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A detailed analytical and numerical study of the suppression of the transverse head-tail instability 
by modulating the chromaticity over a synchrotron period is presented. We find that a threshold 
can be developed, and it can be increased to a value' larger than the strong head-tail instability 
threshold. The stability criterion derived agrees very well with the simulations. The underlying 
physical mechanisms of the damping scheme are the rotation of the head-tail phase such that the 
instability does not occur, and the Landau damping due to the incoherent betatron tune spread 
generated by the varying chromaticity. 

I. INTRODUCTION 
' 

A bunched beam traveling in a vacuum chamber creates a deflecting force generated by the interaction of particles 
and environment. The deflecting force, the so-called wake field, reacts and perturbs the beam, often causing transverse 
collective instabilities. These instabilities limit the peak current in the bunch. In this paper, we analyze a new method 
for controlling such instabilities; namely, through a temporal variation of the ring parameters. We apply this method 
to a practical example, the head-tail (HT) instability [1]. · 

In a storage ring, particles with different energies see different focusing strengths in quadrupoles, and thus have 
different betatron frequencies. The ratio of the relative frequency difference to the relative momentum difference is 
called the chromaticity. The betatron frequency of an off-momentum particle is given by 

(1) 

where ~ is the chromaticity, Wf30 is the betatron angular frequency of the on-momentum particle, and 8 = b.pfp is 
the relative momentum difference. Even if ~ = 0, there is an instability in the particle's transverse motion called 
the strong head-tail (SHT) instability. This instability has a threshold created by the synchrotron 9scillation, and 
when the threshold is exceeded, the bunch's transverse motion grows exponentially. In practice, ~ :j= 0, there is still a 
SHT instability in transverse motion with a threshold; in addition, there is the head-tail instability due to chromatic 
effect, which has nostability threshold. The HT instability was observed in experiments (2], has been well analyzed 
(3], and has been confirmed by simulations (4]. The HT instability has been a concern for many circular accelerators. 
For example, we may note the observations and simulations of single-bunch transverse excitation of the beam in the 
proton ring of the HERA collider at DESY (5], the observation of higher-order HT instability in the PS Booster of the 
LHC at CERN (6], and the investigation of the possible HT oscillation due to a transverse feedback kicker at KEK's 
B-Factory (KEKB) (7]. 

It is understood that, when ~/TJ > 0, the bunch's transverse center of motion which is governed by the in-phase 
mode of head-tail oscillation is damped, while the bunch's transverse size which is governed by the out-of-phase mode 
o~head-tail oscillation grows exp~nentia~ly; when ~/TJ < 0, th~ condition reversesj8], where TJ = pdC /Cdp-1/Jf_is_ t~e 
shppage factor, C = 21rR = cTo IS the circumference of the rmg, 1 = (1- {P)- 1 2 , and j3 = vfc ;S 1 for a relativistic 
beam discussed in this paper. Moreover, the growth rate of the out-of-phase mode when ~/TJ > 0, is smaller than 
the growth rate of the in-phase mode when ~/TJ < 0. Consequently, m,achine parameters are usually chosen such that 
~/TJ is positive and small, i.e. we need~> 0 ( < 0) when the machine/is operated above (below) transition. Damping 
mechanisms, such as radiation damping and Landau damping, may or may not stabilize the HT instability, depending 
on the damping time, the width of the incoherent tune spread, and so on. 

As the sign of ~!TJ is crucial to the stability of the two fundamental modes of head-tail oscillation, in analogy to the 
strong focusing principle, alternating the sign of ~/TJ within a synchrotron period could stabilize both modes. Si.nce 
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varying TJ means transition crossing, which involves many undesirable problems, such as vanishing Landau damping, 
large momentum spread, bunch-shape mismatch and nonlinear effects [9]; we propose, in this paper, variation of the 
chromaticity in order to stabilize the HT instability. 

While drafting this paper, we were advised of the existence of the paper written by T. Nakamura of SPring-S (10]. 
Nakamura suggested, as we have also (independently), the concept of chromaticity modulation, which contributes an 
incoherent tune spread that effectively Landau damps the transverse instabilities. In this paper, going considerably 
beyond what Nakamura has done, we provide analysis, simulation results, and a stability criterion for the head-tail 
instability. 

The chromaticity is considered a function of "time" s, where s measures the distance around the ring. We restrict 
our analysis to functions that are periodic with the synchrotron period. The chromaticity can thus be expanded in a 
Fourier series in terms of the harmonics of the synchrotron phase advance¢, as 

. e(s) =Len cos(n¢ + Bn), (2) 
n=O 

where ¢ = w8 sjc, w8 is the synchrotron angular frequency, n = 0 corresponds to the case of constant chromaticity 
(DC) eo, and Bn is the phase difference between the chromaticity and energy variation. 

The introduction of a time dependent part of the chromaticity generates an additional incoherent tune spread that 
contributes to the Landau damping, as was emphasized by Nakamura. Specifically, the constant component of the 
chromaticity causes the HT instability. As will be shown in this paper, the varying part of the chromaticity does 
not cause a HT instability, and consequently, Landau damping due to the AC (e.g., n=l) incoherent tune spread 
suppresses the instability due to the DC part of the chromaticity. 

The incoherent chromatic tune spread due to 6 can be estimated as 

<Tv= vpo6V((6sin¢)2} 

= V3f8gqvpo6uc, (3) 

where vpo = wp0 fw 0 , w0 = cjR, u0 = (w 8 /cTJ)uz, <Tz is the rms bunch length, gq = J(r;}r./<Tz which is a geometric 
factor depends on the longitudinal distribution '1/;oz(rz), and (} = ( }r. ( }tf>, 

(f(rz)}r. = ] 0
00 

:zrzl(rz)'1/;oz(rz), 
- fo drzrz'1/;oz(rz) 

(4) 

(!(¢)}</> = 2~ 127r d¢1(¢). (5) 

For a Gaussian distribution, gq = 1. In obtaining Eq. (3), we have adjusted 01 such that the chromaticity modulation 
is in-phase with the energy oscillation, i.e. e =eo+ e1 sin</J, C = (w 8 /CTJ)rz sin</J, where (rz, </J) are the action-angle 
variables in the longitudinal phase space. Note that, the cross-term of eo and 6 vanishes because (sin3 ¢}<t> = 0. The 
AC part of the incoherent tune spread contributes to a Landau dampingwithout driving the HT instability [as will 
be shown], and the damping rate per turn can be approximated as 

(6) 

where V 8 = w8 /wo, and x1 = wpoe1uz/CTJ is the AC part of head-tail phase. Note that the Landau damping time due 
to the AC part of chromaticity is independent of the beam intensity and the impedance of a ring. In Figs. 1 and 2, 
we show that, when there is no HT instability (Xo = 0), the formula for the Landau damping rate is confirmed by 
simulations of a bunched beam traversing an averaged impedance in a storage ring [cf. Appendix A]. The implication 
is that, within the tolerance of dynamic aperture reduction due to the chromaticity, one can increase the damping 
rate (by a large enough x1 ) to suppress the HT instability. 

In Sec. II, a Vlasov analysis is presented. We examine the growth rates for beams with a hollow distribution and 
with a Gaussian distribution, where both the contributions of the AC and DC are included. Results of macro-particle 
simulation are discussed. 

In Sec. III, the effect of Landau damping, which is not considered in Sec. II, is included by the method of singular 
eigenfunction expansion. We provide an approximate stability criterion, and study the dispersion relation which 
includes the incoherent tune spread. We compare the stability limit with macro-particle simulations. 

Conclusion is given in Sec. IV. 
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II. VLASOV ANALYSIS 

In this section, we derive the linear eigenmode equation which includes both the DC and AC parts of the chro
maticity. The effect of incoherent tune spread is not included, and will be included in the next section. We also study 
the coherent tune shift of a hollow beam and a Gaussian beam in the longitudinal phase space, in terms of the three 
parameters: xo, Xl and i. 

For an analysis of the effect of varying chromaticity, we assume the particle in a bunched beam experiences two 
forces: the external focusing force and the wake force generated from the interaction between the beam and cavities. 
The transverse equation of motion for a particle in a bunch is 

w 2 (6) 
y"(z, s) + ~ y(z, s) 

c 

=- r~loo dz'p(z')WJ.(z-z')y(z',s), 
'Y z 

(7) 

·, 

where y(z) is the transverse (longitudinal) oscillation coordinate with respect to the bunch center, 1 = djds, N = 
J dz' p( z') is the number of particles in a bunch, ro = e2 / moc2 , W J. is the transverse wake function, and particle's 
energy is E = 1moc2. 

In the following study, we neglect the nonlinear oscillation due to the rf bucket of the accelerating cavities, or 
the a bucket of the quasi-isochronous lattice [11); we also neglect the longitudinal wake force and the gradient of 
the transverse wake force, which both affect the longitudinal motion. The synchrobetatron coupling effect on the 
longitudinal orbit is also ignored. 

There are two parameters essential to the dynamics studied in this paper: 

(8) 

(9) 

where Xn is the phase shift between the head and the tail of a bunch for each harmonic n of the chromaticity. The 
parameter i is approximately the ratio of betatron tune shift to the synchrotron tune. It can easily be shown, by a 
two particle model, that the onset of the SHT instability is where i 2: 1 [8), when x1 = 0. The well-known transverse 
Boussard criterion is also consistent with this condition [12). 

We have studied a two-particle model incorporating the varying chromaticity scheme. We find that the two-particle 
model, in contrast to the Vlasov model and the multi-particle simulations, does not demonstrate the effectiveness of 
the varying chromaticity in damping the HT instability. Physically speaking, it is because a two-particle system does 
not adequately exhibit the effect of Landau damping. 

In this paper, we concentrate on the case of n = 0 & 1, therefore we have three independent parameters under study: 
xo, x1 and i. A larger periodicity of modulation, i.e. n > 2, is of course also possible. However, it can be shown 
that n must be an odd number, such that the en does not cause instability [cf. Appendix B). 

The nonlinear chromaticity characterized by eol' when €De is expanded as eDc = eo + eol6' plays a similar role 
to the AC component 6. In fact, 6 ::::: €o1 176. Since both €o1 and 176 are usually small, the nonlinear part of the DC 
component €o1 is not effective enough to suppress the HT instability. Unless a machine has a large enough eo1176, one 
needs to modulate the sextupole magnets to have the value of 6 large enough, so that the damping effect overcomes 
the instability. 

A. Eigenmode Equation 

We now present a Vlasov analysis of a many-particle system. We first write down expressions for the dynamical 
variables in the four dimensional phase space (z, y; 6, y'), in terms of the action-angle variables, as 

Z = TzCOS¢z, 6 = Wsrzsin¢z, 
TJC 

A. y' Wf30 • A. y = Ty COS'+'y, = --ry SlD '+'Y' 
c 

where ¢(z,y) = W(s,{3o)sfc. The linearized Vlasov equation can then be expressed as 
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.n ·'· Wf3o 8'1/J1 Ws 8'1/J1 Fy(z, s) 8'1/Jo 0 -z~ '~-' 1 + ~ 8¢y + ~ 8¢z + E 8y' ~ ' (12) 

where the distribution function is expanded as '1/J = '1/Jo + 'I/J1 exp( -ins/c), and n is the mode frequency. Eq. {12) can 
be solved by [8]: (1) the decomposition of the unperturbed and perturbed distribution functions as 

(13) 

(2) assuming 

(14) 

which describes the transverse dipole oscillation; and (3) using a linear model of the deflecting force given by 

F. (z s)- i(y)e2 e-insfc""'P- (w )Zl.(w )eiwqz/c 
Y , - CTt ~ 1 q 1 q , 

0 q 
(15) 

where Wq = qwo + Wf3 + lws, 

(16) 

J dz df>'I/Joz = N, and Zt(w) is the total transverse impedance of the ring. The linearized Vlasov equation, including 
the chromatic term, therefore becomes 

[
. ( 8'1/J1z] i<f> c

2
ro '1/Joz 

Z it- W{3o) 'I/J1z - Ws 8¢z e Y - 2/W{3oCTo X 

(ei<(>y _ e-i<f>y) 2:h(wq)Zf{wq)eiwqr• cos<f>,fc = O. 
q 

Let the longitudinal perturbed distribution function be Fourier expanded as 

where 

'I/J1z = 2: a/Rl(rz)ei(l<f>,-4?), 
1 

(17) 

(18) 

(19) 

and w~(o, 1 ) = Wf30f.(o,1)/1J, when f, = f.o + 6 cos ¢z. In this section, we attempt to find the growth rate of the HT 
instability, the effect of incoherent tune spread which will be illustrated in Sec. III, is ignored here. We now apply 

_1_ [21r dA. e-il'<f>.+i4? {21r dA. e-i<(>y 
(27r) 2 Jo 'l"z Jo '~-'Y ' 

on1 both sides of Eq. (17), in which 'I/J1z is replac~d by Eq. (18). We then obtain the eigenmode equation 

(it- Wf30 -lws) a1R1(rz) 

= i 1!".:~ ~To '1/Joz(rz) 2:h(wq)Zf(wq)Ii(wq), 
q 

where, by using the generating functions· of Bessel functions 

m 

e±ixsin<(> = 2:i'~'mJm(x)eim<f>eim1r/2, 
m 
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(20) 

(21) 

(22) 

(23) 



and Eq. (16), 

(24) 

(25) 

and 

(26) 

Note that, when 6 = 0, Eq. (21) is the eigenmode equation for the case of constant chromaticity [8], where 

G~l)(xq) = h(xq)· 

B. Degenerate Radial Mode 

The eigenmode equation shown in Eq. (21) can be simplified by assuming a hollow distribution, 

(27) 

where the radial perturbation occurs only on the surface of a delta shell in longitudinal phase space, i.e. R1(rz) <X 

6(rz - i). For the zero order perturbation, a~f) = 6u,, n<1) = Wf3o + lw.. The mode frequency of the first order 
perturbation, for the lth mode, is then [cf. Eqs. (21)-(25)] 

( n(l) - Wf30 - lw,) 

_ . 4w. T ~ 1. ) I (I) Xl 12 

- z 7rWl.To L.,.. Zdwq Gq ( 4 'Xq- Xo) ' 
q 

(28) 

where Xq = wqi/c = (qwo +w13o + lw.)ijc, and X(o,l) = we(o,l)i/c. 
With Eq. (28), we can now find the growth rate, which is the imaginary part of the mode frequency. For a broad

band impedance, the growth rate of the head-tail instability per synchrotron period, given in terms of the imaginary 
part of the mode frequency, is then 

(1) - 4T J - I (I) Xl 1
2 

1/r. - ---;;:- dwqZr(wq) Gq (4,Xq- Xo) , (29) 

where Zf(wq) = -W1.Z(wq) = -Wl.[Zr(wq) + iZi(wq)], and Lq has been replaced by J wq/wo. In Fig. 3, we show 
the growth rate of the impedance corresponding to a uniform wake function , where [8] 

and the growth rate of the impedance of the broad-band resonator model, where 

' 5 

(30) 



- 1 
Z(wq) = 2w

9
z [1 + i (1/w- w)]' (31) 

Q = 1, z = ifb, w = Wq/WR, WR = cjb, and wl. = -2d:Rsfb3 . Note that, impedances for the broad-band resonator 
model and the uniform-wake model give a similar dependence of the growth rates on xo and X1 [cf. Fig. 3]. In the 
resonator model, a longer bunch would scale down the growth rate of the HT instability. In the uniform-wake model, 
the growth rate is independent of Uz. To illustrate the effectiveness of damping mechanism due to x1 , we will employ 
Eq. (30) as the function of impedance in the following analysis and simulations. 

Note that, 1/rP) = 0, when xo = 0, since Zr(w9) is odd in w9• As emphasized, the AC part of chromaticity alone 
does not cause the HT instability. The growth rate for the uniform-wake impedance can be approximated as, 

1/ril) ~ 16!xo J~(~l) 1oo ~q Jz(Xq)J{(Xq) 

32Txo 2 Xl 
~'11'2 (412 -1/0 (4) (32) 

up to the first order of xo, where the terms of m :j= 0 in G~l) [cf. Eq. (26)] are ignored. The growth rate is 
obviously decreased by the AC amplitude Xl· When Xl = 0, Eq. {32) reduces to the well-known [3,8] formula 

1/rP) = 32Txo/7r2(4/2 - 1). 

C. Radial Modes 

When considering realistic particle distributions, the radial eigenfunctions Rz(rz) are no longer degenerate. In t~is 
section, we assume a Gaussian longitudinal distribution, i.e. 

{33) 

and that the mode frequency shift ~Q(I) is smaller than w8 , so that the modes Q(l) do not couple. The issues of 
azimuthal mode coupling will be briefly discussed later. The eigenmode equation, for the uncoupled lth mode, is a 
modified form of Sacherer's integral equation, 

(Q(I):. Wf3o -z) Rz(rz) 

= W(rz) 100 

dr~r~Rz(r~)Kz(rz, r~), {34) 

where 

(35) 

and the kernel of the integral equation is given by 

(36) 

Introducing an orthonormal complete set e~l) ( r z) defined by 

(37) 

f 
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the eigenfunction can be expanded as 

(38) 

For a Gaussian unperturbed distribution the weight function W(rz) [cf. Eq. (35)] has the orthonormal basis e~1)(rz) 
given by [13] 

(I)( ) = vl27i*f (__2__) 1 
L(l) ( r; ) 

ek rz (I+ k)! ../2uz k 2uJ , (39) 

where Lk1
) are the Laguerre polynomials. We now apply 

roo (1) 
Jo drzrzek (rz) (40) 

to both sides of Eq. (34). The integral equation becomes an eigenvalue system, 

( 41) 

where I is an identity matrix, 

(42) 

and 

9lk(wel,wq -weo) = 

rood W( ) (I).( )G(I) (wel 'Wq - weo ) Jo rzrz rz ek rz q 4crz., c rz . (43) 

Note that the meaning of 9lk is related to the beam frequency spectrum of the lth mode, since [cf. Eqs. (25), (26), 
and (43)] 

(44) 

The eigenvalues then need to be solved by diagonalization of the infinite dimensional matrix M(l). Note that, 
the number of azimuthal and radial nodes in the longitudinal phase space are, I and j, respectively. To achieve a 
qualitative description of the eigenmodes, we now focus o1_1ly on the dominant radial mode, where k = j = 0. Using 
Eqs. (26), (35), and (39), for the integral in Eq. (43), in which L~1)(.x 2 ) = 1, we have [13], for the (lj) = (/0) mode, 

gw(.xl, .xq- .xo) = 
1 ( . .x1 )m (.xq _ .xo)2m+l 

.J21i1f ~ (2- ·bmo) -t4 (2m+ I)! X 

"< _1)q f(q + / + 3mj2 + 1) (.X1) 2q X 

~ q!f(q+m+1) 4 

.X . - .xo 
[ ( )2] 

2 F1 -q, -m- q;2m+ I+ 1; : 114 , (45) 

.0 

where Z(o,l) = we(o, 1)uzf../2c, .xq = wquz/../2c, bmo is the Kronecker delta, and 2F1(a,b;c;.x) is the hypergeometric 
function. Note that Z(o,l,q) = X(o,l,q)f.../2. The beam spectra lgw(XqW are shown in Figs. 4. It can be seen that, the 
center of spectra is shifted by an amount of xo; and with a large enough X1, the spectral amplitudes are suppressed 
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for ail azimuthal modes. This implies that, besides the additional incoherent tune spread due to x 1 which causes 
more Landau damping [cf. Eq. (6)], the HT instability induced by xo is further suppressed by Xt, although the later 
effect is much less effective than the first one, as will be seen in the next section. 

The beam spectrum 910(0, Xq- xo) reduces to the spectrum of the DC case when e1 = 0: 

1 I ( )2/2 910(X - xo) = (x - xo) e- xq-xo . 
q v'21iif 21/2 q 

The mode frequency can now be approximated for the dominant radial mode of a Gaussian be~m, as 

where 

and the effective impedance is 

r.(l) I .81w, N(l)z-(1) 
H -wpo- w, ~ -z~ 9 eff' 

N~1) = L IYIO(Xt, Xq- xo)l
2 

q 

z~~ = [N~I)rl LZ(wq) l91o(Xt,Xq- Xo)l
2

. 
q 

When x 1 < 1, one can approximate the beam spectrum by 

IYio(Xt, Xq - xo)l
2 

~ _l_(X _ Xo)21e-(x 9 -xo)2 Jo2 (Xl) 
271"/! 21 q 4 . 

(46) 

(47) 

(48) 

(49) 

(50) 

For simplicity, instead of using the exact representation of the beam spectrum shown in Eq. {45), we use the 
approximate form of Eq. {50) in the following study, for the case of Xt < 1. In this way, for a broad-band impedance, 
the growth rate per synchrotron period is simply 

ljr}Zl ~ -81 J dw~Zr(wq) l91o(Xl,Xq- xo)l 2 

= -81N11R [z~~], {51) 

where for a Gaussian beam, 

J 2 f{l + 1/2) c 2 (X1) 
N1 = dwq IY1ol ~ 71" l! 21+1 Uz Jo 4 . {52) 

The coherent tune shift is given by the real part of the mode frequency. For of a uniform-wake impedance [cf. Eq. 
{30)], we have 

(I) 41 21 -x 2 2 (Xl) 21r1R[~v ] = -l! 21 VsXo e oJo 4 , 

where ~v(l) = (Q(I)- wpo)/wo -l v.; and the growth rates of the two fundamental modes are approximately, 

1/ri0
) ~ -41Erfi (xo) e-X~Jg (~1 ) , 

and 

{53) 

{54) 

{55) 

where 1/rP) = 27r~[~v(ll]jv., Erfi{x) = -iErf{ix), and Erf(x) is the error function. Fig. 5 show the real part 
and imaginary parts of the coherent tune shifts for I = 0 & l = 1. When xo ~ 1, the growth rates can be further 
approximated by using Erf(xo) ~ 2xo/ft, Liji12)(x6) ~ 2/71". For a uniform-wake impedance, and Xl < 1, we 
recapitulate the growth rates in Table 1, when xo ~ 1. 
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IH1)xo T J6(xrf4)] ·l 

hollow Gaussian 
I= 0 -3.242 -4.514 
l = 1 1.081 1.128 

Table 1: Comparisons of the geometric factor of the growth rate of the HT instability, for a bunched beam with a 
hollow distribution and with a Gaussian distribution, when xo ~ 1. A uniform-wake impedance is assumed, and the 
effect of Landau damping in not included. 

Simulations agree very well with Eq. (54) for the damping and growth rates of the I= 0 mode of a Gaussian beam. 
Figs. (6) show examples of the bunch cent~oid motion of a Gaussian beam, where the evolution of the envelope agrees' 
very well with the theory's prediction. In other words, the imaginary part of the coherent tune shift calculated is 
confirmed by simulations. 

When the SHT effect is prominent, i.e. Tis close to 1, the azimuthal mode-coupling is likely to occur. Examination 
of Eqs. (53), (54) and (55), shows that, both the real and imaginary parts of the coherent tune shift of the (10) 
mode are approximately reduced by J6(Xl/4). Even before solving the matrix of infinite dimension, or including the 
Landau damping, this suggests that the SHT threshold can be raised by a large value of x1 . 

The most important results in this section are Eqs. (53), (54) and (55), which are the real part and the imaginary 
part of the tune shift of a Gaussian beam with the model impedance of Eq. (30). These results will be used in the 
next section. 

III. LANDAU DAMPING 

In this section, we include in the linearized Vlasov analysis the incoherent tune spread induced by the varying 
chromaticity. We present an approximate stability criterion, a rigorous criterion using the dispersion relation, and 
comparisons with simulation results. 

A. Approximate Stability Criterion 

With the knowledge of the incoherent tune spread· and coherent tune shift, which cause damping and instability 
respectively, we can now estimate a stability condition. Let's assume that the stability criterion for the HT instability 
is that the incoherent tune spread is larger than the absolute value of the coherent tune shift; that is. 

qv > IA_v(l)l· (56) 

From Eqs. (6) and ( 47), a general expression for the stability condition is 

(57) 

where the factor J6(xrf4) is neglected. From Eqs. (47), (48), (50), and Figs. 4, one can see that, without taking 
into account Landau damping, x1 does not significantly reduce the coherent tune shift, unless x1 ~ 1. Explicitly, the 
approximate stability criterion, expressed in terms of accelerator parameters, is 

_) 

(58) 

where cz = .j2/3r(l + 1/2)/trl!21+1 and the average current is Io = NecfC. When 0 < xo < 1, the l = 1 mode 
is usually the dominant unstable mode, and c1 = 0.058. In contrast, when -1 < xo < 0, the l = 0 mode is the 
dominant unstable mode and c0 = 0.23. Note that, as the dimensiomility of zt is [D/m], both sides of Eq. (58) are 
dimensionless. 

As an example, consider a Gaussian beam distribution, an impedance function Z = 1/wq- itrb(wq), and Xo = 0.2, 
the stability criterion [cf. Eq. (57)] predicts that the l = 0 mode is stabilized\if Xl > T, and the l = 1 mode is 
stabilized if x~ > 0.058T. In Figs. 7 and 8, we show the growth of the bunch centroid, rms-size, and rms-emittance 
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due to the HT instability, and its stabilization by various amounts of Xt· The value of Xt needed to stabilize the 
bunch centroid motion is approximately consistent with the estimated criterion of Eq. (57). In Fig. 8, the bunch 
centroid motion is initially dominated by the l = 0 mode, which is a damping mode when xo > 0 [cf. Figs. 5 and 6]; 
the higher order unstable modes cause the growth of averaged bunch-center after the initial damping. The varying 
chromaticity, nonetheless, Landau damps all the higher order unstable modes when x1 is larger than the HT stability 
threshold estimated in Eq. (57). 

Eq. (57) is an estimate for the stability condition, and is usually sufficient for the bunch centroid motion. A rigorous 
criterion may be derived by incorporating the incoherent tune spread in the Vlasov analysis. In doing so, one needs 
to include the damping mode by the method of singular eigenfunction expansion, and solve the dispersion relation 
[14]. The basic derivations are formulated in the next section. 

B. Singular Eigenfunction Expansion 

In this section, we use the method of singular eigenfunction expansion [14] to include the Landau damping in the 
Sacherer equation. We first rederive the betatron phase advance, 

(59) 

~ =-w~0 rcos</Jz- w~ 1 rsin(2¢z), 
c 4c 

(60) 

rz -+ r, and St = w~tf2c. The in-phase oscillation between the chromaticity modulation and the energy oscillation 
generates a tune spread proportional to St r, as illustrated in Sec. I. We now rewrite Eq. (34) as 

R1(r) = W(d 100 

dr'r' R1(r')K1(r, r'), 
v1- 1r 0 

(61) 

where v1 = (Q(I)- Wf3o)/ws -l = .!!iv(l>fvs, Wf3o-+ Wf30 + StWsT, and v1-+ VI- Str. According to the orthogonality 
condition defined in Eq. (37), the kernel K1(r, r') can be expanded as 

K1(r, r') =I: M~1f,e~1)(r)e~1}(r'), (62) 
k,k' 

where 

. M~1f, = laoo drrW(r)e~l)(r) X 

laoo dr'r'W(r')e~1l(r')K1(r, r'). (63) 

As in Sec. II, we now apply J drre)1)(r) on both sides of Eq. {61). The eigenvalue system becomes 

{64) 

where 

(I) (I) 
(I) J ej {r)ek (r)W(r) . 

ajk = drr S = Fjk(vl) + zGjk(v1), 
VI- 1r 

(65) 

. 1 J eY)(r)e~l)(r)W(r) 
Fjk(r) = --

5 
P.V. drr • , 

1 r- r 
(66) 
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(67) 

r = vrf S1 , and P. V. is the Cauchy principal value. In Eq. (65), we have used the formula: 1/(r- r) --+ P. V.f(r- r) + 
i-;r8(r). The dispersion relation of the dominat radial mode is 

or, explicitly, 

1 _ (I) 
(i)-Moo, 
ctoo 

. i 
V + iU = _z_ = -=--:--:----:---:--:-

a~~ Foo(vr) + iGoo(vr) 

- ·M(I) - z 00 

= 81 Nr {~ [z(/)] + i~ [z(l) 1 } 
2-;r eff effJ ' 

(68) 

(69) 

where V(U) is the real (imaginary) part of the ifa~~, and i/a~~ is the so called "beam transfer function" (BTF). For 
a Gaussian beam, we have 

and 

i 

Foo(vo) + iGoo(vo) 

-ixr/2 

-ix1 

../2-i (x~+4xlv[)-8-;rvre-2vUxi [Erfi ( 1~') -i]' 

(70) 

(71) 

for the l = 0 and l = 1 modes. The real and imaginary parts of the effective impedance are given by [cf. Eqs. (53), 
(54) and (55)] 

8'INr~ [z~k] = 

{ 
4'IErfi(xo)e-X~J6 (~) 
-JiixoL~/;12)(x5) e-x~Jg (~) 

(l = 0) 
(l= 1), (72) 

(73) 

In Figs. 9 and 10, we show the stability diagrams in the U- V space, when l = 0 &l = 1. The curve of the BTF 
(the outer limit on the U - V plane), is determined by Xl· The parameters related to the beam intensity and the 
effective impedance, i.e., 'I and xo [cf. Eqs. (53), (54) & (55)], determine the curve of the inner elliptical circle on 
the U- V plane. Note that, in drawing the figures, the contribution of J6(xd4) in the beam spectrum [cf. Eq. (50)] 
is moved to the left-hand side of the dispersion relation [cf. Eq. (69)]. ' · 

We find that, the stability limit for the l = 0 mode is where Vo = 0, i.e., ~(BTF) = 0. According to the dispersion 
relation [cf. Eq. (69)], the stability condition is 'I (I = 0) ~ 0.31Xlex~. For the l = 1 mode, the stability limit is 
usually given by where Foo = 0, i.e. ~(BTF) = 0. Unlike the l = 0 mode, one needs to solve the dispersion relation 
numerically to obtain the stability condition of the l = 1 mode. 

In short, it is the real (imaginary) part of the effective impedance that gives rise to the stability limit, for the 
l = 1(l = 0) mode. 

Figs. 11 and 12 show that the stability area can be enlarged by a larger X1, for both the l = 0 & l = 1 modes. Eqs. 
(70) and (71) show that the left-hand side of the dispersion relation is approximately proportional to x1 ; this implies 
that the SHT threshold can be enlarged by increasing Xl· "", 



The multiparticle simulations show that the rms-emittance of a Gaussian beam is stabilized when the the value of 
x1 approaches the stability threshold of Eq. (69) [cf. Figs. 13 and 14]. The results of simulation of the bunch centroid 
motion agree with the approximate stability limit, and the results of emittance growth agree with the exact stability 
criterion [cf. Fig. 15]. Compared with the rigorous criterion, to stabilize the bunch's higher moments, such as the 
rms-size and rms-emittance, x1 usually needs to be larger than the estimate from the approximate criterion [cf. Eq. 
(57)] by a factor of between 1 and 3. 

As mentioned in previous sections, the varying chromaticity can not only stabilize the HT effect, but also increase 
the SHT threshold. Figs. 16 show the simulation results for the stabilization of the SHT instability by a sufficiently 
large x1 , when T = 1.65 and xo = 0. Note that the SHT stability threshold, without varying chromaticity, is 
approximately T < 1 (which has been confirmed by simulations). This implies that the current limit in a storage ring 
can be increased by the varying chromaticity scheme. 

The stability criterion derived in this section are in good agreement with the simulation results, and the criterion 
provides-a useful guidance for the implementation of the varying chromaticity scheme. 

IV. CONCLUSION 

In summary, we have shown that, by the varying chromaticity scheme, the head-tail instability is suppressed and 
a stability threshold is developed. The underlying physical mechanism of the damping scheme is from the Landau 
damping due to an additional incoherent betatron tune spread induced by the varying chromaticity. Moreover, the 
varying part of chromaticity rotates the head-tail phase, such that the chromatic term is ±1r /2 out of phase from the 
resonant term, in the first and second half synchrotron period, respectively. The imaginary terms (±1r /2 out of phase 
terms) are therefore cancelled out by varying chromaticity in one synchrotron period. Consequently, the AC part 
of the chromaticity does not cause instability. Multi-particle simulations confirmed the estimated Landau damping 
rate, the mode analysis, and the stability condition. In short, it is both the strong focusing principle and the Landau 
damping that make this scheme work. With large enough AC part of the chromaticity, one should be able to increase 
the threshold ofthe strong head-tail instability. 

Studies of practical issues, such as rapidly modulated sextupole magnets and the reduction of dynamic apertures; 
and further theoretical works, such as exact calculations of the azimuthal mode-coupling, are required. Also, of 
course, the practical aspects of varying chromaticity must be compared with the other schemes that also introduce 
an incoherent tune spread, e.g., space-charge, ion-trapping, rf-nonlinearity, and octupole magnets. 

Finally, this work suggests that temporal variation of accelerator parameters might be useful in the control of other 
instabilities. 
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APPENDIX A: MULTI-PARTICLE SIMULATION 

A simulation code has been developed to study the damping effect of the varying chromaticity for the HT instability. 
The code simulates a bunched beam traversing a ring with a transverse impedance. The momentum Py is changed by 
the kick of the transverse wake force, where Py = (cfwpo)y'. Particle's betatron oscillation is carried out by a rotation 
matrix, where Eqs. (1) and (2) are used for the angular frequency. A uniform transverse wake function is used. No 
longitudinal wake force is included. Eqs. (7) and (10) are transformed into a 4-D map for particle's transverse and 
longitudinal motions. 

The parameters used in the simulations are listed in Table 2. 
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Particle's classical radius ro[cm] 
Energy E[GeV] · 
Circumference C[m] 
Slippage factor TJ 
Synchrotron tune Vs 

Betatron tune Vf30 

RMS bunch length O"z[cm] 
RMS bunch size O"y[cm] 
Shunt impedance Rs [0] 
Pipe radius b[cm] 
Chromaticity(Head-tail phase) eo(xo) 
Initial beam transverse offset .6-y[cm] 
Number of particles per bunch N 

1.534 X 10 ·H> 

40 
6400 
10-3 

0.0094 
16.35 

1 
0.1 

3000 
3.0 

1.246(0.2) 
0.1 

2 X 1011 

Table 2: Parameters used in the simulations. Note that, from this table, the intensity parameter is 1 = 0.22. 

The accelerator parameters can be scaled according to the three dynamical·parameters 1, xo, and x1 , which are 
the only parameters relevant to the dynamics discussed. In simulations, a bunch beam is loaded with a hi-Gaussian 
distribution in both the longitudinal and transverse phase spaces. All results are numerically converged when the 
number of macro-particles simulated is larger than 400. 

The curves of (y} and Yrms presented in this paper have been averaged over a synchrotron period, they are defined 
as 

(A1) 

(A2) 

where 

1 Nm 

fi(i) = N L Ym(i), 
m m=l 

u;(i) = ~ I: [Ym(i)- fi(i)] 2
, 

m m=l · 
(A3) 

Nm is the number of macro-particles used in the simulations, Tn is the number of turn, and N 8 is the integer part of 
1/vs. The rms-emittance is defined as 

(A4) 

where 

u;_pY(rn) = 

1 ~ -
N L [Ym(Tn)- fi(rn)] [Pym(Tn)- Py(rn)]. 

m m=l 

(A5) 

APPENDIX B: PERIODICITY OF VARYING CHROMATICITY 

In this appendix, by using a two-particle model, we show that the periodicity of chromaticity modulation n must 
be an odd number, such that the AC part of the chromaticity does not cause additional HT instability. 

For a two macro-particle system, the longitudinal motion of the two macro-particles is prescribed as: 
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I 1 • 
Z1 2 WsZ 

612 = --' = =F- cos¢, 
' 1J C1J 

z1,2 = ±i sin¢, (Bl) 

where i is the oscillation amplitude with respect to the bunch center, and the upper (lower) sign -denotes for the 1st 
(2nd) particle. The transverse motion in the first half synchrotron period, i.e. 0 < sf c.< Ts/2, can be described as 
follows, 

1 w~(61) Yi + --2 -y1 = 0, 
c 

11 w~(62) Nro 
Y2 + ~Y2 = - 21CW.LY1, 

(B2) 

(B3) 

where a constant short-range transverse wake W.L is assumed. For the second half period, i.e. Ts/2 < sfc < Ts, 
Y1 +-+ Y2· 

According to Eqs. (1), (2), and (Bl), the betatron frequencies of the head and tail split as'· 

W,t31,2(s) = W,t3o =F Ws I: Xn cos¢ cos(n¢ + Bn)· 
n=O 

The approximate solution of Eqs. (B3) can be found by assuming 

Y1,2(s) = Y1,2(s) exp [-i<P1,2(s)] 

where both Y(s) and <I?(s) vary slowly compared with the betatron oscillation, 

and 

( .../.. 1) _ (} [sin(n + 1)¢ sin(n- 1)¢] 
9n n r - cos n 1 + l , n+ n-

. (} [cos(n + 1)¢- 1 cos(n- 1)4)- 1] 
+sm n 1 + ' n+ n-1 

91 = cos B1 ( ~ sin 2¢ + ¢) + ~ sin B1 (cos 2¢ - 1) . 

Substituting Eq. (B5) into Eq. (B3) and neglecting the small parts, where 

(IY;1 /Y2!, I<P~I) ~ I<P~Y;/Y2l ~ W,t3oY;jcY2 

and Ws ~ Wf3o, leads to 

Integration of Eq. (B10) leads to 

where 

Similarly, for the second half synchrotron period, we have 
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(B4) 

(B5) 

(B6) 

(B7) 

(B8) 

(B9) 

(BlO) 

(Bll) 

(B12) 

(B13) 



where 

and 

h ( -t. 1) _ 0 [sin(n + 1)¢> sin(n- 1)¢>] 
n n-r -COS n 

1 
+ 

1 
+ n+ n-

. 
0 

[cos(n+1)¢>-(-1)n+1 

sm n . + 
n+1 

cos(n- 1)¢>- (-1)n- 1 ] 

n -1 ' 

h1 = cos 01 (~sin 2¢> + ¢>- 1r) + 

I . 
2 sin 01 (cos 2¢> - 1) . 

The amplitudes of the two-particle system after a complete synchrotron period can therefore be written as 

V(s/c = Ts) = Mu · M1 · V(sfc = 0) 
= M · V(O), 

where V = (Y1, Y2f, and the transfer map is 

M = [ ~ i
2
\Su] . [ i2iS1 n 

_ [ 1- 4T2SISu i2TSu] 
- i2TSI I . 

The eigenvalues of Mare 

(BI4) 

(BI5) 

(BI6) 

(BI7) 

(BI8) 

(BI9) 

where S = S1Su. Note that when the chromaticity is constant, and the head-tail phase is small, i.e. n = 0 and 
xo «:: 1, we have S1 = Su:: 1 + 4ixo/tr [8]. When the chromaticity is zeJO, i.e. xo = 0, and T < I, the modulus of 
the eigenvalue is one and the system is stable. The value 1' = I corresponds to the threshold of the SHT instability. 

To investigate the stability of the two-particle system, we first discuss the situation when the head-tail phase is 
small, i.e. Xn «:: 1. The functions S1, Su can then be approximated as 

where 

S1 ~I+ i L XnGn, (B20) 
n=O 

Su ~I- iLXnHn, 
n=O 

Gn(n :/;I)= 17r d¢>gn(¢>) 

_ .!_ O [I+ (-It I+ (-It] 
-7rcos n (n+I)2 + (n-I)2 

- sin On ( n ~ 1 + n ~ I) , 

1
2" 

Hn(n # 1) = 7r d¢>hn(¢>) 

= -.!. COS On [ 1 + (-I )n + I + (-I )n] 
1r (n + I)2 (n- I)2 

+sinOn [(-l)n + (-l)n)], 
n+l n-I 

I5 

(B21) 

(B22) 

(B23) 



and 

The product of S1 and Sn in Eq. (B19) is then 

S = S1Sn 

=1+ L XnXmGnHm+iLXn(Gn-Hn)· 
n,m=O n=O 

(B24) 

(B25) 

Note that, in Eqs. (B20) and (B21), the real part of S1(Sn) is the resonant term, and the imaginary part is the 
chromatic term, in the 1st(2nd) half of a synchrotron period. Examining the form of the eigenvalue A, the stability 
condition is, in general, when 

S E lR, S > 0 and T 2 < 1/ S, (B26) 

where the modulus of eigenvalue of the transfer map M equals to one, i,e. IAI = 1. Since Gn - Hn = 0 when 

n C odd; (B27) 

or 

_ 1 [ 2( n 
2 + 1) ] 

n C even & Bn =tan 1rn(n2 _ 1) , (B28). 

which makes the imaginary part of S vanishes, we conclude that the stability conditions of the had-tail instability 
with varying chromaticity when Xn ~ 1, are Eqs. (B26)-(B28). Note that in case the chromaticity is a constant, i.e. 
when n = 0 only, we have Go- Ho = 8j1r, ~(S) f. 0, and !AI f. 1, the two-particle system is inherently unstable. 

In other words, for a small head-tail phase Xn, using a varying chromaticity with an odd function of synchrotron 
oscillation period, one can build up a stability threshold forT from zero to 1/VS. An odd chromaticity function can 
be achieved, by either alternating the sign of e or modulating e by a sinusoidal function within a synchrotron period. 
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FIG. 1. Multi-particle simulation results showing damping of the centroid motion of a Gaussian beam, when T = 0.11, 

xo = 0, (a) XI = 0.2, and (b) XI = 0.5. The solid lines are where, according to Eq. (6), (y)[turn] = 0.1 exp( -turn/nv ). See 
Eqs. (8) and (9) for definitions of xo, XI, and T. 
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FIG. 2. Multi-particle simulation results showing damping of the centroid motion of a Gaussian beam, when T = 0.328, 
xo = 0, (a) XI= 0.2, and(b) XI= 0.5. The solid lines are where, according to Eq. (6), (y)[turn] = O.lexp(-turn/rLv). See 
Eqs. (8) and (9) for definitions of xo, XI, and T. 
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FIG. 3. Scaled growth rate, 1fri1
) /T, of a h~llow beam due to the impedances of a uniform-wake (solid line) and a broad-band 

resonator model (dashed line), when X1 = 0, z = 0.1. Curves are labeled by the azimuthal mode index l. See Eqs. (8) and (9) 
for definitions of xo, X1, and T. 
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FIG. 4. Normalized frequency spectra l9to(XqW of a Gaussian beam, when xo = 0.1, (a) l = 0&1, and (b) l = 2&3. See 
Eq. (8) for definition of xo and Xl· 
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FIG. 5. Scaled coherent tune shift of a Gaussian beam due to the impedance of Eq. (30) vs. xo, when x1 = 0, and where 
the solid( dashed) lines are the real(imaginary) part of 21r~z/ll jv,T. Curves are labeled by the azimuthal mode index I. See 
Eqs. (8) and (9) for definitions of xo, Xl, and T. 
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FIG. 6. Multi-particle simulation results showing the motion of bunch-centroid of a Gaussian beam, when x 1 = 0, T = 0.22, 

(a) xo = +0.2, and (b) Xo = -0.2. The solid lines are where, according to Eq. (54), (y)[turn] = O.lexp(v,turn/r~0)). See Eqs. 
(8) and (9) for definitions' of xo, X1, and T. 
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FIG. 7. Multi-particle simulation results showing stabilization of the HT motions of (a) the centroid, (b) the rms-size, and 

(c) the rms-emittance of a Gaussian beam by Xl, when xo = -0.2 and T = 0.22. The estimated stability threshold for the 
l = 0 mode, according to Eq. (57), is X1 ;:: 0.22. See Eqs. (8) and (9) for definitions of xo, Xl, and T. 
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mode, according to Eq. (57), is XI ;?: 0.0127. See Eqs. (8) and (9) for definitions of xo, XI, and T. 
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FIG. 9. Stability diagram of a Gaussian beam with the impedance function given by Eq. (30), for the l = 0 mode. Parameters 

that label the ellipses are: (-xo, T) =(a) (0.2,0.22), (b) (0.5,0.28), (c) (0.7,0.36), (d) (0.85,0.45). The outer curve is where 
XI= 0.7. See Eqs. (8) and (9) for definitions ofxo, XI, and T. 
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FIG. 10. Stability diagram of a Gaussian· beam with the impedance function shown in Eq. (30), for the l = 1 mode. 

Parameters that label the ellipses are: (xo, T) = (a) (0.05,0.83), (b) (0.2,0.22). The outer curve is where Xl = 0.026. See Eqs. 
(8) and (9) for definitions of xo, X1, and T. 
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FIG. 11. Stability diagram of a Gaussian beam with the impedance function shown in Eq. (30), for the l = 0 mode. The 

stability boundaries are enlarged by Xl· See Eqs. (8) and (9) for definitions of xo, Xl, and T. 
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FIG. 12. Stability diagram of a Gaussian beam with the impedance function shown in Eq. (30), for the l = 1 mode. The 

stability boundaries are enlarged by Xl· See Eqs. (8) and (9) for definitions of xo, Xl, and T. 
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FIG. 13. Multi-particle simulation result showing stabilization of the HT motions of the rms-emittance of a Gaussian beam 

when Xl ....... 0.7- the theoretical stability threshold of the l = 0 mode [d. Eq. (69)). Here xo = -0.2, T = 0.22. See Eqs. (8) 
and (9) for definitions of xo, Xl, and T. 
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FIG. 14. Multi-particle simulation result showing stabilization of the HT motions of the rms-emittance of a Gaussian beam 
when X1 -+ 0.026- the theoretical stability threshold of the l = 1 mode [d. Eq. (69)]. Here xo = 0.2, T = 0.22. See Eqs. (8) 
and (9) for definitions of xo, Xl, and T. 
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FIG. 15. Stability limits of a Gaussian beam with the impedance function of Eq. (30) for the l = 1 mode, in the AC (Xl) 

vs. DC (xo) space. Here T = 0.22, (y) is the averaged centroid motion at 8000 turns, ~erms = erms(8000)/erms(O), and 
the approximate and exact stable limits are plotted according to the criteria shown in Eqs. (57) and (69), respectively. The 
region below the solid (dashed) line is stable for the bunch's rms-emittance (centroid) motion. Note that, (y}(O)' = 0.1[cm], 
erms(O) = 0.01[cm], and ~erms is rounded to the closest integer. 
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FIG. 16. Multi-particle simulation results showing stabilization of the SHT motions of (a) the centroid, (b) the rms-size and 

(c) the rms-emittance of a Gaussian beam by Xl, where the SHT stability limit is T < 1 (when x1 = 0). In these figures, 
xo = 0, T = 1.65. See Eqs. (8) and (9) for definitions of xo, Xl, and T. 
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