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ABSTRACT  

Activation of PKG Iα in nociceptive 
neurons induces a long-term hyperexcitability that 
causes chronic pain. Recently, a derivative of the 
fungal metabolite balanol, N46, has been reported 
to inhibit PKG Iα with high potency and selectivity 
and attenuates thermal hyperalgesia and 
osteoarthritic pain. Here, we determined co-crystal 
structures of the PKG Iα C-domain and cAMP-
dependent protein kinase (PKA) Cα, each bound 
with N46, at 1.98 Å and 2.65 Å, respectively. N46 
binds the active site with its external phenyl ring 
specifically interacting with the glycine-rich loop 
and the αC helix. Phe371 at the PKG Iα glycine-
rich loop is oriented parallel to the phenyl ring of 
N46, forming a strong π-stacking interaction, while 
the analogous Phe54 in PKA Cα rotates 30º and 
forms a weaker interaction. Structural comparison 
revealed that steric hindrance between the 
preceding Ser53 and the propoxy group of the 
phenyl ring may explain the weaker interaction 
with PKA Cα. The analogous Gly370 in PKG Iα, 
however, causes little steric hindrance with Phe371. 
Moreover, Ile406 on the αC helix forms a 
hydrophobic interaction with N46 while its 
counterpart in PKA, Thr88, does not. Substituting 
these residues in PKG Iα with those in PKA Cα 
increases its IC50 values for N46 whereas replacing 
these residues in PKA Cα with those in PKG Iα 
reduces the IC50, consistent with our structural 
findings. In conclusion, our results explain the 
structural basis for N46-mediated selective 

inhibition of human PKG Iα and provide a starting 
point for structure-guided design of selective PKG 
Iα inhibitors. 

 
 

Chronic pain is a debilitating condition that 
affects nearly 25 million U.S. adults (1). Opioid 
pain relievers (OPRs) are the most prescribed 
medication class in the US (2). The increasing 
prescription of OPRs is associated with the 
dramatic increase in opioid misuse, abuse, 
overdose, and opioid use disorder, contributing to 
$504 billion economic cost in US in 2015 and more 
than 63,600 opioid overdose deaths in 2016 (2-6). 
Another major category of analgesics, COX 
inhibitors, has long-term cardiovascular side effects 
(7). Therefore, a new type of non-opioid based pain 
reliever is in demand for effective pain 
management. 

Reversible protein phosphorylation 
regulates all aspects of cell survival. Consequently, 
dysregulations of protein kinases are often involved 
in human diseases such as cancer (8), diabetes (9-
11), and chronic pain (12,13). Over thirty protein 
kinase inhibitors have been approved by FDA in the 
past 23 years and the majority of them are targeting 
tyrosine kinases for cancer treatment (14).  

Beyond its role as a central regulator of 
smooth muscle tone, cyclic GMP-dependent 
protein kinase (PKG) Iα activation in nociceptive 
neurons results in long-term hyperexcitability that 
causes chronic pain (15,16). PKG Iα is also a 
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crucial modulator of cortical neuronal activity in 
pathological pain, thus it represents a novel target 
for developing analgesic therapeutics (17). A recent 
study demonstrated that N46, a derivative of fungal 
metabolite balanol, inhibits PKG Iα with high 
potency and selectivity, resulting in the attenuation 
of thermal hyperalgesia and osteoarthritic pain in 
rats (18).  
 PKG Iα belongs to the AGC kinase family 
and consists of N-terminal regulatory (R) and C-
terminal catalytic (C) domains (Figure 1A) (19,20).  
PKG Iα shares a large degree of sequence similarity 
with cAMP-dependent protein kinase (PKA).  In 
particular, the PKG Iα C-domain shows 45% 
sequence identity with the PKA Cα, consistent with 
their similar structures. The C-domain includes 
small and large lobes that consist of mostly β 
strands and α helices, respectively. A highly acidic 
active site is formed between the two lobes, which 
binds Mg2+, ATP, and substrates.  In the absence of 
cGMP, activity of PKG Iα is negatively regulated 
by the interaction between the R and C-domains 
(21,22).  
 Three classes of small molecule PKG 
inhibitors have been widely used for the functional 
studies of PKG (23,24). The first class is the R-
diastereomer of the phosphorothioate analogs of 
cGMP including Rp-cGMPS (25). This compound 
binds the R-domain and stabilizes its inactive state 
without causing conformational changes required 
for activation (26). The second class consists of 
small molecules that compete with ATP by directly 
binding the active site within the C-domain. These 
reagents include H-89, balanol, and KT-5823 (27-
32). The third class includes peptide inhibitors that 
also bind the active site and prevent substrate 
binding. However, all of these inhibitors lack 
potency, specificity, and activity in vivo. For 
example, Rp-cGMPS is not potent (Ki= 49µM) and 
non-selectively inhibits other cyclic nucleotide 
effectors such as phosphodiesterase and PKA (23). 
KT-5823 also inhibits other kinases and may not 
inhibit PKG in intact cells (33). Despite its high 
potency in vitro, DT-2 does not inhibit PKG in 
platelets or in rat mesangial cells (34).  

As mentioned, balanol is a potent inhibitor 
of PKG, but also inhibits other serine and threonine 
kinases such as PKA, most PKC isoforms, and 
Ca2+-dependent protein kinase (30,35). To improve 
inhibitor selectivity for PKG Iα, a homology model 
of PKG Iα docked with balanol was generated 
based on the crystal structure of the PKA 
Cα:balanol complex, several amino-acid 

differences near their binding pockets were 
identified, and balanol was modified to 
preferentially interact with PKG Iα specific 
residues (18).  In particular, the homology model 
showed that Thr88 of PKA Cα corresponds to 
Ile406 in PKG Iα (16). To exploit this difference, a 
propoxy group was added to the external phenyl 
ring (ring D) of the balanol derivatives to 
selectively interact with Ile406 of PKG Iα. While 
one such compound, N46, was reported to have a 
high selectivity and potency for PKG Iα over PKA 
Cα, the exact molecular basis for its improved 
affinity and specificity is unknown.  
 
Results and Discussion 

Several crystal structures have been solved 
for mammalian PKG I, but these are of various 
fragments of the R-domains (36-39). Since N46 
directly targets the C-domain of PKG Iα, we first 
obtained an isolated C-domain that is fully active. 
To understand the molecular basis of N46’s high 
selectivity for human PKG Iα, we determined co-
crystal structures of N46 bound to the human PKG 
Iα C-domain and human PKA Cα for a direct 
comparison at 1.98 Å and 2.65 Å, respectively 
(Figure 1, Figure S1, and Table S1). The PKG Iα 
C:N46 complex was crystallized in the P42 space 
group with 1 molecule in the asymmetric unit. The 
molecule shows clear electron density for the bound 
N46 and the C-domain used for crystallization 
excluding the first 10 residues at the N-terminus 
(Figure 1B). The PKA Cα:N46 complex was 
crystallized in the P3121 space group with one 
molecule in the asymmetric unit (Figure 1C and 
Figure S1). The final model shows clear density for 
the Cα-subunit except for the first 10 residues.  
Unlike previous PKA Cα structures, the N-terminal 
αA helix disengages from the catalytic core due to 
unusual crystal packing interactions (Figure S2). 
The αA helix of a neighboring symmetry mate 
occupies the equivalent position seen in previous 
structures, and provides the same set of interactions 
with the catalytic core.  
 The overall structure of the PKG Iα C:N46 
complex is similar to the AMP-PNP-bound 
structure (Unpublished manuscript).  It shows a 
closed conformation with the fully ordered glycine 
rich loop and C-terminal tail (Figure 1B). N46 
binds to a pocket that extends from the hinge region 
to the inner surface of the αC helix and spans 
approximately 20 Å (Figure 2A). The pocket can be 
divided into three subsites according to the 
interaction between PKG Iα C-domain and AMP-
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PNP: the adenine, the ribose, and the extended 
triphosphate subsites. N46 binds to all three 
subsites in the extended active site of the PKG Iα 
C-domain (Figure 2A).  

The A-ring (indazole ring) binds the 
adenine subsite consisting of the hinge (loop 
between b5-αD) and hydrophobic residues from 
both small and large lobes (Figure 2B). 
Specifically, the protonated 1-N binds the backbone 
carbonyl of Glu439 while the unprotonated 2-N 
interacts with the backbone amide of Cys441 
through hydrogen bonds. Additionally, the indazole 
ring is surrounded by several hydrophobic residues 
that coat the adenine subsite. These residues include 
Leu366, Val374, Ala388, Val422, Met438, Ile491, 
Val501, and Phe649.   

The B-ring (pyrrolidine ring), which 
connects the A-ring to the C-ring, interacts with the 
acidic ribose subsite directly and indirectly through 
water molecules (Figure 2B). The ribose subsite 
consists of the hinge and activation loop residues. 
The side chains of Glu445 at the hinge and Asp502 
at the activation loop form hydrogen bonds with the 
amine groups on either side. Two water molecules 
bridge the interaction with N46 at this subsite. 
These water molecules are located adjacent to the 
amide connecting the B-ring to the A-ring, bridging 
them to the side chains of Glu445 and Asp502 
through hydrogen bonds.     

The C-ring (phenyl ring) interacts with b1 
and the glycine rich loop through van der Waals 
(VDW) contacts (Figure 2B).  In particular, Val368, 
Gly369, and Gly370 are within 3.4-3.8 Å from the 
C-ring, providing VDW interactions. Since these 
interactions are through backbone atoms, this 
region does not provide any PKG selective 
contacts.  

The D-ring (external phenyl ring) with the 
propoxy and methoxy groups provides two 
interactions that are PKG specific and may explain 
its high selectivity for PKG Iα over PKA Cα 
(Figure 2B). In designing N46, the propoxy group 
was added to the phenyl ring to provide a 
preferential interaction with Ile406 of PKG Iα over 
PKA Cα, which has a threonine (Thr88) at the 
analogous position (Figure S3) (18). However, the 
structure shows that the methoxy group points 
towards the side chain of Ile406 instead, while the 
propoxy group points towards the glycine-rich 
loop, each providing hydrophobic interactions. 
Additionally, the D-ring, along with the carbonyl 
group that connects the D-ring to the C-ring, docks 

to the tip of the glycine rich loop through hydrogen 
bonds and VDW interactions. The interconnecting 
carbonyl group hydrogen bonds with the backbone 
amide of Phe371 and uniquely forms a lone-pair-π 
interaction with its side chain. The D-ring and the 
side chain of Phe371 are off-centered, and they 
interact through a parallel-displaced π interaction.  

The overall interactions between the PKA 
Cα-subunit and N46 are similar to those in the PKG 
Iα C:N46 complex, because most of the contact 
residues are highly conserved between the two 
kinases (Figure 3A). However, the structure shows 
differences that may explain a higher IC50 value for 
PKA Cα-subunit.  

The A-ring binds the adenine subsite and 
the interactions in this region are essentially the 
same as in PKG Iα. These include hydrogen bonds 
between A-ring and the backbone atoms of Glu121 
and Val123 at the hinge and VDW contacts with a 
hydrophobic pocket consisting of Leu49, Val57, 
A70, Val104, Met120, Leu173, and Phe327 (Figure 
3B). Tyr122 at the hinge region provides an 
additional hydrophobic contact unseen in PKG Iα 
because Tyr122 replaces Ala440 of PKG Iα. While 
the B-ring similarly docks onto the ribose subsite, 
its amine group interacts only with the hinge 
residue Glu127 through a hydrogen bond, not with 
the activation loop residue Asp184 (Figure 3B).  
Unlike Asp502 of PKG I that forms a hydrogen 
bond with N46 (Figure 2B), the side chain of 
Asp184 points away and no longer interacts with 
N46 in PKA. The C-ring similarly docks to β1 and 
the glycine rich loop and interacts with the 
backbone atoms of Thr51, Gly52, and Ser53.  

  The D-ring interacts less strongly with 
PKA Cα compared to PKG Iα because of two PKA 
specific residues, Phe54 and Thr88 (Figure 3B). 
The structure shows that the side chain of Phe54 at 
the tip of the glycine rich loop rotates 
approximately 30º and provides a weaker T-shaped 
π interaction with the D-ring. Due to this rotation, 
the interconnecting carbonyl no longer forms a 
lone-pair-π interaction with the aromatic Phe54. In 
addition, the side chain of Thr88 of the αC helix is 
smaller and less hydrophobic than that of Ile406 of 
PKG Iα, thus provides much weaker hydrophobic 
interaction with the methoxy group (3.7 Å) (Figure 
3B). The structural alignment with the PKG Iα 
C:N46 complex suggests that a steric clash between 
the side chain of the preceding residue S53 and the 
propoxy moiety causes the rotation of the Phe54 
side chain. As seen in Figure S3, N46 moves away 
slightly from the active site due to the steric clash. 
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This allows more room between the D-ring and the 
glycine rich loop, causing the rotation of the F54 
side chain.  
 The reported inhibition constant of balanol 
for PKA Cα is 1.6 nM while N46 inhibits PKA with 
an IC50 of 1.0 µM, showing an over 600-fold 
increase (18). Comparing the PKA Cα:N46 
complex with the PKA Cα:Balanol complex reveals 
that this reduction is mostly due to loss of hydrogen 
bonds (Figure 4). The PKA Cα:Balanol complex 
shows 12 non-solvent mediated hydrogen bonds 
and large numbers of VWD interactions between 
the extended active site and balanol. The PKA 
Cα:N46 complex shows that, while the most of the 
VDW contacts are preserved, N46 forms only 6 
direct hydrogen bonds because of the modifications 
on the C and D rings.  
 Substituting the phenol of balanol (Ring a 
in Figure 4A) with the indazole ring of N46 (Ring 
A in Figure 4B) does not reduce the number of 
hydrogen bonds and VDW contacts with the 
adenine subsite (Figure 4). In the PKA:Balanol 
complex, the phenol forms hydrogen bonds with the 
same backbone atoms of Glu121 and Val123 at the 
hinge region (Figure 4A) as the indazole does. 
However, replacing a more puckered azepane ring 
of balanol (Ring b in Figure 4A) with a less 
puckered pyrrolidine of N46 (Ring B in Figure 4B) 
results in one additional hydrogen bond at the 
ribose subsite. The puckered azepane ring interacts 
mainly with a conserved catalytic loop residue, 
Glu170, through its backbone (Figure 4A). In the 
PKA:N46 complex, the less puckered pyrrolidine 
ring brings its amine group within a hydrogen 
bonding distance of the Glu127 side chain, forming 
a new hydrogen bonds (Figure 4B).  

Removing two hydroxyl groups from the c-
ring of balanol (Figure 4A) disrupts all four 
hydrogen bonds with the triphosphate subsite. In 
the PKA Cα:balanol complex, two hydroxyl groups 
on the c-ring interact with Gly55, Lys72, and 
Asp184 through 4 hydrogen bonds. In major 
contrast, the C-ring of N46 (Figure 4B) no longer 
binds these residues and interacts with the glycine 
rich loop through VDW contacts.  

Lastly, substituting a carboxyl group and a 
hydroxyl group on the d-ring of balanol (Figure 4A) 
with a bulky and hydrophobic propoxy group and a 
fluorine atom, respectively, (Ring D of N46, Figure 
4B) significantly weakens the interaction with the 
glycine rich loop and the αC helix. In the 
PKA:balanol complex, the carboxyl group on the d-
ring forms strong hydrogen bonds with both the 

side chain and backbone of Ser53 at the glycine rich 
loop while the 3-hydroxyl group binds the side 
chains of Glu91 and Lys72 through hydrogen 
bonds. Additionally, the d-ring is oriented parallel 
to the side chain of Phe54, allowing a parallel π-
stacking interaction between them as well as a lone-
pair - π interaction between the carbonyl group and 
Phe54. None of these interactions is preserved in 
the PKA:N46 complex although a new hydrogen 
bond forms between the propoxy group and the 
backbone amide of Ser53. 

We noticed that the side chain of Phe54 
remains parallel to the d-ring when bound to 
balanol and rotates when bound to N46 (35). The 
balanol-bound PKA structure shows that this is 
because balanol binds deeper into the pocket, 
allowing a parallel π-stacking interaction with 
Phe54 (Figure S4A). In contrast, N46 cannot bind 
as deep due to its bulky methoxy group, resulting in 
enough space between the D-ring and Phe54, which 
allows Phe54 to rotate to provide VDW contact 
with the D-ring (Figure S4B).  

To test the molecular basis for N46’s PKG 
Iα selective inhibition over PKA, we mutated the 
unique contact residues in PKG Iα to those in PKA 
and vice versa. Specifically, for PKG Iα, we 
mutated G370 and I406 to the corresponding 
residues in PKA Cα (i.e. G370S and I406T). We 
also mutated these two PKA Cαa residues into the 
corresponding PKG Iα residues (S53G and T88I). 
For PKG Iα, we generated two single mutants 
(G370S and I406T) and a double mutant 
(G370S/I406T). For PKA Cα, we only generated a 
double mutant (S53G/T88I). We then measured 
IC50 values using in vitro kinase assays (Figure 5).  
N46 showed an IC50 of 43 nM for wild-type PKG 
Iα, whereas it inhibited PKA Cα with an IC50 of 
1030 nM, showing an ~24-fold difference in 
selectivity. The PKG Iα single mutants were 
inhibited with higher IC50 values of 90 nM and 142 
nM for G370S and I406T, respectively. The double 
mutant PKG Iα showed an IC50 value of 301 nM, 
demonstrating a synergistic effect of the two 
mutations. In contrast, the PKA Cα double mutant 
showed an IC50 of 552 nM, which is almost half that 
seen in wild-type Cα. The higher IC50 values seen 
in the PKG Iα mutants and the lower value of the 
PKA Cα double mutant compared to their 
respective wild type are consistent with our 
structural findings. 

Despite lack of data on inhibition constants 
of N46 for other kinases, our model of a PKCα 
isoform (PDB ID: 3IW4) docked with N46 suggests 
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that N46 is a poor inhibitor for the PKCα isoform 
(Figure S5) (40). The model shows that the tip of 
the glycine rich loop curls in toward the active site 
and clashes with the C-ring. In particular, F350 at 
the glycine rich loop occupies the part of the pocket 
that the C-ring binds, suggesting that N46 would 
interact poorly with PKCα. Consistent with the 
model, Sung et al reported that at 0.75 µM of N46, 
PKCδ had 68% residual activity while PKG Iα was 
completely inhibited with 0% residual activity (18).  

Our structural and biochemical data 
suggest new strategies for generating N46 
derivatives with higher selectivity for PKG Iα over 
PKA Cα. Amino acid sequences at the hinge region 
and b7 that make up the left edge and the base of 
the adenine pocket are different in PKG Iα 
compared to PKA Cα. PKG Iα has Ala-Cys-Leu 
(residues 440-442) at the hinge whereas PKA has 
Tyr-Val-Pro (residues 122-124) (Figure S6).  This 
causes PKG Iα to have a wider adenine pocket 
compared to PKA Cα-subunit (Figure 6).  
Additionally, at the base of the adenine pocket, 
PKG Iα has an isoleucine (I491 at b7) replacing a 
leucine (L173) of PKA Cα, providing a slightly 
deeper pocket. Thus, to improve selectivity for 
PKG Iα, bulkier heterocyclic rings could be 
engineered in N46 to fill this unique pocket.  Also, 
a reactive group can be placed here to covalently 
link to the conserved Cys441 since PKA lacks a 
cysteine residue at the analogous position (Figure 
S6).  During the initial design of N46, the propoxy 
group was added to increase its interaction with 
Ile406 at the αC helix. However, our structures 
revealed that this group points to an opposite 
direction (toward the glycine rich loop) and 
interacts with Gly370 instead. Thus, it may be 
possible to add an additional ethyl or propyl group 
here to improve interaction with PKG Iα. This 
modification should cause steric hindrance with 
Ser53 of PKA at the glycine rich loop while 
providing additional nonpolar interactions with 
Gly370 in PKG Iα. In conclusion, our structural and 
biochemical data in part explain N46’s selectivity 
for PKG Iα and provides a starting point for 
structure-guided design of selective PKG Iα 
inhibitors.  

 
Experimental procedures 
Expression and Purification of hPKG Iα C-
domain 

The sequence encoding human PKG Iα C-
domain (327-671) was cloned into pBlueBacHis2A 

vector. The vector was modified to put a tobacco 
etch virus (TEV) protease site just before the PKG 
coding sequence.  The protein was expressed in 
High Five cells. The cells were grown at 28 °C and 
infected at an MOI of 3.0 for 32 h. All cells were 
lysed in Buffer A (25 mM Tris (pH 7.5), 500 mM 
NaCl, and 1 mM β-mercaptoethanol,) with 
Constant Systems TS cell disrupter (Daventry 
Northants, United Kingdom) and cleared via 
ultracentrifugation. The supernatant was loaded 
onto a Bio-Rad Nuvia nickel affinity column, 
washed with Buffer A and eluted with Buffer A 
containing 300 mM imidazole. His-tag was 
removed by incubating the sample with TEV 
protease at 4 °C overnight. TEV was removed from 
the protein sample by performing a second nickel 
affinity chromatography and collecting the flow-
through fractions. The sample was further purified 
by anion exchange chromatography (Mono Q 
10/100 GL, GE Healthcare) in Buffer B (25 mM 
Tris (pH 7.5), and 1 mM β-mercaptoethanol) with 
and without 1M Sodium Chloride. This was 
followed by size exclusion chromatography 
(Hiload 16/60 Superdex 75, GE Healthcare) in 
Buffer C (25 mM Tris (pH 7.5), 150 mM Sodium 
Chloride, and 1 mM tris(2-carboxyethyl)phosphine 
(TCEP). 
 
Expression and Purification of hPKA Cα 

The pET15b plasmid encoding human 
PKA Cα was transformed into BL21 (DE3) E. Coli 
cells. The cells were grown at 37 °C until 
OD600=1.0 was reached. The expression was 
induced by 0.5 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG) at 18 °C for 18 h. 
The cells were then lysed by the Constant Systems 
TS cell disruptor in Buffer A. The lysate was then 
cleared by ultracentrifugation and membrane 
filtration. The supernatant was applied onto a GE 
His-Trap column for nickel affinity purification. 
The protein was eluted by Buffer A containing 300 
mM imidazole. The His-tag was removed by 
incubating the protein with TEV protease at 4 °C 
overnight followed by a second nickel affinity 
chromatography. The protein was then further 
purified by anion exchange chromatography (anion 
exchange chromatography, Mono Q 10/100 GL, 
GE Healthcare) in Buffer D (25 mM Potassium 
Phosphate (pH 7.0) and 1 mM β-mercaptoethanol) 
with and without 1 M Sodium Chloride. This was 
followed by size exclusion chromatography 
(Hiload 16/60 Superdex 75, GE Healthcare) in 
Buffer C.  
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Crystallization and Structure Determination 

To obtain crystals of the PKG Iα C-
domain:N46 complex, 14 mg mL-1 of the PKG Iα 
C-domain was incubated with 1 mM of N46 for 30 
min at room temperature. Crystals were obtained by 
mixing 1 µL of the C-domain:N46 complex 
solution with 1 µL of well solution (24% w/v PEG 
1500 and 20% v/v glycerol) and 0.2 µL of additive 
(30% w/v trimethylamine N-oxide dyhydrate) at 22 
°C. To obtain crystals of the PKA Cα:N46 complex, 
12 mg mL-1 of PKA Cα was incubated with 1 mM 
of N46 for 30 min at room temperature. Crystals 
were obtained by mixing 0.2 µL of the C-
domain:N46 complex solution with 16% (w/v) 
PEG 8000, 0.04 M potassium phosphate 
(monobasic) and 20% (v/v) glycerol. PKG Iα C-
domain and PKA Cα crystals were cryoprotected by 
paratone and diffraction images were collected at 
the Advanced Light Source (Berkeley, CA). Data 
were processed using CCP4.iMosflm (41). The 
structures of the PKG Iα C-domain:N46 and PKA 
Cα:N46 complexes were determined by Phaser-MR 
using AMP-PNP bound PKG Iα C-domain (PDB 
ID: 6BG2) and balanol-bound PKA Cα (PDB ID: 
1BX6) as molecular replacement probes (42). Both 
structures were manually built using Coot and 

refined using Phenix.Refine (43,44). Figures were 
generated using PyMOL (Schrödinger, LLC) 
 
In Vitro Kinase Assays 

Flag-tagged wild-type and mutant PKG Iα 
proteins were purified from transiently transfected 
293T cells as described (45).  PKA Cα was purified 
as described above. The purified kinases were 
diluted in Kinase Dilution Buffer [10 mM 
potassium phosphate (pH 7.0), 1 mM EDTA, 35 
mM b-mercaptoethanol, and 0.1% BSA] such that 
the reactions produced ~105 counts per reaction 
(corresponding to about 36 pmol phosphate 
incorporation).   Reactions were initiated by adding 
10µl diluted kinase to 5µl 3x kinase reaction mix 
[120 mM HEPES (pH 7.4), 1.56 mg/ml Kemptide, 
30 mM MgCl2, 300 µM ATP, 360 µCi/ml 32P-g-
ATP and 30 µM cGMP] containing variable 
amounts of the N46 inhibitor diluted in DMSO 
(control assays contained DMSO alone).  Reactions 
were run for 1.5 min at 30 ºC and stopped by 
spotting on P81 phosphocellulose paper.  
Unincorporated 32P-g-ATP was removed by 
washing P81 paper 4x 2 liters in 0.45% o-
phosphoric acid. 32P incorporation was measured by 
liquid scintillation counting.   
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Figure 1. Domain organizations and overall structures of N46 Bound PKG Iα and PKA Cα.  (A) The 
domain organizations of PKG Iα and PKA Cα. The catalytic domains used for crystallization are shaded in 
orange and labeled with the corresponding residue numbers. Phosphorylated residues are indicated (PKG 
Iα T517 and PKA Cα S139/T197/S338). Overall structures of the PKG Iα C:Ν46 (B) and PKA Cα:N46 (C) 
complexes.  The N-and C-termini are labeled with corresponding residue numbers. The structures are 
rendered as cartoon with N46 shown as sticks. The small and large lobes are colored gray and tan, 
respectively. Atoms in N46 are colored as follows: carbons, yellow; oxygen, red; nitrogen, blue; fluorine, 
cyan. Zoom-in views show |Fo-Fc| omit maps of N46 (contoured at 3.0 σ level).  
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Figure 2.  Interactions between PKG Iα C-domain and N46. (A) Detailed interactions with N46. Only 
the regions near the active site are shown. N46 is shown with transparent surface. Residues contacting N46 
are shown as sticks. Water molecules are shown as blue spheres. (B) Zoomed-in views for each ring of 
N46, highlighting its interactions  with different regions of the active site. Residues that provide VDW 
interactions are shown with transparent surface. Hydrogen bonds are shown as dotted lines and arrows 
indicate key VWD interactions with distances indicated in angstroms. 
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Figure 3.  Interactions between PKA Cα and N46. (A) Detailed interactions with N46. Only the regions 
near the active site are shown. Residues contacting N46 are shown as sticks. (B) Zoomed-in views for each 
ring of N46, highlighting its interactions with different regions of the active site.  Residues that provide 
VDW interactions are shown with transparent surface. Hydrogen bonds are shown as dotted lines with 
their distances given in angstroms.  
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Figure 4.  Structural comparison between PKA Cα bound with balanol and N46. Detailed interactions 
between PKA Cα and balanol (PDB ID, 1BX6) (A) orN46 (B). Only the regions near the active site are 
shown. Residues contacting balanol or N46 are shown as sticks. Direct hydrogen bonds are shown as dotted 
lines. The rings of balanol and N46 are labeled a-d and A-D, respectively. 
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Figure 5.  N46 inhibition of PKG Iα and PKA Cα.  (A) We performed in vitro kinase inhibition assays 
using purified wild-type and mutant PKG Iα and PKA Cα in the presence of increasing concentrations of 
N46, as described in Experimental Procedures.  (B) Shows a table of IC50 values based on the curves shown 
in A. 
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Figure 6. Adenine Pockets of PKG and PKA. The surfaces of the active site pockets for PKG Iα C-
domain and PKA Cα are colored in red. Zoom-in views show the adenine pockets. The active site pockets 
are calculated using Hollow (46). 
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