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ABSTRACT
The characterization of heat and momentum fluxes in wall-bounded turbulence is of paramount importance for a plethora of applications
ranging from engineering to Earth sciences. Nevertheless, how the turbulent structures associated with velocity and temperature fluctuations
interact to produce the emergent flux signatures has not been evident until now. In this work, we investigate this fundamental issue by
studying the switching patterns of intermittently occurring turbulent fluctuations from one state to another, a phenomenon called persistence.
We discover that the persistence patterns for heat and momentum fluxes are widely different. Moreover, we uncover power-law scaling and
length scales of turbulent motions that cause this behavior. Furthermore, by separating the phases and amplitudes of flux events, we explain the
origin and differences between heat and momentum transfer efficiencies in convective turbulence. Our findings provide a new understanding
of the connection between flow organization and flux generation mechanisms, two cornerstones of turbulence research.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0027168., s

I. INTRODUCTION

The ensemble averaged vertical turbulent fluxes of momen-
tum or heat are expressed as the covariance between the vertical
and streamwise velocity fluctuations (u′w′) or between the verti-
cal velocity and temperature fluctuations (w′T′). The primes in the
flux expressions denote the turbulent fluctuations in the stream-
wise velocity (u′), vertical velocity (w′), or temperature (T′). The
overline symbol indicates the average over several ensemble mem-
bers. For practical purposes, such an ensemble average is replaced
by the average over time or space by applying the ergodic hypothe-
sis.1 In turbulent flows, these fluxes quantify the amount of heat or
momentum being transported from (to) the surface to (from) other
locations. The sign convention dictates that the positive or nega-
tive values of the fluxes denote the direction of the transport from
or toward the surface. The estimation of these fluxes has numerous
uses, such as in wall-bounded turbulent flows, the momentum trans-
port toward the wall is related to surface drag, which determines the
power requirements and efficiencies in many engineering applica-
tions.2,3 Additionally, in the geophysical context, these fluxes quan-
tify the surface-atmosphere momentum and heat exchanges, which
eventually drive the Earth’s climate.4,5 Therefore, it is of paramount

importance to develop a comprehensive understanding of the tur-
bulent generation mechanisms of the heat and momentum fluxes.
Since the flux computation involves the product of two turbulent
quantities, a fundamental research question is how do the turbulent
structures (of different time or length scales) associated with the veloc-
ity and temperature fluctuations interact to produce the momentum
and heat flux signatures?

The common method of describing the fluctuation character-
istics and the associated fluxes, corresponding to the different scales
of the turbulent motions, is the spectral approach.6 However, a land-
mark study by Kline et al.7 noted that the transport of momen-
tum in wall-bounded shear flows was not a continuous process,
as assumed by the spectral analysis. Instead, they found that the
intermittent ejections of low-momentum fluid parcels from the wall
(u′ < 0 and w′ > 0) accompanied with the sweeps of high-momentum
fluid toward the wall (u′ > 0 and w′ < 0) were responsible for
the generation of the momentum flux. Subsequently, to diagnose
the intermittent signatures of the ejection and sweep motions and
estimate their contributions toward the momentum flux, a con-
ditional sampling technique named quadrant analysis was intro-
duced.8–10 In addition to quadrant analysis, a few studies also noted
that the ejection and sweep motions in wall-bounded turbulent
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flows occurred with a range of different time scales as more often
than not they switched irregularly from one quadrant state to the
other.11–13 While evaluating the statistical characteristics of these
time scales, Rao, Narasimha, and Badri Narayanan11 and Alfreds-
son and Johansson12 found that the mean time scales of the burst
events (sequence of ejections exceeding a certain threshold) in the
near-wall region were influenced by both the small and large scale
motions.

Such results were intriguing, considering their relevance to the
connection between the turbulent structures of different time scales
and the intermittent generation of the momentum fluxes. Never-
theless, a detailed treatment of the time scale distribution of the
flux-carrying motions was severely lacking.14 To tackle this prob-
lem, Kailasnath and Sreenivasan15 demonstrated that the probability
density functions (PDFs) of the time scales of the turbulent motions
contributing to the momentum flux can be systematically studied by
exploring the zero-crossing properties of the instantaneous u′w′ sig-
nal. Their method was inspired by the results of Sreenivasan, Prabhu,
and Narasimha16 where the PDFs of the time intervals between the
zero-crossings of the turbulent fluctuations were used to probe the
distribution of time scales in a wall-bounded flow. In the parlance
of non-equilibrium statistical mechanics, the distribution of zero-
crossing time intervals in a stochastic signal is equivalent to the
persistence PDFs, where persistence is the probability P(t) that the
signal does not change its sign up to the time t.17–19 Hereafter, we
refer to the zero-crossing PDFs as the persistence PDFs, given its
technical suitability.19

One of the crucial aspects of the study by Kailasnath and Sreeni-
vasan15 was to investigate how the persistence PDFs of the individual
velocity signals compared to the persistence PDFs of their prod-
uct, which constituted the momentum flux. They found that in the
inertial layer of a flat-plate boundary layer, the persistence PDFs of
the momentum flux signal closely followed the same PDFs of the
vertical velocity fluctuations, with both displaying a nearly iden-
tical single exponential function. This was in sharp contrast with
the streamwise velocity fluctuations, whose persistence PDFs dis-
played a double exponential structure with two different exponents.
They interpreted this behavior as both the small and large scales
were relevant for the variations in the streamwise velocity fluctua-
tions. However, for the variations in the wall-normal velocity and
the momentum flux, only the large scales were primarily responsible,
since their zero-crossing PDFs displayed a single exponential func-
tion. Moreover, they also proposed a connection to associate such
behavior with the properties of the attached eddies, which popu-
lated the inertial layer, consistent with the Townsend’s attached eddy
hypothesis.20

In general, the findings of Kailasnath and Sreenivasan15 shed
light on the fundamental issue of the relationship between the tur-
bulent structures of different scales and the associated intermittent
flux signatures. However, while evaluating the time scales of the
momentum flux signals, they did not consider the quadrant effects.
We hypothesize that the conditional sampling of the flux events can
establish an important link between the momentum flux partition
among the four different quadrants and the time scales of the tur-
bulent flow. Such an analysis can identify the time scales associated
with individual quadrant motions that contribute toward momen-
tum flux generation. Lately, the concept of persistence has been used;
(a) to estimate the integral length scale in wall-bounded turbulent

flows,21 (b) to compute the dissipation rate of turbulence kinetic
energy in atmospheric, canopy, and laboratory flows,22–25 or (c)
to assess the non-Gaussian effects in canopy turbulence.26 How-
ever, to the best of our knowledge, there has been no related
studies to scrutinize the persistence characteristics of the turbu-
lent fluxes and the associated quadrant effects. Although until now,
we have discussed the features of the momentum flux signal in
turbulent shear flows, it can be noted that even in buoyancy-
driven turbulent flows, the instantaneous heat flux signals (w′T′)
display similar intermittent signatures.27,28 Therefore, such inves-
tigation will be pertinent for a convective atmospheric boundary
layer (ABL) flow, where both shear and buoyancy play signifi-
cant roles to maintain the turbulence. From a practical perspective,
the measurements in an ABL flow are often conducted within the
layer closer to the surface, known as the atmospheric surface layer
(ASL).

The ASL is a generalization of the inertial layer of wall-bounded
shear flows by including the effect of buoyancy.29,30 The vertical
extent of the ASL is approximately up to the lowest 10% of the con-
vective boundary layer (excluding the roughness sublayer) where
the fluxes are nearly constant with height.31 During the early days
of ASL research, Haugen, Kaimal, and Bradley32 observed that in
convective conditions, the time traces of the instantaneous w′T′ sig-
nals displayed intermittently occurring long sequences of positive
heat flux events. They further noted that the time-averaged charac-
teristics of the heat flux and their transport efficiencies (expressed
through the correlation coefficient between w′ and T′) were pri-
marily determined by these long persistent events. On the other
hand, for the instantaneous u′w′ signals, the long sequences of the
flux-carrying motions transported momentum either in the upward
or in the downward direction. In a highly convective ASL flow
(characterized by strong thermal stratification), the amplitudes of
the large persistent positive and negative momentum flux events
were almost similar to each other. This caused the time-averaged
momentum flux to become quite small due to the near-perfect can-
cellation of such positive and negative values. However, with the
decrease in the strength of the thermal stratification (near-neutral
ASL), the negative amplitudes associated with the long sequences
overwhelmed the positive ones. Therefore, the momentum trans-
port efficiency increased as the ASL approached the near-neutral
conditions. Haugen, Kaimal, and Bradley32 postulated that such
changes associated with thermal stratification were related to the
changes in the topology of coherent structures from cellular patterns
to horizontal rolls. Nevertheless, their conclusions were based on
visual inspections of a few 15-min records and were of a qualitative
nature.

Since then, numerous studies have documented that akin to
laboratory flows, the heat and momentum transport processes in a
convective ASL are intermittent in nature, which occur with a range
of different time scales.33–37 Additionally, several other researchers
have demonstrated that the time-averaged transport characteristics
of the heat and momentum in a convective ASL flow are strongly
dependent on the strength of the thermal stratification.38–40 Specif-
ically, these studies show that in a highly convective ASL, the heat
and momentum transports are decoupled from each other, whereas
they are strongly coupled under near-neutral conditions. Recently,
Salesky, Chamecki, and Bou-Zeid41 have illustrated that, with
unstable stratification, the change in the topology of the coherent
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structures in a convective flow influences the transport efficiencies
of the heat and momentum.

Broadly, the characteristics of the time-averaged heat and
momentum fluxes in a convective ASL flow could be perceived as
a well-researched problem. However, since the times of Haugen,
Kaimal, and Bradley,32 a grand challenge still remains to connect
the intermittent behavior of these fluxes with the different scales
of the turbulent eddies, which influence their component signals.
Recently, the statistical characteristics of eddy time scales for veloc-
ity and temperature fluctuations in convective ASL flows have been
established by Cava et al.42 and Chowdhuri, Kalmár-Nagy, and
Banerjee19 through persistence analysis. They have shown that at
scales smaller than the integral scales, the PDFs of the persistence
time scales follow a power-law behavior with a sharp exponential
cutoff. However, these former studies did not consider the associated
effect of such behavior on the products of the velocity and temper-
ature signals, which constitute the turbulent fluxes. Undoubtedly,
such investigation is timely and of fundamental interest to improve
our understanding of the generation mechanisms of the heat and
momentum fluxes. This problem also has practical implications
regarding the development of next-generation transport models of
convective turbulence. To address these issues, we ask the following
questions:

1. What type of event signatures are generated in the momentum
and heat flux signals due to the presence of turbulent eddies of
different time scales?

2. What is the relation between these event signatures at different
time scales with the heat and momentum transport efficiencies
in a convective ASL flow?

3. How does the change in the thermal stratification modulate the
event signatures at different time scales?

In this article, we attempt to answer these questions through
persistence analysis of the turbulent heat and momentum fluxes in
a convective ASL flow. We organize this paper as follows: In Sec. II,
we provide brief descriptions of the field-experimental dataset and
methodology, in Sec. III, we introduce the results and discuss them,
and finally, in Sec. IV, we summarize the key takeaways and provide
the scope for further research.

II. DATASET AND METHODOLOGY
In this study, we have used the dataset from the Surface

Layer Turbulence and Environmental Science Test (SLTEST) exper-
iment. The details about the SLTEST experiment and the setup of
the instruments are provided in the works of Chowdhuri, Kumar,
and Banerjee43 and Chowdhuri, Kalmár-Nagy, and Banerjee.19 In
this experiment, nine north-facing time synchronized CSAT3 sonic
anemometers were deployed on a 30-m mast, spaced logarithmically
from 1.42 m to 25.7 m, with the sampling frequency being set at
20 Hz. We followed the same data processing steps as outlined in
the work of Chowdhuri, Kalmár-Nagy, and Banerjee19 to select the
30-min periods from the daytime convective conditions. Totally, 261
combinations of the stability ratios (−ζ = z/L, where z is the measure-
ment height and L is the Obukhov length) were possible for these
selected 30-min periods. In an ASL flow, the Obukhov length (L) is
defined as

L = − u3
∗T0

kvgH0
, (1)

where T0 is the surface air temperature (K), g is the acceleration due
to gravity (9.8 m s−2), H0 is the surface kinematic heat flux (m s−1 K),
kv is the von Kármán constant (0.4), and u∗ is the friction veloc-
ity (m s−1). Furthermore, the entire range of −ζ (12 ≤ −ζ ≤ 0.07)

FIG. 1. A 120-s long section of a time series of (a) u′, (b) w′, (c) T′, (d) u′w′, and (e) w′T′ from a highly convective surface layer corresponding to a −ζ = 10.6 is shown. The
actual values are displayed as black solid lines, which correspond to the left-hand side of the y axis. Similarly, the associated telegraphic approximations (TA) are displayed
as blue solid lines, which correspond to the right-hand side of the y axis.
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was divided into six stability classes and considered for the persis-
tence analysis of the turbulent heat and momentum fluxes. These
are the same set of stability classes used by Chowdhuri, Kumar, and
Banerjee43 and Chowdhuri, Kalmár-Nagy, and Banerjee19 for their
study of turbulence anisotropy and persistence behavior of turbulent
velocity and temperature fluctuations (see their respective Tables 2
and 1). For the sake of brevity, the same information is not repeated
here.

A graphical demonstration of the persistence phenomenon is
provided in Fig. 1, where a 120-s long section of streamwise veloc-
ity fluctuations (u′), vertical velocity fluctuations (w′), temperature
fluctuations (T′), and their products representing the instantaneous
streamwise momentum (u′w′) and heat fluxes (w′T′) are shown for
a particular 30-min run, corresponding to −ζ = 10.6. The associ-
ated telegraphic approximations (TA) of these time series are pre-
sented at the right-hand side of the y axis in Fig. 1, displayed in
blue [see Eq. (2)]. This representation helps identify the switching
patterns in a time series where the TA values change from 0 to 1
or 1 to 0. A visual inspection of Fig. 1 suggests that the w′ sig-
nals switch more often from the positive (negative) to the negative
(positive) turbulent states as compared to the u′ or the T′ signals.
However, the streamwise momentum (u′w′) and the heat flux (w′T′)
signals involve both the combinations of the w′ and u′ or w′ and
T′ signals. Therefore, the switching tendencies of these turbulent
fluxes [Figs. 1(d) and 1(e)] must be related to the persistence sig-
natures of their component signals. This issue is discussed further
in Sec. III A.

As described by Chowdhuri, Kalmár-Nagy, and Banerjee,19 the
persistence time (tp) is defined as the time up to which a fluctuat-
ing turbulent signal stays positive or negative before being switched
to the other state. In addition to that, the associated probability
density function (PDF) of tp describes its statistical characteristics,
which in turn are related to the turbulent structures in a convec-
tive flow.19 We apply these same concepts in the present study to
investigate the persistence behavior of the instantaneous heat and
momentum flux signals. Typically, we encounter in the order of
105 number of zero-crossings for the u′, w′, T′, u′w′, and w′T′

signals for every six stability classes.19 Therefore, the persistence
PDFs of the u′w′ and w′T′ signals for each of these six stability
classes are constructed over these large number of ensemble events
to ensure their statistical robustness. Note that the persistence PDFs
are computed via logarithmic binning and subsequent transforma-
tion to the linear space using a change of variable, as illustrated by
Chowdhuri, Kalmár-Nagy, and Banerjee.19 In Sec. III, we discuss
the properties of the persistence PDFs of the streamwise momen-
tum and the heat flux signals corresponding to these six stability
classes.

III. RESULTS AND DISCUSSION
We begin by presenting the results of the persistence PDFs of

the instantaneous momentum and heat flux signals (u′w′ and w′T′),
including a comparison with the persistence of the component sig-
nals themselves (u′, w′, and T′). Subsequently, we discuss the effect
of separation into four different quadrants on the persistence PDFs
of the flux signals. Furthermore, we explore the role of the inter-
mittent flux events of different persistence time scales toward the
heat and momentum transport efficiencies. In order to achieve such

objectives, we introduce a novel approach to separate the phases and
amplitudes of the component signals associated with such events of
various time scales. Additionally, we also provide plausible physi-
cal explanations of the obtained results during the course of our
presentation.

A. Persistence PDFs of heat and momentum fluxes
Prior to embarking on a detailed analysis regarding the per-

sistence PDFs of the heat and momentum flux signals, perhaps it
is prudent to establish a phenomenological connection between the
persistence properties of the fluxes and their component signals. In
order to derive such relation, we turn our attention toward the tele-
graphic approximations (TA) of the turbulent signals. Specifically,
we ask the question if the TA representation of the component sig-
nals is known, then what would be the equivalent TA representation
of their product?

1. Association between the persistence time scales
of the flux and its components

The TA representation of any turbulent signal s′ can be
expressed as42,44

(s′)TA =
1
2
( s′(t)
∣s′(t)∣ + 1). (2)

Now, if we have a product of two signals x′ and w′ (where x can be
either u or T), then from Eq. (2), the TA representation of x′w′ can
be written as

(x′w′)TA =
1
2
( x′w′(t)
∣x′w′(t)∣ + 1). (3)

By using an identity |AB| = |A| × |B|, we can further rewrite Eq. (3)
as

(x′w′)TA =
1
2
( x′(t)
∣x′(t)∣ ×

w′(t)
∣w′(t)∣ + 1). (4)

From Eq. (2), we know that

x′(t)
∣x′(t)∣ = 2x′TA − 1, (5)

w′(t)
∣w′(t)∣ = 2w′TA − 1. (6)

By substituting these in Eq. (4), we find that

(x′w′)TA =
1
2
[(2x′TA − 1) × (2w′TA − 1) + 1]. (7)

By expanding Eq. (7) and after some algebraic manipulation, we get

(x′w′)TA = 1 − [x′TA(1 − w′TA) + w′TA(1 − x′TA)]. (8)

Note that the variables x′TA and w′TA can take only two values, which
are either 0 or 1. If we evaluate [x′TA(1 − w′TA) + w′TA(1 − x′TA)] at
w′TA = 1, x′TA = 1, and w′TA = 0, x′TA = 0, we obtain
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[x′TA(1 − w′TA) + w′TA(1 − x′TA)] = w′TA − x′TA, (w′TA = 1, x′TA = 0, 1),
(9)

[x′TA(1 − w′TA) + w′TA(1 − x′TA)] = x′TA − w′TA, (x′TA = 1, w′TA = 0, 1),
(10)

[x′TA(1 − w′TA) + w′TA(1 − x′TA)] = 0, (x′TA = 0, w′TA = 0), (11)

respectively. Equations (9)–(11) take into account all the four possi-
ble combinations of x′TA and w′TA values, such as {0, 0}, {0, 1}, {1, 0},
and {1, 1}. Apparently, we can condense these three expressions as

[x′TA(1 − w′TA) + w′TA(1 − x′TA)] = ∣x′TA − w′TA∣. (12)

By substituting Eq. (12) in Eq. (8), we get the final formula

(x′w′)TA = 1 − ∣x′TA − w′TA∣, (13)

which connects the TA representation of the product with the TA’s
of the component signals. Some further discussion about comparing
the prediction from Eq. (13) with the observation can be found in
the Appendix.

From the definition of persistence, tp is the time up to which
ds′TA/dt = 0 such that s′TA remains in a particular state before switch-
ing to the other. Therefore, to connect the persistence time scales
of the component signals with their product, we can differentiate
Eq. (13) as

d
dt
(x′w′)TA = −

d
dt
∣x′TA − w′TA∣. (14)

For the ease of calculation, we take a difference form of Eq. (14),
expressed as

(x′w′)TA(i + 1) − (x′w′)TA(i)
= ∣x′TA(i) − w′TA(i)∣ − ∣x′TA(i + 1) − w′TA(i + 1)∣, (15)

where i is the time index. By rearranging the terms and considering
the absolute magnitudes of the differences (switching between 0 and
1 or 1 and 0 is counted as same), Eq. (15) can be rewritten as

∣Δ(x′w′)TA∣ = ∣∣Δx′TA∣ − ∣Δw′TA∣∣, (16)

where for any signal s′TA, Δs′TA = s′TA(i + 1) − s′TA(i).
From Eq. (16), one can infer that the zero-crossings of (x′w′)TA

will be located at those points where |Δx′TA| ≠ |Δw′TA|. As a con-
sequence, the persistence time scales of x′w′ will be related to the
persistence time of that component signal, which switches its states
more rapidly than the other one. We can anticipate that the persis-
tence PDFs of the products of the turbulent signals will be closer
to the persistence PDFs of the individual signals at small time scales.
The reason is that the probability of occurrence of the events persist-
ing for short times will not be much different for the x′, w′, and x′w′

signals, since all of them rapidly fluctuate. On the other hand, at large
time scales, the persistence PDFs of the products are expected to be
more closer to that signal, which has a lower chance of encounter-
ing such long sequences. Next, we describe how the insights gained
from the aforementioned analysis compare with the observations of
the persistence PDFs of heat and momentum fluxes in a convective
ASL flow.

2. Features of the flux persistence PDFs
Figure 2 shows the persistence PDFs of the instantaneous

streamwise momentum (u′w′) and heat fluxes (w′T′) compared with
their component signals (u′ and w′ or w′ and T′) for the six stabil-
ity classes in a convective ASL flow. In Fig. 2, the persistence time
scales are converted to streamwise lengths (tpu, where u is the mean
wind speed) by applying the Taylor’s frozen turbulence hypothesis
and scaled with z. Such scaling stems from the supposition that the
eddies near the surface linearly grow with z.30,45 Hereafter, we denote
the converted streamwise lengths related to persistence as ℓp. Apart
from that, the colored dashed arrows in Fig. 2 indicate the normal-
ized integral length scales of u′ (Λu/z, red dashed arrows), w′ (Λw/z,
blue dashed arrows), and T′ signals (ΛT/z, pink dashed arrows) com-
puted from the exponential fits to the respective auto-correlation
functions19 (see Fig. 5 of their work for the auto-correlation plots).

One can notice from Fig. 2 that, irrespective of the stabil-
ity classes, for length scales smaller than the integral scale of w′

(ℓp ≤ Λw), the persistence PDFs of momentum or heat nearly col-
lapse on the persistence PDFs of the individual component signals,
such as u′ and w′ or T′ and w′. However, for ℓp > Λw, the persis-
tence PDFs of the turbulent fluxes more closely follow the PDFs
associated with the w′ signal. The reason behind this observed phe-
nomenon is twofold and in accord with the inferences drawn from
Eq. (16). First, the integral scales of the u′ and T′ signals remain
significantly larger than the w′ signal. Second, Chowdhuri, Kalmár-
Nagy, and Banerjee19 have demonstrated that the persistence PDFs
follow a power-law distribution up to the scales comparable with the
integral scale before they start to drop off exponentially. Combining
these two rationales, it is imperative that at larger time scales, greater
than Λw, the persistence PDFs of w′ would fall off faster than the u′

or T′ signals, given Λw <Λu ,T . As a consequence, the flux persistence
PDFs of u′w′ and w′T′ follow the same PDFs of the w′ signals at
scales larger than Λw while nearly matching with both the individual
signals for the scales ℓp ≤ Λw.

To further explore the flux persistence PDFs, we note that
the turbulent transports of heat and momentum are accomplished
through events from four different quadrants, namely, the down-
gradient and counter-gradient quadrants.10 In a convective ASL,
the transport efficiencies of the heat and momentum are intimately
related to how the total fluxes are partitioned between the down-
gradient and counter-gradient quadrants.39 Therefore, as a first
step to connect the persistence behavior of the fluxes at differ-
ent scales with their transport characteristics, it is important to
decompose the heat and momentum flux signals into four differ-
ent quadrants. We present the results associated with this aspect
in Sec. III A 3.

3. The quadrant characterization of the flux
persistence PDFs

Figure 3 displays the persistence PDFs of u′w′ and w′T′

signals decomposed into four different quadrants. Additionally,
we also compare the persistence PDFs from four quadrants
with the total persistence of the heat and momentum signals
(see the respective gray circles and inverted triangles in Fig. 3).
Such comparison is required to identify at what scales, which
quadrant events dominate the persistence behavior of the flux
signals.
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FIG. 2. The persistence PDFs of u′ (red circles), T′ (pink circles), w′ (blue squares), u′w′ (black inverted triangles), and w′T′ (gray inverted triangles) are shown for the six
different stability classes, such as (a) −ζ > 2, (b) 1 < −ζ < 2, (c) 0.6 < −ζ < 1, (d) 0.4 < −ζ < 0.6, (e) 0.2 < −ζ < 0.4, and (f) 0 < −ζ < 0.2. For visualization purpose, the
persistence PDFs of u′, w′, and u′w′ signals are shifted upward by two decades. The colored arrows show the normalized integral length scales of u′, T′, and w′ signals.
The regions corresponding to ℓp/Λw ≤ 1 are marked in gray.

FIG. 3. Same as in Fig. 2 but for u′w′ (inverted triangles) and w′T′ (circles) signals from the four different quadrants. (a) −ζ > 2, (b) 1 < −ζ < 2, (c) 0.6 < −ζ < 1, (d) 0.4
< −ζ < 0.6, (e) 0.2 < −ζ < 0.4, and (f) 0 < −ζ < 0.2. For visualization purpose, the persistence PDFs of u′w′ signals associated with all the four quadrants are shifted
vertically upwards by three decades. The gray inverted triangles and circles denote the u′w′ and w′T′ persistence PDFs, computed after considering both the positive and
negative values together. The regions corresponding to ℓp/Λw > 1 are marked in gray.
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An apparent observation from Fig. 3 is that, for the u′w′ signal,
the persistence PDFs corresponding to all the four quadrants and
their total are in excellent agreement with each other, irrespective
of the stability conditions. On the other hand, for the w′T′ signal,
approximately at scales ℓp > Λw, the persistence PDFs correspond-
ing to the down-gradient and counter-gradient quadrants remain
largely separated from each other. To be precise, for the highly
convective stability class (−ζ > 2), the quadrant partition occurs at
scales ℓp ≈ 0.3Λw, instead at Λw. However, with the decrease in −ζ,
the threshold indeed becomes closer to Λw. Inspite of such depen-
dency, the threshold at Λw serves well to differentiate the trans-
port characteristics between the large and small scale flux events
(see Sec. III C). More importantly, the reason behind the quadrant
separation for the heat flux events is tied to the fact that the prob-
abilities of encountering long sequences of counter-gradient activi-
ties remain significantly low. Interestingly, the discrepancy between
the quadrants is quite prominent for the highly convective stabil-
ity [Fig. 3(a)] but becomes inconspicuous under the near-neutral
conditions [Fig. 3(f)].

One also notices that up to the scale ℓp ≤ Λw, the persistence
PDFs of the heat and momentum flux signals follow a power-law
behavior. Such power-law signatures in the flux persistence PDFs are
quite extensive for the highly convective stability [Fig. 3(a)]. There-
fore, the data from such stability conditions have been used for the
estimation of its exponent. Since we plot the persistence PDFs in
log–log plots where the power-law appears as a straight line, the
exponent is determined through linear regression for scales 0.01
≤ ℓp ≤ Λw. For both the u′w′ and w′T′ signals, we obtain a best fit
exponent of −1.4 with R2 > 0.95. Moreover, to assess the effect of
stability on the power-law exponent, the same power-law curves as
obtained for the highly convective stability are compared with the
other five stability classes [Figs. 3(b)–3(f)]. The comparison shows
that, even though there is no discernible change in the slope of the
power-law, its extent gradually gets shorter as the ASL approaches
the near-neutral stability [Figs. 3(a)–3(f)]. Since the measurements
from the near-neutral stability class belong to the lowest three
SLTEST levels, the shrinkage in the power-law regime is related to
insufficient sampling of the small scale eddies at 20-Hz sampling
frequency.19

Note that the exponents of this power-law remain same for
the u′w′ and w′T′ signals, being equal to −1.4. This exponent is
in excellent agreement with the work of Katul et al.,36 where they
found in a convective ASL flow that the persistence time scales
of the heat flux events followed a power-law with an exponent of
−1.39. However, in that study, they did not consider the momen-
tum flux events or the associated quadrant effects. The analysis
of Chowdhuri, Kalmár-Nagy, and Banerjee19 has revealed that the
power-law regimes of the persistence PDFs for the velocity and
temperature signals are related to the eddies from the inertial sub-
range of the turbulence spectrum. Besides, Chowdhuri, Kalmár-
Nagy, and Banerjee19 reported the respective power-law exponents
to be equal to −1.6, −1.25, and −1.4 for the u′, w′, and T′ sig-
nals. They linked the difference in the exponents to the disparity
in the small-scale intermittency, expressed through the framework
of self-organized criticality.46 Interestingly, the power-law expo-
nents corresponding to the flux signals are the same as the T′

signal. Further explanation behind this coincidence is elusive at
present.

On the other hand, at scales ℓp > Λw, the deviation from the
power-law behavior becomes notable for both the flux persistence
PDFs where they follow an exponential distribution, hallmark of
a Poisson process.43 Previous studies have surmised such a phe-
nomenon as a signature of random deformation of the coherent
structures due to the presence of the ground.19,42 For the heat flux
(w′T′) signals, the quadrant partition only has significance at scales
ℓp > Λw. However, the quadrant segregation does not have any
appreciable effect on the persistence PDFs of the momentum flux
(u′w′) signals at all the scales of motions. Physically, this difference
in quadrant behavior between the u′w′ and w′T′ signals is related
to transport asymmetry associated with the down-gradient and
counter-gradient quadrants. Such interpretation is feasible, since the
contrast between the persistence PDFs of positive and negative val-
ues corresponding to any stochastic signal is related to the skewness
of that signal, as demonstrated by Chowdhuri, Kalmár-Nagy, and
Banerjee.19 It is worth noting that, in a highly convective ASL, the
PDFs of the w′T′ signals are significantly asymmetric between the
positive and negative values due to the non-Gaussian character of
the temperature fluctuations. On the contrary, the PDFs of the u′w′

signals are more symmetric because both streamwise and vertical
velocity fluctuations are close-to-Gaussian in nature43 (see Fig. 5 of
their work).

From Figs. 2 and 3, one recognizes that the persistence prop-
erties of the momentum and heat flux signals exhibit significantly
different behavior for scales smaller or larger than the integral scale
of the vertical velocity. Since Λw is of the same order as z,19 such dis-
crepancy reflects distinct attributes of turbulent transport associated
with the detached and attached eddies, characterized by length scales
smaller and larger than z.47,48 However, it is important to remem-
ber that the persistence analysis only provides information on the
distribution of time or length scales of the flux events but not on
the flux values themselves.44 Therefore, such analysis alone is insuf-
ficient to deduce the effects of the flux events, distinguished by their
length scales greater or lesser than Λw, on the heat and momen-
tum transport efficiencies. In Sec. III B, we introduce a method-
ology where the transport characteristics are studied separately for
the heat and momentum flux events with length scales ℓp > Λw
and ℓp ≤ Λw.

B. Polar representation of the quadrant planes
In general, the heat and momentum transport characteristics

allied to the turbulent motions are expressed through quadrant anal-
ysis, where each point plotted on the u′–w′ or T′–w′ quadrant plane
corresponds to a certain flux event. An example of such a quadrant
plot is provided in Fig. S1 (supplementary material) to explain the
concepts. The usual practice in this analysis is to report the momen-
tum or heat flux fractions and time fractions from each quadrant
and assess the relative importance of the various turbulent motions
associated with different flow structures.10 Additionally, it is also
worthwhile to mention that the transport efficiencies of the heat and
momentum are intimately linked to the partition of the fluxes among
these four different quadrants.39,40

On a rudimentary level, the existence of the heat and momen-
tum flux depends upon the strength of the coupling between the
two turbulent signals, as described by the governing Navier–Stokes
equations. In order to understand the cause of the coupling, it is
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FIG. 4. The graphical illustrations of
the (a) u′–w′ and (b) T′–w′ quadrant
planes are provided. The signals u′, w′,
and T′ are normalized by their respec-
tive standard deviations and denoted as
û, ŵ, and T̂, respectively. In a polar
co-ordinate representation, each point
on the quadrant plane is described by
their amplitudes (rŵû or rŵT̂ ) and the
phase angles (θŵû or θŵT̂ ). The gray
(yellow) shaded regions in the quad-
rant planes denote the down (counter)-
gradient quadrants.

useful to envisage the quadrant plane as a phase space by drawing
analogies with non-linear dynamical systems. From this perspective,
each point in the quadrant plane is related to a particular state of
flux generation, designated with two parameters that are the phase
angles and amplitudes. To accomplish such an objective, the polar
representation of the quadrant plane is a well-suited approach.49

To explain such an approach, Fig. 4 graphically illustrates the
concept of quadrant planes of u′–w′ and T′–w′ from the perspec-
tive of a polar reference frame. Following the standard practice, the
u′, w′, and T′ signals in Fig. 4 are normalized by their respective
standard deviations (σu, σw, and σT) and denoted as x̂ (x̂ = x′/σx,
where x can be u, w, or T). Such normalization is necessary since
it removes the issue regarding the difference in the units while com-
puting the phase angles and amplitudes. In the polar reference frame,
each point on the x̂–ŵ (where x can be u or T) quadrant plane can
be associated with an amplitude rŵx̂ and phase angle θŵx̂, expressed
as

θŵx̂ = arctan (ŵ/x̂), (17)

rŵx̂ =
√

ŵ2 + x̂2. (18)

The lengths of the phase vectors (shown as arrows) on Fig. 4 indicate
the values of rŵx̂, whereas θŵx̂ are the angles subtended by these vec-
tors with the x axes. The values of the phase angles vary between −π
and π, and their ranges are related to the four different quadrants,
as demonstrated in Table I. For identification purposes, the θŵx̂
ranges that denote the down-gradient (counter-gradient) quadrants
are marked as gray (yellow) shaded regions in Fig. 4.

In the polar co-ordinate system, the normalized instanta-
neous flux (ûŵ or ŵT̂) associated with each point is expressed as
(r2

ŵx̂ sin 2θŵx̂)/2. This is because

x̂ŵ = rŵx̂ cos (θŵx̂) × rŵx̂ sin (θŵx̂) Ô⇒
1
2

r2
ŵx̂ sin (2θŵx̂), (19)

given sin (2θŵx̂) = 2 sin (θŵx̂) cos (θŵx̂) and x can be either u or T.
Subsequently, the averaged normalized flux over all the four

quadrants can be written as

x̂ŵ = 1
2

r2
ŵx̂ sin 2θŵx̂. (20)

The quantity on the left-hand side of Eq. (20) is the correlation coef-
ficient (Rwx), which indicates the transport efficiency of the momen-
tum or the heat fluxes. Apart from that, since r2

ŵx̂ is a positive definite
quantity, the distribution of the fluxes among the four quadrants is
primarily decided by the phase angle θŵx̂. Therefore, to simplify the
expression in Eq. (20), we may replace the r2

ŵx̂ values of every point
in the quadrant plane by a single averaged value, r2

ŵx̂. Note that

r2
ŵx̂ = (

x′

σx
)

2
+ (w′

σw
)

2
Ô⇒ ( x′

σx
)

2
+ (w′

σw
)

2
. (21)

Since (x′/σx)2 and (w′/σw)2 are both equal to 1, from Eq. (21), it
indicates that r2

ŵx̂ = 2. Consequently, this enables us to simplify
Eq. (20) as

Rwx =
r2

ŵx̂

2
× sin 2θŵx̂ Ô⇒ sin 2θŵx̂ (22)

TABLE I. The four quadrants of û–ŵ and T̂–ŵ and the associated distribution of phase angles in a convective ASL.

Phase angle û–ŵ quadrant Quadrant name T̂–ŵ quadrant Quadrant name

0 ≤ θŵû, θŵT̂ ≤ π/2 û > 0, ŵ > 0 Outward-interaction ŵ > 0, T̂ > 0 Warm-updraft
π/2 ≤ θŵû, θŵT̂ ≤ π û < 0, ŵ > 0 Ejection ŵ > 0, T̂ < 0 Cold-updraft
−π ≤ θŵû, θŵT̂ ≤ −π/2 û < 0, ŵ < 0 Inward-interaction ŵ < 0, T̂ < 0 Cold-downdraft
−π/2 ≤ θŵû, θŵT̂ ≤ 0 û > 0, ŵ < 0 Sweep ŵ < 0, T̂ > 0 Warm-downdraft
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by substituting r2
ŵx̂ = 2. If the two signals are strictly phase-locked,

then the phase angle θŵx̂ can take only two values, which are
±π/4 and ±3π/4. By replacing those in Eq. (22), one can deduce
that the correlation coefficients (Rwx) for such occasions would be
perfectly ±1.

To scrutinize this further, from the theory of probability, one
can modify Eq. (22) as

Rwx = ∫
π

−π
P(θŵx̂) sin (2θŵx̂) dθŵx̂, (23)

where P(θŵx̂) is the PDF of the phase angle θŵx̂, with the constraint

∫
π

−π
P(θŵx̂) dθŵx̂ = 1. (24)

Let us consider another case where the θŵx̂ values are uniformly
distributed over the quadrant plane such that P(θŵx̂) = 1/(2π).
This scenario would arise if the phase vectors were oriented in ran-
dom directions with no phase-locking whatsoever. In that situation,
Eq. (23) would be simplified as

Rwx =
1

2π ∫
π

−π
sin (2θŵx̂) dθŵx̂. (25)

Since sin (2θŵx̂) is an odd function, from elemental calculus, we
know that the output of the integration in Eq. (25) is 0. This implies

a completely inefficient transport of the turbulent fluxes. As a result,
the heat and momentum transport efficiency can be judged by inves-
tigating the departure of the respective phase angle PDFs from a
uniform distribution. An implicit assumption in such argument is
that the role played by the amplitudes can be considered to be
independent of the phase angles.

The aforementioned method that is based on the polar rep-
resentation of the quadrant planes offers a unique opportunity to
dissect the role of phase coupling toward the transport efficien-
cies of heat and momentum. It is therefore of practical interest
to investigate this aspect corresponding to the flux events with
length scales larger or smaller than Λw. The intention behind
such separation criterion emerges from the flux persistence PDFs,
as presented in Figs. 2 and 3. In Fig. 5, we present results to
study the distributions of the phase angles and amplitudes in
relation to the flux events, conditionally sampled based on the
threshold ℓp = Λw.

Figure 5 shows the PDFs of the phase angles (θŵx̂) and ampli-
tudes (rŵx̂) associated with the small and large scale flux events,
delineated accordingly with respect to their persistence time scales
ℓp/Λw ≤ 1 and ℓp/Λw > 1. Both of these PDFs are computed by col-
lecting all the points that reside within the ensemble of flux events
from a particular stability class and persisting for times as prescribed
before. Hereafter, we denote these conditional PDFs of the phase

FIG. 5. The PDFs of θŵû are shown for the momentum flux events of length scales (a) ℓp > Λw or (b) ℓp ≤ Λw . Similarly, the PDFs of θŵT̂ are shown for the heat flux events
corresponding to (d) ℓp > Λw and (e) ℓp ≤ Λw . The associated PDFs of the amplitudes (rŵû and rŵT̂ ) are shown in (c) and (f), respectively. The dashed-dotted and the
dashed lines in (c) and (f) describe the respective momentum or heat flux events with length scales ℓp ≤ Λw and ℓp > Λw .
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angles as P[θŵx̂∣(ℓp ≤ Λw)] and P[θŵx̂∣(ℓp > Λw)], respectively.
Additionally, P[θŵx̂∣(ℓp ≤ Λw)] and P[θŵx̂∣(ℓp > Λw)] individually
satisfy the constraint in Eq. (24) so that when integrated over the
limit −π to π, the result is unity. Other than that, the gray and yellow
shaded regions in Figs. 5(a), 5(b), 5(d), and 5(e) identify the ranges
of the phase angles that correspond to the regions ascertained to
the down-gradient and counter-gradient quadrants, respectively (see
Table I and Fig. 4). One may bear in mind that the areas occupied
by the phase angle PDFs in these shaded regions are proportional
to the fraction of time spent by the signal in that quadrant state.
Mathematically, this can be expressed as

(Tf )X = ∫
π

−π
P(θŵx̂)IX(θŵx̂) dθŵx̂, (26)

where (Tf )X is time fraction spent in quadrant X (X could be any
one of the four quadrants) and IX(θŵx̂) is an identity function that
is unity when θŵx̂ lies within quadrant X or zero elsewise. In a hypo-
thetical framework, if the two signals are completely phase-locked
(phase difference of 0 or π), the PDFs of the phase angles would be a
superposition of two Dirac-delta functions at θŵx̂ values of ±π/4 and
±3π/4. However, for all practical purposes, such a case is not possi-
ble since it would imply an infinite persistence of the flux signals as
they would never cross the zero. That being said, we thus expect the
phase angle PDFs to be distributed in a particular way over all the
possible θŵx̂.

From Fig. 5(a), the PDFs of the phase angles associated with
the large scale momentum flux events display a prominent peak
related to the ejection motions (the gray shaded region on the
right), irrespective of the stability classes. However, for the nega-
tive values of the phase angles, the PDFs have two distinct peaks
in the gray and yellow shaded regions with approximately sim-
ilar values. From Eq. (26), this suggests that for the large scale
momentum flux events, there is almost an equal tendency for
the phase vectors to either reside within the sweep or within
the inward-interaction quadrants. Even so, a minute change in
such behavior is observed for the near-neutral stability class. In
those conditions, the PDF peak values within the sweep quadrants
slightly exceed the values associated with the inward-interaction
quadrants.

On the other hand, for all the stability classes, the PDFs of the
phase angles associated with the large scale heat flux events exhibit
a bi-modal behavior with two distinguished peaks corresponding to
the warm-updraft and cold-downdraft motions [the right and left
gray shaded regions in Fig. 5(d)]. With the decrease in the thermal
stratification, the PDF values of θŵT̂ ∣(ℓp > Λw) corresponding to
the counter-gradient quadrants [yellow shaded regions in Fig. 5(d)]
show a considerable increase.

All these features of the phase angle PDFs associated with the
large scale heat and momentum flux events are in sync with the
findings of Haugen, Kaimal, and Bradley.32 They observed that in
a convective ASL flow, the heat flux signals mainly exhibited large
persistent positive events, whereas for the momentum flux, long
sequences of both negative and positive activities were common.

From Fig. 5, one further notices that the shapes of the PDFs of
the phase angles differ significantly between the large (ℓp > Λw) and
small (ℓp ≤ Λw) scale flux events [Figs. 5(a), 5(b), 5(d), and 5(e)].
For the small scale momentum flux events, an immediate observa-
tion is the PDFs of the phase angles is nearly an inverted version

of the PDFs associated with the large scale momentum flux events
[Fig. 5(b)]. In Fig. 5(b), the maximum values of the PDFs for all
the stability classes are located at around 0, with troughs replacing
the peaks at approximately the same positions as in Fig. 5(a). Con-
versely, for the small scale heat flux events [Fig. 5(e)], the behavior of
the phase angle PDFs is not completely opposite to that of the large
scale events [Fig. 5(d)], but the distinction between the two modes is
definitely vague.

In addition to the phase angles, we can also investigate the
amplitude PDFs (rŵx̂) for both large and small scale heat and
momentum flux events [Figs. 5(c) and 5(f)]. Such information would
be important to evaluate whether there are any specific amplitudes
that occur most often. From Figs. 5(c) and 5(f), we note that the
PDFs of the amplitudes are uni-modal in character, with a shift
in their peak positions for the large scale heat or momentum flux
events (approximately from 0.8 to 1.2). Apart from that, the PDFs of
the amplitudes collapse sufficiently well for all the stability classes,
corresponding to the small scale flux events. On the other hand,
for the large scale flux events, such collapse is relatively poor for
the small values of the amplitudes, located to the left of the peak
position.

These results reveal that the statistical characteristics of the
phase angles associated with the heat and momentum flux events
remain significantly different from each other. Inevitably, this dif-
ference is more clearly visible for the flux events with ℓp larger than
the integral scale of the vertical velocity. To connect the behavior of
the phase angle PDFs with the transport efficiencies, from Eq. (20),
we can write

Rwx =
1
2
[(r2

ŵx̂ sin 2θŵx̂)∣(ℓp > Λw) + (r2
ŵx̂ sin 2θŵx̂)∣(ℓp ≤ Λw)],

(27)

where the quantity (r2
ŵx̂ sin 2θŵx̂) is divided between the events with

scales ℓp > Λw and ℓp ≤ Λw. From Eq. (23), we can further expand
Eq. (27) as

Rwx =
1
2
[⟨r2

ŵx̂∣(ℓp > Λw)⟩∫
π

−π
P[θŵx̂∣(ℓp > Λw)]

× sin [2θŵx̂∣(ℓp > Λw)] dθŵx̂ + ⟨r2
ŵx̂∣(ℓp ≤ Λw)⟩

× ∫
π

−π
P[θŵx̂∣(ℓp ≤ Λw)] sin [2θŵx̂∣(ℓp ≤ Λw)] dθŵx̂], (28)

with the constraints

∫
π

−π
P[θŵx̂∣(ℓp > Λw)] dθŵx̂ = 1, (29)

∫
π

−π
P[θŵx̂∣(ℓp ≤ Λw)] dθŵx̂ = 1, (30)

after conditioning the flux events based on their ℓp (as shown in
Fig. 5). Moreover, in Eq. (28), the angle brackets denote the most
probable amplitudes over those events with length scales ℓp > Λw
and ℓp ≤ Λw, respectively. We can replace the most probable ampli-
tudes as 1.2 and 0.8, respectively, obtained from the peak positions
of the amplitude PDFs [see Figs. 5(c) and 5(f)].

From the above formulations, it is clear that, in order to eval-
uate the contribution of the flux events at different length scales to
the heat and momentum transport efficiencies, one needs to estimate
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the departure of P[θŵx̂∣(ℓp > Λw)] and P[θŵx̂∣(ℓp ≤ Λw)] from a uni-
form distribution. In Sec. III C, we present results to quantify such
departure of the phase angle PDFs.

C. Phase angle PDFs and transport efficiency
In order to determine how closely the distribution of the phase

angles in Fig. 5 resembles a uniform distribution, it is imperative
to consider the cumulative distribution functions (CDFs), instead of
the PDFs. This is because the CDFs of a uniform distribution can be
represented through a linear function. The CDFs of the phase angles
and the equivalent CDFs corresponding to a uniform distribution
can be written as

F(θŵx̂) = ∫
θŵx̂

π
P(θŵx̂) dθŵx̂, (31)

Fu(θŵx̂) =
π − θŵx̂

2π
, (32)

where F(θŵx̂) is the empirical CDF and Fu(θŵx̂) is the CDF for the
uniform distribution.

Figure 6 shows the CDFs of the phase angles for the large and
small scale heat and momentum flux events and compares those
with the CDF of a uniform distribution. An apparent observation
from Figs. 6(a) and 6(b) is that irrespective of stability, the statis-
tical characteristics of the CDFs do not seem to differ much from
a uniform distribution for both the large and small scale momen-
tum flux events. However, for the large scale heat flux events, the

CDFs differ significantly from the uniform distribution [Fig. 6(c)],
although such contrast becomes less obvious for the small scale heat
flux events [Fig. 6(d)].

Notwithstanding the fact that the CDFs provide a perceptible
measure to inspect whether the distributions of the phase angles dif-
fer from a uniform distribution, the quantification of such an effect
remains an issue. To provide a convenient solution to that, we intro-
duce the normalized Shannon entropy of the phase angle distribu-
tion corresponding to the large and small scale flux events. From the
information theory,50–52 the normalized Shannon entropy (HN ) of
the phase angle distribution can be defined as

HN(θŵx̂) = −
1

ln (Nb)
Nb

∑
i=1

Pi(θŵx̂) ln [Pi(θŵx̂)], (33)

where Nb is the number of bins in which the θŵx̂ values are divided
(60 in our case) and Pi(θŵx̂) is the probability of occurrence of a
particular binned value θŵx̂. Note that, for a uniform distribution,
Eq. (33) will be equal to 1, given that Pi(θŵx̂) = 1/Nb for all the bin
indexes. As a consequence, the departure from unity in Eq. (33) is
regarded as a metric quantifying the discrepancy with a configura-
tion where the phase vectors are randomly oriented. From Eq. (23),
we know that, in the absence of amplitude dependency, this configu-
ration of the phase vectors does not cause any transport of the turbu-
lent fluxes. Therefore, within that constraint, the quantity HN(θŵx̂)
can be considered as a proxy for the transport efficiency.

FIG. 6. The CDFs of the phase angles (θŵû) for the momentum flux events with length scales (a) ℓp > Λw and (b) ℓp ≤ Λw . Similarly, the CDFs of the phase angles (θŵT̂ ) are
shown for the heat flux events corresponding to (c) ℓp > Λw and (d) ℓp ≤ Λw . The thick black lines denote the CDFs of the uniformly distributed phase angles between −π
and π. In (e), the normalized Shannon entropy associated with the distribution of the phase angles is shown, corresponding to the length scales ℓp > Λw and ℓp ≤ Λw .
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Figure 6(e) shows the variation of HN(θŵx̂), related to both
the small and large scale momentum and heat flux events, with
the stability ratio −ζ. Before we discuss the relevant features of
Fig. 6(e), it should be noted that the entropies are not computed
for single 30-min runs, but for an ensemble of runs within a par-
ticular stability bin. This is necessary to ensure that the PDFs of
the phase angles are statistically reliable and the estimations of the
normalized Shannon entropies are robust. Moreover, in order to
document the variation over a substantial range of −ζ while main-
taining the statistical robustness of the results, we divide the −ζ
values into nine number of bins, where each bin contains equal
number of 30-min runs (which is 29 for our case, given a total
of 261 runs).

From Fig. 6(e), one notices that, for all the stability values, the
quantity HN of the phase angles remains almost equal to unity (HN
≈ 0.98), corresponding to both the small scale momentum and heat
flux events. Conversely, a considerable departure from unity (HN
≈ 0.75) is noted for the large scale heat flux events under highly
convective conditions (−ζ > 1). There is also an apparent tendency
that the HN values approach unity (HN ≈ 0.9) for the large scale
heat flux events as the −ζ values decrease toward the near-neutral
stability. However, for the large scale momentum flux events, no
significant departure from unity is noted in its HN estimates (HN
≈ 0.96), irrespective of stability.

To put the above described results into perspective, it is use-
ful to discuss them from the standpoint of turbulent structures and
the relation with the heat and momentum transport characteristics
in a convective ASL flow. From Fig. 6, it is evident that for the
small scale heat and momentum flux events (ℓp ≤ Λw), the phase
vectors are oriented in a close-to-random manner with the phase
angles being distributed in a quasi-uniform way. From the per-
sistence PDFs of the heat and momentum flux events, we know
that at scales ℓp ≤ Λw, the PDF follows a power-law distribution
related to the eddies from the inertial subrange (Figs. 2 and 3).
According to the Kolmogorov’s hypothesis, the turbulence associ-
ated with the eddies from the inertial subrange of the spectrum is
quasi-isotropic in nature and the eddies hardly transport any heat
or momentum.45,53 Since the random orientation of the phase vec-
tors denotes no flux transport [see Eq. (23)], this complements the
properties of turbulence in the inertial subrange, corresponding to
scales ℓp ≤ Λw.

On the other hand, for the large scale heat flux events (ℓp > Λw)
associated with the energy containing motions, the distribution of
the phase angles differs significantly from the uniform distribution
in highly convective stability. This indicates that the vertical veloc-
ity and temperature fluctuations are phase-locked to a certain degree
in a highly convective ASL flow and hence related to efficient trans-
port of heat [see Eqs. (23) and (28)]. Such a contention is in agree-
ment with the large-eddy simulation studies, where the researchers
have shown that both the vertical velocity and temperature patterns
overlay on each other in the form of cellular structures.41,54 This
configuration is efficient in transporting the heat flux, which agrees
with our assessment. However, the phase angle PDFs between the
w′ and T′ signals gradually resemble a uniform distribution as the
near-neutral stability is approached. This behavior is in concurrence
with the observation that the heat-transport efficiency decreases as
the turbulence becomes more shear dominated.39 Therefore, we can
conclude that the heat-transport efficiency in a convective ASL flow

can be explained by the departure of the phase angles from a uniform
distribution, corresponding to the events with scales ℓp > Λw.

Interestingly, an identical deduction cannot be made for the
large scale momentum flux events (ℓp > Λw). This is because, for
these events, the phase angle PDFs remain similar to a uniform
distribution for all the −ζ values. From Eq. (28), it would imply
that the momentum transport remains inefficient irrespective of the
strength of the thermal stratification. However, such an implication
does not agree with the ubiquitous result that the momentum trans-
port efficiency increases with the decrease in −ζ. Needless to say,
this brings into consideration the role of amplitudes in the momen-
tum flux generation. While connecting the phase angle PDFs directly
with the correlation coefficient Ruw, it is assumed that the ampli-
tudes of all the phase vectors can be replaced with a single value
while preserving their angles. Since such an assumption produces
output that is incompatible with the measurements, we thus infer
that the amplitude variations play a significant part to generate the
momentum flux. Ignoring the amplitude effect results in almost no
transport of averaged momentum even during the near-neutral con-
ditions. This agrees with the observations of Haugen, Kaimal, and
Bradley,32 Högström and Bergström,55 and Narasimha et al.37 where
they noted that in a near-neutral ASL flow, the averaged momentum
flux is mainly generated through burst like events associated with
strong gusts in the streamwise velocity fluctuations. We present our
conclusions in Sec. IV.

IV. CONCLUSION
In this study, we provide a detailed account of the persistence

properties of turbulent heat and momentum fluxes as obtained from
the SLTEST experimental dataset in a convective surface layer. Fur-
thermore, we also establish a novel linkage between the persistence
of the flux events and the heat and momentum transport character-
istics. We develop such correspondence through a framework based
on the concept of phase space in non-linear dynamical systems.

On a larger scale, the ramifications of this research are directed
toward providing answers to the questions posed in the Introduc-
tion. Keeping that in mind, the important results from this paper are
listed as follows:

1. The comparison of the persistence PDFs of momentum and
heat fluxes (u′w′ and w′T′) with the component signals (u′

and w′ or w′ and T′) reveals that at scales (ℓp) smaller than
the integral scale of the vertical velocity (Λw), the persistence
PDFs of the component signals and their products are in excel-
lent agreement with each other. For such scales, the persis-
tence PDFs of the products (u′w′ and w′T′) follow an identical
power-law distribution with an exponent of −1.4, irrespective
of the stability conditions. On the other hand, for scales larger
than the integral scale of the vertical velocity, both flux persis-
tence PDFs (of u′w′ and w′T′) nearly collapse on the persis-
tence PDFs of the w′ signals and deviate significantly from the
u′ or T′ signals (see Fig. 2).

2. The flux persistence PDFs are investigated separately by con-
sidering the distribution of the time scales from the four dif-
ferent quadrants. We discover that, for the momentum flux
events, the persistence PDFs of the u′w′ signals are indistin-
guishable for all the four quadrants by collapsing onto one
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another. However, for the heat flux events, the effect of quad-
rant separation on the w′T′ persistence PDFs remains insignif-
icant for scales smaller than the integral scale of the vertical
velocity. Contrarily, for ℓp > Λw, the persistence PDFs of the
heat flux events are primarily governed by the down-gradient
quadrants, i.e., warm-updrafts and cold-downdrafts.

3. For scales ℓp ≤ Λw, the persistence PDFs of both the flux events
show a similar characteristics in terms of quadrant behavior
and are also akin to a power-law distribution. Such power-
law behavior is related to the eddies from the inertial subrange
of the turbulence spectrum. At scales ℓp > Λw, the persis-
tence PDFs differ from the power-law distribution and drop
off exponentially, and the w′T′ signals are dominated by the
organized heat flux events from the down-gradient quadrants.
Therefore, the investigation of flux persistence leads to a crite-
rion that separates two different eddy processes based on the
integral scale of w′. Since the integral length scale of w′ is of
the same order as z, this separation reflects the properties of
the attached and detached eddies based on the Townsend’s
attached eddy model.

4. To gain insight into the transport mechanisms related to these
two eddy processes, we scrutinize the phase angles and ampli-
tudes associated with the flux component signals ({u′, w′} and
{T′, w′}). We derive a simple relation between the PDFs of
the phase angles and transport efficiencies assuming that the
variations in amplitude can be ignored. Under this assump-
tion, the departure of the phase angle PDFs from a uniform
distribution is shown to be a necessary condition for flux trans-
port. The results indicate that the phase angles of the com-
ponent signals related to the heat and momentum flux events
with length scales ℓp ≤ Λw are almost uniformly distributed.
Given that these events are associated with the detached eddies
from the inertial subrange, this agrees with the general notion
that quasi-isotropic turbulence for such size ranges hardly
transports any flux.

5. For the large scale heat flux events (ℓp > Λw), the departure
of the phase angle PDFs from a uniform distribution is the
strongest for the highly convective regime. However, with the
change in stability toward the near-neutral regime, the same
PDFs resemble closely a uniform distribution. This variation
explains the gradual reduction in the heat transport efficiency
as the near-neutral stability is approached.

6. For the large scale momentum flux events, the phase angle
PDFs remain close to a uniform distribution irrespective of
all the stability classes. This suggests that there is, on average,
nearly no transport of momentum in a convective ASL flow.
This result is antithetical to the observation that the momen-
tum transport efficiency increases as the ASL approaches the
near-neutral conditions. In order to explain the contradiction,
the amplitude effects need to be considered for the momentum
transport.

In summary, the heat transport efficiency in convective flows
is related to the phase angle distributions associated with the events
that persist for times larger than the integral scale of vertical velocity.
However, for the momentum transport efficiency, the phase infor-
mation between the streamwise and vertical velocity fluctuations
remains largely irrelevant. When amplitude effects are neglected,

there is nearly no transport of streamwise momentum. For practical
purposes, these results offer a unique perspective toward modeling
the heat and momentum transport processes in a convective ASL
flow.

SUPPLEMENTARY MATERIAL

See the supplementary material for figures relevant to this
article.
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APPENDIX: TA REPRESENTATION OF THE PRODUCTS
In this section, we briefly discuss how the prediction from

Eq. (13) compares with the observations. At a first glance, the rela-
tionship provided in Eq. (13) may seem counter-intuitive, as one
could naively expect the TA representation of the product of the
two signals will be equal to the product of the TAs of the individ-
ual components. However, expressing the TA representation of the
product in such a way will be incorrect since if both signals are nega-
tive (individual TA’s equal to 0), their product is positive, and hence,
the TA representation would be equal to 1. To demonstrate this,
in Fig. S2 (supplementary material), we provide a typical example
of the original TA approximated time series of u′w′ and w′T′ for
a highly convective stability corresponding to −ζ = 10.6. We com-
pare the original (u′w′)TA and (w′T′)TA with Eq. (13) and with the
product u′TA × w′TA. The result clearly shows that the expression u′TA
× w′TA does not capture the original TA signatures of (u′w′)TA and
(w′T′)TA, whereas Eq. (13) detains that information perfectly.
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