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METHODS FOR EVALUATING THE VALIDITY OF HYPOTHESIZED ANALOGIES*
John Clement

Department of Physics and Astronomy
University of Massachusetts/ Amherst

ABSTRACT

Evidence is presented indicating that spontaneously
generated analogies can play a significant role in expert problem
solving. Since not all analogies are valid, it is important for
the subject to have a way to evaluate their validity. Three
methods for evaluating analogical validity are identified using
observations from thinking aloud problem solving protocols as well
as examples from Newton and Galileo. In particular, this paper
focuses on an evaluation strategy called bridging that has been
observed in solutions to both science and mathematics problems.

In constructing a bridge, the subject finds an intermediate case
that is seen as "in between" the analogous case and the problem
situation because it shares important features of both. Many of
the bridges observed appeared to be novel inventions created by
the subject. These empirical studies have led to the construction
of a more detailed theory for how analogies can be used
effectively in instruction. Some of the strategies observed in
experts appear to have high potential for helping science students
overcome persistent misconceptions in the classroom.

A number of authors have emphasized the important role of analogies in
problem solving and learning, including Gentner and Gentner (1983), Rummelhart
and Norman (1980), and Gick and Holyoak (1980). Expert subjects have been
observed to generate and use analogies spontaneously during problem solving
(Clement, 1981). However, since not all analogies are valid, it is important
for the subject to have a way to evaluate their validity. This paper
identifies methods used to evaluate and establish confidence in the validity
of a hypothesized analogy. ''Validity" is used here in a weak sense outside
the context of deductive certainty. Since conclusions reached by analogy are
viewed as always having a certainty level of less than 100%, establishing
validity here means "raising confidence in the appropriateness of the analogy
to a high level."

The focus in the study of experts is on qualitative observations from
case studies and coarse grained modeling of underlying processes. The primary
purpose is to identify important reasoning strategies that occurred across
different subjects and problems and to propose an initial description of their
form and function. This study contrasts with other studies where the subject
is presented with all or part of an analogy and is given the opportunity to
use it or complete it since the analogies studied here were not suggested by
the experimenter, but were generated spontaneously by the subjects. The paper
also attempts to form a direct 1link between three ordinarily distinct domains:
expert problem solving, arguments in the history of science, and strategies
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for instruction. Methods used to evaluate analogies in each of these domains
will be discussed. The methods have important implications for education,
because when students are presented with a "clarifying" analogous case, they
may very well not understand why it is analogous to the target, unless they
can convince themselves intuitively that the analogy is valid.

USE OF ANALOGIES IN EXPERT PROBLEM SOLVING

I first give two brief examples of the role of analogies in problem
solving from thinking aloud studies involving experienced professionals in
technical fields. The "Wheel Problem" illustrated in Fig. 1, is a question
about whether one can exert a more effective uphill force parallel to the
slope at the top of a wheel or at the level of the axle (as in pushing on the
wheel of a covered wagon, for example). A spontaneous analogy occurs when the
subject spontaneously shifts his attention to a different situation B that he
believes may be structurally similar to the original problem situation A, with
the intent of possibly applying findings from B to A. Subject S1 compared the
wheel to the analogous case of pushing on a heavy lever hinged to the hill
(Fig. 2b). He reasoned that pushing at the point higher up on the lever would
require less force. He then made an inference by analogy that the wheel would
be easier to push at the top (the correct answer). Apparently he used the
lever to think about what was happening in the wheel.

WHEEL PUSH OR "SYSIPHUS" PROBLEM

YOU ARE GIVEN THE TASK OF ROLLING A HEAVY WHEEL UP A HILL. DOES IT TAKE MORE,
LESS, OR THE SAME AMOUNT OF FORCE TO ROLL THE WHEEL WHEN YOU PUSH AT X, RATHER
THAN AT ¥?

ASSUME THAT YOU APPLY A FORCE PARALLEL TO THE SLOPE AT ONE OF THE TWO POINTS
SHOWN, AND THAT THERE ARE NO PROBLEMS WITH POSITIONING OR GRIPPING THE WHEEL.
ASSUME THAT THE WHEEL CAN BE ROLLED WITHOUT SLIPPING BY PUSHING IT AT EITHER

POINT.
X
G

Figure 1

Figure 2
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A second example concerns the "Spring Problem" shown in Fig. 3. Several
subjects conjectured that this problem was analogous to the simpler case (Fig.
4b) of comparing long and short horizontal rods bent by equal weights hung at
their ends. In most cases, a strong intuition that the longer rod bends more
was used to predict the correct result that the wider spring stretches more.
Thus the bending rod was used as an analogous case for thinking about the
spring. That the wide spring will stretch farther seems to correspond to most
people's initial intuition about the problem. However, carefully answering
the question about why the wide spring stretches more (and explaining exactly
where the restoring force of the spring comes from) is a much more difficult
task.

Ten professors and advanced graduate students in technical fields were
recorded while solving the spring problem in order to study the analogy
generation process. They were told that the purpose of the interview was to
study problem solving methods and were given instructions to solve the problem
"in any way you can". After they reached an answer, subjects were asked to
give an estimate of their confidence in their answer. They were then asked if
there was any way they could increase their confidence, and this often led to
further work on the problem. Probing by the interviewer was kept to a
minimum, usually consisting of a reminder to keep talking. Occasionally the
interviewer would ask for clarification of an ambiguous statement.

Some of the solutions were quite complex and took up to 90 minutes to
complete. A1l subjects favored the (correct) answer that the wide spring
would stretch farther. But the subjects varied considerably in the types of
explanations they gave for their prediction. A considerable number of
spontaneous analogies were observed, as described below.

SPRING PROBLEM (n (2)

A WEIGHT IS HUNG ON A SPRING. THE ORIGINAL SPRING IS REPLACED WITH A SPRING
- MADE OF THE SAME KIND OF WIRE,
- WITH THE SAME NUMBER OF COILS,
- BUT WITH COILS THAT ARE TWICE AS WIDE IN DIAMETER.

WILL THE SPRING STRETCH FROM ITS NATURAL LENGTH, MORE, LESS, OR THE SAME

AMOUNT UNDER THE SAME WEIGHT? (ASSUME THE MASS OF THE SPRING IS NEGLIGIBLE T
COMPARED TO THE MASS OF THE WEIGHT). WHY DO YOU THINK SO7 H STRETCH
Figure 3
'——--.-—
Ly |
I 1 o
l '— ————— P -—n
! [
| A Y.
A B
Figure 4
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Number of Subjects 10
Total Number of Spontaneous Analogies Generated 38
Total Number of Significant Analogies Generated 31
Number of Subjects Generating at Least One Analogy 8

Number of Subjects Generating a Significant Analogy 7

An analogy was classified as significant if it appeared to be part of a
attempt to generate or evaluate a solution, and as non-significant if it was
simply mentioned as an aside or commentary. Thus there is evidence that
scientifically trained individuals are capable of generating analogies during
problem solving.

Subjects indicated varying degrees of certainty about the
appropriateness of each proposed analogy. Sometimes they would decide that
the new case was not analogous to the original problem in a useful way. In
other instances further work would lead them to establish confidence in the
validity of an analogy. These observations suggest that the following
processes are involved in making a confident inference from a spontaneous
analogy (Clement, 1981). (In this description we make a distinction between

the analogous case, shown as "B" in Fig. 4, and the analogy relation, shown as
the small letter "a".)

a) Generating the analogy. A representation of a situation B that is
potentially analogous to A is accessed in memory or constructed.
A tentative analogy relation "a" is set up between A and B (e.g.

between the wheel and the lever).

b) Evaluating validity: Establishing confidence in the analo
relation. The validity of the analogy relation between A and B is
examined critically and is established at a high level of
confidence (confidence that the wheel works like the lever).

c) Understanding the analogous case. The subject examines and, if
necessary, develops his or her understanding of the analogous case
B, so that the behavior of the analogous case is well-understood,
or at least predictable (the lever is well-understood).

d) Transferring findings. The subject transfers conclusions or
methods from B back to A.

Steps b, ¢ and d above were observed to occur in different orders in different
solutions.

METHODS FOR EVALUATING THE ANALOGY RELATION

Methods for generating analogies (step (a) above), are discussed in
Clement (1981). The remainder of this paper focuses on step (b) above. Three
methods of evaluating validity will be discussed: matching key features;
generating a bridging case; and using a conserving transformation. A fourth
possible method, analyzing the two cases in terms of a higher level principle,
is not treated here. This paper concentrates most on the second method:
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generating a bridging case. Examples of evaluation methods will be drawn from
a larger sample of 20 expert subjects who solved a variety of problems.

Evaluating the lever analogy for the wheel. A fairly obvious strategy
for evaluating the validity of an analogy relation is to assess whether there
is a structural match between cases A and B in terms of key features that are
important for the behavior of the systems. This involves isolating the key
features (especially higher order relationships as defined in Gentner and
Gentner, 1983) in each of the cases A and B and comparing them explicitly. In
the "Wheel Problem" discussed earlier subject S1 was confident that it would
be easiest to move the heavy lever in Fig. 2b by pushing at point X, but he
questioned whether there was a valid analogy relation between the wheel and
the lever. Can one really view the wheel as a lever, given that the "fulcrum"
at the bottom of the wheel is always moving and never fixed? In matching key
features, he found a potential mismatch between the stationary fulcrum at the
bottom of the lever and the moving fulcrum at the point of contact of the
wheel that led him to doubt the analogy. Thus, matching key features is one
method for evaluating the validity of analogies.

However, he also used a second, more creative method for evaluating
validity. He considered a bridging case in the form of the spoked wheel
without a rim shown in Fig. 5C. The spoked wheel allows one to view the
original wheel as a collection of many levers. It is a bridge in the sense of
being an intermediate case which shares features with both the wheel and the
lever. The bridging case reduced the subject's concern about the moving
fulcrum issue and raised the subject's confidence in the appropriateness of
the lever model.

Presumably, this method works because it is easier to comprehend a
"close" analogy than a "distant" one. The bridge divides the analogy into two
smal]l steps which are easier to comprehend than one large step. It is easier
to see that the real wheel should behave like a rimless spoked wheel, and that
the rimless spoked wheel should behave 1ike a lever, than to make this
inference in one step. The spoked wheel, then, is an example of a bridging
case constructed by the subject in order to establish confidence in the

DOUGHNUT PROBLEM

COMPUTE THE VOLUME OF THE TORUS (DOUGHNUT) BLLOW WITHOUT TAKING AN INTEGRAL.
GIVE AN APPROXIMATE ANSWER IF YOU CANNOT DETEKMINE AN EXACT ONE.

X § —

Y —

Y 7 ==
B

A

Figure 5 Figure &
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validity of the analogy relation between the lever and the wheel.
Bridging from doughnuts to cylinders. Another example of a bridge

occurred in a solution to the mathematics problem (shown in Fig. 6) of finding
the volume of a doughnut. Subject S3 first conjectured that the volume might

be the same as the answer to the analogous problem of finding the volume of a
cylinder (the "staightened out" doughnut). He thought the appropriate length
for the cylinder would be equal to the central or "average" circumference of
the torus (2 (r -rz)) but was only "70% sure" of this. However, he then
evaluated the p11us1b111ty of this choice by considering the bridging case of
a square-shaped doughnut shown in Fig. 7. He then showed that the four sides
of the square doughnut could be joined end to end to form a single long
cylinder with slanted ends. He reasoned that the volume of this long cylinder
would be exactly equal to its circular cross section times its central length
and that therefore the appropriate length to use in the square doughnut was
the average of its inner and outer perimeters. This raised his confidence in
his original solution to "85Z". He then reached the same conclusion for the
case of a hexagonal doughnut, and this raised his confidence to "100Z" for the
problem. This is an example of a multiple bridge. Thus the bridging cases of
a square and hexagonal doughnut helped the subject change his original
conjecture about the cylinder into a firm conviction.

Bridging between rods and springs. In the spring problem subject S1 had
generated the analogy of a horizontal bending rod. However, he was concerned
about the apparent lack of a match between the increasing slope in a bending
rod and the constant slope in a stretched spring (that a bug would experience
in walking down the spring). This led him to question whether the analogy
relation between the rod and the spring was valid.

An extremely successful attempt at a bridge between the case of a single
coil of the spring and the bending rod analogy occurred when this subject
generated the idea of a square-shaped coil in Figure 8. Visualizing the
stretching of a square coil allowed him to recognize that some of the
restoring forces in the spring come from twisting in the wire instead of
bending — corresponding to the way in which engineering specialists view
springs. This discovery of a new causal variable in the system appears to be
an example of a significant scientific insight. In this case the square
spring not only helped him evaluate the bending rod model, it eventually

Figure 7 Figure 8
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acquired the role of a preferred mental model which changed his conception of
how springs work. This significantly increased the subject's confidence
concerning the question of whether he had a good understanding of the spring.

Discussion of findings on bridging. Bridging is indicative of the
recursive possibilities inherent in reasoning processes like the use of
analogies. Since a bridging case is itself an analogous case, it can be
described as an analogy used to evaluate a previous analogy (or, more
precisely, as a second analogous case used to evaluate the analogy relation
between a first analogous case and the original problem). We can summarize
our view of bridging as one method for evaluating the analogy relation between
a problem situation, A, and an analogous case, B, as follows:

1) The subject constructs a representation for an intermediate
bridging situation C which shares important features with both A
and B.

2) The subject asks whether the analogy relation between A and C is
valid.

3) The subject also asks whether the analogy relation between C and B
is valid with respect to the same relationships as in step 2.

4) If the subject can answer yes to both questions with high
confidence, this ?onstitutes evidence for the validity of the
original analogy.

Here A being analogous to C and C being analogous to B means that A is
analogous to B. We can refer to this type of inference as analogical
transitivity. However, it should be noted that analogical transitivity is
considered a form of plausible reasoning which does not carry the force of a
logical implication.

It is clear that many of the bridges discussed here are novel
constructions in the sense that they are situations which the subject is
unlikely to have studied or worked with before. This indicates that they are
invented representations in the form of creative Gedanken experiments that
have been constructed, not simply retrieved from memory. In theories of
scientific discovery, hypothesis generation is ordinarily seen as a more
creative process than hypothesis evaluation. However, in the case of bridging
we are faced with a creative, non-empirical evaluation method which generates
novel constructions. Thus we seem to have evidence for a type of "creative
hypothesis evaluation" process.

ANALOGIES AND BRIDGES IN THE HISTORY OF SCIENCE

Legend has it that Galileo investigated the question of whether light
bodies accelerate as rapidly as heavy bodies in an empirical manner by
dropping objects from the tower of Pisa, but this legend has come under
serious doubt. However it is known that Galileo and his predecessor,
Benedetti, did use thought experiments like the following one to argue their
side in this issue. Figure 9a shows two equal objects of one unit each being

229



CLEMENT

dropped while Figure 9b shows a heavier object being dropped that is equal to
the two smaller objects combined. According to Aristotle the one unit objects
will fall much more slowly than the larger object. Galileo claimed that they
will reach the ground at nearly the same time. In saying this he was
effectively proposing an analogy between cases A and B in Figure 9 to the
effect that each body falls according to the same rule irrespective of its
weight.

IS

Figure 9

A marvelous bridging case used to support this analogy is the case shown
in Figure 9c. The argument was first published by Benedetti (1969) and a
similar argument was given by Galileo (1954). Imagine the two unit objects in
A to be connected by a thin line or thread. Does the mere addition of this
tiny thread, which makes the two objects become one, cause their rate of fall
to increase by a large amount? Because this is implausible, the bridge argues
that A and B are indeed equivalent with respect to rates of fall. In an
insightful Gedanken experiment, the lightest thread can apparently make all
the difference.

A bridge used by Newton: One of the most extraordinary scientific
analogies of all time was propounded by Robert Hooke and Isaac Newton in the
seventeenth century. They claimed that the moon falls toward the earth just
as an everyday object (such as an apple) does. To a modern physicist, this
may seem more like an obvious fact than a creative analogy, but to advocate
such an idea in Newton's time was not an obvious step at all. One has only to
imagine the consternation that would be produced by telling someone ignorant
of science that the moon is falling.

The proposed analogy relation is represented by the dotted line in
Figure 10. Essentially this conjecture says that the same causal mechanism is
involved in making the moon revolve around the earth and making an apple fall,
A multiple bridge used by Newton to support this analogy in his Principia is
shown in Figure 10c. This is the idea of a cannonball fired faster ang faster
until it enters into orbit around the earth — a premonition of modern
rocketry.
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Figure 10

These bridging cases stand between the case of a cannonball dropped
straight down and the case of the moon circulating in orbit. They help one
see how the motion of a dropped object and the motion of the moon can have the
same cause in the gravitational pull of the earth. Thus bridging cases are to
be found in the history of science as well as in the protocols of expert
problem solvers.

In fact the presence of a series of many bridging cases here suggests
the possibility of smooth transition from the vertical drop to the orbiting
object. In the case of multiple bridges we are approaching what can be
considered a third method of analogy evaluation, namely, finding a conserving
transformation. Such a transformation changes case A into case B while
conserving important relationships that make A analogous to B. Thinking about
continuously increasing the horizontal speed of launch in this case wou?d
constitute a conserving transformation since the major relationship of gravity
causing the acceleration of the object remains unchanged.

APPLICATIONS TO SCIENCE TEACHING

Analogies and bridges may also have particular value in science teaching
as an aid to helping students overcome persistent misconceptions. Recently, a
fairly large literature has appeared on the problem of deep-seated
preconceptions in students which can make the accepted scientific model seem
counter-intuitive to them at a qualitative level (e.g., Helm and Novak, 1983;
Clement, 1983). For example, in a survey of 112 high school chemistry
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students who had not taken physics, we found that 75% of the students did not
believe that a table pushes up on a book. The physicist believes that since
all materials are deformable, the table will deform, acting like a spring, and
provide an upward force just large enough to balance the weight of the books.
The difficulty here is not just one of students lacking a particular fact.
Pilot tutoring interviews and class discussions indicate that many students
express disbelief in the physicist's view and have a deeply held belief that
stationary objects are rigid barriers which cannot exert a force on their own,
On the other hand, 967 of the students did believe that a spring pushes up
when it is compressed with one's hand. The contrast between these results is
interesting since the physicist views these two situations as essentially
identical. diSessa (1983) refers to the concept of springiness as a
"phenomenological primitive" and discusses the evolution of the individual's
intuitions that is needed to become skilled in physics.

An interesting conjecture is that the right bridge may help a student
believe in the validity of an analogy proposed in instruction. The following
instructional strategy, suggested by our analysis of experts, attempts to
build basic conceptual models that are grounded in intuitions the student
already has.

Teaching Strategy:

(1) Draw out the conceptual difficulty in a concrete target
situation A where the student makes a statement that is in
conflict with accepted theory.

(2) Search for a simple analogous situation B where the student has a
reliable intuition that is in agreement with physical theory and
that is a relevant starting point for the area of difficulty.

(3) Stimulate discussion and encourage students to look for and match
key features by asking them to describe how A and B are alike and
different.

(4) Students often will still not believe that A is analogous to B.
Finding an apt bridge that appeals to the students' intuitions is
an important technique for remedying this.

The hand on the spring situation is a potential starting point for
instruction since it draws out a correct intuition from students. For this
reason we call it an "anchor". Figure 11 shows multiple bridging cases used
to help convince students that the analogy between the "hand on the spring"
anchor and the targeted "book on the table" case is valid. We have attempted
to use this strategy in tutoring studies and class sessions with high school
students and find that: 1) Students readily understand the anchoring case; 2)
many students indeed do not initially believe that the anchor and the target
cases are analogous; 3) the bridging cases sparked an unusual amount of
argument and constructive thinking in class discussions; and 4) the bridging
cases helped many students to believe in the analogy. We are in the process
of collecting data to confirm these preliminary results. Minstrell (1982) has
had some success with a related approach.

In this method then, we are trying to ground the student's understanding
on a physical intuition about a familiar case. The strategy is to build on
and extend the intuition by using analogical reasoning. The problem is that
students will not be able to understand how other cases can possibly be
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analogous to the familiar case. Presenting the right analogy is not enough —
the student must also come to believe in the validity of the analogy. The
technique of bridging by using chains of analogies combined with discussion to
encourage active thinking, appears to be helpful for this purpose.

BRIDGING CASES CONNECTING
ANCHOR TO TARGET SITUATION

ANCHOR TARGET
TRIGGERING SITUATION
CORRECT TRIGGERING
INTUITION MISCONCEPTION
Figure 11
CONCLUSION

The ability to evaluate the validity of analogies appears to play as
important a role in insightful problem solutions as the ability to generate
analogies. Three methods for evaluating validity were discussed: matching
key features, bridging, and finding a conserving transformation. These
patterns of reasoning were observed to occur in different problem contexts in
both science and mathematics. These empirical studies have allowed us to
construct a more detailed theory of how analogies can be used effectively in
instruction. A method for evaluating analogies used by expert scientists as
well as by Newton and by Galileo and his predecessors appears to be a
promising strategy for helping students overcome misconceptions in science.

Note 1. The subject may also use bridging recursively by bridging a?a1n
between C and B or C and A as in the case of the square and hexagona
doughnuts.

*Preparation of this paper was supported by a grant from the National Science
Foundation #MDR8470579.
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