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ABSTRACT OF THE DISSERTATION 

 

Potential Energy Surface Exploration of Metal Catalytic Clusters 

 

by 

 

Huanchen Zhai 

Doctor of Philosophy in Chemistry 

University of California, Los Angeles 2019 

Professor Anastassia N. Alexandrova, Chair 

 

Metal sub-nano clusters are important materials for catalysis of chemical reactions 

such as dehydrogenation of hydrocarbons. However, their potential energy surface 

(PES), which is responsible for explaining relative stability of different cluster geom-

etries, can be complicated. The complexity can be greatly reduced by describing the 

PES by low-energy isomers, which can be found by the standard mathematical 

method called global optimization. We have proposed global optimization acceleration 

schemes using Force Field (FF) fitting, or deep neural network (DNN) fitting, for gas 

phase metal clusters. Both these models can be trained to give an approximation to 
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the PES at the density functional theory level. For surface supported clusters, we 

found that Basin Hopping (BH) global optimization can usually give satisfactory re-

sults. To address the difficulty in performing structural search for surface supported 

clusters at high hydrogen coverage, we proposed a revised BH approach with core-

shell separation scheme. The application of this new approach shows that the cluster 

shape can be very different from that of their adsorbate-free counterparts.  

After the structure of isomers is found, it is also necessary to define the geometry 

similarity between two isomers with the same chemical formula. Structure similarity 

measurement is an important part of any PES exploration techniques. We have in-

vestigated existing algorithms and introduced two new algorithms, namely, atomic 

matching based on depth-first search and bipartite model atomic matching, for gas 

phase and surface supported clusters, respectively. 

Additionally, isomers may interconvert across barriers, i.e., exhibit fluxionality, dur-

ing catalysis. To study the big picture of the fluxional behavior for surface supported 

clusters, we model such process as isomerization graph using bipartite matching al-

gorithm, harmonic transition state theory (HTST), and paralleled nudged elastic 

band (NEB) method. Detailed inspection shows that, at temperatures typical for ca-

talysis, the cluster geometry changes frequently within several regions in the graph, 

while transition across regions is less likely. This local fluxionality picture provides 

a new perspective on understanding finite-temperature catalytic processes. 
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Chapter 1  

Global optimization of gas phase clusters 

Global optimization is a basic computational technique for exploring the Potential 

Energy Surface (PES) of clusters, or any multivariable function in the most general 

sense. Typically, the configuration space of catalytic clusters (such as Pt7) can be very 

large, which means that a thorough exploration is usually not feasible. However, 

based on the nature of the system under consideration, different approaches can be 

developed to make the exploration focus on the most relevant region of configuration 

space, thus saving a tremendous amount of computational time. In this chapter, we 

will first talk about the global optimization of the gas phase cluster. 

1.1 General procedure of global optimization 

Global optimization in a computational chemistry context means finding the lowest 

energy structure of a certain chemical system, such as a metal cluster. The global 

minimum structure is regarded as the most important one, but we also care about 

other low-energy isomers most of the time. The basic way to do this can be described 

as three steps:  

1. Generate random initial structures. 
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2. Perform geometry optimization to find some local minima. In some methods 

like Basin Hopping and Generic Algorithm, more new structures can be gener-

ated based on previous found local minima. Structures can be discarded if the 

single point energy or geometry optimization does not converge. 

3. Compare the energy of local minima to identify the global minimum and low 

energy isomers. 

Step 1 is often trivial in most global optimization packages. In the cases when the 

global optimization method does not have a strong dependence on the initial guess, 

one can use some very simple or even brute-force methods to generate the initial 

guess. However, there are still some motivations for finding better initial guesses: (i) 

a reasonable initial guess will greatly save the time-cost of local optimization; (ii) a 

bad initial guess will possibly cause the non-convergence in electronic structure cal-

culations; (iii) in the case when fitting technique is used in the global optimization, 

the initial guess will have an influence on completeness of sampling, which means 

that bad initial guesses can reduce the quality of the fitting and correspondingly the 

quality of the global optimization. In Section 1.2 we will introduce several approaches 

for finding good initial structures. 

Most global optimization methods differ in step 2, which is the most time-consuming 

step. Over decades many efficient global optimization techniques have been devel-

oped, including Genetic Algorithm (GA) based methods,[1–5] Particle Swarm Optimi-

zation (PSO),[6,7] Simulated Annealing (SA),[8] and Basin Hopping (BH).[9,10] Many 

of these methods incorporate the Density Functional Theory (DFT) level local geom-
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etry optimization procedure as an internal step of global optimization, for applica-

tions on metal clusters.[11]. However, for medium- to large-sized transition metal 

clusters, the DFT local optimization step itself is very time-consuming, especially 

when hybrid functionals are used. In addition, in a high-level parallel programming 

environment, some of the aforementioned global optimization methods are less favor-

able due to their evolutionary feature. In Sections 1.3 and 1.4 we will introduce two 

fitting based global optimization approaches, which can greatly reduce the time re-

quired for DFT optimization. An extension of BH method for surface supported sys-

tem will be discussed in Chapter 2. 

Step 3 also seems to be trivial, since only a comparison based on energy should be 

performed and we immediately find the low-energy isomers. However, it is possible 

that we will have multiple copies of the same local minima. If the total number of 

these local minima is not big, we can remove duplicates by visualizing them. But for 

larger systems, the configuration space can be very big, which means that an auto-

matic and reliable structure similarity measurement scheme is usually required. This 

topic will be covered in Chapter 3. 

Global optimization for large systems (such as the systems with a surface support) 

can in general be very time-consuming, usually requiring the use of high-performance 

computing facilities. It is thus important to have an integrated code package includ-

ing all necessary algorithms, which can automatically search for low-energy isomers 

for a given system. The package should be able to support high-level parallel compu-

tation and the queueing system in any typical supercomputer. An introduction to the 
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code that we have developed and used for the work in this dissertation is given in 

Appendix. 

1.2 Initial structure generation 

One of the major differences between the general global optimization and the global 

optimization in a computational chemistry context is that for chemical problems some 

special techniques can be applied to generate starting points very close to the mini-

mum. Then the global optimization in a computational chemistry context will benefit 

from this in two ways:  

1. Since the initial structures are more reasonable, the local and global minima 

will be found within shorter time.  

2. The convergence problem of Self-Consistent Field (SCF) iteration will be alle-

viated for more reasonable structures.  

So the first step of nearly any global optimization method, is to generate some initial 

structures (atomic coordinates), which will be the starting point of the global optimi-

zation procedure. Researchers have developed many different constraints for con-

structing reasonable initial structures (namely, structures with a chemically accessi-

ble geometry). Here we will revisit three kinds of very common strategies, and then 

propose a new random structure generation method. The three existing methods are 

CK (Coalescence Kick), RV (Random Vector) and BC (Bound Checking). Based on 

these methods, we proposed two new algorithms, namely, CK with point group sym-

metry and Bond Length Distribution Algorithm (BLDA). 
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Before introducing these methods, we need to define an important quantity, l1,i, which 

is the shortest distance between one selected atom i and all other atoms in the cluster. 

Note that l1,i can be different for each atom i in the cluster. Formally,  

𝑙",$ = min
)*$

distance1atom$, atom)3 

In addition, if we consider each l1,i as an instance (sample) of a variable l1, then for 

each cluster we will have n numbers of l1, where n is the number of atoms in the 

cluster. When m structures of a certain cluster are considered, we will be able to have 

mn instances of l1. From these mn samples we can estimate the distribution of l1.  

 

Figure 1.1 All interatomic distances in a four-atom system. 

Here we use a four atom system to show how we can find the l1s. Figure 1.1 shows all 

six interatomic distances in a four-atom system. Now we can write a symmetric in-

teratomic distance matrix (shown in Figure 1.2). If we sort independently all rows of 

the matrix, then the values in the second column are l1s. The values in the third 

column are l2s. The quantities l1 and l2 will play an important role in understanding 

the difference in structure generation methods. 
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Figure 1.2 Obtaining l1 from symmetric inter-atomic distance matrix for a four-atom system. 

1.2.1 Coalescence kick method 

In CK method (shown in Figure 1.3),[12] the positions of all atoms are first randomly 

generated in a large box, and then checked for connectivity. If the distance between 

any two atoms is within a predefined value dmax, which is normally equal to or a little 

greater than the sum of covalent radii of the two atoms, the two atoms are considered 

to be within one fragment. The initial random structures are also checked to make 

sure that no two atoms are as close as the dmin distance. After that, the coalescence 

procedure is repeated until all atoms are in one fragment. During the coalescence 

procedure all fragments are pushed to the center of mass simultaneously by a small 

step length. 
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Figure 1.3 The CK method illustrated using a cluster made up of 5 atoms, as an example. A, 

B, C, D, E denote the five atoms in the cluster. Gray solid line connected atoms are considered 

in one fragment. 

Now in terms of the previously defined l1, the whole point of CK method is to put the 

following constraints on initial structures: dmin ≤ l1,i ≤ dmax, for each atom i. This only 

gives the upper and lower bounds of variable l1. To obtain more detailed information 

of l1, we can generate a number of random clusters using CK method, then plot the 

distribution of all l1 numbers. 
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Figure 1.4 l1 distribution of 300 gas phase Pt6 clusters generated using CK method. 

For example, here we consider a set of configurations of Pt6 generated using the 

AFFCK package. In AFFCK, dmin is defined to be kdmax, where k is a fixed factor. The 

default value for k is 0.67. And dmax is set to be double the covalent radius of Pt. Here 

we have used the value 1.36 Å for the covalent radius of Pt, which is slightly greater 

than the normal value 1.28 Å, because dmax is used as the upper bound of the Pt-Pt 

distance. So in our case, dmax = 2.72 Å and dmin = 1.82 Å. From the distribution graph 

(Shown in Figure 1.4) we can see that in fact no distance touches the lower bound. In 

contrast, a large number of distances are close to the upper bound, which gives a 

discontinuous boundary. This discontinuous feature is one of the most important mo-

tivation for us to propose the new structure generation algorithm BLDA (introduced 

in Section 1.2.5). However, if we look at the mean value and standard deviation, we 

found that the mean is very close to the expected value 2 × 1.28 = 2.56 Å and the 

deviation is relatively small. These are good features of CK method. 
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1.2.2 Coalescence kick method with point group symmetries 

The original CK method has a disadvantage that the randomly generated structures 

seldom possess any symmetry, because the probability that atoms would be put at 

the position of some symmetry elements is very low. In contrast, some of the local 

minima may possess symmetry. Hence, we can speed up the geometry relaxation for 

some of these clusters by preparing symmetric starting structures. 

To compensate for this disadvantage, without losing the unbiasedness, one can gen-

erate one portion of the structures without symmetry and the remaining structures 

with all possible symmetry types allowed for a given composition. For each symmetry 

type, the probability for the atoms lying on each special area – such as symmetry 

elements, their cross positions, and areas divided by the symmetry elements – are set 

to be equal. In the process of generating symmetric CK structures, we put only some 

of the atoms at random position in the Cartesian box, whereas the position of other 

atoms is calculated by performing symmetry operations. The symmetry is preserved 

during the coalescence, which then looks like a simple scaling. 

Consider the C3h point group symmetry as an example to demonstrate how we can 

generate random structures with equal probability for atoms lying on each special 

area. As shown in the Figure 1.5, areas I-VI are equivalent areas, which means that 

if we have one atom in area I, we should create five replicas of it in areas II-VI, by 

applying the symmetry operations. So in these areas atoms should be repeated six 

times. “A” denotes the C3 rotation axis, where atoms should be repeated two times. 

“B” denotes the center point, where atoms do not need to be repeated. “C” denotes the 
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mirror plane, where atoms should be repeated three times. Thus we altogether have 

four types of special areas. 

 

Figure 1.5 Special areas (I to VI), axis (A), point (B) and plane (C) of a system that has C3h 

point group symmetry. Atoms located at these positions should be repeated certain times. 

Given the total number of atoms of one specific atomic type, we should first determine 

how many atoms will be put in each of these special areas, which forms a combination 

of integers. If the total number of atoms is not very large, there will be only a few 

possible combinations. Then we can select one of such combinations randomly each 

time. 

If the system contains different types of atoms, each atomic type should be treated 

independently when generating initial symmetry. Currently in AFFCK code devel-

oped in our group, all but cubic symmetry point groups (Td, T, Th, Oh, Ih) are imple-

mented. The user, however, is responsible for determining which points groups are 

possible for the given cluster composition, and manually list all or some of them in 

the input file. The user also has to decide the percentage of structures that should 

have symmetry (one of the listed ones, chosen at random with equal probabilities); 

the rest of the population will be generated without symmetry constraints. This 
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method, of course, still leaves a possibility that geometries generated without sym-

metry will eventually optimize to symmetric ones, and that symmetric structures 

would optimize to asymmetric ones. A typical setting that we used for the structures 

definitely having symmetry was 10-20%. 

1.2.3 Bond checking method 

Another simpler way to generate random structures is by explicitly checking the 

bound of l1.[13] For example, this method has been used in the Generic Algorithm 

implementation in Atomic Simulation Environment (ASE) package.[14] Specifically, 

the structure is generated by adding one atom at a time to the current structure. At 

each adding step, the position of one atom is first randomly generated, then checked 

to make sure that l1 is within the required range dmin ≤ l1,i ≤ dmax, for all atom i. In 

the ASE package, the values dmin = 0.8 dcov and dmin = 1.6 dcov are used, where dcov is 

the sum of covalent radii. 

 

Figure 1.6 l1 distribution of 300 gas phase Pt6 clusters generated using BC method. 
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For example, here we consider a set of configurations of Pt6 generated using ASE 

package. The covalent radius of Pt used in ASE package is 1.36 Å.  

From Figure 1.6 we can see that this method gives a very diverse distribution with 

both edges cut sharply. As a result, the average value is away from the sum of cova-

lent radii and the deviation is large. What can be expected is that if a single point 

energy calculation is performed in these structures, some SCF non-convergence will 

be observed and the energies of these structures will be higher than CK generated 

structures. 

1.2.4 Random vector method 

Another choice is to fix l1 to a certain number. A convenient choice of this number is 

the sum of covalent radii of the two involved atoms. In other words, we will have a 

delta function as the l1 distribution. This is implemented in the CLUSTER code, de-

veloped by Kanters et. al.[3]  

In practice, we need to consider how to fix l1 as desired. In the CLUSTER code, the 

restriction is applied using an algorithm called Random Vector. Specifically, the clus-

ter is created by each time adding one atom to the current structure. The position of 

that atom is determined by first selecting a random direction, to which the new atom 

will be placed. After that, we only need to figure out a length. With the length and 

direction, we can thus construct a random vector, along which the new atom can be 

placed. The length of the vector is the minimal length such that the all of distances 

between this new atom and any other existing atoms are greater than the sum of 
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covalent radii. Since this selected length is the minimal length, we know that l1 of 

this new atom must be equal to the selected length. The procedure is shown in Figure 

1.7. 

 

Figure 1.7 The RV method illustrated using a cluster made up of 4 atoms. 

1.2.5 Bond length distribution method 

We may improve the aforementioned methods by requiring that the initial structures 

have a similar distribution to that of the expected local minima. Figure 1.8 shows the 

l1 and l2 distribution of low-energy local minima of Pt6 clusters found using CK 

method, where l2 denotes the distance between each atom and its next nearest neigh-

bor. (In Figure 1.8, the DFT optimization is done with Turbomole 6.6, PBE0 hybrid 

functional, and def2-TZVP basis. The dashed lines are corresponding normal distri-

bution curves fitted based on the mean and standard deviation value of l1 and l2 data.) 
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It is obvious that for Pt6 clusters both l1 and l2 distances approximately obey the nor-

mal distribution. In addition, the mean values of l1 and l2 (2.50 Å and 2.54 Å) are very 

close to the sum of covalent radii of Pt atoms (1.28 × 2 = 2.56 Å). In light of this 

observation, we may require that the l1 and/or l2 parameters of initial structures be 

selected from a normal distribution. We call this new generation algorithm based on 

this statistical restriction the Bond Length Distribution Algorithm (BLDA). 

When only l1 is restricted, the algorithm is referred to as first-type BLDA (F-BLDA). 

When both l1 and l2 are restricted, the algorithm is referred to as second-type BLDA 

(S-BLDA). It is clear that when l2 is restricted to obey a normal distribution, each 

atom in the generated cluster will have a coordination number of at least two. While 

this is true for most metal clusters, for other clusters (like Boron clusters [15]) this 

assertion is very likely to fail. Therefore, we note that F-BLDA can be used for most 

gas phase atomic cluster system, and S-BLDA is more focused on metal clusters, 

which tend to have compact geometries in which their delocalized bonding is opti-

mized. In the work presented in this dissertation, S-BLDA has been used as initial 

structure generation method for Pt9 and Pt13. An simple extension of it has been used 

for surface supported Pt7 clusters. 
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Figure 1.8 l1 and l2 distribution of 113 Pt6 low-energy local minima (energy lower than 1.0 

eV with respect to global minimum energy). 

Now the most important thing is that we need to find a generation procedure so that 

the generated structures satisfy the first or second type BLDA requirement. For first 

type situation, the algorithm is a direct extension of the RV method. In particular, 

there are three major differences between RV and the first type BLDA. 

Random direction generation. In the RV method, the random direction is gener-

ated in a Cartesian box. In this way, some particular directions, such as those close 

to the vertex of Cartesian box, will be sampled more. Ideally we want to sample all 

points on the unit sphere evenly. One early study [16] used a filtering technique by 

calculating the distance to the center, to exclude those points outside the sphere but 

in the cube. We note that this filtering technique introduces extra steps and is thus 

inefficient. 

A more efficient way [17] is first choosing u and v to be random within (0, 1). Then 

𝜑 = 2𝜋𝑢, 𝜃 = cos9"(2𝑣 − 1) 
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gives the spherical coordinates for points uniformly distributed over the unit sphere. 

The differential element of solid angle is defined as 

d𝛺 = sin 𝜃 d𝜑d𝜃	 = 	−d𝜑d cos 𝜃 

Therefore, when cos θ is picked uniformly in (−1, 1), and φ is picked uniformly in (0, 

2π), then Ω will be uniformly distributed over (−2π, 2π). 

Starting point of random direction. In the RV method, the starting point of ran-

dom direction is always fixed at the origin, namely, the position where we put the 

first atom. This is not ideal, because in this way every time when we add a new atom 

we are not adding it in all directions with equal possibility. The positions that are far 

away from the origin will be less sampled. Therefore, in the BLDA algorithm, we 

choose the starting point of the random vector to be the geometry center of current 

structure.  

Bond Length Determination. In the RV method, the minimal bond length between 

the new atom and all old atoms is fixed. Before adding a new atom, we need to check 

the distance between the new atom and each old atom. In the first type BLDA algo-

rithm, for each old atom, we now pick up a value from the required l1 normal distri-

bution. Instead of a fixed value, this picked value will be the bond length between the 

new atom and the old atom. For another old atom, we will pick another value form 

the normal distribution. After all old atoms are checked, the largest calculated length 

of random vector will be used, because other shorter lengths will make some atoms 

too close to each other. The core step of adding one atom to the existing structure is 

illustrated in Figure 1.9. In this figure, before placing atom 4, a random direction is 
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first selected. For each old atom i, a distance λi is picked from the required distribu-

tion norm(µ1, σ1). Then a trial atom 4 is placed along the selected direction with a 

distance λi from atom i. Finally, among all trial atoms, the one with maximal distance 

from geometry center is used. 

 

Figure 1.9 One intermediate step of F-BLDA: adding an atom to the existing structure. 

It should be noted that since some new bonds (with bond length not picked from any 

normal distribution) can be generated with a small probability in this generation pro-

cedure, strictly speaking, the bond lengths resulted from this procedure will not be 

exactly normal-distributed. Nevertheless, in practice, we can see that it can give a 

very good approximation to the desired normal distribution. 

Comparing to F-BLDA, the implementation of S-BLDA is more complicated. Never-

theless, it is still based on the procedure of adding one atom at a time. When placing 

the first two atoms, we follow the same procedure as that in F-BLDA. Starting from 

the third atom, the step of adding one new atom is divided into four sub-steps: 
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Selection. Select any two atoms A, B from existing atoms. At the same time, pick 

two lengths, λ1 and λ2 from norm(µ1, σ1) and norm(µ2, σ2), respectively. Here norm(µ, 

σ) represents a normal distribution with mean µ and standard deviation σ. These two 

normal distributions are the required l1 and l2 distribution, respectively. 

Circling. The new atom is required to have a distance of length λ1 to atom A, and a 

distance of length λ2 to atom B. This restricts the new atom to pick a position on a 

circle in three dimensional space. The normal vector and radius of the circle plane 

can then be determined. 

Projection. Select a random direction vector in three dimensional space. Then pro-

ject this random vector to the circle plane so that we can determine the exact position 

on the circle for the new atom to pick. 

Checking. For each of old atoms other than A and B, denoted as Ci, pick a length λi 

from norm(µ1, σ1). The distance between the new atom and atom Ci is required to be 

greater than λi. If for any atom Ci this is not satisfied, go back to sub-step (3) and 

select another random direction. If it still fails, try at most 10 times from sub-step (3) 

to (4). If it fails more than 10 times, go back to sub-step (1) and try another two atoms 

A and B. 

1.2.6 Comparison between different approaches 

Figure 1.10 shows the performance of different initial structure generation methods, 

in terms of the electronic energy distribution of generated structures. We can see that 

BC generates very bad structures, since its l1 distribution is very diverse and away 
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from the true distribution. CK has a relatively low deviation but worse than RV. RV 

with zero l1 deviation is worse than the first type BLDA. And the second type BLDA, 

with the distribution of l2 considered, is much better than the aforementioned meth-

ods. In Figure 1.10, energies are relative to the energy of singlet global minimum 

(−716.077972 a.u.). The DFT is done with Turbomole 6.6, PBE0 hybrid functional. 

 

Figure 1.10 Single point energy (singlet) distribution of CK, RV, BC, first and second type 

BLDA generated structures. 

1.3 Force field fitting 

In this section, we introduce a global optimization approach, with an intermediate 

cruder optimization step using a classical force field and the CK method for initial 

structure generation. This force field is being developed on-the-fly for each specific 

system. Hence, the name of the method is Adaptive Force Field-Assisted ab initio 

Coalescence Kick (AFFCK). In principle, the initial structure can also be generated 

by any other method, but at the time when AFFCK is developed in our group, better 

generation methods such as BLDA has not been proposed. 
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The main steps of the AFFCK method can be divided into two phases: the force field 

construction phase and the optimization phase. In the force field construction phase, 

we first generate random bound structures using CK method, but without doing ge-

ometry optimization. The generated structures are checked for geometric similarity, 

and the structures similar to previous ones in shapes are discarded. Then we use 

some ab initio or DFT method to calculate the single point energy of these structures. 

The structures and their corresponding energies are subsequently used to fit the 

Force Field (FF) formula. Typically, ca. 3% of the structures with highest energies 

are discarded before fitting. We use a simple energy function that is linear with re-

spect to all the parameters. Hence all the parameters can be determined via solving 

a set of over-determined linear equations. The typical number of structures used in a 

fitting (for clusters containing 8-10 atoms, as in our test systems) ranges between 

1,000 and 5,000, although many fewer are actually needed to find the global mini-

mum. 

For the optimization phase, we also start from generating random structures via CK 

method without optimization. The number of structures is now much larger than that 

of the first phase (typically 10,000). We apply the pre-relaxation procedure to these 

newly generated structures. In the pre-relaxation procedure, structures can be opti-

mized to their “local minima” according to the classical FF function that we have 

fitted in the first phase. The geometry optimization in the pre-relaxation procedure 

is facilitated by the nonlinear Conjugate Gradient (CG) method. Many of the initial 

structures are likely to descend to the same “local minima”, and therefore, we perform 

the similarity check and discard redundant structures. At the final step of the second 
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phase, the unique, lowest-energy FF “local minima” are optimized by an ab initio or 

DFT method. 

 

Figure 1.11 Basic steps of the AFFCK method and the pure CK method, and their relation-

ships. 

Since the pre-relaxed FF structures are usually close to equilibrium structures (as 

will be shown in Section 1.6), the time cost for the final quantum chemical optimiza-

tion can be greatly reduced. The accuracy of the fitted FF function can be verified by 

comparing with ab initio or DFT results (geometries and energy rankings). Since the 

FF parameters are system-specific, which is different from the general FF method, 

the accuracy of the FF step is quite high, as will be demonstrated. Figure 1.11 shows 

the basic steps of the CK and AFFCK methods, and their relationships. 
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The FF function in the AFFCK method includes three terms (including one constant 

term): 

𝐸BB = C C D
𝐴F$
𝑙G −

𝐵F$
𝑙I J

KLMNO	$MPQRO

+ C (𝐴"	𝑙T + 𝐵"	𝑙 + 𝐶")
VWXYO

+ 𝐸ZWXOK	

where l is the distance between two atoms. The first term denotes the van der Waals 

(vdW) interaction. We take the 9-6 Lennard-Jones potential for van der Waals inter-

action, though more terms for different types of weak interactions could be added. 

Our first approach was to use the vdW terms for all pairs of atoms not connected by 

bonds. However, we found that a better fitting result was obtained when vdW inter-

actions were computed for all pairs of atoms, regardless of them being connected by 

a bond, but depending on how many bonds are formed by the two atoms in a pair 

collectively, vdW parameters are different (fitted independently). For example, in Ta-

ble 1.1, we list vdW parameters for pairs of atoms that collectively form fewer than 4 

bonds, 4, 5, 6, and more than 6 bonds to other atoms, for Pt8. The second term denotes 

bond stretching energies. For the first two terms, if the relevant atoms have a differ-

ent combination of element types, we will use a different set of parameters. Though 

this is a rather simple FF form, it serves its purpose of a crude preliminary relaxation, 

as will be shown shortly, and it is very fast to build on-the-fly for every system under 

consideration. Fine-tuning of FF is not the goal here. 

To any structure to be evaluated by the function above, a bond analysis is applied 

first. We estimate the typical bond length between two atoms by summing their co-

valent radii, and we accept the maximum bond length by a tolerance value of 0.45 Å, 

and the minimum bond length is set to be 0.4 Å (data from jmol [18] settings). 
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The parameters in the function can be obtained by solving a set of linear equations. 

Since it is over-determined, it can be solved by the least squares method. To deter-

mine the most suitable number of parameters of each term, we can run several tests 

for different number of parameters. The standard deviations of energies can be cal-

culated to indicate which configuration of parameters is better. 

The pre-relaxation is done with the nonlinear CG method. For the line search part of 

the CG method, we apply the Newton-Raphson algorithm, which requires the first 

and second derivatives of the energy function with respect to all coordinates. Since 

our function is relatively simple, those derivatives are not hard to obtain in analytical 

forms. 

1.4 Deep neural network fitting 

In previous section we have discussed the possibility that FF fitting can be used to 

assist global searching. However, the restricted form of the FF function may prevent 

its extension to larger systems. Neural Network (NN) has been widely applied to the 

fitting of molecular PES for many years.[19] Nevertheless, most studies of this fitting 

approach focus on small-sized clusters and molecules, such as Si5,[20] BeH3,[21] and 

FH2O.[22] Recently, a high-dimensional NN fitting method (atomistic NN) has been 

proposed, which is based on expressing the total energy as the sum of atomic ener-

gies.[23,24] The new atomistic NN approach has been successfully applied to the PES 

fitting of a variety of systems, including ZnNON (N=1-40).[25] Very recently, it has 

been shown that a combination of BH and atomistic NN approach (NN-BH) can be 

used for global optimization for large-sized metal clusters, such as Au58 [26] and Na20-
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40 [27]. Despite the success of atomistic NN method, many-body expansion method 

has also been combined with NN for PES fitting, and some applications to small mol-

ecules, such as H2O2 [28] and C2H3Br [29], are reported. 

To the best of our knowledge, all aforementioned NN PES fitting approaches are 

based on the traditional fully connected NN with shallow structure (with typically 

three to four layers). However, it is shown [30] that NN with insufficient depth may 

require large number of training samples to tune the parameters. On the other hand, 

large scale fully connected NN is difficult to train and can potentially cause over-

fitting issues. During recent years, several novel approaches have been proposed to 

solve the Deep Neural Network (DNN) training problem. For example, large Convo-

lutional Neural Network (CNN), as an example of locally connected DNN, is shown 

to have an impressive performance on image classification.[31] Alternatively, Deep 

Belief Network (DBN) [32] is an example of DNN that can be pre-trained using un-

supervised learning techniques. In addition, benefited from recent progress on GPU 

computing, [33] the training of DNN can be largely accelerated. 

In this section, we discuss a general approach to find global and low energy local 

minima of metal clusters at the DFT level, using locally connected DNN fitting com-

bined with the BLDA method for structure generation. Unlike some other NN based 

global optimization methods, the training data are not obtained by performing full 

local optimization. Instead, the limited-step local optimization is performed so that 

the PES can be moderately explored, and meanwhile the time cost of local optimiza-

tion with DFT can be greatly reduced. The NN is constructed in a truncated many-

body-expansion way, but several mixing layers are added so that the NN potential 
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can represent a more general function than the original truncated many-body one. 

The fitted NN is then used to optimize some newly generated random structures. As 

a final step, automatically selected NN-relaxed structures are fully optimized using 

DFT to yield the final results. 

1.4.1 Truncated many-body approximation 

The NN architecture used in this work is designed based on the truncated many-body 

expansion approach,[34] with only the k-body terms considered. In this work, k = 4 is 

used. Based on our experience, NN constructed using higher order terms can make 

the training very time-consuming and may cause over-fitting issues. On the other 

hand, if only lower order terms are included, poor fitting accuracy may be expected. 

For simplicity, consider a homogeneous atomic cluster, say, PtN (N ≥ k). The Cartesian 

coordinates of the atoms are denoted as ri (i = 1, 2, …, N). Given any set X, 𝒮k(X) will 

be the set of all subsets of X that are composed of k elements. Obviously, if the number 

of elements in X, denoted as |X|, is equal to N, then |𝒮k(X)| = C(N, k), which is the 

number of combinations of k elements from X. 

The original PES can be expressed as a function of {ri}, namely, F(r1, r2, …, rN). Using 

the many-body expansion, if only the k-body terms are retained, then the original 

PES is approximated by F’({ri}) = sum(Fk({rj})), where k is a fixed parameter, 

{rj}∈𝒮k({ri}), and the sum is over all {rj} in 𝒮k({ri}). Now the undetermined function Fk 

can be fitted using the traditional fully connected NN. 
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In practice, when N is large and k is kept to be a moderate number (as in our case, 

four), this procedure may cause large fitting error since many high order terms are 

truncated. To alleviate this problem, we replace the summation by an undetermined 

function G. This will introduce some non-linear mixing among k-body terms, by which 

the fitting accuracy can be improved. The original PES is then more accurately ap-

proximated by F’’({ri}) = G({Fk({rj})}), where G is a function of C(N, k) variables. Since 

Fk is merely an intermediate variable, it no longer has to be a scalar function. There-

fore, in our approach it is generalized to be a vector function Fk, and this will intro-

duce more flexibility in the constructed neural network. Therefore, our final neural 

network framework to approximate the real PES is F’’’({ri}) = G({Fk({rj})}), where Fk 

and G can be fitted simultaneously, by locally connected NN. We call this approach 

the Many-Body Expansion Neural Network plus Mixing (MBE-NN+M) approach. 

It is known that Cartesian coordinates are not suitable to be directly used as input of 

NN.[23] Therefore, two transformations are performed on the input sample data in 

Cartesian coordinates {rj}. The original coordinates {rj} (after k-body selection proce-

dure) are first transformed to interatomic distances {am}, where m = 1, 2, …, C(k, 2) 

are the indices of all interatomic distances in the k-body fragment. After that, an 

exponential function is applied to help better describing the PES:[35] bm = exp(-am/L), 

where {bm} is the input of NN and L is a fixed parameter. The exponential function  

basically amplifies the short-distance areas in the PES. In this work, we choose L = 

4.0 Å. The output of NN is a single value representing the energy. A linear transfor-

mation is used so that the energies are mapped to interval [0, 1] for NN training, and 
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the corresponding inverse transformation is performed when interpreting NN predic-

tions. 

1.4.2 Neural network architecture 

The DNN architecture used in this work consists of three parts: MBE, mixing, and 

pooling. Local connectivity, parameter sharing, and average-pooling [36] are three 

main features used in this NN, which make it different from the traditional fully 

connected NN. 

The MBE part of NN is used to fit Fk. Based on the MBE-NN+M approach, the input 

of NN is a second-order tensor (or two-dimensional array) of the size (C(N, k), C(k, 2)), 

where the second dimension represents C(k, 2) variables of the function Fk, and the 

first dimension indicates that there are C(N, k) k-body terms, each denoted as Fk({rj}). 

To fit Fk, the NN connection is localized in the second dimension and the layer size of 

the first dimension is kept fixed. The weights and biases of NN connection are shared 

among different indices of the first dimension, so that the fitted function form of Fk 

is kept consistent among different k-body terms. Since Fk is a vector function, the size 

of the output value (as a vector) of each Fk term, denoted as f, must be determined 

when constructing NN. In this work, we choose f = 2. Therefore, the MBE part is 

composed of four layers with the sizes: (C(N, k), C(k, 2)) - (C(N, k), 40) - (C(N, k), 70) 

- (C(N, k), 60) - (C(N, k), 2). 

The mixing part is used to fit G. Within this part the NN connection is localized in 

the first dimension and the size of the second dimension is kept fixed. The parameters 
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of NN connection in this part are shared among different indices of the second dimen-

sion. In this work, the mixing part is composed of two layers with the sizes: (C(N, k), 

2) - (40, 2) - (10, 2). 

The last part is used to transform the output of mixing part to a single value, repre-

senting the energy. The average-pooling approach is used, which means that we take 

the average value of all elements in the matrix of the previous layer as the final out-

put. In this work, the pooling part is composed of one layer of the size: (10, 2) - (1). 

To describe the nonlinearity of the unknown function, suitable activation functions 

must be used in NN architecture. In previous NN PES fitting work by other authors, 

common choices are the hyperbolic tangent and the sigmoid function.[24] However, it 

has been found that these traditional activation functions are less efficient in 

DNN.[37] It has also been observed that in some DNNs, the earlier layers tend to 

learn less efficiently comparing with later layers, when trained by backpropagation 

learning algorithm.[38] Therefore, in this work, the first three hidden layers are ac-

tivated by hyperbolic tangent while the remaining layers except the output layer are 

activated by the softplus function. We found that this hybrid approach is able to over-

come the intrinsic disadvantage of both activation functions and increase the training 

efficiency. The overall architecture of NN used in this work is shown in Figure 1.12. 

Note that the actual numbers of NN nodes (layer sizes) are larger than or equal to 

the number of nodes shown in the figure. In the figure, the layer sizes for the Pt13 

case (N = 13, k = 4) are indicated in the bottom. There is no node connection across 

the stacked planes. 
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Figure 1.12 Architecture of the deep neural network used for fitting PES. 

1.4.3 Neural network implementation 

The NN can be constructed using theano framework,[39] which is a python library 

that allows to accelerate the evaluation and differentiation of mathematical expres-

sions both numerically and symbolically. Based on this framework, efficient 

C/openMP codes and/or CUDA codes for GPU can be automatically generated at 

runtime. We note that this feature is significant for saving time during training our 

large-scale deep NN. It is illustrated in Figure 1.13 that for a typical DNN PES fitting 

task in this work, acceleration of computation with GPU can be more than 50 times 

compared to that done with only CPU. Based on this observation, in this work, the 

GPU Tesla K40s is used for all NN training tasks. In Figure 1.13, the test case is a 7-

layer NN PES fitting for Pt13 energy data. During each epoch, 50 000/5 000 random 

structures and their corresponding energies are used for training/testing, respectively. 

For the first architecture (OpenMp/24), the CPU model is Intel Xeon E5-2697v2 (2.7 

GHz) and the 24 cores OpenMP parallelism scheme is used. For the other two archi-

tectures, a single CPU core and one indicated GPU accelerator are used. 
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Figure 1.13 Training speed measured in number of epochs per minute under different ma-

chine architectures. 

The Mini-Batch Stochastic Gradient Descent with Momentum (MB-SGD-M) method 

[40] is used for NN training. This is a widely tested training method for large-scale 

NNs. The step decay approach is used to improve convergence. The step length for 

parameter updating at epoch i is determined by s0 r/(r + i), where s0 is the initial step 

length and r is the step decay factor. In our work, we choose s0 = 0.1 and r = 60. When 

NN training finished, Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 

method [41] is used for NN based geometry optimization. 

1.4.4 Neural network assisted global optimization 

Based on the aforementioned neural network fitting methods, we are able to propose 

a new NN-fitting-based and highly parallel global optimization scheme shown in Fig-

ure 1.14. In this figure, the paralleled algorithms are indicated by multiple arrows 
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and the parallelism models are shown in parentheses. The DFT optimization is par-

alleled in two levels. Different atomic configurations are independently paralleled at 

job level. For every atomic configuration, the OpenMP or MPI parallelism is utilized 

as implemented in the DFT package. The overall scheme (NN-PGOPT) consists of 

three major steps (The AM-DFS method for structure filtering will be introduced in 

Chapter 3): 

1) Initial structure preparation. 

a. Random structure generation (S-BLDA) 

b. Filtering out duplicates (AM-DFS) 

2) Local optimization. 

a. Limited-step geometry optimization (DFT) 

b. PES fitting (MBE-NN+M and MB-SGD-M) 

c. PES optimization (L-BFGS) 

d. Filtering out duplicates (AM-DFS) 

e. Full-step geometry optimization (DFT) 

3) Global minimum identification. 

a. Filtering out duplicates (AM-DFS) 
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Figure 1.14 Overall flow-chart of NN-PGOPT scheme. 

1.5 Superposition approximation and ensemble average 

In the most general sense, global optimization is the technique to find the most stable 

configuration (called global minimum) at absolute zero temperature for a system. At 

realistic temperature, it is expected that the global minimum will become less im-

portant; the energy separations between local minima, however, will have a signifi-

cant effect on properties. A quantitative analysis of the contributions of the isomers, 

and the changes of properties in realistic temperature is thus necessary. This can be 

achieved by an ensemble-average representation of isomers. In what follows, we as-

sume that the interconversion of isomers is not strongly kinetically hindered, and 

that at high temperatures, eventually, the thermodynamic equilibrium would be 

reached, with every isomer being populated according to its free energy. Kinetic trap-

ping effect can be understood in the  cluster isomerization process, which will be sub-

ject of Chapter 4. 

At finite temperature, the ensemble average of any property A can be approximately 

computed by taking the weighted average of that property of each geometrically 

unique isomer Ak: 
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〈𝐴〉 ≈C𝑃 𝐴`
`

 

where Pk are the occurrence probabilities of isomer k. The probabilities Pk are ob-

tained from the superposition approximation,[42] where the partition function of the 

system is expressed as the sum over individual partition function of isomers 

𝑍 =C𝑍`
`

,						𝑃 =
𝑍`
𝑍  

In order to compute Zk, the electronic, vibrational and rotational degrees of freedom 

of the system will be considered.[43] The translational contribution is almost the 

same for each isomer, which is ignored here. Therefore, the partition function of iso-

mer k is written as 

𝑍` = 𝑍NbNZ,`𝑍cQV,`𝑍RWK,` 

where the electronic partition function is 

𝑍NbNZ,` = 𝑔OMQX,`𝑒9fgh 

where gspin,k is the spin degeneracy, which is equal to the multiplicity of the isomer. 

Ek is the ground state electronic energy of the isomer. It is assumed that for small 

enough clusters the quantum confinement effect is large enough to make the ground 

and excited electronic states well-separated in energy, and contributions to the elec-

tronic entropy due to the population of excited states being insignificant. This fact is 

generally supported by the lack of multi-reference character of the cluster wave func-

tions in many selected Pt clusters that we tried (CASSCF test).  
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The vibrational partition function is (using quantum harmonic oscillator approxima-

tion) 

𝑍cQV,` = i
𝑒9(fℏkhl)/T

1 − 𝑒9fℏkhl

no9I

$

 

where ωki are 3N - 6 vibrational frequencies of the isomer k. Note that the Zero-Point 

Energy (ZPE) and vibrational entropy effect are included in this term. The rotational 

partition function is (in high-temperature approximate form) 

𝑍RWK,` =
√𝜋
𝜎`
D
2
𝛽ℏTJ

n
T
s𝐼 "𝐼 T𝐼 n 

where σk is the order of rotational subgroup of the point group symmetry of isomer k 

and Ik1, Ik2, Ik3 are three eigenvalues of inertia tensor. 

To study the structure transition at certain temperature, the heat capacity can be 

computed as the following 

𝐶u = 𝑘w𝛽T x−
1
𝑍T yC𝑊`𝑍`

`

{
T

+
1
𝑍C

(𝑊`
T𝑍` + 𝑉 𝑍`)

`

} 

where 

𝑊` =
1
𝑍`
𝜕𝑍`
𝜕𝛽 = −

3
2𝛽 −C

ℏ𝜔`$
𝑒fℏkhl − 1

$

−
1
2Cℏ𝜔`$

$

− 𝐸` 

𝑉 =
𝜕𝑊`

𝜕𝛽 =
3
2𝛽T +C

(ℏ𝜔`$)T𝑒fℏkhl
(𝑒fℏkhl − 1)T

$
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1.6 Application on Pt8 cluster 

We illustrate the performance of AFFCK on the Pt8 cluster, using DFT for single point 

energy evaluation. AFFCK may be extended to any DFT package. We have tested it 

on plane wave DFT software such as the Vienna Ab-initio Simulation Package (VASP) 

[44–47] and the Turbomole [48] program to perform DFT calculations. All calcula-

tions presented in this section used the PBE0 [49–51] hybrid functional (with spin 

polarization), in view of its known adequate performance for both clusters of B [52] 

and Pt [53,54] and computational affordability. The def2-TZVP [55] basis set was em-

ployed. The level of theory in use can be adjusted to what is more suitable for the 

studied systems, and this is one of the levers for increasing the accuracy of the search, 

if desired. For the purpose of testing AFFCK, UPBE0/def2-TZVP was found to be op-

timal, providing both reasonable computational time and sampling of CK structures 

(>96% converged). 

1.6.1 General force field fitting approach 

The AFFCK method was applied to Pt8 cluster to find the global minimum and local 

minima structures. To illustrate the accuracy and efficiency of AFFCK method, we 

also perform the pure CK search on the cluster from the same initial guessed struc-

tures.  

We have done several tests to determine how many parameters we should include in 

our set for a good FF fitting. The quality of fitting can be evaluated by calculating the 

standard deviation σm of the energies: 
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𝜎� = �∑ (𝐸F` − 𝐸BB`)T�
`

𝑚  

where m is the total number of initial structures, E0k and EFFk are energies obtained 

by Turbomole and the fitted FF formula, respectively. The smaller σm is, the closer 

our fitted energies are to the DFT energies. Since the parameters are determined by 

solving a set of over-determined linear equations, σm will always decrease when we 

increase the number of parameters. The significance of parameters can thus be meas-

ured by looking at how much σm decreases while we introduce new parameters. The 

parameter test results are showed in Table 1.1. In the table, all the parameters are 

calculated using the energy unit Hartree and length unit Å. “N/A” denotes that these 

parameters are not included. The van der Waals interaction terms are divided ac-

cording to the total number of bonds that the interacting atoms have, and “as (n)” 

denotes that these parameters are taken the same as those of n bonds case. ∆σm is 

the difference of σm comparing to the previous line. The three numbers in “stretch 

energy terms” column are A1, B1, C1, respectively, and the two numbers in “van der 

Waals interaction terms” columns are A0i, B0i, respectively (see Section 1.3 for the 

definition of parameters). From the listed ∆σm we can see that we cannot improve the 

quality of the formula much when splitting van der Waals terms corresponding to 

total bonds number less than 6. Nevertheless, we choose to keep these parameters 

since their fitted values are all physical. 
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Table 1.1 The fitted values of parameters and corresponding σm when choosing different set 

of parameters in the FF formula, for singlet Pt8 cluster (PBE0 functional). 

# of pa-
rame-
ters 

con-
stant 
term 

stretch 
energy 
terms 

van der Waals interaction terms σm/eV ∆σm/eV 

 <4 4 5 6 >6   

3 -954.4 N/A as (5) as (5) 
151.0 

14.01 
as (5) as (5) 0.744  

6 -954.4 

0.068 

-0.37 

0.50 

as (5) as (5) 
126.0 

12.46 
as (5) as (5) 0.696 0.048 

8 -954.3 

0.067 

-0.36 

0.48 

as (5) as (5) 
122.5 

13.37 
as 

(>6) 
123.7 

11.59 
0.649 0.047 

10 -954.3 

0.067 

-0.36 

0.48 

as (4) 
123.7 

13.95 

122.7 

13.21 
as 

(>6) 
123.8 

11.56 
0.645 0.004 

12 -954.3 

0.076 

-0.41 

0.55 

68.66 

10.96 

129.3 

14.99 

124.7 

14.06 
as 

(>6) 
127.4 

12.6 
0.642 0.003 

14 -954.2 

0.067 

-0.36 

0.46 

132.4 

15.9 

143.9 

16.13 

132.2 

14.47 

134.4 

13.59 

120.0 

10.66 
0.593 0.049 

To find the accurate global minimum for the Pt8 cluster, we consider different electron 

spin multiplicities (singlet, triplet, and quintet) independently. This approach was 

used in both pure CK, and in AFFCK calculations, which means that, for the AFFCK 

method, we have different sets of FF parameters fitted for different electronic states. 
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Table 1.2 lists all these fitted parameters as well as the number of initial structures 

used for fitting. We can also find that when total number of bonds gets larger, the 

coefficients of their corresponding van der Waals interaction term get smaller. The 

reason is that atoms with larger total number of bonds lie in the center of the cluster. 

1,000 initial guess structures for each spin multiplicity were generated, and the DFT 

single point energy calculations converged for 956, 963, and 927 structures, for sin-

glets, triplets, and quintets, respectively. We chose 97% of them to fit the FF formula, 

while structures with top 3% highest energies were excluded. 

Table 1.2 The fitted values of parameters, number of initial structures used in the FF for-

mula, and corresponding σm for Pt8 cluster energies (PBE0 functional) with different spin 

multiplicities. Notations and units are the same as Table 1.1. 

spin 
multi-
plicity 

# of ini-
tial 
struc-
tures 
used 

con-
stant 
term 

stretch 
energy 
terms 

van der Waals interaction terms σm/eV 

 <4 4 5 6 >6  

singlet 927 -954.2 

0.067 

-0.36 

0.46 

132.4 

15.90 

143.9 

16.13 

132.2 

14.47 

134.4 

13.59 

120.0 

10.66 
0.593 

triplet 934 -954.3 

0.060 

-0.32 

0.40 

95.85 

11.86 

132.8 

14.09 

130.3 

13.20 

127.9 

12.16 

117.0 

9.66 
0.435 

quintet 899 -954.3 

0.061 

-0.33 

0.42 

89.22 

11.47 

132.9 

14.07 

130.1 

13.20 

127.5 

12.16 

117.7 

9.77 
0.432 
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The fitted FF formula can then be used to find the pre-relaxed structures of the Pt8 

cluster, minima within the FF formalism, as stated in previous sections. For each 

spin multiplicity, 10,000 additional guessed structures are generated using the CK 

coalescence approach, without DFT calculations, and pre-relaxed using nonlinear CG 

method and FF. Then for each spin multiplicity, 300 unique pre-relaxed structures 

with relatively low FF energies are selected, using the similarity measurement 

method introduced in Section 3.1.1. The selection parameters are drel = 0.03 Å and 

dmax = 0.7 Å. These structures are then re-evaluated and re-optimized using DFT.  

Now by comparing the approximate FF and DFT energies of these pre-relaxed struc-

tures, we can have an idea of the accuracy of AFFCK energies with respect to DFT 

ones. Figure 1.15 shows the energies of initial and pre-relaxed Pt8 clusters, calculated 

with FF and PBE0, for different spin multiplicities. In this figure, x axes show the 

serial number of the structures. Green and yellow dots are FF (fitted) and DFT ener-

gies of initial structures, respectively; red and blue dots are FF (predicted) and DFT 

energies of pre-relaxed structures, respectively. The structures are sorted by their FF 

energies. Some initial structures with very high energies are excluded in order to 

show more details of the main part of the plot. Energies relative to -25,982.924 eV, 

which is the energy of the global minimum that we find, were used. We can find that 

the fitting error for singlet state are relatively larger, comparing to other two states, 

which agrees with the σm values that we have listed in Table 1.2. Despite this, our 

simple formula was shown to make a good approximation of DFT energies for Pt8 

clusters, and the fitted parameters obtained from initial structures with high ener-

gies did work for structures that have lower energies as well. 
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Figure 1.15 FF and DFT (PBE0 functional) energies of singlet (left), triplet (middle) and 

quintet (right) Pt8 clusters. 

The pre-relaxed structures then undergo further optimization by DFT. We can com-

pare the number of steps taken for optimizing pre-relaxed structures (by AFFCK 

method) and initial structures (by pure CK method), to verify the efficiency of the FF 

procedure in the AFFCK method. For the pure CK method, the optimizations were 

converged for 956, 963, and 927 (out of 1,000) structures, for singlets, triplets, and 

quintets, respectively, and for AFFCK method, 295, 279, 291 (out of 300) structures 

converged, for singlets, triplets, and quintets, respectively. Figure 1.16 shows the 

number of steps taken for optimizing these structures with different spin multiplici-

ties. In this figure, blue and green bars stand for the AFFCK method (optimizing from 

pre-relaxed structures) and the pure CK method (optimizing from initial structures), 

respectively. The mean numbers of optimization steps were 96, 97, 92 (pure CK) and 

78, 74, 76 (AFFCK), for singlets, triplets, and quintets structures respectively. Aver-

agely 20% of the DFT optimization time was saved per structure, and after consider-

ing the number of structures that were used, 76% of the total optimization time was 

saved. From these we can conclude that the AFFCK method indeed accelerated the 

DFT optimization significantly by the pre-relaxing procedure (which itself is very 

fast).  
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Figure 1.16 Frequency histograms for the distribution of the number of optimization (DFT 

with PBE0 functional) steps of converged singlet (left), triplet (middle) and quintet (right) Pt8 

clusters. 

The effectiveness of the pre-relaxing procedure can be further examined by looking 

at the “energy shift” from initial to final relaxed structures. When energies of the 

structures to be optimized are closer to that of minima structures, the optimization 

will be faster. In this case, the “energy shift” will be shorter. Figure 1.17 shows the 

energy distribution of Pt8 structures at different calculation stages. In this figure, 

energy shift by the AFFCK and pure CK methods are showed in upper and lower 

three plots, respectively. All energies are calculated using DFT with PBE0 functional. 

Red, yellow, blue, and green parts represent initial, pre-relaxed, DFT relaxed (from 

pre-relaxed ones), and DFT relaxed (from initial ones) structures, respectively. Ener-

gies relative to -25,982.924 eV, which is the energy of the global minimum that we 

find, were used. It is obvious that the AFFCK method shortens the “energy shift” by 

improve the quality of initial guessed structures by the CK method. 
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Figure 1.17 Frequency histograms for energy distributions of singlet (left), triplet (middle) 

and quintet (right) Pt8 clusters at different calculation stages. 

In addition to the effectiveness, AFFCK is also proved to be accurate for the Pt8 cal-

culation. The finally relaxed structures using the AFFCK and pure CK methods were 

filtered to find all the unique local minima. The structure selection parameters that 

used are drel = 0.015 Å and dmax = 0.2 Å. Some similar structures were further filtered 

manually. The first five minima found by each method are shown in Figure 1.18. 

Although we optimized much fewer (300) structures in the AFFCK method, the local 

minimum structures found by the two methods agree with each other. Furthermore, 

the energy for global minima I found by AFFCK is lower than that of I’ found by pure 

CK, i.e. with our rather modest CK settings pure CK failed to find the quintet struc-

ture I. There is no doubt that increasing the number of trial structures in pure CK 

would fix the problem. However, in our test roughly three times more structures were 

used in CK versus AFFCK, demonstrating the effectiveness and utility of the FF pre-

relaxation. Other local minima that we have found are shown in Figure 1.19. 
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I, quintet, D2d II, quintet, C2v III, quintet, Cs IV, quintet, Cs V, quintet, C2v 
ΔE = 0.00 eV ΔE = 0.12 eV ΔE = 0.13 eV ΔE = 0.17 eV ΔE = 0.17 eV 

 
   

 
I’, triplet, D2d II’, quintet, C2v III’, quintet, Cs IV’, quintet, Cs V’, quintet, C2v 
ΔE = 0.06 eV ΔE = 0.12 eV ΔE = 0.13 eV ΔE = 0.17 eV ΔE = 0.17 eV 

Figure 1.18 First five local minima of Pt8 clusters found by AFFCK (upper) and pure CK 

(lower) method. ΔE are energies relative to I, calculated using DFT with PBE0 functional. 

     
VI, quintet, C1 VII, quintet, Cs VIII, quintet, C1 IX, quintet, C2 X, triplet, C1 
ΔE = 0.23 eV ΔE = 0.26 eV ΔE = 0.30 eV ΔE = 0.32 eV ΔE = 0.32 eV 

Figure 1.19 Other higher energy isomer of the global minimum Pt8 cluster I. ΔE are energies 

relative to I, calculated using DFT with PBE0 functional. 

1.6.2 Symmetry specific calculation 
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In previous section we perform all calculations without any symmetry specific treat-

ments. Here we further investigate the utility of the symmetry generation procedure, 

which has been discussed in Section 1.2.2, with the Pt8 cluster serving as an example. 

We used the same FF formula as that discussed in Section 1.3. Instead of generating 

10,000 structures all belonging to the point group C1 for pre-relaxing, we generated 

2,100 of those structures with specific point group symmetries, namely, 100 struc-

tures for each of Cs, Ci, C2, C3, C4, C2v, C3v, C4v, C2h, C3h, C4h, D2, D3, D4, D2h, D3h, D4h, 

D2d, D3d, D4d, and S4 point group symmetry. These 2,100 structures were pre-relaxed 

for different spin multiplicities independently. Then we selected 100 structures with 

lower energies for DFT optimization for each spin multiplicity (i.e. total of 300, as in 

the previous situation). Figure 1.20 shows the new energy shifts for this symmetry 

specific AFFCK (SS-AFFCK) treatment, with a comparison with the AFFCK method 

without symmetry treatment. In this figure, energy shift by normal AFFCK and sym-

metry specific AFFCK method are showed in solid and dashed edges, respectively. All 

energies are calculated using DFT with PBE0 functional. Red, yellow, blue, brown, 

and purple parts represent initial, pre-relaxed (normal AFFCK), DFT relaxed (nor-

mal AFFCK), pre-relaxed (SS-AFFCK), and DFT relaxed (SS-AFFCK) structures, re-

spectively. Energies relative to -25,982.924 eV, which is the energy of the global min-

imum found by normal AFFCK, were used. We can conclude that the symmetry treat-

ment did not refine the final energy distribution, however, it pushed the pre-relaxed 

structures closer to the low energy region. Figure 1.21 shows comparison of the num-

ber of steps taken in DFT optimization between the SS-AFFCK and normal AFFCK 

methods. In this figure, Purple (solid edge) and blue (dashed edge) bars stand for the 

SS-AFFCK method and the normal AFFCK method, respectively. We found that the 
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structures treated by SS-AFFACK converged rapidly, with a great increase of number 

of structures converging in less than 20 steps. Figure 1.22 shows some of the relaxed 

structures found by the SS-AFFCK method. We note that the first three local minima 

(I’’, II’’, and III’’) have also been found with this treatment. IX* is the mirror sym-

metric configuration of IX. Other isomers found here generally have higher energies 

than those found by the normal AFFCK method, but many of them are in higher order 

symmetry (especially XI-Td, XV-Oh), and some of them might be saddle points. We 

also note that XV was reported in previous literatures.[56,57] 

 

Figure 1.20 Frequency histograms for energy distributions of singlet (left), triplet (middle) 

and quintet (right) Pt8 clusters at different calculation stages. 

 

Figure 1.21 Frequency histograms for the distribution of the number of optimization (DFT 

with PBE0 functional) steps of converged singlet (left), triplet (middle) and quintet (right) Pt8 

clusters. 
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I’’, quintet, D2d III’’, quintet, Cs XI, quintet, Td IX*, quintet, C2 XII, quintet, C2 
ΔE = 0.00 eV ΔE = 0.13 eV ΔE = 0.25 eV ΔE = 0.32 eV ΔE = 0.34 eV 

   
 

 

II’, triplet, C2v XIII, singlet, Cs XIV, quintet, Cs XV, quintet, Oh XVI, quintet, C2v 
ΔE = 0.38 eV ΔE = 0.45 eV ΔE = 0.46 eV ΔE = 0.49 eV ΔE = 0.52 eV 

Figure 1.22 Some representative high energy isomer of the global minimum Pt8 cluster I, 

found by SS-AFFCK method. ΔE are energies relative to I, calculated using DFT with PBE0 

functional. 

1.7 Application on Pt9 cluster 

1.7.1 DFT parameters and fitting errors 

The global optimization is performed for Pt9 as an example of an application of the 

NN-PGOPT scheme. A separate direct searching is also performed, where the steps 

2a - 2d mentioned in Section 1.4.4 are skipped, in order to test the performance with-

out NN fitting. 

The DFT optimization is done using Turbomole 6.6 [58,59] with Tao, Perdew, 

Staroverov, and Scuseria hybrid (TPSSh) [60] functional, since the nonempirical 
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TPSSh hybrid functional has been found to have a good performance for late transi-

tion metals clusters.[61] To save DFT optimization time, the randomly generated 

structures are first optimized with def2-SV(P) and then with the def2-TZVP basis 

set,[62] in the direct searching case. For NN-PGOPT scheme, the NN is fitted for 

def2-SV(P) energies, then the full-step DFT optimization is performed with def2-

TZVP. 

500 unique initial structures are generated using S-BLDA approach with parameters 

µ1 = 2.50 Å, µ2 = 2.55 Å, and σ1 = σ2 = 0.04 Å for singlet, triplet, quintet, septet, and 

nonet multiplicities, respectively. The threshold value d = 0.25 Å is used to filter the 

S-BLDA generated structures. 10 DFT optimization steps are performed on these in-

itial structures to yield 4240, 4770, 4670, 4210, and 4080 structure/energy samples 

for each multiplicity, respectively. For each multiplicity, the samples span an energy 

range of around 5.0 eV. Five independent NNs are fitted for different multiplicities, 

and an additional reference NN is first fitted for singlet to generate an initial guess 

of NN parameters. 82%, 9%, and 9% of samples are used for training, testing and 

validation, respectively. Since the cluster structure will be the same when the coor-

dinates of any two atoms of the same element are swapped, these atoms can be ran-

domly shuffled to generate more samples, so that the NN can learn the permutation 

invariance of atoms of the same element. In this way, 200,000, 20,000, and 20,000 

samples are generated for training, testing and validation, respectively. The mini-

batch size and the momentum are set to be 50 and 0.7, respectively, as the parameter 

of MB-SGD-M method. 
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Since N = 9 and k = 4, the layer sizes of the NN used for Pt9 PES fitting are (126, 6) - 

(126, 40) - (126, 70) - (126, 60) - (126, 2) - (40, 2) - (10, 2) - (1). Therefore, the total 

number of parameters (including weights and biases) used in this NN is 40 (6 + 1) + 

70 (40 + 1) + 60 (70 + 1) + 2 (60 + 1) + 40 (126 + 1) + 10 (40 + 1) = 13022. The number 

of epochs, fitting errors and time are summarized in Table 1.3. In this table, the pa-

rameter guess column indicates that the final parameters of which NN are used as 

the initial guess of parameters. The errors are measured in Root Mean Square Error 

(RMSE). We note that within each epoch, all training samples are used once for train-

ing the NN with random order and then all testing samples are used once to give the 

testing error. After all epochs, the validation samples are used once to give the vali-

dation error. The parameters with the lowest testing error are selected as the final 

parameters.  

After the PES fitting, 5000 unique initial structures are generated with the same 

parameters as those used in the first step, for each multiplicity, and then optimized 

to their local minima using the corresponding NN. Some NN-relaxed local minima 

with interatomic distances that are too long or too short, are considered as extrapo-

lated structures and are excluded. Then the remaining NN-relaxed local minima are 

filtered with threshold value d = 0.25 Å. Finally, 300 filtered NN-relaxed local min-

ima with relatively lower energies are selected to perform the full-step DFT optimi-

zation with def2-TZVP basis set.  
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Table 1.3 The number of epochs, average fitting errors per structure and total time used in 

training NN for Pt9 PES. 

NN parame-
ter guess epochs 

training 
error 
(meV) 

testing er-
ror (meV) 

validation 
error 
(meV) 

total time 
(hour:min) 

reference random 1400 236 262 252 3:57 
singlet nonet 500 230 243 246 1:25 
triplet reference 500 151 158 153 1:25 
quintet triplet 500 137 147 146 1:25 
septet quintet 500 136 146 142 1:25 
nonet septet 500 129 131 132 1:25 

1.7.2 Time efficiency 

A separate direct global optimization without NN fitting is also performed for Pt9 for 

comparison. During the direct approach, 500 unique initial structures are generated 

for each multiplicity using the same method and parameters as those in NN-PGOPT 

scheme. 30 additional converged local minima from singlet, triplet, quintet and septet 

are added to triplet, quintet, septet and nonet initial structures, respectively, since 

the converged minima of one multiplicity can be a good initial guess to be relaxed for 

a different multiplicity. Full-step DFT optimization with def2-SV(P) basis set is then 

performed on these initial structures. The threshold value d = 0.10 Å is used to filter 

the found local minima for each multiplicity individually. After the filtering, 264, 300, 

300, 294, and 212 unique lower energy local minima are selected for DFT optimiza-

tion with def2-TZVP basis set, respectively. The final results are filtered with the 

threshold value d = 0.25 Å. 



 
50 

The CPU hours used during the DFT optimization for the direct scheme and NN-

assisted scheme are summarized in Table 1.4. We note that the total time for NN 

optimization and filtering for all structures and multiplicities is about 10 hours using 

a single CPU core. The total time for GPU accelerated NN fitting is shown in Table 

1.3. Therefore, the time cost for NN fitting, optimization and filtering is negligible 

comparing to the DFT optimization time. In total, 23.5% CPU hours can be saved 

using NN-PGOPT scheme for Pt9 global optimization, comparing to the direct ap-

proach. We note that at the first stage with def2-SV(P) basis set, since only the first 

10 steps of DFT optimization are performed using NN-PGOPT scheme, 62% CPU 

hours are saved. However, because the quality of NN-relaxed structures is worse than 

that of the fully DFT-relaxed structures, at the second stage with def2-TZVP basis 

set, 67% more CPU hours are required for NN-PGOPT scheme. Nevertheless, in 

terms of the total time, NN-PGOPT is faster, given that the same number of initial 

structures is used. 

Table 1.4 The CPU core hours used during the DFT optimization for the direct scheme and 

NN-assisted scheme. 

approach basis set singlet triplet quintet septet nonet total 

direct 

def2-SV(P) 11096 7794 8769 8750 13939 50348 

def2-TZVP 6066 4129 4039 4339 2819 21392 

total 71740 

NN-PGOPT 

def2-SV(P) 4344 2895 3271 3493 5182 19185 

def2-TZVP 9515 6787 6324 6735 6369 35730 

total 54915 
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1.7.3 Local optima searching performance 

The final low-energy isomers found using the direct approach and NN-PGOPT are 

listed in Figure 1.23 and Figure 1.24, respectively. In the two figures, only structures 

with energy less than 0.40 eV relative to the putative global minimum (the leftmost 

structure) are listed. Green, purple, blue, orange, and brown lines represent the en-

ergies of singlet, triplet, quintet, septet and nonet multiplicities, respectively. The 

point group symmetry (if not C1) is indicated for each structure. We note that the 

number of isomers in the selected energy range (0.0-0.4 eV), which corresponds to a 

catalyst condition related region, is the same for the two approaches. And the first 

four isomers with lower energies are also consistent. The inconsistency in higher en-

ergy region is due to the complexity of the PES and that 500 initial structures are not 

enough to generate a complete list of local minima. However, the requirement of com-

pleteness is both unnecessary and computationally too expensive. 

Figure 1.25 shows some NN-relaxed structures with relatively low energy re-evalu-

ated at DFT level. The single point energies (relative to the leftmost structure, which 

is 0.38 eV higher in energy than the putative global minimum in Figure 1.24) are re-

evaluated at the TPSSh/def2-TZVP level of theory. Since these structures are not real 

local optima at the DFT level, their energies are generally higher than the DFT-re-

laxed optima shown in Figure 1.23 and Figure 1.24. However, the geometry of these 

NN-relaxed structures is already very close to their DFT-relaxed counterparts. For 

example, the NN-relaxed structures 1, 5, 2, 7, 8, and 3 in Figure 1.25 are very similar 

to the local optima 1, 2, 3, 4, 5, and 6 in Figure 1.24. We note that since the distances 
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between these NN-relaxed structures and their corresponding DFT optima vary, the 

energy order is not expected to be consistent. 

Figure 1.26 shows the energy and step distribution during the first stage (with def2-

SV(P) basis set) of the direct approach. The average energy of randomly created ini-

tial structures is 3.7 eV higher than the energy of the global minimum, while the 

average energy of the additional initial structures borrowed from local minima of 

other multiplicities is only 0.3 eV higher than the energy of the global minimum. This 

indicates that the effect of multiplicity change on energy is much smaller than that 

of geometry change. The average number of steps is 50 for the full optimization with 

def2-SV(P) basis set. Note that in the NN-PGOPT approach only the first 10 of these 

steps are performed, but we can only save 62% of the time. This is because the begin-

ning steps generally take longer time. 

 

Figure 1.23 The energy and some of the structures of 58 low energy optima found at 

TPSSh/def2-TZVP level of theory using direct approach. 
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Figure 1.24 The energy and some of the structures of 58 low energy optima found at 

TPSSh/def2-TZVP level of theory using NN-PGOPT approach (after final full-step DFT opti-

mization). 

 

Figure 1.25 NN-relaxed low energy structures using NN-PGOPT approach (before final full-

step DFT optimization). 

Figure 1.27 and Figure 1.28 show the energy and step distribution during the second 

stage (with def2-TZVP basis set) of the direct and NN approach, respectively. The 
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average relative energy of NN-relaxed and def2-SV(P) fully relaxed structures are 1.5 

and 1.2 eV, respectively, which means that the quality of NN-relaxed structures is 

slightly worse. However, the average relative energy of final re-relaxed structures for 

NN and direct approach are 0.8 and 1.0 eV, respectively. This indicates that in gen-

eral the NN assisted approach is able to generate final structures that are more con-

centrated in low energy region. 

 

Figure 1.26 Left: the energy distribution of S-BLDA generated initial structures (blue), ad-

ditional initial structures borrowed from local minima of another multiplicity (green) and 

relaxed local minima at TPSSh/def2-SV(P) level of theory (orange). Right: the TPSSh/def2-

SV(P) full-step local optimization step distribution. The mean and standard deviation of the 

distribution are also indicated in the figure. 
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Figure 1.27 Left: the energy distribution (at def2-TZVP level) of def2-SV(P)-relaxed local 

minima structures (green), and re-relaxed local minima at TPSSh/def2-TZVP level of theory 

(orange). Right: the TPSSh/def2-TZVP local optimization step distribution. 

 

Figure 1.28 Left: the energy distribution (at def2-TZVP level) of NN-relaxed local minima 

structures (red), and re-relaxed local minima at TPSSh/def2-TZVP level of theory (orange). 

Right: the TPSSh/def2-TZVP local optimization step distribution. 

1.7.4 Putative global minimum 
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In this work the septet tricapped octahedron (A), shown in Figure 1.29, is found to be 

the putative global minimum for Pt9. The TPSSh and PBE energies relative to the 

energies of respective lowest energy structure are also listed in Figure 1.29. The 

TPSSh energy is evaluated using Turbomole 6.6 with def2-TZVP basis set. The PBE 

energy is evaluated using VASP 5.4.1 with 20 Å cubic cell and energy cutoff 500 eV. 

Singh and Sarkar [63] have also reported this structure (with nonet multiplicity) as 

the lowest energy isomer. However, Kumar and Kawazoe [64] and Chaves et. al. [65] 

have reported the planar structure with four squares (B) as the lowest. Winczewski 

et. al. [66] have reported the defected tetrahedron (C). We re-optimized the three 

structures using both TPSSh and PBE functional. Based on the calculated energies, 

the difference in global minimum structures is due to the different choice of DFT 

functional. 

 

Figure 1.29 The putative global minima proposed in this work (A) and other literatures (A, 

B, C). C is also found in this work. 

1.8 Application on Pt13 cluster 

1.8.1 DFT parameters and fitting errors 
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The Pt13 global optimization is performed as another example of the application of 

NN-PGOPT scheme. The DFT optimization is done using spin-polarized DFT pro-

gram implemented in Vienna Ab-initio Simulation Package (VASP) 5.4.1 [47] with 

Projector Augmented-Wave (PAW) method [67] and Perdew-Burke-Ernzerhof (PBE) 

[50] functional. The cubic cell of size 15×15×15 Å3 is used. The multiplicity is auto-

matically relaxed during the geometry optimization. Only the gamma point is sam-

pled. To save time, the DFT optimization at both the first and second stage of NN-

PGOPT scheme is performed with energy cutoff 280 eV. The final local optima are re-

optimized with energy cutoff 400 eV but no significant geometry or energy change is 

observed. 

1000 unique initial structures are generated using the S-BLDA approach with the 

same parameters as the Pt9 case. 20 DFT optimization steps are performed to yield 

19,860 structure/energy samples. After discarding some high energy structures, 

19,741 samples spanning an energy range of 5.44 eV are used. 82%, 9% and 9% of 

samples are atomically shuffled to generate 200,000, 15,000, and 15,000 samples for 

training, testing and validation, respectively. The mini-batch size and the momentum 

are set to be 50 and 0.7, respectively, as the parameter of the MB-SGD-M method. 

Since N = 13 and k = 4, the layer sizes of the NN used for Pt13 PES fitting are (715, 6) 

- (715, 40) - (715, 70) - (715, 60) - (715, 2) - (40, 2) - (10, 2) - (1). Therefore, the total 

number of parameters (including weights and biases) used in this NN is 40 (6 + 1) + 

70 (40 + 1) + 60 (70 + 1) + 2 (60 + 1) + 40 (715 + 1) + 10 (40 + 1) = 36582. The NN is 

trained for 700 epochs but no error improvement has been observed since the 410th 
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epoch. The final training, testing, and validation errors are 268, 298, and 303 meV, 

respectively. 

After the PES fitting, 5000 unique initial structures are generated and then opti-

mized to their local minima using the corresponding NN. Extrapolated structures and 

duplicates are excluded. Finally, 500 NN-relaxed local minima with relatively lower 

energies are selected to perform the full-step DFT optimization.  

1.8.2 Local optima searching performance 

Some of the final low energy isomers found using the NN-PGOPT approach are listed 

in Figure 1.30. Although the PES of Pt13 is expected to be much more complicated 

than that of Pt9, fewer low energy isomers are found within 0.4 eV region. This indi-

cates that the energy of the global minimum is significantly lower than most of other 

local isomers. This is different from the situation of Pt9 and may have important prac-

tical consequences, which is investigated in detail in the next subsection. Figure 1.31 

shows the energy distribution of initial, partially DFT-relaxed, NN-relaxed, and fully 

DFT-relaxed structures. In this figure, all energies are evaluated at the DFT/PBE 

level of theory. From the average values shown in the figure, we can infer that the 

constructed NN has the ability to predict new lower-energy structures than its input, 

because the average energy of NN-relaxed structures is 0.9 eV lower than that of the 

partially relaxed. Therefore, DFT local optimization time is saved by the combination 

of partial DFT optimization and NN fitting. 
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Figure 1.30 The energy and some of the structures of 25 low energy optima found at the 

DFT/PBE level of theory using the NN-PGOPT approach. 

 

Figure 1.31 The energy distribution of S-BLDA generated initial structures (blue), all inter-

mediate structures during the 20-step DFT optimization (purple), NN-relaxed local minima 

structures (red), and DFT re-relaxed local minima (orange). 

1.8.3 Putative global minimum 
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In this work the triplet tricapped pentagonal prism (A) is found to be the putative 

global minimum for Pt13, shown in Figure 1.32. In this figure, the shown PBE relative 

energies are evaluated using VASP 5.4.1 with 15 Å cubic cell and energy cutoff 400 

eV. Single point energies at the TPSSh/aug-cc-PVTZ level of theory are calculated for 

each of these structures using MOLPRO 2015.1. [68] Many other publications have 

also reported this structure as the putative global minimum. [65,69,70] However, Sun 

et. al. and Zhang et. al. have reported the square pyramid (B) as the global minimum. 

[71,72] As shown in Figure 1.30 and Figure 1.32, the square pyramid structure is 0.10 

eV higher in energy than the lowest one. Since the same DFT parameters are used, 

it may suggest that our search is more complete. 

 

Figure 1.32 The putative global minima proposed in this work (A) and other literatures (A, 

B) and a third-lowest isomer found in this work (C). 

1.8.4 Ensemble-average representation of Pt clusters 

Both Figure 1.29 and Figure 1.32 show that different DFT functionals could result 

different relative order of isomer energies, and thus change the geometry of putative 

global minima. This may be partially due to the complexity of PES of both Pt9 and 
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Pt13. The energy distribution of the two clusters investigated show different patterns, 

especially if we only focus on PBE energies. Specifically, there are many more Pt9 

isomers distributed in the low energy range (0 to 0.25 eV). To understand the impact 

of these observations, we apply the ensemble-average representation introduced in 

Section 1.5 to the two clusters. 

Figure 1.33 and Figure 1.34 show the calculated probabilities of first five low energy 

isomers of Pt9 and Pt13 clusters at finite temperatures, respectively. For Pt9, the PBE 

global minimum at zero temperature (planar square, quintet) is no longer the most 

populated one at T > 200 K, mainly due to the fact that the second lowest isomer 

(tricapped octahedron, septet) has a higher multiplicity and lower symmetry, which 

are favored at high temperature. For Pt13, the structure favors its global minimal 

shape (tricapped pentagonal prism, triplet) till T = 1000 K. After that, the third low-

est isomer (pyramid over square, quintet) becomes more populated. We note that the 

second lowest isomer is not favored because of its slightly higher symmetry. 

The probability change between different temperature indicates that there can be a 

structure transition for Pt9 (with PBE functional) at low temperature (T < 200 K), 

and for Pt13 at relatively high temperature (T ~ 1000 K). The structural stability over 

a wide temperature range, predicted here for Pt13 may play an important role in the 

explanation of catalyst selectivity. 
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Figure 1.33 The occurrence probabilities of first 5 low energy isomers of Pt9 clusters at dif-

ferent temperatures, with energy and frequencies evaluated using PBE functional. 

 

Figure 1.34 The occurrence probabilities of first 5 low energy isomers of Pt13 clusters at 

different temperatures, with energy and frequencies evaluated using PBE functional. 
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Figure 1.35 and Figure 1.36 show the heat capacity of the two cluster isomer ensem-

bles as a function of temperature, for electronic and all degrees of freedom, respec-

tively. From the heat capacity contributed from the electronic degree of freedom, we 

can clearly identify a peak at T = 100 K for Pt9 and a peak at T = 950 K for Pt13. This 

agrees with our previous observation on probabilities. We note that the peak for Pt9 

is too small to be observed in the total heat capacity, and the peak for Pt13 in total 

heat capacity is shifted to T = 720 K. This can be ascribed to the vibrational and 

rotational entropy effects. The dashed lines in Figure 1.35 and Figure 1.36 show that 

a significant underestimation of heat capacity (and also some other properties) would 

be expected if we only consider several low energy isomers. Nevertheless, the first ten 

low energy isomers will be a good approximation if one focuses on phenomena at room 

temperature, for these systems. Figure 1.36 shows that the high temperature limits 

of total heat capacity for Pt9 and Pt13 are close to 22.5 and 34.5, respectively. This is 

related to the total number of degree of freedom that we have considered, namely, 3N 

- 6 from the vibrational and 1.5 from the rotational ones, where N is the total number 

of atoms. Electronic degrees of freedom, however, do not contribute at high T. 
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Figure 1.35 The heat capacity contributed from the electronic degree of freedom for isomer 

ensemble of Pt9 (red) and Pt13 (blue), when all found local minima (solid line) and only the 

first ten low energy isomers (dashed line) are considered. 

 

Figure 1.36 The heat capacity contributed from the electronic, vibrational, and rotational 

degree of freedom for isomer ensemble of Pt9 (red) and Pt13 (blue), when all found local min-

ima (solid line) and only the first ten low energy isomers (dashed line) are considered. 

Finally, in Figure 1.37 we note that the electronic property of the clusters at finite 

temperatures can be different from the ones evaluated on just the global minimum. 
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For example, The Vertical Ionization Potentials (VIPs, E(Ptn+)- E(Ptn)) of Pt9 and Pt13 

show different trends when temperature increases. The VIP of Pt13 changes relatively 

slowly, due to fact that the energies of Pt13 isomers are sparsely distributed. 

 

Figure 1.37 The ensemble-averaged vertical ionization potential of Pt9 (red) and Pt13 (blue), 

evaluated at different temperatures. 
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Chapter 2  

Global optimization of surface supported clusters 

Despite the simplicity of the gas phase cluster model, in most cases, it is not the most 

realistic model for industrial catalysis. Surface-supported transition metal cluster, as 

a type of heterogeneous catalysis system, is more attractive in modern industry. For 

example, oxide surface supported catalytic sub-nanometer platinum clusters have 

found wide application in industrial reactions involving (de-)hydrogenation of hydro-

carbons, such as naphtha reforming and alkane non-oxidative dehydrogenation [73–

79] Industrial catalysts correspond to low loading of Pt supported on alumina, with a 

corresponding particle size of 0.6 to 1.1 nm. [80] 

In general, the global optimization of the surface supported cluster system is more 

difficult than that of gas phase clusters. One of the reason is that the typical model 

system contains hundreds of atoms, including the surface slab. However, the surface 

atoms are often far less mobile than the cluster atoms during the relaxation process. 

They also have different symmetry properties (space group symmetries) from the 

cluster atoms. This heterogeneity feature makes it difficult to extend the fitting tech-

nique to surface supported clusters, for global optimization purpose. In contrast, the 

BH approach can be easily extend to heterogeneous systems. Therefore, in this chap-

ter, we will focus on the BH based global optimization approaches. 

2.1 Basin hopping approach 
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The traditional BH global optimization is based on the canonical Monte Carlo (MC) 

simulation, [9] where at each step the coordinates of the current structure are per-

turbed by a random distance (called perturbation), and the resultant structure is then 

geometrically optimized to a local minimum. The optimized structure can be either 

discarded or accepted, and the decision is based on the probability dependent on en-

ergy difference from the previously accepted structure and the temperature. The core 

step in BH approach is the perturbation. For heterogeneous systems, we can easily 

perturb only the cluster part, but keep surface atom fixed. 

2.2 Global optimization with hydrogen coverage 

In a typical computational study of catalytic clusters, after the shape of catalytic clus-

ters is identified by global optimization, the structures of global minimum and possi-

bly some other low-energy isomers can be selected as reference states, for studying 

active sites for various reactants and corresponding reaction pathways. [79,81–83] 

However, despite the relatively low computational cost, this scheme may not be reli-

able if the low-energy bare-cluster isomers do not appear to be the most active ones, 

or if a big shape change occurs upon the adsorption of reactants. In particular, this 

will be the case when the catalytic cluster itself is highly fluxional, or if adsorbates 

affect the cluster shape. [84,85] In this situation, the actual geometry change can only 

be tracked through a global optimization for the whole system, including the cluster, 

reactants and hydrogen coverage. This is a highly challenging task as the configura-

tion space is significantly larger than that for a routine global optimization. It also 

requires adapted algorithms to preserve the identity of the reactant adsorbate during 

global optimization. 
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In 2011, an early computational study by Sautet and coworkers presents a surface 

stability diagram for a Pt13 cluster supported on γ-Al2O3 indicating the H coverage as 

a function of H2 pressure and temperature. It shows that a high H coverage can be 

reached and that the cluster structure changes from biplanar to cuboctahedral geom-

etry when high hydrogen coverage is above 18, [84] where molecular dynamics (MD) 

simulations have been used to obtain the low-energy isomer of hydrogen adsorbed 

structure. It was followed in 2013 by a study of the C1 and C2 intermediates resulting 

from the dissociative adsorption of ethane on the supported Pt cluster, showing a 

strong influence of the nature of the intermediate on the equilibrium H coverage and 

on the cluster shape. [76] Very recently, using the similar MD approach Chizallet et 

al studied PtSn clusters supported on γ-Al2O3, at different hydrogen coverages. The 

study shows that both Pt/Sn ratio and number of hydrogens play an important role 

in cluster shape and properties. [85] In 2015, a computational study performed by 

Pacchioni et al indicates that, at high hydrogen coverage, hydrogen atoms can trans-

fer from Ru10 cluster to surface, where the support surfaces are anatase TiO2 and 

tetragonal ZrO2 (101) surfaces, but the complete global optimization was not used in 

the study. [86] Recently, Sun and Sautet proposed a modified genetic algorithm for 

global optimization of gas phase Pt13 cluster with high hydrogen coverage, which 

shows the importance of considering low-energy metastable cluster isomers in reac-

tions. [87] 

Here we present a method for global optimization of surface-supported Pt clusters 

under high hydrogen coverage, based on a modified BH scheme. In our approach for 

the global optimization of adsorbate covered supported cluster, we first improved the 
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initial structure generation algorithm based on bond length distribution by introduc-

ing constraints on the bonding element types. Then the core-shell separation is used 

in the perturbation step in BH method, to help keeping the integrity and reasonable-

ness of the perturbed structure. 

2.2.1 Initial structure generation 

The method of initial structure generation for starting BH global optimization is 

based on BLDA introduced in Section 1.2.5, which can successfully applied to adsorb-

ate-free Pt7 supported on α-alumina. In BLDA, the structure is constructed by each 

time adding one atom or fragment to the existing structure. The position of new atom 

is determined by selecting the distance between the new atom and one old atom from 

a normal distribution. In this work, in order to create the cluster structure with hy-

drogen coverage, we first add Pt atoms (core part), then add CH3 and H atoms (shell 

part) (Figure 2.1), because it is known that these adsorbates bind on the surface of Pt 

clusters and do not migrate inside the small Pt cluster. To further improve the initial 

guess, in this case, the ways Pt atoms and adsorbates are added are slightly different. 

The new Pt atom is required to be connected to at least two atoms already in the 

system (including existing Pt atoms and surface atoms), while the new CH3 fragment 

or H atom is required to be connected to at least one Pt atom in the cluster. Thus the 

H atoms can take both atop and bridge sites, or somewhere in-between. 
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Figure 2.1 Core-shell separation of Pt7H10CH3 structure supported on the α-Al2O3 (0001) 

surface slab model. 

2.2.2 Revised basin hopping approach 

Several issues arise when the traditional BH global optimization is applied to a sur-

face supported cluster under high coverage. Taking our testing system (Pt7H10CH3 on 

α-Al2O3) as an example, first of all, the perturbed Pt7H10CH3 structure can easily be-

come disconnected, if the default perturbation distance for Pt is of the same order of 

magnitude as the Pt-H bond length. Secondly, the CH3 fragment may lose integrity 

during the random perturbation. We also note that the α-Al2O3 surface atoms are not 

very mobile during the optimization. It is thus reasonable to not move any oxide sur-

face atoms during the perturbation. However, the perturbed Pt atoms may then be at 

a too short distance from the surface atoms, which would possibly introduce some 

difficulties in the SCF procedure in DFT calculation. 
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We have introduced a partial FF optimization to solve the short-distance problem, 

which is applied after the perturbation. The FF used in this work is the Lennard-

Jones (LJ) potential, given by the following formula: 
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Typically, the parameters ϵ and σ should be determined for each pair of atoms. How-

ever, in our perturbation procedure with core-shell separation, each time only atoms 

with one certain element type are allowed to move (first Pt, then C, and finally H), so 

the parameter ϵ only scales the energy, which is then scaled again by the optimization 

step length. Therefore, if we further assume that only one-type of pair-interaction 

(Pt-Pt, Pt-C, and Pt-H) dominates the energy in every perturbation phase, we can 

ignore the parameter ϵ (namely, setting ϵ	=	1). Note that here the propose of FF is to 

generate reasonable perturbed structures for further accurate quantum mechanics 

treatment, not for accurate energy evaluation, especially when the FF optimization 

is only partially converged. Therefore, we think that this rough approximation should 

be appropriate. The equilibrium separation σ is selected to be the sum of covalent 

radii of the pair of elements. 

The FF optimization is partial in the sense that it will terminate after no pair of 

atoms has a distance smaller than 0.7 times the sum of covalent radii, which means 

that this partial optimization will not lead the structure to a local minimum on the 

FF PES, but will only make it good enough for starting a DFT optimization. At very 
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short pair-distance, the force of the system is dominated by the pairwise nuclear re-

pulsion, which is classical and can be reasonably approximated by the LJ potential. 

Similar to some other BH implementations, we introduced the site swap operation 

(with a 25% occurrence rate) for CH3 fragment, before the actual perturbation. Dur-

ing this operation, the CH3 fragment is randomly swapped with a hydrogen atom, in 

order to moderately sample all possible CH3 binding sites. In addition, in order to 

keep the core-shell structure of the system, we perform the perturbation of atoms in 

core part and shell part separately. As a first step, each H/CH3 is labeled by the index 

of cluster atom to which it is bound. Then all cluster atoms are randomly perturbed, 

with a magnitude of distance equal to 0.4 times the covalent radius of the involved 

element (Pt, in our case). Then the cluster and surface parts are partially optimized 

using FF to make sure that no two cluster atoms are too close to each other (with the 

surface part kept fixed). After this, H/CH3 are moved by exactly the same distance 

and direction as the cluster atom they bind to. In the Pt cluster case, this process 

guarantees that the Pt-H and Pt-C bonds are unchanged after the perturbation of Pt 

atoms. Then we apply the perturbation on H/CH3 coordinates, with a magnitude of 

distance equal to 0.6 times the covalent radius of the elements (H or C). Here, the 

factor for the perturbation distance is larger for light elements, since light element 

atoms are in general more mobile than heavy cluster atoms. The partial FF optimi-

zation is then applied again, this time for the whole system (with the bare-cluster and 

surface parts kept fixed). Finally, we need to detect whether the structure becomes 

disconnected after the perturbation. If any atom or fragment is separated from the 
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main structure, it will be added back using the initial structure generation algorithm 

discussed above.  

Figure 2.2 provides a detailed explanation of this procedure, using a local minima 

structure as the starting structure, as an example. In this figure, isomer B1 (see Sec-

tion 2.4) (a) is selected as a starting structure. First, we will make perturbation on Pt 

atoms, so all CH3/H atoms are removed, but their relative position to nearest Pt atom 

is recorded. The bare Pt cluster is shown in (b). After making perturbation on Pt at-

oms (like the procedure in any traditional Monte Carlo algorithm), the structure is 

shown in (c). Now it is likely that some Pt atoms become too close to each other. So a 

partial FF optimization is applied to (c), giving structure (d). Note that during the FF 

optimization the surface atoms are all kept fixed. Then we add back CH3 (represented 

as a single C atom in the figure, since C-H bond length will not be perturbed), accord-

ing to previously recorded relative position, giving structure (e). Making movement 

on CH3 gives structure (f). Now we add back all H atoms according to their relative 

position to nearest Pt, and then make perturbation on H atoms (not including H at-

oms in CH3), the resulting structure is shown in (g). Note that the perturbation step 

length for H is slightly larger than that for Pt, so we can see that some H atoms go 

far away from the cluster and some H atoms become too close to Pt. Now we first 

detect all H atoms that are not connected to the cluster, and remove them. For the 

remaining H atoms, a partial FF optimization is applied (with all surface atoms and 

Pt atoms kept fixed), which gives structure (h). Finally, the removed unconnected H 

atoms are added back using our structure generation (sub-) algorithm. The structure 

after perturbation is shown in (i). 
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Note that the structure generation algorithm that we have used in this work creates 

a new structure by every time adding one atom (or molecule). So this sub-algorithm 

for adding one atom to a given structure perfectly fits the need here. Because of this 

last step, when a H atom goes away from its original position and then added back to 

a new position, its binding site is automatically swapped. In more general case, the 

site swap operation can also happen for CH3, with a small occurrence rate (25%). This 

procedure is implemented between (a) and (b) in Figure 2.2. The site swap is imple-

mented by first remove one or two CH3/H fragments, then add them back to random 

new sites, according to the procedure defined in the structure generation algorithm 

(see Figure 1.9), by randomly selecting a Pt atom, a Pt-H or Pt-C distance from nor-

mal distribution, and a direction from the sphere around that Pt. The algorithm does 

not distinguish atop and bridge sites internally, but mathematically the sphere 

around all Pt atoms will cover all possible atop, bridge and hollow sites, and some-

where between them. The local minima structures found using this algorithm also 

show that we have a good sampling on different binding site types. In our algorithm, 

multiple adsorbates are allowed to bind to the same Pt atom, and the coordination 

number of a certain H will not have influence on whether this Pt will be selected for 

binding new adsorbates. However, the collision detection procedure will be applied 

every time an atom is added to the existing structure, so when the coordination num-

ber of a certain Pt is very high, it is unlikely that the new structure will pass the 

collision detection procedure, and another Pt (possibly with lower coordination num-

ber) will be selected for binding adsorbates. 
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Figure 2.2 The perturbation procedure with core-shell separation, starting from a relaxed 

structure. 

2.2.3 Binding site sampling 

Due to the large number of atoms in the system under consideration (Pt7H10CH3) and 

high mobility of hydrogen atoms compared with the cluster core, or pure Pt cluster 

systems, we note that in practice the above BH process may actually miss the true 

global minimum or some important low-energy local minima, if only thousands of 

structures are optimized and sampled. Instead, it is much easier for the BH to find 

the low-energy core part (whose composition is Pt7 in our test system). Upon the op-

timized core part, the H/CH3 adsorbates can occupy different binding sites, producing 

a large number of configurations. Therefore, it would be possible to get better global 

minimum candidates by keeping some Pt core parts found by BH and sampling more 

binding sites for H/CH3. 

In our approach, a random binding site sampling is performed for several low-energy 

isomers obtained from BH optimization. For each isomer, we randomly change the 
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binding site of the CH3 fragment, and/or several H atoms, to generate new structures. 

These new structures are then optimized to nearest local minima to see if they can 

give new lower-energy isomers. 

2.3 Application on α-alumina supported Pt7 cluster 

A parallel version of BH method has been implemented and used to find low-energy 

local minima for α-alumina supported Pt7 cluster. The sampled statistical ensemble 

is kept at the temperature of 1,500 K, to ensure a big chance to cross the barrier. The 

BH algorithm has been implemented for both detailed balanced version and non-de-

tailed-balanced version, where the latter is used in this work. In the non-detailed-

balanced version, the detailed balance principle is violated, but this will enable the 

algorithm to reach the global minimum more rapidly. The initial structures, which 

are generated using second-type BLDA, can be very close to the equilibrium structure, 

thus improving the ergodicity at low-energy region, which is especially important 

when the total number of moves is reduced to achieve better parallel scalability. In 

this work, 10 parallel Monte Carlo walkers are used, with each performing 200 moves. 

At one move only the cluster part of the system will be perturbed. After each move 

VASP is invoked as an external program to perform local optimization using the non-

linear CG numeric algorithm, which is a step bringing the structure to its closest local 

minima. The alumina surface support is modeled as a 3 × 3 unit cell slab model, with 

lattice constants a = 4.807 Å and c = 13.117 Å. 

Figure 2.3 shows low-energy isomers found using BH approach. In this figure, first, 

we included 20 isomers with energy lower than 0.6 eV relative to global minimum 



 
77 

(GM) found using the BH approach. Second, some intermediates found along the op-

timized paths, which are necessary to build the isomerization graph, are included (see 

Chapter 4 for details). 

 

Figure 2.3 The low-energy isomers for Pt7 cluster supported on Al2O3. 

2.4 Application on Pt7 cluster with hydrogen coverage 

The Pt7H10CH3 on α-Al2O3 serves as a testing system for the revised BH approach for 

hydrogen coverage. The Pt7 size is both realistic for a sub-nanometer size cluster and 
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its global optimization with 11 adsorbates is computationally feasible. An initial cov-

erage of 9 H is selected, since this corresponds to 1.3 H per Pt, a realistic coverage at 

typical temperature (800 K) and H2 pressure (1-10 bar) used in catalytic reforming 

reactions.[76] Methane is used as a model alkane and a first intermediate for its de-

hydrogenation (H+CH3) is added to the hydrogenated cluster, hence providing the 

Pt7H10CH3 formula. 

The DFT calculation is performed using Vienna Ab initio Simulation Package (VASP) 

5.4.4, [47] with the Projector Augmented-Wave (PAW) method [67] and the Perdew-

Burke-Ernzerhof (PBE) functional. [50] The 4 × 4 slab model for α-Al2O3 (0001) with 

lattice constants a = 4.807 Å and c = 13.117 Å is used. After adding cluster part, the 

vacuum gap along direction normal to the surface is at least 15 Å. To reduce the com-

putational cost, the thickness of slab model is c/2. The lower half of the surface model 

is fixed during geometry optimization, and only Γ point is sampled in k-space. dDSC 

vdw correction [88,89] is used in the geometry relaxation step of the global optimiza-

tion. The kinetic energy cutoff is set to be 500 eV for final results. 

The global optimization of Pt7H10CH3 deposited on α-Al2O3 surface was performed by 

10 parallel BH walkers, with each walker moving 300 steps. After the BH optimiza-

tion, more than 1,800 additional geometry optimization were performed for binding 

site sampling. In total, 1,124 geometrically unique local minima were found for the 

system, spanning an energy range of 3.0 eV. The energy distribution of all found local 

minima is shown in Figure 2.4(a). There are 58 local minima in the low-energy range 

(up to 0.4 eV above the energy of putative global minimum (GM)). In our previous 

study, we found that, for the bare Pt7 cluster deposited on α-Al2O3, there are only 11 
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unique local minima within the 0.4 eV energy range. The reason for the increase in 

number of low-energy isomers appears to be the geometric variety of the adsorbed 

H/CH3. In fact, many of the Pt7H10CH3 structures share the same Pt7 core shape. The 

58 local minima can be classified into 6 categories (labeled by A, B, C, D, E and F), 

according to their Pt7 core geometries, as shown in Figure 2.4(b) and Figure 2.5. In 

the two figures, different colors and letters (A to F) correspond to different Pt7 core 

structures. Table 2.1 lists the number of structures in each core shape category. We 

can see that none of these core shapes dominates the low-energy region. 

 

Figure 2.4 (a) Energy distribution of geometrically unique local minima of Pt7H10CH3 clus-

ters with respect to the putative global minimum, found by global optimization. The shaded 

gray area is expanded in part (b). (b) Energy spectrum of low-energy isomers within the en-

ergy range of 0 to 0.4 eV with respect to the energy of the putative global minimum (isomer 

A1). 

Table 2.1 Number of different isomer structures for each Pt7 core shape within the energy 

range of 0 to 0.4 eV with respect to the energy of the putative GM (isomer A1). 

Pt7 core shape A B C D E F 
Number of structures 10 16 9 13 6 4 
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Figure 2.5 shows the lowest-energy structures in each Pt7 core categories. In this fig-

ure, Energy (∆E, in eV) is relative to the energy of putative GM (isomer A1). Charge 

(∆Q) is the sum of Bader charge in the atoms of the cluster part (Pt7H10CH3). It is 

worth noting that the Pt7 core structures in Pt7H10CH3 have very low similarity to 

those of bare Pt7, which implies that the adsorption of H/CH3 has a significant influ-

ence on the geometry of the Pt7 cluster. In particular, structures B1, C1 and D1 have 

a singled out Pt atom, coordinating with only one other Pt atom. However, this kind 

of structure is not stable in the absence of adsorbates (does not appear in low-energy 

region). Obviously, the change of geometry has to be related to the number of H atoms 

adsorbed, since less compact Pt7 core structure should allow better Pt-H interactions. 

The low similarity in bare and adsorbed Pt7 clusters indicates that taking bare Pt7 

structures as reference states to help exploring the PES of adsorbed clusters is incor-

rect, as it misses some important local minima and core shapes. 
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Figure 2.5 Isomer structures of each Pt7 core shape (A to F) with lowest-energy for the alu-

mina-supported Pt7H10CH3 cluster found by global optimization. 

Figure 2.6 shows the occurrence probability of all core shapes at different tempera-

ture, based on electronic energies (vibrational entropy contribution to the probability 

has been ignored, as an approximation), and Boltzmann statistics. Constructing such 

“hot” phase diagrams for catalytic systems, in order to elucidate the structures that 

emerge within the state of the catalyst at temperatures of interest and remove the 

focus on the GM alone, has been introduced by Zhang, Hermans, and Alexandrova. 

[90] It is necessary because often, higher energy structures in the ensemble are re-

sponsible for the catalysis. [78,79,87,91–94] Since many structures are close in energy 

in the studied case, many of them would be populated and constitute the state of the 

catalytic system at finite temperatures. Below 200 K, the ensemble primarily consists 

of the structures of type A, with negligible contributions from other structures. As the 

temperature increases the probability of other core types increases. In particular, in 
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the window of 700-900 K, typical for Pt-catalyzed dehydrogenation reactions, isomers 

of the types A-E contribute on the nearly equal footing. In each type of Pt core struc-

ture, several isomers are present due to different positions of H atoms. Any or all of 

these isomers could be relevant for the catalytic mechanism.  

 

Figure 2.6 Occurrence probability of Pt7 core shapes (A to F) for Pt7H10CH3 on alumina at 

different temperature, based on Boltzmann distribution of electronic energies. 

Since the Pt7 core shapes A and B are among the dominant, and also have slightly 

larger number of accessible local minima, we focus on these two categories for the 

analysis of H binding sites. Figure 2.7 and Figure 2.8 show the geometries and 

charges of some of the low-energy isomers belonging to the Pt7 shapes A and B. In the 

two figures, energy (∆E, in eV) is relative to the energy of putative GM (isomer A1). 

Charge (∆Q) is the sum of Bader charge in atoms of cluster part (Pt7H10CH3). In every 

structure, H atoms occupy bridge and atop sites, while CH3 is always on an atop site 

(with one exception being B3). In some structures, such as the putative GM A1, and 

B4, there are several H atoms binding to the CH3 binding site, and this can be an 
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initial structure for the recombination and desorption of CH4. On the other hand, in 

some other local minima, such as A5 and B1, there are no adjacent H atoms near CH3. 

How these local minima can participate in CH4 formation reaction, or inversely, be 

produced in the course of CH4 binding and dissociation, is then related to the H atom 

mobility in this system, which will be covered in future part of this work. 

Calculated Bader charges on atoms in the cluster are shown in Table 2.2 and Table 

2.3. In the two tables, charge Q(cluster) is the sum of the charge in all atoms of cluster 

part (Pt7H10CH3). In general, the charge transfer between the oxide surface and the 

cluster is small, with the cluster receiving ca. 0.2 electrons. In addition, the charge 

transfer between H/CH3 adsorbates and Pt7 is not significant, in most cases, indica-

tive of covalent Pt-H and Pt-C bonding in the system, which is expected. One excep-

tion is the local minimum D1, where the summed charge on all ten H atoms is signif-

icant (-0.48). This is explained by the H atom in the unique hollow site on the face of 

a 3-Pt triangle (as shown in Figure 2.5). The H atom in the hollow site has a charge 

of -0.19, which is very different from the charges of the H atoms occupying the atop 

or bridge sites. 
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Figure 2.7 Low-energy structures of the Pt7 core type A, of Pt7H10CH3 clusters found by 

global optimization. 

 

Figure 2.8 Low-energy structures of the Pt7 core shape type B, of Pt7H10CH3 clusters found 

by global optimization. 
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Table 2.2 Bader charges on different parts of cluster for isomers of shape A-F with lowest 

energy. 

isomer Q(CH3) Q(H10) Q(Pt7) Q(cluster) isomer Q(CH3) Q(H10) Q(Pt7) Q(cluster) 
A1 -0.08 -0.05 -0.09 -0.21 D1 -0.02 -0.48 +0.21 -0.29 
B1 -0.06 -0.10 -0.05 -0.20 E1 -0.02 -0.25 +0.07 -0.20 
C1 -0.07 -0.05 -0.10 -0.22 F1 -0.09 -0.17 0.00 -0.26 

Table 2.3 Bader charges on different parts of cluster for some typical low-energy isomers of 

shape A and B. 

isomer Q(CH3) Q(H10) Q(Pt7) Q(cluster) isomer Q(CH3) Q(H10) Q(Pt7) Q(cluster) 
A1 -0.08 -0.05 -0.09 -0.21 B1 -0.06 -0.10 -0.05 -0.20 
A2 -0.03 -0.11 -0.08 -0.22 B2 -0.10 +0.20 -0.21 -0.11 
A3 -0.03 -0.13 -0.07 -0.23 B3 -0.05 -0.08 -0.02 -0.15 
A4 -0.04 -0.10 -0.09 -0.23 B4 -0.07 -0.12 -0.09 -0.28 
A5 -0.07 +0.01 -0.18 -0.24 B5 -0.07 -0.11 -0.05 -0.23 
A6 -0.09 -0.26 +0.02 -0.33 B6 -0.04 -0.01 -0.08 -0.13 
A7 -0.10 0.00 -0.14 -0.24 B7 -0.07 -0.03 -0.10 -0.20 

     B8 -0.07 -0.02 -0.13 -0.22 

Born-Oppenheimer (DFT) MD simulations in the NVT ensemble at 700 K, have been 

performed on selected isomers to further study the fluxionality of the cluster struc-

ture. Note that, within the necessarily limited amount of sampling and lack of rare-

event sampling techniques, MD is a method that would never recover the isomeric 

diversity clearly accessible to the system, as it would sample only a rather local con-

figuration environment. MD is used in this work to qualitatively and visually assess 

the relative motilities of atoms in the system. Figure 2.9 and Figure 2.10 are based 

on the MD trajectory starting from isomer A1, and Figure 2.11 and Figure 2.12 are 

based on the MD trajectory starting from isomer B1. In Figure 2.9 and Figure 2.11, 

darker color means higher probability for the atom taking certain XY position. The 

darkness scales for (b) and (c) are different. Each simulation lasts 10 ps, with the 1 

fs time step. The first 1 ps of equilibration is not used for analysis. 
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We found that H atoms can be highly mobile at this temperature, while the Pt atoms 

are rather fixed at their positions. The relocated H atoms are outlined in Figure 2.10 

and Figure 2.12. In both trajectories, some H atoms (circled in Figure 2.10 and Figure 

2.12) can change from bridge site to atop site, or the reverse. The XY position of H 

atoms along the trajectories (shown in Figure 2.9 and Figure 2.11) spans a much 

larger area than that of Pt atoms, meaning that the H atoms are able to explore ad-

jacent sites during this relative short simulation time. 

 

Figure 2.9 The probability of occurrence in XY plane of (b) Pt atoms and (c) adsorbed H 

atoms, during the MD trajectory starting from the isomer A1 (shown as a stationary structure 

in (a)). 

 

Figure 2.10 Cluster structure at simulation time t = (b) 5.0 ps and (c) 9.7 ps, during the MD 

trajectory starting from the isomer A1 (shown in (a)). 
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Figure 2.11 The probability of occurrence in XY plane of (b) Pt atoms and (c) adsorbed H 

atoms, during the MD trajectory starting from the isomer B1 (shown in (a)). 

 

Figure 2.12 Cluster structure at simulation time t = (b) 3.0 ps and (c) 8.0 ps, during the MD 

trajectory starting from isomer B1 (shown in (a)). 

To further examine the mobility of H atoms, we calculated Mean Square Displace-

ment (MSD) averaged over the Pt and H atoms (Figure 2.13). The MSD of the H atoms 

shows very different patterns for the trajectory starting from A1, comparing with that 

from B1, which is mainly due to the different PES property near isomers A1 and B1. 

As can be seen from Figure 2.9, for the trajectory starting from A1, the XY projections 

of different H atoms do not overlap. Therefore, the H atoms are mostly transiting 

between the bridge and the nearest atop sites but do not interchange or shift any 
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further. For the trajectory starting from B1, some irreversible change of the H bind-

ing site takes place. As a result, the structures shown in Figure 2.12 are quite differ-

ent from each other. Hence, the MSD along the trajectory becomes very large at later 

simulation times. Nevertheless, in both cases we can see that the MSD averaged over 

all H atoms is significantly larger than that averaged over all Pt atoms. Therefore, 

we conclude that H atoms rearrange much more easily than Pt atoms in this system. 

 

Figure 2.13 The MSD averaged over Pt (green) and H (purple) atoms, as a function of simu-

lation time, calculated on MD trajectory at 700K starting from isomer (a) A1 and (b) B1. 
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Chapter 3  

Structure similarity measurement 

Since metal clusters can have very irregular shapes, automatic and accurate similar-

ity measurement of cluster geometries is important for large scale global optimization. 

As explained in Section 1.4.4, structure similarity measurement can be utilized in 

multiple stages of the global optimization approach. In particular, it can be useful in 

filtering initial structures and detecting duplicates in relaxed isomers. The number 

of duplicates of low-energy isomers can also be used as an indicator of the convergence 

of global search. 

3.1 Gas phase cluster case 

The simplest way is comparing two structures based on their DFT energies.[3] Since 

energy is not available for initial structures, and for some large-size clusters different 

structures may have very close energies, this approach is not always applicable. An-

other approach is based on the difference of sorted atom-atom adjacency matrices,[95] 

or similarly, integrals over the distribution of atomic distances and angles.[71] This 

relatively simple method has been used in AFFCK. However, we will show that this 

approach is not exact for gas phase clusters. Other approaches use some fingerprint 

functions or descriptors, such as spherical harmonics, [96] spherically averaged scat-

tering intensity [97] and experimental elemental or molecular properties. The effec-

tiveness of fingerprint approaches will largely depend on the selected functions, and 
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may not be equally applicable to all cases. In particular, elemental and molecular 

properties are not generally applicable or available for metal clusters. Therefore, 

there is a need to develop a simple, reliable and non-energy-dependent structure sim-

ilarity measurement method. In this section, we will propose a new method based on 

atomic matching, implemented using depth-first search. 

3.1.1 Sorted interatomic distances 

The structure similarity measurement method used in AFFCK is based on the sorted 

list Di of all interatomic distances for the structure configuration. In this approach, 

two structures will be considered similar if 

∑ �𝐷$(𝑘) − 𝐷)(𝑘)�`

∑ 𝐷$(𝑘)`
< 𝑑RNb, and	

max
`
1�𝐷$(𝑘) − 𝐷)(𝑘)�3 < 𝑑�P�	

are satisfied simultaneously, where i and j denote the two structures to be checked, 

k runs over the interatomic distances, drel and dmax are two thresholds for accumu-

lated relative difference for all interatomic distances and maximum difference of in-

dividual distances, respectively. The selected values of parameter drel and dmax are 

different during different steps of AFFCK, see Section 1.6.1 for detailed numbers. 

However, we note that two different structures can have exactly the same atomic 

distance distribution, or equivalently, the same sorted adjacency matrices, as illus-

trated in Figure 3.1, and this is also true for the angle distribution, especially when 

many distances or angles in the cluster are identical. In Figure 3.1, we can see that 

when the distances are matched, the corresponding atoms cannot be matched at the 
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same time. In this particular case, for planar quadrilateral the three “1.0” distances 

connect atoms 1,2,3 and 4. But for triangular pyramid the three “1.0” distances con-

nect atoms 1,2 and 3. Therefore, the requirement of a one-to-one atomic matching can 

be used to distinguish the two structures. 

 

Figure 3.1 An example of two different structures with the same interatomic distance dis-

tribution. 

3.1.2 Atomic matching based on depth-first search 

The example shown in Figure 3.1 indicates that, in order to distinguish two isomers 

with exactly the same interatomic distance distributions, we need to also find a one-

to-one atomic matching. Based on a best atomic matching, the corresponding intera-

tomic distances can be compared between two structures. If any of the matched pairs 

of two interatomic distances have a difference larger than a threshold value, then we 

can assert that the two structures are different. We note that the interatomic dis-

tances based method cannot distinguish structures that are mirror images of each 

other. However, the mirror images also have the same energy at the DFT level, thus 

are unnecessary to be separated. 
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Now the problem is how to find the best atomic matching between two structures. A 

direct way is to enumerate all possible sequences of atom indices for one structure 

and match them to the sequence of the other. Since there are numerous permutations 

of atom indices for clusters composed of ten or more atoms, this is computationally 

too expensive. However, given that the threshold value d for confirming similarity is 

small, the comparison can be performed when an incomplete atomic matching is 

available. If the maximum difference of matched interatomic distances based on the 

given atomic matching fragment is larger than the threshold, then all atomic match-

ing with that fragment will definitely fail. Using this rule, only a small portion of 

permutation space is needed to be checked. In practice, we use the Depth-First Search 

(DFS) [98] algorithm to enumerate the sequences of atoms for one structure, and 

match each sequence to the ordered atomic sequence of the other structure. Only at-

oms of the same element will be matched. Whenever a new testing atomic matching 

fragment is formed, the corresponding difference of matched interatomic distances is 

checked against the threshold value. If the difference is larger than the threshold 

value, all sequences involving the current fragment will be excluded from the search-

ing space. Otherwise, we may find one atomic matching, based on which all differ-

ences of matched interatomic distances are smaller than the threshold value. In this 

case, we assert that the two structures are similar. If no such kind of atomic matching 

can be found, we claim that the current structure is unique. Based on our testing, 

using this approach on a single CPU core, thousands of structure comparisons for Pt13 

can be accomplished within seconds. We denote this new, fast and deterministic 

structure comparison method the Atomic Matching Depth-First Search (AM-DFS) 

method. 
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3.2 Surface supported cluster case 

For surface supported clusters, the cluster coordinates no long have rotational sym-

metry. As a result, method based on interatomic distances cannot be efficiently ap-

plied to the surface supported cluster case. Instead, space group symmetry of the sur-

face atom coordinates can play an important role in cluster similarity measurement. 

3.2.1 Mean distance between clusters 

We define the difference between the geometry of two isomers i, j as 

Δ$) =
1
𝑛 min
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min
��∈��
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≡ min
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where n is the number of atoms in the cluster (for Pt7, n = 7), G(surf) is the subgroup 

of the space group of the support material (for example, Al2O3), including only those 

symmetric transforms, namely, 𝑆�, that keep z coordinates invariant, Pn is the set of 

all permutations 𝑃� of a sequence 1,2, …, n, xjk is the x, y, z coordinates (as a vector) 

of the kth atom in isomer j, and ‖⋅‖ denotes the 2-norm of a vector, which is also the 

Euclidean length of the vector. The geometric difference ∆ij defined above is a meas-

urement of linear Euclidean distance between two isomers based on optimal sym-

metry transformations, which is also known as mean distance (MD) between the two 

isomers. 

3.2.2 Bipartite model for atomic matching 
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If the structural difference ∆ij is directly evaluated using by its defining formula, the 

time complexity will be O(n!), which is non-polynomial. We propose to evaluate this 

using an efficient matching algorithm in graph theory, called Kuhn-Munkres (KM) 

algorithm (also known as Hungarian algorithm),[99,100] which has been widely ap-

plied and adapted to similarity measurement and alignment problem of gas phase 

clusters.[101–105] There are two major differences between the KM algorithm imple-

mentation adapted for this work and previous gas-phase-focused applications: (i) the 

MD ∆ij is minimized over symmetry operations related the space group of the support 

material, as shown in our definition; (ii) in the application of finding Minimal Energy 

Pathway (MEP) (see Chapter 4), not only the optimal, but also sub-optimal atomic 

matches are used for optimization. 

A weighted bipartite can be denoted as B = (X, Y, E, W), where X and Y are two vertex 

sets satisfying that |X| = |Y| = n, 𝐸 ⊆ 𝑋 × 𝑌 is edge set (in this work we always have 

𝐸 = 𝑋 × 𝑌), and 𝑊:𝐸 → 	ℝ defines weights of all edges. A matching M is a subset of 

edges no two of which share a common vertex. A matching M is best if |M| = n and 

the sum of weights of edges in M is minimal. The bipartite model for solving cluster 

atomic matching is demonstrated in Figure 3.2. 

Kuhn-Munkres algorithm finds the best solutions for bipartite matching with O(n3) 

time complexity. This means that the value of min
��∈��

∑ �1𝑆�𝑃�𝒙$3
`
− 𝒙`

)�¢
`£"  and the 

corresponding 𝑃� can be evaluated in polynomial time. 
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Figure 3.2 We model the atoms in two isomers as vertices in two sub-graphs (X and Y) in 

the bipartite graph, and the weights of edges are defined by the Euclidean distances between 

each of all possible pairs of the atoms. 
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Chapter 4  

Isomerization graph construction 

Using global optimization algorithms, discussed in previous chapters, combined with 

DFT, the PES of catalytic cluster systems can be explored, from which the geometric 

and electronic structures of some of the low-energy isomers can be identified and 

studied. However, many important finite-temperature effects, such as cluster isom-

erization process,[81,91] cannot be derived simply from the static (thermodynamic) 

isomer representation (see Section 1.5). The kinetics of cluster isomerization is an-

other important component contributing to the accessible system dynamics. But find-

ing efficient computational methods to study these dynamic effects remains a chal-

lenge. 

In this chapter we use as example the Pt clusters deposited on α-alumina, of interest 

to catalytic dehydrogenation. A particularly interesting cluster size regime is around 

seven or eight Pt atoms, where special catalytic activity was observed.[79,92,106] In 

catalytic dehydrogenation of ethylene, for example, Pt7 on α-Al2O3 showed a special 

activity.[79] Clusters of this size have a significant number of isomers, the number of 

which grows exponentially as the number of atoms increases. But only a few of these 

isomers are low enough in energy to be thermally accessible at temperatures of dehy-

drogenation (400-600 K).[79] And a comprehensive view of the isomerization process 

will help us understand cluster fluxional behavior, which is believed to play an im-

portant role in catalysis.[107,108] 
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Recently, some novel computational methods have been developed for investigating 

the isomerization process of molecules and clusters. Anharmonic downward distor-

tion following (ADDF)[81,109] and reactive global optimization (RGO)[110] are low-

frequency modes searching based methods, which have been successfully applied to 

gas phase systems and heterogeneous system, where for the latter case the surface is 

approximately represented by point charges.[110] However, it is known that the sur-

face can form directional and strong bonds to the atoms of the cluster, and thus 

greatly impact the cluster geometry, electronic structure, and stability. Hence, both 

the surface and the cluster need to be represented accurately. In this case, the exist-

ing methods become inefficient, since they cannot be applied to large systems, partic-

ularly because of the computational expense of the vibrational frequency calculations 

(based on finite difference algorithm). An alternative is a two-step scheme, where the 

low-energy isomers are first obtained from global optimization, and then the transi-

tion paths between each pair of these isomers can be calculated, for example using 

the nudged elastic band (NEB) method.[111] Since NEB calculations are completely 

uncoupled, the scheme can be highly parallelized. This is the basic computational 

framework used in this chapter. 

4.1 Atomic matching dependence of pathway optimization 

However, there is one major problem for studying a cluster like Pt7, or any other 

system that consists of many atoms of the same element. For a given pair of two 

different isomers, determination of an initial “guessed” path as the starting point of 

NEB will no longer be trivial. To determine an initial path, a matching (hereafter 

“atomic matching”) between atoms of the two isomers (namely, a map from the atomic 
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indices of isomer A to the atomic indices of isomer B) has to be established. Then, the 

coordinates of intermediate structures along the path can be calculated by linear in-

terpolation between coordinates of every pair of matched atoms. If the atomic match-

ing is not optimal, the minimal energy path (MEP)[112] given by converged NEB 

generally will not be optimal either. For example, in Figure 1 we show two possible 

paths that connect the isomers #19 and #11 that resulted from a global optimization 

run. In this figure, the atoms that move significantly during isomerization are labeled 

as 1 and 2 in the isomer #19. Along the upper pathway (green dashed lines), atom 1 

goes towards center. Along the lower pathway (red solid lines), atom 1 goes away from 

center. It turns out that the second pathway has a much lower barrier height. Black 

circles, red dots, and brown dots represent Pt, O, and Al atoms, respectively. For every 

pair of Pt7 isomers, the number of possible atomic matches is 7! = 5040. Obviously, it 

is computationally unaffordable to traverse all these possible matches to find the op-

timal isomerization path. (Note that here we do not consider the matching of surface 

atoms. We assume that the displacement relative to their individual equilibrium po-

sitions is small for surface atoms, so that surface atoms will directly match to the 

closest surface atoms in the other isomer.) 
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Figure 4.1 The two pathways of isomerization from the isomer #19 to the isomer #11 (nu-

meration comes from the global optimization, starting from the global minimum as isomer 

#1), with different atom matching schemes. 

4.2 Extended Kuhn-Munkres algorithm 

One possible solution is performing NEB calculations only for “promising” atomic 

matching. The good atomic matching can be found (as a side product) using the mean 

distance ∆ij between two isomers defined in Section 3.2.1. We further assume that if 

the MEP between two isomers is a direct path (without any intermediates), the ge-

ometry of the two isomers must be similar enough. This assumption is based on the 

following argument. The actual distance measured along MEP (MEP distance) is at 

least as long as the linear distance defined in Eq. (1). Therefore, the MEP distance is 

generally long for isomers with large ∆ij. Under this case, either there will be more 
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likely some intermediates along the MEP, or the energy barrier of a direct transition 

will possibly be high. Then it is reasonable to consider only k permutations 𝑃�  of 

atomic indices, which gives k minimal Δ$)1𝑃�3, where k is a small constant. Kuhn-

Munkres algorithm (extended for finding k best solutions) for bipartite matching has 

O(kn3) time complexity (k is set to 4 in this work). 

4.3 Isomerization graph for α-alumina supported Pt7 cluster 

The 30 low-energy local minima (considered as isomers) shown in Figure 2.3 for Pt7 

cluster supported on Al2O3 have been used for isomerization study. In order to study 

the cluster isomerization at the temperature that is typical for catalysis (about 700 

K), we consider isomers with energy less than 0.6 eV. Using similarity measurement 

defined in Section 3.2.1, we can now calculate pathway between pairs of isomers with 

Δij lower than a threshold (in this work, 1.5 Å) by NEB optimization. For each pair, if 

there are multiple 𝑃� satisfying Δ$)1𝑃�3 < 1.5	Å, at most four different 𝑃� that give rela-

tively lower Δ$)1𝑃�3 will be used. Some additional higher-energy isomers are found to 

be intermediates along the transition paths between these low-energy isomers, and 

they are also included in Figure 2.3. 

A 15 Angstrom vacuum gap along surface z axis has been added to avoid image inter-

actions. The energy cutoff of basis set expansion is set to 400 eV. The dipole correction 

is enabled for NEB and frequency (finite difference method) calculations. For path 

optimization, 5 images are used between a pair of isomers. The normal NEB is per-

formed first. Then for those converged paths without any intermediates, climbing-
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image NEB (CI-NEB) is used to find the transition state geometry and the corre-

sponding transition state energy. If the path contains intermediates, the isomers cor-

responding to the intermediates are identified. Eventually the path between any two 

isomers can be decomposed to one or multiple direct paths. We found 48 such direct 

paths which are listed in Table 4.1. Among these paths, 29 direct paths are part of 

minimal energy paths, which are shown in Figure 4.2. 

Based on NEB optimized MEP, an isomerization graph (Figure 4.3) can be con-

structed. Isomers are represented as vertices. If the optimized path contains no in-

termediates (a direct path), it corresponds to an edge in the graph; otherwise, it cor-

responds to a path in the graph. When only edges in MEP are retained in the graph, 

the graph becomes a minimum spanning tree (MST, a general tree is a connected n-

vertex graph with n – 1 edges) shown in Figure 4.2. In Figure 4.2 and Figure 4.3, 

isomers, transition paths, isomer energies and transition barrier energies are denoted 

as circles, arrows (edges), numbers in bracket and numbers on arrows, respectively. 

Isomers are labeled from 1(lowest energy, GM) to 30 (highest energy). In MST, there 

is a unique path between any two isomers, which represents the MEP between the 

two isomers. The rough boundaries of the region I and region II (discussed in text) 

are labeled in red and green, respectively. The energy and geometry of transition 

states in direct paths are shown in Supporting Information Figure 4.4. In Figure 4.4, 

the two numbers in bracket indicate the index (in Figure 2.3) of the two isomers con-

nected by the direct path. The energies are relative to the global minimum energy. 

An alternative way to visualize the connection between isomers is the disconnectivity 

graph [113] shown in Figure 4.5. In this figure, isomers that are considered within 
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region I and region II in 700 K are labeled as red and green, respectively. The energy 

(relative to global minimum) scale are shown as the vertical bar to the right. 

 

Figure 4.2 The minimal energy paths (MEPs) in the minimum spanning tree (MST) derived 

from isomerization graph (Figure 4.3). 
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Figure 4.3 The Pt7 on Al2O3 isomerization graph, including all direct NEB paths between 

low-energy isomers, shown as 48 edges in the graph. 
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Figure 4.4 The energy and geometry of transition states in direct paths between Pt7 cluster 

supported on Al2O3 isomers considered in this work. 
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Figure 4.5 The disconnectivity graph of Al2O3 supported Pt7 cluster isomers, showing con-

nectivity between low-energy isomers. 

For every direct path, according to harmonic transition state theory (HTST) the rate 

constant for isomer transition is estimated to be [111] 

𝑘±²³² =
∏ 𝑣$QXQKno
$

∏ 𝑣$²³no9"
$

e9
gµ¶9g·¸·¹

`º»  

where N is the total number of atoms, including cluster atoms and upper half of the 

surface atoms (which are not fixed during the relaxation, N = 7 (cluster) + 135 (sur-

face) = 142 in this work). viinit and viTS are frequencies of the vibrational normal modes 
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at the initial state and transition state, respectively. Einit and ETS are energies of the 

two states, respectively. The rate constants are evaluated at 450 K and 700 K and 

listed in Table 4.1. In this table, the columns are index of the initial isomer, index of 

the final isomer, energy of initial isomer, energy of final isomer, energy of transition 

state, barrier height, rate constant at 450 K, rate constant at 700 K, and notes re-

spectively. The notes indicate whether it is a transition inside one region (“Region I” 

or “Region II”), or a transition at region boundary (RB) (“RB I” or “RB II”), or other 

types (empty). Note that this table includes not only the transition shown in MST 

(Figure 4.2), but also other direct paths in the original isomerization graph (Figure 

4.3). The extra paths are not part of MEP, and their barrier energies and rate con-

stants can be high. 

We note that in HTST harmonic approximation of the PES has been made in the 

vicinity of isomers and transition states. This makes HTST suitable for probing finite 

temperature effects, which are not included in simple local minima representation of 

the PES. 

Table 4.1 The barrier heights and HTST rate constants of all direct paths between isomers 

in Figure 2.3. 

#init 
#fi-

nal 
Einit 
(eV) 

Efinal 
(eV) 

ETS 
(eV) 

barrier 
(eV) k450K (1/s) k700K (1/s) Notes 

5 2 0.2688 0.0727 0.4793 0.2105 5.65×1010 3.93×1011 Region II 
2 5 0.0727 0.2688 0.4793 0.4066 1.84×109 7.80×1010 Region II 
3 1 0.2263 0.0000 0.2266 0.0004 1.06×1013 1.07×1013 Region I 
1 3 0.0000 0.2263 0.2266 0.2266 3.37×1010 2.72×1011 Region I 
6 3 0.2871 0.2263 0.2921 0.0050 4.23×1012 4.43×1012 Region I 
3 6 0.2263 0.2871 0.2921 0.0658 1.17×1012 2.15×1012 Region I 
15 1 0.4426 0.0000 0.7465 0.3040 5.10×109 8.39×1010 RB I 
1 15 0.0000 0.4426 0.7465 0.7465 9.96×104 9.65×107 RB I 
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17 6 0.5257 0.2871 1.1356 0.6099 1.02×107 2.79×109 RB I 
6 17 0.2871 0.5257 1.1356 0.8486 2.39×104 5.92×107 RB I 
17 13 0.5257 0.4038 1.3375 0.8118 1.84×105 3.25×108  
13 17 0.4038 0.5257 1.3375 0.9337 5.05×103 2.74×107  
15 6 0.4426 0.2871 0.7726 0.3300 1.70×1010 3.55×1011 RB I 
6 15 0.2871 0.4426 0.7726 0.4855 3.95×108 3.45×1010 RB I 
8 2 0.3837 0.0727 0.5914 0.2077 2.18×1012 1.47×1013 Region II 
2 8 0.0727 0.3837 0.5914 0.5186 1.37×109 1.62×1011 Region II 
14 11 0.4316 0.3999 0.5944 0.1628 1.09×1011 4.90×1011 Region II 
11 14 0.3999 0.4316 0.5944 0.1944 1.70×1011 1.02×1012 Region II 
18 5 0.5404 0.2688 0.5556 0.0152 6.68×1012 7.68×1012 Region II 
5 18 0.2688 0.5404 0.5556 0.2868 1.06×1010 1.48×1011 Region II 
19 8 0.5409 0.3837 0.8237 0.2828 3.95×109 5.34×1010 Region II 
8 19 0.3837 0.5409 0.8237 0.4401 2.97×108 1.71×1010 Region II 
19 13 0.5409 0.4038 1.2646 0.7236 1.81×105 1.42×108 RB II 
13 19 0.4038 0.5409 1.2646 0.8608 1.27×104 3.51×107 RB II 
20 2 0.5468 0.0727 1.1528 0.6060 5.55×106 1.47×109 Region II 
2 20 0.0727 0.5468 1.1528 1.0801 7.30×101 1.53×106 Region II 
19 18 0.5409 0.5404 0.8142 0.2732 4.63×1010 5.74×1011 Region II 
18 19 0.5404 0.5409 0.8142 0.2737 4.23×1010 5.26×1011 Region II 
22 13 0.5706 0.4038 1.2564 0.6859 1.55×103 8.61×105  
13 22 0.4038 0.5706 1.2564 0.8527 4.77×103 1.23×107  
22 15 0.5706 0.4426 1.3274 0.7569 4.37×102 4.66×105  
15 22 0.4426 0.5706 1.3274 0.8849 5.18×103 1.79×107  
11 7 0.3999 0.2974 0.6603 0.2604 2.92×1010 3.21×1011 Region II 
7 11 0.2974 0.3999 0.6603 0.3630 1.81×109 5.12×1010 Region II 
24 13 0.5821 0.4038 1.6471 1.0650 1.24×102 2.26×106 RB I 
13 24 0.4038 0.5821 1.6471 1.2433 2.34×100 2.20×105 RB I 
9 2 0.3900 0.0727 0.8441 0.4541 5.23×107 3.43×109 Region II 
2 9 0.0727 0.3900 0.8441 0.7714 4.37×105 5.32×108 Region II 
23 8 0.5771 0.3837 0.6578 0.0807 8.40×1012 1.77×1013 Region II 
8 23 0.3837 0.5771 0.6578 0.2742 1.30×1011 1.63×1012 Region II 
11 9 0.3999 0.3900 0.5823 0.1824 1.26×1011 6.76×1011 Region II 
9 11 0.3900 0.3999 0.5823 0.1923 2.11×1010 1.24×1011 Region II 
14 21 0.4316 0.5524 0.5873 0.1557 7.55×1010 3.17×1011 Region II 
21 14 0.5524 0.4316 0.5873 0.0348 1.85×1010 2.55×1010 Region II 
9 8 0.3900 0.3837 1.1946 0.8045 2.60×104 4.30×107 Region II 
8 9 0.3837 0.3900 1.1946 0.8109 3.47×105 6.07×108 Region II 
10 9 0.3909 0.3900 0.4603 0.0694 5.78×1012 1.09×1013 Region II 
9 10 0.3900 0.3909 0.4603 0.0702 1.85×1012 3.52×1012 Region II 
14 12 0.4316 0.4010 0.5832 0.1517 8.67×1010 3.51×1011 Region II 
12 14 0.4010 0.4316 0.5832 0.1823 5.32×1010 2.85×1011 Region II 
10 8 0.3909 0.3837 1.1956 0.8047 8.64×104 1.43×108 Region II 
8 10 0.3837 0.3909 1.1956 0.8119 3.67×105 6.49×108 Region II 
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21 8 0.5524 0.3837 0.9699 0.4175 1.82×107 8.53×108 Region II 
8 21 0.3837 0.5524 0.9699 0.5863 2.57×108 5.69×1010 Region II 
14 9 0.4316 0.3900 0.5844 0.1528 1.06×1011 4.32×1011 Region II 
9 14 0.3900 0.4316 0.5844 0.1943 2.75×1010 1.64×1011 Region II 
20 26 0.5468 0.6783 0.9186 0.3718 3.14×109 9.64×1010 Region II 
26 20 0.6783 0.5468 0.9186 0.2404 3.61×1010 3.30×1011 Region II 
9 12 0.3900 0.4010 0.4040 0.0140 1.12×1012 1.28×1012 Region II 
12 9 0.4010 0.3900 0.4040 0.0031 2.65×1012 2.73×1012 Region II 
15 28 0.4426 0.7824 0.8373 0.3947 4.45×109 1.69×1011  
28 15 0.7824 0.4426 0.8373 0.0549 7.28×1012 1.21×1013  
17 27 0.5257 0.6863 0.9394 0.4136 1.79×109 8.08×1010  
27 17 0.6863 0.5257 0.9394 0.2531 2.37×1010 2.44×1011  
22 19 0.5706 0.5409 1.0961 0.5255 1.18×105 1.49×107 RB II 
19 22 0.5409 0.5706 1.0961 0.5551 5.17×106 8.59×108 RB II 
30 13 0.8941 0.4038 1.1341 0.2400 8.51×1010 7.76×1011  
13 30 0.4038 0.8941 1.1341 0.7303 6.41×105 5.35×108  
20 4 0.5468 0.2495 1.1956 0.6488 2.77×106 1.09×109 Region II 
4 20 0.2495 0.5468 1.1956 0.9461 1.91×102 1.16×106 Region II 
4 29 0.2495 0.8094 1.0266 0.7771 1.57×105 2.01×108 RB II 
29 4 0.8094 0.2495 1.0266 0.2172 9.18×1011 6.79×1012 RB II 
4 2 0.2495 0.0727 0.2669 0.0175 1.47×1013 1.72×1013 Region II 
2 4 0.0727 0.2495 0.2669 0.1942 3.56×1012 2.13×1013 Region II 
25 30 0.6314 0.8941 1.0873 0.4559 3.10×108 2.07×1010  
30 25 0.8941 0.6314 1.0873 0.1931 6.67×1010 3.95×1011  
26 8 0.6783 0.3837 0.7479 0.0696 1.17×1012 2.22×1012 Region II 
8 26 0.3837 0.6783 0.7479 0.3643 2.13×109 6.10×1010 Region II 
27 11 0.6863 0.3999 0.8956 0.2093 3.98×1010 2.74×1011 RB II 
11 27 0.3999 0.6863 0.8956 0.4957 3.97×107 3.82×109 RB II 
30 24 0.8941 0.5821 1.9287 1.0346 5.56×102 7.65×106 RB I 
24 30 0.5821 0.8941 1.9287 1.3466 2.62×10-1 6.36×104 RB I 
16 3 0.4679 0.2263 0.5098 0.0419 4.13×1011 6.07×1011 Region I 
3 16 0.2263 0.4679 0.5098 0.2836 8.96×109 1.22×1011 Region I 
25 6 0.6314 0.2871 0.8157 0.1843 2.93×1011 1.60×1012 RB I 
6 25 0.2871 0.6314 0.8157 0.5286 4.79×107 6.24×109 RB I 
24 16 0.5821 0.4679 0.6053 0.0232 8.89×1012 1.10×1013 Region I 
16 24 0.4679 0.5821 0.6053 0.1374 2.12×1011 7.50×1011 Region I 
17 15 0.5257 0.4426 1.0643 0.5386 1.08×108 1.55×1010  
15 17 0.4426 0.5257 1.0643 0.6217 1.15×107 3.52×109  
28 13 0.7824 0.4038 0.8558 0.0734 1.18×1012 2.33×1012  
13 28 0.4038 0.7824 0.8558 0.4521 1.88×108 1.21×1010  
7 5 0.2974 0.2688 0.3197 0.0223 3.83×1012 4.70×1012 Region II 
5 7 0.2688 0.2974 0.3197 0.0509 2.64×1012 4.22×1012 Region II 
23 2 0.5771 0.0727 0.6283 0.0512 1.82×1012 2.92×1012 Region II 
2 23 0.0727 0.5771 0.6283 0.5556 1.62×107 2.70×109 Region II 
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To further examine the local fluxionality picture of isomerization of Pt7 clusters, we 

performed molecular dynamics (MD) simulations. The MD simulation can properly 

include the effect of anharmonicity, which is missing in our isomerization graph build 

upon HTST. The NVT ensemble simulation is performed at 450 K and 700 K, respec-

tively, for the 5.0 ps duration with the time step being 0.5 fs. A Nose-Hoover thermo-

stat is used. The system was considered to be equilibrated after 0.5 ps, and after that 

time, information was collected. The geometry of the cluster part of the system at any 

moment of the simulation can be very different from the 0 K isomers, due to the com-

plexity of PES and thermal expansion effect. To analyze the trajectories, mean dis-

tance defined in Section 3.2.1 is used to measure the difference between geometry of 

the given cluster at every MD instant and geometries of several adjacent 0 K isomers. 

Figure 4.6 (a) and (b) shows the trajectories starting from the isomer #1 simulated at 

450 K and 700 K, respectively. In this figure, the trajectories from 0.0 to 0.5 ps are 

used to establish the equilibrium and thus not included. For trajectory at each tem-

perature, the snapshot geometry at every time step is compared against several iso-

mer geometries inside the region I (isomers #1, #3, #6, #16 and #24) and outside the 

region I (#15). The geometrical difference between two structures is defined in Section 

3.2.1. Note that during the simulation, the position of surface atoms also changes. 

These (usually small) changes are not included in the evaluation of the difference. As 

the system evolves, the cluster loses its geometric identity, and may approach other 

isomers instead. It is shown that the (locally) equilibrated system is roughly a mix-

ture of the isomers #1 and #3 at 450 K. The similarity to other isomers is small 

throughout the trajectory. However, when we simulate the system at 700 K, we can 

see much greater isomerization and geometric mixing, and, for example, at 3.9 ps of 
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the trajectory the cluster is equidistant from the isomers #1, #3, #6, and #16. At this 

moment, the geometry is still far away from isomer #15 (with a distance of 1.0 Å). 

This implies that, at 700 K the locally fluxional region I (including isomers #1, #3, #6, 

and #16) may be a better representation of the system evolving from the isomer #1, 

than a fixed representation characterized by the geometry of isomer #1 alone. Simi-

larly, Figure 4.7 (a) and (b) shows the trajectories starting from isomer #2 simulated 

at 450 K and 700 K, respectively. In this figure, for trajectory at each temperature, 

the snapshot geometry at every time step is compared against several isomer geome-

tries inside the region II (isomers #2, #4, #5, #7, #11) and outside the region II (#27). 

Although the energy of isomers #1 and 2 only differs by 0.072 eV, they are connected 

by a long path (including isomers #27, #17 and #15) with high barrier in isomerization 

MST and belong to different regions (Figure 4.2). It is shown that the system is flux-

ional among isomers #2, #4 and #5 at 450 K, and among #2, #4, #5, and #7 (all from 

region II) at 700 K, which are clearly indicated in Figure 4.7 (a) at 1.5 ps and Figure 

4.7 (b) at 1.2 ps. This agrees with our previous analysis based on isomerization graph, 

and the regions I and II are actually connected subgraphs of the isomerization MST. 

This outcome is remarkable, because, in some cases of catalysis, it provides possible 

mechanism for the system to retain specific, highly active metastable states for some 

period of time. In the case of Pt7, the timescale for local fluxionality is about 1 ns 

(estimated from the cross-region transition rate in 700 K). 
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Figure 4.6 The MD trajectories starting from isomer #1 simulated at (a) 450 K and (b) 700 

K. 

 

Figure 4.7 The MD trajectories starting from isomer #2 simulated at (a) 450 K and (b) 700 

K. 

Finally, detailed analysis on MD trajectories allows us to estimate anharmonicity 

effects in the system. We note that the geometries in MD are at least 0.11 Å far away 

from the isomer #1 or #2 at 450 K, and 0.17 Å far away from the isomer #1 or #2 at 

700 K, respectively, which is a manifestation of the thermal expansion effect. In ad-

dition, there are some periodic patterns in Figure 4.6 and Figure 4.7, which indicates 
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that some detailed comparison can be made between HTST rate constants and infor-

mation extracted from MD simulations. From MD trajectories in Figure 4.6 and Fig-

ure 4.7, rate constants of the fastest process (namely, transitions between isomers #1 

and #3 in region I and between isomers #2 and #4 in region II) can be approximately 

estimated by plotting the difference between the two lowest lines in Figure 4.6 and 

Figure 4.7, and locating maxima and minima, shown in Figure 4.8 and Figure 4.9. In 

these two figures, The maxima (labeled by red vertical lines) correspond to instants 

when the MD geometry is closest to isomer #1 (or #2) and farthest to isomer #3 (or 

#4), and the minima (labeled by green vertical lines) correspond to instants when the 

MD geometry is closest to isomer #3 (or #4) and farthest to isomer #1 (or #2). The rate 

constants are estimated by the inverse of average time span between adjacent max-

ima and minima. The rate constants estimated from HTST and MD trajectories for 

transition between these fast processes are summarized in Table 4.2. 

For transition between isomer #1 and #3, HTST predicts very different rates for the 

two directions, mainly due to the 0.226 eV energy difference between 0 K isomers #1 

and #3. However, the geometrical difference between isomers #1 and #3 is only 0.26 

Å. At finite temperature, the average electronic energies corresponding to these two 

isomer basins may become much closer as their geometries become more similar after 

thermal expansion. For transition between isomers #2 and #4, the MD predicted rates 

are close for the two directions as well, which is again explained by their very similar 

geometries. Finally, considering the nature and short duration of the MD simulation, 

we note that there are some important factors that may cause MD predicted rates 

listed in Table 4.2 to be inaccurate, as explained below. The vibrational frequencies 
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of the cluster part of the system are ca. 50 cm-1 or 1.5 to 3.0 ps-1, which can couple 

with the fast isomerization process. In addition, when several fast isomerization pro-

cesses happen simultaneously, we cannot distinguish them by the simple analysis 

here. More accurate analysis should be based on free energy sampling methods, such 

as free energy perturbation,[114] umbrella sampling [115] and metadynamics,[116] 

which is beyond the scope of the work. To sum up, anharmonicity should be important 

for these fast processes because of the small geometrical difference between isomers 

and coupling between vibrational motion and isomerization process. 

 

Figure 4.8 The difference between geometrical differences measured from isomers #3 and 

#1 based on MD trajectories starting from isomer #1 simulated at (a, left) 450 K and (b, right) 

700 K.  
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Figure 4.9 The difference between geometrical differences measured from isomers #4 and 

#2 based on MD trajectories starting from isomer #2 simulated at (a, left) 450 K and (b, right) 

700 K. 

Table 4.2 The electronic energies, HTST predicted rate constants and rate constants approx-

imately estimated from MD trajectories for the fastest isomerization processes, namely, tran-

sition between isomers #1 and #3 and between isomers #2 and #4, in MD simulation starting 

from isomer #1 and #2, respectively. 

#init #final Einit (eV) ETS (eV) 
T = 450 K T = 700 K 
kHTST 
(1/ps) kMD (1/ps) kHTST 

(1/ps) kMD (1/ps) 

3 1 0.226 0.227 10.6 2.47 10.7 2.01 
1 3 0.000 0.227 0.0337 2.33 0.272 3.08 
4 2 0.249 0.267 14.7 1.54 17.2 1.47 
2 4 0.073 0.267 3.56 1.20 21.3 2.02 
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Conclusions 

The method development for efficient exploration of catalytic cluster PES, is of critical 

importance in the computational study of these systems. The general guide for stud-

ying these systems is first determining the important features of the system under 

consideration (such as the bond length distribution, point group symmetry, space 

group symmetry, and number of identical atoms) and then utilizing some of these 

features to speed up computation. Based on this simple idea we have proposed several 

different approaches in this dissertation. 

We reported a new method, AFFCK, for finding the global and local minima of gas 

phase clusters. Based on traditional CK, AFFCK utilizes an intermediate step where 

all candidate structures are pre-optimized using a classical FF. Despite the skepti-

cism toward FF in general when applied to clusters, it works surprisingly well, be-

cause FF in AFFCK is learned on-the-fly, for every given system under consideration. 

As a result, FF energies, energy rankings, and geometries of optimized species are 

shown be in good agreement with DFT results. The number of steps required for the 

final DFT geometry optimization of all minima is tremendously reduced, and thus, 

overall, the method is much more efficient than the traditional CK. We illustrate its 

performance on the platinum clusters. For Pt8, we identified the global minimum 

structure that is much lower in energy than the previously reported one. We also note 

that for clusters that possess a mix of covalent and delocalized bonding, such as clus-

ters of boron, AFFCK is less efficient than for all-metal clusters that possess only 
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delocalized bonding. We would recommend AFFCK for clusters of transition metals, 

such as those used in catalysis. 

We proposed another parallel global optimization scheme based on DNN fitting, 

called NN-PGOPT, and demonstrated that this new scheme is able to successfully 

find the global minima of gas phase Pt9 and Pt13, which are in agreement with some 

other literatures, as well as low energy optima, which are important at realistic tem-

perature. Using the S-BLDA structure generation method, the configuration space 

can be randomly sampled in an efficient and natural way to generate initial struc-

tures. With the help of NN based local optimization combined with limited-step DFT 

optimization, the global optimization is proved to be faster than the traditional full-

step DFT optimization embedded way. In addition, the training of DNN can be greatly 

accelerated by modern GPU accelerators. An efficient DFS based structure similarity 

measurement algorithm has also been proposed and duplicates can be excluded at 

different stages of the global search. The tricapped octahedron structure is found to 

be the putative global minimum of Pt9 using TPSSh functional, but a planar structure 

has even lower energy when PBE functional is used. The tricapped pentagonal prism 

structure is found to be the putative global minimum of Pt13 using PBE functional, 

while TPSSh functional favors a square pyramid structure. However, at catalysis rel-

evant temperature, the low symmetry and high multiplicity structures are predicted 

to be more populated, which is found to be a functional independent fact, for the sys-

tem investigated in this work. Particularly, the structure transitions for Pt9 and Pt13 

clusters can be identified, at relatively low and high temperatures, respectively, 



 
117 

based on the ensemble-average representation of local minima. The energy separa-

tion of isomers can also have a significant influence on the properties observed at 

finite temperature. 

For surface supported clusters, we utilized the standard BH approach for global op-

timization, and proposed a new approach for constructing isomerization graph of Pt7 

isomerization on α-alumina surface. A MST derived from this graph shows all MEPs 

of transition between any two Pt7 isomers whose energies are below 0.6 eV, which are 

represented as vertices in the MST. We also introduced a structure difference meas-

urement based on mean distance in cluster geometries and surface space group sym-

metry, and a fast polynomial algorithm based on bipartite model for efficient evalua-

tion. This measurement is used to generate initial NEB paths and analyze MD tra-

jectories. From both the HTST isomerization graph and MD trajectories, we find that 

the shape of surface supported Pt7 isomers can be highly fluxional at finite tempera-

ture, with energy barriers of direct paths along MEP varying from ca. 0.00 eV to 0.78 

eV. Based on our local fluxionality picture, the Pt7 isomerization on α-alumina surface 

can be understood in two different timescales. The short time (less than 1 ns when T 

= 700 K) behavior is frequent transition among similar shapes within local region, 

and the relatively longer time (greater than 1 ns when T = 700 K) behavior is thermal 

equilibrium across regions. At lower temperature, the time span for local fluxionality 

can be much larger. We note that this locally fluxional picture may have important 

implications for explaining catalytic mechanisms. On the one hand, the structurally 

similar isomers within each region share some common binding sites for reactant or 

product molecules. These common binding sites will exist for a relatively long time 
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when the system only fluctuates locally (namely, within the region) but not globally. 

On the other hand, after considerably longer time the thermal equilibrium among all 

low-energy isomers will be achieved, which brings to question the reactivity on such 

clusters being considered at nearly fixed geometries (usually the global mini-

mum).[117] An ensemble representation consisting of low energy isomers may be a 

better computational model for such occasions.[87,118] 

Finally, we proposed a revised BH global optimization approach, with core-shell sep-

aration, to address the challenging task of global optimization of surface-supported 

clusters with high coverage of adsorbates. Using this revised method, we show that 

the high hydrogen coverage changes the preferred geometry of alumina-supported Pt7 

clusters. This observation implies that the isomers obtained from global optimization 

of the bare Pt7 cluster on a support surface (or in the gas phase) may not be used as 

a “reference state” for the system with large number of adsorbates. For H-covered Pt7 

on α-Al2O3, a rich spectrum of isomers thermally-accessible at 700-900 K is found 

(700-900 K is a typical temperature range for catalytic dehydrogenation). Among the 

isomers, many have a common structure of the Pt core beneath the bound adsorbates, 

and thus these groups of isomers differ only by the adsorbate positions. Several typi-

cal core types, labelled A-F, have been identified. Their presence in the statistical 

ensemble of the catalyst states changes as a function of temperature: The structures 

of the type A (which includes the global minimum) prevail below 200 K. Above that 

temperature, the contributions of the structures B-F grow, and at 700 K and above 

all of them become nearly equal with the population of A. Hence, all these states may 

play a role in a catalytic process on this cluster catalyst. In addition, for these H-
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covered systems, the H atoms and the Pt atoms have qualitatively different mobilities. 

This is seen not only from the appearance of the typical Pt core structures, A-F, but 

also from the ab initio MD simulations at 700 K, which show that Hs can quite easily 

move and change binding site on the cluster, while the Pt atoms are less mobile, and 

do not move in the time scale of the MD (10 ps). This further supports the idea that 

the general global optimization approach with a unified treatment for all atoms (those 

of the cluster and of the adsorbates) may not be very efficient for modelling catalytic 

clusters in realistic conditions, and further validates the method with the core-shell 

separation presented in this study. 

In summary, the computational study of catalytic clusters is a very attractive and 

active research field. On one hand, the non-scalable feature, surface effect, finite tem-

perature and realistic coverage all together make the computational modeling of the 

system a very difficult task. However, it is also believed that the true understanding 

of the reaction catalyzed by these clusters deeply relies on the suitable treatment of 

these effects. On the other hand, these clusters are also very “simple” objects. They 

may have point group symmetry, atomic permutation symmetry and space group 

symmetry. Their bond length may obey simple normal distribution. The mobility of 

coverage atoms and cluster atoms may at quite different scale. Whether we can find 

and incorporate these properties in any PES exploration method is then essential for 

the performance of the method. In view of this, we think that there are still plenty of 

opportunities in the development of methods in this field and we believe that more 

comprehensive and efficient methods can be proposed in the near future. 
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Appendix 

Parallel global optimization code PGOPT 

The AFFCK method discussed in this dissertation has been implemented in an open 

source package called AFFCK (available from https://github.com/hczhai/AFFCK). 

For most of remaining methods proposed in this dissertation, their implementation 

is integrated in a single open source package called PGOPT (available from 

https://github.com/hczhai/PGOPT). 

This appendix will give a short introduction of the installation and usage of PGOPT 

code. 

Installation 

This code contains three sub-packages. ACNN contains all core algorithms. PGOPT 

includes settings for supercomputer environment. STMOLE defines the interface to 

VASP and TURBOMOLE. 

If you want to test the code in a non-supercomputer environment, PGOPT and 

STMOLE are not needed. 

Here we will explain installation steps using a docker (https://docs.docker.com/) im-

age of anaconda2 (https://hub.docker.com/r/continuumio/anaconda). Please first in-

stall the docker application in your system, then open a terminal to continue. (You 
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can also use anaconda with python2 installed in your local environment without 

docker.) The following commands will download an image of anaconda2: 

docker pull continuumio/anaconda 
docker run -it --rm continuumio/anaconda /bin/bash 
 

Now you are inside the docker container. We need to add the following python pack-

ages and several packages needed for compiling fortran code: 

pip install theano reportlab dill 
conda install pygpu 
apt-get update 
apt-get -y install gfortran g++ make vim 
 

Now get the copy of PGOPT: 

cd ~ 
git clone https://github.com/hczhai/PGOPT.git PGOPT-PROGRAMS 
 

Then we can compile the fortran code. This will generate some warnings but the pro-

cess should not produce any error. 

cd ~/PGOPT-PROGRAMS/ACNN/formod 
make 
 

Now add the following to ~/.bashrc (you may need vim ~/.bashrc first): 

BASE=~/PGOPT-PROGRAMS 
export STMOLE_HOME=$BASE/STMOLE 
export ACNNHOME=$BASE/ACNN 
export PGOPTHOME=$BASE/PGOPT 
export PATH=$STMOLE_HOME:$PATH 
export PATH=$PGOPTHOME:$ACNNHOME:$PATH 
 

Then apply the these environment changes: 
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source ~/.bashrc 
 

Gas phase cluster generation 

The main program is called acnnmain which can be found under $ACNNHOME defined 

previously. You need to prepare an input file for generating structures. There are 

some example input files under ACNN/tests. Here as an example, we will try to gen-

erate some gas phase Pt7 structures using S-BLDA. 

cd $ACNNHOME/tests/structure-generation 
acnnmain pt7-gas.json 
 

Note that the output directory is indicated in the input file. Here we can find the 

results in ./OUT-pt7-gas/fil_structs.xyz.0. The structures are written in 

XYZ format. A single file will contains more than one structures. Visualization soft-

ware such as jmol is useful for examine all structures within only one file. For exam-

ple, if jmol is installed, you can type: 

jmol ./OUT-pt7-gas/fil_structs.xyz.0 
 

to look at the structures. 

The PGOPT code also has its own visualization implementation. It will generate a 

PDF file containing images of all structures in the given input file. To generate the 

PDF, use the following input file (this only works after you run acnnmain pt7-

gas.json): 

acnnmain pt7-gas-draw.json 
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Then you will find the PDF in ./OUT-pt7-gas/report.pdf. 

Surface supported cluster generation 

The following command will generate Pt7 structures on α-Al2O3 surface. The surface 

is described by a XYZ file. There are some example surface files under $AC-

NNHOME/tests/surfaces. The computational cell information is written in the 

comment line of the XYZ file. It can be either 3 numbers or 5 numbers. The program 

always assume the Z direction is normal to the surface plane. If the cell size is de-

scribed by 3 numbers “n1 n2 n3”, then the XYZ components of cell axes are a = (n1, 0, 

0), b = (0, n2, 0), c = (0, 0, n3). If the cell size is described by 5 numbers “n1 n2 n3 n4 n5”, 

then the XYZ components of cell axes are a = (n1, n2, 0), b = (n3, n4, 0), c = (0, 0, n5). 

Usually n5 is larger than the actual height of the surface because of the added vacuum 

gap. So in the end of comment line there is an additional number in parenthesis, 

indicating the unit cell height along Z without vacuum gap. 

acnnmain pt7-alpha.json 
 

The surface group and unit cell (the minimal unit cell, not the computational unit cell) 

information, indicated in the input file may help determining structure duplicates. If 

these information is unavailable, use the computational cell for unit cell and “P 1” for 

space group, and [0.0, 0.0] for space group transformation reference point. 

Then we can find the results in ./OUT-pt7-alpha/fil_structs.xyz.0. 

Structure filtering 
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The following command will try to find unique structures from a given example XYZ 

file containing some local minima ($ACNNHOME/tests/data/pt4b4-local.xyz). 

cd $ACNNHOME/tests/filtering 
acnnmain pt4b4-local.json 
 

The unique structures will be in ./OUT-pt4b4-filter/fil_structs.xyz.0. The 

additional file ./OUT-pt4b4-filter/fil_list.txt.0 shows how many dupli-

cates of each unique structure appear in the original input XYZ file (the “multi” col-

umn). The other additional file ./OUT-pt4b4-filter/fil_corr.txt.0 lists the 

structural difference data. In this file, if one line ends with “*”, then the structure is 

selected as unique structure, because its structural difference to all previous unique 

structures is higher than the threshold. The second last column “mindm” shows the 

minimal value over structural difference to all previous structures. 

If the structure filtering should be performed on surface support clusters, the “crea-

tion-surface” section should be given in input file, which contains the same infor-

mation as that in the input file for creation. 

Neural network fitting 

Note that NN fitting is only implemented for gas phase clusters containing only one 

type of element. 

The following command will try to fit a neural network based on an example Pt9 data 

($ACNNHOME/tests/data/pt9-structs.xyz). Note that for realistic results, we 

need to set “sample_number” parameter to [200000, 20000, 20000] and “epochs” to 
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2000. This calculation normally requires large memory or GPU. If there is no GPU to 

use, it will automatically switch to CPU. 

cd $ACNNHOME/tests/nn_fitting 
export OMP_NUM_THREADS=40 
acnnmain pt9-fit.json 
 

After the fitting is finished, the fitted network will be stored in ./OUT-pt9-

nn/fit_network.dill.0. We have a reference result from executing “acnnmain 

pt9-fit.json” stored under $ACNNHOME/tests/nn_fitting_ref. 

Next we need to create some new structures, then use the network to optimize them. 

The file ./OUT-pt9-nn/fit_network.dill.0 is required for optimization. 

acnnmain pt9-create.json 
acnnmain pt9-opt.json 
 

The optimized structures and energies are in ./OUT-pt9-nn/opt_structs.xyz.0. 

Parallel global optimization 

For large scale global optimization (such as BH global optimization of Pt7 supported 

on α-Al2O3 surface), we typically need hundreds of thousands of CPU hours. This can 

only be possible if the calculation is performed in a supercomputer and highly paral-

lelized. To perform this kind of calculation, PGOPT has to know the format of the 

submission script and command of a certain supercomputer environment. PGOPT 

uses the command hostname to detect the supercomputer environment. The submis-

sion command names and number of cores in each node are then specified in the script 

PGOPT/pg/hosts.py. The templates for the submission script of different types of 
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jobs are in folder PGOPT/scripts.templates. The environment dependent data for 

each supercomputer is given in folder PGOPT/scripts.spec. 

PGOPT will also need to invoke electronic structure software (such as VASP) for en-

ergy evaluation. The VASP binaries should appear in $VASPHOME. The uncompressed 

pseudopotential files should be stored in $VASP_PP_PATH, organized as follows 

$VASP_PP_PATH/potpaw_GGA/<element-name>/POTCAR 
$VASP_PP_PATH/potpaw_PBE/<element-name>/POTCAR 
 

In parallel environment, command pgopt will be used to initialize calculation (pgopt 

init), edit input file (pgopt set), generating job scripts (pgopt relax/pgopt 

torun) submit jobs (pgopt submit), checking results (pgopt log/pgopt mclog), 

and finalize results (pgopt report). A list of pgopt commands can also be used as a 

way for tracking the settings for a global optimization (which is computational 

enbironment independent) and repeating at a different time or different environment. 

For example, the following pgopt recipe will perform global optimization of Pt7 gas 

phase clusters in parallel (the default local optimization method is DFT using VASP 

with PBE functional) 

pgopt init Pt7 500 
pgopt set relax 
pgopt set opts+ "encut=300;lwave=T;cell=18" 
pgopt set creation order 3 
pgopt set creation 2d 0.2 
pgopt relax 1 
pgopt torun para 0 24 
pgopt submit relax 1 
pgopt submit torun para 
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With this setup, 500 initial structures will be generated and optimized independently 

(in parallel) to obtain around 500 local minima. Then these local minima will be 

checked for duplicates and sorted. When the calculation finished, the results can be 

found in XYZ format in master/1.0/par_local.xyz.0. 

Specifically, “pgopt init Pt7 500” will initialize a calculation for Pt7 with 500 

initial structures. But no structures will be created after this command. Instead, a 

template input file (in json format, which can be read by acnnmain) named “para-

template.json” will be created. This input file contains many default settings. Then 

several “pgopt set” commands are used to edit the input file. The input file can also 

be edited directly, but with “pgopt set” it will be easier to track all the changes in 

a future time. “pgopt set relax” adds a VASP section in the input file, with the 

default method DFT and functional PBE. The next command changes some VASP 

parameters. Then the two “pgopt set creation” commands changes the “creation” 

section in the input file. 

Then we have to create submission scripts. There are two types of scripts/jobs. Master 

job typically uses only one CPU node, which is responsible for generating initial struc-

tures, filtering structures, making BH perturbations and monitoring worker jobs. 

Worker jobs are responsible for performing the time-consuming electronic structure 

computation. Here “pgopt relax 1” will generate a master job script “tomater/re-

lax-1.0/run-master.sh” (in scratch directory). Here “pgopt torun para 0 24” will 

generate 24 worker job scripts numbered from zero under “torun” directory (in scratch 
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directory). Command “cd `pgopt show`” can be used to switch back and forth be-

tween main and scratch directory. The last two “pgopt submit” commands submit 

the scripts into the job queue. 

When the calculation is running, “pgopt log” can be used to check the status of the 

calculation. For BH calculation, “pgopt mclog” can be used to check the status of 

individual MC walkers. After the calculation is finished, “pgopt report” can be 

used to generate a PDF report. 

Basin hopping global optimization 

The following pgopt recipe can be used to perform a BH global optimization for gas 

phase Pt7 cluster. In the “pgopt init” command we have specified (optional) that two 

nodes will be used for each worker job. 

pgopt init Pt7 10 "--nodes=2" 
pgopt set mc 
pgopt set mc temperature 1500 
pgopt set mc short-distance-factor 0.9 
pgopt set mc max-iter 200 
pgopt set relax 
pgopt set do-monte-carlo T 
pgopt set opts+ "encut=300;lwave=T;cell=18" 
pgopt set opts^ "scf(iter=100)" 
pgopt set args step 50 
pgopt set creation order 3 
pgopt set creation 2d 0.2 
pgopt relax 1 
pgopt torun para 0 10 
pgopt submit relax 1 
pgopt submit torun para 

With this setup, 10 BH walkers, each with 200 moves will be used. The temperature 

for BH will be set to 1,500 K. 
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Basin hopping global optimization with coverage 

The following pgopt recipe can be used to perform a BH global optimization for gas 

phase Pt7H10CH3 system, with structure generation and BH parameters set similar 

to those discussed in Section 2.4. 

pgopt init "Pt7|H10(CH3)" 1 "--surface=alpha4rz" "--nodes=8" 
pgopt set molecules+ CH3 
pgopt set creation ~lowpos 0.1 
pgopt set creation ~loworderelems H 
pgopt set creation ~nomoleelems -CH3,H 
pgopt set creation ~nocluselems -H,Al,H,O,C,-CH3,Al,H,O 
pgopt set creation number 10 
pgopt set mc 
pgopt set mc temperature 1500 
pgopt set mc short-distance-factor 0.85 
pgopt set mc max-iter 300 
pgopt set mc detailed-balance F 
pgopt set mc swap-site T 
pgopt set mc swap-site-make-space CH3 
pgopt set mc swap-site-rate 0.25 
pgopt set mc keep-ch3 T 
pgopt set mc solid-move CH3 
pgopt set mc light-shell T 
pgopt set 0 relax 
pgopt set 0 do-monte-carlo T 
pgopt set 0 opts^ "sigma=0.1;encut=300;ediff=1E-4;ediffg=1E-3;" 
pgopt set 0 opts^ "lreal=A;scf(iter=300)" 
pgopt set 0 opts^ "lwave=F;algo=Fast;npar=16" 
pgopt set 0 args step 50 
pgopt set 0 args max_step 750 
pgopt relax 1 
pgopt torun para 0 10 "--time=12:00:00" 
pgopt submit relax 1 
pgopt submit torun para 0 10 
 

In order to create surface supported clusters, the surface files “alpha4rz.xyz” and “al-

pha4rz.json” must present in the main directory before executing the commands. Also 

the “CH3.xyz” should be provided before “pgopt set molecules+ CH3” command. 

These files can be found in “ACNN/tests/surfaces” directory of the package. 
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Isomerization pathway optimization 

As a first step, type “pgopt filter 1” in a converged global optimization calculation 

will try to find all unique local minima using a stricter condition for structure simi-

larity. The results can be found in a XYZ file in “master/1.0/par_filter.xyz.0”. 

As a second step, type “pgopt connect 1” in a converged global optimization calcu-

lation will generate the images for NEB pathway calculation for the isomerization 

between unique isomers in “master/1.0/par_filter.xyz.0”. Detailed parame-

ters can be set by modifying input file “tomaster/relax-1.0/connect.json” be-

fore issuing this command. The images will be stored in “master/1.0/conn_im-

ages.xyz.0”. This file is required for starting the NEB calculation. Copy and re-

name this file (for example, to “images.xyz”) in a new clean directory. 

In the new directory, use the following pgopt recipe to perform the pathway optimi-

zation (Assuming the system is Pt7 and the surface file name starts with “alphaz”). 

pgopt init Pt7 0 "--surface=alphaz" "--nodes=20" 
pgopt set 0 neb 
pgopt set 0 sources^ read,images.xyz 
pgopt set 0 opts^ "sigma=0.1;encut=400" 
pgopt set 0 opts^ "ediff=5E-6;ediffg=-0.05;lclimb=F;" 
pgopt set 0 opts^ "lreal=A;scf(iter=300);lwave=T;algo=Fast" 
pgopt neb 1 "--time=24:00:00" 
pgopt torun para 0 10 "--time=24:00:00" 
pgopt submit neb 1 
pgopt submit torun para 0 10 
 

Note that the node number in first line must be a multiple of number of images. After 

the calculation is finished, the command “pgopt report” can be used to generate 

pathway curves and the isomerization graph. 
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