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Abstract 
Magnetic RAM (MRAM) is a new memory technology with 
access and cost characteristics comparable to those of 
conventional dynamic RAM (DRAM) and the non-volatil- 
ity of magnetic media such as disk. Simply replacing 
DRAM with MRAM will make main memory non-volatile, 
but it will not improve file system performance. However, 
effective use of MRAM in a file system has the potential to 
significantly improve performance over existing file sys- 
tems. The HeRMESjle system will use MRAM to dramati- 
cally improve file system performance by using it as a 
permanent store for both file system data and metadata. In 
particular, metadata operations, which make up over 50% 
of all j le system requests [14], are nearlyfree in HeRMES 
because they do not require any disk accesses. Data 
requests will also be faster, both because of increased 
metadata request speed and because using MRAM as a 
non-volatile cache, will allow HeRMES to better optimize 
data placement on disk. Though MRAM capacity is too 
small to replace disk entirely, HeRMES will use MRAM to 
provide high-speed access to relatively small units of data 
and metadata, leaving mostjle data stored on disk. 

1. Introduction 

Current file systems are optimized for the assumption 
that the only stable storage in the system is a block-ori- 
ented, high-latency device such as a disk. As a result, 
existing file systems use data structures and algorithms 
that transfer data in large units and take great pains to 
ensure that the file system’s image on disk remains inter- 
nally consistent. If the file system includes any non-vola- 
tile memory (NVRAM), there is usually a limited amount 
used as a temporary storage area to facilitate staging data 
to disk. 

Magnetic RAM (MRAM) [4] is a new memory tech- 
nology, currently in development, with the speed, density, 
and cost of DRAM and the non-volatility of disk. We are 
investigating the use of MRAM in the HeRMES (High- 

performance, Reliable, MRAM-Enabled Storage) file sys- 
tem to dramatically improve file system performance by 
storing metadata and some data in MRAM. Since MRAM 
will have cost comparable to that of DRAM, it cannot 
totally replace disk or other types of secondary storage 
such as MEMS [9]. Rather, we are researching the most 
effective ways to use limited amounts of MRAM in a file 
system. 

An MRAM-based file system such as HeRMES has 
several major advantages over existing file systems in both 
performance and reliability. As we discuss in this paper, 
using MRAM in the file system can reduce the cost of 
metadata operations to nearly zero, leaving them limited 
solely by CPU speed. It also increases the speed of file 
reads and writes both by reducing metadata overhead and 
by allowing the file system to better lay out data on disk by 
buffering writes longer in safe MRAM. File system reli- 
ability is also greatly improved. Simplifying metadata 
structures results in less complex and more reliable soft- 
ware. Keeping metadata in MRAM also allows HeRMES 
to run consistency checks on the file system in the back- 
ground during normal operation, allowing errors to be 
caught early, before they spread. 

2. HeRMES design 

The HeRMES file system is built from the ground up 
using two assumptions that differ from current file sys- 
tems: metadata accesses need not be in large contiguous 
blocks, and metadata accesses take microseconds (at most) 
rather than milliseconds. These assumptions differ from 
those underlying disk-based file systems, which require 
milliseconds to access blocks of data. 

2.1. Metadata management 

HeRMES maintains all of its metadata in MRAM, 
avoiding the need to access the disk for metadata requests. 
The ability of MRAM to handle single-word reads and 
writes further benefits HeRMES by allowing it to use 

0-7695-1040-X/01 $17.00 0 2001 IEEE 95 

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on March 29,2021 at 22:33:51 UTC from IEEE Xplore.  Restrictions apply. 

mailto:elm@cs.ucsc.edu
mailto:sbrandt@cs.ucsc.edu
mailto:darrell@cs.ucsc.edu


much simpler data structures. For example, the B+-trees 
used in XFS [ 161 make efficient use of large blocks at the 
expense of file system complexity. HeRMES, on the other 
hand, can use simpler data structures such as binary trees 
and hash tables with in-memory semantics because it does 
not need to allocate and reference structures in large 
blocks. 

Keeping all metadata in MRAM could be prohibitive 
for traditional file systems, which can require up to a 
1-2% overhead for metadata; 600 MB of DRAM for a 
60 GB disk may be too expensive, with memory costs 
exceeding those of disk. HeRMES, in contrast, will make 
extensive use of compression and variable-sized alloca- 
tions to drastically reduce needed space, avoiding this 
problem. For example, an inode in Unix might require 128 
bytes; there would be little benefit to reducing its size on 
disk because retrieval time is dominated by access latency 
which would not be reduced for smaller objects. It might 
be possible to save small amounts of DRAM at the 
expense of transforming the inode when transferring it 
between disk and memory, but using information from 
other inodes to do the compression would be difficult. 
HeRMES , however, can use commonalities between 
inodes to reduce required space. For example, each file’s 
inode can contain a pointer to an access control list; since 
many of a user’s files have identical permissions, their 
inodes can share a single list. File index pointers can also 
benefit from compression and variable-sized memory- 
style allocation. Many file systems use extents to compress 
index lists; by storing lists of extents in variable-sized 
blocks of MRAM, HeRMES can eliminate wasted space. 

One potential problem with keeping metadata in 
MRAM is that it may be too easy to modify data struc- 
tures, potentially causing file system inconsistency. Wild 
references in the file system (or elsewhere in the operating 
system) could overwrite valid metadata in MRAM, cor- 
rupting the file system. HeRMES will avoid this problems 
using techniques similar to those in Rio [12]. By keeping 
file system MRAM protected except when explicitly nec- 
essary, HeRMES will ensure that only desired changes are 
made to MRAM. The process of switching a page from 
read-only to read-write in the page table is fast, and will 
not significantly slow down HeRMES MRAM operations, 
particularly since it is only necessary when metadata is 
modified. 

2.2. MRAM write buffer 

Like most file systems, HeRMES will buffer writes in 
memory for several reasons: allowing a process to con- 
tinue without waiting for a write to go to disk, reordering 
writes to minimize disk latency, and waiting in the hope 
that a file will be deleted. Unlike many file systems, how- 

ever, writes with HeRMES are safe once they are written 
to MRAM. This allows HeRMES to postpone writes as 
long as desired without fear of data loss due to a system 
crash. 

The write buffer in HeRMES is similar to that in sys- 
tems with NVRAM, with two important differences: 
MRAM is considerably faster than NVRAM, and meta- 
data updates accompanying a write are done immediately 
in MRAM. Writes to MRAM are considerably faster than 
writes to flash RAM, which can require more than two 
milliseconds. MRAM’s faster write time reduces the win- 
dow of vulnerability during which data can be lost from a 
system failure. 

Because MRAM is a long-term stable store, data writ- 
ten there can be kept as long as necessary. This allows 
HeRMES to optimize data placement on disk, reducing 
time wasted to disk access latency. Existing file systems 
do this as well, but they run the risk of data loss if they 
hold data in the write buffer too long. Many systems with 
“non-volatile’’ RAM actually use battery-backed RAM, 
which can lose data because of dead batteries in addition 
to the usual dangers of storing data in RAM. 

23. MRAM file storage 

MRAM may also be useful for disk reads, particularly 
if there is a relatively large amount of MRAM in the sys- 
tem. Disk latencies are currently around 5-10 ms; in that 
time, a disk can transfer 64-128 KB of data. The file sys- 
tem can keep the first few blocks of each file in MRAM, 
transferring the data out of MRAM while the disk seek is 
completed. Combining this technique with file access pre- 
diction and clustering on secondary storage [ 11 will further 
improve performance by reserving the scarce MRAM 
resource for “live” data. As probe-based storage [9] 
becomes available, this technique will become more effec- 
tive because the latency to data on secondary storage will 
be lower, reducing the amount of file data that must be 
buffered in MRAM and increasing the number of files for 
which such buffering is possible. 

As with write buffering, caching file headers (or entire 
files, if they are small) is not a new technique. However, 
MRAM makes this technique more attractive because it 
allows the structures to survive power loss and system 
reboot, enabling the file system to build such a cache over 
time without the need to preserve it on disk or reload it 
after a system restart. 

3. Performance 

HeRMES can significantly outperform existing file sys- 
tems for several reasons. First, metadata operations in 
HeRMES are nearly free because they only require mem- 
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ory-type accesses. Table 1 shows several common file sys- 
tem request types [ 141, noting the disk operations needed 
to satisfy each one. Existing file systems cache metadata in 
DRAM, updating the original on disk when changes occur. 
Though they can eliminate many (but not all) disk reads by 
caching, metadata writes must go through to disk to ensure 
consistency, and writes often have a partial order enforced 
on them to maintain file system consistency [13]. HeR- 
MES, on the other hand, handles disk requests in the 
shaded columns entirely in MRAM, leaving only file data 
reads and writes to use the disk. This results in dramati- 
cally faster metadata operations, requiring microseconds 
rather than milliseconds to complete. Moreover, data 
writes can be safely buffered in MRAM indefinitely, as 
described in Section 2.2, further decreasing latency from 
user write to “safe” commit of the data. 

Table 1. Disk VO needed for file system requests. 

‘Qpe of disk requests needed 

Because HeRMES metadata operations are limited only 
by CPU speed, the file system can satisfy them in the time 
it takes to execute the metadata operation in the CPU. For 
existing file systems, 20,000 - 40,000 operations are suffi- 
cient to execute a file system request; this is 40 to 80 ps on 
a modem processor, allowing a single processor file server 
to handle about 25,000 metadata operations per second; 
HeRMES will likely be able to do more operations per 
second because it can use simpler data structures (and thus 
fewer instructions to manipulate them) and has no need to 
spend instructions on managing disk I/O. If a file server 
provides, on average, one 4 KB file block for every two 
metadata operations, such a server could sustain 50 MB 
per second using a single commodity CPU. 

The simple MRAM-resident data structures in HeR- 
MES can provide added speed in another way: reduced 
lock contention. Disk-based file systems must use fine- 
grained locking to ensure high levels of concurrency in the 
face of relatively long metadata operations. In particular, 
operations that require reading data from disk can hold 
locks for milliseconds, potentially causing contention for 
locks. HeRMES, in contrast, can complete metadata reads 
or updates in less than 100 microseconds. This time is 
shorter than the scheduling quantum on many systems, 
and is thus less likely to result in high levels of lock con- 
tention. The contention problem is exacerbated on sym- 

metric multiprocessor systems; again, HeRMES can use 
relatively course-grained locking and still maintain low 
levels of lock contention. 

4. Reliability 

File system reliability is, for many users, more impor- 
tant than performance: getting the correct data later is bet- 
ter than getting erroneous data now. HeRMES can provide 
high performance, as seen in Section 3, without sacrificing 
reliability. Moreover, HeRMES will be more reliable than 
existing file systems for several reasons, including lower 
software complexity and the ability to continuously check 
the system for consistency. 

4.1. Reducing software complexity 

By using relatively simple structures in MRAM, HeR- 
MES reduces software complexity, malung file system 
software more reliable. Simple data structures are well- 
understood and less prone to programming errors, reduc- 
ing the likelihood that a bug will be hidden in thousands of 
lines of complex code. Because MRAM is so much faster 
than disk, there will be less temptation for programmers to 
take shortcuts that save a few microseconds, making it less 
likely that such a shortcut will malfunction. 

The lower number of locks needed in HeRMES also 
increase software reliability. With metadata operations 
locking up structures for around 50 p, there is no need for 
thousands of locks in the file system. On a uniprocessor 
system, in fact, a single lock for the entire metadata struc- 
ture is sufficient because operations are CPU-bound and 
thus gain minimal benefit from interleaved requests. Even 
in multiprocessor file servers, a relatively small number of 
locks-at most one per file (for metadata), one for disk 
allocation, and one for memory allocation-will be suffi- 
cient to guarantee that processors are not waiting on file 
system locks. The net result is a lower probability of dead- 
lock as well as less chance that data will be improperly 
modified. 

4.2. Metadata checking 

HeRMES will also take an active approach to protect- 
ing file system consistency by continuously checking the 
metadata structures while the system is running. A back- 
ground process checking 2,000 files per second can fully 
check a system with ten million files in less than 90 min- 
utes, yet it demands less than 10% of the system’s 
resources to do so. 

Checking the file system’s metadata while the system is 
operating increases reliability in several ways. First, it is 
often easier to write a program that detects an error than it 

97 

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on March 29,2021 at 22:33:51 UTC from IEEE Xplore.  Restrictions apply. 



is to write a file system that doesn’t produce errors in the 
first place. Merely detecting the error may be sufficient to 
attempt correcting it, or at least to prevent it from spread- 
ing to the rest of the file system. Second, most existing file 
systems never have their metadata checked. They rely on 
logging [ 101 and other techniques to recover quickly from 
a crash, but they do not examine metadata written during 
normal operation. This is necessary because a full check of 
the metadata on a large file system with ten million files 
might take hours, if not days, and would consume most of 
the disk bandwidth during that time. Third, extremely 
large file systems are now encountering a new problem: 
disk unreliability due to firmware errors and undetectable 
bit errors is becoming a concern. A bit error rate of 
becomes a problem when file systems store a terabyte of 
data because bit errors may go unnoticed for days. Rather 
than do continuous checks, though current file systems 
must assume that their code does not contain any bugs and 
that the underlying media is reliable, assumptions that are 
increasingly less likely as file systems grow larger and 
more complex. 

43.  Backing up metadata 

MRAM, like any other part of a computer, will be sub- 
ject to component failure. Because MRAM is the only 
place metadata is stored, HeRMES must guard against 
MRAM failure. It does so by logging metadata changes to 
a location other than that holding the MRAM. This can be 
done in several ways. The first option is to write metadata 
changes to disk. This is very similar to logging, but does 
not involve the same ordering issues that metadata updates 
in conventional systems suffer. The second option is to 
keep the metadata log in a different bank of MRAM than 
that holding the original metadata. If MRAM can be 
removed from a computer, placed in a new one, and its 
contents read, this solution is sufficient to back up meta- 
data at very little cost. 

In either case, metadata update logging requires very 
little space. The majority of metadata updates are times- 
tamp modifications, which can be recorded in a few bytes. 
More complex modifications take more space; however, 
MRAM can buffer changes and flush them to disk several 
times per minute. Using this mechanism means that total 
MRAM failure (chip failure) can lose small amounts of 
data, but that consistency is not affected. It is important to 
remember that chip failure is not a common source of 
computer failure, and that chip failure affects all file sys- 
tems that use memory for caching and buffering. 

5. Related work 

Our work builds on many areas of file system research, 
but research into non-volatile RAM (NVRAM) systems 
and schemes to reduce latency for disk accesses, particu- 
larly metadata, is most relevant. 

Doughs [6] and Wu [17] proposed the use of NVRAM 
to hold an entire file system. This approach is acceptable 
for relatively small file systems, but MRAM (like 
NVRAM) is too expensive to replace disk for general pur- 
pose file systems. Additionally, the flash RAM used in 
these systems does not support single word writes; instead, 
it requires 1-2ms (or more) to write a relatively large 
block of data. This prevents fine-grained modification of 
data in non-volatile memory. In eNVy [ 171, copy-on-write 
and buffering were used to get around the long erase 
latency of flash RAM; this approach required extensive 
garbage collection similar to that used in log-structured 
file systems [3,15]. 

NVRAM has long been used for recovery and file sys- 
tem reliability [2], again with the restrictions of small size 
and coarse-grained write access. In such systems, 
NVRAM is used as a non-volatile cache for disk, but data 
“lives” on disk. This design improves file system reliabil- 
ity by reducing the window of vulnerability for written 
data and improves performance by relaxing metadata write 
constraints. However, it does not allow the rich metadata 
structures possible when metadata is permanently resident 
in MRAM, and writes must still be sent to disk, requiring 
disk seeks and consuming disk bandwidth. 

Techniques for reducing disk latency and improving 
reliability for metadata include writing data to the nearest 
free disk blocks [7,11], logging [lo], and soft 
updates [ 131. All of these techniques reduce access latency 
for writes, but none reduces the number of blocks that 
must be written. Additionally, these techniques use little 
beyond caching to speed up metadata read access. Another 
technique, combining metadata with file data [8], allows 
data and metadata for small files to be read and written in a 
single contiguous request., However, this technique was 
only tried with relatively small files. 

6. Current research 

Our research into using MRAM for file systems, specif- 
ically HeRMES, has just begun. In this paper, we 
described several ways in which MRAM can be used to 
improve file system performance, but many questions 
remain. For example, what happens if MRAM is limited? 
If insufficient MRAM is available for all of the metadata, 
how can HeRMES efficiently transform in-memory struc- 
tures to on-disk structures for infrequently u$ed files? 
What is the correct tradeoff between using MRAM for 

98 

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on March 29,2021 at 22:33:51 UTC from IEEE Xplore.  Restrictions apply. 



metadata, write buffering, and other uses such as caching 
the first few blocks of a file to reduce access latency? 

We are also exploring issues related to using MRAM 
across a distributed file system. Clearly, some form of 
sharing, perhaps similar to cooperative caching [ 5 ] ,  will be 
necessary to fully utilize MRAM in such a system. How- 
ever, there will be differences as well-the access latency 
across a network, while lower than that of disk, is consid- 
erably higher than that of MRAM. 

We are just at the beginning of research into using the 
new technology of MRAM in file systems, and there are 
many avenues of research that we will pursue. 

7. Conclusions 

Magnetic RAM will be available commercially within 
a few years; it is crucially important that file system 
designers incorporate it into file systems and use it effec- 
tively. We have shown how magnetic RAM can be used to 
dramatically improve file system performance and reliabil- 
ity. Our file system, HeRMES, will keep metadata in 
MRAM, allowing nearly free metadata operations limited 
only by CPU speed. Because MRAM is non-volatile, there 
is never a need to flush metadata to disk, also improving 
file system data bandwidth by freeing disk from the need 
to handle frequent metadata accesses. 

File system reliability also benefits from the use of 
MRAM. The simpler metadata structures possible using 
MRAM will reduce file system complexity, and thus 
increase software reliability. Background metadata consis- 
tency checking, kkewise, will increase the chance than an 
error will be found, increasing file system reliability by 
snuffing out errors as soon as they happen. It is this combi- 
nation of performance and reliability that makes MRAM 
attractive as a technology for incorporation into file sys- 
tems. 
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