge/energy transport

problem. Indeed, the present calculation accounts exactly for the many-body problem

within the molecular space, and given the (realistically) small molecule-contacts coupling

parameters considered here, the non-crossing approximation yields the correct result

for the effects of the molecule-leads interaction Note that simpler methodologies, such

as Redfield-based quantum master equation techniques in principle can also account

exactly for the many body problem within the molecular space, but may be inapplicable

at the physically relevant low temperature regime (kBT ≤ Γ),68–70 or when degenarate

many-body eigenstates are present in the system.71

In order to gain a qualitative understanding of the physics behind the observed

charge-energy separation, simpler methodologies may be useful. We refer to a reduced

model of a molecular dimer, represented as two TLS connected by electron, t, and exciton,

J , hopping matrix elements. One TLS represents the donor chromophor of the molecular

switch and the other represents an acceptor, corresponding, e.g., to the lower pathway of

Fig. 4.1b. The Fock space of this dimer is spanned by many-body states accounting for

all possible populations of the four single particle levels. Within the scattering approach,
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the total fluxes are obtained as integrals over energy-dependent transmission probabilities

with weighting factors defined by populations in the baths. The scattering amplitudes

for charge and energy (exciton) transport across the dimer are defined by sequences

of electron transfer steps, as, e.g., the ones shown in Fig. 4.4a (relevant many-body

states in the two-electron charging block of the system are enumerated in Fig. 4.4b),

and the corresponding transfer probabilities at energy E are therefore proportional to

T c(E) = |Gr16(E)|2 for charge transfer and TE(E) = |Gr13(E)|2 for energy transfer,

respectively. Here GrS1S2
(E) is the matrix element of the retarded Green function. For

simplicity we take the resolvent as a rough estimate of the corresponding retarded Green

function Gr(E) = [E − H̄
(2)
M + iη]−1, with η taken as 1 meV. The dependence of the

transfer probabilities on the energy and on the model parameters is therefore defined by

the spectrum of the many body dimer Hamiltonian which defines the resolvent poles.

Representation of the dimer Hamiltonian in the basis defined in Fig. 4.4a, reads,

H̄
(2)
M =



ε0g + ε2g + ω0 −µ0E0 0 0 0 0

−µ0E0 ε0x + ε2g −J 0 0 t

0 −J ε0g + ε2x µ0E0 t 0

0 0 µ0E0 ε0x + ε2x − ω0 0 0

0 0 t 0 ε0g + ε0x 0

0 t 0 0 0 ε2g + ε2x


(4.16)

Maps of the charge, T c, and energy (exciton), TE , transmission coefficients as functions

of the energy E and the external driving field parameters are shown in Fig. 4.4c for

the driving field amplitude µ0E0, and Fig. 4.4d for the field frequency ω0. The other

parameters of the calculation are the same as in Fig. 4.3.
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Figure 4.4: (Color online) Molecular dimer. Shown are (a) schemes for charge (top)

and energy (bottom) transfer; (b) relevant many-body states of the molecule; charge

T c(E) (left, blue) and energy TE(E) (right, red) transmission coefficients as functions of

energy E and (c) the driving amplitude µ0E0 and (d) frequency ω0. See text for details.

Two points are noteworthy: 1. T c and TE have their maxima at different values

of the external driving parameters, which is the basis for the charge-energy separation
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discussed above; 2. The energy transmission coefficient, TE , has two maxima as a

function of the driving field frequency ω0 (see right panel in Fig. 4.4d), which is the reason

for a multiple-peak structure of the energy flux presented in Fig. 4.3b. We reemphasize

that such qualitative considerations are helpful, and are brought here as an interpretation

to, but not instead of, the numerically exact results. Similarly, formulating conditions

for maximal fluxes, based on resonances between Rabi frequencies in the field-free system

and Rabi frequency induced by the field (as was discussed in Ref.14 for charge transport)

can support the numerical analysis, but provides only qualitative estimates.

4.4 Conclusion

We studied the effects of coherence on electron and energy fluxes in molecular

junctions. First we discussed the effect of dephasing on coherent transport in a bridge

model with two interfering pathways (see Fig. 4.1a). The molecular bridge was designed

to minimize charge flux through the system due to destructive interference, and to max-

imize energy flux due to constructive interference between the different paths. Inducing

dephasing destroys coherence in the system which leads to the appearance of charge flux

and decrease in energy transfer. Further increase of the dephasing rate (to the order of

inter-molecular electronic hopping parameter) unexpectedly results in an increase of the

energy transfer. We argued that the effect is due to competition between charge and

energy transport on the same electronic population in the LUMO of the bridge molecule.

At strong dephasing, where the electron transport mechanism changes from coherent to

hopping, charge localization at the molecular LUMO increases the efficiency of sequential

energy transfer through the junction.

After demonstrating a possibility of coherent control over the two fluxes, we

discussed the possibility of charge-energy separation in a molecular switch (see Fig 4.1b).

In particular, we showed that by tuning the laser field parameters, the fluxes can be

directed to different acceptors. Moreover, the directions of energy and charge fluxes can

be reversed by adjusting the field amplitude and/or frequency.

The two different models demonstrate the controllability of charge and energy

transport in junctions, in which coherences play a crucial role. The theoretical demon-
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stration of charge-energy separation in a junction is a first step in the direction of engi-

neering low-heating stable molecular nano-scale devices.
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4.5 Appendix A: Transformation to the rotating frame of

the field

Here we discuss the transformation to the rotating frame of the field, Eq. (4.6),

and the formulation of the effective time-independent model. Applying the transforma-

tion to the rotating frame

Â→ eŜ(t)Âe−Ŝ(t), (4.17)

with Ŝ(t) defined in Eq. (4.7), to the quasi-particle excitation operators yields

d̂mg → d̂mge
−iω0t/2, d̂mx → d̂mxe

iω0t/2,

ĉκ → ĉκe
iω0t/2, âα → âαe

−iω0t/2

(4.18)

Together with additional terms due to the time-dependent correction, (first term on the

right side of Eq. (4.6))

ω0

2

Nm∑
m=1

[
n̂mg − n̂mx −

∑
κ∈Cm

n̂κ −
∑
α∈Bm

n̂α

]
(4.19)
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this leads to the effective Hamiltonian of the form (compare with Eqs. (4.2)-(4.4))

ˆ̄HM =

Nm∑
m=0

∑
`=g,x

ε̄m`n̂m` − µ0E0

(
d̂†0xd̂0g +H.c.

)

+

Nm∑
m,m′=0

∑
`=g,x

tm`,m′`d̂
†
m`d̂m′` + Jm,m′D̂†mD̂m′ +H.c.

 (4.20)

ˆ̄HCm =
∑

κ∈Cm
(
εκ − ω0

2

)
n̂κ

ˆ̄HBm =
∑

α∈Bm
(
ωα − ω0

2

)
n̂α

(4.21)

ˆ̄VMCm =
∑

κ∈Cm

(
Vκ,mg ĉ

†
κd̂mge

−iω0t + ĉ†κd̂mx +H.c.
)

ˆ̄VMBm =
∑

α∈Bm

(
Uα,mâ

†
αD̂me

iω0t/2 +H.c.
) (4.22)

where ε̄mg ≡ εmg + ω0/2 and ε̄mx ≡ εmx − ω0/2.

Since coupling to the baths is treated within the effective second order, i.e. the

irreducible self-energy is proportional to the second order in molecule-bath coupling, the

time-dependent terms in the couplings, Eqs. (4.22), will (partially) compensate for the

shift of excitation energies in the bath, Eqs. (4.21). In particular, the compensation will

yield an unaltered expression for the self-energies due to the coupling to the bosonic baths

Bm. Expressions for the self-energies due to the coupling to the fermonic baths Cm will

have the state energies of the baths shifted by ω0/2 upwards (downwards) for the g (x)

level of the molecule. If the HOMO-LUMO gap εmx− εmg is big relative to the electron

escape rate Γ (a common scenario in molecular junctions, where εmx − εmg ∼ 2 eV

and Γ ∼ 0.1 eV), one can describe the molecule-contacts coupling at an interface Cm

as coupling to two independent baths: one with the chemical potential µCm + ω0/2

representing coupling of the HOMO, the other with the chemical potential µCm − ω0/2

representing coupling of the LUMO. Such consideration results in an effective time-

independent Hamiltonian for the originally time-dependent problem.
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4.6 Appendix B: Charge and energy fluxes in the NCA

within PP-NEGF

Here we discuss the derivation of Eqs. (4.9) and (4.10). The starting points are

expressions for charge and energy (phonon-assisted) fluxes within the non-equilibrium

Green functions (NEGF) technique. At steady-state the fluxes at the interface between

molecule and baths Cm or Bm, respectively, are72,73

Icm =
e

~

∫ +∞

−∞

dε

2π

∑
m`,m′`′

(4.23)

[
ΣCm,<
m`,m′`′(ε)G

>
m′`′,m`(ε)− ΣCm,>

m`,m′`′(ε)G
<
m′`′,m`(ε)

]
IEm =− 1

~

∫ ∞
0

dω

2π
ω
∑
m,m′

(4.24)

[
ΠBm,<
m,m′ (ω)D>

m′,m(ω)−ΠBm,>
m,m′ (ω)D<

m′,m(ω)
]

where G≷ and D≷ are the greater/lesser projections of the fermion and boson Green

functions, respectively, defined on the Keldysh contour as

Gm`,m′`′(τ, τ
′) ≡− i〈Tc d̂m`(τ) d̂†m′`′(τ

′)〉 (4.25)

Dm,m′(τ, τ ′) ≡− i〈Tc D̂m(τ) D̂†m′(τ
′)〉 (4.26)

Here τ and τ ′ are the contour variables, Tc is the contour ordering operator, and operators

d̂m` and D̂m are introduced below Eq. 4.5. ΣCm and ΠBm are self-energies due to the

coupling to fermonic bath Cm and bosonic bath Bm, respectively. Explicit expressions

are72,73

ΣCm,<
m`,m′`′(ε) =iΓCmm`,m′`′(ε) fCm(ε) (4.27)

ΣCm,>
m`,m′`′(ε) =− iΓm`,m′`′(ε)[1− fCm(ε)] (4.28)

ΠBm,<
m,m′ (ω) =− iΩBm

m,m′(ω)NBm(ω) (4.29)

ΠBm,>
m,m′ (ω) =− iΩBm

m,m′(ω)[1 +NBm(ω)] (4.30)
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Here fCm(ε) and NBm(ω) are the Fermi-Dirac and Bose-Einstein thermal distributions

in the baths Cm and Bm, respectively, and

ΓCmm`,m′`′(ε) ≡
∑
κ∈Cm

Vm`,κVκ,m′`′δ(ε− εκ) (4.31)

ΩBm
m,m′(ω) ≡

∑
α∈Bm

Um,αUα,m′δ(ω − ωα) (4.32)

are the dephasing matrices due to coupling to the baths. Note that in the paper we

assume the wide-band approximation for both matrices74,75 (see Eqs. (4.13) and (4.14)).

Spectral decomposition of the quasi-particle Fermi, d̂†m`, and Bose, D̂†m, excitation

operators yields the connection to the pseudoparticle creation and annihilation operators,

p̂†S and p̂S ,

d̂†m` =
∑
S1,S2

ξm`12 p̂
†
S1
p̂S2 (4.33)

D̂†m =
∑
S1,S2

χm12p̂
†
S1
p̂S2 (4.34)

where ξm`pq and χmpq are introduced below Eqs. (4.13) and (4.14), and |S1〉 and |S2〉 are

molecular many-body states. Substituting Eqs. (4.33) and (4.34) into the lesser and

greater projections of the definitions of the Green functions, Eqs. (4.25) and (4.26), and

using properties of the non-crossing approximation,76 leads to the connection between

the quasi- and pseudo-particles Green functions

G<m`,m′`′(t, t
′) = −i

∑
S1,S2
S3,S4

ζ2

∗
ξm`21 ξ

m′`′
43 G>31(t′, t)G<24(t, t′) (4.35)

G>m`,m′`′(t, t
′) = i

∑
S1,S2
S3,S4

ζ2

∗
ξm`34 ξ

m′`′
12 G>31(t, t′)G<24(t′, t) (4.36)

D<
m,m′(t, t

′) = i
∑
S1,S2
S3,S4

ζ2
∗
χm21 χ

m′
43 G

>
31(t′, t)G<24(t, t′) (4.37)

D>
m,m′(t, t

′) = i
∑
S1,S2
S3,S4

ζ2
∗
χm34 χ

m′
12 G

>
31(t, t′)G<24(t′, t) (4.38)
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where the PP-NEGF Green function is defined in Eq. (4.8), and ζp is introduced below

Eq. (4.10).

Finally, using the connection between the greater and retarded pseudoparticle

Green functions76

2i ImGr12(t, t′) = G>12(t, t′), (4.39)

and substituting the Fourier transformed representations of the quasi-particles Green

functions, Eqs. (4.35)-(4.38), into the NEGF expressions for the fluxes, Eqs. (4.23) and

(4.24), leads to Eqs. (4.9) and (4.10).

4.7 Appendix C: Dephasing within the PP-NEGF formal-

ism

It is customary to introduce dephasing via coupling to a bath of harmonic os-

cillators.77 In the paper we utilize the bath Bd, coupled to the LUMO of molecule 1

in the molecular pump model (see Fig. 4.1a) as the source of dephasing in the system.

The greater and lesser self-energies due to this coupling are given within the PP-NEGF

formalism by the expression64,75

ΣBd,<
12,34(ω) =− iη1x

12 γ
Bd ∗η1x

34 (4.40)

(θ(ω)NBd(ω) + θ(−ω)[1 +NBd(−ω)])

ΣBd,>
12,34(ω) =− iη1x

12 γ
Bd ∗η1x

34 (4.41)

(θ(ω)[1 +NBd(ω)] + θ(−ω)NBd(−ω))

where θ(x) is the Heaviside step-function, and γBd and η1x
pg are introduced below Eq. (4.15).

Finite frequencies of the oscillators in the bath induce energy flow in the system.

In addition to dephasing, this may cause inelastic effects in both charge and energy

fluxes. To avoid this scenario we assume that the bath oscillators have zero frequency

and all in the ground state. From the physical point of view, this assumption is valid

when the relevant energy scales in the system (for example, the HOMO-LUMO gap) are

much bigger than the frequencies of vibrations in the environment. Taking the limit of
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ωα → 0 under the restriction NBd(ω) = 0 leads to Eq. (4.15).
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We consider a biased molecular junction subjected to external time-dependent

electromagnetic field. We discuss local field formation due to both surface plasmon-

polariton excitations in the contacts and the molecular response. Employing realistic

parameters we demonstrate that such self-consistent treatment is crucial for proper de-

scription of the junction transport characteristics.
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5.1 Introduction

Research in plasmonics is expanding its domains into several sub-fields due to

significant advances in experimental techniques.1–6 The unique optical properties of

the surface plasmon-polariton (SPP) resonance, being the very foundation of plasmon-

ics, find intriguing applications in optics of nano-materials,7–9 materials with effec-

tive negative index of refraction,10–12 direct visualization,13,14 photovoltaics,15–17 sin-

gle molecule manipulation,18–20 and biotechnology.21–24 Theoretical modeling of the

optical properties of metal nanostructures is conventionally based on numerical integra-

tion of Maxwell’s equations,25–29 although simulations within time-dependent density

functional theory appeared recently for small atomic clusters.30,31 Moreover, current

theoretical models are quickly advancing toward self-consistent simulations of hybrid

materials: metal/semiconductor nanostructures optically coupled to ensembles of quan-

tum emitters.32 This methodology, based on numerical integration of corresponding

Maxwell-Bloch equations, brings new insights into nano-optics as it allows for the cap-

ture of collective effects.

The molecular optical response in a close proximity of plasmonic materials is

greatly enhanced by SPP modes leading to the discovery of the single molecule spec-

troscopy.33–35 Recently, experiments performed on current carrying molecular junctions

started to appear.36–40 Theoretical modeling of molecule-SPP systems utilizes the tools

of quantum mechanics for the molecular part. In particular, studies of optical response of

isolated molecules absorbed on metallic nanoparticles utilize Maxwell-Bloch (Maxwell-

Schrödinger)32,41–44 equations or near field-time dependent density functional theory

formulations.45,46

Realistic molecular devices are open quantum systems exchanging energy and

electrons with surrounding environment (baths). This is especially important in stud-

ies of molecules in current carrying junctions interacting with external fields.47 Usually

in such studies the electromagnetic (EM) field is assumed to be an external driving

force.51–62 Recently we utilized the nonequilibrium Green function technique to study

the transport and optical response of a molecular junction subjected to external EM

field taking into account near-fields driven by SPP local modes, specific for a particular

junction geometry.48,49 Although the formulation allows us to describe the molecular
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junction with formation of the local field by SPP excitations in the contacts taken into

account explicitly, the molecular influence on formation of the local EM field was disre-

garded in these studies. Note that such influence was shown to have measurable effects

in plasmonic spectrum.32,41,44,50

When a molecule located near a metal surface is driven by a strong EM field, one

can expect to observe significant changes in the total EM field due to radiation emitted

by the molecule. Such radiation although quickly degrading with the distance from

molecular position can nevertheless noticeably alter the local EM field. Since the latter

is driving the molecule, transport characteristics of the junction may be significantly

modified. This calls for a self-consistent treatment, where both SPP excitations and

molecular response participate in formation of the local EM field.

Here we extend our previous considerations by taking into account complete

electrodynamics and molecular junction response in a self-consistent manner combining

Maxwell’s equations with electron transport dynamics. The molecule is treated as a

pointwise source in the Ampere law. We demonstrate the importance of the molecular

response in the formation of the local field for an open molecular system far from equilib-

rium. The effect is shown to be important for proper description of the junction transport

characteristics. The paper is organized as follows. Section 5.2 presents a transport model

of the molecular junction. Section 5.3 describes the methodology of computing the EM

field taking into account molecular response. The results are presented in section 5.4.

Section 5.5 summarizes our work.

5.2 Molecular junction subjected to external EM field

We consider a junction with a molecular bridge (M) connecting between two

contacts (L and R). The bridge is formed by D two-level systems with the levels repre-

senting ground (g) and excited (x) states of the molecule. Each of the two level systems

is subjected to a classical local EM field ~E(t) (see section 5.3 for details of its calcu-

lation). Electron transfer is allowed along the chain of ground (excited) levels of the

bridge. The contacts are taken in the form of bowtie antennas, and are assumed to be

reservoirs of free electrons each in its own equilibrium with electrochemical potentials
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µL and µR, respectively (see Fig. 5.1). The Hamiltonian of the system reads (here and

below e = ~ = 1)

Ĥ(t) =ĤM (t) +
∑

K=L,R

(
ĤK + V̂K

)
(5.1)

ĤM (t) =
∑
s=g,x

[
D∑

m=1

εsd̂
†
msd̂ms −

D−1∑
m=1

ts

(
d̂†m+1sd̂ms +H.c.

)]

−
D∑

m=1

(
~µmg,mxd̂

†
mgd̂mx +H.c.

)
~Em(t) (5.2)

ĤK =
∑
k∈K

εk ĉ
†
k ĉk (5.3)

V̂K =
∑
k∈K

∑
s=g,x

(
Vk,mKsĉ

†
kd̂mKs +H.c

)
(5.4)

where ĤM (t) and ĤK are Hamiltonians of the molecular bridge (M) and the contacts

(K = L,R), and V̂K is coupling between them. In Eqs. (5.2)-(5.4) d̂†ms (d̂ms) and ĉ†k

(ĉk) are creation (annihilation) operators for an electron on the level s of the molecular

bridge site m and state k of the contact, respectively. ~Em(t) is the local time-dependent

field at bridge site m, and ~µms,ms′ = 〈ms|~̂µ|ms′〉 is the matrix element of the transition

molecular (vector) dipole operator between states |ms〉 and |ms′〉. For simplicity below

we assume that the transition dipole moment is the same for all bridge sites and has

only one non-zero component, µmg,mx ≡ µgx for any m. ts (s = g, x) and Vk,mKs are

matrix elements for electron transfer in the molecular bridge and between molecule and

contacts, respectively, and mK = 1 (D) for K = L (R). Note that treating the external

field classically allows us to account for arbitrary time dependence exactly (i.e. beyond

perturbation theory).49
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Figure 5.1: (Color online) A sketch of the junction.

We follow the formulation of Ref.49 Time-dependent current at interface K (L

or R) is63

IK(t) = −Im Tr

[
ΓK

(
G<(t, t) +

∫
dε

π
fK(ε) Gr(t, ε)

)]
(5.5)

where Tr[. . .] is a trace over the molecular subspace, fK(ε) ≡
[
e(ε−µK)/T + 1

]−1
is the

Fermi-Dirac distribution in contact K, ΓK is the molecular dissipation matrix due to

coupling to contact K

ΓKm1s1,m2s2(ε) ≡ 2π
∑
k∈K

Vm1s1,kVk,m2s2δ(ε− εk), (5.6)

and G<(r) is a matrix in the molecular basis of the lesser (retarded) projection of the

single particle Green function, defined on the Keldysh contour as64

Gm1s1,m2s2(τ1, τ2) ≡ −i〈Tc d̂m1s1(τ1) d̂†m2s2(τ2)〉 (5.7)

Here Tc is the contour ordering operator and τ1,2 are the contour variables. In Eq.(5.5)

Gr(t, ε) is the right Fourier transform of the retarded projection of the Green function

(5.7)

Gr(t, ε) ≡
∫
dt′ eiε(t−t

′) Gr(t, t′) (5.8)

Note that in Eq.(5.5) and below we assume the wide band limit65 in the metallic contacts.
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The Green functions in (5.5) satisfy the following set of equations of motions48,66

i
∂

∂t
Gr(t, ε) = I−

(
εI−HM (t) +

i

2
Γ

)
Gr(t, ε) (5.9)

i
d

dt
G<(t, t) =

[
HM (t); G<(t, t)

]
− i

2

{
Γ; G<(t, t)

}
+ i

∑
K=L,R

∫
dε

2π
fK(ε)

(
ΓKGa(ε, t)−Gr(t, ε)ΓK

)
(5.10)

where I is the unity matrix, HM (t) is a representation of the operator (5.2) in the

molecular basis, Γ ≡
∑

K=L,R ΓK , [. . . ; . . .] and {. . . ; . . .} are the commutator and anti-

commutator, and Ga(ε, t) ≡ [Gr(t, ε)]†. The first order differential equations (5.9) and

(5.10) are solved starting from the initial condition of the biased junction steady-state

in the absence of the optical pulse, E(t = 0) = 0

Gr
0(ε) ≡Gr(t = 0, ε) =

[
εI−HM (t = 0) +

i

2
Γ

]−1

(5.11)

G<
0 ≡G<(t = 0, t = 0)

=i
∑

K=L,R

∫
dε

2π
Gr

0(ε) ΓKfK(ε) Ga
0(ε) (5.12)

where Ga
0(ε) ≡ [Gr

0(ε)]†.

Below we calculate the charge pumped through the junction by the optical pulse

Q(t) ≡
∫ t

0
dt′

IL(t′)− IR(t′)

2
− I0 t (5.13)

where IL,R(t) are defined in Eq.(5.5), and I0 is the steady-state current

I0 ≡
∫

dε

2π
Tr
[
ΓL Gr

0(ε) ΓR Ga
0(ε)

](
fL(ε)− fR(ε)

)
(5.14)
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5.3 Self-consistent electrodynamics

The time evolution of electric, ~E, and magnetic, ~H, fields is considered according

to the set of Maxwell’s equations (written here in SI units)

µ0
∂ ~H(~r, t)

∂t
= −~∇× ~E(~r, t), (5.15a)

ε0
∂ ~E(~r, t)

∂t
= ~∇× ~H(~r, t)− ~J(~r, t), (5.15b)

where µ0 and ε0 are the magnetic permiability and dielectric permittivity of the free

space, respectively, and ~J(t) is the electric current density. Note that magnetization is

disregarded in Eqs. (5.15a) and (5.15b), since we assume both molecule and contacts to

be non-magnetic.

A molecule located at site m ( ≡ ~rm) and driven by local electric field ~E(~rm, t),

yields time-dependent response, which enters Ampere’s law as a polarization current

density

~J(~rm, t) =
∂ ~Pm(t)

∂t
δ(~rm), (5.16)

where δ is the Dirac delta-function. The polarization depends on molecular characteris-

tics through the molecular density matrix, which in turn is affected by the local field. In

our model two-level systems of the molecular bridge (5.2) are assumed to occupy sites

of the FDTD grid. Molecules contribute to the polarization at their site according to

~Pm(t) = 2 Im
[
~µmx,mg G

<
mg,mx(t, t)

]
(5.17)

The resulting system of coupled differential equations, Eqs (5.15)-(5.15b), is

solved simultaneously with EOMs for the Green functions of the quantum system,

Eqs. (5.9)-(5.10). The Maxwell’s equations are discretized in time and space and prop-

agated using the finite-difference time-domain approach (FDTD).67 We employ three-

dimensional FDTD calculations utilizing home-build parallel FORTRAN-MPI codes on a

local multi-processor cluster.68 In spatial regions occupied by a plasmonic nanostructure

(a bowtie antenna in our case) we employ the auxiliary differential equation method to

account for materials dispersion. The dielectric response of the metal is modeled using a
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standard Drude formulation with the set of parameters describing silver.48,49 The Green

functions EOMs are propagated with the fourth order Runge-Kutta scheme.

Within described self-consistent model the local electric field ~Em(t) ≡ ~E(~rm, t)

in Eq.(5.2) driving a molecular junction is thus defined by both SPP excitations in

the contacts and the local molecular response. In the next section we show that the

molecular contribution changes the junction transport characteristics drastically, and in

general can not be ignored.

Figure 5.2: (Color online) Map of the instantaneous electric field strength, [E2
x(~r, t) +

E2
y(~r, t) + E2

z (~r, t)]1/2, at a distance of 10 nm from the molecule (the plane is parallel

to xy) calculated (a) without and (b) with the molecular response. The distribution is

shown for t = 77.8 fs and 81.7 fs for (a) and (b) respectively. See text for parameters.
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5.4 Numerical results

Here we present results of numerical simulations demonstrating the importance

of a self-consistent treatment of the local EM field dynamics. Previous studies considered

the influence of an isolated molecule on plasmon transfer,41,42,45 molecular features in

absorption32,50,69,70 and Raman29,31,46 spectra of molecules attached to nanoparticles.

Below we discuss how molecular junctions and electron transport are influenced by a

local EM field and vice versa in a self-consistent manner.

Unless otherwise specified parameters of the calculations are T = 300 K, εx =

−εg = 1 eV, tx = tg = 0.05 eV, µgx = 32 D, ΓL1g,1g = ΓRDx,Dx = 0.1 eV and ΓL1x,1x =

ΓRDg,Dg = 0.01 eV (other elements of the dissipation matrix are zero). The choice of pa-

rameters for the model was discussed in details in our previous considerations.48,49 We

note that according to the structure of the dissipation matrix, Eq.(5.6), and the charac-

teristic HOMO-LUMO separation of ∼ 2− 3 eV, off-diagonal elements of the dissipation

matrix (T2 dissipation) are much smaller than its diagonal elements (T1 dissipation), and

thus can be ignored. Note also that the T2 type of dephasing is present in the model

through the molecular coupling to the external field. Asymmetry in the molecular cou-

pling to the contacts represents a molecule with a strong charge-transfer transition (see

Refs59,61 for details). Such molecules are the primary candidates for construction of op-

tically driven molecular charge pumps. The Fermi energy is taken at the origin, EF = 0,

and the bias is applied symmetrically, µL = −µR = Vsd/2.

Following Ref.,48 the incoming incident field is taken in the form of a chirped

pulse

Einc(t) = Re

[
E0 exp

(
−(δ2 − iµ̄2)t2

2
− iω0t

)]
(5.18)

where E0 is the incident peak amplitude, ω0 is the incident frequency, and δ2 ≡ 2τ2
0 /(τ

4
0 +

4Φ′′2(ω0)) and µ̄ ≡ −4Φ′′(ω0)/(τ4
0 + 4Φ′′2(ω0)) are parameters describing the incident

chirped pulse (τ0 is the characteristic time related to the pulse duration). In the calcu-

lations below we use E0 = 107 V/m, ω0 = 2 eV, τ0 = 11 fs, and Φ′′(ω0) = 3000 fs2.

Figure 5.2 shows instantaneous electric field strength distributions in a plane

shifted by z = 10 nm parallel to xy plane. The distribution is calculated for a junction

formed by bowtie antennas with single molecule (D = 1) placed in the center of the gap.
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Here εx − εg = 1.75 eV, ΓL1g,1g = ΓRDx,Dx = 0.01 eV, ΓL1x,1x = ΓRDg,Dg = 0.001 eV, and

Vsd = 0. Fig. 5.2a presents simulations without molecular response. Fig. 5.2b shows the

results of a calculation where both SPP excitations in the contacts and molecular re-

sponse are taken into account. One can clearly see that even a single molecule drastically

changes the local electric field distribution.

Figure 5.3: (Color online) Local EM field at the molecular position. (a) Pulse calcu-

lated without (dotted line, black) and with (εx − εg > ω0 - solid line, red; εx − εg < ω0

- dashed line, blue) molecular response. (b) Maximum local field during the pulse vs.

molecular excitation energy calculated without (triangles, black) and with (circles, red)

molecular response. See text for parameters.

Sensitivity of the pulse temporal behavior to the molecular response is presented

in Figure 5.3a. Here a local field affected by only SPP modes (dotted line) is compared

to pulses calculated when the molecular response is taken into account. The latter may

result in both enhancement (dashed line) or quenching (solid line) of the local field

depending on the ratio of the pulse frequency, ω0, to the molecular excitation energy,
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εx − εg. In particular, quenching is observed for the laser frequency being below the

threshold (ω0 < εx− εg = 2.25 eV), while frequency above the threshold (ω0 > εx− εg =

1.75 eV) leads to enhancement of the field. To understand this behavior we perform a

simple analysis treating coupling to the driving field as a perturbation, and neglecting

the chirped character of the pulse. This leads to (see Appendix 5.6)

P1(t) ≈− E0 cos(ω0t) |µgx|2
∫

dε

2π
(5.19)(

Im
[
G<1g,1g(ε)

] ε− (εx − ω0)

[ε− (εx − ω0)]2 + [Γ1x,1x/2]2

+ Im
[
G<1x,1x(ε)

] ε− (εg + ω0)

[ε− (εg + ω0)]2 + [Γ1g,1g/2]2

)

where G< is the lesser projection of the Green function (5.7). Taking into account that in

the absence of the chirp Einc(t) = E0 cos(ω0t), the first term in the right side of Eq.(5.19)

suggests that for populated ground state, G<1g,1g(ε) ≈ 1, the molecular polarization

oscillates in phase with the field for ω0 < εx − εg, and in anti-phase for ω0 > εx − εg.

Thus according to Eqs. (5.15b) and (5.17) the molecular response quenches the field in

the former case, and enhances it in the latter. Fig. 5.3b illustrates this finding within

the exact calculation showing the maximum of the total field for different molecular

excitation energies (circles) compared to the maximum of the EM field obtained without

molecular response (triangles). Note that the contribution of the second term in the

right side of Eq.(5.19) is exactly the opposite that of the first term; however, since the

calculations presented in Fig. 5.3 are performed at zero bias, the molecular excited state

is initially empty, G<1x,1x(t = 0) ≈ 0.
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Figure 5.4: (Color online) Charge pumped through the junction. (a) Difference,

∆Q ≡ Q(sc) − Q(nosc), between results calculated with, Q(sc), and without, Q(nosc),

molecular response vs. time for εx − εg > ω0 (solid line, red) and εx − εg < ω0 (dotted

line, blue). (b) Total charge pumped during the pulse vs. molecular excitation energy

calculated without (triangles, black) and with (circles, red) molecular response. See text

for parameters.

While the local EM field cannot be measured directly, it is related to junc-

tion characteristics (in particular, its transport properties) detectable in experiments.

Fig. 5.4a demonstrates the difference in the temporal buildup of the charge pumped

through the junction, when the molecule is considered to be driven by the field obtained

within the self-consistent model vs. model with only SPP excitations taken into account.

The initial dip in the charge buildup (see dotted line) is related to a time delay of the

molecule induced pulse for εx − εg < ω0 (compare solid and dashed lines to the dotted

line in Fig. 5.3a). The delay is caused by the chirped nature of the incoming pulse, with

initial pulse frequency being lower than the molecular excitation energy, which results

in suppression of the local field at the start of the pulse. Eventually however the incom-
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ing frequency becomes higher than the molecular transition energy. The corresponding

enhancement of the local field leads to increase in the charge pumped through the junc-

tion. Note that for εx − εg > ω0 no delay is observed, and the local field is quenched

throughout the pulse. Correspondingly effectiveness of the charge pump is lower in this

case (see solid line in Fig. 5.4a).

Figure 5.4b shows the total charge pumped through the junction during the

pulse at different molecular excitation energies. Clearly, the most effective EM field

obtained without the molecular response taken into account corresponds to the resonance

situation, ω0 = εx − εg = 2 eV. When molecular response is included in the model

the situation is less straightforward. Since local field enhancement is expected for low

molecular excitation energies, ω0 > εx − εg (see Fig. 5.3b), the peak in the pumped

charge distribution is shifted to the left. Note that the lower height of the shifted peak

is related to the fact that, for a lower molecular gap, part of optical scattering channels

is blocked due to partial population of the broadened excited and ground states of the

molecule (see Ref.49 for detailed discussion).

Figure 5.5: (Color online) Current at the left interface as a function of time. Shown

are differences, ∆IL ≡ I(sc)
L − I(nosc)

L , between results calculated with I
(sc)
L , and without,

I
(nosc)
L , molecular response. The calculations are performed for Vsd = 1.5 V (dashed line,

blue) and 2 V (solid line, red). Inset shows corresponding difference in charge pumped

through the junction. See text for parameters.

Note that the importance of the molecular response depends also on bias across

the junction. Indeed, since high bias, Vsd > εx − εg, may inject holes into the molecular

ground state and electrons into the excited state, and since populating these states has
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opposite consequences for the local field enhancement (see Eq. (5.19) and the discussion

following it), it is natural to expect that the molecular response is more important at low

biases, Vsd < εx−εg. Figure 5.5 illustrates this conclusion with results of our calculations

within the self-consistent model. Here ΓL1x,1x = ΓR1g,1g = 0.05 eV. We observe that both

difference in optically induced current and charge pumped through the junction (see

inset) is almost negligible at high biases. Similar reasoning indicates that the molecular

response at strong incoming fields will be less important also due to population of the

excited molecular state induced by external pulse.

Figure 5.6: (Color online) Asymmetry in the charge transfer between positively and

negatively chirped incoming laser pulses, Q(Φ′′)−Q(−Φ′′), normalized by their average,

Qavg ≡ (Q(Φ′′) + Q(−Φ′′))/2. Shown are results calculated without (triangles, black)

and with (circles, red) the molecular response. See text for parameters.

Asymmetry in the charge pumping relative to the sign of the chirp rate was

discussed in our recent publication (see Fig. 4 in Ref.48). One of the reasons for the

asymmetry is related to the time spent by the local pulse in the region of frequencies

at and just below the resonance. This region provides the main contribution to charge

transfer (see discussion of Fig. 3 in ref.48). Since time spent in this region by the pos-

itively chirped pulse is smaller than that by the pulse with equal negative chirp rate

(the positively chirped local pulse is shorter), one expects to observe an asymmetry as

represented by the result of calculations using local EM field influenced only by SPP

modes driving the junction (see curve with triangles in Fig. 5.6). However as discussed

above, it is this pre-resonance region where molecular response quenches local field, thus

diminishing (or even overturning) the asymmetry relative to the chirp rate sign (see
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curve with circles in Fig. 5.6).

Figure 5.7: (Color online) Effect of the self-consistent treatment on local field and

level population in a 3-sites molecular bridge (D = 3) as functions of time. Shown

are (a)-(c) local field calculated without (dotted line, black) and with (εx − εg > ω0

- solid line, red) molecular response for the three molecular sites. Panel (d) shows the

difference in population of the ground, ∆n1g ≡ n(sc)
1g −n

(nosc)
1g (solid line, blue) and excited,

∆n1x ≡ n(sc)
1x −n

(nosc)
1x (dotted line, red) states for the first molecular site (m = 1). Panel

(e) shows the scaled plot of the field on the central site (m = 2) for a longer period of

time. The charge pumped through the 3-sites molecular bridge vs. time is shown in

panel (f). See text for parameters.

Finally, we consider a 3-site molecular bridge (D = 3) to model the spacial

nonlocality of molecular polarization. Calculations are done for εmx − εmg = 2.25 eV,

ω0 = 2 eV, and Vsd = 0. Panels (a)-(c) of Fig. 5.7 compare the pure plasmonic local

field to the field calculated when the molecular response is taken into account for the

three sites of the bridge. Molecular polarization decreases the local field amplitude on

the first site, (a), and enhances it on the rightmost site, (c). The field at the middle

site, (b), does not change. The effect can be understood following the discussion similar
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to that of Fig. 5.3. We find that for εx − εg > ω0 increase in population in the ground

(decrease in the excited) levels of the molecular sites quenches the local field. Change in

the populations of the leftmost site, panel (a), resulting from self-consistent treatment is

shown in Fig. 5.7d. We see that these changes are in agreement with the corresponding

change in the local field. Similar considerations also hold for panels (b) and (c) (corre-

sponding level population are not shown). We note in passing that several parameters

of the model define behavior of the bridge population during and after the pulse. In

particular, strength and frequency of the external field define efficiency of charge trans-

fer between ground and excited states of the molecule: stronger coupling and resonant

frequency usually result in stronger population of the excited state (at equilibrium the

excited state is empty in the absence of the pulse). Strength of molecule-contacts cou-

pling defines lifetime of the excess population on the molecule. After the end of the pulse

it takes ∼ 1/Γ for populations of molecular states to return to their steady-state values.

The latter are defined by the bias.

The self-consistently calculated electric field on a site in the bridge shows a visible

beat at large timescale(see Fig. 5.7e). This behavior is related to the Rabi frequency due

to the intersite coupling, ts.

Finally, Fig 5.7f shows charge transferred through the 3-site junction as function

of time. The decrease in the effectiveness of the pump is related to quenching of the local

field on the first site of the bridge, where strong coupling to the left contact yields quick

resupply of the ground level population. Decreased efficiency in pumping the charge

between ground and excited levels at this site is the reason for the overall change in the

effectiveness of the pump.

5.5 Conclusion

We consider a simple model of a molecular junction driven by external chirped

laser pulses. The molecule is represented by a bridge of D two-level systems. The

contacts geometry is taken in the form of a bowtie antenna. The FDTD technique

is used to calculate the local field in the junction resulting from SPP excitations in

the contacts. Simultaneously we solve time-dependent nonequilibrum Green functions
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equations of motion to take into account the molecular contribution to the local field

formation.

Note that many works on driven transport assume pure incident field to be a

driving force acting on the molecule. In our recent publications48,49 we considered effects

of local field formation due to SPP excitations in the contacts on junction characteristics

under external optical pumping. Here we make one more step by taking into account also

the molecular response in the driving local field dynamics. Within a reasonable range of

parameters we demonstrate that the latter is crucial for proper description of the junction

transport. We compare our results with previously published predictions, and show that

the molecular contribution may lead to measurable differences (both quantitative and

qualitative) in characteristics of junctions. This contribution is especially important

at low biases and relatively weak external fields in the presence of a strong molecular

transition dipole. In particular, we show that for laser frequencies shorter (higher) than

the molecular excitation energy the local SPP field is usually quenched (enhanced) by

molecular response.

Extension of the approach to realistic ab initio calculations, taking into account

time-dependent bias, and formulating a methodology for calculations in the language of

molecular states are the goals for future research.
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5.6 Appendix: Derivation of Eq.(5.19)

To understand trends observed in the exact calculations based on Eqs. (5.9)-(5.10)

and (5.15a)-(5.15b), here we employ a simple consideration and derive an approximate

expression for the molecular polarization, Eq.(5.17), given in Eq.(5.19). For simplicity
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we assume that only one projection of the molecular dipole is non-zero, and consider a

single molecule bridge (D = 1). Then the molecular polarization is

P1(t) = −2Im
[
µxg G

<
1g,1x(t, t)

]
(5.20)

Assuming the dissipation matrix, Eq.(5.6), is diagonal the lesser projection of the Green

function in Eq.(5.20) is given by the Keldysh equation of the form

G<1g,1x(t, t) =
∑
s=g,x

∫ t

−∞
dt1

∫ t

−∞
dt2G

r
1g,1s(t, t1) (5.21)

× Σ<
1s,1s(t1 − t2)Ga1s,1x(t2, t)

where

Σ<
1s,1s(t1 − t2) = i

∑
K=L,R

∫
dε

2π
fK(ε)ΓK1s,1se

−iε(t1−t2) (5.22)

is the lesser self-energy due to coupling to the contacts.

We start by neglecting a chirp of the incoming field

Einc(t) = E0 cos(ω0t) (5.23)

and treat interaction between molecule and incoming field

Vss′(t) ≡ −δs′,s̄ µss̄Einc(t) (5.24)

within the first order of perturbation theory. Here s̄ indicates the state opposite to s,

i.e. for s = g s̄ = x.

Within the approximations the retarded Green function in Eq.(5.21) can be ex-

pressed as (similar expression can be written for the advanced projection)

Gr1s,1s′(t, t
′) ≈ δs,s′G

(0)r
1s,1s(t− t

′) (5.25)

+
∑

m,n=g,x

∫ +∞

−∞
dt′′G

(0)r
1s,1s(t− t

′′)Vss′(t
′′)G

(0)r
1s′,1s′(t

′′ − t′)

Here G(0)r is the retarded projection of the Green functions (5.7) in the absence of
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external field

G
(0)r
1s,1s(t− t

′) = −iθ(t− t′)e−i(εs−iΓ1s,1s/2)(t−t′) (5.26)

and θ(. . .) is the Heaviside step function.

Utilizing (5.23)-(5.26) in (5.20)-(5.22) leads to

P1(t) ≈ −E0 |µgx|2
∫

dε

2π

(
Im
[
G

(0)<
1g,1g(ε)

] [ε− (εx − ω0)] cos(ω0t)− [Γ1x,1x/2] sin(ω0t)

[ε− (εx − ω0)]2 + [Γ1x,1x/2]2

(5.27)

+ Im
[
G

(0)<
1x,1x(ε)

] [ε− (εg + ω0)] cos(ω0t) + [Γ1g,1g/2] sin(ω0t)

[ε− (εg + ω0)]2 + [Γ1g,1g/2]2

)

where we have used the Keldysh equation for the steady state situation

G
(0)<
1s,1s(ε) =

∑
K=L,R ifK(ε)ΓK1s,1s

[ε− εs]2 + [Γ1s,1s/2]2
(5.28)

Assuming that detuning is much bigger than levels broadenings, |ω0 − (εx − εg)| �

Γ1s,1s (s = g, x), the term with sin(ω0t) in (5.27) can be ignored. Finally, dressing the

Green functions in Eq. (5.27), i.e. taking into account diagrams related to population

redistribution in the molecule due to presence of the driving field, leads to Eq.(5.19).
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50 B. Lukýanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen,

and C. T. Chong, Nature Materials 9, 707-715 (2010).

51 G. Li, M. S. Shishodia, B. D. Fainberg, B. Apter, M. Oren, A. Nitzan, and M. A.

Ratner, Nano Letters 12, 2228-2232 (2012).

52 U. Peskin and M. Galperin, The Journal of Chemical Physics 136, 044107 (2012).

53 T.-H. Park and M. Galperin, Europhysics Letters 95, 27001 (2011).

54 T.-H. Park and M. Galperin, Physical Review B 84, 075447 (2011).

55 L. X. Wang and V. May, The Journal of Physical Chemistry C 114, 41794185 (2010).

56 G. Q. Li, B. D. Fainberg, A. Nitzan, S. Kohler, and P. Hanggi, Physical Review B 81,

165310 (2010).

57 M. Galperin, M. A. Ratner, and A. Nitzan, The Journal of Chemical Physics 130,

144109 (2009).

58 J. K. Viljas, F. Pauly, and J. C. Cuevas, Physical Review B 77, 155119 (2008).

59 B. D. Fainberg, M. Jouravlev, and A. Nitzan, Physical Review B 76, 245329 (2007).

60 J. K. Viljas, F. Pauly, and J. C. Cuevas, Physical Review B 76, 033403 (2007).

61 M. Galperin and A. Nitzan, The Journal of Chemical Physics 124, 234709 (2006).

62 S. Kohler, J. Lehmann, and P. Hanggi, Phys. Rep. 406, 379-443 (2005).

63 A.-P. Jauho, N. S. Wingreen, and Y. Meir, Physical Review B 50, 5528-5544 (1994).

64 H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconduc-

tors (Springer-Verlag, Berlin, 2008).

65 G. D. Mahan, Many-Particle Physics (Plenum Press, New York, 1990).

66 M. Galperin and S. Tretiak, The Journal of Chemical Physics 128, 124705 (2008).



130

67 A. Taflove and S. C. Hagness, Susan C., Computational electrodynamics: the finite-

difference time-domain method (Artech House, 2005).

68 http://plasmon.poly.asu.edu

69 A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, Nano Letters 11, 2318-2323

(2011).

70 A. J. White, B. Fainberg, and M. Galperin, The Journal of Physical Chemistry Letters

3, 2738-2743 (2012)

71 J. M. Mullin, J. Autschbach, and G. C. Schatz, Computational Theoretical Chemistry

987, 32-41 (2012).



Chapter 6

Collective plasmon-molecule

excitations in nanojunctions:

Quantum consideration
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We present a pseudoparticle nonequilibrium Green function formalism as a tool

to study the coupling between plasmons and excitons in nonequilibrium molecular junc-

tions. The formalism treats plasmon-exciton couplings and intra-molecular interactions

exactly, and is shown to be especially convenient for exploration of plasmonic absorption

spectrum of plexitonic systems, where combined electron and energy transfers play an

important role. We demonstrate the sensitivity of the molecule-plasmon Fano resonance

to junction bias and intra-molecular interactions (Coulomb repulsion and intra-molecular

exciton coupling), and compare our predictions for non-linear optical effects to previous

131



132

studies. Our study opens a way to deal with strongly interacting plasmon-exciton sys-

tems in nonequilibrium molecular devices.
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6.1 Introduction

Recent progress in nanofabrication techniques and advances in laser technologies

opened new directions in research of plasmonic materials at nanoscale.1,2 Nanoplas-

monics finds its application in optical devices,3–6 photovoltaics,7–9 and biology.10–13 In

particular, field enhancement by surface plasmons at nanoscale allows the detection of op-

tical response in current carrying molecular junctions.14 Plasmon coupling to molecular

excitations15 is studied by a field of research named plexcitonics.16 Such couplings yield

a possibility for coherent control of molecular systems17,18 and are utilized in molecular

photodevices.19–21

Advances in experimental techniques has caused a surge of theoretical research

in the areas of nanoplasmonics and plexcitonics. Usually plasmon excitations are studied

utilizing the laws of classical electrodynamics,22–26 while the molecular system is treated

quantum-mechanically.27–32 We used a similar scheme to study transport in molecular

junctions driven by surface plasmons.33,34 Recently, quantum descriptions of plasmonic

excitatitons started to appear. For example, time-dependent density functional the-

ory was employed to simulate plasmon excitations in relatively small metallic clusters

in Refs.35–38 while Ref.39 utilized a quantum master equation to study the effect of

plasmonic excitations on the current.

The observation of Fano resonances40 in plasmonic nanostructures41 gave impetus

to a quantum description of excitations. Such considerations have been done for quantum

dot-metal nanoparticle system, where the metal nanoparticle was studied classically

while oscillations of the quantum dot were treated within a density matrix approach.42–44

Recently a fully quantum description of the model was reported in Ref.45 Finally, a mean-

field quantum study of the dips in the absorption spectrum of a molecule between a pair of

metallic spheres was presented in Ref.,46 within an equilibrium Green function formalism.

It relies on the factorization of the collective excitations into separated plasmonic and

molecular contributions. In this respect, it is well to bear in mind that the dips discussed

in Ref.46 can arise from both Fano-like interference and hybridization of a molecule

dipole and the plasmon resonances.47 Strong hybridization is related to the physics

of avoided crossing of diabatic states corresponding to the molecular resonance and

plasmon, and gives rise to a new quasiparticle - the polariton.48–50 Thus, the mean-field
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type factorization of the molecular and plasmon excitations is not safe in the case of

strong plasmon-exciton coupling.

Here we consider collective plasmon-molecule excitations in a junction, where

a molecule (M) is placed between two nanoparticles (L and R), each representing a

contact. The molecule, modeled as a chain of D two-level systems, exchanges electrons

and energy with the contacts. Energy exchange is modeled as exciton-plasmon coupling

within the dipole approximation. Both the molecule and plasmons are treated quantum

mechanically. We employ a pseudoparticle nonequilibirum Green function formalism

(NEGF), described in details in our recent publication.51 The formalism allows us to

generalize the consideration of Ref.46 to a nonequilibrium, finite temperature, situation,

and to treat the system part (molecule and plasmons) exactly. The latter is important

in the case of strong plasmonic coupling to molecular excitations. We evaluate the

absorption spectrum of the junction, and discuss the influence of bias and intra-molecular

interactions (Coulomb repulsion, U , and exciton hopping, J) on the spectrum.

6.2 Model

The Hamiltonian of the junction is (here and below ~ = 1)

Ĥ = ĤM + ĤP + V̂MP +
∑

K=L,R,rad

(
ĤK + V̂K

)
(6.1)

Here ĤM is the molecular Hamiltonian

ĤM =
D∑
c=1

[∑
s=g,e

εsĉ
†
csĉcs +

U

2
N̂c(N̂c − 1)

]
(6.2)

+

D−1∑
c=1

[
−
∑
s=g,e

tsĉ
†
csĉ(c+1)s + Jb̂†cb̂c+1 +H.c.

]
,
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ĤP models plasmonic excitations in the nanoparticles as two coupled dipoles, L and R,1

ĤP =
∑

K=L,R

ΩK b̂
†
K b̂K −

(
∆PP b̂

†
Rb̂L +H.c.

)
(6.3)

and V̂MP describes the exciton-plasmon coupling

V̂MP = −
D∑
c=1

∑
K=L,R

(
∆cK b̂

†
cb̂K +H.c.

)
(6.4)

The contacts L and R are modeled as reservoirs of free electrons

ĤK =
∑
κ∈K

εκĉ
†
κĉκ (K = L,R), (6.5)

and Ĥrad introduces the radiation field

Ĥrad =
∑
α

ωαâ
†
αâα (6.6)

V̂K (K = L,R) and V̂rad describe the electron transfer between the molecule and contacts,

and the plasmons and molecular excitations coupling to the radiation field, respectively

V̂K =
∑
κ∈K
s=g,e

(
Vκs ĉ

†
κĉcKs + H.c.

)
(6.7)

V̂rad =
∑

α;K∈{L,1,...,D,R}

(
WαK â

†
αb̂K + H.c.

)
(6.8)

where cK = 1 (D) for K = L (R).

In eqs 6.2-6.8 ĉ†cs (ĉcs) and ĉ†κ (ĉκ) are creation (annihilation) operators for an

electron in the molecular orbital s, at the site c of the chain, and contact state κ,

respectively, â†α (âα) is the creation (annihilation) operator for a photon in mode α of

the radiation field. b̂†K(b̂K) creates (destroys) plasmons in a nanoparticle (K = L,R) or

excitons at a site c = 1, . . . , D of the molecule. (K = c, b̂†c ≡ ĉ†ceĉcg). N̂c ≡
∑

s=g,e ĉ
†
csĉcs

is the total charge of the site c.

1For simplicity we ignore the quadrupole mode of the plasmons described in Ref.46 This simplifications
does not influence the physics of the Fano resonance discussed below (see Supporting Information).
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Below we consider molecular chains of one (D = 1) and two (D = 2) sites.

The first model is used to extend the consideration of Ref.46 to nonequilibrium and

beyond the mean-field type of treatment. The second allows us to consider influence

of intramolecular energy exchange on the absorption spectrum of the junction. In par-

ticular we examine features of exciton compensation of the Coulomb blockade52 in the

plasmon spectrum. Note that, in principle, the model (eqs 6.1-6.8) is capable of describ-

ing the optical spectrum features related to Kondo physics. However, such consideration

requires going beyond the lowest order in the system-bath coupling (the non-crossing

approximation) employed below, and is not presented here.

6.3 Theory

Following Ref.46 we seek to calculate the correlation function

P (τ, τ ′) = −i〈Tc D̂(τ) D̂†(τ ′)〉 (6.9)

of the bonding dipolar mode, D̂ = b̂L + b̂R, which implies the two nanoparticles absorb

photons in the same phase.2 Since we consider a nonequilibrium situation, the Green

function in eq 6.9 is defined on the Keldysh contour. τ and τ ′ are contour variables, and

Tc is the contour ordering operator.

We assume that only one mode of the radiation field, ω0, pumps the system.

All the other modes of the radiation bath are empty. Moreover the pumping mode is

coupled to the bonding dipolar mode, eq 6.9, direct coupling to the molecule is neglected.

Absorption at the laser frequency, ω0, is given by a photon influx into the system, which

at steady state is (see Supporting Information)53

Iabs(ω0) = −
∫ ∞

0

dω

2π
γ(ω)Nω0(ω) ImP>(ω) (6.10)

where γ(ω) =
∑

K=L,R γK(ω) ≡ 2π
∑

K=L,R

∑
α |WKα|2 δ(ω − ωα) is the total plasmon

2This is appropriate when assuming the incident photon field is perpendicular to the nanoparticle
dimer axis.46
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dissipation rate,

Nω0(ω) ≡ N0
1

π

δ2

(ω − ω0)2 + δ2
(6.11)

is the laser induced mode population (δ is the laser bandwidth), and P>(ω) is the Fourier

transform of the greater projection of P (τ, τ ′), eq 6.9.

Here we briefly outline the pseudoparticle approach for energy and electron trans-

fer in junctions. For an in depth description see e.g. Ref.51 and references therein. The

total Hamiltonian, ref 6.1, is separated into the system, eqs 6.2-6.4, and bath, eqs 6.5

and 6.6, parts. The system Hamitonian is represented in a basis of many-body states

{|m〉},3 thus all interactions in the system subspace are treated exactly. Every creation

Ô†ν (annihilation Ôν) operator in the system is expressed in terms of pseudoparticles via

spectral decomposition

Ô†ν ≡
∑
m1,m2

Oνm1m2
d̂†m1

d̂m2 (6.12)

where Oνm1m2
≡ 〈m1|Ô†ν |m2〉. The pseudoparticle operator d̂†m creates the many-body

state |m〉 = d̂†m|0〉 (|0〉 is vacuum state). These operators follow the usual boson/fermion

commutation relations within an extended Hilbert space. To specify the physical sub-

space, the constraint

Q̂ =
∑
m

d̂†md̂m = 1 (6.13)

must be applied. In the extended Hilbert space the pseudoparticle Green’s function,

Gmm′(τ, τ ′) = −i〈Tc d̂m(τ) d̂†m′(τ
′)〉 (6.14)

satisfies the usual Dyson equation, G = g + gΣG, where Σ is the pseudoparticle self-

energy due to the coupling to the baths, eqs 6.7 and 6.8 (see Supporting Information for

details).

The Green function in eq 6.9 is obtained utilizing eq 6.12. We need its greater

3This may be the eigenbasis of the system, or any other complete set of many-body states in the
system subspace
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projection to calculate the absorption spectrum in eq 6.10. The explicit expression is

P>(ω) =
∑

K,K′∈{L,R}
m1,m′

1,m2,m′
2∈M

∗
χKm1m2

χK
′

m′
1m

′
2
ζm2 (6.15)

×
∫ ∞
−∞

dE
−1

π
Im
[
Grm1m′

1
(E + ω)

]
G<m′

2m2
(E)

where χKm1m2
≡ 〈m1|b̂†K |m2〉, and ζm = 1 (−1) if state |m〉 is bosonic (fermionic), and

Gr(<) are the retarded (lesser) projections of the pseudoparticle Green function, eq 6.14.

6.4 Numerical Results

Here we present the results of numerical simulations for the model, eq 6.1, which

demonstrate the effect of electron transport on the plasmon absorption spectrum, and in

particular, on the Fano resonance.40 Following Ref.46 most of the calculations below are

performed in the optical linear response regime,4 with nonlinear optical effects shown in

Figure 6.2.

To make our calculations representative of a realistic junction we use the pa-

rameters proposed in Ref.46 Unless otherwise specified, the parameters are T = 300 K,

εe = −εg = 1.6 eV, U = 1 eV, ΩL = ΩR = 3.49 eV, and ∆PP = 125 meV. Below for

D = 1 we follow Ref.46 taking ∆1L = ∆1R = 20 meV. For molecular dimer (D = 2)

this parameter represents coupling to the closest plasmon, ∆1L = ∆2R = 20 meV. To

estimate the coupling to the other plasmon, we take into consideration that the electric

field created by the dipole plasmon varies as ∼ 1/r3 (r is the distance from the center

of the sphere).54 Then, for the parameters of Ref.46 and taking the distance between

the molecules in the dimer ∼ 1 nm, we get ∆1R = ∆2L = 15.75 meV. The electron

escape rate to the contacts is ΓKcKs = 1 meV (K = L,R, s = g, e), the dissipation rates

are γL = γR = 86 meV for the plasmons and γM = 4 meV for the molecular exci-

ton(s). The laser bandwidth is δ = 1 meV. The Fermi energy is chosen at the origin,

EF = 0, and bias Vsd shifts the chemical potentials in the contacts as µL = EF + ηVsd

and µR = EF − (1 − η)Vsd. Here η is the voltage division factor. Below we consider

4Optical linear response corresponds to disregarding effect of laser on the system.
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symmetric, η = 0.5, and asymmetric, η = 1, bias divisions.

0

1

2

3

4

V
s
d

(e
V

)

3.1 3.2 3.3 3.4 3.5

0 (eV)

0

1250

2500

0

1

2

3

4

V
s
d

(e
V

)

0

2

4

6

8

(a)

(b) (c) (d) (e)

140

390

640

Figure 6.1: Plasmon absorption spectrum Iabs(ω0)/γN0δ, eq 6.10, as a function of bias

Vsd (a) and close-up of the Fano resonance (b)-(e). Calculations with asymmetrically

applied bias, η = 1, are performed with U = 0 in (a),(b) and U = 1 eV in (c). Results

for symmetrically applied bias, η = 0.5, are shown in (d) U = 0 and (e) U = 1 eV. See

text for other parameters.

6.4.1 Single molecule (D=1)

We work in the basis of many-body states |SM , PL, PR〉 characterized by the

states of the molecule SM ∈ {0, g, e, 2} and excitation states of the plasmons PL,R ∈

{0, 1, 2, . . .}. At equilibrium, the principle optical transition which controlls the abso-

prtion spectrum is between the ground state, |g, 0, 0〉 and two excited plasmon states,

|g, 1, 0〉 and |g, 0, 1〉. The coupling, ∆MP , between |g, 1, 0〉 (|g, 0, 1〉) and |e, 0, 0〉 is the

origin of the Fano resonance in the absorption spectrum.

Figure 6.1 shows the effect of bias on the Fano resonance. For asymmetrically ap-
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plied bias, η = 1, and in the absence of Coulomb repulsion, U = 0, both neutral, |g, 0, 0〉,

and anion, |2, 0, 0〉, molecular states become equally populated above the threshold,

µL = εe. Since the anion state cannot exchange energy with the plasmons, the Fano

resonance decreases to ∼ 50% relative to its equilibrium value (see Figure 6.1b).

Finite Coulomb repulsion causes this transition to shift by U to higher biases (see

Figure 6.1c). Moreover, in the region εe < µL < εe + U the Fano resonance increases.

This is due to a partial blocking of the virtual transition from |g, 1, 0〉 (|g, 0, 1〉) via

|e, 0, 0〉 to |0, 0, 0〉 by the Fermi distribution in the left contact. The blocking renormalizes

the local density of the |g, 1, 0〉 and |g, 0, 1〉 states, which are responsible for the Fano

resonance. Note that this is a combined electron/energy transfer mechanism, which is

readily accounted for by the pseudoparticle NEGF formalism.5

We next consider a symmetrically coupled junction, η = 0.5. In the absence

of Coulomb repulsion, U = 0, reaching the threshold results in equal population for

all molecular states: cation |0, 0, 0〉, neutral ground |g, 0, 0〉, neutral excited |e, 0, 0〉, and

anion |2, 0, 0〉. This would imply reduction in Fano resonance to ∼ 25% of its equilibrium

height. The observed reduction of ∼ 40% (see Figure 6.1d) is due to the energy transfer

between molecule and plasmon (and strong dissipation of the plasmon) which causes

quick relaxation of the molecular exciton |e, 0, 0〉, thus increasing the population of to

the neutral ground state |g, 0, 0〉.

Finite U reveals 4 distinct Fano resonance regions (see Figure 6.1e): 1. Below

threshold Vsd < εe − εg − 2U Fano resonance has its equilibrium appearance; 2. For

εe − εg − 2U < Vsd < εe − εg the virtual transition from |g, 1, 0〉(|g, 0, 1〉) via |e, 0, 0〉

to |2, 0, 0〉 is blocked from the right contact, since µR − εg < U . This results in an

increase in the Fano resonance due to a local density of states renormalization by an

electron/energy transfer mechanism (similar to that discussed in Figure 6.1c); 3. For

εe − εg < Vsd < εe − εg + U three molecular states (cation |0, 0, 0〉, neutral ground

|g, 0, 0〉, and neutral excited |e, 0, 0〉) become accessible. Quick relaxation of the molecular

exciton, |e, 0, 0〉 → |g, 0, 0〉, results in a population of the neutral ground state ∼ 2/3,

leading to a corresponding decrease in the Fano resonance relative to its equilibrium

value (see discussion of Figure 6.1d); 4. For Vsd > εe − εg + U all four molecular states

5Note that in the standard NEGF formalism a 4th order perturbation theory is required to take the
effect into account.
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are accessible, and the Fano resonance reduces to ∼ 40% of its equilibrium value.

Thus Figure 6.1 demonstrates sensitivity of the Fano resonance to nonequilib-

rium conditions, which renormalize the local molecular density of states resulting in mea-

surable consequences for the absorption spectrum of the system. Note that the effect

requires taking into account coherently coupled electron and energy transfer processes

in an open nonequilibrium molecular system. The pseudoparticle NEGF is a convenient

tool for such studies.
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Figure 6.2: Nonlinear effects in the plasmon absorption: Iabs(ω0)/γN0δ, eq 6.10, for

different intensities of laser field. Inset shows the population, nc, of the molecular excited

state |e, PL, PR〉. See text for parameters.

Figure 6.2 presents simulation beyond the optical linear response regime. Calcu-

lations are done at Vsd = 0, other parameters are as in Figure 6.1. Here the laser field

is fully taken into account. Increase in the intensity of the laser results in population of

the excited state of the molecule (see inset) and suppression of Fano resonance. Note

however that contrary to predictions of Ref.46 the Fano resonance is suppressed already

for nc = 0.3. The reason is additional broadening of the resonance due to coupling to

the pumping mode, disregarded in earlier treatment. Moreover, since population of the

excited state is different at different frequencies of the laser, the slope of the Fano reso-

nance also depends on the intensity of the laser field. So, utilizing linear response theory

in studies of optical spectrum of molecular junctions, where hot spots yield strongly

enhanced local fields, is not always justified.
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Figure 6.3: Plasmon absorption apectrum Iabs(ω0)/γN0δ, eq 6.10, as a function of J at

symmetrically applied bias of Vsd = 6 eV. Arrows indicate the Fano resonances attributed

to the N = 1 and N = 2 charge blocks of the system. See text for parameters.

6.4.2 Molecular dimer (D=2)

A molecular dimer allows for the comparison of two energy transfer mecha-

nisms: the intra-molecular and molecule-plasmon. Here the many-body states are

|S1, S2, PL, PR〉, where S1 and S2 describe states of the first and second molecule. We

use the following parameters: te = tg = 5 meV, and U = 2 eV. Other parameters are as

in Figure 6.1.

Figure 6.3 demonstrates the effect of intramolecular exciton coupling, J ,6 on

the absorption spectrum at large symmetric bias, η = 0.5 and Vsd = 6 eV. With these

parameters U is large enough to prevent double occupancy of either molecule, and the

spectrum demonstrates two Fano resonances. The first does not change with J , and

is a result of the plasmon coupling to transition between the singly occupied (N = 1)

molecular states with an electron on either site of the dimer: |g, 0, 1, 0〉 (|g, 0, 0, 1〉) →

|e, 0, 0, 0〉 or |0, g, 1, 0〉 (|0, g, 0, 1〉) → |0, e, 0, 0〉. The second peak is attributed to the

plasmon coupling to transition between doubly occupied (N = 2) states with both sites

populated by one electron: |g, g, 1, 0〉 (|g, g, 0, 1〉) → |e, g, 0, 0〉 (|g, e, 0, 0〉). These excited

molecular states (|e, g, 0, 0〉 and |g, e, 0, 0〉) are coupled by J , which results in a linear

6Generally, the energy transfer coupling J is controlled by electromagnetic environment that makes
it complex-valued.52 Here we consider J as independent parameter for the sake of simplicity.
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dependence of the Fano resonance on the intramolecular excitonic coupling. Note that

such absorption signatures may provide direct measurement of J in molecular dimers.
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Figure 6.4: Fano resonance of the plasmon absorption spectrum Iabs/γN0δ, eq 6.10,

for different values of J . Inset shows current I vs. J . See text for parameters.

6.4.3 Exciton Compensation for Coulomb Blockade

Recently, Li et.al.52 demonstrated exciton compensation of the Coulomb block-

ade for a dimer system. Figure 6.4 shows how this physical phenomena affects the

plasmon absorption spectrum. Parameters of the calculation are te = tg = 1 meV,

U = 0.2 eV, and ΓKcKs = 2 meV (K = L,R; s = g, e). Other parameters as in Fig-

ure 6.3. The Coulomb blockade is lifted when −J ∼ U , as was discussed in Ref.52 (see

inset). One sees that similar behavior is observed for the Fano resonance. The cause

of enhancement of absorption spectrum is the same as for the transport, and is related

to unblocking (reducing population) of the |2, 0, PL, PR〉 state (E ≈ εg + εe + U), when

it comes into resonance with an eigenstate of the |g, e, PL, PR〉 and |e, g, PL, PR〉 pair

(E ≈ εg + εe±J). Thus the absorption spectrum measurements can be used as a source

of information on transport regime of the junction.

6.5 Conclusion

In conclusion, we have presented a pseudoparticle NEGF approach to study the

optical properties of plasmonic systems interacting with a molecule in a current carry-
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ing junction. The formalism is exact in its description of the model plasmon-exciton

and intra-molecular interactions, so that collective plasmonic-molecular excitations in

the strong coupling regime are treated properly. The method is an invaluable tool in

describing combined electron and energy transfer processes in the system. The latter

are shown to play important role in understanding the plasmon absorption spectrum at

nonequilibrium. We demonstrated the ability to alter the Fano resonance intensity by

changing the junction bias. We further discussed nonlinear effects in the spectrum and

compared our results to the mean-field equilibrium study of Ref.46 For a molecular dimer

we showed the sensitivity of the Fano resonances to the intra-molecular exciton coupling,

and discussed the possibility of revealing information on intra-molecular interactions from

plasmonic absorption spectrum. Finally, we showed that the effect of exciton compen-

sation of Coulomb blockade, introduced recently in Ref.52 for transport through the

junction, can also be measured in the absorption spectrum. Practical implementation

of the developed approach based on its combination with consistent electrodynamical

calculations of the corresponding parameters will be published elsewhere.

Supporting Information

A discussion of the pseudoparticle NEGF approach and its application to the

problem of plasmon-molecule excitations in nanojunctions is discussed. Also an extra

figure related to definition of the model, and derivation of eqs 6.10 and 6.15 are provided.

This material is available free of charge via the Internet http://pubs.acs.org.
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6.6 Supporting Information

6.6.1 Fluxes in terms of physical Green functions

Single particle Green functions are expressed as correlation functions of elemen-

tary excitations. For nonequilibirum systems these correlations are considered on the

Keldysh contour55

Rνν′(τ, τ
′) =− i〈Tc ĉν(τ) ĉ†ν′(τ

′)〉 (6.16)

PKK′(τ, τ ′) =− i〈Tc b̂K(τ) b̂†K′(τ
′)〉 (6.17)

where R and P are fermion and boson Green functions, Tc is the contour ordering

operator, τ, τ ′ are contour variables, and f̂ †ν (f̂ν) and b̂†K (b̂K) are creation (annihilation)

operators for fermionic excitation in the orbital ν and bosonic excitation in the mode

K, respectively. Projections of the contour correlation functions, eqs 6.16 and 6.17, to

real time axis provide physical information about a nonequilibrium state of the system:

interacting local density of states, form of the nonequilibrium distribution, etc.56

Fluxes between the nonequilibrium system and baths are introduced as rates of

change of the populations in the baths. At steady state fermion and boson fluxes are

(here and below ~ = 1)55,57

IFermiK =

∫ +∞

−∞

dE

2π
Tr
[
cK<(E)R>(E)− cK>(E)R<(E)

]
(6.18)

IBoseB =−
∫ +∞

0

dω

2π
Tr
[
fB<(ω)P>(ω)− fB>(ω)P<(ω)

]
(6.19)

where R>/<(E) and P>/<(ω) are Fourier transforms of the greater/lesser projections of

the correlation functions, eqs 6.16 and 6.17, K and B indicate system-bath interface (e.g.

K = L,R for left and right contacts of the junction, and B may represent a thermal or

radiation bath), Tr[. . . ] is the trace over system excitations (fermi excitations for 6.18,
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and bose excitations for 6.19), and

cK<
νν′ (E) =iΓKνν′(E)fK(E) (6.20)

cK>
νν′ (E) =− iΓKνν′(E)[1− fK(E)] (6.21)

fB<KK′(ω) =− iγKK′(ω)N(ω) (6.22)

fB>KK′(ω) =− iγKK′(ω)[1 +N(ω)] (6.23)

are the (lesser and greater projections of) excitation self-energies due to coupling to the

baths. Here

ΓKνν′(E) =2π
∑
κ∈K

VνκVκν′δ(E − εκ) (6.24)

γKK′(ω) =2π
∑
α

WKαWαK′δ(ω − ωα) (6.25)

are matrices characterizing the fermion escape rate to contact K and the boson dissipa-

tion to bath B (in our case K represents the contacts, and B is the radiation bath). In

the wide-band approximation the two matrices become energy-independent quantities.

Also we assume them to be diagonal, thus disregarding bath induced system correlations

(this is a reasonable approximation, when energy separation between levels is bigger than

corresponding diagonal elements of the matrices, eqs 6.24 and 6.25). Finally, fK(E) in

eqs 6.20 and 6.21 and N(ω) in eqs 6.22 and 6.23 are population distributions in the

baths. In our study we assume an equilibrium Fermi-Dirac population distribution for

the contacts, fK(E) = [e(E−µK)/T + 1]−1 (µK is the electro-chemical potential of the

contact K, and T is its temperature), and a laser induced population in a narrow band

around the laser frequency, ω0, (see eq 11 of the paper) for the radiation bath.

Note that in eqs 6.18 and 6.19 terms with cK< and fB< correspond to in-

scattering processes (flux from a bath to the system), while those with cK> and fK>

describe out-scattering fluxes (from system to baths). We use eq 6.18 to calculate elec-

tronic current in the inset of Figure 4. In-scattering part of eq 6.19 is used to characterize

the absorption spectrum of the exciton-plasmon system (see eq 10 of the paper). Note

that at equilibrium (and disregarding plasmons interactions with both radiation field and

molecular exciton) eq 10 of our paper reduces to eq 6 from the Supporting Information
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of Ref.46

6.6.2 System characteristics in terms of pseudoparticles

The pseudoparticle nonequilibrium Green function formalism utilizes a mapping

of the physical space onto an extended Hilbert space. Within the formalism, many-body

states of the system are described as pseudoparticles, similar to excitations in the phys-

ical Hilbert space, and it can be shown that corresponding many-body field operators

follow usual commutation relations: Fermi or Bose depending on the character of the

corresponding state (for detailed discussion see e.g. Ref.51 and references therein). Op-

erators of system excitations, which enter the definitions of the physical Green functions

in eqs 6.16 and 6.17, are related to pseudoparticle creation, d̂†m, and annihilation, d̂m,

operators via spectral decomposition (see eq 12 of the paper). In particular,

ĉ†ν =
∑
m1,m2

ξνm1m2
d̂†m1

d̂m2 (6.26)

b̂†K =
∑
m1,m2

χKm1m2
d̂†m1

d̂m2 (6.27)

where sums are over many-body states {|m〉} of the plasmon-exciton system, and

ξνm1m2
≡〈m1|ĉ†ν |m2〉 (6.28)

χKm1m2
≡〈m1|b̂†K |m2〉 (6.29)

Transition to pseudoparticles accounts for all the interactions within the system exactly.

The price to pay is the necessity to work in the extended Hilbert space, where pseu-

doparticle Green function Gmm′(τ, τ ′) can be defined on the Keldysh contour similar to

eqs 6.16 and 6.17 (see eq 14 of the paper).

Contrary to the usual Green function techniques, where perturbation theory is

used to take into account interactions within the system, while quadratic coupling to

baths (see eqs 7 and 8 of the paper) is treated exactly, the pseudoparticle Green func-

tions formulation is exact in terms of system interactions but accounts for system-bath

coupling perturbatively.7 To establish a connection between physical and pseudoparti-

7Note that contrary to the quantum master equation formulations the pseudoparticle NEGF is con-
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cle Green functions one utilizes eqs 6.26 and 6.27 in eqs 6.16 and 6.17. In particular,

in the lowest order in the system-bath coupling (the non-crossing approximation) this

connection is58

Rνν′(τ, τ
′) =i

∑
m1,m′

1
m2m′

2

ζm2

∗
ξνm1m2

ξν
′

m′
1m

′
2
Gm1m′

1
(τ, τ ′)Gm′

2m2
(τ ′, τ) (6.30)

PKK′(τ, τ ′) =i
∑
m1,m′

1
m2m′

2

ζm2

∗
χνm1m2

χν
′

m′
1m

′
2
Gm1m′

1
(τ, τ ′)Gm′

2m2
(τ ′, τ) (6.31)

where ζm = 1 (−1) if state |m〉 is bosonic (fermionic). Thus for the Fourier transforms

of the projections used in eqs 6.18 and 6.19 one gets

R
>/<
νν′ (E) =i

∑
m1,m′

1
m2m′

2

ζm2

∗
ξνm1m2

ξν
′

m′
1m

′
2

∫ +∞

−∞

dE′

2π
G
>/<
m1m′

1
(E + E′)G

</>
m′

2m2
(E′) (6.32)

P
>/<
KK′ (ω) =i

∑
m1,m′

1
m2m′

2

ζm2

∗
χνm1m2

χν
′

m′
1m

′
2

∫ +∞

−∞

dE′

2π
G
>/<
m1m′

1
(E + E′)G

</>
m′

2m2
(E′) (6.33)

6.6.3 Equations-of-motion for pseudoparticle Green functions

In the extended Hilbert space pseudoparticle Green functions for nonequilibrium

systems follow the usual NEGF formulation. The Green function satisfy the Dyson

equation, which at steady-state takes the form

G(E) = g(E) + g(E) Σ(E) G(E) (6.34)

Here G is the pseudoparticle Green function, g is the Green function of the isolated

system, and Σ is self-energy introducing coupling between the system and baths. Note

that matrix representation in 6.34 is in both contour variables and many-body states of

the system.59 For example,

G(E) =

Gc(E) G<(E)

G>(E) Gc̃(E)

 (6.35)

sistent in treating this coupling.51
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where Gc,<,>,c̃(E) are Fourier transforms of the casual, lesser, greater, and anti-casual

projections of the pseudoparticle Green function represented only in the basis of many-

body states of the system.

The physically relevant subspace of the formulation is introduced by the normal-

ization condition (see eq 13 of the paper). Technically this constraint is imposed by either

a Lagrange multiplier60,61 or an operator delta function.58,62 In the physical subspace,

equations of motion (EOMs) for the lesser and greater projections of the pseudoparticle

Green function are decoupled with G> and G< restricted to Q = 0 and Q = 1 subspaces,

respectively. As a result Green functions of the physical properties, eqs 6.32 and 6.33,

belong to physical subspace, as it should be. Also this constraint leads to58

G>(E) = 2i Im [Gr(E)] (6.36)

Below we treat the system-bath coupling in the non-crossing approximation,

which corresponds to effective (dressed) second order in this interaction, and enforces

additive structure of the self-energy in coupling to different baths.

At nonequilibrium steady-state one has to calculate two independent contour

projections of a Green function to get full information on the state of the system. We

employ retarded and lesser projections the pseudoparticle Green function (see eq 14 of

the paper). After enforcing the physical subspace constraint (see eq 13 of the paper)

Fourier transform of the Dyson equation, eq 6.34, for the two projections is8

Gr(E) = [EI−HM − Σr(E)]−1 (6.37)

G<(E) =Gr(E) Σ<(E) Ga(E) (6.38)

8In eqs 6.37 and 6.38 Hamiltonian, Green functions and self-energy are matrices in the system many-
body basis {|m〉}.
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where

Σ
r/<
mm′(E) =

∫ +∞

−∞

dE1

2π

∑
m1,m2

Gr/<m1m2
(E1)× ∑

K=L,R

(
ΞKmm1,m′m2

F
>/<
K (E − E1) + ΞKm2m′,m1mF

</>
K (E1 − E)

)
+Φmm1,m′m2B

>/<(E − E1) + Φm2m′,m1mB
</>(E1 − E)

]
(6.39)

are retarded/lesser projections of the self-energy. Here

ΞKm1m2,m′
1m

′
2
(E) ≡

∑
s1,s2∈{g,e}

ξcKs1m1m2
ΓKcKs1,cKs2(E)

∗
ξcKs2
m′

1m
′
2

(6.40)

Φ(E) ≡
∑

K1,K2∈{L,R,M}

χK1
m1m2

γK1K2(E)
∗
χK2

m′
1m

′
2

(6.41)

describe coupling to the contacts (eq 7 of the paper) and the radiation bath (eq 8 of the

paper). ξcKsm1m2
and χKm1m2

are defined in eq 12 of the paper with Ôν = ĉcKs and b̂K ,

respectively,

ΓKcKs1,cKs2(E) ≡
∑
κ∈K

Vs1κ Vκs2δ(E − εκ) (6.42)

γK1K2(E) ≡
∑
α

WK1αWαK2δ(|E| − ωα) (6.43)

are matrices introducing escape rates into the contacts and dissipation.9 F<K (E) = fK(E)

and F>K (E) = 1−fK(E) are defined by the Fermi distribution of electrons in the contacts

fK(E) ≡ [e(E−µK)/T + 1]−1; B<(E) = Nω0(E) and B>(E) = 1 + Nω0(E) (here E > 0,

for E < 0 B>/<(E) = B</>(−E)) are defined by the laser induced mode population,

(see eq 11 of the paper). Eqs 6.37 and 6.38 have to be solved self-consistently, since the

pseudoparticle self-energies depends on the pseudoparticle Green’s functions.

Detailed derivations of the expressions presented in eqs 6.37-6.39 can be found

in Appendixes A and B of Ref.51

9Following Ref.46 below we employ a wide band approximation for which Γ and γ do not depend on
energy. We also assume the matrices to be diagonal.
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6.6.4 Quadrupole contribution to plasmonic absorption spectrum
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Figure 6.5: Plasmon absorption spectrum Iabs(ω0)/γN0δ (see Eq.(10) of the paper),

at equilibrium with (dash-dotted line, red) and without (solid line, blue) quadrupole

contribution. Calculations use parameters of Ref.46

6.5 compares the plasmonic absorption spectrum, calculated for the parameters

utilized in the paper within the pseudoparticle NEGF formalism, with (dash-dotted line)

and without (solid line) quadrupole contribution. One sees that the main difference be-

tween the two spectra is the appearance of an additional feature to the right of the

plasmonic dipole resonance. The Fano factor, whose physics we study, is almost not af-

fected. Thus for simplicity we do not include the quadrupole contribution in calculations

performed in the paper.
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We present a formulation of Raman spectroscopy in molecular junctions, based

on a many-body state representation of the molecule. The approach goes beyond the

previous effective single orbital formalism, and provides a convenient way to incorporate

computational methods and tools proven for equilibrium molecular spectroscopy into

the realm of current carrying junctions. The presented framework is illustrated by first

principle simulations of Raman response in a three-ring oligophenylene vinylene termi-

nating in amine functional groups (OPV3) junction. The calculated shift in Stokes lines

155



156

and estimate of vibrational heating by electric current agree with available experimental

data. In particular our results suggest that participation of the OPV3 cation in Raman

scattering under bias may be responsible for the observed shift, and that the direction of

the shift depends on renormalization of normal modes. This work is a step toward atom-

istic quantum ab initio modeling of the optical response of nonequilibrium electronic

dynamics in molecular junctions.
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7.1 Introduction

Molecular electronics promises to harness electronic functionality over an area of

no more than a few molecules thus approaching the fundamental size limit of molecular

electronic devices.1 Our progress in this field is subject to the availability of advanced

fabrication technologies and experimental capabilities to precisely characterize the struc-

ture and monitor the underlying fundamental electronic dynamics. The first observa-

tion of Raman spectroscopy enhancement for molecules chemisorbed on metal surfaces

(SERS),2,3 has manifested an important optical tool for single molecule detection.4,5

Since then the field has progressed rapidly.6–9 SERS is known to be dominated by hot

spots (areas of particularly strong electromagnetic field enhancement).10 The ability to

produce nanometer scale gaps in metal junctions11–13 paved the way for the application

of SERS in molecular electronics as diagnostic and control tool.14–16 In particular, Ra-

man spectroscopy was used to estimate bias induced vibrational and electronic heating

in molecular junctions,17–19 to reveal the structure of single-molecule junctions,20–23 and

to estimate orientation of a molecule in junction.24,25 Correlations between the Raman

signal and conductance, due to junction dynamics, suggest the possibility to characterize

electronic dynamics by optical means.18,26,27

Experimental advances have driven theoretical interest in this field. Several the-

oretical approaches have been put forward to analyze and explain existing data as well

as to propose future experiments.15,28 In particular, in our previous publications we

combined a nonequilibrium Green’s function description of quantum transport with a

generalized scattering theory of the Raman flux, thus providing the first theoretical de-

scription of Raman scattering in such systems. Within simple models we applied the

theory to study bias induced vibrational29,30 and electronic31,32 heating, charge trans-

fer contribution to SERS,33 and time-dependent correlations between conductance and

Stokes signal.26,34–36

To this point existing studies of Raman scattering under nonequilibrium elec-

tronic conditions have utilized a noninteracting orbital-based approach (a single-electron

mean-field picture), which becomes inadequate in the presence of strong interactions (e.g.

molecule-plasmon coupling) in the system.37 On the other hand only ab inito simula-

tions based on equilibrium theory of Raman scattering, were reported in the literature for
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molecules adsorbed on metal surfaces21,38–44 and in junctions.45–47 This necessitates the

need for theoretical techniques enabling modeling of optical response of nonequilibrium

electronic system in molecular junctions using advanced quantum-chemical methods able

to describe the underlying many-body physics.

Here we present a pseudoparticle nonequilibrium Green function (PP-NEGF)

formulation for Raman scattering probes in current carrying molecular junctions, and

apply it to first principle simulations of Raman scattering in an OPV3 junction (see

Figure 7.1). This molecular system has been used in Raman spectroscopy experiments.19

The study is the first attempt of ab initio simulation within a nonequilibrium theory of

Raman scattering. Our eventual goal is a realistic description of optical response in

junctions, where the PP-NEGF molecular Raman scattering (presented here) should be

accompanied by PP-NEGF description of interactions with plasmon excitations in the

contacts (as presented in ref.37).

We stress that the PP-NEGF (many-body states) approach introduced here is

fundamentally different from the quasiparticles (single-particle orbitals) considerations

in our previous publications [26,29-36]. As a formulation based on the many-body states

representation, the PP-NEGF allows one to account for all the intramolecular interac-

tions exactly. It also provides a possibility of formulation in the language of vibronic

(dressed) states. Note that while standard (Redfield) quantum master equation in prin-

ciple can also account exactly for the intramolecular interactions, it is applicable only

in the unphysically low temperature regime (kBT � Γ)48 and in the absence of degen-

eracies in the system.49 It also completely misses hybrydization between molecule and

contacts,50 which results in qualitative failures.51 The PP-NEGF approach to Raman

scattering is an important theoretical advancement, because it provides a convenient

way to incorporate tools of quantum chemistry and equilibrium molecular spectroscopy

(traditionally formulated in the language of many-body states of an isolated molecule)

into the realm of current carrying junctions.
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Figure 7.1: A three-ring oligophenylene vinylene terminating in amine functional

groups (OPV3) molecule. Shown are (a) molecular structure and normal modes of neu-

tral OPV3 at frequencies (b) 1199 cm−1 and (c) 1608 cm−1. Created by GaussView

5.

7.2 Model and Method

We consider a molecule, M , bridging two metal electrodes, and subjected to an

external laser radiation, rad. The electrodes act as electronic, L and R, and thermal, B,

reservoirs, each at its own equilibrium. The Hamiltonian of the junction is

Ĥ = ĤM +
∑

K=L,R,B,rad

(
ĤK + V̂K

)
(7.1)

Here we represent the molecular Hamiltonian ĤM in terms of many-body states |S〉 of

the molecule

ĤM =
∑

S1,S2∈M
H

(M)
S1S2

X̂S1S2 (7.2)

while the Hamiltonians of the baths are expressed within second quantization

ĤL(R) =
∑

k∈L(R)

εk ĉ
†
k ĉk, ĤB =

∑
β∈B

ωβ b̂
†
β b̂β,

Ĥrad =
∑
α

ναâ
†
αâα,

(7.3)
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where X̂S1S2 ≡ |S1〉〈S2| is a Hubbard (projection) operator, and ĉ†k (ĉk), b̂
†
β (b̂β), and

â†α (âα) create (annihilate) an electron in the contacts L and R, phonon in the thermal

bath B, and photon of radiation field rad, respectively. Finally, V̂L(R), V̂B, and V̂rad in

Eq.(7.1) describe single electron, phonon, and photon transitions between the molecule

and baths

V̂K =
∑

S1,S2∈M
q∈K

(
V

(K)
S1S2,q

X̂†S1S2
Ôq +H.c.

)
(7.4)

Here Ôq = ĉk, b̂β, and âα for K = L(R), B, and rad, respectively. Below we uti-

lize molecular vibronic states |Sm〉 = |em, v(m)
ν 〉 ≈ |em〉 |v(m)

ν 〉 as many-body basis, so

that H
(M)
S1S2

= δS1,S2 ES1 , V
(L(R))
S1S2,k

= Ve1e2,k 〈v
(1)
ν1 |v

(2)
ν2 〉, V

(B)
S1S2,β

= δe1,e2Wν
(1)
1 ν

(1)
2 ,β

, and

V
(rad)
S1S2,α

= −~µe1,e2 ~Eα 〈v
(1)
ν1 |v

(2)
ν2 〉. Here ~µe1,e2 is the electronic transition dipole moment,

~Eα is amplitude of the radiation field mode α, and 〈v(1)
ν1 |v

(2)
ν2 〉 are overlap integrals of

the vibrational wave functions for electronic (L(R)) and optical (rad) transitions. Cor-

responding Franck-Condon factors are evaluated following the method by Ruhoff and

Ratner.52,53

An expression for Raman scattering in current-carrying junctions was first de-

rived considering an outgoing photon flux caused by a coherent photon scattering from

an occupied initial, α = i, to an empty final, α = f , mode of radiation field.30 The

derivation was performed using a noninteracting orbital-based representation. Here we

develop a desirable generalization to the many-body molecular basis {|S〉} by invoking

the PP-NEGF method.54–57 Within this approach one can introduce pseudoparticle op-

erator, d̂†S , that creates the molecular many-body state |S〉 by acting on vacuum state,

|S〉 = d̂†S |0〉. The methodology is identical to the second quantization. However, it is for-

mulated in an extended Hilbert space, whose physically relevant subspace is defined by a

normalization condition
∑

S d̂
†
S d̂S = 1. In the extended Hilbert space the nonequilibrium

pseudoparticle Green function

GS1S2(τ1, τ2) = −i〈Tc d̂S1(τ1) d̂†S2
(τ2)〉 (7.5)

satisfies the usual Dyson equation. Restricting the latter to the physical subspace results

in a coupled system of equations for projections of the Green function (see e.g. ref.56 for
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details).

Following the line of argument of ref.30 and assuming no charge transfer (CT)

contribution, an expression for intramolecular Raman flux which starts in a ground

molecular state |g〉 and proceeds via set of excited states {|x〉}, is given by (see Supporting

information for derivation details) 1

J(t) = 2Re
∑

gi,x1,x2,gf
ḡi,x̄1x̄2,ḡf

ζgi

∫ t

−∞
dt′
∫ t

−∞
dt1

∫ t′

−∞
dt2

Π<
gix1,ḡix̄1(t1 − t2) Π>

gfx2,ḡf x̄2
(t′ − t) (7.6)

G>x̄1x̄2(t2, t
′)G>ḡfgf (t′, t)G>x2x1(t, t1)G<giḡi(t1, t2)

where ζgi = 1 (−1) when state |gi〉 is of Fermi (Bose) type, G≷
S1S2

(t1, t2) are greater/lesser

projections of the Green function (7.5), Π≷ are greater/lesser projections of the self-

energies due to coupling to radiation field. The Fourier transforms of the latter are37

Π>
gx,g′x′(ω) ≡− iΩgx,g′x′(ω) [1 +N(ω)]

Π<
gx,g′x′(ω) ≡− iΩgx,g′x′(ω)N(ω)

(7.7)

where Ωgx,g′x′(ω) ≡ 2π
∑

α V
(rad)
gx,α V

(rad)
α,g′x′δ (ω − να) and N(ω) ≡ 1

π
γ2

(ω−νi)2+γ2
with νi being

the frequency of the incoming laser radiation, γ - laser bandwidth, and N(ω) character-

izing the laser resolution. Note that Eq.(7.6) is an expression for ‘the normal Raman

process’ as discussed in refs.29,30 Note also that it is a time-dependent generalizaton

similar to the CT-Raman consideration of refs.34,35 At steady-state Eq.(7.6) becomes

1Our consideration is an extension to nonequilibrium of the ideas of atomic limit formulations, where
the starting point of treatment is an isolated system, and coupling between the system and baths in
taken into account within a perturbation theory. Thus ground and excited states used in the formulation
are the many-body states of the isolated molecule.
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J =
∫ dωf

2π J(ωf ) with

J(ωf ) = −
∑

gi,x1,x2,gf
ḡi,x̄1x̄2,ḡf

ζgi

∫
dωi
2π

∫
dEi
2π

∫
dEf
2π

(7.8)

2πδ(ωi + Ei − ωf − Ef ) Π<
gix1,ḡix̄1(ωi) Π>

gfx2,ḡf x̄2
(ωf )∫

dEx̄
2π

∫
dEx
2π

G>ḡfgf (Ef )G>x̄1x̄2(Ex̄)G>x2x1(Ex)G<giḡi(Ei)

[ωi + Ei − Ex̄ − iη][ωi + Ei − Ex + iη]

where η → 0+ is an infinitesimal real number, δ(. . .) is the Dirac delta function. Expres-

sion (7.8) is convenient to use for numerical simulations as described below.
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Figure 7.2: The Stokes peak, Eq.(7.8), versus Raman shift for several source-drain

biases, Vsd. Shown are results for molecular vibrational modes at (a) 1199 and (b)

1608 cm−1. See text for parameters used for simulations.
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7.3 Numerical results

We apply the method introduced above to an OPV3 junction (see Figure 7.1a),

which was the focus of recent Raman measurements.19 We chose parameters to be repre-

sentative of a realistic experimental situation. Following refs.58–60 we assume that at low

bias the main contribution to conductance comes from neutral (N) and cation (C) states

of OPV3, and that EeN −EeC −EF = 0.05 eV61,62 (here EeN , EeC , and EF are electronic

energies of neutral and cation OPV3 species, and the Fermi energy, respectively). The

electron escape rates to the contacts, ΓL(R) ≡ 2π
∑

k∈L(R)|VCN,k|2δ(E−εk), are taken as

15 meV in agreement with experimental estimate.63 Molecular vibrations are modeled

as harmonic oscillators (normal modes specific for cation and neutral molecule). The

dissipation matrix for the vibrations due to coupling to thermal bath is assumed to be

diagonal, ΓB
v(m)v(m)+1,v(m)v(m)+1

≡ 2π
∑

β∈B|Wv(m)v(m)+1,β|2δ(ω − ωβ), and the rates are

2.5 meV. The laser field is assumed to be polarized along the principle axis of the OPV3

molecule. The intensity of the field is Ei ∼ 1010 V/m, its frequency is νi = 1.4 eV, and

laser bandwidth γ = 1 meV. Temperature in the contacts is taken as 100 K.

Calculations were preformed on an adjustable energy grid.

Parameters of electronic and vibrational structure of the isolated molecule (ground

and excited state electronic energies, normal mode frequencies and electronic transition

dipole moments of neutral and cation species) were computed with Density Functional

Theory (DFT) and Time Dependent DFT (TDDFT) methodologies.64,65 For all calcu-

lations we use the B3LYP hybrid-functional with a 3-21+G basis set as implemented in

the Gaussian’09 software package.66

Figure 7.2 shows the Stokes shift of two Raman active normal modes. For the

neutral OPV3 these modes are at 1199 and 1608 cm−1 with displacements schematically

shown in Figs. 7.1b and c. Oxidation of the molecule leads to shift of the modes to 1211

and 1577 cm−1, respectively. Under finite bias both neutral and cation species contribute

to the total Raman signal, with the latter contribution becoming more pronounced at

higher bias. Correspondingly, the Stokes peak shifts to higher or lower frequencies for

the two modes. Note that calculation in Figure 7.2a employs νi = 1.2 eV as frequency of

the laser field. Note also that the shift for the mode at 1608 cm−1 (see Figure 7.2b) was

observed experimentally16,19 and discussed theoretically within a perturbation theory
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analysis of electron-vibration coupling.67 At finite bias charge transfer between the

molecule and contacts induces dissipation in the ground states of the neutral and cation

species, which leads to broadening of the peaks. We note that the PP-NEGF approach is

especially convenient for describing this system since it easily accounts for the different

vibrational frequencies of the neutral and cation species while retaining information on

mixture of molecular states with those of the contacts. This allows for high accuracy

treatment of the electron-vibration coupling in junction which goes far beyond usual

considerations within perturbation theory.37,56
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Figure 7.3: Bias induced vibrational heating. Shown are (a) the anti-Stokes peak,

Eq.(7.8), of molecular vibration at 1199 cm−1 versus Raman shift for several source-

drain biases, Vsd; (b) Effective temperature versus applied bias for molecular vibrational

modes at 1608 cm−1 (squares, blue) and 1199 cm−1 (circles, red). See text for parameters

used for simulations.

Dependence of the anti-Stokes peak on bias is shown in Figure 7.3a. In addition to

the shift of the peak position, as discussed above, heating of the vibration by electric flux
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results in an increase of the anti-Stokes peak amplitude at higher bias, as is observed in

the experiment.19 It is interesting to note that the shift in the anti-Stokes line is smaller

than that of the Stokes peak. While in general there are a number of reasons for such

shifts (for example, Stark effect or shift of the line induced by the molecule-contacts

hybridization), here we argue that the main contribution comes from renormalization

of molecular vibration under oxidation. Thus the shift under bias is defined by relative

contributions from neutral molecule and cation to the total Raman signal. In a simplified

way these contributions to Stokes and anti-Stokes lines are proportional to populations

of the ground and excited states of the to species, respectively. Bias induced transfer of

electronic population probability from vibronic states of neutral molecule to those of the

cation is proportional to corresponding Franck-Condon factors. The latter are stronger

for the ground state (see Supporting Information), which results in more pronounced

shift in the Stokes line. We note that different shift of the Stokes and anti-Stokes lines

with bias is consistent with the experimental data (see Figure 3b in ref.19).

While the temperature of nonequilibrium system is not defined, notion of “effec-

tive temperature” is often utilized in experiments to characterize extent of bias induced

heating in the molecule.17–19 In particular, effective vibrational temperature, describing

the extent of vibrational excitation by electron flux, may be estimated from spectroscopic

data utilizing ratio of anti-Stokes to Stokes peaks as

J(νi + ωv)/J(νi − ωv) ≈ e−~ωv/kBTeff (7.9)

(here ωv is frequency of the normal mode of the neutral molecule). Figure 7.3b displays

result of this estimate. Note that the calculated effective temperature is in agreement

with the experimental data (compare with Figure 3a in ref.19).

7.4 Conclusion

In conclusion, we presented a pseudoparticle formulation for Raman spectroscopy

in molecular junctions. This framework allows us to describe open nonequilibrium molec-

ular system in the language of many-body states of the isolated molecule. The method

treats all intramolecular interactions exactly, while also keeping the information on hy-



166

bridization between molecular states and those of the contacts, and on the nonequilibrium

electronic population in the molecule. We further applied this methodology to simulate

the Raman response of the OPV3 molecular junction under bias, where high quality ex-

perimental data recently became available. Parameters of the electronic and vibrational

structure of the molecule were obtained from DFT and TDDFT quantum-chemical cal-

culations and from experimental data. Our modeling results demonstrate a shift to lower

frequencies and broadening of the Stokes line, reproducing the experimental trends. We

argue that such a shift may be caused by the cation contribution to Raman scattering,

and that in principle also a shift of the line to higher frequencies may be observable.

Our estimate of vibrational heating caused by electric current is also in agreement with

experimental data. Thus presented PP-NEGF methodology provides a convenient way

to incorporate electronic information obtained for an isolated molecule in equilibrium

with convectional quantum-chemical tools to simulate nonequilibrium dynamics of cur-

rent carrying junctions. We believe that the developed method constitutes an important

step towards full ab initio calculations of optical response in molecular junctions.

Supporting Information

Derivation of Eq. (7.6) and computational details (OPV3 chemical and electronic

structure, and information on normal modes) are provided in the Supporting Informa-

tion. This material is available free of charge via the Internet at http://pubs.acs.org.
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7.5 Supporting Information

7.5.1 Derivation of the PP-NEGF expression for Raman flux

In the derivation of the expression we follow ref.30 by separating the modes of the

radiation field into initial (or pumping) and final (or absorbing) with the former being

populated, while the latter empty. We note in passing that this is also the way expres-

sion for Raman spectroscopy is derived in the equilibrium molecular spectroscopy.68 In

reality both are the modes of the same radiation bath with the initial modes being those

populated, while the final are the empty ones.

Figure 7.4: Flux diagrams. Shown are (a) general flux diagram and (b) possible

flux diagrams in the fourth order perturbation theory in coupling to the radiation bath

within the non-crossing approximation. Directed solid line (black) represents dressed

pseudoparticle Green function, Eq.(6) of the paper. Non-directed zigzag lines stand for

the self-energy due to coupling to radiation bath, Eq.(8) of the paper. Both directions

have to be considered for the non-directed zigzag lines. We distinguish interactions with

filled initial (red line, squares) and empty final (blue line, circles) modes of the field.

The starting point is writing an expression for the photon flux coming from the

system into the empty final modes. The expression is written first by considering the total

flux between system and radiation bath, and then keeping only the out-scattering (system

to bath) part of it, i.e. the part given by the greater projection of the corresponding

self-energy. The diagram responsible for the total flux between system and radiation

bath is shown in Figure 7.4a (see ref.56 for details).

Next we consider second order in coupling to the initial (filled) modes of the

radiation field. Within the non-crossing approximation56 the only two possible diagrams
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are shown in Figure 7.4b. Note that only self-energies due to coupling to the radiation

bath (wavy lines) are shown in the diagrams explicitly. In reality interactions with

contacts and thermal bath also results in corresponding self-energies. The latter are not

shown explicitly, and pseudoparticle Green functions (directed solid lines) are assumed

to be dressed in these interactions. As usual, summation over all indices and integration

over contour variables is assumes for every connection (circle or square) in the diagrams

except the circled connection, where an assigned time t corresponds to the time at which

the outgoing flux is calculated.

Finally, we are interested in the ‘normal Raman’ flux, that is the Raman scat-

tering process which starts in a ground molecular state and proceeds via set of excited

states. This is the main contribution to the Raman process in molecular junctions at

low bias, when excited states cannot be populated by electron transfer from contacts.

The contour projection relevant for the process is given in Figure8a of ref.30 Also as

discussed in ref.54 when taking the projection we have to keep only contributions with

single lesser pseudoparticle Green function. This guarantees that the resulting expres-

sion is bound to the physical subspace of the extended Hilbert space of the PP-NEGF.

Projecting diagrams of Figure 7.4b within physical subspace, and keeping only greater

projection for the self-energy due to coupling to final modes (blue line, circle) and lesser

projection for the self-energy due to coupling to initial modes (red line, square) leads to

Eq.(7) of the paper.

7.5.2 Computational details

Here we provide information on electronic structure calculations of the OPV3

molecule. Figure 7.5 shows atoms displacements related to the two normal modes, which

were used in the Raman spectra analysis, and for which experimental data is available.

Information on Raman active vibrational modes is provided in Table 7.1. Franck-Condon

integrals between the states included in the calculations are listed in Table 7.2.
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Figure 7.5: The normal modes of neutral OPV3 molecule at frequencies 1199 cm−1

(top) and 1608 cm−1 (bottom). Created by GaussView 5.

Table 7.1: Energies of the Raman active vibrational modes (cm−1)

Mode Neutral Cation Neutral Cation

# Ground Ground Excited Excited

(Eex = 2.9 eV) (Eex = 1.1 eV)

(µx = 5.2 a.u.) (µx = 4.6 a.u.)

8 136 138 136 138

70 1174 1184 1171 1175

72 1199 1211 1214 1191

82 1316 1350 1326 1334

88 1398 1396 1390 1391

100 1609 1577 1573 1552

101 1630 1592 1609 1557

102 1637 1638 1622 1624

104 1673 1645 1634 1637
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Table 7.2: Franck Condon Integrals of included states (cm−1)

Initial Final Franck-Condon

State State Integral

Cation Ground Neutral Ground -

0 0 0.3087

0 n72 = 1 -0.1072

0 n72 = 2 0.0248

0 n100 = 1 -0.1320

0 n100 = 2 0.0416

n72 = 1 0 0.1157

n72 = 1 n72 = 1 0.2537

n72 = 1 n72 = 2 -0.1351

n72 = 2 0 0.0315

n72 = 2 n72 = 1 0.1449

n72 = 2 n72 = 2 0.2059

n100 = 1 0 0.1181

n100 = 1 n100 = 1 0.2216

n100 = 1 n100 = 2 -0.1486

n100 = 2 0 0.0298

n100 = 2 n100 = 1 0.1345

n100 = 2 n100 = 2 0.1548

Cation Ground Cation Excited -

0 0 0.9577

0 n70 = 1 0.0294

0 n72 = 1 0.0337

n72 = 1 0 -0.0312

n72 = 1 n70 = 1 0.4691

n72 = 1 n72 = 1 0.8024

n72 = 2 0 0.0062

n72 = 2 n70 = 1 -0.0214

n72 = 2 n72 = 1 -0.0368

n100 = 1 0 -0.0358

n100 = 2 0 -0.01073

Neutral Ground Neutral Excited -

0 0 0.4471

0 n8 = 1 -0.3230

0 n82 = 1 0.0960

0 n88 = 1 -0.1333

0 n101 = 1 0.2132

0 n102 = 1 0.1336
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Table 7.2 Continued: Franck Condon Integrals of included states (cm−1)

Neutral Ground Neutral Excited -

0 n104 = 1 0.1111

0 n8 = 2 0.1689

0 n8 = 1, n82 = 1 -0.0738

0 n8 = 1, n102 = 1 -0.1009

0 n8 = 1, n104 = 1 -0.0831

0 n82 = 1, n101 = 1 0.0545

0 n101 = 1, n102 = 1 0.0673

n72 = 1 0 -0.1764

n72 = 1 n8 = 1 0.1345

n72 = 1 n82 = 1 0.3690

n72 = 1 n8 = 2 -0.0725

n72 = 1 n8 = 1, n82 = 1 -0.2706

n72 = 1 n82 = 1, n101 = 1 0.1873

n100 = 1 0 -0.2155

n100 = 1 n8 = 1 0.1633

n100 = 1 n88 = 1 0.0858

n100 = 1 n101 = 1 0.0552

n100 = 1 n102 = 1 0.2456

n100 = 1 n104 = 1 0.1855

n100 = 1 n8 = 2 -0.8744

n100 = 1 n8 = 1, n102 = 1 -0.1792

n100 = 1 n8 = 1, n104 = 1 -0.1356

n100 = 1 n101 = 1, n102 = 1 0.1677

n72 = 2 0 0.0468

n72 = 2 n8 = 1 -0.0370

n72 = 2 n82 = 1 -0.2225

n72 = 2 n8 = 2 0.0206

n72 = 2 n8 = 1, n82 = 1 0.1688

n72 = 2 n82 = 1, n101 = 1 -0.0510

n100 = 2 0 0.0745

n100 = 2 n8 = 1 -0.0579

n100 = 2 n88 = 1 -0.0367

n100 = 2 n101 = 1 -0.0754

n100 = 2 n102 = 1 -0.1946

n100 = 2 n104 = 1 -0.1486

n102 = 1 n8 = 2 0.0318

n100 = 2 n8 = 1, n102 = 1 0.1465

n100 = 2 n8 = 1, n104 = 1 0.1121

n100 = 2 n101 = 1, n102 = 1 0.0329
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Chapter 8

Conclusion

We introduced the pseudoparticle NEGF approach for calculating inelastic trans-

port in molecular junctions. The PP-NEGF method is especially convenient when there

is strong or nonlinear electron-vibration coupling. Our approach is a generalization of

the exact-mapping technique bu Bonc̆a and Trugman, when many-body character of the

electronic system in the junction is fully taken into account. We demonstrate the ability

of the method to go beyond the Born-Oppenheimer approximation regime. In particular,

within simple models we study the interaction of a molecular vibration and conducing

electron when the frequency of the vibration approaches intra-molecular Rabi frequency.

We compared approximate semi-classical, kinetic schemes with full quantum cal-

culations for the dynamics of a model molecular redox junction. The redox junction

consists of two conducting channels with vastly different coupling to electron reservoirs,

one channel representing the redox site of the molecule, while the other models a current

carrying channel. The two channels are coupled capacitively by Coulomb repulsion. We

show that taking into account relative values of the intra-molecular and bath characteris-

tic timescales, different semi-classical formulations are possible. These formulations work

very well within their timescale regimesm and away from resonance. Absence of clear

timescale separation at resonant tunneling (where electronic correlations are important)

necessitates a fully quantum description of the model.

We study the role of coherence in correlated electronic energy and electron trans-

fer of molecular junction systems. Correlation between electron and energy transfer is

seen in a model bridge system with two interfering paths. The bridge is designed to max-
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imize energy transfer due to constructive interference while minimizing electron trans-

fer due to destructive interference. Introducing decoherence into the system initially

increases current while decreasing energy transport. Surprizingly, further increase of

decoherence rate to the order of the electronic hopping parameter results in an increase

in energy transport. This effect may be due to competition between energy and charge

transport on the same electronic population in the LUMO of the bridge molecule, where

an increased localization of the charge in the LUMO increases the efficiency of incoherent

energy transfer. We also discuss the possibility of charge-energy transport separation in

a molecular switch, showing that by tuning the pumping laser field parameters the fluxes

can be directed towards spatially separated terminals. This observation may be relevant

to constructing low-heating molecular devices, which would require a technically similar

consideration of propagation of vibrational excitation in junctions.

In the remaining chapters we focused on the continuing goal of calculating the

optical response of molecular junctions. We use the method described in Sec 1.3 and

consider a simple model of a molecular junction driven by an external chirped elec-

tromagnetic pulse. Using the finite difference time domain technique we calculate the

local field of the junction resulting from surface plasmon-polaritons excitations of the

contacts. We also take into account the molecular contribution to the local field. In

particular, we show that for laser field frequencies shorter (longer) than the molecular

excitation energy the local surface plasmon-polariton field is quenched (enhanced) by

the molecular response. This results in significant changes to the transport properties

of the junction, demonstrating that the molecular contribution to the formation of the

local field is crucial for proper description.

The plasmon-enhanced electric field was considered to be completely classical,

while the model molecule was treated quantum mechanically.We consider the case when

the interaction between the surface plasmon-polaritons and the molecular excitations is

strong and must be considered entirely quantum mechanically. We introduce system

states of the molecule, dressed with the plasmonic excitations, whose interaction can be

treated exactly within the PP-NEGF methodology. Within toy models of a single molec-

ular excitation, or two interacting molecular excitations, interacting with two plasmonic

nanoparticles we demonstrate the effect of electronic conduction on the plasmonic ab-
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sorption spectrum. In particular we consider non-linear effects and suggest the possibility

of direct measurement of intramolecular energy transfer rates in molecular dimers.

We apply the PP-NEGF method to nonequilibrium Raman scattering in molecu-

lar junctions. We demonstrate that the PP-NEGF approach is suitable for incorporating

quantum chemistry calculations into the nonequilibrium Raman scattering calculations.

We calculate the Raman spectrum for the OPV3 molecule as a function of bias and

compare the results to experimental data. We argue that observed and calculated shift

in Stokes peak is due to contribution of the cation OPV3 species to the Raman spectrum

under bias. Additionally our estimate of current induced vibrational heating is also in

agreement with the experimental results. This is an important first step towards full ab

initio calculations of optical response in molecular junctions.

In the future atomistic, ab initio, calculations of the entire process of the opti-

cal response of the nonequilibrium electronic dynamics in molecular junctions may be

required. This would involve combining the methods shown in chapters 5-7, or similar

methods, i.e. the FDTD process to propagate surface plasmon-polariton excitations,

with quantum description of the plasmon-molecular excitation interaction and optical

scattering process. This would require development of a method for combining quantum

mechanical fluxes with classical electrodynamics, i.e. an electric field, and partitioning

of the problem into quantum and classical partitions. Additionally, generalization of

the expression of the Raman scattering consideration in chapter 7 may be necessary to

understand the role of coherent electron transfer-Raman scattering processes. Future

ab initio calculations for Raman scattering in molecular junction should be improved

to include metal atoms of the contacts, electric field due to bias, and more accurate

electronic structure methods.




