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In this study, I considered the development of mathematical meaning related to the 

Invertible Matrix Theorem (IMT) for both a classroom community and an individual student 

over time. In this particular linear algebra course, the IMT was a core theorem in that it 

connected many concepts fundamental to linear algebra through the notion of equivalency. As 

the semester progressed, the IMT took form and developed meaning as students came to reason 

about the ways in which key ideas involved were connected. As such, the two research 

questions that guided my dissertation work were: 
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1. How did the collective classroom community reason about the Invertible Matrix 

Theorem over time?  

2. How did an individual student, Abraham, reason about the Invertible Matrix 

Theorem over time?  

Data for this study came from the third iteration of a semester-long classroom teaching 

experiment (Cobb, 2000) in an inquiry-oriented introductory linear algebra course. Data sources 

were video and transcript of whole class and small group discussion. To address the second 

research question, data from two individual semi-structured interviews, as well as written work, 

were also analyzed. The overarching analytical structure of my methodology was influenced by 

a framework of genetic analysis through the notion of cultural change, using two interrelated 

strands of microgenesis and ontogenesis (Saxe, 2002). I utilized two analytical tools, adjacency 

matrices and Toulmin’s Model of argumentation, to analyze the structure of explanations 

related to the IMT both in isolation and as they shift over time.  

In addition to an in-depth analysis of the complex ways in which Abraham and the 

classroom community reasoned about the IMT throughout the semester, this dissertation 

presents methodological contributions regarding the two analytical tools. First, it necessitates 

the definition of four new argumentation schemes that are expanded versions of Toulmin’s 

model. Second, it further adapts and refines the use of adjacency matrices within mathematics 

education research to analyze student thinking, both at static moments and over time. Finally, 

the present study lays a strong foundation for a 2-fold analytical coordination. The first 

coordinates results from adjacency matrix analysis with those from Toulmin’s Model to 

demonstrate they were often compatible, with the tools varying in their respective strengths and 

limitations. Second, the present study lays a foundation for coordinating the mathematical 

development of both the individual and the collective units of analysis. 



 

1 

CHAPTER ONE: INTRODUCTION 
 
 

There is an increasing need in our society for more individuals with creative and 

capable problem solving, reasoning, logic, and argumentation skills—skills that are developed 

in undergraduate mathematics. With this skill set in mind, the improvement of a particular 

undergraduate mathematics course—that of linear algebra—is of particular interest. Linear 

algebra is often seen as a gateway course for many mathematics and science majors in that 

success in this course is critical for student continuation in a STEM major. Furthermore, a first 

course in linear algebra serves not only as an introduction to a new level of abstract and formal 

reasoning, which is necessary in order to pursue a degree in mathematics, but also as a set of 

tools for many applications, such as computer science and engineering. Thus, the investigation 

how students learn the mathematical ideas central to linear algebra is of particular relevance in 

our current global society.  

In this chapter I discuss the goals of the study. The chapter begins with two illustrative 

examples through which I introduce my two research questions. The remainder of the chapter 

discusses why both the chosen field of study and research questions are of interest, as well as 

why answering the research questions is a valuable contribution to the field of mathematics 

education research. 

Consider the following segment of transcript. The class had been asked to investigate 

the following properties of specific transformations and the associated standard matrices: 

domain, codomain, one-to-one, onto, and invertibility. Towards the end of a whole class 

discussion regarding this investigation, the instructor initiated the following conversation: 

Instructor:  So let's make a note here of what we said so far about invertible...So what was 
the thing that you guys just said, how did you know it was invertible? Let's say 
that again. 

Bill:  It's linearly independent. 
Instructor:  If 'it's' meaning…? 
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Jesse:  The vectors of the matrix. 
Instructor:  ...If the column vectors of A are linearly independent, then you guys are saying 

it's invertible because of that. Are you guys able to explain why that should 
give invertibility? I think you said something, or go ahead, Josiah.  

Josiah:  When they're linearly independent, there's only one path you can take to get to 
it, so in order to get back, there can only be one answer to get back. Whereas if 
they're dependent on each other, then depending on how you got there, would 
determine how you get back, what vector changed, so you don't have the right 
information again. 

Instructor: Jesse...Yeah? 
Jesse:   Also, if they're dependent, in the RREF, you'll have a zero row, so it will be 

like you're losing information when you're trying to go back...If they are 
dependent, then their RREF will have a zero row. 

Instructor: Okay, columns dependent [writes] and so you're saying that the RREF of A has 
a zero or row of zeros. 

Jesse:   Right, so then if you try and, if you invert that, you can't, because it's like you're 
losing that information from that row. 

Within this transcript, both Josiah and Jesse associated invertibility with the notion of “going 

back,” but they connected this idea to different concepts from linear algebra. Josiah indicated 

that if the columns of a matrix were a linearly dependent set of vectors, then one would not have 

the proper information to “get back,” whereas Jesse’s statements indicated that particular forms 

of the row-reduced echelon form (RREF) of a matrix would indicate whether or not you could 

“go back.” How did these interpretations come to be? What had occurred previously in the 

semester that allowed, for instance, the notions of “path,” “not losing information,” and “going 

back” to become associated with invertibility? Furthermore, how did these notions come to 

function as if the classroom community shared a common understanding of them? What other 

ways of reasoning about the concepts related to the Invertible Matrix Theorem, a set of over a 

dozen equivalent statements, developed for this classroom community? What ideas got taken up 

and utilized as key ideas for this community?  

In addition to considering how the classroom community reasoned about the Invertible 

Matrix Theorem over time, I also conducted a parallel investigation at the individual level. 

Consider the following excerpt with Henry. This transcript comes from a semi-structured 

interview (Bernard, 1988) in which students were asked to explain how they related various key 
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ideas, such as linear independence, invertibility, determinants, etc. In particular, question one 

began with the following prompt: 

Suppose you have a 3 by 3 matrix A, and you know that matrix A is invertible. 
Decide if each of the following statements is true or false and explain your 
answer: The column vectors of A are linearly independent. 
 

After Henry read the prompt, the following conversation ensued:  

Henry: And, let’s see, because it says ‘it's invertible,’ and it's only invertible if 
they're independent; otherwise, you get a singular matrix. So that would 
be true. Otherwise you get the divide by zero errors. 

 
After the interviewer prompted Henry to explain in more detail this first statement, Henry 

connected what he meant by “the divide by zero errors” to the concept of determinants. The 

interviewer then directed the conversation back to the task at hand, which was about 

invertibility and linear independence. 

Interviewer: And then you said something about the determinant, so how do you see 
the determinant playing in? 

Henry:    Invertible. So if it's invertible, the determinant isn't zero. And if the 
determinant is zero, then they're [the column vectors of the matrix] 
dependent. If they're independent, then it's not zero, so that means it's 
invertible, so (a) is true. 

 
The above transcript illuminates one way that Henry reasoned about linear independence of a 

set of vectors (the columns of a matrix A) given that A was invertible. What other concepts did 

he mention as he explained how he connected these two ideas? How did this connection 

develop for Henry? As previously stated, this interview took place post-instruction, at the end of 

the semester. How did the ways in which Henry reasoned about these two ideas change over 

time? These two concepts—those of linear independence and invertibility—are but two of over 

a dozen key concepts in linear algebra related through what is sometimes known as the 

Invertible Matrix Theorem (IMT).  

 The following two research questions bring together and extend the previous inquiries 

that the two illustrative examples bring to light:  
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1. How did the collective classroom community reason about the Invertible Matrix 
Theorem over time? 
 

2. How did an individual student reason about the Invertible Matrix Theorem over 
time? 

 
Within this dissertation, I analyzed the ways of reasoning about the IMT that developed 

for one particular linear algebra class, as well as for one particular student, Abraham, within that 

linear algebra class. These two units of analysis addressed my two research questions, 

respectively. For this classroom community, as the semester progressed, what became known as 

the IMT was sixteen concept statements developed individually and related to one another 

through the notion of equivalence. Due to the complex and ever-changing nature of the theorem 

itself, investigating the class’s and Abraham’s ways of reasoning about these concepts and how 

they related to each other was a multi-faceted, complex, intriguing endeavor.  

The significance of this study is three-fold. The first two aspects directly regard the 

significance of the results of the two research questions, whereas the third speaks to 

methodological significance of this work. First, investigating the ways in which a particular 

classroom community reasoned about the IMT is analogous to investigating what classroom 

mathematics practices (Cobb & Yackel, 1996) relevant to the IMT developed for that 

community. The practical constraints placed on a teacher in any given classroom are such that 

she must operate as if the ways of reasoning about the mathematics at the collective level within 

that classroom are shared by all individual members of that community. Thus, reporting on 

classroom mathematics practices that developed for a particular linear algebra class contributes 

to the field because it makes other linear algebra instructors aware of normative ways of 

reasoning that may develop in their own classroom. It is a conjecture that the normative ways of 

reasoning presented in this study (see Chapter 4) would also develop in other linear algebra 

courses taught in a similar manner. Because my plans for future work involve sharing the 

various aspects of our instructional sequences (see, for example, Wawro, Rasmussen, Zandieh, 
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Sweeney, & Larson, 2011), good documentation of the collective production of meaning is 

necessary to help other instructors implement the curriculum in their own classrooms.  

Second, just as documenting classroom mathematics practices provides insight into the 

possible social production of mathematical meaning of other classroom communities, 

investigating the ways of reasoning of one individual student provides a solid foundation for 

understanding the possible conceptual milestones, blocking points, and potentially helpful and 

inhibitive ways of reasoning about the concept statements (and their equivalence) within the 

IMT of other linear algebra students. In other words, what is learned about Abraham’s ways of 

reasoning—the concept statements that were most central to his reasoning, the structure of his 

argumentation, specific interpretations of concept statements that were particularly salient for 

him, and the like—serve a conjectural role regarding what may be true for other individuals’ 

ways of reasoning. Furthermore, conducting a case study of an individual student’s ways of 

reasoning provided a unit of analysis that was appropriate for both of my analytical tools, 

Toulmin’s model and adjacency matrices. This allowed me to analyze the utility of adjacency 

matrices, a rather novel analytical tool within mathematics education research. More detail is 

given in the subsequent explanation of the methodological significance of this study. 

My rationale for choosing the subject of my case study, Abraham, was two-fold. First, 

he was a member of a high-functioning small group within the linear algebra classroom. Here, I 

define a “high-functioning small group” as one in which its members (a) interacted well with 

each other by pushing one another to explain their thinking and expecting participation from 

each member of the group; and (b) interacted well with the mathematics by staying on task, 

working through the given problems together, and displaying a genuine interest in exploring and 

understanding the content at hand. Second, Abraham was a high-functioning individual within 

the classroom community and his small group. Here, I define “high-functioning individual” to 

mean that Abraham (a) was academically prepared, in that he had successfully completed the 
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requisite courses that positioned him for success within linear algebra; (b) was personally 

engaged and interested in the mathematics; and (c) was a key informant (Tremblay, 1989) in 

that he possessed a unique ability to articulate his thinking and was willing to do so in whole 

class, small group, and interview settings. More detail regarding Abraham and his small group 

is given in Chapter 3.  

Finally, my approach to investigating these two research questions provided the 

opportunity to extend existing and develop new methodologies; thus, this dissertation 

contributes three main methodological results as well. First, this study extended the use of 

Toulmin’s Model as an analytical tool in mathematics education research by not only analyzing 

argumentation in linear algebra, often a transition into more proof-oriented mathematics 

courses, but also by expanding the 6-part Toulmin scheme for the analysis of more complex 

arguments. Second, this study demonstrates the utility of adjacency matrices as analytic tools 

when documenting students’ ways of reasoning at both the individual and collective levels, 

within specific arguments and over time. I compare these results with those of Toulmin’s model 

in order to compare and contrast the strengths, limitations, points of compatibility, and points of 

distinction between the two tools. Third, this study lays a solid foundation for methodological 

contributions regarding the coordination of individual and collective-level analyses. As such, 

conducting a rich case-study analysis of one student, while also investigating the development 

of mathematical meaning at the collective level, provided the depth necessary to lay a solid 

foundation from which to investigate the mathematical ways of reasoning at both the individual 

and collective level, as well as ways to coordinate those results across the two units of analysis. 

These research questions—addressing how the ways that students reason about the IMT 

change over time—investigates the connections that are made, on both the individual and the 

collective level, between the various equivalent statements in the IMT. Thus, the objects of 

inquiry for the research questions are the created relationships between the constituent parts of 
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the IMT. Furthermore, the research questions essentially developed out of four fundamental 

lines of inquiry, each of which has the potential to contribute to the field of mathematics 

education research in a variety of ways. The four fundamental lines of inquiry are:    

1.  The study linear algebra; 

2.  The Invertible Matrix Theorem and it as a line of research; 

3.  Students’ evolving interactions with the Invertible Matrix Theorem; and 

4.  Analyses that examine change over time on both the individual and collective levels. 

In the following sections I address each of these four aspects of inquiry and then revisit my two 

overarching research questions. I conclude the chapter with a short description of the 

organization layout of the subsequent chapters.  

 

1.1 The Study of Linear Algebra 

As detailed in the following paragraphs, there are two main reasons that the field of 

linear algebra is a significant and worthwhile content domain for educational research: (a) linear 

algebra is commonly seen as an extremely pivotal yet rather difficult mathematics course for 

university students; and (b) very little research has been conducted regarding student thinking in 

linear algebra, so much remains to be done in order to extend our knowledge of student thinking 

in this area.   

Linear algebra is one of the most useful fields of mathematical study because of its 

unifying power within the discipline as well as its applicability to areas outside of pure 

mathematics (Dorier, 1995b; Strang, 1988). According to Harel (1989b), linear algebra is an 

important subject matter at the college level in that it: (a) can be applied to many different 

content areas, such as engineering and statistics, because of its power to model various 

situations; and (b) can be studied in its own right as “a mathematical abstraction which rests 

upon the pivotal ideas of the postulational approach and proof” (p. 139). Thus, when 
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considering the mathematical development of undergraduate students, a first course in linear 

algebra plays an important, transitional role. In many universities, a first course in linear algebra 

follows immediately after a calculus series and, most likely, prior to an introduction to proof 

course. According to Carlson (1993), the majority of students’ mathematical experiences up to 

this point in their education have been primarily computational in nature. However, the content 

of linear algebra can be highly abstract and formal, a stark contrast to students’ previous 

computationally oriented coursework. This shift in the nature of the mathematical content being 

taught can be rather difficult for students to handle smoothly. Carlson (1993) posits that 

concepts are often taught without substantial connection to students’ previously learned 

mathematical ideas, as well as without examples or applications. Thus, students struggle with 

connecting familiar concepts to prematurely formalized, unfamiliar ones. Dorier (1995b) 

contends that the serious difficulties students have in learning linear algebra are a result of the 

content’s abstract and formal nature. Indeed, Robert and Robinet (1989) showed that prevalent 

student criticisms of linear algebra relate to its “use of formalism, the overwhelming amount of 

new definitions and the lack of connection with what they already know in mathematics” (as 

cited in Dorier et al., 2000, p. 86). 

As the above quote indicates, the mathematical activities central to linear algebra 

frequently involve mathematical ideas with which students may have little experience, such as 

vector spaces or linear transformations. How do students try to understand these new topics? 

What imagery do they develop as they encounter new abstractions and formalities? Questions 

such as these are an integral part of basic research that investigates student thinking about 

fundamental mathematical ideas. Of the research that has been conducted on the learning of 

linear algebra, much of it has focused on student difficulties and suggestions to alleviate these 

difficulties (e.g., Hillel, 2000; Sierpinska, 2000; Stewart & Thomas, 2009). Relatively few 

studies have focused on students’ creative and productive ways of reasoning about key concepts 
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of linear algebra (e.g., Possani, Trigueros, Preciado, & Lozano, 2010; Wawro, 2009). This lack 

of foundational research into the generative aspects of student thinking constitutes a second 

reason that investigation into the learning and teaching of linear algebra is both a valid and 

necessary line of research.  

 
1.2 The Invertible Matrix Theorem and It as a Line of Research 

The Linear Algebra Curriculum Study Group (Carlson, Johnson, Lay, & Porter, 1993) 

named the following as topics necessary to be included in any syllabus for a first course in 

undergraduate linear algebra:  

1. Matrix addition and multiplication, 

2. Systems of linear equations, 

3. Determinants,  

4. Properties of Rn, and 

5. Eigenvectors and eigenvalues. 

A few of the specific concepts involved in the aforementioned topics are: (a) span, (b) linear 

independence, (c) pivots, (d) row equivalence, (e) determinants, (f) existence and uniqueness of 

solutions to systems of equations, (g) transformational properties of one-to-one and onto, (h) 

invertibility, (i) basis, and (j) dimension of column space and null space. These concepts, in 

addition to others, are the very ones addressed and linked together in what is sometimes known 

as the Invertible Matrix Theorem (see Figure 1.1). It is for this reason that studying the 

development of the Invertible Matrix Theorem is a significant contribution to what is currently 

known about how students learn linear algebra. 

The Invertible Matrix Theorem is a core theorem for a first course in linear algebra in 

that it connects the fundamental concepts of the course. Because of this, it represents a main 

thread that is present throughout the entire course. This thread has at least two main layers of 
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investigation—that of the concepts involved, and that of the way in which these concepts are 

connected to one another. First, as previously stated, the twenty equivalencies of the IMT (those 

listed as (a)-(t) in Figure 1.1) highlight the concepts considered central to any linear algebra 

course. They are not all covered on the same day of class—rather, the twenty concepts are a 

large part of what is covered over the course of the entire semester. This is clear from the 

recommendations of the Linear Algebra Curriculum Study Group (Carlson, Johnson, Lay, & 

Porter, 1993), as well as from an investigation into many of today’s most utilized textbooks 

(e.g., Lay, 2003; Strang, 1988). Thus, for students to understand the main ideas of the Invertible 

Matrix Theorem, they necessarily would have to be conversant with the key concepts that were 

developed over the course of the semester.  

 
Figure 1.1. The Invertible Matrix Theorem 

The Invertible Matrix Theorem 

 Let A be a square n × n matrix. Then the following are equivalent: 

a) A is an invertible matrix. 
b)  A is row equivalent to the n × n identity matrix. 
c)  A has n pivot positions. 
d) The equation Ax = 0 has only the trivial solution. 
e) The columns of A form a linearly independent set. 
f) The linear transformation x  Ax is one-to-one. 
g) The equation Ax = b has exactly one solution for each b in Rn. 
h) The columns of A span Rn. 
i) The linear transformation x  Ax maps Rn onto Rn. 
j) There is an n × n matrix C such that CA = I. 
k) There is an n × n matrix D such that AD = I. 
l)   AT is an invertible matrix. 
m)  The columns of A form a basis of Rn. 
n)  Col A = Rn. 
o) dim Col A = n 
p)  rank A = n  
q)  Nul A = {0} 
r) dim Nul A = 0 
s) The number 0 is not an eigenvalue of A. 
t) The determinant of A is not zero.  
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The second thread of the Invertible Matrix Theorem is the connections among the 

constituent parts. This theorem marries a variety of mathematical concepts from a variety of 

contexts; some concept statements within the IMT are vector-oriented (such as span and linear 

independence), whereas others relate more appropriately to linear transformations (such as one-

to-one and onto). Furthermore, the nature of equivalence and the importance of A being an n x n 

matrix are also contributing factors as students develop ways of reasoning about connections 

among the various mathematical ideas. Reasoning—in the sense of making connections across 

ideas, representations, and contexts, as well as in terms of argumentation and justification—is a 

valuable skill and part of the practice of mathematics. Thus, investigating the development of 

how ideas are connected is a valuable contribution to the field of undergraduate mathematics 

education research.  

 
1.3 Students’ Evolving Interactions with the Invertible Matrix Theorem 

  
 Because the Invertible Matrix Theorem weaves together most of the central ideas in an 

introductory course in linear algebra, no one single class session could encompass all the 

equivalences that constitute the IMT. Rather, new equivalencies were added to the theorem as 

the semester progressed. Thus, students’ understanding of the theorem changed in two 

dimensions over the progression of the semester: (a) knowledge of the theorem changed as more 

aspects of the theorem were ‘revealed’ or layered on over the course of the semester, and (b) 

understanding of previously known aspects of the theorem (presumably) changed as the 

semester progressed. Both of these reasons warranted an investigation into how the ways in 

which students—both collectively and individually—reasoned about the IMT change over time.  

 Other researchers, from both educational and anthropological fields, have investigated 

this progression through what is sometimes referred to as genetic analysis. Ercikan and Roth 

(2006) state that, when dealing with a genetic explanation, “a certain fact is not derived from 
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antecedent conditions and laws (deduction) or observations and antecedents (induction) but 

rather is shown to be the endpoint of a longer development, the individual stages (phases) of 

which can be followed” (p. 19). This type of analysis has been valued by the likes of 

anthropological researchers such as Saxe and Esmonde (2005), who studied, over a course of 

more than twenty years, how the function of a particular word form shifted for a central New 

Guinea tribe. In studying this word form, which dealt with the tribe’s counting system, Saxe and 

Esmonde asked, “How do new collective systems of representation and associated mathematical 

ideas arise in the social history of a social group?” (p. 172).  

My inquiry into how students reasoned about the Invertible Matrix Theorem over time 

was an analogous investigation. To study how students interact with a theorem that itself is 

developing over the course of the semester necessarily deals with how mathematical ideas arise 

in the social setting of a classroom. In a study dealing with students’ developing ideas regarding 

equivalent fractions, Saxe et al. (2009) elaborate by stating,  

Teachers pose problems, solicit students’ solutions and orchestrate discussions 
to guide students to make their mathematical ideas public and reflect on 
relationships among their ideas. In the social context of classroom lessons, 
students’ ideas may be taken up or rejected, valued or devalued, and interpreted 
in various ways, and, in this process, students’ mathematical ideas become 
elaborated and often transformed. (p. 203) 

 
In addition to Saxe and his colleagues, other researchers have recently taken up research 

agendas that investigate the emergence, development, and spread of ideas in a classroom 

community over time (e.g., Cobb, Stephan, McClain, & Gravemeijer, 2001; Schwarz, Dreyfus 

& Hershkowitz, 2009; Stephan & Rasmussen, 2002; Tiberghien & Malkoun, 2009). The results 

of this study contribute to this emerging research agenda.  

 
1.4 Analyses that Examine Change over Time on Both Individual and Collective Levels 

 
Recall the two research questions under consideration: (a) how the collective classroom 

community reasoned about the Invertible Matrix Theorem over time, and (b) how an individual 
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student reasoned about the Invertible Matrix Theorem over time. As indicated in the previous 

section, the emergence and development of mathematical ideas occurs not only for each 

individual student but also for the classroom as a collective whole. I contend, as others have 

(e.g., Cobb, 1999; Izsák, Tillema, & Tunç-Pekkan, 2008; Hershkowitz, Hadas, Dreyfus, & 

Schwarz, 2007; Rasmussen & Stephan, 2008), that these two forms of knowledge genesis—on 

an individual and on a collective level—are inextricably bound together in their respective 

developments. As Saxe (2002) posits,  

In collective practices, joint tasks are accomplished...through the interrelated 
activities of individuals. In such joint accomplishments, individual and 
collective activities are reciprocally related. Individual activities are constitutive 
of collective practices. At the same time, the joint activity of the collective 
gives shape and purpose to individuals’ goal-directed activities. (p. 276-277) 

 
Therefore, in order to gain the most fully developed understanding of the emergence, 

development, and spread of ideas in a particular classroom, I contend that analysis along both 

individual and collective levels, over the course of the semester, is warranted and necessary.  

 
1.5 Conclusion 

 Investigating the learning and teaching of linear algebra, commonly seen as an 

extremely pivotal yet rather difficult mathematics course for university students, will be a 

valuable contribution to the field of mathematics education research. In this chapter I introduced 

two particular research questions regarding a central theorem in any first course in linear 

algebra: 

1. How did the collective classroom community reason about the Invertible Matrix 
Theorem over time? 

2. How did an individual student reason about the Invertible Matrix Theorem over 
time? 
 

I then developed a rationale for the interest and validity of these questions through the 

exploration of four fundamental lines of inquiry: 1) the study of linear algebra; 2) the Invertible 

Matrix Theorem and a focus on it as a line of research; 3) a focus on students’ evolving 
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interactions with the Invertible Matrix Theorem; and 4) analyses that examine change over time 

on both the individual and the collective level.  

 Within Chapter 2, I review the relevant literature that helped to shape and inform my 

study, and Chapter 3 provides extensive detail of my methodological approach to both data 

collection and data analysis. Within Chapter 4 I present the results from the first reason 

questions, the ways in which the collective reasoned about the Invertible Matrix Theorem over 

time. Chapter 5 presents the analogous results through individual-level analysis. Finally, 

Chapter 6, in addition to summarizing the results, discusses (a) various strengths and 

weaknesses of my analytical tools as used within this study, (b) various implications for 

teaching, and (c) avenues for future research.  
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CHAPTER TWO: LITERATURE REVIEW 

 
Chapter 1 briefly highlighted various aspects of the existing literature regarding 

educational research in linear algebra. In the first section of the present chapter, I explore this 

body of research in more depth. In particular, I focus my detailed survey on what I find in the 

literature regarding the teaching and learning of the foundational concepts of linear algebra—

those involved in the Invertible Matrix Theorem. I also provide information on the sparse 

amount of research conducted regarding how students understand and build connections 

between these core ideas. Section two of this chapter is an in depth review of the literature 

regarding the analytical distinction regarding the mathematical development of an individual 

learner versus that of a collective group of learners. Finally, section three addresses the existing 

literature regarding the analysis of students’ changing ways of reasoning over time.  

 
2.1 The Teaching and Learning of Linear Algebra 

Compared to other areas of mathematics education research—such as research on the 

teaching and learning of fractions, functions, or calculus—the area of linear algebra is relatively 

underdeveloped. Over the past twenty years, there have been a few key studies, namely those by 

Dorier and colleagues in France, Sierpinska and colleagues in Canada, and a handful by other 

researchers, such as Harel, Carlson, and Stewart. Although this body of literature as a whole is 

rather limited, what does exist covers a wide spectrum of topics. The variety of work done in 

linear algebra ranges from the historical development of linear algebra as a field in mathematics 

(Dorier, 1995a; Kleiner, 2007; Moore, 1995); discussions about the abstract, formal, and 

unifying nature of linear algebra as a mathematical field (Dorier, Robert, & Rogalski, 2003); the 

various modes of representation and modes of thinking possible within linear algebra (Harel, 

1999; Hillel, 2000; Sierpinska, 2000; Stewart & Thomas, 2008); investigations into and 

categorizations of difficulties that students have with linear algebra (Harel, 1989b; Sierpinska, 
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Nnadozie, & Okta, 2002); various recommendations and approaches for teaching linear algebra 

(Carlson, Johnson, Lay, & Porter, 1993; Harel, 1997; Rogalski, 2000; Uhlig, 2003); and 

descriptions of various creative and productive student work done in linear algebra (Possani, 

Trigueros, Preciado, & Lozano, 2010; Larson, Zandieh, & Rasmussen, 2008; Wawro, 2009). 

While all of these avenues of pursuit are interesting in their own right and are important to the 

development and enrichment of the field of linear algebra education in general, not all are of 

utmost relevance to the proposed study regarding the Invertible Matrix Theorem. Thus, the 

literature that I review in this chapter regards the nature of linear algebra and associated modes 

of representation and thinking, as well as research conducted regarding students’ interactions 

with the particular concepts associated with the IMT—this includes research on student 

difficulties with and creative ways of interacting with these concepts. I conclude by 

investigating what research has been conducted regarding how students connect the ideas of the 

Invertible Matrix Theorem to one another.  

 
2.1.1 The nature of linear algebra 

The investigations by Dorier, Robert, and Rogalski (2003) into the difficulties with the 

formal nature of linear algebra led them to an extensive survey of the historical development of 

this content area. From this work they developed the notion of a unifying and generalizing 

concept. Regarding this notion, they state: 

A unifying and generalizing concept (or theory) is characterized by the fact that 
it did not emerge essentially to solve a new type of problems in mathematics 
(like the derivative or the integral for instance). Its creation and its use by 
mathematicians were motivated rather by the necessity to unify and generalize 
methods, objects and tools, which had been independently developed in various 
fields. Therefore the formalism attached to a unifying and generalizing concept 
is constitutive of its existence and creation...In other words, formalism cannot 
be avoided when learning linear algebra...This does not mean that unifying and 
generalizing concepts have no intuitive background. In fact they have several 
such backgrounds which result from an abstraction of the common 
characteristics of various objects of a less formal nature. (p. 186) 
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This quote indicates that the content of linear algebra is formal and unifying by nature. That is, 

the notion of connecting ideas together is inherent in the way in which the modern field took 

form. This is yet another justification for investigations into the development of reasoning 

regarding the Invertible Matrix Theorem which, by its very nature, is the unification and 

generalization of a variety of concepts, forms, and functions in linear algebra. 

According to Hillel (2000), linear algebra is often the first mathematics course that 

students see that is a mathematical theory, systematically built and reliant upon definitions, 

explicit assumptions, justifications, and formal proofs. Research has shown that proof-related 

difficulties are not unique to a first course in linear algebra (Selden & Selden, 1987; Weber, 

2001). Thus, Hillel focused instead on what he proposes are student difficulties that are specific 

to linear algebra: the existence of several modes of description, the problem of representations, 

and the applicability of the general theory (p. 192). Hillel claimed there exists three different 

modes of representation in linear algebra. The abstract mode utilizes language of generalized 

theory, including terms such as dimension, span, linear combination, and subspace. The 

algebraic mode uses concepts more particular to the vector space Rn, such as matrix, rank, and 

systems of linear equations. Finally, the geometric mode uses language that is familiar from our 

lived experiences, such as point, line, plane, and geometric transformation (p. 192). In addition 

to detailing difficulties students have with the geometric mode (such as confusion potentially 

caused by describing vectors as both arrows and points), Hillel described a few difficulties that 

students have with moving between the three modes of representation. One particularly difficult 

aspect for students is to move between the abstract and the algebraic when the underlying vector 

space is Rn for both. This would occur when tackling change of basis problems. To think of a 

string of numbers as a representation of a vector rather than the vector itself (which is 

represented according to different bases but is still the same vector) is difficult for students to 

grasp or even see the need for grasping. In reference to Hillel’s distinction of abstract, algebraic, 
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and geometric modes of representation, Larson (2010) noted that students often seem to blend 

these modes of representation. For instance, she gives examples such as “span of a matrix” or 

“linearly dependent matrix” (blending abstract and algebraic).  

 In conclusion, the difficulties students have when encountering linear algebra is a result 

not only of their relative inexperience with formal mathematics, but also of the formal and 

theoretical nature of the linear algebra content itself. What are the ‘content objects’ in the 

domain of linear algebra? What are some of the specific difficulties and successes that students 

have with these fundamental concepts? It is to addressing these questions that the next section 

turns. In particular, I summarize studies that report on various aspects of student difficulty, as 

well as on particular concepts such as vectors and scalars, linear combination, linear 

independence, linear transformation, span, basis, and eigenvectors and eigenvalues. 

 
2.1.2 Students’ interactions with the ideas of the Invertible Matrix Theorem 

From work spanning over the last twenty years, Harel (1989a; 1997; 2000) offers a 

variety of reasons which factor into why linear algebra is often such a difficult course for 

students. He posited one difficulty is that students are asked to treat the objects of linear 

algebra—such as matrices and systems of equations—as entities or objects that can be 

manipulated. This is consistent with research about student thinking in other areas of 

mathematics, such as student conceptions of the derivative (Zandieh, 2000) or function 

(Carlson, 1998). For example, Harel (2000) contended that one reason students have difficulty 

determining if the set 

€ 

A = x,x 2,x 3,x 4{ } is linearly independent is that the “concept of function 

as a vector is not concrete to them. That is to say, these students have not formed the concept of 

function as a mathematical object, as an entity in a vector space” (p. 181). Another reason that 

linear algebra is traditionally difficult for students is the change in symbolism (Harel, 2000). 

From high school courses or single-variable calculus, students are accustomed to equations such 
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as 

€ 

cx = d , where all three variables take their values from the real numbers. However, consider 

the complexity in the matrix equation   

€ 

R x =
 
0 , where R is a matrix and both   

€ 

 x and   

€ 

 
0  are multi-

component columns vectors. To find the solution (if one exists) to the aforementioned equation 

means to determine the values for each component of the vector   

€ 

 x  such that the associated 

system of linear equations, embedded with this matrix equation, have solutions. As this 

demonstrates, even the commonly used symbolism in linear algebra entails a new level of 

complexity for students.   

Harel (1989b) discussed three more possible reasons for student difficult in linear 

algebra: attempting to solve problems in unfamiliar domains of application, using abstract 

setting to solve real problems, and trying to understand algebraic systems that do not have an 

easily accessible geometric interpretation. Related to the latter, Harel (1997) posits that a reason 

for students’ struggle with linear independence is not necessarily solely dependent upon if they 

comprehend its definition, but rather in trying to use linear independence to solve problems with 

generalized (rather than specific) vectors. Furthermore, Harel reports that students are able to 

correctly determine if, for instance, a set of five specific vectors in R5 are linearly independent 

but are unable to address questions such as deciding if mutually orthogonal vectors are linearly 

independent, or if elementary operations on rows of matrices affect their linear independence.  

In a work that investigates student understanding of linear independence and other key 

ideas, Stewart and Thomas (2009) utilized a framework that combines APOS theory (Dubinsky 

& McDonald, 2001) and Tall’s three worlds of mathematics (Tall, 2004) in order to categorize 

student understanding of basic concepts of linear algebra. APOS theory delineates basic 

cognitive thinking through the categories of action, process, and object and claims that this is 

the order in which students should encounter new ideas in order to develop correct 

understanding. Tall, on the other hand, describes three interrelated worlds—embodied, 
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symbolic, and formal—that encompass the totality of mathematical learning. Thus, Stewart and 

Thomas, based on the dissertation work of Stewart (2008), report on students’ interactions with 

fundamental concepts—namely vectors and scalars, linear combination, linear 

independence/dependence, span, basis, and eigenvectors and eigenvalues—by using a 

descriptive framework utilizing the categories of action, process, object, embodied, symbolic, 

and formal. From six different case studies ranging over a few years, the authors reported a 

variety of results, such as finding little evidence of students’ understanding of definitions. They 

also reported that the majority of students “had little embodied world thinking and instead 

tending to show an action/process view of the symbolic world” (p. 960). For instance, when 

asked to describe eigenvectors or eigenvalues, students seemed unfamiliar with embodied views 

of these notions, instead describing them mostly in terms of actions and symbols. In another 

report of the same study, Stewart and Thomas (2008) posited that the concept of basis can be 

seen in three different representations (explained here in R3 for ease): embodied as a set of three 

non-coplanar vectors; symbolically as the column vectors of a matrix with three pivot positions; 

and formally as a set of linearly independent vectors that span R3. The authors found that 

students were most likely to work symbolically with basis, feeling more comfortable with 

finding a basis for a particular space (procedural-symbolic) than with giving a definition or 

describing basis geometrically.  

In a study regarding students’ interactions with transformational geometry in linear 

algebra, one research question that Portnoy, Grundmeier, and Graham (2006) investigated was 

how participants in their study viewed transformations, as processes or as objects. The authors 

found that participants displayed an operational view of transformations, as “processes that map 

geometric objects onto other geometric objects” (p. 201). The authors provided a variety of data 

to support this claim, namely statements made by a student they refer to as ‘Peter.’ Two of 

Peter’s statements that evidence his operational view of transformation are (a) “taking 
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something and putting it in another place in the plane;” and (b) “...you can take a set of points, 

then flip them, slide them, or rotate them such that their measure in relation to each other 

remains constant after the isometry is performed.” (p. 201). Thus, an operational view of 

transformations meant that students saw transformations as processes that map geometric 

objects onto other geometric objects. The authors further conjectured this one view might have 

contributed to the difficulty students had with utilizing transformations as objects in geometric 

proofs.  

In another study regarding student understanding of linear transformations, Dreyfus, 

Hillel, and Sierpinska (1998) reflected upon a teaching experiment that heavily relied on 

students’ interaction with coordinate-free geometry on a dynamic geometric software program. 

The authors reported on students’ apparent understanding of the term “transformation.” 

Students seemed to equate the term “transformation” with the vector “T(v),” as if 

transformation, rather than describe a relation between v and T(v), describes an object T(v) that 

depended on v. The language students used further confirmed this hypothesis, reading “T(v)” as 

“the transformation of v,” rather than as “the image of v under the transformation T.” The 

authors posited that this language might be a carry over from earlier familiarity with functions 

or a case of metonymy, or was quite possibly a result of interactions the dynamics geometry 

software itself. Because the software was designed to be “coordinate free,” a given vector 

represented any general vector. Thus, what would it mean for two vectors or two 

transformations to be equal? How was that addressed in the geometric software? Thus, the 

authors concluded that while their research made contributions towards a dynamic 

representation of vector and transformation, unseen difficulties arose and further iterations of 

studying how students interact with the dynamic software were needed.  

In addition to research that either categorizes what students struggle with doing or 

explains what an expert thinks is necessary to understand an idea (e.g., the notion of genetic 



  
22 

 

decompositions), researchers have also looked into productive and creative ways that students 

are able to interact with the ideas of linear algebra. For example, Possani et al. (2010) analyzed 

the use of two educational theories in conjunction—those of APOS Theory (Dubinsky & 

McDonald, 2001) and the Models and Modeling perspective (Lesh & Doerr, 2003)—and their 

utility and compatibility in designing a teaching sequence that starts with a “real life” problem. 

This problem related to analyzing traffic flow of various configurations of open and closed 

streets for a city grid, and it elicited the used of systems of linear equations. The authors 

reported on student progress throughout the task as they progressed through different solution 

strategies. For instance, they state that the study shows that: 

Students learn what they are supposed to learn and they can even do more than what is 
normally expected from them when given the opportunity. In this experience, the 
geometrical analysis of the solution space and the parameters came out as a direct result 
of students’ work on the model. (p. 15) 
 
Larson, Zandieh, and Rasmussen (2008) reported on ways that students were 

conceptualizing mathematical objects (such as vectors and matrices) as the class developed 

algebraic methods to solve for eigenvectors and eigenvalues of a given matrix. In particular, the 

authors present a key idea that emerged as a central and powerful way in which students came 

to reason. This key idea had to do with the relationship between the determinant of a matrix and 

the dependence relationships among its column vectors. The class explored the question, “Given 

a matrix B, is there some vector w that, when multiplied by B, results in a vector Bw that points 

in the same direction as the original vector w?” One student, Karl, explained his thinking in the 

following way:  

Karl: When you look at the, uh, vectors, what does the determinant give us? It gives 
us the area between any two given vectors. And if, if our determinant equals 
zero, that basically means that the vectors that we’re solving for have no area in 
between. So therefore they lie along the same line. 

 
As solution methods were pursued in this class, the approach of solving 

€ 

det w Bw[ ] = 0  surfaced 
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as one approach that resonated with Karl’s geometric description. This method, which became 

known as the “eigenvector first” method, proved to be a creative and effective solution strategy 

for students when working in R2. In larger dimensions, however, analogous geometric 

interpretations are either non-existent or hard to develop in the same manner. Thus, an 

intellectual need (Harel, 2007) for developing the standard approach of solving 

€ 

det B− λw( ) = 0  

for the eigenvalues first and then the associated eigenvectors developed out of student ways of 

reasoning.  

As Larson, Zandieh, and Rasmussen (2008) noted, familiarity with geometric 

interpretations of linear dependence and determinants afforded the students great insight and 

creativity when introduced to concepts of eigen theory. Furthermore, upon reviewing the 

classroom video, our research team noted several instances in which the students used 

geometric interpretations of particular ideas as taken-as-if-shared (Stephan & Rasmussen, 2002) 

in both small group and whole class discussions. I agree with Sierpinska (2000), who claimed 

that geometric, arithmetic, and structural reasoning and the ability to move between these are 

fundamentally important in learning and understanding the core ideas of linear algebra. Because 

of this, I began to think about ways to foster other salient connections such as these in 

preparation for the data collection effort for this dissertation. One such way was to create tasks 

that build off of students’ geometric understanding of the plane in order to develop rich 

conceptualizations of various linear algebra ideas, such as vector, matrix, linear independence, 

and basis.  

In Wawro (2009), I reported on the development of one such instructional sequence 

with the particular goal of fostering a geometric conceptualization of linear transformation and 

change of basis in R2. In particular, the instructional sequence was developed with the intent of 

leading to a student-driven reinvention of the well-known equation A = PDP-1, for the case 
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where A, P, P-1 and D are 2 x 2 matrices. The sequence of tasks was first piloted in a problem-

solving interview setting, in which three different pairs of students were asked to work through 

the tasks together. The tasks centered on the necessity of finding a convenient way to determine 

a 2 x 2 matrix for a particular linear transformation. For the expert, this ‘convenient way’ would 

be to use the two eigenvectors as the basis through which the matrix for the transformation is 

determined. However, as detailed by Wawro (2009), the solution strategy of one particular pair 

of students differed substantially from the expert approach, yet was mathematically correct and 

powerful for them. Throughout the activity, one of the students, Sophie, seemed to be thinking 

about the actual action of the transformation and how a convenient coordinate system would 

make the geometric transformation easier to visualize, whereas the other student, Marissa 

seemed focused on the matrix representation of the transformation and how a convenient 

coordinate system would make the matrix easier to ascertain. Marissa and Sophie were able to 

reinvent an informal version of the matrix equation AP = PD, and Marissa—in her manipulation 

of this equation in order to solve for matrix A—developed the equation A = PDP-1 en route to 

her solution. Upon reflection, I found that this particular pair was very reliant upon not only 

algebraic solution techniques related to invertibility and determinants, but also upon geometric 

interpretations of linear transformations. Although it has yet to be analyzed, the instructional 

sequence, known as the ‘Rubber Sheet Task’ and the ‘Blue to Black Task,’ has been adapted 

and implemented in whole class instruction over the last two semesters and will be used in the 

upcoming teaching experiment as well. 

As has been demonstrated in this section, a variety of work has been done regarding 

students’ interaction with the individual ideas that contribute to the Invertible Matrix Theorem. 

Larson, Rasmussen, and Zandieh (2008) investigated students’ intuitive notions related to the 

concepts of eigenvectors and eigenvalues. Hillel (2000) explored the difficulties that students 

have in coordinating both abstract and algebraic representations for basis, while Sierpinska 
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(2000) explored the link being theoretical and practical modes of thinking regarding students’ 

developing notions of linear transformation. In addition, studies have been conducted regarding 

student difficulties with the notions of rank (Dorier, Robert, Robinet, & Rogalski, 2000), linear 

independence (Bogomolny, 2006; Harel, 1997), and span (Stewart & Thomas, 2009). However, 

I have found very little research that addresses how students connect these core ideas. This are 

of investigation—how students connect those fundamental ideas of linear algebra involved in 

the Invertible Matrix Theorem—that is the focus of the next section. 

 
2.1.3 Connecting the ideas of the Invertible Matrix Theorem 

 The fundamental ideas of linear algebra that are involved in the formulation of the 

Invertible Matrix Theorem are: span, linear independence, invertibility, row equivalence, pivots, 

one-to-one and onto linear transformations, unique solutions, basis, determinants, and 

eigenvalues (see Figure 1.1). As demonstrated in the previous section, there is a growing body 

of research addressing student difficulties and successes with these concepts, but very little has 

been conducted explicitly regarding how students understand the equivalence of these concepts. 

A basic premise of this study was that the Invertible Matrix Theorem is a powerful tool that, for 

students, unifies the main concepts of the course and provides them with multiple avenues 

through which to forge these connections. Over the course of the various iterations of our 

classroom teaching experiment in linear algebra, we have consistently used the same textbook 

for the course (Lay, 2003), which highlights the Invertible Matrix Theorem throughout the text. 

Upon investigation of the origination and formation of the Invertible Matrix Theorem, the 

textbook author informed me that, to the best of his knowledge, he coined the title “Invertible 

Matrix Theorem.” He elaborated by stating the following: 

I created the IMT as a framework to connect many important ideas that 
coincide in the case of a square matrix. The connections among these ideas, 
however, had been well-known for many years before my time.  The first 
edition of my linear algebra text (in 1994) contained 15 statements in the 
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Invertible Matrix Theorem. Over the years, with the addition of new material, 
the number of statements in the IMT has grown to 22. I believe that mental 
possession of a framework such as the IMT increases the length of time a 
student retains useful information from the course, after the course is over. 
(David C. Lay, personal communication, January 5, 2010). 
 

As Lay stated, the connections among the concepts in the Invertible Matrix Theorem were well-

known before the common usage of that title developed (see, for instance, originals works by 

Cayley (1858) or Hamilton (1853)). If educational research is concerned with creating 

instruction that assists students in developing from their current ways of reasoning into more 

complex and formal mathematical reasoning—a development that is imperative in a course such 

as linear algebra—then more research into how students reason about how formal, theoretical 

ideas is needed. Such research, like that in this dissertation, is foundational to designing 

instructional sequences that build on student concepts and reasoning as the starting point from 

which more complex and formal reasoning develops. 

As previously stated, the body of literature regarding how students reason about how 

these key concepts of linear algebra are connected is sparse. While many of the studies 

previously considered in this chapter address more than one of the key concepts, few if any of 

them explicitly investigate how students build relationships between the ideas as a main object 

of inquiry. In what follows, I report on a handful of studies that I have found that address 

students’ connections explicitly. For instance, Stewart and Thomas (2008) studied the necessary 

genetic decompositions of linear independence and span that students must have in order to 

construct an understanding of basis. The study participants were asked to create concept maps 

linking the notions of span, linear combination, basis, linear independence, and subspace. Some 

students were able to create concept maps that connected basis with span and/or linear 

independence, and some were missing one or both of these links. By analyzing these concepts 

maps in comparison to a genetic decomposition of basis, the authors were able to posit potential 
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pedagogical changes, such as (a) focusing on the notion of linear combination more or (b) trying 

to develop a more “embodied view” of basis.  

In a study guided by “the belief that better understanding of students’ difficulties leads 

to improved instructional methods,” Bogomolny (2007) investigated students’ understanding of 

linear independence and how example-generation tasks can elucidate how students understand 

linear algebra. Bogomolny asked students to generate an example of a 3 x 3 matrix A, with 

nonzero entries, such that the column vectors of A formed a linearly dependent set. She found, 

in order to construct their examples, that many students utilized the connections “linear 

dependence ↔ free variables / pivot positions / zero row in echelon form, and linear 

independence ↔ no free variables / vectors not multiples of each other” (p. 271). She further 

hypothesized that the connections students relied upon were indicators as to whether they had 

an action view of linear dependence (e.g., a matrix should be row-reduced and then examined 

for a zero row) or an object view of linear dependence (e.g., the vectors have, as a property, that 

they are not linear combinations of each other). Thus, Bogomolny contended that example-

generations tasks such as this one have the potential to be not only effective assessment tools for 

instructors but also helpful learning tools for students.  

As has been demonstrated in this section, very little research has been conducted 

explicitly investigating students’ reasoning about how the ideas in the Invertible Matrix 

Theorem are connected. How do students justify for themselves how one of these statements’ 

validity for any given n x n matrix implies another statement’s validity? How do students use 

aspects of the Invertible Matrix Theorem as tools to reason about a novel problem? My research 

fills this gap by addressing the questions, of how students—both individually and collectively—

reason about the ideas in the IMT. Inherent in these two questions is the analytical distinction 

between “individual” and “collective.” A review of the existing literature regarding this 

distinction is presented in the following section. 
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2.2 Analysis of the Individual and of the Collective 

 Recall that the two research questions deal with (a) how the classroom community 

reasoned about the Invertible Matrix Theorem over time, and (b) how an individual student 

reasoned about the Invertible Matrix Theorem over time. In any given classroom, the 

emergence and development of mathematical ideas occurs not only for each individual student 

but also for the classroom as a collective whole. Thus, the individual and collective forms of 

knowledge genesis are inextricably bound together in their respective developments. This study 

was not the first in mathematics education research to consider the analysis of mathematical 

development at both the individual and collective level. In this section, I review a portion of this 

body of literature. I begin with a discussion of work by Inagaki, Hatano, and Morino (1998) and 

Sfard (2007). I then go into particular detail summarizing the relevant work of Cobb and his 

colleagues (Cobb, 1999; Cobb & Yackel, 1996; Stephan, Cobb, & Gravemeijer, 2003) because 

of its broad impact on the work of other researchers (Elbers, 2003; Hershkowitz, Hadas, 

Dreyfus, & Schwarz, 2007; Stephan & Rasmussen, 2002) and its relevance to the proposed 

study.  

Inagaki, Hatano, and Morino (1998) investigated various aspects of individual student 

interaction within whole class discussion. Students in elementary classes were asked to solve a 

novel word problem for which they were given four possible solutions. The authors were 

particularly interested in the structure of whole class discussion regarding solution strategies for 

the given problem and, in particular, students’ engagement on a student-student basis for these 

discussions. They were also interested in how students were able to incorporate an aspect of the 

whole class discussion into their own solution strategies. Although the authors stressed the 

importance of the social aspects of the classroom—participation, hearing others’ ideas, etc.—

their analysis was unapologetically focused on the individual as learner and constructor of 

knowledge. As they stated, “Although participants influence and are influenced by others, they 
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are not supposed to construct a collective understanding as a product of a series of negotiations” 

(p. 524). The authors did hypothesize about how an analysis of both collective problem solving 

and individual understanding could take shape. However, their notions seemed heavily 

weighted towards how the classroom is a catalyst for generating and refining individual 

comprehension, stating that what is constructed collectively occurs first and then is incorporated 

by the individual classroom members into their ways of problem-solving. While Inagaki, 

Hatano, and Morino (1998) did pay attention to the occurrences at the collective level, their 

analyses seemed to merely pay credit to the classroom collective as a situational influence on 

learners, rather than consider the development of the collective as a unit of analysis in and of 

itself.  

 Sfard (2007), on the other hand, acknowledged in a much more reflexive manner the 

role of the collective on the mathematical development of a learner and vice versa. She made 

use of a participationist view of learning, which considers the activities and patterned processes 

of individuals and the collective, rather than considering the transformation in an individual. 

Furthermore, she offered two processes that result in the transformation of human activity 

which are consistent with a participationist viewpoint: that of individualization of the collective 

and communalization of the individual. Sfard posited that  

The processes of individualization and communalization are reflexively 
interrelated: The collective activities are primary models for individual forms of 
acting, whereas individual variations feed back into the collective forms of 
doing, acquire permanence, and are carried in space and time from one 
community of actors to another. (p. 569) 
 

Through this viewpoint, the interrelatedness of the individual and the collective come to the 

fore, highlighting how the activity of one necessarily affects the activity of the other. This 

sentiment, which is focused on practices and activities as the objects of analysis, is consistent 

with that of Saxe (2002), who stated that: 

In collective practices, joint tasks are accomplished...through the interrelated 
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activities of individuals. In such joint accomplishments, individual and 
collective activities are reciprocally related. Individual activities are constitutive 
of collective practices. At the same time, the joint activity of the collective 
gives shape and purpose to individuals’ goal-directed activities. (p. 276-277)  
 

Sfard further investigated the relationship between the individual and the collective level of 

activity in the classroom by suggesting the constructs of discourse and identity as potentially 

fruitful avenues through which this seemingly divisive distinction could be linked in a 

productive manner analytically. Not pursuing these possibly illuminating links but noting the 

complexity of the matter, Sfard left those as avenues for future research.  

Along rather complimentary notes to the work of Sfard (2007) and Saxe (2002), the 

work of Cobb and his colleagues (Cobb, 1999; Cobb & Yackel, 1996; Stephan, Cobb, & 

Gravemeijer, 2003) took into consideration the socially and situated nature of mathematical 

activity, drawing influence from sociocultural theory, discourse theory, and symbolic 

interactionism. Their work analyzed students’ mathematical reasoning as “acts of participation 

in the mathematical practice established by the classroom community” (p. 5). Originally, 

however, their work integrated the social aspect of the classroom merely as a catalyst for purely 

psychological development. Their view of the role of social interaction was severely challenged 

while watching a teacher struggle with getting students to express their own ideas and 

justifications in class discussion, in comparison with sharing what they thought the teacher 

expected to hear. It was through this struggle that the researchers began to consider the 

inextricable role of social and cultural factors in the mathematical development of students. 

Thus, in accordance with their goal of supporting students’ mathematical development, Cobb 

and colleagues began considering the importance of what they referred to as social norms and 

sociomathematical norms (Cobb, Yackel, & Wood, 1989; Cobb & Yackel, 1996). As stated by 

McClain (2002), “Students’ actions and constructions are influenced by a teacher’s actions and 

constructions, and vice versa. But neither is totally dependent on or independent of the other” 
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(p. 217). The constructs of social norms and sociomathematical norms grow naturally out of this 

very belief—that the individual actions and social interactions of a community, including both 

students and teachers, affect all members of the community.  

Social norms, by definition, are the agreed upon social interactions and practices of a 

community that become routine (Rasmussen, Yackel, & King, 2003). These are not discipline 

or situation specific; it may be the case that ‘defending a claim with evidence’ is seen as a 

normative behavior in multiple circles, such as an academic classroom or a court of law. Cobb 

and Yackel (1996) stated they are not “psychological processes or entities that can be attributed 

to any particular individual. Instead, they characterize regularities in communal or collective 

classroom activity” (p. 178). Sociomathematical norms share the same ideologies as that of 

social norms, but they are specific to a mathematics environment. For instance, a social norm 

could be the value that all community members need to justify any claim made inside the 

community. A sociomathematical norm, then, could be that this justification needs to be 

grounded in a defendable argument, such as a proof, an example, or a counterexample. Thus, 

the way in which this justification was specifically given inside a mathematics classroom served 

as the sociomathematical norm. Cobb and colleagues, who originally considered individual 

intellectual development purely in terms of psychological aspects, changed their view to one 

that necessarily viewed individual development as a characteristic of participation in the 

classroom community. Thus, the constructs of social norms and sociomathematical norms, 

which live at the collective level of analysis, are an integral aspect in understanding and 

encouraging individual students’ mathematical development.  

A third tool to aid in the analysis of mathematical learning of the classroom community 

is that of classroom mathematical practice, which investigate the “taken-as-shared ways of 

reasoning, arguing, and symbolizing established while discussing particular mathematical 

ideas” (Cobb, 1999, p. 9). Classroom mathematical practices, then, do not illuminate any 
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information about a particular individual student’s mathematical development, nor should it be 

assumed that the two must overlap. Thus, an analysis utilizing the theoretical lenses of social 

norms, sociomathematical norms, and classroom mathematics practices and investigating their 

development takes the collective classroom community as the unit of analysis, documenting the 

development of practices and the establishment of meanings at the collective level. One 

example of such an analysis is the work of Stephan and Rasmussen (2002) towards describing 

and analyzing the emergence of classroom mathematical practices of a university-level 

mathematics course. Their methodology (Rasmussen & Stephan, 2008) for documenting the 

collective activity of a classroom is detailed in Chapter 3.  

Elbers (2003), in a tribute to Streefland’s work regarding interaction and collaborative 

learning, focused on how collective reasoning at the collective level may influence individual 

students’ learning, as well as how individual students contribute to whole class discussion. 

Defining learning as the changing participation of students in the classroom discourse, Elbers 

analyzed student learning by comparing individual work to whole class discussion in order to 

“get a view of the progress of mathematical understanding both in the classroom as a whole and 

in individual children's minds” (p. 82). Elbers claimed that a clear separation or hierarchical 

relationship between individual and collective levels of activity is not possible. Given that 

individuals’ work within the class is influenced by the formation of social and 

sociomathematical norms, Elbers claimed that students’ learning is best understood through the 

light of what occurs at the collective level, which he refers to as the “discursive structure” (p. 

93). He noted that students often utilize the same types of explanations in their individual work 

that they have used or seen used in whole class discussion. Thus, “the individual work is to be 

considered as an anticipation of a class discussion, or, following a class discussion, as a 

reconstruction of it. Given this discursive structure, there is no priority for individual or 

collective work: they are two sides of the same coin” (pp. 93-94).  
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In conclusion, the work of Cobb and colleagues regarding the coordination of 

individual and social lenses—described above and influential to many researchers—led to a 

theoretical framework known as the emergent perspective (Cobb & Yackel, 1996), and many 

researchers (e.g., Izsák, Tillema, & Tunç-Pekkan, 2008; Hershkowitz, Hadas, Dreyfus, & 

Schwarz, 2007; Stephan & Rasmussen, 2002) have found this an inspirational framework 

through which to analyze the mathematical development of a given classroom and its members. 

For instance, Hershkowitz et al. (2007) cite the emergent perspective (and the associated views 

of the individual and the collective) as foundational to their work in analyzing individual and 

group construction of knowledge. However, they claim their work integrates more of a 

longitudinal analysis, more details of which are provided in the next section.  

 
 

2.3 Genetic Analysis of Knowledge Development 
 

 The Invertible Matrix Theorem is a powerful tool for a first course in linear algebra. As 

the semester progresses, the Theorem takes form and develops meaning as students come to 

reason about the ways in which key ideas in linear algebra are connected. The developmental 

nature of both the mathematical content in and the students’ understanding of the IMT is 

consistent with a belief foundational to the teaching experiment—the belief that mathematics is 

a human activity (Freudenthal, 1991). Steffe and Thompson (2000), while detailing what is 

foundational in establishing teaching experiment methodology, took a similar position, stating 

that viewing mathematics as “a product of functioning human intelligence defines mathematics 

as a living subject.” Furthermore, Steffe and Thompson posit that  

Looking behind what students say and do in an attempt to understand their 
mathematical realities is an essential part of a teaching experiment...Teaching 
experiment methodology is based on the necessity of providing an ontogenetic 
justification of mathematics; that is, a justification based on the history of its 
generation by individuals. (p. 269) 
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This quote stresses the importance of investigating the progressive construction of mathematical 

ideas by considering how students create, correlate, refine, utilize these ideas over the course of 

time. Furthermore, this longitudinal analysis is also informative regarding students’ developing 

ways of reasoning regarding the mathematical ideas. The research questions for the proposed 

study are founded upon similar beliefs. Thus, conducting a genetic analysis of knowledge 

development for both individuals and the collective is appropriate and necessary. In this section, 

I review the works of various researchers who have either utilized or developed methodology 

for genetic analyses of knowledge development.  

In a paper focused on the process of constructing knowledge among a group of three 

students, Hershkowitz, Hadas, Dreyfus, and Schwartz (2007) analyzed the construction, 

interaction, and consolidation of knowledge, taking individual diversity into consideration. The 

authors referred to this as shared knowledge, defined as “a common basis of knowledge which 

allows the students in the group to continue together the construction of further knowledge in 

the same topic” (p. 42). Their work detailed the high level of diversity in individual students’ 

ways of interacting with the collective during the construction of shared knowledge and how 

students seemed to integrate this shared knowledge for themselves in their own work. While 

this work clearly relates to the individual-collective distinction previously discussed, 

Hershkowitz et al. (2007) claimed it goes beyond that work by Cobb et al. (2001) by adding a 

perspective on continuity of knowledge. They stated that their data analyses from a time span on 

several lessons are considered as a whole. The purpose for this is to observe and analyze 

students as they construct new mathematical knowledge in one activity, as well as to observe 

and analyze in detail if and how students use this knowledge in further activities. While the 

authors’ point is heard, I contend that some of the work of Cobb and colleagues does consider a 

longitudinal aspect. In particular, the documentation of classroom mathematics practices 

through the use of Toulmin’s model (1969) of argumentation has as an object of inquiry how 
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the ways in which ideas function in the collective shift over time. I contend that the work of 

Hershkowitz et al. (2007) and Cobb et al. (2001) are, at least somewhat, considering the same 

phenomenon—the development of mathematical knowledge over time—from differing lenses 

and through different analytical techniques. In any case, the data corpus for an analysis of this 

magnitude is great, and no clearly defined methodologies for analyzing these data exist.  

Other researchers have also focused on the genetic analysis of individuals over the 

course of the classroom. For instance, Simon, Saldanha, McClintock, Akar, Watanabe, and 

Zembat (2010) emphasized the utility of extremely fine-grained microgenetic analyses of 

individuals in order to develop an understanding of the process of conceptual change for an 

individual. However, the work by Saxe (2002) and Tiberghien and Malkoun (2009) delineate 

multiple levels of investigation through which to analyze the development of knowledge over 

the course of a semester at both the individual and the collective layer. It is with a rather 

detailed review of their relevant work that I conclude this chapter.  

Approaching the same phenomenon of genetic analysis but through a foundation in 

anthropological research, Saxe (2002) and his colleagues (Saxe & Esmonde, 2005; Saxe, 

Gearhart, Shaughnessy, Earnest, Cremer, Sitabkhan, et al., 2009) investigated knowledge 

development through the notion of cultural change, asking questions such as, “How does the 

activity of individuals shape historical change, and, reciprocally, how does historical change 

affect individuals’ practices?” (Saxe & Esmonde, 2005, p. 174). Particular to development in 

the classroom, the authors investigated how researchers could collect data (how much, from 

what sources, etc.) and conduct analyses that would allow them to make descriptions of how 

individuals’ ideas develop in the classroom over time, given that the classroom is also changing 

over time. As a response, they suggested analyzing human development over time from three 

different strands, providing researchers a way to account for some of the complex factors of 

development. The three analytical strands of microgenesis, ontogenesis, and sociogenesis are 
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offered as integrated yet distinct aspects of collective practices. The authors defined 

microgenesis as the short-term process by which individuals construct meaningful 

representations in activity, ontogenesis as the shifts in patterns of thinking over the development 

of individuals, and sociogenesis as the reproduction and alteration of representational forms that 

enable communication among participants in a community (Saxe et al., 2009, p. 208). As these 

descriptions imply, each of the three strands of development (microgenesis, ontogenesis, and 

sociogenesis) are a line of inquiry in and of themselves. This study utilized the strands of 

microgenetic and ontogenetic analysis in order to investigate students’ ways of reasoning about 

the Invertible Matrix Theorem. 

 In a complementary vein of research, Tiberghien and Malkoun (2009) presented a 

methodological framework for reconstructing the life of knowledge in teaching sequences, 

where the authors state that knowledge is understood through the metaphor of life in that 

knowledge “lives” within groups (Chevellard, 1991). For Tiberghien and Malkoun, the driving 

question was what methodologies could researchers develop in order to both distinguish 

between individual and collective analyses of the classroom as well as relate fine-grain and 

broader analysis over time? To address this, the authors utilized a collective perspective to 

describe taught knowledge and an individual perspective to describe students’ developing 

knowledge. The methods of analysis are similar for both and involve three different scale sizes 

and two different reference points. The authors labeled the collectively oriented reference point 

as conventional and the individually oriented reference point as situational. The three scale 

sizes are microscopic, mesoscopic, and macroscopic. The scale sizes correspond to analyzing 

key words or utterances (microscopic), themes over a few lessons (mesoscopic), and longer 

sequences such as an entire semester (macroscopic).  

 Tiberghien and Malkoun (2009) also offered up various possibilities of coordination 

between these analytical distinctions. For instance, coordination between the microscopic and 
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macroscopic level from a conventional perspective could involve the notions of density and 

continuity. Density is the number of key words or utterances in relation to the duration of a 

theme or sequence, whereas continuity is the distribution of key words or utterances that are 

most reused over the duration of a theme or sequence.   
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CHAPTER THREE: RESEARCH METHODOLOGY 

 

In this chapter, I detail the data I collected in order to address my research questions 

and the analytical methods by which I analyzed these data. The research questions are: 

1. How did the collective classroom community reason about the Invertible Matrix 
Theorem over time? 
 

2. How did an individual student reason about the Invertible Matrix Theorem over 
time? 

The data for this study came from a semester-long classroom teaching experiment. I begin this 

chapter by expanding upon what is entailed in conducting a classroom teaching experiment, 

both theoretically and practically. The remainder of the chapter is divided into three main 

sections: (a) the setting and participants for the teaching experiment, (b) the data I collected and 

the methods by which I collected them, and (c) the analyses that I conducted on these data.  

 

3.1 Theoretical Background 

 Over the past twenty years, mathematics education research has begun to shift away 

from an exclusively cognitive focus to one that acknowledges the situatedness of student 

activity within the classroom and broader communities of practice (e.g., Lave, 1988; Wenger, 

1998; Yackel, Rasmussen, & King, 2000). There has also been an emphasis in the reflexivity of 

theory and practice, in that practicing teachers—rather than being passive recipients of research 

into learning and teaching—can be active participants in research that then affects the 

classroom. The design research methodology laid out by Cobb (2000) takes these aspects into 

consideration in what is referred to as a classroom-based teaching experiment. The remainder of 

this section elaborates (a) the underlying theoretical perspective that marriages the importance 

of both psychological and social processes, (b) the reflexivity of theory and practice, and (c) 

methodology for conducting classroom-based teaching experiments.  
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The theoretical perspective on learning that undergirds the classroom teaching 

experiment that was conducted is the emergent perspective (Cobb & Yackel, 1996), which 

coordinates psychological constructivism (von Glasersfeld, 1995) and interactionism (Forman, 

2003; Vygotsky, 1987). With regards to mathematical development, the former places a high 

emphasis on individual psychological products with the social atmosphere merely being a 

catalyst for learning, whereas the latter perspective deemphasizes psychological processes in 

favor of the social organizational structure is which learners participate. The emergent 

perspective honors the importance of both psychological and social processes. Thus, according 

to the emergent perspective, 

The basic relationship posited between students’ constructive activities and the 
social processes in which they participate in the classroom is one of reflexivity 
in which neither is given preeminence over the other...A basic assumption of 
the emergent perspective is, therefore, that neither individual students’ 
activities nor classroom mathematical practices can be accounted for adequately 
except in relation to the other. (Cobb, 2000, p, 310) 

 
From the perspective that learning is both an individual and a social process, investigating the 

mathematical development of students necessarily involves considering the classroom 

community of which they are a part. This theoretical relationship between the individual and the 

social has immediate implications for the relationship between theory and practice. 

Mathematical development happens in situ, during and through participation and interaction in 

the classroom. Whereas in previous approaches to the implementation of educational research 

the teachers were seen as passive consumers of research results, more recent research has 

embraced a shift away from this notion in favor of a reflexive relationship between theory and 

practice. From this latter perspective, “theory is seen to emerge from practice and to feed back 

to guide it” (Cobb, 2000, p. 308). Thus, with the goal of developing innovative ways to 

positively affect mathematics education, classroom-based design research is seen as a justified 

and valuable contribution to the improvement of education.   
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Classroom teaching experiments consist of the following three components: 

instructional design and planning, the ongoing analysis of classroom events, and the 

retrospective analysis of all data sources generated in the course of the teaching experiment 

(Cobb, 2000). The research team of which I was a member while conducting this study has and 

continues to integrate these three aspects in our work. Within our work in linear algebra, we 

have conducted three semester-long classroom teaching experiments (Fall 2007, Spring 2009, 

and Spring 2010), which took place at two different universities with three different teacher-

researchers. The data for this dissertation comes from the Spring 2010 iteration, for which I was 

the teacher-researcher. Throughout the duration of the teaching experiments, the teacher-

researcher met with the research team approximately three times a week in order to debrief after 

class, discuss impressions of student work and mathematical development, and plan the 

following class. The products of the teaching experiments include revised and refined sequences 

of instructional tasks and basic research about students thinking regarding fundamental ideas in 

linear algebra (Henderson, Rasmussen, Sweeney, Wawro, & Zandieh; 2010; Larson, Zandieh, 

& Rasmussen, 2008; Larson, Zandieh, Rasmussen, & Henderson, 2009; Wawro, 2009; Wawro, 

Sweeney, & Rabin, 2011; Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 2011).  

 

3.2 Setting and Participants 

  The semester-long classroom teaching experiment was conducted in an introductory 

linear algebra course during the spring semester 2010 at a large southwestern public university. 

This is the same course in which the research team has previously conducted iterations of the 

classroom teaching experiment (Fall 2007 and Spring 2009). Throughout the mathematics 

education literature, there exist various recommendations regarding pedagogical approaches and 

classroom environments. Consistent with our past work, our research team created an inquiry-

oriented classroom for the 2010 teaching experiment. By the term inquiry, we mean both 
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teacher-inquiry and student-inquiry (Rasmussen & Kwon, 2007). For our team, an inquiry-

oriented classroom entails (a) students learning mathematics though inquiry by participating in 

mathematical discussions, posing arguments and explaining their thinking, and solving novel 

problems; and (b) teachers inquiring into their students’ mathematical thinking and reasoning 

(Rasmussen, Kwon, & Marrongelle, 2008). Furthermore, our work draws on the instructional 

design theory of Realistic Mathematics Education (Freudenthal, 1991), which begins with the 

tenet that mathematics is a human activity. We endeavored to create a linear algebra course that 

built on student concepts and reasoning as the starting point from which more complex and 

formal reasoning develops. Thus, as Gravemeijer (2004) states, “For the instructional designer 

this implies a change in perspective from decomposing ready-made expert knowledge as the 

starting point for design to imagining students elaborating, refining, and adjusting their current 

ways of knowing” (p. 106).  

 
3.2.1 Classroom Setting 

The linear algebra course took place in one of the university’s most technologically 

advanced classrooms. A simple schematic of the room is given in Figure 3.1. 

Figure 3.1. Schematic of the classroom 

 

1:  Ceiling camera 
2:  Tripod camera, left 
3:  Tripod camera, 

right 
A: White board w/ 

projector screen 
B:  White board w/ 

projector screen 
C:  Side bar for 

portable white 
board display 

D:  Smart board 
E:  Teacher lectern 

and tech control 
station 
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In particular, this classroom was equipped with the following: 

• Two large whiteboards (labeled ‘A’ and ‘B’ in Figure 3.1) that covered two of the 

four classroom walls.  

• A “smart station” (labeled ‘E’ in Figure 3.1) that was equipped with: a computer 

(both PC and Mac), a connection for a laptop computer, and an external document 

camera—all of which could be projected onto one or both of the projector screens.  

• A smart board (labeled ‘D’ in Figure 3.1).  

• Eight portable, double-sided whiteboards, approximately 3’ x 4’ each. These 

portable white boards were used during small group work as a place for students to 

collaborate on tasks and share their ideas and conclusions. Furthermore, the 

classroom was equipped with a place to hang the whiteboards on the third wall 

(labeled ‘C’ in Figure 3.1), or could be placed along the whiteboards ‘A’ or ‘B’ for 

display. In our previous work, we found these portable white boards were 

advantageous for group work. These boards provided a large space for 

collaboration and the joint production of ideas. Furthermore, the whiteboards 

provided clear images of student work that were easily captured on the video 

recordings.   

• Student workspace configured as eight tables, each capable of accommodating up 

to five students. We have found this particular configuration—one that is already 

arranged to be conducive to small group interactions and collaborations—to be 

particularly beneficial in promoting such an atmosphere. 

 

3.2.2 Participants 

Students enrolled in the linear algebra course had generally completed three semesters 

of calculus (at least two semesters was required). Approximately half had also completed a 

discrete mathematics course, and 75% of students were in their second or third year of 

university. The population of the course, categorized by declared major, was: Computer 

Engineering (10); Computer Science (7); Mathematics (4); Statistics (3); Mathematics Single 

Subject (2); and other science or business field (5).   
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In order to address the second research question regarding how an individual student 

reasoned about the Invertible Matrix Theorem over time, I conducted an in-depth case study of 

one student enrolled in the linear algebra course. I used three main criteria by which I will chose 

this student: (a) given consent to be videotaped during class, (b) willingness to participate in 

individual interviews, and (c) perceived ability to articulate his/her thinking during whole class 

discussion. The importance of the first two criteria is obvious. The third criterion—perceived 

ability to articulate thinking—is relevant because it is important to study a student who is 

willing able to be “a good sharer” in order to study student thinking and mathematical 

development in situ. By the end of the second week of the semester, the research team had an 

idea of who some these “key informants” were (Tremblay, 1989) and arranged the seating chart 

so that they were among the students seated at the three tables that were videorecorded during 

class. For my dissertation, I focused on one of the three tables that were filmed, and five 

students sat there together for the duration of the semester. By filming their table each class day 

and conducting two individual interviews with each of them, I collected a wide swath of rich 

data from which to choose the subject for my case study. Because of his willingness to 

participate in class, ability to communicate his thinking and reasoning with others, and his 

genuine interest and in the course and the material, I chose Abraham as my case-study subject. 

He was a junior statistics major, and his small group was comprised of a senior business major, 

a sophomore mathematics major, a junior chemical physics major, and a senior computer 

engineering major. I plan to return to the rich set of data I collected regarding the other four 

students in subsequent studies, as is detailed in Chapter 6.  

 

3.3 Data Collection 

In order to collect data relevant to the collective establishment of meaning regarding the 

Invertible Matrix Theorem, I collected the following four sources of data: video and transcript 
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of whole class discussion, video and transcript of small group work, photos of whiteboard work, 

and written work on in-class activities. In order to collect data relevant to individual 

establishment of meaning regarding the IMT, I collected the following four sources of data: 

video and transcript of whole class discussion, video and transcript of small group work, video 

and transcript from individual interviews, and various written work. The written work was in 

the form of in-class worksheets, exams, reflections, homework, and portfolios, as well as 

Abraham’s written work from the interviews. Whole class and small group video data came 

from ten target class days. Individual interview data came from two interviews, one conducted 

midway through the semester and one conducted at the end of the semester. Each of these data 

sources is described in more detail in the remainder of this section. 

 
3.3.1 Classroom data collection for collective analysis 

The teaching experiment was “semester-long” in that we collected data on every class 

day of the semester, barring the three exam days, for a total of 29 data-collection days. We had 

four video cameras (labeled 1, 2, 3, and 4 in Figure 3.1) filming the entirety of each class day, 

except exam days. The classroom had one permanent ceiling camera (labeled 1 in Figure 3.1), 

operated by a graduate student from the control room, which followed the instructor at all times 

in order to capture her actions and words for the entire duration of each class. The instructor 

wore a lapel microphone that was synced to this particular camera in order to maximize the 

quality of the recording.  

Three cameras, on tripods, were placed in the far-left, back-middle, and far-right 

regions of the classroom. The left camera (labeled 2 in Figure 3.1) was set up near one 

particular table and captured the work and conversation of that table during times of small 

group work, as well the whole class discussions of the classroom on video. During whole class 

discussions, the instructor did not do all the talking. Rather, students contributed their ideas as 
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well as commented on and questioned other students about their ideas. Because of that, it was 

the job of the left camera to capture on video the faces of whoever was speaking during class. 

The right camera (labeled 3 in Figure 3.1) captured the work of a second particular small group, 

as well as the classroom interactions—who was up front, what was written on the board, etc. 

The middle camera (labeled 4 in Figure 3.1) collected video data for a third small group and 

captured a more holistic view of the classroom during whole class discussions.  

After every class session, a member of the research team was responsible for uploading 

the video data from the four video cameras onto the research team’s desktop computer. These 

data served as discussion points during our weekly research meetings regarding ongoing 

analysis of student thinking. Furthermore, the video from 18 of the class days was transcribed 

during the semester by a professional transcriber in preparation for in-depth retrospective 

analysis. These 18 days were chosen according to my discretion regarding which days I, with 

input from the research team, deemed to be relevant to my study of the Invertible Matrix 

Theorem.   

In addition to video data, the research team retained copies of all written work created 

during class activities. The work was collected at the end of every class and photocopied 

immediately by a member of the research team. The students then had the opportunity to collect 

the work from the instructor’s office prior to the next class section; if not collected, it was 

returned during the next class period. Finally, the research team also took photos of collective 

student work at the end of each class period. One research team member was in charge of taking 

photos of the portable white boards every time they were used during class. This proved useful 

because the photos enabled us to quickly examine student work and inform teaching for the 

following day. Finally, of the 29 class days that were filmed, portions of ten of them served as 

data for this study. Specifics regarding the data reduction phase are given in Section 3.4.  
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3.3.2 Individual Data Collection 

For the research question concerning the ways in which Abraham reasoned about the 

IMT, I collected data from the following four sources: video and transcript of whole class 

discussion, video and transcript of small group work, video and transcript from individual 

interviews, and various written work. The collection of video data of whole class and small 

group work is the same as that described in the previous section, so the description is not be 

repeated here. Rather, descriptions of the individual student interviews and of the relevant 

written work data sources are provided.  

3.3.2.1 Interview data. Abraham participated in two semi-structured individual 

interviews (Bernard, 1988); one occurred the middle of the semester (between Days 16 and 17), 

and one took place the week after final exams. Both interviews were piloted on 1-2 students 

from the class. This allowed me to alter or edit the interview protocol as needed, as well as 

discuss with the interviewer any clarifications or concerns regarding the interview prior to 

interviewing Abraham. The other four members of Abraham’s small group also took part in 

both individual interviews. These data sources will be integral to a future study that investigates 

both the individual ways of reasoning about the IMT for the small group members as well as 

that of the “mini- collective.”  

The interview protocols were based on previous iterations of our work but also grew 

organically in response to the development of this particular class. The first interview was 

conducted during the middle of the semester, before the Invertible Matrix Theorem was fully 

developed in an explicit manner. Thus, this interview was composed mostly of questions that 

asked students to relate the ideas he/she has already been introduced to, to solve a given 

problem, or to generate examples or non-examples. The post-semester interview explicitly 

asked students to reason about concept statements that comprise the Invertible Matrix Theorem 

and how they saw them as equivalent. The interview questions can be found in Appendix 3.1. 
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The data sources for analysis consisted of video recordings of the interviews, as well as 

copies of all student work. Additionally, each interview was transcribed completely. Although 

both of Abraham’s interviews lasted approximately ninety minutes, only a portion of each 

interview was explicitly relevant to this study. More detail about the data reduction process is 

provided in the Data Analysis Section. 

3.3.2.2 Written work. A variety of written data sources over the course of the semester 

were used as secondary data sources. Every assignment that students turned in—weekly 

homework assignments, exams, daily reflections, and associated portfolios—was scanned and 

stored electronically before the work is returned to the students. First, weekly homework 

assignments were given to the students, for which they had one week to complete. The 

homework questions originated both from the course textbook (Lay, 2003), as well as from 

what the researchers developed in order to investigate how students were making sense of 

particular class discussions. From the textbook, a variety of questions were assigned that 

necessitated connecting various ideas in the IMT in order to reach a solution. For exam data, 

there were two in-class exams during the semester and one final exam. The question format on 

exams included strictly calculational questions, example-generation questions, explanation 

questions, as well as true/false with justification questions.  

I also collected reflection question data from the daily class sessions. Every class period 

(except on exam days), I saved the last five minutes of class for a reflection question. Most 

reflections served as an avenue to reflect on ideas that students were in the midst of learning 

about. They were often their first “alone time” to try and reason through ideas and make 

connections. Furthermore, reflections often served as catalysts for very lively debates and 

discussions at the start of the next class period. Finally, the course portfolio was a selection of 

materials that each student chose from the course that documented what he felt represented his 

mathematical development. This provided a mechanism for students to reflect on their previous 
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work as they prepared for each exam. For each of the problems they selected to be in the 

portfolio, students developed a rationale that explained why they selected the problem and what 

mathematics learned they through their work on it. Expected length of rationale statement was 

at least 100 words, and portfolios were turned in at the time of each exam, including the final.  

These data—the student written work in the form of homework, exam, reflection, and 

portfolio responses—served as secondary data sources for the research questions. The main data 

sources for analysis were the video recordings and associated transcripts from whole class 

discussion and small group work during class, as well as video recordings and associated 

transcripts from Abraham’s individual interviews. The written data sources detailed above 

served to triangulate claims made about student thinking regarding the research questions.  

 

3.4 Data Analysis 
 
  The instructional design of the classroom teaching experiment was highly influenced by 

the notions that mathematics is a human activity (Freudenthal, 1991) and the importance of 

engaging learners in mathematical activities such as symbolizing, defining, algorithmatizing, 

and justifying (Rasmussen, Zandieh, King, & Teppo, 2005). The construction of the Invertible 

Matrix Theorem occurred throughout the semester as students and the instructor participated in 

mathematical activities such as these. Because of this, a natural approach to analyze the ways in 

which students reasoned about the Invertible Matrix Theorem was to analyze the arguments that 

were made involving the IMT. In other words, because of the inherent structure of the IMT—a 

list of 16 equivalent statements—much of the theorem’s “coming to be” is reflected in the ways 

in which students and teachers constructed arguments about how the different equivalencies 

were related. When considering the analysis of such mathematical arguments produced by 

students and mathematicians, Inglis, Mejia-Ramos, and Simpson (2007) stated that, “Generally 

these types of analysis are of two kinds: those that concentrate on the argument’s content and 
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those that concentrate on the argument’s structure” (p. 3). These two aspects of an argument—

content and structure—are somewhat reflexive and inseparable and were analyzed through the 

use of both adjacency matrices and Toulmin (1969) model of argumentation. The results of the 

two analytical tools address both the content and the structure of the relevant arguments, so by 

coordinating the two analyses, I created a more full, rich, and accurate depiction of the ways in 

which students reasoned about the Invertible Matrix Theorem than would have been achieved 

through using only one of the two analytical tools.  

 There were six phases of analysis, and each had both an individual and a collective 

level, where I refer to the analysis of my in-depth case study of Abraham as the “individual 

level.” The six phases were: 

1. Reduction of the data set 

2. Construction of Toulmin schemes of argumentation 

3. Construction of adjacency matrices  

4. Ontogenetic analysis of constructed Toulmin schemes 

5. Ontogenetic analysis of constructed adjacency matrices 

6. Coordination of analysis across the two analytical tools. 

Consider Table 3.1, which organizes the main aspects of both levels (individual and 

collective) of the six phases of the analysis. During Phase One, I reduced the data to include all 

data relevant to the research questions, including relevant whole class discussion, small group 

work, written sources, and interview data. Data for the collective analysis came from whole 

class discussion video data, whereas data for the individual level came from whole class 

discussion video data, small group work video data, and interview data, with written sources as 

secondary data sources.  
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Table 3.1. Summary of the six phases of analysis. 

 

As an illustrative example, consider the “Collective” row of Table 3.1. For analysis at the 

collective level, there were 117 distinct exchanges to analyze—these were the products of Phase 

1 of the analysis. There were labeled according to the day on which they occurred, so, for 

instance, if Day 6 had 3 arguments, they were labeled Argument 6.1, Argument 6.2, and 

Argument 6.3. For each exchange, there was a distinct Toulmin scheme created to represent that 

argument. Thus, there were 117 distinct Toulmin schemes, and these are denoted in the Phase 2 

column as “TS 1” through “TS n.” Furthermore, for every one of these n-many exchanges 

identified in Phase One and used in Phase Two for Toulmin schemes, there was a distinct 

adjacency matrix coding created to represent that exchange. These are denoted in Phase 3 as 

“AM 1” through “AM n.” Thus, for every i, 1 ≤ i ≤ n, the Toulmin scheme “TS i” and the 
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adjacency matrix “AM i” are created from the same exchange from the reduced data set in 

Phase 1. 

While Phases 2 and 3 are comprised of many small-scale, discrete analyses—what Saxe 

(2002) refers to as microgenetic analyses—Phases 4 and 5 analyzed the shifts in form of 

function of those discrete arguments. This is consistent with what Saxe refers to as ontogenetic 

analysis.. That is, In Phases 4 and 5 I compiled from the results of Phases 2 and 3 and 

considered the body of constructed Toulmin schemes and adjacency matrices, respectively 

(denoted, for example, as “AM d–k” and “TS 1–j” in Table 3.1), and I analyzed characteristics 

and shifts in students’ arguments over the course of the semester. I used two primary analytic 

lenses in Phases 4 and 5. In Phase 4, I consider the individually constructed Toulmin schemes 

from Phase 2 as a whole in order to document, for the collective level, normative ways of 

reasoning and classroom mathematics practices. This analysis is consistent with the work of 

Rasmussen and Stephan (2008) and Cole, Becker, Towns, Rasmussen, Wawro, and Sweeney 

(2010). 

During Phase 5, on the other hand, I investigated shifts in form and function of how 

students reason about and reason with the various concepts in the IMT over time by considering 

qualitative changes in constructed adjacency matrices from Phase 2. While some of this analysis 

of adjacency matrices was compatible with the analysis from Phase 4, it also involved 

macrogenetic, holistic analysis of the adjacency matrices’ content and structure. For instance, 

which concepts from the Invertible Matrix Theorem were used most often overall by students as 

they reasoned about novel problems? Were there some concepts from the IMT that were used 

consistently over the course of the semester, whereas others dropped off? This analysis is 

inspired by the work of Tiberghien and Malkoun (2009) who consider the notions of density 

and continuity of ideas as analytical frames in genetic analyses.   
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Finally, Phase 6 combined the work done in parallel with Toulmin schemes and 

adjacency matrices on both the microgenetic level (comparing the results of Phases 2 and 3) and 

the ontogenetic level (Phases 4 and 5). This comparison of parallel analyses is denoted in the 

last column of Table 3.1 by boxes such as “AM j–n TS j–n.” In other words, Phase 6 consisted 

of cross-comparative analyses, for any given argument or collection of arguments, of the results 

from both analytical tools (adjacency matrices and Toulmin schemes). This cross-comparison of 

results from the two analytical tool provides a rich way to investigate the content and structure 

of arguments offered by both individuals and the collective. Thus, by coordinating the two 

analyses, I obtained a rich and full depiction of the ways in which students were reasoning 

about the Invertible Matrix Theorem. 

  While the previous description accompanying Table 3.1 provides a broad overview of 

the proposed plan for data analysis, the remainder of this section elaborates upon the six phases 

of analysis in greater detail. Again, these phases are (a) reduction of the data set, (b) 

construction of adjacency matrices, (c) construction of Toulmin schemes, (d) ontogenetic 

analysis of constructed adjacency matrices, (e) ontogenetic analysis of constructed Toulmin 

schemes, and (f) coordination of analyses across the two analytical tools.  

 

3.4.1 Phase One: Reduction of the Data Set  

 For analysis at the collective level, the data sources were video of whole class 

discussion. Although every day of the semester (except exam days) was video recorded, 

portions of the ten days that are described in Table 3.2 served as the main data sources for the 

analysis at the collective level. First, Figure 3.2 contains what became known as the Invertible 

Matrix Theorem for the class during the study. One may note that this statement of the IMT in 

Figure 3.2 varies slightly from that given in Figure 1.1 in Chapter 1. The variations between the 

two presentations are: (a) The equivalencies are in a different order, and (b) The presentation in 
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Figure 1.1 includes five statements that Figure 3.2 does not include: “AT is an invertible matrix” 

(statement l), “dim Col A = n” (statement o), “rank A = n” (statement p), “dim Nul A = 0” 

(statement r), and “the columns of A form a basis for Rn” (statement m). The change in 

statement ordering and omission of these five statements is to reflect the actual development of 

the IMT during class.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 3.2. The Invertible Matrix Theorem, as developed in class. 
 

  In order to determine which days were necessary to analyze, I first established that a 

day or portion of a day would be deemed appropriate for analysis if the classroom discourse for 

a given portion was either implicitly or explicitly involved the class members actively engaging 

in developing ways of reasoning about two or more concepts from the Invertible Matrix 

Theorem in conjunction with each other. To analyze everything ever said about a given topic, 

such as linear independence, would not be fruitful, given that the data set would be too vast to 

The Invertible Matrix Theorem 

Let A be a square n × n matrix. Then the following are equivalent: 

1. The columns of A span Rn 
2. The matrix A has n pivots 
3. For every b in Rn, there exists a solution x to Ax = b 
4. For every b in Rn, there is a way to write b as a linear combination of 

the columns of A 
5. A is row equivalent to the n × n identity matrix 
6. The columns of A are linearly independent 
7. The only solution to Ax = 0 is trivial solution 
8. A is invertible 
9. There exists an n x n matrix C such that CA = I 
10. There exists an n x n matrix D such that AD = I 
11. The transformation T: Rn  Rn defined by T(x) = Ax is one-to-one 
12. The transformation T: Rn  Rn defined by T(x) = Ax maps Rn onto Rn 
13. The column space of A is all of Rn 
14. The null space of A contains only the zero vector 
15. The determinant of A is nonzero 
16. The number zero is not an eigenvalue of A 
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analyze anything in depth. Thus, as planned, I selected portions of whole class discussion when 

students were developing generalizations about ways in which the concepts within the IMT 

related to one another (such as equivalence between span and column space). Brief summaries 

of those ten class days in given in Table 3.2.   

Table 3.2. Chronological development of the Invertible Matrix Theorem. 
Class Day Chronological Development of the IMT  

Day 5 Students explored the concepts of span, linear dependence, and linear independence 
Day 6 The class worked to develop generalizations about linear independence and dependence 
Day 9 The groundwork for the IMT began with connecting various aspects (span, pivots, linear 

combinations, and solutions) for non-square matrices. This was known as “Theorem 4” 
in class.  
Theorem 4: Suppose A is an m x n matrix. The following are equivalent: 

a. The columns of A span Rm 
b. A has a pivot in each row 
c. For every vector b in Rm, b can be written as a linear combo of the columns of A. 
d. For every vector b in Rm, there exists a solution to the equation Ax = b. 

Day 10 While investigating relationships between span, linear independence, and existence of 
unique solutions, the necessity for square matrices arose. Theorem 4 was altered to 
address square matrices, and new equivalencies were added. This became known as the 
“New Theorem” in class. 
New Theorem: Let A be an n × n matrix. Then the following are equivalent: 

1. The columns of A span Rn. 
2. The matrix A has n pivots. 
3. For every b in Rn, there is a unique solution x to Ax = b. 
4. For every b in Rn, there is a unique way to write b as a linear combination of the 

columns of A. 
5. A is row equivalent to the n × n identity matrix. 
6. The columns of A form a linearly independent set. 
7. The only solution to Ax = 0 is trivial solution.  

Note that the New Theorem is identical to the first 7 equivalencies of the Invertible 
Matrix Theorem in Figure 3.2.  

Day 17 The class worked to develop conjectures about which types of matrices were invertible. 
Determined that matrices with rows or columns of zeroes, or any version of linearly 
dependence column vectors, were not invertible. Also determined that only square 
matrices could be invertible. Began the proof of “if the columns of A are linearly 
independent, then A is invertible,” but did not complete it.  

Day 18 The instructor began class by finishing the proof that had not been completed the 
previous class period. Thus, the equivalence between a matrix A being invertible and the 
columns of A forming a linearly independent set developed. The following three 
equivalencies (were added to the New Theorem. Furthermore, the New theorem was 
renamed ‘The Invertible Matrix Theorem.’  
The Invertible Matrix Theorem: Let A be a square n × n matrix. Then the following are 
equivalent. ... 

8. A is invertible 
9. There exists an n x n matrix C such that CA = I 
10. There exists an n x n matrix D such that AD = I 
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Table 3.2, continued. Chronological development of the Invertible Matrix Theorem. 
Class Day Chronological Development of the IMT  
Day 19 Further explorations into linear transformations led to the notions of one-to-one and onto. 

The class defined the terms domain, codomain, range, onto, and one-to-one. They began 
working through examples and nonexamples of both onto and one-to-one 
transformations.  

Day 20 After conferring with their group members, the students presented work they had 
done over spring break about generating examples of transformations that were 
and were not onto and one-to-one for the cases of m <n, m = n, and m > n.Upon 
investigating how it would be possible to have a transformation that was both one-to-one 
and onto, 11 and 12 were added to the IMT.  
The Invertible Matrix Theorem: Let A be a square n × n matrix. Then the following are 
equivalent: 
    ...    ...    ... 

11. The transformation x  Ax is one-to-one 
12. The transformation x  Ax maps Rn onto Rn. 

Day 24 Determinants had been introduced the previous class day as a way to think about the area 
or volume of images after transformations. On Day 24 students investigated how 
determinants was related to linear independence and invertibility. 15 was added to the 
IMT. 
The Invertible Matrix Theorem: Let A be a square n × n matrix. Then the following are 
equivalent: 
    ...    ...    ... 

15.   Det A ≠ 0 
Day 31 Students discussed the Invertible Matrix Theorem in small group as well as in whole 

class. They were given a set of 16 cards, each with one of the statements from the IMT, 
and asked to do a variety of sorting tasks together, such as arrange them into piles that 
“went together,” pick the most obvious and least obvious pair of equivalent statements, 
etc.  

 

For each of those ten days, I watched the video from Abraham’s small group (which also 

captured work in whole class) created a chronological summary of that class day’s events. This 

included time-stamped information about the topic of discussion, the tasks or problems being 

investigated, and instances of small group work for that day. These descriptions allowed me to 

know which sections of the video data were relevant for the research topics regarding the IMT.  

  The video for each of the seven days was transcribed completely by a professional 

transcriber. After checking the relevant sections of the transcript for accuracy and completeness, 

I created an argumentation log that identified each claim and supporting justification given. 

Each argument was numbered and then compiled sequentially into an argumentation log for that 
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day. The creation of argumentation logs followed the methodology developed by Rasmussen 

and Stephan (2008) for the documentation of collective activity. Their methodology, which was 

based on the analytical tool of Toulmin’s model of argumentation, is altered here to account for 

the additional use of adjacency matrices, which will also utilize these argumentation logs as 

data sources. These argumentation logs are listed as appendices within the appropriate chapters.  

For reliability purposes, I had a member of the research team independently create 

argumentation logs for portions of the first three days of analysis. We then discussed the 

argumentation log by comparing and defending each coding. This method of checking for 

disconfirming evidence for what constitutes an argument can be referred to as investigator 

triangulation (Denzin, 1978). Through this process, a high level of reliability was reached, and I 

completed the remainder of Phase 1 analysis on my own, reporting my findings back to the 

research team on a regular basis. The small group discussion and individual interview data 

served to address the second research question only. The process for data reduction of these data 

sets was similar to the process of data reduction of whole class discussion video data.  

Once the data sets of whole class discussion, small group discussion, and individual 

interviews were reduced according to the aforementioned steps, each data set was considered 

twice—once for the construction of Toulmin schemes and once for adjacency matrices analysis. 

Utilizing these analytical tools constitute Phase Two and Phase Three of the data analysis 

process, respectively. In the following two sections, I specify Phase Two and Phase Three in 

detail by (a) defining what the two tools are, (b) giving an example of each, (c) detailing how I 

will construct adjacency matrices and Toulmin schemes, and (d) explaining how each tool will 

be used on both the individual and collective levels of both research questions. 

 
3.4.2 Phase Two: Construction of Toulmin Schemes of Argumentation 

The Toulmin model of argumentation (Toulmin, 1969) is based upon a distinction 
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between logical arguments and substantial arguments. Toulmin claimed that arguments 

presented in discourse in some socio-historical context for a particular purpose (what he called 

substantial arguments), such as a justification for an already established claim in the court of 

law, often are structurally distinct from the formal, deductive structure of logical arguments 

thought to be inherent and absolute. In other words, some aspects of socially presented 

arguments are context dependent yet still function as acceptable justifications for particular 

claims. Toulmin described six main components of a substantial argument: claim, data, warrant, 

backing, qualifier, and rebuttal. The first three of these—claim, data, and warrant—are seen as 

the core of an argument. According to this scheme, the claim is the conclusion that is being 

justified, whereas the data is the evidence that demonstrates that claim’s truth. The warrant is 

seen as the explanation of how the given data supports the claim, and the backing, if provided, 

demonstrates why the warrant has authority to support the data-claim pair.  

This work has been adapted by many in the fields of mathematics and science education 

research (Krummheuer, 1995; Rasmussen & Stephan, 2008; Yackel, 2001) as a tool to assess 

the quality or structure of a specific mathematical or scientific argument and to analyze 

students’ evolving conceptions by documenting their collective argumentation (Erduran, Simon, 

& Osborne, 2004; Inglis, Mejia-Ramos, & Simpson, 2007; Weber, Powell, & Lee, 2008). 

Noting that the particular statements that students use in an argument are situation-specific, 

Yackel (2001) states that, “what constitutes data, warrants, and backing is not predetermined but 

is negotiated by the participants as they interact,” and the Toulmin model of argumentation is  

useful as a methodological tool for documenting the collective learning of a 
class because it provides a way to demonstrate changes that take place over 
time. Further it helps to clarify the relationship between the individual and the 
collective, that is, between the explanations and justifications that individual 
students give in specific instances and the classroom mathematical practices 
that become taken-as-shared. (p. 7) 
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My study utilized Toulmin’s model to analyze structure of individual and collective exchanges 

both in isolation and as they shift over time. These analyses are the subjects of the first half of 

both Chapter 4 and 5, so I provide only an example here.  

3.4.2.1 An example. To illustrate the Toulmin model of argumentation, consider the 

following segment of transcript, which was also seen in Chapter 1. Recall that the class had 

been asked to investigate the following properties of specific matrices and the associated 

transformations: domain, codomain, one-to-one, onto, and invertibility. Towards the end of a 

whole class discussion regarding this, the instructor initiated the following conversation: 

1 
2 
3 

Instructor: So let's make a note here of what we said so far about invertible...So 
what was the thing that you guys just said, how did you know it was 
invertible? Let's say that again. 

4 Bill:   It's linearly independent. 
5 Instructor: If 'it's' meaning…?  
6 Jesse:   The vectors of the matrix.   
7 
8 
9 
10 

Instructor: 
  

...If the column vectors of A are linearly independent, then you guys 
are saying it's invertible because of that. Are you guys able to 
explain why that should give invertibility?  I think you said 
something, or go ahead, Josiah. 

11 
12 
13 
14 
15 
16 

Josiah: When they're linearly independent, there's only one path you can 
take to get to it, so in order to get back, there can only be one 
answer to get back.  Whereas if they're dependent on each other, 
then depending on how you got there, would determine how you get 
back, what vector changed, so you don't have the right information 
again. 

17 Instructor: Jesse...Yeah? 
18 
19 
20 

Jesse:    Also, if they're dependent, in the RREF, you'll have a zero row, so it 
will be like you're losing information when you're trying to go 
back...If they are dependent, then their RREF will have a zero row. 

21 
22 

Instructor: Okay, columns dependent [writes] and so you're saying that the 
RREF of A has a zero or row of zeros. 

23 
24 

Jesse:    Right, so then if you try and, if you invert that, you can't, because 
it's like you're losing that information from that row. 

In lines 2-3, the instructor repeated a claim the class had stated (the matrix A is 

invertible) as she asked how they knew that claim was true (i.e., asked for data to support the 

claim). This exchange is documented in Figure 3.3. Upon hearing Bill’s reply, the instructor 

pushed for clarification by what he meant by “it.” After Jesse explained that “it” means the 
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vectors of the matrix A, the instructor restated this data-claim pair and asked the students for a 

warrant—how did they know the data supported their claim? This exchange is in Figure 3.4. 

 Example, Argument 1 
Claim The matrix A is invertible (Instructor, lines 2-3) 
Data It’s linearly independent (Bill, line 4) 

Figure 3.3. Example 1 of a Toulmin scheme. 
 

 

Figure 3.4. Example 2 of a Toulmin scheme. 

Next, the instructor did not comment on Josiah’s justification but rather called on another 

student. Jesse, in his justification, also mentioned the notion of “getting back,” but added in 

information about the RREF of the matrix A.   

 Example, Argument 3 
Claim The matrix A is invertible 

(Instructor, line 8) 
Data The column vectors of A are linearly independent (Instructor, restating students’ 

statements, line 7) 
Warrant If they are dependent, then their RREF will have a zero row, so it will be like 

you're losing information when you're trying to go back (Jesse, lines 18-20) 
Figure 3.5. Example 3 of a Toulmin scheme. 

 

Notice that Jesse did not elaborate upon what Josiah might have meant by “getting back.” 

Rather, Jesse offered up yet another connection between a linearly dependent set and a 

noninvertible matrix—that of an RREF with a row of zeroes. In fact, the idea of “getting back” 

went from being a warrant in Josiah’s argument to being part of the warrant in Jesse’s. Does this 

imply that the idea of “getting back” was functioning as-if the class community understood it to 

be synonymous with a matrix being invertible? With such a short data set in the transcript 

 Example, Argument 2 
Claim Matrices with an RREF with a row of zeroes are not invertible (Jesse, lines 23-24) 
Data It's like you're losing that information from that row (Jesse, line 24) 

Warrant When they're linearly independent, there's only one path you can take to get to it, so 
in order to get back, there can only be one answer to get back (Josiah, lines 11-13) 

Backing Whereas if they're dependent on each other, then depending on how you got there, 
would determine how you get back, what vector changed, so you don't have the right 
information again.” (Josiah, lines 13-16) 
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above, such strong claims cannot be substantiated here. Rather, this serves as an abbreviated 

example of how such analysis—how the collective reasoning about the IMT changes over 

time—took shape within the study.  

3.4.2.2 Constructing Toulmin schemes. The data sources for constructing Toulmin 

schemes were each of the exchanges from the argumentation logs created in Phase One. For 

analysis at the collective level, I used exchanges from the argumentation logs created from 

whole class discussion, whereas analysis at the individual level arose out of the argumentation 

logs created from small group work and individual interviews, as well as a small number from 

whole class discussion. For instance, the previous example with the whole class discussion 

would be one exchange from the collective argumentation log. 

 In order to construct a Toulmin scheme of a given exchange, I followed Phase One of 

the methodology detailed by Rasmussen and Stephan (2008). For reliability purposes, at least 

one member of the research team also constructed Toulmin schemes for a sample of the 

arguments from the argumentation log. As Rasmussen and Stephan state, this process is used to 

verify and/or refute the argumentation log for “each instance of a claim or a conclusion. We [the 

researchers] come to agreement on the argumentation scheme by presenting and defending our 

identification of the argumentation elements (i.e., the data, conclusion, warrant, and backing) to 

each other” (p. 199). Finally, each Toulmin scheme was labeled according to the day on which 

it occurred and which argument it was (e.g., Argument 20.1, 20.2, etc.). 

  3.4.2.3 Relevance to the research questions.  As previously stated, the Toulmin model 

has proven a useful tool for documenting mathematical development at a collective level. It was 

also an illuminating tool for documenting the ways in which Abraham reasoned about the 

Invertible Matrix Theorem as well. As was discussed in the individual Data Collection section, 

many opportunities arose throughout the semester asking a student to justify (that is, provide 

data, warrant, and possibly backing) for a particular pre-determined claim about the IMT.  
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3.4.3 Phase Three: Construction of Adjacency Matrices 

Adjacency matrices are representational tools from graph theory used to depict how the 

vertices of a particular graph are connected (Chartrand & Lesniak, 2005). These matrices can be 

used to represent data from a variety of graph forms. For instance, an undirected graph is just as 

it sounds—it only tallies whether or not an edge between vertices is present. A directed graph, 

on the other hand, not only indicates the presence of an edge, it also displays the directionality 

of the vertices’ connection. In this study, I created adjacency matrices that correspond to 

directed graphs in which the vertices are the statements in the Invertible Matrix Theorem (or 

students’ explanations of those statements) and the edges are directed in such a way as to match 

the implication offered by the student. The developed adjacency matrices were n x n, where n is 

the number of recorded relevant yet distinct statements made by students in any given 

explanation. The rows were the ‘p’ and the columns were the ‘q’ in statements of the form “p 

implies q” or “another way to say p is q.” For example, the statement, “I know that because the 

determinant of A is zero, matrix A is not invertible,” is of the form p implies q (determinant of A 

equals 0 implies A is not invertible), whereas a statement such as “the determinant of A is zero 

means that the parallelogram determined by columns of A has no area” is of the form another 

way to say p is q.  

Each matrix entry aij, where aij is the entry in the ith row and jth column of a given 

adjacency matrix, was determined by  

€ 

aij = c , where c was the frequency of the connected 

statement. Thus, the possible values for c—that is, for each component in an adjacency 

matrix—ranged from zero through the positive integers. Furthermore, the rows and columns 

will be comprised of the same statements; in other words,     

€ 

pi = qi ∀i,  0 ≤ i ≤ n . As previously 

stated, each pi represents the statements used by students as they reason about the IMT.  
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3.4.3.1 An example. For instance, consider the following excerpt from an interview 

with Henry, which was also considered in Chapter 1. Henry was responding to the following 

question prompt:  

Suppose you have a 3 x 3 matrix A, and you know that A is invertible. Decide if each of 
the following statements is true or false, and explain your answer.  

a. The column vectors of A are linearly independent. 
 

Henry:  So if it's invertible, the determinant isn't 0. And if the determinant is 0, then they're 
dependent. If they're independent, then it's not 0, so that means it's invertible, so (a) 
is true. 
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A is invertible   1   
det A = 0     1 
det A ≠ 0 1     
The columns of A are linearly independent   1   
The columns of A are linearly dependent      

Figure 3.6. Adjacency matrix for Henry’s response to the interview prompt. 
 

What can be noticed from an adjacency matrix such as this? Taking a closer look, there are 

some patterns inherent in the matrix itself because the columns and the rows are the same. We 

can see from the symmetry of a31 and a13 both being highlighted that Henry treated those two 

statements as equivalent. That is, his argument displayed the notion that A is invertible if and 

only if the determinant of A is nonzero. Furthermore, he used the notion of determinants two 

other times—that nonzero determinants implied linear independence and that linear dependence 

implied a zero determinant (the contrapositive of the first statement). Finally, if the total 

frequency across the columns is considered, one can see that ‘det A ≠ 0’ has the highest density 

across the columns, being used in two of the four statements.  
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As evidenced in the above adjacency matrix, the rows and columns are composed of 

statements that Henry made as he reasoned about two statements in the IMT—a matrix A is 

invertible and the columns of A form a linearly independent set. Mathematically, these two 

statements are, in fact, equivalent for an n x n matrix A. However, the purpose of this analysis 

was not to determine whether or not a student such as Henry could correctly report that the 

statements are equivalent. Rather, the purpose of the analysis was to chart how students such as 

Henry explained that the truth of the one statement guarantees the truth of another. What was 

the content of the argument he constructed as he reasoned about with the ideas in the IMT?  

 3.4.3.2 Constructing adjacency matrices. The data sources for constructing adjacency 

matrices was each of the arguments from the argumentation logs created in Phase One. For 

analysis at the collective level, I used arguments from the argumentation logs created from 

whole class discussion, whereas analysis at the individual level arose out of the argumentation 

logs created from small group work and individual interviews. For instance, the previous 

example with Henry would be one argument from Henry’s individual interview argumentation 

log. In order to construct an adjacency matrix, an argument is broken down into clauses of 

separate ideas. Again, considering Henry’s example above, the clauses would be: (a) It's 

invertible, (b) The determinant isn't zero, (c) The determinant is zero, (d) They're dependent, (e) 

They're independent, (f) It's not zero, (g) It's invertible, and (h) (a) is true. Furthermore, the 

clauses are connected through conjunctions such as if, then, so, and that means. Next, each 

clause became an ordered row and column for a given adjacency matrix. Next, the original 

transcript was considered, both clauses and conjunctions, to determine where frequency 

indicators should be placed in the matrix. As previously stated, the rows were the ‘p’ and the 

columns were the ‘q’ in statements of the form “p implies q” or “another way to say p is q.” 

Note that, if taken alone, the argument requires a small level of inference to analyze. Henry’s 

argument contains many pronouns such as it’s and they’re. For instance, in (g), does Henry 
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mean the matrix A is invertible? Is it the determinant that is not zero in (f)? He uses the same 

pronoun in both cases. Taken alone, this argument requires a small level of inference on the part 

of the researcher to infer what Henry most likely meant. Thus, in order to establish construct 

validity and reliability of relevant data, I used multiple sources of evidence. Using these 

multiple data sources—classroom video, transcript, researcher field notes of direct observation, 

post-lesson debriefing notes, and student written work—allowed for data triangulation 

(Mathison, 1998). Data triangulation leads to more reliable results and helps address potential 

problems with construct validity because multiple sources of evidence essentially provide 

multiple measures of the same phenomenon.  

  3.4.3.3 Relevance to the research questions. Adjacency matrices were also used to 

analyze arguments made at the collective level during whole class discussion. These arguments 

were comprised of statements from one or many students in the class as meaning was negotiated 

collectively through participation in the classroom. This is a relatively novel analytical tool in 

mathematics education research in a similar fashion as within this study. In Selinski, 

Rasmussen, Zandieh, and Wawro (2011), we report on the power of adjacency matrices for 

analyzing student responses during one interview. Thus, the present study furthers the use of 

adjacency matrices as an analytic tool by using them at the collective level as well as to 

document change over time.  

  What has been described in Phases 2 and 3 is a very static, snapshot-view type of 

analysis of individual and collective arguments that occurred throughout the semester. A 

coordination of these snapshot views, on both the individual and the collective level, constituted 

Phases 4 and 5 of this proposed study’s analysis. Whereas Phases 2 and 3 investigated the 

content and structure of each particular instance of reasoning about the Invertible Matrix 

Theorem, Phases 4 and 5 investigated how the content and structure of these arguments 

compared to each other and/or shifted over time. In Phase 4, the primary means of coordination 
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were inspired by the methodology for documentation of classroom mathematics practices, as 

detailed in Rasmussen and Stephan (2008) and Cole et al. (2010). In Phase 5, the primary means 

of coordination were inspired by the genetic analytical work of Saxe (2002), Saxe et al. (2009), 

and Tiberghien and Malkoun (2009).  

 
3.4.4 Phase Four: Ontogenetic Analysis of Toulmin Schemes 

In Phase 2, the various exchanges identified in Phase 1 were analyzed individually 

through the use of Toulmin’s (1969) model of argumentation. In Phase 4, these snapshot views 

were coordinated and compared within both the individual and within the collective level. In 

particular, Phase 4 was based on the work of Rasmussen and Stephan (2008), who have 

developed a rigorous methodology for documenting the collective mathematical development of 

a classroom community. The authors define collective activity as “a social phenomenon in 

which mathematical or scientific ideas become established in a classroom community through 

patterns of interaction” (p. 195). Furthermore, they discuss documenting collective activity 

through two evidences for knowing when an idea functions in the collective as if its 

understanding is shared by the individuals in the collective: (a) when the backings and/or 

warrants for an argument no longer appear in students’ explanations, and (b) when students use 

a previously justified claim as unchallenged justification for future arguments (p. 200). In 

addition, Cole et al. (2011) posit another way to identify when reasoning with a particular idea 

functions as-if shared: if that idea appears repeatedly as the data for a variety of different 

claims. This last aspect is different than the first two in that it takes note of repeated use and 

consistency in arguments rather than focusing on the shifting content and structure of 

arguments. This was particularly useful when analyzing the ways in which students reasoned 

about the Invertible Matrix Theorem because of the Theorem’s inherent nature as a unifying 

structure linking sixteen equivalent statements. Of these sixteen statements, were there any that 
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are repeatedly used at data for a variety of claims? The ease and diversity of the repeated use of 

that concept would indicate that the concept functions as-if shared in the collective community.  

The notion of using Toulmin’s model to document when ideas function as-if shared in 

the classroom was somewhat analogous to Saxe’s notion of ontogenetic analysis, which is 

described in Phase 5. Ontogenetic analysis concerns shifts in patterns of thinking over time, and 

these shifts are documented by analyzing a learner’s microgenesis process at various stages of 

development. In particular, Saxe et al. (2009) state that microgenesis is “the process of moment-

to-moment construction of representations as individuals work to turn representational forms 

into means to serve mathematical functions” (p. 209). Thus, each individual Toulmin scheme 

created is analogous to a microgenetic analysis regarding an explanation offered in order to 

serve the function of justifying a connection or solving a novel problem, and the compilation 

and comparison over time of these Toulmin schemes is an ontogenetic analysis of students’ 

development regarding the Invertible Matrix Theorem. Ontogenetic analysis considers the shifts 

in patterns of thinking over time, and the three aforementioned criteria for establishing when 

ideas function as-if shared accomplish that same purpose. All three criteria analyze the changing 

structure of explanations that accompany claims made by students regarding the Invertible 

Matrix Theorem. This ontogenetic analysis of how students reason about the Invertible Matrix 

Theorem facilitated investigating aspects such as what ideas in the IMT were used most 

frequently as data to support particular claims, how the structure of these explanations changed 

over time, and the like.  

 While the aforementioned three criteria were developed by Rasmussen and Stephan 

(2008) and Cole et al. (2011) to document when concepts function as-if shared in the collective, 

I adapted these three criteria to analyze the ontogenetic progress of Abraham as well. In this 

aspect, the notion of an idea functioning as-if shared loses meaning; rather, utilizing the three 

criteria facilitated the documentation of the shifting structure of Abraham’s explanations 
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regarding the Invertible Matrix Theorem. This ontogenetic analysis allowed me to develop a 

rich description of, for instance, what ideas from the IMT were the most salient for Abraham, 

when he became confident enough in a particular equivalency that a warrant dropped off of an 

argument, etc. This, along with the individual level of analysis of Phase 5, contributes to 

developing a deep understanding of (a) how the ways in which individual students reason about 

the IMT change over time, and (b) the various ways that students reason with the IMT to solve 

novel problems over the course of the semester. 

 
3.4.5 Phase Five: Ontogenetic Analysis of Adjacency Matrices   

  Researchers from both educational and anthropological fields (Ercikan & Roth, 2006; 

Saxe, 1999; Saxe et al., 2009) have investigated the progression of student development through 

what is sometimes referred to as genetic analysis. For instance, Saxe and Esmonde (2005), who 

studied, over a course of more than twenty years, how the function of a particular word form 

shifted for a central New Guinea tribe. In studying this word form, which dealt with the tribe’s 

counting system, Saxe and Esmonde asked, “How do new collective systems of representation 

and associated mathematical ideas arise in the social history of a social group?” (p. 172). The 

proposed inquiry into how students’ use of the Invertible Matrix Theorem as a tool for 

reasoning changes over time is an analogous investigation. To study how students interacted 

with a theorem that itself was developing over the course of the semester necessarily dealt with 

how mathematical ideas arose in the social setting of a classroom. In addition to Saxe and his 

colleagues, other researchers have recently taken up research agendas that investigate the 

emergence, development, and spread of ideas in a classroom community over time (e.g., Cobb, 

Stephan, McClain, & Gravemeijer, 2001; Schwarz, Dreyfus & Hershkowitz, 2009; Stephan & 

Rasmussen, 2002; Tiberghien & Malkoun, 2009). The primary means of genetic analysis 
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conducted in Phase 5 were inspired by the analytical work of Saxe (2002), Saxe et al. (2009), 

and Tiberghien and Malkoun (2009). 

  Saxe et al.’s (2009) methodology for the genetic analysis of children’s mathematical 

development considers three distinct developmental processes: microgenesis, ontogenesis, and 

sociogenesis. They define microgenesis as the short-term process by which individuals 

construct meaningful representations in activity; ontogenesis as the shifts in patterns of thinking 

over the development of individuals; and sociogenesis as the reproduction and alteration of 

representational forms that enable communication among participants in a community (p. 208). 

Phases 2/3 and 4/5 of the study made explicit use of the notions of microgenetic and ontogenetic 

analysis, respectively. For instance Phase 2 analysis—the construction of adjacency matrices for 

every exchange related to the IMT—could be seen as a microgenetic analysis of every 

exchange.  

  Microgenetic analysis concerns the construction of representational forms that serve a 

particular function in order to accomplish a particular goal (Saxe, 2002). For Saxe et al. (2009), 

an example of a microgenetic construction is when a student turns forms such as the number 

line into a particular meaning and uses it to accomplish a goal in activity. In the present study, 

the constructed representational forms witness their analog in students’ given explanations or 

justifications regarding the IMT, which function to explain or justify connections within the 

IMT and uses for it in novel situations. Furthermore, the compilation of these microgenetic 

analyses served as the data points for ontogenetic analysis. Saxe’s work with developmental 

analysis using microgenetic, ontogenetic, and sociogenetic distinctions has mainly considered 

one given class day as a unit of analysis. The study extended this work by analyzing larger 

sections of time—anywhere from a section of one day to the entirety of the semester as the unit 

of analysis for ontogenetic analysis.  
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  Furthermore, the inherent structure of adjacency matrices provided a convenient way to 

draw quantifiable analyses, such as the density (Tiberghien & Malkoun, 2009) of the various 

ideas related to the Invertible Matrix Theorem used over the course of the semester. Thus, the 

other main type of ontogenetic analysis in Phase 5 was a macrogenetic, holistic analysis of how 

the adjacency matrices compared and changed over time. For instance, which concepts from the 

Invertible Matrix Theorem were used most often overall by students as they reasoned about 

novel problems? Were there some concepts from the IMT that were used consistently over the 

course of the semester, whereas others dropped off? This analysis was inspired by the work of 

Tiberghien and Malkoun (2009) who consider the notions of density and continuity of ideas as 

analytical frames in genetic analysis.  

 
3.4.6 Phase Six: Coordination of Analyses Across the Two Analytical Tools 

  The final phase of analysis concerned comparing and coordinating the analytical results 

from Phases 2 and 3, as well as from Phases 4 and 5 (see Table 3.1). One layer of comparison—

between the results of Phases 2 and 3—occurred at the discrete level. This comparison 

illuminated aspects of students’ ways of reasoning that may not be apparent by considering that 

same argument through only one of the analytical lenses. The other layer of comparison—

between the results of Phases 4 and 5—occurred by comparing and contrasting the aspects of 

ontogenetic progress that were illuminated by these two phases. This coordination between the 

analytical results from adjacency matrices and Toulmin schemes that was the focus of Phase 6 

was possible because the data set was the same for both veins of analysis. That is, because the 

objects of inquiry (i.e., the reduced data set from Phase 1) were the same for both analytical 

tools, a comparative analysis between them was facilitated. Various adjacency matrices and 

Toulmin schemes could be compared directly for any given argument by comparing results of 
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Phases 2 and 3, whereas developmental comparisons between the two analytical tools could be 

accomplished by directly comparing the results of Phases 4 and 5. 

 
3.5 Conclusion 

 In this chapter, I detailed the methods by which I will analyze the proposed research 

questions. I began the chapter by expanding upon what is entailed in conducting a classroom 

teaching experiment, both theoretically and practically. The remainder of the chapter was 

divided into three main sections: (a) the setting and participants for the teaching experiment, (b) 

the data I collected and the methods by which I collected them, and (c) the methodology for the 

analyses I conducted on these data.  

Chapter 4 presents the results of my analysis at the collective level. In the first half of 

the chapter, I present results of the microgenetic and ontogenetic analysis via Toulmin’s Model, 

and the second half contains results from the microgenetic and ontogenetic analysis via 

adjacency matrices. Chapter 5 follows a parallel structure but concerning results of how 

Abraham reasoned about the IMT over time. Chapter 6 discusses a comparison of the two 

analytical tools, including limitations and affordances of both in carrying out the presented 

analysis. It also includes implications for teaching and concludes with avenues for future 

research.  
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CHAPTER FOUR: ANALYSIS AT THE CLASSROOM LEVEL 

 

This chapter discusses the results of the first research question: How did the classroom 

community reason about the Invertible Matrix Theorem (IMT) over time? Specifically, what 

was the nature of argumentation structure, and what ways of reasoning functioned as-if shared 

in whole class discussion? To address these questions, I utilized two different analytical tools, 

Toulmin’s model and adjacency matrices, on relevant classroom discourse throughout the 

semester. I also utilized the cultural change notions of microgenesis and ontogenesis as strands 

through which I coordinated the structure of argumentation within the classroom discourse 

(microgenetic level) and how the forms and functions of these various arguments shifted over 

time (ontogenetic analysis).  

This chapter has two main sections. In the first section, I detail results from both the 

microgenetic and ontogenetic analyses from using Toulmin’s model. The microgenetic analysis 

revealed, in addition to Toulmin’s classic 6-part model of argumentation, four distinct expanded 

structures of Toulmin’s model that were utilized when reasoning about the IMT during whole 

class discussion. I provide 1-2 examples of each of these expanded structures. The ontogenetic 

analysis revealed ten normative ways of reasoning that characterize student reasoning about the 

IMT during class discussion. In the second section, I detail both the microgenetic and 

ontogenetic analyses from utilizing adjacency matrices as an analytical tool. The analysis 

revealed that the use of concept statements from the IMT versus interpretations of those 

concepts statements depended on the purpose of the particular argument. Microgenetic analysis 

also revealed the importance of reasoning about non-square matrices in order to develop ways 

of reasoning about the equivalence of concepts in the IMT (which are for square matrices). In 

addition to how the structure of arguments changed over time, ontogenetic analysis revealed the 
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concepts most central to the class community’s development as a whole. I conclude with a 

discussion of the results and a reflection on and comparison of the separate analytical methods.  

 

4.1 Toulmin’s Model of Argumentation 

Toulmin’s 6-part scheme for substantial argumentation consists of claim, data, warrant, 

backing, qualifier, and rebuttal, each with its explicit role in any given argument (see Figure 

4.1). The operational definition for argument in this present study on student reasoning in linear 

algebra is “an act of communication intended to lend support to a claim” (Aberdein, 2009, p. 1). 

To address the research question of how the classroom community reasoned about the IMT 

throughout the semester, I coded arguments that explicitly involved developing meaning for the 

concepts in the IMT or for relationships between the ideas in the IMT, and each of these 

arguments occurred during whole class discussion.  

 
Figure 4.1. Toulmin’s Model of Argumentation 

 

The claims made about these arguments occur at two different levels. First, 

microgenetic analysis considers the structural layout as well as the mathematical content of each 

distinct argument that occurred at different moments of whole class discussion throughout the 

semester. Ontogenetic analysis, by considering the collection of these distinct arguments and 
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their relationship to one another, considers the mathematical development of the collective, thus 

addressing how the classroom community reasoned about the IMT over time. A meta-analysis 

of the argument structures as a whole, as well of as shifts in the form and function of the 

argumentation, are also part of the ontogenetic analysis. For brevity and clarity, the results 

presented in the Microgenetic Analysis section are restricted to explanations and examples of 

the four types of expanded Toulmin scheme structures found in my analysis, rather than of all 

arguments. The Ontogenetic Analysis section considers a wider swath of these arguments and 

thus provides a comprehensive account of the mathematical development over time. In doing 

so, it necessarily involves microgenetic analysis of the arguments involved. Thus, while the 

Microgenetic Analysis section focuses on novel argumentation structure as its results, analysis 

at the microgenetic strand is given in the Ontogenetic Analysis section as well. The entirety of 

the argumentation logs can be found in Appendix 4.1.  

 Over the course of the ten days of classroom data analyzed, 118 arguments were coded 

using Toulmin’s model of argumentation. Microgenetic analysis of these 118 arguments 

revealed four different complex structures of argumentation that were utilized when reasoning 

about the IMT during whole class discussion, each of which is an expansion of Toulmin’s 

classic 6-part scheme: (a) Embedded structure, (b) Linked structure, (c) Proof by Cases 

structure, and (d) Sequential structure. Ontogenetic analysis of the arguments, with a focus on 

span, linear independence, one-to-one, and onto, revealed ten ways of reasoning that functioned 

as-if shared in the classroom. These ways of reasoning focused on drawing conclusions about 

the four aforementioned concepts across various scenarios. Furthermore, these normative ways 

of reasoning were gathered around two common themes to constitute two classroom 

mathematics practices. To highlight both of these results—the various argumentation structures 

and the ideas that functioned as-if shared, I present a selection of data from the following ten 

class days. A description of relevant moments from each of these days is given in Chapter 3.  
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1. Day 5, when students explored the concepts of span, linear dependence, and linear 
independence; 

2. Day 6, when the class worked to develop generalizations about linear independence 
and dependence;  

3. Day 9, when the class investigated the relationships between linear independence, 
span, and the row-reduced echelon form of matrices; 

4. Day 10, when the class focused on equivalent statements for square matrices and 
developed what was known as the New Theorem;  

5. Day 17, when invertibility was explored in conjunction with other concepts;  
6. Day 18, when the New Theorem was renamed the IMT;  
7. Days 19, when the concepts of one-to-one and onto transformations were 

introduced and explored;  
8. Day 20, when the class related one-to-one and onto with ideas in the IMT;  
9. Day 24, when “A has a nonzero determinant” was added to the IMT; and 
10. Day 31, when the IMT was an explicit focus of reflection for the day.  

 
 
4.1.1 Microgenetic Analysis via Toulmin’s Model 

 After narrowing the data set to those class sessions most instrumental to the 

development of the Invertible Matrix Theorem, I coded 118 different arguments using 

Toulmin’s model of argumentation, all of which occurred during whole class discussion during 

one of the ten class sessions. Of these coded arguments, 81 of them were of a form that 

consisted of some subset of the six parts of the layout (see Table 4.1). While permutations of a 

given layout were traced in analysis (for instance, C-D-Q-W and C-D-W-Q), they were counted 

in the same category of layout types in Table 4.1.   

Table 4.1. Frequency of the various 6-part Toulmin scheme layouts over the 10 class days. 
 Day 

6 
Day 

9 
Day 
10 

Day 
17 

Day 
18 

Day 
19 

Day 
20 

Day 
24 

Day 
31 Total 

C-C       1   1 
C-D 1  1 2   6 2 1 13 
C-D-W 2 5 2 6 4 5 3 2 2 31 
C-D-W-B  3 1   1 7 2 3 17 
C-D-W-B-Q 1 1      1  3 
C-D-W-B-R 1      1   2 
C-D-Q 1 1  1  1   1 5 
C-D-W-Q  1 3 1  1  1  7 
C-R   1       1 
C-D-W-R-Q    1      1 
 81 
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 Additionally, there were another 15 arguments in which the instructor played a unique 

role in the development of the arguments. Rather than being a contributor to the argument 

directly (as seen in Figure 4.2, where she provides the warrant to someone’s claim, for 

example), she called for data, warrants, or backing to be provided by either the speaker or 

another member of the class. This speaks to the teacher’s unique role to move the mathematical 

agenda forward as well as to push for developing the social norms of explaining one’s thinking 

and justifying one’s claims (Rasmussen & Marrongelle, 2006; Rasmussen, Zandieh, & Wawro, 

2009). An expanded version of Table 4.1 is given in Table 4.2, with the second number in a 

given cell indicating the additional layouts of this type, but within the particular structure 

indicated by the row. Thus, the last column containing the total count increased by 15 from 

Table 4.1. Information regarding when during the argumentation the teacher called for 

elaboration, although traced in the analysis, is omitted in Table 4.2.  

 
Table 4.2. Frequency of the various 6-part Toulmin scheme layouts over the 10 class days, with 
arguments containing a push for D, W, or B by the instructor noted with a secondary number. 

 Day 
6 

Day 
9 

Day 
10 

Day 
17 

Day 
18 

Day 
19 

Day 
20 

Day 
24 

Day 
31 Total 

C-C       1   1 
C-D 1  1 2 / 1   6 2 1 13 / 1 
C-D-W 2 5 / 2 2 / 1 6 4 5 / 1 3 / 2 2 2 31 / 6 
C-D-W-B 0 / 1 3 / 1 1   1 7 2 / 1 3 17 / 3 
C-D-W-B-Q 1 1      0 / 1 1   3 / 1 
C-D-W-B-R 1      1    2 
C-D-Q 1 1  1 / 1  1   1  5 / 1 
C-D-W-Q  1 3 1  1  1 / 1   7 / 2 
C-R   1        1 
C-D-W-R-Q    1 / 1       1 / 1 
 81 / 15 

 
Within the remaining 22 arguments, the 6-part layout, with each part occurring at most 

once, seemed insufficient to capture the complexity of the arguments that transpired during 

whole class discussion. Some layouts were a string of the six components (such as C-D1-Q-D2-

W2-Q-D3-W) and occurred, for instance, when multiple members of the classroom were 
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working together to justify a relatively new claim (such as why if the determinant of a matrix is 

zero, then the column vectors of that matrix have to be linearly dependent). Other arguments 

were structurally complex (such as a student proving a claim by presenting justifications for all 

possible cases) in ways that necessitated an expansion of some aspect of the original Toulmin’s 

model of argumentation. The four varieties of this that I encountered in my analysis were:  

1. Embedded structure: When data or warrants for a specific claim were so complex, 
they had minor embedded arguments within them;  

2. Proof by Cases structure: When claims were justified using cases within the data 
and/or warrants;  

3. Linked structure: When data or warrants for a specific claim had more than one 
aspect that were linked by words such as “and” or “also”; and  

4. Sequential structure: When data for a specific claim contained an embedded string 
of if-then statements, where a claim became data for the next claim.  
 

These four structures were adapted from work by Aberdein, a researcher in the fields of logic 

and humanities, who has done a variety of research regarding argumentation in mathematics. 

With respect to both Toulmin and mathematics, Aberdein notes that Toulmin presented a lone 

example of a mathematical proof diagrammed with his scheme: a proof that there are exactly 

five platonic solids (Toulmin, Rieke, & Janik, 1979, as cited in Aberdein, 2006). This argument, 

however, is a relatively concise mathematical proof. Aberdein makes the following observation 

considering Toulmin’s model of argumentation:  

Toulmin’s focus is on argumentation in natural language, not mathematics, 
although he is satisfied that the layout applies there as well ... One substantial 
shortcoming that this proof has as a model for how Toulmin’s layout may be 
applied more generally is that it has only one step. Most mathematical proofs 
have many. (2006, p. 5) 
 

Aberdein continues to explain how he expanded Toulmin’s basic framework to include more 

complex proof structures, such as induction or proof by contradiction. My research and analysis 

focuses on whole-class discussion and argumentation (“in the natural language,” to use 

Aberdein’s term) that occurs in a college-level linear algebra class. Thus, much of the 

argumentation lies in a tension point between these two. Often, the complexity of their 
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justifications did not seem adequately captured with only the “data-claim-warrant-backing” 

structure. As such, I adapted Aberdein’s notion of the expanded layout in order to characterize 

these more complex structures. Consideration of the arguments in relation to each other is done 

during the subsequent section, Ontogenetic Analysis, where I discuss the mathematical 

development of the class over the course of the semester. The focus of this section, however, is 

to analyze individual arguments independent of how they relate to others. 

4.1.1.1 Embedded Structure. I define an embedded structure as a Toulmin scheme 

within which one or more of the data, warrant, or backing is itself composed of a Toulmin 

scheme, minimally a C-D pair. A simple example of an embedded structure is provided in 

Figure 4.2. This argument occurred on Day 24 of the semester, during which, as described in 

Chapter 3, the class was investigating determinants and their connections to other ideas in the 

Invertible Matrix Theorem. The instructor was making explicit how the formula for a 2x2 

matrix A, det A = ad – bc, connected to the row-reduced echelon form of A. In previous class 

sessions, the class members had discussed why row-reducing an n x n matrix A augmented with 

the n x n identity matrix not only was a valid method to determine if A was invertible, but it also 

allowed you to compute A-1. In other words, the class discussed why 

€ 

A | I[ ] ~ I | A−1[ ]  

“worked.” On Day 24, the teacher revisited this computational method with the generalized 

matrix 

€ 

A =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . The class had reached the point 

€ 

a b
c d

 1 0
 0 1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ~

ac bc
0 ad − bc

 c 0
 −c a

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

in their work when Argument 9 occurred (Figure 4.2).  

  The original 6-part Toulmin scheme is not sufficient to capture the complexity of this 

argument. In a Toulmin scheme, a warrant serves to explain why the data is relevant to the 

claim. For Argument 24.9, the warrant explains why having a zero in the bottom corner (the 

data) relates to not row-reducing to the identity matrix (the claim). The data-claim pair, seen in 
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Figure 4.2 as being part of the data, does not serve this purpose of connecting the data to the 

claim; rather, it serves to explain the data in more detail. 

  

  

 

Claim: If ad-bc is 0, 
you can’t row-
reduce to I. 
[Teacher, 39:59] 

 Data1: If that 
[the bottom 
right corner] is 
zero [Teacher, 
39:31]  

Claim1: It’s 
linearly 
dependent 
[Student, 39:55] 

Data: When 
row-reducing 
A, ad-bc 
shows up at 
the bottom 
right corner. 

 

 

 

 
   

  Warrant: that was one of the exam questions we had, it's some matrix 
that had a row of 0's on the bottom, it was a 2 by 2. We know that's not 
invertible, it can't be row reduced to the identity. [Teacher, 39:59] 

 

   

Figure 4.2. Argument 24.9, Embedded Structure: Explanation of why if the determinant of 
a 2x2 matrix is 0, the matrix cannot row-reduce to the 2x2 identity matrix. 

 

 Purely embedded structures are the least sophisticated or interesting of the four complex 

structures, yet they are foundational to the other three. In each of the remaining three complex 

structures—Proof by Cases, Linked, and Sequential—an embedded structure takes a more 

specific form within either the data, warrant, or backing of a given Toulmin scheme.  

4.1.1.2 Proof by Cases Structure. I define a proof by cases structure as a Toulmin 

scheme within which the data is comprised of multiple scenarios that, when considered as a 

unit, create that data. This definition draws on Aberdein’s (2006) Proof by Cases layout (see 

Figure 4.3). In his layout, there are multiple date-claim-warrant units embedded within the 

overall data, Dn, for the scheme. The relationship between these embedded schemes is that each 

is a distinct yet integral case that, when considered together, comprise the data for the claim Cn. 

The warrant, Wn, is the support that all of the minor data considered as an entity is a logically 

valid form of justification. I conjecture that this structure could also exist in such a way that the 

warrant or backing is composed of cases, rather than or in addition to the data. I did not, 

however, see examples of those in the data set for this study.  
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Figure 4.3. The general “Proof by Cases” layout (Aberdein, 2006, p. 9). 

 

I provide two examples of the Proof by Cases structure. The first comes from Day 5, 

when students worked together in small groups to create examples of both linearly independent 

and linearly dependent sets of vectors in R2 and R3 and to make generalizations regarding linear 

independence and dependence based on their work (see Figure 4.4 for the task).  

 
Figure 4.4. Task from Day 5: Create examples and make generalizations about linearly 

independent and linearly dependent sets in R2 and R3. 
 

The argument presented here occurred when Justin explained his group’s rationale for how they 

determined there was “no solution” for the cell in the chart that asked them to create an example 

of a set of three linearly independent vectors in R2 (see Figure 4.5). On the surface, it may seem 

like this argument is not directly related to how the classroom reasoned about the Invertible 

L I N E A R 	   I N D E P E N D E N C E 	   A N D 	   D E P E N D E N C E : 	   C R E A T I N G 	   E X A M P L E S 	  

Fill	  in	  the	  following	  chart	  with	  the	  requested	  sets	  of	  vectors.	  	  	  

 Linearly	  dependent	  set	   Linearly	  independent	  set	  

A	  set	  of	  2	  vectors	  in	  R2	     

A	  set	  of	  3	  vectors	  in	  R2	     

A	  set	  of	  2	  vectors	  in	  R3	     

A	  set	  of	  3	  vectors	  in	  R3	     

A	  set	  of	  4	  vectors	  in	  R3	     

	  
Write	  at	  least	  2	  generalizations	  that	  can	  be	  made	  from	  this	  table.	  

 



  
80 

 

Matrix Theorem; however, it is a rather relevant argument because it is one of the first instances 

in whole class discussion during which the concepts of span and linear independence (which are 

key concepts in the IMT) were discussed in conjunction with each other. 

Instructor:  So Justin, do you want to come up and explain your group's explanation for 
how you got 'no solution' on this?  

Justin:  So we're still in R2. So basically, let's just start with any random vector, let's 
call it that one [draws a vector in the first quadrant]. Now after we have 1 
vector down, there's only basically two situations we could have. We can either 
have a vector that is parallel with this one, either another multiple or going the 
other way or whatever. Or we can have one that is not parallel, it doesn't have 
to be perpendicular, it can be anywhere. But it's either parallel or not. So if it's 
parallel, we already said that if we have two vectors that are parallel, we have a, 
they're dependent. But when we did our magic carpet-hoverboard, we had two 
that weren't parallel [draws a vector in the fourth quadrant], and we said the 
span of any two that aren't parallel, is all of R2. So if we have two that aren't 
parallel, we can get anywhere in R2, no matter where we throw in our third 
vector, we can get there with a combo of these two and make it back on that 
third one. So there can't be any solution, so there's no, as long as we have three 
vectors in R2, it has to be linearly dependent. Does that make sense, any 
questions? 

 

 
Figure 4.5. Justin explains why any set of 3 vectors in R2 must be linearly dependent. 

 
 

Justin began his explanation by stating there were two only two cases to consider: when 

two of the three vectors in the set were or were not parallel (“parallel” was a term some students 

used to describe vectors that were scalar multiples of each other). In the first case, the set was 

already linearly dependent; in the second case, the addition of any third vector would cause the 

set to be linearly dependent. In the Toulmin analysis of Justin’s explanation (see Figure 4.6), the 

claim is that any set of 3 vectors in R2 must be linearly dependent. Justin set up the structure of 

his data by stating, “there’s only basically two situations.” His data then was composed of two 
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embedded arguments: a data-claim-warrant for the first case (labeled Data1, Claim1, and 

Warrant1 in Figure 4.6) and a data-claim-warrant for the second case (labeled Data2, Claim2, 

and Warrant2 in Figure 4.6). I refer to these sub-arguments as D1 and D2 in order to reference 

that they are embedded within the data of the main argument. Justin’s warrant, finally, occurred 

when he stated why his data supported the claim. Justin’s use of the word “so” in the statement, 

“so there can't be any solution,” which he stated immediately after the two sub-arguments, 

indicates that, for him, the joint consideration of the sub-arguments constituted a valid data for 

the claim.  

 

A second example of the Proof by Cases argumentation structure is Argument 5 from 

Day 6. At the end of Day 5, the class had developed a list of four generalizations about linear 

independence and dependence. On Day 6, the class spent a considerable amount of time 

   

 
Data1: if we 
have 2 vectors 
that are parallel   

Claim1:  they're 
dependent 

  
 Warrant1: we already said [it]  

 

   

Data:.  
Let's just start 
with any random 
vector, let's call it 
that one. Now 
after we have 1 
vector down, 
there's only 
basically 2 
situations we 
could have. 

 

 

Data2: If we had 
2 that weren't 
parallel  

  

Claim2:  no matter 
where we throw in 
our 3rd vector, we 
can get there with a 
combo of these 2 
and make it back on 
that 3rd one 

 

  

Claim: When 
looking for an 
example of 3 
vectors in R2 
that form a 
linearly 
independent 
set, there is no 
solution  

  
 Warrant2:  the span of any 2 that 

aren't parallel is all of r2 
 

  
 Backing2: We did this when we did 

our magic carpet hoverboard 
 

 

  

  

[Justin, 57:00] 
  

Warrant: So there can't be any solution, so there's no, as long as we 
have 3 vectors in r2, it has to be linearly dependent.  

  

Figure 4.6. Argument 5.1, Proof by Cases structure: Justin explains why any set of 3 vectors 
in R2 must be linearly dependent. 
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discussing one of these generalizations: If a set of vectors in Rn contains more than n vectors, 

then the set is linearly dependent. Prior to arguments about Rn, the class discussed specific 

examples in R2, as well as generalizations in R2. Argument 5 from this day (see Figure 4.7) 

comes from the lattermost category.  

With his claim, Aziz explicitly related the ideas of span and linear dependence by 

stating that a vector in the span of two other vectors (thus, a set of three vectors) would allow 

one to “reach the origin, get back to the origin.” Recall from Chapter 3 that the notion of 

“getting back to the origin” was one the class had developed within the context of the Magic 

Carpet Ride Problem as a concept image for linear dependency of sets of vectors. 

 

Aziz’s data is composed of two cases: if the first two vectors are or are not linearly dependent. 

Each of these cases is explored with a sub-argument (labeled Data1-Claim1 and Data2-Claim2, 

respectively). Unlike the example in Figure 4.6, which detailed the expanded Toulmin scheme 

for Justin’s argument about a claim very similar to Aziz’s, Aziz provided no warrants for any of 

his data-claim pairs. The warrant for the main argument is noted as implicit because he did not 

  
 
  

Data: 
2 vectors 
span R2 or 
they don't:  

Data1: if 
they're linearly 
dependent 
already 

 

Claim1: then it makes 
the set linearly 
dependent. 

  

  

  

 

Data2: If 2 
aren't [linearly 
dependent 
already]  

Claim2: then they span 
R2, and the 3rd one has 
to be contained in R2 to 
be able to reach back to 
the origin 

 

  

Claim: If a 
vector is 
contained in the 
span of 2 other 
vectors, then you 
should be able 
to reach the 
origin, get back 
to the origin.  

    [Aziz, 11:50] 
  

Implicit Warrant: (D1∨D2) creates a valid justification 
 

Figure 4.7. Argument 6.5, Proof by Cases structure: Aziz explains why any set of 3 
vectors in R2 must be linearly dependent. 
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verbalize anything but behaved in a manner consistent with the logical conclusion that the union 

of the two sub-arguments within the data qualified as a valid justification for the claim.   

4.1.1.3 Linked Structure. I define a linked structure as a Toulmin scheme within 

which the data and/or warrant for the claim are composed of more than one embedded sub-

argument that are linked by words such as “and” or “also.” This differs from the Proof by Cases 

structure in that the sub-arguments are not related in the same manner. Furthermore, this 

structure goes beyond, for instance, a Toulmin scheme with multiple data. As Aberdein points 

out, Toulmin himself allowed for multiple data but that the linked structure expands upon 

Toulmin by “permitting multiple propositions within a node to be distinguished as separate 

nodes...However, this is necessary unless the propositions are individually attached to other 

nodes” (Aberdein, 2006, p.7). In other words, the difference in the Linked structure is that the 

multiple data are actually sub-arguments themselves.  

An example of a Linked structure comes from Argument 16 on Day 20 of the semester. 

On Days 19 and 20, the class investigated notions related to one-to-one and onto 

transformations: examples of each, non-examples of each, and other concepts to which they 

were similar. The students were parsing out the relationship between one-to-one and onto 

(which are properties of linear transformations) and linear independence and span (which are 

properties of sets of vectors). On Day 20, students began to explore the connections between 

onto and span, as well as between one-to-one and linear independence. In Figure 4.8, Abraham 

explains how the claim of “being linearly independent is the same as being onto” if the matrix is 

square made sense to him. 

Abraham, after he made his claim, began by qualifying his claim by stating he “just 

remembers” the data he was about to share with the class. He then stated two sub-arguments, 

which are from “the n x n theorem”:  “If a matrix is square and linearly independent” (Data1) 

then “it also spans” (Claim1) and “if it spans” (Data2) then “it’s also linearly independent” 
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(Claim2). One may notice the metonymic nature (Lakoff & Johnson, 1980) of these statements: 

a matrix does not, in the strict mathematical sense, have the properties of linear independence or 

span, but rather the column vectors of that matrix do. The wording of the claims and data reflect 

this in order to be as true as possible to students’ original utterances. Furthermore, these four 

statements together comprise the data for the original claim. They are separated into sub-

arguments because, mathematically, they are quite different and the validity of those data-claim 

pairs had to be established previously in the semester. Furthermore, this Toulmin scheme is not 

an example of the Proof by Cases structure because it is not appropriate for this particular claim. 

Explaining each possible scenario that would lead to linear independence and onto being 

equivalent for square matrices is not a possible method of proof here, whereas explaining how 

each possible scenario leads to linear dependency of a set, for instance in Figure 6, was sensible.  

Qualifier: I just remember   
   

   
   Data1: If a 

square matrix 
is linear 
independent 

 

Claim1: it 
also spans 

Claim: If the 
matrix is square, 
being linearly 
independent is the 
same as being onto.  

 
 

 

Data2: if it 
spans 

 

Claim2: it's 
also linear 
independent. 

Data: if it’s 
square, we 
had the nxn 
theorem 
[Ant, 52:52] 

 

 

 

  

 

 
 

Warrant: And so 
that means 
[D1∨D2] 

Data3: if it's 1 
to 1,   

Claim3: it has to 
be onto 

  
  Data4: if it's 

onto,   
Claim4: it has to 
be 1 to 1 

 
 

 

 

   

Figure 4.8. Argument 20.16, Linked structure: Abraham explains a connection between 
linear independence and onto.  

 

Abraham’s warrant in Argument 16 (see Figure 4.8), which began with “and so that 

means,” has a structure similar to that of his data. What was left unsaid in his explanation is 
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why his warrant connected the data to the claim. His claim discussed the possible equivalency 

of linear independence and onto, he stated (without support) the equivalency of linear 

independence and span in his data, and he stated (again, without support) the equivalency of 

one-to-one and onto in his warrant. How, then, is the equivalency mentioned in the claim 

supported? One solution is to analyze the relevant mathematical activities that occurred in this 

classroom through ontogenetic analysis of the collection of all Toulmin schemes. That would 

help explain why, for instance, the warrants may have dropped off from the sub-arguments. 

These results are given in the forthcoming ontogenetic analysis section of the chapter.  

4.1.1.4 Sequential Structure. I define a sequential structure as a Toulmin scheme 

within which the data for a specific claim contains an embedded string of Data-Claim pairs, 

such that claim Ck is data Dk+1 for the next claim Ck+1. As with the last two expanded Toulmin 

structures, Proof by Cases and Linked, the Sequential structure assumes an Embedded structure 

as well, and, as before, the distinction lies within the nature of the relationship between the sub-

arguments of the main data or warrant.  

 An example of a sequential structure comes from Argument 8 on Day 31, which was 

the last day of class. The students had worked in their small groups with 17 cards, each one 

containing one of the statements from the Invertible Matrix Theorem. Prior to Argument 8, the 

students had discussed in their small groups which pairs of statements were, to them, most 

obviously equivalent and least obviously equivalent. The instructor asked someone from their 

group to explain their choice. Nate volunteered and stated:  

Nate:  For me, my logic, I think if the columns of A are linear independent, then it has 
n amount of pivot points. Then if it has n amount of pivot points, and it’s an n x 
n matrix assuming that, then it spans all of Rn. 

 
The expanded Toulmin scheme of his response is given in Figure 4.9.  

 Data: 
For me, my 
logic, I 
think: 

Data1: If the 
columns of A are 
linearly independent  

 
Claim1: It has n 
amount of pivot 
points  

   Claim: 'the 
columns of A 
span Rn,' and 
'the columns are 
linear 
independent' are 
an obviously 
equivalent pair.  
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Nate claimed that for his group, the concepts of ‘the columns of A span Rn” and “the 

columns of A are linearly independent” were obviously equivalent. He volunteered data for this 

claim with two sub-arguments such that the claim for the first sub-argument (“it has n amount 

of pivots”) was explicitly re-stated as the data for the subsequent claim. One may think of this 

as a “chain of reasoning,” in that the nodes of the various sub-arguments are linked together 

explicitly. Another example of the Sequential structure occurred on Day 18. The instructor 

began class by picking up on a proof that they had not completed the previous class period. The 

class was working with the New Theorem (what the IMT was known as before the concept of 

invertibility was added to it), and the class was working to prove the direction of, given a square 

matrix A, if the columns of A are linearly independent, then the matrix A is invertible. During 

class, the full development of the proof took ten minutes and was composed of twelve sub-

arguments. Below is transcript of the teacher initiating the proof.   

Instructor:  So last class we were like, Wow, how are we going to get there? And so I 
started with, since we know A is square and has linear independent column 
vectors, from the New Theorem, we know that A is row equivalent to the 
identity. All right? So we had that last time, we were like, What does that 
mean? And Nate reminded us, if we row reduce to the identity which meant 
that there existed a sequence of elementary row operations that turns A into I 
and vice versa...So let's think about this sentence here for a second. If you had 
elementary row operations that turn A into I, that means there's something 

Data: 
For me, my 
logic, I 
think: 

    Claim: 'the 
columns of A 
span Rn,' and 
'the columns are 
linear 
independent' are 
an obviously 
equivalent pair.  
 

 
 Data1: If the 

columns of A are 
linearly independent  

 

Claim1: It has n 
amount of pivot 
points  

    

  

  Data 2=Claim1: If it 
has n amount of pivot 
points  

 Claim2: Then it 
spans all of Rn.  
 

 

 

 

    

 Qualifier:  and it’s an nxn 
matrix, assuming, 

  

   [Nate, 49:32] 
  

Figure 4.9. Argument 31.8, Sequential structure: Nate explains why two concepts are 
obviously equivalent for his small group. 
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acting on A and changing it. So A, there's something that's turning A into I, 
there's something that's acting on A and changing it. So we're going to say each 
elementary row operation can be thought of as a linear transformation. 

 
The expanded Toulmin scheme for this portion of the argument is given in Figure 4.10. The 

main claim for Argument 1 is “matrix A is invertible.” What are provided in Figure 4.10 are the 

first four sub-arguments for the main data in Argument 1. In every data-claim pair, the claim for 

a given sub-argument serves as the data for the immediately subsequent sub-argument. The 

pattern continued, with some variation, for the remainder of the main argument (for the 

complete Toulmin scheme, see Appendix 4.1).  

 D1: A is square and has linearly 
independent column vectors [49:10]   

C1: A is row-equivalent to the identity 
[Instructor, 49:10] 

   
  Warrant: from the New 

Theorem (as an authority) 
  

   
 D2=C1: That’s what it means to row-

reduce to the identity [Nate, attributed 
by the instructor, 49:34]  

C2: there exists a sequence of 
elementary row operations that turns A 
into I and vice versa [Nate, 49:34] 

   
 D3=C2: There are elementary row 

operations that turn A into I [Instructor, 
50:24]  

C3: there's something acting on A and 
changing it [Instructor, 50:24] 
 

 

   
  D4=C3: there's something that's acting 

on A and changing it [Instructor, 50:24]  

C4: each elementary row operation can 
be thought of as a linear 
transformation [Instructor, 50:24] 

   

Figure 4.10. Day 18, portion of Argument 1, Sequential structure: A section of the 
data for the claim that if A is square and its column vectors are linearly independent, 

then A is invertible. 
 

In both examples given in Figures 4.9 and 4.10, the speaker explicitly restated a claim 

from a sub-argument as data for the subsequent sub-argument. This is in contrast to the Linked 

structure in which two sub-arguments are connected through words such as “and” or “also,” as 

well as in contrast to the Proof by Cases structure in which the sub-arguments constitute all 

possible outcomes. 
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4.1.1.5 Conclusion. In this section, I presented four types of argumentation schemes 

that are an expanded version of Toulmin’s model: Embedded, Proof by Cases, Linked, and 

Sequential. These argumentation structures were developed out of examining the transcript and 

video from one particular linear algebra class as its members reasoned about the Invertible 

Matrix Theorem and the mathematical concepts involved in that theorem. These four expanded 

structures were adapted from and are compatible with the expanded Toulmin schemes presented 

by Aberdein (2006, 2009). His work in informal logic and argumentation in mathematics 

presented analysis of logical structure and proof; however, it does not seem that his work 

analyzed the argumentation practices that occurred in actual discourse. For instance, Aberdein 

(2006) provided two examples of how an expanded structure could be used to map out a proof. 

One was a proof by induction (that involved the embedded structure) that every natural number 

greater than one has a prime factorization, and the other was a proof of the Intermediate Value 

Theorem. While expanded Toulmin structures were quite useful in mapping out the proofs’ 

structures, the source of the proof was left unstated. Was the proof given in a textbook and 

mapped out by Aberdein? Did he himself develop the proof and, if so, in what form? Was it 

written or communicated verbally to others, and then analyzed via the expanded structures? 

Thus, Aberdein’s use of Toulmin’s model is distinct from its use in the work presented here. 

The research in linear algebra presented here investigated the ways in which the members of a 

classroom reasoned about the Invertible Matrix Theorem. The analysis in this section focused 

on whole class discussion and examined the structure of arguments given by members of a 

classroom as they justified claims in situ. Thus, this study contributes by investigating the 

“argumentation of natural language” in an inquiry-oriented mathematics classroom and found it 

beneficial to adapt Aberdein’s notion of the expanded Toulmin layout to do so. 

This section presented one type of microgenetic analysis of argumentation that occurred 

in whole class discussion during ten days over the course of one particular linear algebra course. 
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These results do not concern the mathematical development of the collective as a unit of 

analysis per se, but rather the content and structure of argumentation at the collective level at 

various moments during the semester. Through ontogenetic analysis via Toulmin’s model of 

how these various individual arguments shift in form and function over time, various aspects of 

how the classroom community came to reason about the IMT over time comes to light.  

 
4.1.2 Ontogenetic Analysis via Toulmin’s Model 

Recall that microgenesis is the short-term process by which meaningful representations 

are constructed in activity, and ontogenesis is the developmental shifts in relations between the 

forms used and the functions that they serve (Saxe, 2002; Saxe et al., 2009). The previous 

section on microgenetic analysis investigated the content and structure of particular instances of 

reasoning about the Invertible Matrix Theorem; this was referred to as “Phase 3” in Chapter 3. 

The current section considers the shifts in form and function of how the classroom reasoned 

about the various concepts in the Invertible Matrix Theorem over time; this was referred to as 

“Phase 5” in Chapter 3. In Phase 5, the primary means of coordination were inspired by the 

methodology for documentation of both normative ways of reasoning and classroom 

mathematics practices, as detailed in Rasmussen and Stephan (2008) and Cole, Becker, Towns, 

Rasmussen, Wawro, and Sweeney (in 2011).  

Rasmussen and Stephan (2008) provide a methodology for documenting when ways of 

reasoning become normative in a classroom community. An abbreviated description of these 

two criteria is:  

● Criterion One: When the backings and/or warrants for an argumentation no longer 
appear in students’ explanations, no member of the community challenges the 
argumentation, or a challenge to the argument is rejected 

● Criterion Two: When any of the four parts of an argument (data, claim, warrant, or 
backing) shift position within subsequent arguments and is unchallenged (or a 
challenge is rejected) 
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Further work with documenting ways of reasoning that function as-if shared in classroom 

communities in the discipline of physical chemistry revealed a third criterion (Cole et al., 2011):  

● Criterion Three: When a particular idea is repeatedly used as either data or warrant 
for different claims across multiple days 
 

Through the use of these three criteria, ten normative ways of reasoning were identified from 

the aforementioned 118 Toulmin schemes:  

1. Two vectors that are parallel are linearly dependent;  
2. The span of two non-parallel vectors in R2 is all of R2;  
3. A set of vectors being linearly dependent means the same thing as being able to 

return to your original position;  
4. For a given set of n vectors in Rm, if m < n, the set must be linearly dependent; 
5. For a given set of n vectors in Rm, if m > n, the set cannot span all of Rm;  
6. If A is n x n and the columns of A span Rn, then the columns of A are linearly 

independent;  
7. If A is n x n and the columns of A are linearly independent, then the columns of A 

span Rn;  
8. A transformation T: Rn  Rm is onto Rm when you can “get everything” or “get 

everywhere” and not onto Rm when you can not;  
9. “A transformation T: Rn  Rm is onto Rm” is interchangeable with “the column 

vectors of the associated matrix A span all of Rm; and  
10. For a given transformation T: Rn  Rm, if m > n, the transformation is not onto Rm.  

 
The first three (henceforth referred to as NWR #1-3) receive an abbreviated treatment in 

analysis. Normative ways of reasoning #4-7 from above (henceforth referred to as NWR 1.1-

1.4) and #8-10 (henceforth referred to as NWR 2.1-2.3) each constitute a classroom 

mathematics practice. The bulk of this section provides the evidence for these latter seven as 

normative ways of reasoning and the classroom mathematics practices that they constitute.  

As defined by Rasmussen and Stephan (2008), a classroom mathematics practice is “a 

collection of as-if shared ideas that are integral to the development of a more general 

mathematical activity” (p. 201). The “as-if shared ideas” in this definition are what is referred to 

as normative ways of reasoning in the present analysis. Thus, classroom mathematics practices 

are collections of normative ways of reasoning around a general mathematical activity, such as 

reasoning about equivalencies in linear algebra. Through this focus on span, linear 
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independence, one-to-one, and onto, this section presents results for two classroom mathematics 

practices: Reasoning about span and linear independence as equivalent ideas for square matrices 

(referred to as CMP #1), and Determining whether or not a transformation T: Rn  Rm is onto 

Rm by considering the span of the column vectors of the associated matrix A (CMP #2).  

4.1.2.1 CMP #1: Reasoning about Span and Linear Independence as Equivalent 

Ideas for Square Matrices. One classroom mathematics practice that developed in this linear 

algebra course is “Reasoning about Span and Linear Independence as Equivalent Ideas for 

Square Matrices.” Here, equivalent takes on the mathematical definition that, for an n x n matrix 

A, the column vectors of A span Rn if and only if the column vectors of A are linearly 

independent. The development of this practice involved various ways of reasoning during the 

semester. These normative ways of reasoning, per the three criteria for ideas functioning as-if 

shared are given in Figure 4.11.  

 
Figure 4.11. The normative ways of reasoning that comprise class mathematics practice #1, 
“Reasoning about Span and Linear Independence as Equivalent Ideas for Square Matrices.” 

 

Given that the concepts of span and linear independence were ideas introduced very 

early in the semester, the relationship between these two ideas developed gradually over the 

entire semester. Furthermore, Stephan and Rasmussen (2002) noted that normative ways of 

reasoning might not develop in a linear, non-overlapping manner. That is true in this case as 

well. To keep the results organized, however, I present the normative ways of reasoning one by 

Classroom Mathematics Practice #1:  
Reasoning about Span and Linear Independence as Equivalent Ideas for Square Matrices 
 
Associated Normative Ways of Reasoning: 

1.1 For a given set of n vectors in Rm, if m < n, the set must be linearly dependent.  
1.2 For a given set of n vectors in Rm, if m > n, the set cannot span all of Rm. 
1.3 If A is n x n and the columns of A span Rn, then the columns of A are linearly independent.  
1.4 If A is n x n and the columns of A are linearly independent, then the columns of A span Rn. 
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one and make note of when one shows up in context of the other. Each section includes 

information regarding all relevant arguments and explanation for a subset of those arguments. 

4.1.2.1.1 NWR 1.1: For a given set of n vectors in Rm, if m < n, the set must be 

linearly dependent. This idea first surfaced as a generalization conjectured by a small group on 

Day 5, became explicitly debated and discussed on Day 6, and then used for data or warrant for 

other claims on Days 9 and 20. The idea became identified in the class with the phrase, “if there 

are more vectors than dimensions, the vectors have to be linearly dependent.” The first 

argument relevant to NWR 1.1 occurred on Day 5, when Justin explained his group’s rationale 

for why there was “no solution” for the task of generating an example of a set of three linearly 

independent vectors in R2 (see Figure 4.12). This argument was presented in the previous 

section as an example of a Proof by Cases structure (Figure 4.6); it is given here to help analyze 

how the concepts of span and linear independence developed during whole class discussion.  

  

 Data1: if we 
have 2 vectors 
that are parallel   

Claim1:  they're 
dependent 

  
 Warrant1: we already said [it]  

 

   
 

Data:.  
Let's just start 
with any random 
vector, let's call 
it that one. Now 
after we have 1 
vector down, 
there's only 
basically 2 
situations we 
could have. 

Data2: If we 
had 2 that 
weren't 
parallel    

Claim2:  no matter 
where we throw in our 
3rd vector, we can get 
there with a combo of 
these 2 and make it 
back on that 3rd one 

 

  

Claim: When 
looking for an 
example of 3 
vectors in R2 
that form a 
linearly 
independent 
set, there is no 
solution  

  
 Warrant2:  the span of any 2 that 

aren't parallel is all of R2 
 

  
 Backing2: We did this when we did 

our magic carpet hoverboard 
 

 

 

  

[Justin, 57:00] 
  

Warrant: So there can't be any solution, so there's no, as long as we 
have 3 vectors in R2, it has to be linearly dependent.  

 

Figure 4.12. Argument 5.1: Justin’s argument for why it is impossible to have a linearly 
independent set of three vectors in R2.  
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Whereas in the previous section on Microgenetic Analysis the focus was on the 

structure of Justin’s argument, I now present this argument to consider the mathematics in 

Justin’s statements and how these ideas shift in form and function within the various goals of 

justifying claims throughout the semester. Note that Justin’s explanation referenced previous 

activities in the class: In Warrant 1 he stated “we already said,” and Backing 2 was from when 

“we did our magic carpet hoverboard,” which was the task sequence from the first few days of 

the course. The Data1-Claim1 pair, as well as Data2-Claim2 pair, both previously served as 

claims that needed justification within the class (on Days 5 and 3, respectively; the details are 

omitted here). In Argument 5.1, they functioned without debate to serve as part of the Data (the 

Warrant and Backing for the two sub-arguments within the Data) in order to help Justin justify 

his claim. Thus, according to Criterion Two, there is evidence that the following two ways of 

reasoning were normative in this classroom community: 

 NWR #1: Two vectors that are parallel are linearly dependent 

 NWR #2: The span of two non-parallel vectors in R2 is all of R2 

The main claim in Argument 5.1, that it is impossible to have a linearly independent set of three 

vectors in R2, is relevant to developing NWR 1.1 because it is a specific case of it—the 

generalization of the case of three vectors in R2 to more than n vectors in Rn was a major point 

of conversation on Day 6.  

On Day 6, the class members discussed various generalizations regarding linear 

independence and linear dependence that they, in their small groups, had worked on the 

previous day. As a result of their work on the Example Generation Task (see Figure 4.4), four 

generalizations were brought out during whole class discussion:  

1. For any set of vectors in Rn where two of the vectors are multiples of each other, 

the set is linearly dependent. 
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2. If any vector in a set can be written as a linear combination of the other vectors, 

then the set is linearly dependent. 

3. If the zero vector is included in a set of vectors, then the set is linearly dependent. 

4. If a set of vectors in Rn contains more than n vectors, then it is linearly dependent. 

From the reflections students completed on Day 5, the research team conjectured that the fourth 

generalization was the most problematic for students, so the instructor began class on Day 6 

discussing this statement. The following transcript provides the data from which Arguments 6.1 

and 6.2 are drawn. The coded transcript of Day 6, along with the original Toulmin coding, can 

be found in Appendix 4.2.  

Instructor:  As I was walking around, I saw more puzzled faces than I expected, it is 
Monday and I actually heard someone say, 'How are we supposed to know how 
to make a generalization if we don't know what it's about, or we don't 
understand what it's about?' I think that's a great question. So how about, can I 
have someone who understands #4 restate #4 in their own words, what do we 
mean by this generalization? 

Justin:  If you have more vectors than dimensions, you'll always be able to return to 
your original position.  

Instructor:  Could you say that louder? If you have more vectors than dimensions? 
Justin:  Then you can always return to your original position. 
Instructor:  Does that resonate with anyone else's way of thinking about this problem? 

Nate, can you say anything about the way you understand what #4 is about? 
Nate:  It's saying if you have, there's no other way of putting it, if there's more vectors 

than. I don't know another way to say it. 
 

 The first argument coded occurred after the instructor asked Justin to restate 

Generalization #4 in his own words (see Argument 6.1 in Figure 4.13). Justin claimed that his 

statement, “if you have more vectors than dimensions, you’ll always be able to return to your 

original position,” is a way to restate Generalization #4 in his own words. After he did not 

provide any justification of why it is valid to restate the generalization in this way, the instructor 

asked Nate if Justin’s restatement resonated with his own thinking. This type of move, often 

demonstrated by the instructor, can be referred to as “calling for data,” which serves to push the 

argument further. Nate’s utterance served as data for Justin’s claim because it functioned to 
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provide validity to the claim. It did so because Nate confirmed the claim’s validity by saying he 

couldn’t think of any other way to restate the generalization. 

  Data: There’s no other way of 
putting it ... I don’t know any other 
way to say it [Nate, 05:26] 
  

Claim: Generalization #4 in my own 
words is if you have more vectors 
than dimensions, you’ll always be 
able to return to your original 
position [Justin, 04:54] 

   

Figure 4.13. Argument 6.1: Justin describes Generalization #4 in his own 
words, and Nate comments.  

 

Within this data-claim pair, Justin and Nate treated the concept of a set of vectors being 

linearly dependent the same as being able to return to your original position. Furthermore, we 

see from the transcript that neither the instructor nor other members of the classroom asked for 

more justification regarding the validity of Justin’s claim. This is distinct from classroom 

behavior on Day 3, when the term ‘linearly dependent’ was provided as a term for a set of 

vectors with this property. When the formal definition of linear dependence, that a set of vectors 

{v1, v2,...,vn} is linearly dependent if there exists a nonzero solution to c1v1 + c2v2 +...+ cnvn = 0, 

was introduced, a substantial portion of whole class discussion and small group work was spent 

correlating this contextual situation with the formal definition. This analysis from previous days 

is beyond the scope of the focus of this section; however, this transition from being a claim that 

needed justification to one stated without such support satisfies Criterion One that the given 

idea was functioning as-if all members of the classroom shared an understanding of it. Thus, 

another idea that functioned as-if shared in this particular classroom is the following:  

NWR #3:  A set of vectors being linearly dependent means the same thing as being able 
to return to your original position 

 
 As the discussion continued, the instructor attempted to elicit justification of why the 

generalization “if there are more vectors than dimensions, the vectors are linearly dependent” 

would be a valid generalization: 
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Instructor:  That's fine. So that's the problem statement, now the question would be, how 
can we explain why that is true? Jerry, did your table get to talk about a reason 
why #4 is going to make sense to your table? 

Jerry:   Not really. 
Instructor:  Not really. Saul, how did your table talk about #4? 
Saul:  We were confused on how to prove it, we didn't know where to start, where to 

go with a proof. 
  
As shown in Figure 4.14, the generalization was the claim in Argument 6.2 and the instructor 

pushed for data by asking, “how can we explain why that is true?” She asked one student, Jerry, 

if he could give a reason why this generalization made sense for his table, but he replied “not 

really.” After an extended pause during which she looked around the room at the other students, 

the instructor called on Jerry, who was also unable to give a justification for the claim. Instead, 

Saul provided a qualifier that voiced his group’s confusion and difficulty in forming a proof.  

  Qualifier [to the lack of data]: We were confused on how to prove it, 
we didn’t know where to start, where to go with a proof [Saul, 06:04] 

 

     
  Data: None  

 

Claim: If you have more vectors than dimensions, 
the set of vectors is linearly dependent [Instructor] 

   

Figure 4.14. Argument 6.2: Saul states his table was unsure how to prove Generalization 4. 
 

Of note here is the difficulty of the classroom, when considered an entity comprised of all 

members, to provide a justification for the generalization offered the previous class day. The 

instructor noted this difficulty and decided to shift focus from the generalized claim towards 

specific examples of the claim (Arguments 6.3-6.7).  

 The instructor suggested that they start with an example and wrote 
  

€ 

1
2
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⎣ 
⎢ 
⎤ 

⎦ 
⎥ ,

3
5
⎡ 

⎣ 
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⎤ 

⎦ 
⎥ ,
−9
7

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭  

on the 

board. She gave the students time in their small groups to consider the example by saying, 

“Let's think about why if we had 3 vectors in R2, that would mean I should always be able to get 

back home.” Notice in the instructor’s statement that interpreting being able to “get back home” 

as being the same as the vectors forming a linearly dependent set is functioning as-if shared. 
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Note the instructor did not ask them to work in on the claim in Argument 6.2; rather, she asked 

students to work on an example in R2 and, even in her working of the task (“should be able to 

get back home”) prompted them to refer back to their previous work to help them on this task. 

After discussing in their small groups, Lawson came to the front of the class to explain how his 

group was thinking. The structure of his explanation is shown in Figure 4.15.  

  Data: Graphically think about it. You say 
you have a vector over here, and then plus a 
vector that's not parallel to it [draws two 
vectors tip-to-tail on the board]. And we 
have just any other random vector, say it 
goes this way. If you add any 2 nonparallel 
vectors that at some point these vectors are 
going to come across this other vector, and 
hit it at a point. [Lawson, 08:58] 

  

Claim: If we had 3 
nonparallel vectors in R2, 
I should always be able to 
get back home [Instructor, 
6:46] 
 

    
 Warrant: So if that happens, then you can just take the 

last vector and multiply it by some scalar to get you 
back to the origin. That's how graphically we got it. 
[Lawson, 08:58] 

 

    

Figure 4.15. Argument 6.3: Lawson justifies why three nonparallel vectors in 
R2 can always “get back home.” 

 

In Argument 6.3 (see Figure 4.15), we see a repeat of the claim specific to three vectors in R2. 

The claim is attributed to the instructor, and the data is attributed to Lawson because he came up 

and shared his group’s thoughts from their work on the example. Notice that his explanation did 

not actually address the specific example of 
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 written on the board; rather, he 

addressed the claim by using a generic example (Mason & Pimm, 1984). He started his 

explanation by stating, “graphically think about it.” He then presented a justification that relied 

on three generic vectors in R2 and sketched his explanation as he spoke (see Figure 4.16).   
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Graphically 
think about it. 
You say you 
have a vector 
over here, and 
then plus a 
vector that's not 
parallel to it 

And we have just 
any other random 
vector, say it goes 
this way. 

If you add any 
two nonparallel 
vectors  

that at some point 
these vectors are 
going to come 
across this other 
vector, and hit it at 
a point. 

So if that happens, 
then you can just 
take the last vector 
and multiply it by 
some scalar to get 
you back to the 
origin. That's how 
graphically we got 
it. 

Figure 4.16. Lawson’s justification for why any 3 vectors in R2 are linearly dependent. 
 
 

The instructor, who noticed that Lawson’s justification dealt with three “non-parallel” 

vectors, posed the question, “What if the set of vectors were 
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?” In Argument 6.4 

(see Figure 4.17), Lawson claimed that this set is also linearly dependent and provided the data 

that “You can just ignore this last vector, take one, like 
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by providing the warrant that because 
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Cayla’s backing came after the instructor asked the class if Lawson’s explanation made sense. 

This again speaks to the role of the instructor in soliciting warrants and backings. Cayla’s 

backing is notable because she commented on whether Lawson’s explanation justifies that
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 is a linearly dependent set by attempting to address the more general case of a set 

of three vectors in R2. Toulmin (1969) noted that warrants and backing often are of this more 

general form, versus data that often are more specific. Her explanation, however, was unclear 
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and possibly incorrect: by saying, “ignore the last one,” did she mean that the set 
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is 

linearly dependent?  

  Data: You can just ignore this last 

vector, take 1, like 
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Claim: If you have the set of vectors 
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, it’s linearly dependent 

[Lawson, 09:57] 

    
 

Warrant: it's a multiple of 
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⎥ , and you can just not use this one. 

So it's linear dependent. [Lawson, 09:57] 

 

    
 Backing: It makes sense that pretty much if you have 3 vectors in 

R2, even in the 1st example, you could technically ignore the last 

one, because if you take 
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Figure 4.17. Argument 6.4: Lawson provides evidence that a particular set of three 
vectors in R2 is linearly dependent. 

 
Immediately after Cayla spoke and without the instructor’s prompting, Aziz 

volunteered a new idea (see Argument 6.5 in Figure 4.18). Aziz claimed that if a third vector 

was in the span of two other vectors, then the set of three vectors is linearly dependent. This is 

coded as a new claim rather than another support for Lawson’s original explanation because 

Aziz mentioned span in conjunction with linear dependence, and this was the first time that day 

that these two concepts had been linked together in some way. This argument was presented in 

detail, but with regard to its Proof by Cases structure, in the section on Microgenetic Analysis 

(Figure 4.7). It is presented here to highlight the mathematical content of Aziz’s argument. First, 

Aziz’s claim, in line with Cayla’s backing, generalized to all sets of three vectors in R2. To do 

so, he used a proof structure very similar to Justin’s from Day 5 (see Figure 4.12). He also made 

use of the aforementioned normative ways of reasoning but with slightly different vocabulary. 
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In his data-claim pair of his second sub-argument, he stated that two vectors that aren’t linearly 

dependent span R2. In Argument 5.1 (Figure 4.12), Justin used this statement (except with the 

words “not parallel” instead of “not linearly dependent”) as a warrant for his claim. Here, Aziz 

used the same concept for his data but without the additional backing for why this is valid.  

  
 
  

Data:.  
2 vectors 
span R2 or 
they don't:  

Data1: if 
they're 
linearly 
dependent 
already 

 

Claim1: then it makes the 
set linearly dependent. 

  

  

  

 

Data2: If 2 
aren't 
[linearly 
dependent 
already] 

 

Claim2: then they span 
R2, and the 3rd one has to 
be contained in R2 to be 
able to reach back to the 
origin 

 

  

Claim: If a 
vector is 
contained in the 
span of 2 other 
vectors, then you 
should be able 
to reach the 
origin, get back 
to the origin. 
[Aziz, 11:40] 

[Aziz, 11:50]     
  

Implicit Warrant: D1 and D2 together create a valid justification 
 

Figure 4.18. Argument 6.5: Aziz argues that if a vector is in the span of two other 
vectors, you can get back to the origin. 

 

After Cayla’s explanation, in which the distinction between span and linear 

independence was unclear, and Aziz’s argument that explicitly tried to relate the two concepts, 

the instructor made this distinction the focus of conversation. Reminding the students of Cayla’s 

claim that if they were to remove one of the vectors from the set 
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, the span would 

still be all of R2, she asked, “Now the question would be, how does this relate to linear 

independence or dependence, are they both linearly independent, are they both linearly 

dependent, one of each?” She then wrote two sets of vectors on the on the board, 
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, and facilitated a discussion of linear independence or dependence. Details of these 

two arguments, 6.6 and 6.7, can be found in Appendix 4.2.  



  
101 

 

Finally, the last relevant argument from Day 6 occurred when the instructor asked if 

someone from Justin’s group would present a justification for their original generalization #4: If 

a set of vectors in Rn contains more than n vectors, then the set is linearly dependent. Justin 

volunteered, and his explanation is given in Figure 14.9.  

 Qualifier: Unless you have 2 vectors that are lying on the same line, then you won't have 
the span of all of your dimension, but it's negligible because those 2 will give you a linearly 
dependent set. Does that make sense? [Justin, 17:19] 

 

     
   Data: So if you start in any Rn, and you just start with 1 

vector and keep adding more. So let's do R3, just for an 
example. So we start with 1 vector. So either, we have 2 
choices:  The next vector we add can either be on the same 
line, which means it's already linearly dependent, so we 
don't want that, so we're going to put it off somewhere else. 
Now the span of that is a plane in 3 dimensions. So now 
we're going to add another vector in. Our 3rd vector, now it 
can either be in that span or out of that span. And we want 
it to be linearly independent, so we're going to put it out of 
that span. But now that we have that going off of that plane, 
we just extended our span to all of r3. So our 4th vector, 
when we put it in, no matter where we put it, it's going to 
get us back home. Because just like in this case, we have to 
have the last one to get back  
home, we can get anywhere with those 1st 3 that we put in, 
but we have to have to have that 4th one to come back. 
[Justin, 17:19] 

  

Claim: If you have 
more vectors than 
dimensions, the set 
of vectors is linearly 
dependent [Justin, 
17:19] 
 

    
 Warrant:  And so it works like that in any dimension, because the more you, if you keep 

adding, eventually you're going to get the span of your dimensions, and then you're going 
to have that extra one bringing you back. [Justin, 17:19] 

 

  
 Backing: I'd like to add on to this, if you're going from the plane to the volume of space, 

that's with 3 vectors in 3 dimensions. With the 4th one, you can cross all those dimensions 
back to the origin, that's what makes the 4th dimension, the 4th vector, it makes you able to 
go back to the beginning. Because each vector takes up a different point in space. You're 
going from the plane to the volume, gives you those 3 dimensions but you can't get back to 
origin, unless you have a 4th one that can cross all 3. [Aziz, 19:46] 

 

 

Figure 4.19. Argument 6.8: Justin’s argument for why a set with more than n vectors in Rn 

has to be linearly dependent.  
 

Justin built his explanation by choosing R3 as a generic vector space through which to 

explain his reasoning. His data was dense, going through each possibility with the various 

combinations of vectors, starting with only one and continuing up to four. He continually spoke 
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about span and linear independence in relation to one another; for example, he stated, “Now the 

span of that [the two vectors] is a plane in three dimensions. So now we're going to add another 

vector in. Our third vector, now it can either be in that span or out of that span. And we want it 

to be linearly independent, so we're going to put it out of that span.” After he spoke about a 

fourth vector in R3, he changed the focus of his explanation and stated, “it would work like that 

in any dimension, because...eventually you’re going to get the span of your dimensions, and 

then you’re going to have that extra one bringing you back.” It functioned without justification 

that “bringing you back” was synonymous with linear dependence. Finally, Justin ended his 

justification with a qualifier that, in essence, his entire justification did not matter in the case 

that two of the given vectors were “lying on the same line” because that made the entire set of 

vectors linearly dependent. Within this one complex argument, we see the ways of reasoning 

identified as NWR #1-3 function not only without need for justification but also as justification 

for a new claim.  

 On Day 9 of the semester, the class investigated the row-reduced echelon form of 

various matrices (e.g., different types of 2 x 2, 3 x 2, and 5 x 3 matrices) and how those forms 

provided information about the span or linear independence of the column vectors in the various 

matrices. The teacher started with examples that were similar to others that the class had 

previous experience with in regard to determining span or linear independence, one of which 

was the set 
  

€ 

1
4
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ,

2
7
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ,

10
5

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
. After Aziz offered why this set was linearly dependent, the class row-

reduced the matrix 
  

€ 

1 2 10
4 7 5

 0
 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  in order to inquire into how free variables and pivots played a 

role in helping to determine the dependency relationship that existed between the three vectors. 

Of interest for establishing how the way of reasoning labeled #1.1 functioned as-if shared for 

this classroom, is Aziz’s explanation, labeled Argument 9.1 in Figure 4.20. Here Aziz claimed 
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the three vectors are linearly dependent, and the data he provided was “If there are more vectors 

than there are columns, then it’s linearly dependent.” This is very nearly the claim that was 

debated on Day 6 in Arguments 6.1-6.8 above. Aziz did say, however, “more vectors than 

columns,” which the instructor corrected in her warrant by saying “more vectors than 

dimensions.” The instructor also affirmed that what Aziz was arguing was consistent with the 

class’s previous work. Thus, this idea that previously was the claim in multiple arguments 

served here as data for a new claim, so we have our first evidence of this idea functioning as-if 

shared by the members of the classroom. 

  Data: If there are more vectors 
than there are columns, then it’s 
linearly dependent. [Aziz, 28:50] 

  

Claim: The set 
  

€ 

1
4
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⎣ 
⎢ 
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⎦ 
⎥ , 

2
7
⎡ 

⎣ 
⎢ 
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⎦ 
⎥ , 

10
5

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
 is 

linearly dependent. [Aziz, 28:50] 
    
 Warrant: So Aziz is reminding us of the thing we decided a 

while back, if we have more vectors than dimensions, it has 
to be linearly dependent [Instructor, 28:56] 

 

 

Figure 4.20. Argument 9.1: An argument for why a given set of three vectors in 
R2 is linearly dependent. 

 

After many conversations about pivots, row-reduction, span, and linear independence, the 

teacher brought the discussion to a close by tying all of their ideas together into the semester’s 

first theorem, which consisted of four equivalent statements (Figure 4.21). This theorem became 

known as “Theorem 4,” to match the name it was given in the textbook (Lay, 2003).   

 
 
 
 
 
 
 
 

 
Figure 4.21. Theorem 4 from Day 9. This was the first occurrence during the semester of 

equivalent statements being explicitly connected through a theorem. 
 

Theorem: Let A be an m x n matrix (where m is # of rows and n is # of columns).  
The following are equivalent:  

1) The columns of A span Rm. 
2) There exists a pivot in every row (There are m pivots). 
3) For every vector b in Rm, there is a way to write b as a linear combination of the 

columns of A.  
4) For every b in Rm, there is a solution to the equation Ax = b. 
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The class discussed that one way to interpret a theorem composed of equivalencies was 

that if one of the statements is true, then they are all true, and if one is false, all of the statements 

must be false. As the last conversation that day, the instructor asked the class to think about 

various possibilities for span and linear independence based on whether m > n or vice versa.  

Instructor: This theorem doesn't say a lot about linear independence or dependence, right? 
 Yeah, so for instance, m by n, what if m is less than n, or m is greater than n? 
Cases like that we haven't gotten to too much yet. So let's think for a second, if 
m is less than n, that means we have less rows and more columns. 

Randall: Dependent. 
Instructor: Did you say dependent? He didn't even say much, he just said dependent, how 

can you say that so quickly? 
Randall: If n is greater than m, that means there's going to be, say, 3 vectors in 2 space, 

and 2 of those are going to span, the last one makes it dependent. 
Instructor:  Yeah, so we could do that example from before, if we had 3 vectors in R2, we 

try to row reduce it, we could have a pivot here, a pivot here, and can we get a 
3rd pivot? [Randall: No.] Yeah, so we'll start to look at pivots this way for 
linear independence. So this guy [the third column] has no pivot, so it has to be 
a linearly dependent set. 

 
In Argument 9.15 (see Figure 4.22), Randall quickly said “dependent” in response to the 

teacher’s initial statement of “if m is less than n.” The instructor asked Randall to provide data 

for his claim, which she then supported by adding a warrant and backing. 

  Data: If n is greater than m, that means 
there's going to be, say, 3 vectors in 2 space, 
and 2 of those are going to span, the last one 
makes it dependent. [Randall, 1:10:25] 

  

Claim: if m is less than n, 
the columns are linearly 
dependent [Randall, 
1:10:14] 

    

 Warrant: Yeah, so we could do that example from before, 
if we had 3 vectors in R2, we try to row reduce it, we could 
have a pivot here, a pivot here, and can we get a 3rd pivot? 
[Randall: No.] [1:10:37] 

 

  
 Backing: So this guy [the third column] has no pivot, so it 

has to be a linearly dependent set. [Instructor, 1:10:37] 
 

 

Figure 4.22. Argument 9.15: Randall and the teacher discuss if m < n, the 
columns are linearly dependent. 

 
 
The instructor ended the class period by saying they would return to these ideas in 

homework and in class the following week. She drew explicit attention to the concepts of linear 
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independence and span, stating, “as you saw in that last example, maybe we can get linear 

independence and dependence, but we can't [get] span. Maybe we can span but not have 

independence, etc.” A discussion of what could occur when m equals n did not occur during this 

class. However, Abraham stayed after class that day to speak to the instructor. While doing so, 

he conjectured on his own that the only way a set of vectors in a matrix could both span and be 

linearly independent is if m = n. Details of this conjecture are given in Chapter 5. 

 The final example of reasoning that for a given set of n vectors in Rm, if m < n, the set 

must be linearly dependent occurred on Day 20 of the semester. On Day 20, the class 

investigated the notions of one-to-one and onto transformations, and how those concepts were 

related to ones with which they were already familiar, such as span and linear independence. In 

Argument 20.4 (see Figure 4.23), Mitchell claimed that a transformation T: Rm Rn could not 

be one-to-one if m was less than n. His data for this claim, however, was “it’s just not possible.” 

Unsatisfied with this justification, the instructor asked Abraham if he could provide for the class 

some reason why it wouldn’t be possible. Abraham’s data for Mitchell’s claim, notated as Data2 

in Figure 4.23, was that having more vectors than dimensions means the set has to be linear 

dependent. Abraham went on to provide a reason why that data had anything to do with 

Mitchell’s claim by stating, “In order for it to be 1-1, it has to be linear independent.” This is the 

warrant in Argument 20.4. 

Again, in Argument 20.4, as was true in Arguments 9.1 and 9.2, the idea of “having 

more vectors than dimensions implies the vectors are linearly dependent” shifted from being the 

claim that needed justified (as seen, in some version, in Arguments 5.1, 6.1-6.5, and 6.8) to the 

data for new claims. Thus, per Criterion 2, this idea functioned as-if shared in this particular 

classroom community. The activity of using linear independence as a way of reasoning about 

one-to-one transformations is described in more detail in the forthcoming section regarding the 

second classroom mathematics practice.  
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  Data1: It’s just not possible [Mitchell, 36:25] 
  

   
 Data2: having more vectors than dimensions 

means it has to be linear dependent 
[Abraham, 36:42] 

 

 

Claim: You can’t be 
more than 1-1 if m is 
less than n [Mitchell, 
36:25] 

     
 Warrant: In order for it to be 1-1, it has to be 

linear independent [Abraham, 36:42] 
 

 

Figure 4.23. Argument 20.4: Mitchell and Abraham explain why m < n 
implies the transformation is not 1-1. 

 
 

 The purpose of this above description was to document the development of NWR 1.1, 

which was one of the four normative ways of reasoning that comprised the first classroom 

mathematics practice (CMP 1), “Reasoning about Span and Linear Independence as Equivalent 

Ideas for Square Matrices.” A much briefer treatment of the development of NWR 1.2 follows.  

 4.1.2.1.2 NWR #1.2: For a given set of n vectors in Rm, if m > n, the set cannot span 

all of Rm. The second normative way of reasoning associated with the CMP “Reasoning with 

Span and Linear Independence as Equivalent Ideas for Square Matrices” was initiated within 

the first few days of the semester. It was a way of reasoning compatible in style with the first 

normative way of reasoning associated with this CMP; that is, NWR 1.1, which dealt with 

defining situations in which when linear independence was impossible. NWR 1.2 can be seen as 

a correlate of that for the idea of span, and there were seeds of it in Justin’s argument for why a 

set with “more vectors than dimensions” is linearly dependent (see Argument 6.8 in Figure 

4.19). Within his argument, he stated there are two possible cases for the span of two vectors in 

R3: If two are linearly dependent, “you won't have the span of all of your dimension” 

(qualifier), and if the two are linearly independent, “the span of that is a plane in three 

dimensions” (data). 

 Another argument of interest occurred immediately after Argument 9.15, which was 

detailed in the previous section (see Figure 4.22). The instructor asked what could be said, if 
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anything, about span or linear independence in the case opposite to that explored in Argument 

9.15, when m was less than n. Abraham responded immediately (see Figure 4.24) by stating, “If 

m is greater than n, you won’t be able to span (pause).” As he paused, Justin chimed in with 

“span the entire dimension,” and Abraham agreed with him. This interaction is summarized as 

the claim in Argument 9.16. The instructor asked Abraham if he could give a reason why his 

and Justin’s claim would be true, to which he replied: “I don't know, it just makes sense, you 

don't have enough vectors for the dimensions. So it seems you wouldn't be able to go to all the 

directions in those dimensions.”  

 Qualifier: I don’t know, it just makes sense [Abraham, 1:11:58]  
     

   Data: You don’t have enough 
vectors for the dimensions. 
[Abraham, 1:11:58]   

Claim: If m > n, you won’t be able to 
span the entire dimension [Abraham and 
Justin, 1:11:42] 

    

 Warrant: So it seems you wouldn’t be able to go to all the 
directions in those dimensions. [Abraham, 1:11:58] 

 

 

Figure 4.24. Argument 9.16: Abraham and Justin’s argument for why if m > n, a set of n 
vectors won’t span Rm. 

 
 In an m x n matrix, m corresponds to the number of components in the vectors, and n to 

the number of vectors. Thus, another way to say that m is greater than n is that there are less 

vectors than dimensions. In Argument 20.19, Edgar claimed it was not possible to have a 

transformation from Rn Rm, where m > n, be onto. The data he provided was, “There's only 

two vectors, so you can't possibly span R3. You simply don't have enough vectors to get 

anywhere you have in R3. Thus, the claim that if m < n, the columns don’t span Rn served as 

data in a subsequent argument. Thus, per Criterion Two, this became a normative way of 

reasoning in this classroom.  

 4.1.2.1.3 NWR #1.3: If A is n x n and the columns of A span Rn, then the columns of 

A are linearly independent. Another normative way of reasoning that developed in this 
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classroom was the implication that, for a square matrix A, if the column vectors of A spanned all 

of Rn, then the columns of the set had to be linearly independent as well. The first few explicit 

arguments related to this way of reasoning occurred on Day 10. First, in Argument 9.2 and 9.3 

(see Figures 4.23 and 4.24), the class made initial conjectures regarding what could be said for 

the cases of m < n and m > n. On Day 10, the teacher had the theorem from the previous day 

(see Figure 4.21) prepared as a starting point for this day’s conversation. After reminding 

students of their progress the week before, she asked them, based on student responses to the 

reflections, to focus on m = n.  

Instructor:  So let's jump right in where we left off on Wednesday. We had this theorem up 
on the board, where A was an m x n matrix where m and n weren't necessarily 
equal. So you could have maybe a matrix, maybe it was a 3 x 5. Or you have 
something like this, where maybe A was a 5 x 3. And then we talked about this 
theorem and on your reflection, a lot of you talked about how you understood 
this. And you mostly focused on span and pivot points... So what I want to 
work on today, and I also [saw] this on the Reflections, a lot of you started to 
talk about what would happen for square matrices. So the theorem actually it 
could be a square matrix, but it doesn't have to be. So if I tie your arm behind 
your back and say, let's only talk about square matrices, what in this theorem 
would change, if anything? And then, are there other things that we also know 
about linear independence, span, row reduced echelon form, etc. that we could 
add on to this theorem? 

 

 
Figure 4.25. The main task that students worked on in their small groups on Day 10. 

 

She then posed the task shown in Figure 4.25 for students to work on in their small groups. As 

part of constituting the task, the instructor facilitated a discussion about what would change in 

statement 1 from Theorem 4 if the matrix was now n x n. The class decided the new statement 

TASK: MAKING CONNECTIONS 

What about when m = n? What connections are there between the various concepts when the matrix 
is square? How do you justify these equivalencies? Develop a set of equivalent statements for 
square matrices (if m = n). Write them out as a new theorem, in the following form:  
 

Let A be an n x n matrix. The following are equivalent:  
1.  
2.  
3.  
 Etc. 
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should read, “the columns of A span Rn.” This seemed to influence the students to word their 

conjectures such as, “if A is square and the columns span Rn, then...” During the subsequent 

whole class discussion, four arguments were given for completing this conjecture with “then the 

columns of A are linearly independent” (Arguments 10.2, 10.3, and 10.5).  

In Argument 10.2 (see Figure 4.26), Justin, after being asked to share a thought from 

his table, volunteered the claim that “If we have an n x n matrix that spans Rn, then the set of 

vectors in A is linear independent.” The instructor immediately called for Justin to provide data 

for his claim. Before he did so, he qualified his claim by stating, “that's required, [copying #1-4] 

because if we don't require there to be a pivot in every row, this doesn't have to be true.” His 

data and warrant provide information regarding how having “as many pivots as we have 

dimensions” and having “ones along the diagonal” gives “us the span” (Figure 4.26).  

 Qualifier: that's required, [copying #1-4] because if we don't require 
there to be a pivot in every row, this doesn't have to be true [Justin, 22:09] 

 

     

   Data: we have as many pivots as 
we have dimensions [Justin, 22:09] 
   

Claim: If we have an nxn matrix that 
spans Rn, then the set of vectors in A is 
linear independent [Justin, 21:28] 

    

 Warrant: The simplest form...1's along that diagonal, which 
gives us the span. [Justin, 22:09] 

 

 

Figure 4.26. Argument 10.2: Justin’s argument for if the columns vectors of an n x n 
matrix A span Rn, then the column vectors of A are linearly independent. 

  

One may notice that, in Justin’s argument, his claim was knowing that n columns 

spanned Rn implied that those vectors were linearly independent, but that his warrant stated 

“...which gives us the span.” Justin’s support for the relevance of the data to the claim, which 

contained mention of “1’s along the diagonal,” was unclear. The instructor, who may have 

possibly noticed that, asked Nigel if he agreed with Justin. Nigel claimed his group arrived at 

the same new equivalent statement as Justin (Argument 10.3 in Figure 4.27). Nigel also talked 

about pivots in his data but added “you only use one vector once.” His warrant, then, served to 
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explain why using vectors once had anything to do with his claim. He stated, “you use each 

vector to go in a certain dimension, but you can never get back.”  

  Data: you're under the assumption that 
there's a pivot in every row, you only use 
one vector once [Nigel, 22:55]   

Claim: We got the same thing [as Justin’s 
claim] [Nigel, 22:55] 

    

 Warrant: you use each vector to go in a certain dimension, 
but you can never get back. [Nigel, 22:55] 

 

  

Figure 4.27. Argument 10.3: Nigel’s argument for if the columns vectors of an n x n 
matrix A span Rn, then the column vectors of A are linearly independent.  

 
 
Nigel’s warrant referenced back to the Magic Carpet Ride problem, when the concept of linear 

independence was first understood in terms of modes of transportation (i.e., the set of vectors

      

€ 

{v1,v2,...,vn}) with which you were unable to complete a journey that began and ended at 

home (had a nontrivial solution to       

€ 

c1v1 +c2v2 + ...+cnvn = 0). Thus, although both Justin and 

Nigel first tried to use having a pivot in every row for their identical claims, Nigel was able to 

explain in his warrant, through the language of the Magic Carpet Ride problem, why that 

implied the columns of A had to be linearly independent.  

When asked if his table had any statements they would like to add, Matthew responded, 

“Any system that spans Rn would be linearly independent, because the number of variables 

correspond to the number of rows, so it also corresponds to the number of dimensions.” When 

asked to repeat himself, Matthew stated, “A system that spans all of Rn would be linearly 

independent, because it has the same number of rows and columns, and the number of variables 

corresponds to the number of rows, and also corresponds to the number of dimensions in the 

system” (Argument 10.4 in Figure 4.28). Matthew, in his explanation of relating span and linear 

independence, relied first on the distinction of having the same number of rows and columns. 

Next, in his warrant, Matthew tried to relate having the same number of rows and columns to 

the number of variables and dimensions. The instructor then supported his effort by noting that, 
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if the matrix were in a system, the number of columns would provide the number of variable 

and the number of rows would provide the number of equations. The points I draw from 

Arguments 10.2, 10.3, and 10.5 is that, in each argument, the claim that if the column vectors of 

an n x n matrix A span Rn, then the column vectors of A are linearly independent was under 

debate and necessitated a high level of justification, and that justification itself was not obvious 

for members of the class.  

  Data: it has the same number of rows 
and columns [Matthew, 25:15] 

  

Claim: A system that spans all of Rn 
would be linear independent [Matthew, 
25:15] 

    
 Warrant: the number of variables corresponds to the number 

of rows, and also corresponds to the number of dimensions in 
the system [Matthew, 25:15] 

 

    
 Backing: this n here [number of rows] is the number of 

equations. If you want to think of it and this [number of 
columns] as the number of variables, that sort of thing 
[Instructor, 25:29] 

 

 

Figure 4.28. Argument 10.5: An argument by Matthew and the instructor for any [square] 
system that spans all of Rn would be linearly independent.  

 

 The final argument presented for NWR 1.3 comes from Day 20. The class was 

investigating one-to-one and onto and how those concepts relate to linear independence and 

span. Within Argument 20.16 (see Figure 4.29) consider Abraham’s data. To support his claim 

that if the matrix is square, being linearly independent is the same as being onto, he mentioned 

the “n x n theorem.” By Day 20 of the semester, the “n x n theorem,” already known as the 

Invertible Matrix Theorem, consisted of twelve equivalent statements. In Argument 20, 

Abraham mentioned two of these equivalencies by name. In the Data1-Claim1 pair, he stated, 

“If a square matrix is linearly independent, it also spans, and vice versa.” The “vice-versa” is 

inferred to mean, “If a square matrix spans, it also is linearly independent (Data2-Claim2 pair in 

the data). Focusing on this Data2-Claim2, we see Abraham use this pair (as a unit) as data to 



  
112 

 

support his claim. He did not provide any justification for why this Data2-Claim2 pair is true, 

nor was any requested by the class members. This is distinct from Arguments 10.2, 10.3, and 

10.5 during which justification for this data-claim pair was needed. Thus, per Criterion Two, “If 

A is n x n and the columns of A span Rn, then the columns of A are linearly independent” 

functioned as a normative way of reasoning in this classroom.  

Qualifier: I just remember 
  

   
   

   Data1: If a 
square matrix 
is linear 
independent 

 

Claim1: it 
also spans 

Claim: If the matrix 
is square, being 
linearly independent 
is the same as being 
onto  

 
 

 

Data2: if it 
spans 

 

Claim2: it's 
also linear 
independent. 

Data:  
if it’s 
square, 
we had 
the nxn 
theorem  

 

 

 

  

 

 Warrant: And so 
that means Warrant1: if it's 1 to 1, it has to be onto 
 
 Warrant2: if it's onto, it has to be 1 to 1 

 
 

 

 

   
 Implicit Backing: W1and W2 create a valid justification for the claim 

[Abraham, 
52:21] 

   

Figure 4.29. Argument 20.16: Abraham’s argument for if the matrix is square, being 
linearly independent is the same as being onto. 

 

4.1.2.1.4 NWR 1.4: If A is n x n and the columns of A are linearly independent, then 

the columns of A span Rn. The final normative way of reasoning for the first classroom 

mathematics practice was established via Criterion 3: it was used as data or warrants in support 

of various new claims or conjectures related to the IMT. One example of this was just seen in 

Argument 20.16 (Figure 4.29). Abraham used his understanding of NWR 1.3 and 1.4 as ways of 

reasoning about the claim, “If the matrix is square, being linearly independent is the same as 

being onto.” In another instance, NWR 1.4 was used as data to support a new claim about 
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determinants. On Day 24, the class discussed determinants and the implications that nonzero 

and zero determinants had for span, linear independence or dependence, and invertibility. First 

the class worked to justify the claim that, for a 2 x 2 matrix A, if the columns of A are linearly 

dependent, then the determinant of A is zero. Next, the teacher posed the question, “Alright, 

what about the opposite direction? Could I say, 'If the determinant is 0, then the column vectors 

have to be linear dependent?'” Abraham claimed the assertion was true, but qualified his 

response with “I don’t know, it just seems...” Without the teacher asking for justification for 

Abraham’s claim, Randall offered, “It’s a square matrix and it’s independent, so it’s going to 

span” (see Argument 24.4 in Appendix 4.1). Although Randall seemed uncertain how the data 

he provided was connected to Abraham’s claim, the data itself was not under scrutiny. Thus, we 

see this way of reasoning, which previously needed justified during whole class discussion, 

become used as data for yet another new claim. Thus, for the classroom mathematics practice 

“Reasoning about Linear Independence and Span as Equivalent Ideas for Square Matrices,” the 

notion, “If A is n x n and the columns of A are linearly independent, then the columns of A span 

Rn became a normative way of reasoning for this classroom community per Criterion 3.  

4.1.2.1.5 Conclusion regarding CMP 1. As defined by Rasmussen and Stephan (2008), 

a classroom mathematics practice is “a collection of as-if shared ideas that are integral to the 

development of a more general mathematical activity” (p. 201). The first classroom 

mathematics practice is the collection of four normative ways of reasoning that were integral to 

the development of reasoning about span and linear independence as equivalent ideas for square 

matrices. As these are two of the foundational concepts in the Invertible Matrix Theorem, 

documenting the development of this classroom mathematics practice addresses the research 

question of investigating how the classroom reasoned about the IMT over time.  

 The four normative ways of reasoning involved in this practice were: (a) For a given set 

of n vectors in Rm, if m < n, the set must be linearly dependent; (b) For a given set of n vectors 
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in Rm, if m > n, the set cannot span all of Rm; (c) If A is n x n and the columns of A span Rn, 

then the columns of A are linearly independent; and (d) If A is n x n and the columns of A are 

linearly independent, then the columns of A span Rn. Each NWR became established as such 

through the use of one of the three criteria for doing so (Cole et al., 2011; Rasmussen & 

Stephan, 2008). These normative ways of reasoning encapsulated other normative ways of 

reasoning; furthermore, they did not develop mutually exclusively or sequentially. The same 

can be true for classroom mathematics practices. They can emerge in a non-sequential structure, 

and a CMP itself may be embedded as a normative way of reasoning within a different 

classroom mathematics practice (Rasmussen, Zandieh, & Wawro, 2009). We see hints of this 

scenario in Argument 20.16, detailed above in Figure 4.29. Abraham began to conjecture about 

the existence of an equivalency between one-to-one and onto transformations from Rn to Rn (the 

warrant in Argument 20.16) because of reasoning about linear independence and span as 

equivalent ideas for n vectors in Rn (in his data). This argument is explored further in the 

following section.  

  As a final illustration of the first CMP, consider Argument 31.8 (see Figure 4.30). This 

argument was presented in the previous section because of the sequential structure of the 

argument (see Figure 4.9); here it is presented because of its mathematical content. On Day 31, 

the last day of class, students worked in their small groups to discuss which ideas, for them, 

they saw as “most obviously equivalent.” Nate responded that “the columns of A span Rn” and 

“the columns of A are linear independent” are an obviously equivalent pair:  

Nate:   For me, my logic, I think if the columns of A are linear independent, then it has 
n amount of pivot points. Then if it has n amount of pivot points, and it’s an n x 
n matrix assuming that, then it spans all of Rn. 

 
This argument is a nice example of a student reflecting on the semester and of what ways of 

reasoning were established as related to one another. Out of numerous choices of concepts for 
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“obviously equivalent,” Nate articulately explained why, for him, span and linear independence 

were equivalent ideas for n vectors in Rn.  

 

4.1.2.2 CMP #2: Determining whether or not a transformation T: Rn   Rm is onto 

Rm by considering the span of the column vectors of the associated matrix A. Through 

analysis of the 118 Toulmin schemes of whole class discussion from the semester, a second 

classroom mathematics practice was documented. This practice involved a collection of three 

normative ways of reasoning around the general activity of reasoning with the span of a set of 

vectors in order to make conclusions regarding if a related transformation was onto. NWR 2.1 is 

established here via Criterion 3, whereas NWR 2.2 and 2.3 are established via Criterion Two.  

   
Figure 4.31. The second classroom mathematics practice and associated ways of reasoning.  

 

 

Data: 
For me, 
my 
logic, I 
think: 

 
Data1: If the 
columns of A are 
linearly independent  
  

Claim1: It has n 
amount of pivot 
points  
 

    

  

  Data 2=Claim1: If it 
has n amount of pivot 
points  

 Claim2: Then it 
spans all of Rn.  

 

 

Claim: 'the 
columns of A 
span Rn,' and 
'the columns are 
linear 
independent' are 
an obviously 
equivalent pair.  
 

    

 Qualifier:  and it’s an nxn 
matrix, assuming, 

  

   [Nate, 49:32] 
  

Figure 4.30. Argument 31.8: Nate explains why 'the columns of A span Rn,' and 'the 
columns are linear independent' are an obviously equivalent pair for him. 

CMP #2:  
Determining whether or not a transformation T: Rn  Rm is onto Rm by considering the 
span of the column vectors of the associated matrix A.  
 
Associated Normative Ways of Reasoning: 
2.1 A transformation T: Rn  Rm is onto Rm when you can “get everything” or “get 

everywhere” and not onto Rm when you cannot.  
2.2 “A transformation T: Rn  Rm is onto Rm” is interchangeable with “the column 

vectors of the associated matrix A span all of Rm.” 
2.3 For a given transformation T: Rn  Rm, if m > n, the transformation is not onto Rm. 
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4.1.2.2.1 NWR 2.1: A transformation T: Rn   Rm is onto Rm when you can “get 

everything” or “get everywhere” and not onto Rm when you cannot. On Day 19, the class 

session was devoted to defining both onto and one-to-one transformations and working through 

examples non-examples of each. The class began by considering the transformation associated 

with the matrix 
  

€ 

1 3
2 6
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . Students worked in their small groups to figure out what happens 

geometrically to the unit square under the transformation and then explained their findings in 

whole class discussion. For example, Randall explained that his group found that the 

“transformation squeezes the box and stretches it, so it makes it into just that line [y = 2x].” 

Other students made similar comments. The instructor, after saying it seemed like all inputs end 

up getting sent to that line, went through the calculation 
    

€ 

1 3
2 6
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = x +3y( )

1
2
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥  to show that 

for any input vector 
  

€ 

x
y
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ , the image of that vector after the transformation is a scalar multiple of 

  

€ 

1
2
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ . From this, the instructor defined the term “range” as the set of all images under a given 

transformation T. In addition, based on their work in the previous example, she defined the term 

onto to describe instances in which the range of a transformation was not all the codomain.  

Instructor:  And our codomain was R2, so our range doesn't end up being all of R2, only 
part of it...So since this doesn't happen, there is a special name for this kind of 
transformation where this thing seems to fail. So since the range isn't all the 
codomain, the terms is that T is not onto R2. And let's think about what we just 
had, we said it would be onto if the range equaled the codomain. Another way 
to say that would be, if every b in the codomain is the image of at least one x 
from the domain. 

 
 After considering the function y = x + 5 as an example of a function from high school 

algebra that was onto, the instructor asked students to work in their groups and generate 

examples of functions from high school algebra that were not onto. Nigel, for example, argued 
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that     

€ 

y = x2 was not onto (Argument 19.1, see Figure 4.32) and supported this claim with the 

data of “for all your x values, you’re going to have values, you’re going to have y values, but 

you’re not going to have these y values [gestures to the area below the x-axis] at all.” When the 

instructor asked how he knew it was impossible to get a y value of negative five, Nigel 

responded, “ because there’s no x value that would get you to that.” In this warrant, Nigel made 

use of the phrase “get you to” to describe what input values for the given function could do; 

there did not exist any real-values numbers that, when input for the function y = x2, would “get 

you to” y = -5. 

  Data: for all your x values, you're going 
to have y values, but you're not going to 
have these y values at all [Nigel 16:35]   

Claim: the function y = x2 is not onto 
[Nigel, 16:35] 

    
 Warrant: For instance, the y-value of -5 is impossible 

because there's no x value that would get you to that. [Nigel 
& Instructor, 17:03-17:11] 

 

    
 Backing: from the graph you can see, the graphical 

representation of the function never crosses at y equals -5 
[Instructor, 17:14] 

 

 

Figure 4.32. Argument 19.1: Nigel’s argument for why the function y = x2 is not onto. 
 

  Data: [draws graph of function] you can not, you 
can’t even get [draws a dash on the y-axis and 
circles his pen over it] [Nate, 18:17]   

Claim: the function   

€ 

y = x is not 
onto [Nate, 17:40] 

    
 Warrant: Yeah, so altitude up and down, the y values, there's no way to 

put in something, take the square root of it and get a negative number, 
that would be a real-valued solution, right? [Instructor, 18:22] 

 

 

Figure 4.33. Argument 19.2: Nate’s argument for why the function 

€ 

y = x is not onto. 
 
 

Immediately following Nigel’s explanation, Nate volunteered that the function 

€ 

y = x

is not onto. He came to the board and sketched the graph of the function, and then seemed 

hesitant about what other explanation was needed. He said, “you can’t even get” in his data, but 
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did not finish his sentence; rather, he circled a hash on the y-axis below the x-axis as he said, 

“you can’t even get.” The instructor’s warrant served to help support why Nate’s data made 

sense for the claim, mimicking his language by saying there was no way to “get a negative 

number.” From language used in both Arguments 19.1 and 19.2, we see evidence of not being 

able to “get” certain outputs as evidence that the function is not onto.  

Next, the instructor asked students to consider the transformation T from R2 to R3 

defined by the matrix

    

€ 

A =

4 0
0 0
0 2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
, and she stated, “And so the question is really, Can we get to 

everywhere in R3? Is the range going to be all of R3?” Notice the instructor reworded the 

problem using the phrase, “can we get everywhere,” which is the phrasing used in this 

normative way of reasoning 2.1. Arguments 19.3 and 19.4, which are detailed in the discussion 

of NWR 2.2, pertained to explanations of why this transformation was not onto. Argument 19.5 

(see Figure 4.34) addressed the teacher’s request for information about the range of T.  

Qualifier: You can’t get any y-value other than zero, because zero is a value 
[Instructor, 27:57] 

    
  Data: the second row [of] that vector is 

all zeroes [Cayla 27:40] 
  

Claim: The range of the transformation T: 
R2 R3 defined by A =[4,0,0; 0,0,2] is the 
x, z point. [Kaleb, 27:31] 

    
 Warrant: essentially you can't get to any y value. [Cayla, 27:40]  
    
 Backing: No matter where your input vector is, when you multiply it out with 

that transformation function is going to give you the middle row of the 3 by 3 
as 0's. [Kaleb, 28:33] 

 

  
 Backing2: So let's actually multiply by this input vector. So we said no matter 

what your input vector is, if we do x times 4,0,0 + y times 0,0,2. If we add it 
together, we get 4x + 0,0x + 0y, 0x + 2y...If I want it [the top component] to 
be a million, I could figure out what x would be. If I wanted this [the bottom 
component] to be 47, I could figure out what y would be. But is there any way 
to get that [the middle component] to not be zero? Not really. [Teacher, 28:41] 

 

 

Figure 4.34. Argument 19.5: An argument regarding the range of a transformation from 
R2 to R3. 
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 Of interest in Argument 19.5 for NWR 2.1 is Cayla’s warrant that “essentially you can’t 

get to any y-value.” The instructor qualified Cayla’s statement by adding, “you can’t get to any 

y-value other than zero, because zero is a value.” There was a slight shift in use of the word 

“get” in this argument. In Arguments 19.1 and 19.2, students spoke about various outputs that 

were impossible to “get” from the functions under discussion. In Argument 19.5, as well as in 

the instructor’s prompt preceding Argument 19.5, the word “get” was being used to express that 

you cannot “get to” all values. This language is reminiscent of a way of speaking that developed 

out of the Magic Carpet Ride problem, during which students explored span as all the possible 

locations they could reach with their modes of transportation (i.e., the linear combinations of a 

given set of vectors). As such, a normative way of reasoning in the class became the 

equivalence of “getting everywhere” with “the span is all of Rn.”  

 An exemplary case of this distinction can be seen by considering Arguments 20.18 and 

20.19. Both occurred on Day 20, when the class developed generalizations regarding what types 

of linear transformation were or were not one-to-one and/or onto. In both arguments, the claim 

was that it is not possible to have a transformation from Rn  Rm, where m > n, be onto Rm. 

These two arguments are important to the development of NWR 2.3, but what is of importance 

in the discussion of NWR 2.1 is the underlying imagery in each argument. In Argument 20.18, 

the data Nate provided for the claim was that “you’ll always go up a dimension.” This 

transformational imagery was reiterated in his warrant when he said, “that means we're going to 

have, more or less the way I think of it as dots in a diagram, we have more dots in our results in 

our codomain than in our domain,” so “not every dot can be mapped to” (given in his backing). 

The instructor supported his argument and added that all the vectors in R3 “can’t all get mapped 

to.” This underlying imagery for the notion of onto is very much grounded in the transformation 

mapping input vectors to output vectors, consistent with Larson’s “matrix acting on a vector” 

view of matrix multiplication (Larson, 2010).  
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  Data: you'll always go up a 
dimension  [Nate, 55:45]   

Claim: It is not possible to have a transformation from 
Rn Rm, where m > n, be onto [Nate, 55:45] 

    
 Warrant: that means we're going to have, more or less the way I think of it as dots in a 

diagram, we have more dots in our results in our codomain than in our domain  [Nate, 55:45] 
 

    
 Backing1: so there's no way for every dot in R3 to be mapped to. [Nate, 55:45]  

  
 Backing2: I think that was really cool ... He's saying if you start out in R2 but we have more 

outputs vectors in R3 in a certain way, well, they can't all get mapped to. [Instructor, 56:13] 
 

 

Figure 4.35. Argument 20.18: Nate’s argument for why it is impossible for T: Rn  Rm,  
m > n, to be onto Rm. 

  

In contrast, however, was Edgar’s justification for the same claim (see Argument 20.19 

in Figure 4.36). For his data, Edgar stated that “there’s only two vectors, so you can’t possibly 

span R3. You simply don't have enough vectors to get anywhere you have in R3.” Whereas 

Nate’s explanation focused on not being able to map to every “dot” in the codomain, Edgar’s 

focused on not having enough vectors to get everywhere in R3. As stated, this is consistent with 

the functioning as-if shared way of reasoning about span as all places “you could get” with the 

linear combination of vectors. Furthermore, it is also consistent with a “vector acting on a 

matrix” view of matrix multiplication (Larson, 2010). Further discussion of this distinction is 

not pursued here, but the implications for viewing a matrix times a vector as either a 

transformation mapping an input vector to an output vector or as a linear combination of the 

column vectors of the matrix surfaces here in so little as the use of the word “get.”  

  Data: There's only 2 vectors, so you can't possibly 
span R3. You simply don't have enough vectors to 
get anywhere you have in R3. [Edgar, 56:48]   

Claim: It is not possible to have a 
transformation from Rn Rm, where m 
> n, be onto [Edgar, 56:48] 

    
 Warrant: If we only have 2 vectors then all combinations of those 2 vectors are only going 

to give us a plane in R3. [Instructor, 57:02] 
 

    
 Backing: You don't have any way to get to all of R3. So there's no way it could be onto. 

57:02] 
 

  

Figure 4.36. Argument 20.19: Edgar’s argument for why it is impossible for T: Rn  Rm, m 
> n, to be onto Rm. 



  
121 

 

From the repeated use of variations of the terms “get everything” or “get everywhere” over the 

course of Days 19 and 20, per Criterion 3, the way of reasoning with these terms in order to 

support various claims about transformations that were or were not onto a given Rm has been 

established as normative in this class.  

4.1.2.2.2 NWR 2.2: “A transformation T: Rn   Rm is onto Rm” is interchangeable 

with “the column vectors of the associated matrix A span all of Rm.” As alluded to in the 

discussion of NWR 2.1, an equivalence between determining if a transformation was onto and 

determining the span of the column vectors of a matrix A associated with the transformation 

developed into a way of reasoning that functioned as-if shared in the classroom. NWR 2.2 

specifically dealt with how this equivalence allowed for this way of reasoning to develop.  

Argument 19.3 (see Figure 4.37) was the first mention of span in relationship to onto, 

which had been defined in terms of range and codomain. In Argument 19.3, Justin attempted to 

provide a reason that the transformation defined by 

    

€ 

A =

4 0
0 0
0 2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 was not onto R3 by focusing on 

the row of zeroes in matrix A, saying it would “give you a column of zeroes.” He continued 

with a warrant, saying “and that breaks it spanning all of R3” (see Figure 4.37). Justin’s warrant 

was the first mention of span in conjunction with onto during whole class discussion. The 

instructor called for elaboration, and Justin responded by stating that the columns of A would 

not span R3 (see Argument 19.4 in Figure 4.38).   

  Data: you have a row of zeroes, so it's going to give you 
a column of zeroes. And so you will have two vectors 
with numbers in it, or two columns with numbers in it, 
and a column with zeroes in it [Justin, 22:32] 

  

Claim: The transformation T: 
R2 R3 given by [4,0,0; 0,0,2] 
can’t be onto [all of R3] [Justin, 
22:32] 

    

 Warrant: And that breaks it spanning all of R3 [Justin, 22:32]  
  

Figure 4.37. Argument 19.3: Justin explains why a particular transformation from R2 to 
R3 cannot be onto. 
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For his justification, Justin returned to trying to talk about zeroes in either the columns or the 

rows of the output, and Nigel assisted Justin by suggested in his warrant that “there’s no values 

in the middle...[so you] can’t span where the zeroes are, that dimension” (see Argument 19.4 in 

Figure 4.38). The instructor supported their contributions by stating there were some good ideas 

but qualifying that “they all involve a little more thought.” From these two arguments we see 

the first seeds of this way of reasoning, about how understanding the span of a set of vectors in 

a matrix can inform whether the associated transformation is onto.  

 Qualifier: There are some good ideas, and they all involve a 
little more thought [Instructor, 24:39] 

 

   

   Data: put in just a 2 x 3 full of whatever. 
And the output would give you a 3 x 3 
square matrix. And the middle row, the 
middle column, excuse me, will always 
be zeroes [Justin, 23:17] 

  

Claim: the span of the columns of 

    

€ 

A =

4 0
0 0
0 2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 is not R3  [Justin, 23:17] 

    

 Warrant: I saw the algebra. Since it's [4,0; 0,0; 0,2] there's 
no values in the middle, so you're really convinced you're not 
spanning that dimension where the x's and y's are can't span 
where the zeroes are, that dimension. [Nigel, 24:08] 

 

 

Figure 4.38. Argument 19.4: Nigel and Justin explain why the columns of a given 3x2 
matrix do not span R3. 

 

The next problem the class worked through was to determine the matrix associated with 

the transformation 

    

€ 

T
x1

x2

x3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=
x2

x3

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; Saul’s group determined the matrix was 

  

€ 

0 1 0
0 0 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , and the class 

agreed. When discussing whether or not T was onto R2, the instructor called on Giovanni: 

Instructor:  So Giovanni, I know your table was talking about this, other people might not 
have gotten that far, and I realize that. So let's hear a good explanation of what 
you guys were discussing about onto R2? 

Giovanni: Onto R2, we were talking about that it has two separate vectors, the two pivot 
points right there. Minus, you don't even necessarily need that first vector. So 
with those two pivot points, that's how it can span all of R2. 

Instructor: What's the 'it' that can span all of R2? 
Giovanni: The vector. Not the vector, the matrix. 
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Instructor: The vectors in the matrix? [Giovanni: Yes.] So he's saying that these vectors 
can span R2. We haven't talked about spanning and onto together yet, so let's 
investigate that a little bit. So someone else who hadn't heard this before or 
even from Giovanni's table, how would we connect why vectors spanning R2 
and relate it to the transformation being onto R2? How can we relate 
Giovanni's, what he noticed, which is true, since the vectors span R2, why 
would that mean the transformation is onto R2? 

 
Giovanni responded with data that the matrix A had two pivot points, and then his warrant 

attested to why that was relevant to the claim by stating “so with those two pivot points, that’s 

how it can span all of R2” (see Argument 19.7 in Figure 4.39). The instructor responded by 

directing attention to the notion of span connecting to onto, something that had surfaced in three 

arguments so far. She stated, “We haven't talked about spanning and onto together yet, so let's 

investigate that a little bit...How can we relate Giovanni's, what he noticed, which is true, since 

the vectors span R2, why would that mean the transformation is onto R2?” 

  Data: It has 2 separate vectors, the 2 pivot points 
right there. Minus, you don't even necessarily 
need that 1st vector. [Giovanni, 41:45]   

Claim: The transformation 
T[x1,x2,x3]=[x1,x2] is onto R2 [Giovanni, 
41:45] 

    

 So with those 2 pivot points, that's how it  [the vectors in the 
matrix] can span all of R2. [Giovanni, 41:45, 42:05] 

 

  

Figure 4.39. Argument 19.7: Giovanni’s argument for why T [x1, x2, x3] = [x2, x3] is onto R2. 
 

Justin volunteered data to the instructor’s claim that span had anything to do with onto 

by stating “if you can’t choose any value, you’re not going to be able to get output. But since 

you can go anywhere, you can use anywhere as an, do you know what I'm trying to say?” Josh 

offered another explanation, stating “having the required amount of pivot points in the correct 

positions can span that number of dimensions.” Wanting to hear more about how that data 

supported the claim that onto and span were connected concepts, the instructor prompted Josh 

for a warrant. He responded, “Because it has two pivots, and it can span R2. And then since 

those two pivots are located in the y and z column, you're trying to have it in the y and z, it just, 

it works out” (full analysis is seen labeled Argument 19.8 in Appendix 4.1).  
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 Rebuttal: The span of that one [an example] is a line, but it’s not 
onto [Justin, 45:15] 

 

  

 Qualifier1: If you’re spanning all of your dimensions, then you 
can [use span and onto interchangeably]  [Justin, 45:09] 

 

    

   Data: If it spans, the range equals 
the codomain [Abraham, 45:01]   

Claim: We can use span and onto interchangeably 
[Abraham & Justin, 44:44-45:23] 

    

 Qualifier2: We use span to describe a set of vectors, and now we’re 
saying onto describes a transformation [Instructor, 45:27-48] 

 

 

Figure 4.40. Argument 19.9: Abraham and Justin address if span and onto can be used 
“interchangeably.” 

  

As a response to Giovanni’s, Justin’s, and Josh’s effort, the instructor stated how interesting it 

was that “span has always been a property of vectors. And now we're trying to talk about 

functions, so it's how do we correlate what we know about vectors and how you combine them 

to a certain span to get something in the transformation?” In response to this, Jerry asked the 

class, “Can we use the span and onto interchangeably?” (See Argument 19.9 in Figure 4.40.)  

Justin and Abraham were quick to respond. Abraham provided the data that “if it [the 

column vectors] span, the range equals the codomain.” That was exactly how “onto” was 

originally defined in class—a transformation is onto Rn if the range equals the codomain. Justin, 

however, offered a qualifier to this claim, stating the two concepts were only interchangeable if 

the span was all of Rm. He provided an example that, without the qualifier, would serve to rebut 

the claim. He referenced a previous example that had been discussed in class: the 

transformation associated with

€ 

A =
1 3
2 6
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , for which he said, “the span of that one is a line, but 

it’s not onto.” Justin’s qualifier and rebuttal served to add a degree of care in conclusions that 

were being made in the classroom. He pointed out, through the use of a counterexample, that 

“span” and “onto” are only interchangeable when the vectors’ span is all of Rn. Finally, the 

instructor added another qualifier to whether or not the two ideas were interchangeable, stating, 
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“We use span to describe a set of vectors, and now we’re saying onto describes a 

transformation” (see Argument 19.9 in Figure 4.40). After this argument, the classroom 

discussion shifted to the notion of one-to-one transformations. The discussion followed much of 

the same format, with students investigating examples and non-examples from both high school 

algebra and linear algebra.  

 Data: A lot of you had also 
said [it] [Instructor, 02:48]  

Claim: Onto is the same as saying the column vectors 
of the matrix span all of Rm [Instructor, 02:48] 

 

Figure 4.41. Argument 20.2: The instructor reminds students of the connection 
between span and onto. 

  

On Day 20, the discussion regarding one-to-one and onto continued. The instructor 

began class by reminding the students of their previous agreement, that “onto is the same as 

saying the column vectors of the matrix span all of Rm,” and the only data she provided was “a 

lot of you had said it.” The claim did not need supported with data or warrant (see Figure 4.41).  

The remainder of Day 20 was dedicated to making generalizations regarding 

transformations that were one-to-one, onto, both, or neither. Throughout the day, the way of 

reasoning that “onto is the same as saying the column vectors of the matrix span all of Rm” 

functioned as-if shared in the classroom. For instance, in Argument 20.13 (see Figure 4.42), 

Cayla claimed that a transformation defined by the matrix 

€ 

A =
3 5
4 6
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  was onto.  

  Data: Columns are linearly 
independent. [Cayla, 48:21]   

Claim: The transformation defined by the 

matrix 

€ 

A =
3 5
4 6
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  is onto [Cayla, 48:21] 

  
 Warrant: If you row reduce it, you would be able to get a pivot position in 

every row [Cayla, 48:21] 
 

  
 Backing: so it would span all of R2. [Cayla, 48:21]  

 

Figure 4.42. Argument 20.13: Cayla’s argument for why a given transformation from 
R2 to R2 was onto. 
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 Her statement, “the column vectors are linearly independent” provided data for the 

claim. Next, she stated the row-reduced form of A would have a pivot in every row and thus 

could deduce that the columns spanned R2 (warrant and backing, respectively, in Argument 

20.13). Note that no one inquired into why her backing, which was about span, supported her 

claim, which was about onto. Furthermore, that which had been a source of debate the previous 

day (e.g., Arguments 19.8 and 19.9) was now being used to support a new claim. This way of 

reasoning also surfaced in various arguments in Day 20 as data or warrants for other new 

claims, namely that “If the matrix is square, being linearly independent is the same as being 

onto” (Argument 20.16, see Figure 4.29) and “if a matrix is square, if the associated 

transformation is one-to-one, it is always also onto” (Argument 20.25, see Figure 4.45). In those 

arguments, NWR 2.2 was used in a very key way to make these new claims about connecting, 

in the square case, linear independence with onto as well as one-to-one with onto. Those 

arguments are examined in more detail in the conclusion of this section. Thus, we can say that 

“a transformation T: Rn  Rm is onto Rm” is interchangeable with “the column vectors of the 

associated matrix A span all of Rm” was a normative way of reasoning in this class. 

4.1.2.2.3 NWR 2.3: For a given transformation T: Rn   Rm, if m > n, the 

transformation is not onto Rm. This is the last normative way of reasoning that comprised the 

second classroom mathematics practice. This way of reasoning developed on Day 20 of the 

semester, when students were investigating the properties of one-to-one and onto for linear 

transformations. In Arguments 20.18 and 20.19, the main claim that was being justified is that it 

is not possible to have a transformation T: Rn  Rm be onto Rm if m > n. In these two 

arguments, this way of reasoning about onto was new and still needed justification regarding its 

validity. As was seen in the development of NWR 2.1, this claim was supported in two different 

ways: one argument focused on where input vectors get mapped to (Argument 20.18, see Figure 

4.35), and one focused on the linear combinations of the column vectors (Argument 20.19, see 
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Figure 4.36). Specifically, Edgar’s argument in 20.19 used the idea that there aren’t enough 

column vectors to span Rm if m was less than n. This way of reasoning was reminiscent of NWR 

1.2, which said if m < n then the column vectors of a matrix cannot span Rm. Thus, an idea 

previously established as a normative way of reasoning for one classroom mathematics practice 

can be used as data for a claim that is relevant to a different classroom mathematics practice. 

In Arguments 20.22 and 20.26, this way of reasoning shifted from being the claim to 

being part of the data and part of the warrant, respectively. Both of these arguments dealt with 

the co-existence of the properties of one-to-one and onto for transformations from Rn to Rn. 

Argument 20.22 (see Figure 4.43) occurred in response to Argument 20.21 (see Appendix 4.1) 

in which Cayla supported her claim that it is possible to have a transformation that is both one-

to-one and onto. In her data, Cayla said, “it had to be square” for it to be possible, so the 

instructor elaborated upon that in Argument 20.22. Within her justification, the instructor made 

use of a Proof by Cases structure. Her Data-Claim1 pair stated, “If it’s [the matrix associated 

with a transformation] wider than tall, then 1-1 isn’t possible,” and her Data2-Claim2 pair was 

“if it’s taller than wide, then onto isn’t possible.” The latter pair could be rephrased as, “if m is 

less than n, then onto isn’t possible.” Thus, we see what had previously served as the claim 

become part of the data for a new claim.  

 

 
Data: 
[Instructor] Data1:  if it's wider 

than tall 
 

Claim1:  then 1-1 
isn't possible 

  

  

  

 

Data2:  if it's taller 
than wide 

 

Claim2:  then onto 
isn't possible 

 

  

Claim: the only 
time that we have 
them both being 
true [1-1 and onto] 
is if they're square 
[Instructor, 
1:00:44, attributed 
to Cayla].  

     
  

Warrant: we can look at the boards around the room. If we go down the 
columns, it seems to be the case that the only time that we have them both 
being true is when m = n [Instructor, 1:00:44] 

 

Figure 4.43. Argument 20.22: The instructor discusses that transformations can be 
both 1-1 and onto if the matrix is square. 
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In Argument 20.26 (see Figure 4.44), Abraham claimed that if a transformation is either one-to-

one or onto but not both, then it has to be “non-square.” Here is another example of metonymic 

speech (Lakoff & Johnson, 1980) in which the matrix has come to represent the transformation 

for students. In his warrant, Abraham explained what in the chart (something that been created 

in class to organize generalizations), was relevant to his claim. His second data-claim pair in his 

warrant, which has the Proof by Cases structure, makes use of NWR 2.3. Thus, per Criterion 

Two, we can say that “For a given transformation T: Rn  Rm, if m > n, the transformation is 

not onto Rm” was a normative way of reasoning in this class. 

Data: Because of the chart 
[Abraham, 1:09:55] 

 Claim: if it's either 1 to 1 or onto but 
not both, then it has to be non-square  
[Abraham 1:09:55] 

    
 

 Data1: If you're 
square  

Claim1: either both 
or neither 

 
 

Warrant:  
if you're one 
and not the 
other, then 
you can't be 
square. 
[Abraham, 
1:09:55] 

Data2: if you're 
one but not the 
other, meaning 1 to 
1 or onto 

 

Claim2: you must 
be either wider or 
taller but you can’t 
be square. 

 
 

 

 

   

Figure 4.44. Argument 20.26: Abraham’s argument for if transformations from 
Rn to Rm are either 1-1 or onto but not both that m cannot equal n.  

 

4.1.2.2.4 Conclusion regarding CMP 2. Relating the span of the columns of the matrix 

A associated with the given transformation in order to reason about whether or not that 

transformation was onto became a classroom mathematics practice for this class. It is the 

collection of three normative ways of reasoning that were integral as the class developed a way 

to reason about whether a given transformation is onto by considering the span of the column 

vectors of the matrix associated with the transformation. The three normative ways of reasoning 

in this practice were: (a) a transformation T: Rn  Rm is onto Rm when you can “get 

everything” or “get everywhere” and not onto Rm when you cannot; (b) “a transformation T: Rn 
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 Rm is onto Rm” is interchangeable with “the column vectors of the associated matrix A span 

all of Rm”; and (c) for a given transformation T: Rn  Rm, if m > n, the transformation is not 

onto Rm. As with the first class mathematics practice, each of these were established through the 

three criteria for when ideas function as-if shared in a classroom setting.  

 
4.1.3 Conclusion 

I conclude this section regarding the documentation of classroom mathematics practices 

with two final remarks. First, CMP 2 was a collection of normative ways of reasoning about 

span and onto. Preliminary analysis suggests that a similar practice developed in this classroom 

for the concepts of linear independence and one-to-one. Especially for NWR 2.2 and 2.3, 

analogous normative ways of reasoning could be documented, such as: “a transformation T: Rn 

 Rm is one-to-one” is interchangeable with “the column vectors of the associated matrix A are 

linearly independent;” and for a given transformation T: Rn  Rm, if m < n, the transformation 

is not one-to-one. As the documentation of this proposed CMP would be very similar to that of 

CMP 2, doing so is delegated to future work.  

 Second, I reflect on and compare the two documented classroom mathematics practices. 

The final form of the second classroom mathematics practice was not what was expected. Given 

that the Invertible Matrix Theorem developed over the course of the semester, and that the ideas 

involved in the IMT can be grouped together by theme, I thought the CMPs would similarly be 

parallel by theme. For instance, if we consider the first CMP, it was a collection of functioning 

as-if shared ideas that led to students reasoning about span and linear independence of column 

vectors as equivalent ideas for square matrices. I imagined a similar classroom mathematics 

practice for the concepts of one-to-one and onto transformations. It is the case that there exists a 

few arguments that do involve reasoning about one-to-one and onto as equivalent ideas when m 

equals n, but the arguments necessary to substantiate normative ways of reasoning that could be 
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collected around this common theme in order to call it classroom mathematics practice per the 

methodology, quite simply, do not exist within the data set. 

Consider, for example, Argument 20.25 (see Figure 4.45). Gabe presented a complex 

justification for the claim that if a matrix is square and the associated transformation is one-to-

one, it must also always be onto. The reasoning he employed in his justification, however, relied 

completely on the equivalence of span with onto, of linear independence with one-to-one, and 

of span with linear independence. 

 
  Data1: If it's, to be 1 to 1, it seems 

like it's really into the dependence 
and independence of the vectors 
involved [Gabe, 1:06:18]  

 

 

Data2: onto seems to be related to 
span [Gabe, 1:06:18] 

Claim: if it's 
square [and] 1 
to 1, it is always 
also onto 
[Edgar, 
1:05:18, 
Abraham & 
Kaemonn, 
1:05:23] 

Data:  
 
 

 

 

 

  

 

 

 
 

Warrant:  
So:  D3: If it’s both 

independent and 
spanning   

C3: That 
means it’s both 
onto and 1-1 

  
 W3: It has to be able to 

reduce to the identity matrix 
 

 
  D4 [not D3]: If 

it’s both dependent 
and non-spanning  

C4 [not C3]: That 
means it’s neither 
1-1 or onto.  

 
 

[Gabe]  

 

   

Figure 4.45. Argument 20.25: Gabe justifies why 1-1 implies onto for square matrices. 
 

In Data1 and Data2, he stated that one-to-one “seems like it’s really into the dependence and 

independence of the vectors involved” and onto “seems to be related to span” (NWR 2.2), 

respectively. He then made use of Data1 and Data2 in his warrant (Data3-Claim3) by claiming 

“if it’s both independent and spanning, that means it’s both onto and one-to-one.” The statement 

“if it’s both independent and spanning” implies that he knew such a situation was possible 
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(CMP 1). His Data4-Claim4 pair was the converse of Data3-Claim3. In a loose sense, Gabe’s 

argumentation exhibited a sort of “transitivity.” Consider the schematic in Figure 4.46:  

 
 
 
 
 
 
 

 
Figure 4.46. Simplified schematic of Gabe’s justification layout in Argument 20.25. 

 
 
What justified the equivalence of one-to-one and onto is firmly tied to the equivalence of span 

and linear independence in the case of m equals n. Other arguments presented in class (such as 

Argument 20.16) displayed a similar reliance upon connections to span and linear 

independence. Furthermore, there were no arguments that presented a clear explanation that 

relied upon what it means for a transformation to be onto and what it means for a transformation 

to be one-to-one within the justification for the equivalence. Thus, for when m  = n, the 

establishment of equivalence for the concepts of onto and one-to-one was not analogous to the 

development of equivalence for span and linear independence. Possible implications for 

curriculum development and instruction are discussed in Chapter 6. 

  

 

 

 

Because:  
For m = n:   Span  Linear Independence 
For all m, n:  Span  Onto 
For all m, n:  Linear Independence  One-to-One 

I can conclude:  
For m = n: Onto  One-to-One 
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4.2 Adjacency Matrix Analysis 

The remainder of this chapter continues to address results concerning the first research 

question: How did the classroom community reason about the Invertible Matrix Theorem (IMT) 

over time? In the previous section, I utilized Toulmin’s model as an analytical tool at both the 

microgenetic and ontogenetic level to address this research question, and I presented results 

concerning (a) the nature of the argumentation structure, and (b) what ways of reasoning 

functioned as-if shared within the classroom discourse. In this section, I present results 

concerning the use of adjacency matrices as an analytical tool to address the same overarching 

research question. I detail both the microgenetic and ontogenetic analyses from utilizing 

adjacency matrices on the same portions of whole class discussion throughout the semester. The 

analysis revealed that uses of concept statements from the IMT versus interpretations of those 

concept statements depended on the purpose of the particular argument, as well as the 

prevalence of reasoning about non-square matrices in order to develop ways of reasoning about 

the equivalence of concepts in the IMT. In addition to how the structure of arguments changed 

over time, ontogenetic analysis revealed the concepts most central to the class community’s 

development as a whole. I conclude the chapter with a discussion of the results and a reflection 

on and comparison of the separate analytical methods.  

 As stated in Chapter 3, I conducted analysis over the same data set using both 

Toulmin’s model and adjacency matrices as analytic tools. The video and transcript of whole 

class discussion from all 31 days of the semester were narrowed down to portions of ten days to 

analyze. From this reduction of the data set, 118 arguments were analyzed using Toulmin’s 

model. A selected portion of these results was presented in the previous Microgenetic Analysis 

and Ontogenetic Analysis via Toulmin’s Model sections. The transcript from this reduced data 

set was also analyzed using adjacency matrices, and 109 of the 118 arguments were coded; the 

content of the other nine was inappropriate for the codes developed for the present adjacency 
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matrix analysis. The complete list of adjacency matrix codes for each argument, as well as 

which arguments were not analyzed, can be found in Appendix 4.3.  

An adjacency matrix depicts how the vertices of a particular directed graph (also called 

a digraph) are connected. For a given digraph, an adjacency matrix is an n x n matrix [aij] with 

one row and one column for each of the n vertices in the digraph, and the values aij of the matrix 

are given by aij = c, where c is the frequency of the edges from the ith vertex to the jth vertex 

(Chartrand & Lesniak, 2005). Furthermore, a vertex u is adjacent to v (and v is adjacent from u) 

if there exists an arc a from u to v. These and other relevant definitions are given in Figure 4.47.  

 
Figure 4.47. Mathematical definitions relevant to adjacency matrix analysis. 

 

The adjacency matrices analyzed in this section correspond to directed graphs in which 

the vertices are statements related to the concepts of the IMT, and the edges are directed in such 

a way as to match the implication offered by the speaker(s). All video and transcript analyzed 

Mathematical Definitions relevant to Adjacency Matrix Analysis 

1. Edge: e = {u, v} = uv joins the vertices u and v.  
2. Arc: an edge of a directed graph. a = (u, v) is an arc of digraph D if it joins u to v.  
3. Incident: If a = (u, v) is an arc of digraph D, a is incident from u and incident to v. 

Also, u is incident to a, and v is incident from a.  
4. Adjacent vertices: Vertices u and v are adjacent if there exists an arc a to join 

them. If a = (u, v), u is adjacent to v but v is not adjacent to u (rather, v is adjacent 
from u).  

5. Adjacency matrix: The adjacency matrix A(D) of digraph D with vertices  

€ 

V (D) ={v1,v2,...vn}  is the n x n  matrix [aij] defined by aij = c, where c is the 
number of arcs that are incident from vi to vj for any two vertices in D. Thus, the 
entries for any adjacency matrix A must be nonnegative.  

6. Size: Total number of arcs in digraph D. This is notated A(D) = s. 
7. Order: the number r of vertices in a digraph D. 
8. Out-degree: The out-degree of a vertex u (od u) in digraph D is the number of arcs 

that are incident from u.  
9. Out-connection: The out-connection of a vertex u (oc u) in digraph D is the 

number of distinct vertices that are adjacent to u. 
10. In-degree: The in-degree of a vertex v (id v) in digraph D is the number of arcs 

that are incident to v.   
11. In-connection: The in-connection of a vertex v (ic v) in digraph D is the number of 

distinct vertices that are adjacent from v. (in v) 
12. Degree: The degree of a vertex w (deg w) of a digraph D is defined as  

deg w = od w + id w.  
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with adjacency matrices occurred during segments of whole class discussion that were relevant 

to the development of the Invertible Matrix Theorem. Furthermore, as described in Chapter 3, 

these data are the same segments of video and transcript that were analyzed in the previous 

section regarding Toulmin analysis.  

 The statements and interpretations used as the vertices for the directed graphs (and 

hence as the rows and columns of the corresponding adjacency matrices) were determined 

through a grounded analysis of the video and transcript of whole class discussions during which 

the classroom conversation was directly relevant to the development of and reasoning about the 

Invertible Matrix Theorem. There were 100 total vertices, arranged into 15 categories (see 

Figure 4.48). The main code for each of the 15 categories (except for the “S: Miscellaneous” 

code) are concept statements from the Invertible Matrix Theorem (for instance, code “E” is “the 

columns of A are linearly independent,” code “I” is “the row-reduced echelon form of A has n 

pivots,’ etc.), or are the negation of statements in the IMT (e.g., code “F” is “the columns of A 

are linearly dependent,” and code “J” is “the row-reduced echelon form of A does not have n 

pivots,” etc.). I arranged the remaining vertices as subcodes within these categories by 

documenting the various interpretations of these statements that were given during whole class 

discussion. For example, code F3 references being able to “get back home with the column 

vectors of A” and code F4 references vectors that “lie along the same line,” both of which I 

inferred were interpretations of statement F, “the columns of A are linearly dependent.”  

 I used this set of 100 concept statements and interpretations as the vertices by which I 

coded every argument. Each adjacency matrix had the same vertices; what differed between 

each analysis (and thus each coded adjacency matrix) was how the vertices were or were not 

connected. 
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Figure 4.48. The 100 codes used as the rows and columns for the adjacency matrices. 
  

For an example of how these codes were used in analyzing data, consider the following 

utterance: “If the column vectors of the matrix span Rn (G), that means you can go everywhere 

in that dimension (G3).” In the transcript, the codes G and G3 are written in after the 

utterances that correspond to those codes, and an arrow is written in from of the G3 code to 

indicate that G was adjacent to G3. In the corresponding adjacency matrix, a “1” would be 

E.   Column vectors of A are linearly independent K4. Inverse matrix: Exists a  C s.t. AC=I and/or CA=I
E1. Trivial: Only solution to Ax = 0 is trivial solution K5. Transform: Exists sequence of elementary row ops that turns A into I
E2. Unique: There is a unique soln to matrix eqn/system of eqns K6. Necessary output: Something gets sent to e 1, e 2, ...
E3. Travel: Can't get back (home)/get to origin with column vectors of A L.  A is not invertible
E4. Geometric: Vectors are not parallel/on the same line or plane L1. Augment with the identity:  [A  | I ]~ [ I | A -1 ] is not possible 
E5. Proportional: No vector is a scalar multiple of another L2. Formula: Can’t calculate, get “divide by 0 errors”
E6. Linear combination: No vector is a linear combo of another L3. Undo transformation: Can’t undo/get back from the transformation
E7. Placement: No vector is in the span of the other vectors L4. Inverse matrix: Does not exist a  C s.t. AC=I and/or CA=I
E8. Extra : Do not have an extra vector needed in order to return home L5. Transform: Does not exist sequence of elem row ops to turn A  into I

F.    Column vectors of A are linearly dependent L6. Necessary output: Nothing gets sent to e1, e 2, ...
F1. Trivial: Is more than one solution to Ax = 0. M.   The transformation defined by A is onto
F2. Unique: No unique/multiple/infinitely many solns to system/matrix eqn M1. Definition: For every b  there is at least one x s.t. T(x)=b
F3. Travel:  Can get back home/back to a point with column vectors of A M2. Range: Range is all of the codomain
F4. Geometric: Vectors are parallel/on the same line or plane M3. Images: All values in codomain get used/mapped to as outputs/images
F5. Proportional: One vector is a scalar multiple of another N.   The transformation defined by A is not onto
F6. Linear combination: One vector is a linear combo of others N1. Definition: For every b  there is not at least one x s.t. T(x)=b
F7. Placement–A vector is in the span of the other vectors N2. Range: Range is not all of the codomain
F8. Zeroes : the matrix A  has a row or column of zeroes N3. Images : Not all values in codomain get used/mapped to as outputs/images
F9. Extra: Have an extra vector needed in order to return home N4. Collapse: Transformation collapses everything to a point/line/plane

G.   Column vectors of A span Rn N5. Transform: The transformation goes up/adds a dimension
G1. Size: Are enough vectors to span the entire space O.   The transformation defined by A is 1-1
G2. Geometric: Can use vectors to get to every pt/go everywhere O1. Definition: For every b there is at most one x s.t. T(x)=b 
G3. Algebraic: Is a linear combination of vectors for all pts in Rn O2. Input/Output: Each output has at most one input
G4. Direction: Can use each vector to go in a certain direction O3. Reachable:  There is only one way to “get to” the output/vector
G5. Solution : There is a solution to Ax=b  for every b P.   The transformation defined by A is not 1-1

H.  Column vectors of A do not span Rn P1. Definition: For every b there is more than one x s.t. T(x)=b 
H1. Size: Are not enough vectors to span the entire space P2. Input/Output: Each output has more than one input
H2. Geometric: Can’t use vectors to get to every pt/go everywhere in dim P3. Reachable:  There is more than one way to “get to” the output/vector 
H3.  Direction: Cannot go in all directions with the vectors P4. Multiplicity: At least 2 inputs give the same output
H4. Clarify: The vectors of A span a k-dim subspace of Rn P5: Transform: The transformation goes down/exludes a dimension
H5. Partial: Span is only a point/line/plane Q.    det(A) ! 0: Determinant of A is nonzero
H6: Solution: There is not a solution to Ax=b  for every b Q1. Area: Unit square/cube has area/volume ! 0 after transformation

I.    Row-reduced echelon form of A has n pivots Q2. Calculation:  formula to calculate determinant yields nonzero result 
I1. Diagonal : RREF(A) has all ones on the main diagonal R.   det(A) = 0: Determinant of A is equal to 0
I2. Identity: Can row-reduce / is row equivalent to the identity R1. Area: Unit square/cube has area/volume = 0 after transformation
I3. Pivot-R: Is a pivot in each row R2. Calculation:  formula to calculate determinant yields zero
I4. Pivot-C: Is a pivot  in each column R3. Measure: No area/volume to a line/plane
I5. Free Variable: Each variable is defined in system/matrix eqn S.   Miscellaneous
I6. Zeroes:  RREF(A) has no rows of zeroes S1. Calculation: get inconsistent solutions (e.g.,  0x + 0y = 1)

J.    Row-reduced echelon form of A has less than n pivots S2. Column Space: The Col A is all of R n

J1. Diagonal:  RREF(A) does not have all ones on the main diagonal S3. Column Space: The Col A is all not of R n

J2. Identity: Cannot row-reduce /not row equivalent to the identity S4. Null Space: The Nul A contains only the zero vector
J3. Pivot-R: Is not a pivot in each row S5. Null Space: The Nul A contains more than the zero vector
J4. Pivot-C: Is not a pivot in each column S6. Eigen Value: The number zero is not an eigenvalue of A
J5. Free Variable: Not every variable is defined in system/matrix equation S7. Eigen Value: The number zero is an eigenvalue of A
J6. Zeroes:  RREF(A) has at least one row of zeroes S8: m < n: A has more vectors than dimensions

K.  A is invertible S9: m = n: A has less vectors than dimensions
K1. Augment with the identity:  [A  | I ]~ [ I | A -1 ] is possible S10: m = n: A has the same number of rows/columns
K2. Formula: Can calculat, no “divide by 0 errors” S11: m ! n: A does not have the same number of rows/columns
K3. Undo transformation: Can undo/get back from the transformation S12: Miscellaneous
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written in the G row-G3 column to indicate this edge. In some instances, it was necessary to 

switch the statements out of chronological order to match the implication order. In an utterance 

such as, “the columns are linearly independent because there is a pivot in every column,” the 

speaker said the claim before the data. This switch was notated in the transcript with the use of 

two asterisks, placed after the code that was to go first and before the code that was to go 

second. Thus, coding for the previous example would be, “the columns are linearly independent 

(**E) because there is a pivot in every column (I4**).”   

 
4.2.1 Microgenetic Analysis via Adjacency Matrices 

 In this section, microgenetic analysis is accomplished through considering the content 

and structure of particular instances of reasoning about the Invertible Matrix Theorem during 

whole class discussion. This consideration of individual arguments (and thus the corresponding 

individual adjacency matrices) necessarily continues in the subsequent section of Ontogenetic 

Analysis because, as shifts in argumentation are analyzed, the finer-grained analysis of 

individual arguments is also necessary. Then, considering how these shift over time, 

conclusions are made regarding how the classroom community was reasoning about the IMT. In 

this section, however, because claims cannot be made about how the development of 

mathematical meaning for a collective without considering reasoning over time, I focus on two 

results that were revealed through using adjacency matrices as an analytic tool: (a) The structure 

of argumentation by considering where within a block of cells an argumentation occurs; and (b) 

The structure of argumentation by considering the type of sub-digraph in which the 

argumentation occurs.  

4.2.1.1 The structure of argumentation by considering where within a block of 

cells an argumentation occurs. As previously stated, what this particular classroom 

community came to know as the Invertible Matrix Theorem developed over the course of the 
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semester. The concepts involved in the IMT were introduced at various times, and those early-

developed concepts were often integral to the development of latter ones. Furthermore, the 

structure of argumentation was not uniform throughout the semester, and the adjacency matrix 

analysis highlights this. This is reasonable considering the fact that the IMT was developed 

throughout the semester. Two of the main structures that occurred were: (a) when the 

argumentation served towards developing a way of reasoning about a new concept or 

connection between two concepts, the argument involved multiple uses of the “interpretation” 

subcodes; and (b) when the argumentation made use of relatively well-established concepts or 

connections between concepts, the argument involved mainly the “concept statement” main 

codes. An example of each follows.  

 4.2.1.1.1 Arguments that involve multiple uses of the “interpretation” subcodes. On 

Day 20, the class developed ways of reasoning about one-to-one and onto in conjunction with 

span and linear independence. In a previous argument, Abraham had volunteered, “If it's one-to-

one, the columns of A have to be linear independent.” The instructor asked David how his small 

group discussed how that implication might be true; the transcript for his response and 

subsequent discussion is given, followed by its adjacency matrix in Figure 4.49.  

Instructor:  David, how were you talking about it at your table, how that might be true?    
David:  We just went over his explanation, we're having a hard time why that works, 

why that makes it a multiple solution, it's not 1 to 1 (F2P). 
Instructor:  So he's saying it makes sense but he's having a hard time explaining it. The 

other tables, what did your table talk about, so Brad, can you tell me what your 
table talked about for this one?  

Brad:  When you reduce matrices linear dependent, you're going to have a free 
variable (FJ5). When you have that free variable, there has to be more than 1 
input to get the same output (P4).  

Instructor: Yeah, we haven't talked about free variables for a while; I think that's a great 
start. Does that make sense? So remember those, when you took a matrix and 
you row reduced it to the row reduced echelon form, if you got a free variable, 
then that gave you some leniency for how you could put down a solution for 
what was in the span of the vectors (J5F2). Well, that gives you some 
variability as to how you're going to answer. That variability is giving you more 
than 1 way to get to that certain output, not a unique solution (P3P1). 
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 In this discussion, David struggled with a justification for “if the columns of A are 

linearly dependent” (code F) then “the transformation defined by A is not one-to-one” (code P), 

so Brad and the instructor contributed to the argument as well. The adjacency (F, P) was nascent 

in this community, and this is evidenced through the variety of interpretations of these concepts 

that were utilized in an effort to justify the proposed implication. Each of the six adjacencies 

[(F2, P), (F, J5), (J5, P4), (J5, F2), F2, P3), and (P3, P1)] in Argument 20.6 involved 

interpretations of F or P (e.g., “there has to be more than 1 input to get the same output,” coded 

P4), as well as the concept “there exists a free variable” (code P5), which served as the 

intermediary vertex between interpretations of F and interpretations of P. Thus, this is an 

example of an argumentation that served towards developing a way of reasoning about a new 

connection between concepts (namely linear dependence and not being one-to-one) that 

involved multiple used of the “interpretation” subcodes. Other instances of arguments of this 

structure are discussed in the subsequent section of Ontogenetic Analysis of arguments relevant 

to the development of CMP 1. 

 
Figure 4.49. Partial adjacency matrix for Argument 20.6. 

 

F F1 F2 F3 F4 F5 F6 F7 F8 F9 J J1 J2 J3 J4 J5 J6 P P1 P2 P3 P4 P5
F
F1
F2
F3
F4
F5
F6
F7
F8
F9

1

1 1

J
J1
J2
J3
J4
J5
J6

1 1

P
P1
P2
P3
P4
P5

1
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As a final comment, the direct adjacency (F, P) only occurred three times during the 109 

analyzed arguments: in Arguments 20.11, 20.12, and 20.25. Each of these occurred on Day 20 

after the aforementioned Argument 20.6, and none of the arguments contained any justification 

of that implication. Thus, there is an indication that the implication “if the columns of A are 

linearly dependent, then the associated transformation is not 1-1” was functioning as-if shared, 

but analysis of this type is left to the subsequent Ontogenetic Analysis section.   

4.2.1.1.2 Arguments that primarily involved the “concept statement” main codes. A 

second prevalent structure of argumentation was such that when the argumentation made use of 

relatively well-established concepts or connections between concepts, the argument involved 

mainly the “concept statement” main codes, rather than substantive use of the interpretive 

subcodes. As an example, consider a portion of Argument 20.16.  

Instructor:  So Lawson was saying something about being linear independent, is that the 
same as being able to say something about being onto?  

Abraham:  It is, if the matrix is square (EM, ME) 
Instructor:  Yeah, I think that's something that we need to get at. So the one that we had 

from before was if the columns of A span Rn (G), so the transformation T is 
onto Rm (M). So now we're saying, can we say anything about connecting 
onto to linear independence? And Abraham’s talking about we can if they're 
square. So I think I agree, can you say a little bit more?   

Abraham:  I just remember if it's square, we had the n x n Theorem way back when. And if 
a square matrix is linear independent (E), it also spans (G). And if it spans 
(G), it's also linear independent (E). And so that means that if it's one-to-one 
(O), it has to be onto (M); if it's onto (M), it has to be one-to-one (O). 
Do you know what I mean, like connecting the ideas?   

 
 In this argument, Abraham stated that Lawson’s claim (that being linearly independent 

is the same as being onto) was true if the matrix is square. Thus, the entirety of this argument 

was coded within the m = n sub-digraph and its associated adjacency matrix. Lawson’s claim of 

“the same as” was interpreted as equivalence of the concepts, thus Abraham’s agreement was 

coded both EM and ME (i.e., (E, M) and (M, E) in digraph notation). Abraham’s 

justification of this claim depended on two more equivalencies for square matrices: between 

span and linear independence ((G, E), and (E, G)), as well as between onto and one-to-one ((O, 
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M) and (M, O)). He stated these equivalencies without support, and an equivalent between span 

and onto (vertices G and M) as well as linear independence and one-to-one (vertices E and O) is 

left implicit but is not challenged. Similar analysis of this argument occurred in the previous 

Microgenetic Analysis via Toulmin’s Model section (see Figure 4.8).  

This is a different structure of reasoning than in the example seen in Figure 4.49. Here, 

although the claim Lawson suggested and Abraham justified was novel (that onto and linear 

independence were equivalent for square matrices), the justification provided by Abraham 

involved previously established ways of reasoning. His justification of the equivalence of linear 

independence and onto was established via connecting pre-established equivalencies rather than 

by reasoning about why conceptually they were equivalent for square matrices. Thus, 

Abraham’s justification was based on a deductive argument that utilized relatively well-

established connections between concepts, and this argument involved mainly the “concept 

statement” main codes. 

4.2.1.2 The structure of argumentation by considering the type of sub-digraph in 

which the argumentation occurs. After the 100 codes had been finalized as those by which 

argumentation regarding how the classroom reasoned about the IMT would be analyzed, I 

began to code all the arguments. Upon doing so, however, I encountered an unforeseen 

problem. The IMT is a theorem about equivalent statements for square matrices, yet a 

substantial amount of reasoning occurred about cases in which m was less than n or vice versa. 

The 100 codes are, for the most part, concept statements from the IMT, their converse, or 

interpretations of those concepts statements or inverses. In certain cases, utilizing the same 

codes in arguments that assume m < n, m = n, any m > n without differentiating between them 

would lead to conflated conclusions regarding how the classroom community was reasoning 

about concepts involved in the IMT. Thus, sub-digraphs based on four scenarios: m < n, m = n, 

m > n, and any m, n were created in order to analyze the particular types separately. These were 
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then combined into the total digraph T. More detail regarding these sub-digraphs and digraph T, 

as well as the associated adjacency matrices, is given in the subsequent section.   

Utilizing four different sub-digraphs in order to most accurately code argumentation 

was especially revealing. For instance, Argument 6.8 (previously mentioned in Figure 4.19) was 

at first quite difficult to code utilizing adjacency matrices. Justin’s explanation for why having 

more vectors than dimensions guaranteed linear dependence was quite elegant, yet his ways of 

reasoning were not satisfactorily captured within only one adjacency matrix. Upon separating 

his argumentation into the sub-types of m < n, m = n, and m >n, the structure of his 

argumentation was revealed in a way that had previously not been highlighted. The transcript 

and coding is given in Figure 4.50.  

Within this one argument, Justin switched between different dimensions of matrices in 

order to build his case for the given claim. He was quite methodical, starting with fewer vectors 

than dimensions and made implications (F4, F), (E5, E), and (E, H5). Note that EH5, “if the 

columns of A are linearly independent, then they span an r-dimensional subspace of Rn,” would 

not be true in other types (such as m = n). Justin then shifted his argument to address a case of 

equal vectors and dimensions, and then finally the desired case of more vectors than dimensions 

(m > n). These three types were not unrelated; Justin built the main cohesive argument through 

a series of well-planned sub-arguments in the three different cases that, when considered as a 

whole, eliminate all possibilities other than linear dependency of sets.  

The particulars of Justin’s reasoning were discussed previously (see Figure 4.19) and as 

well in the forthcoming section on adjacency matrix analysis of CMP 1. Of note in this section 

is the unexpected structure of argumentation that occurred in the classroom: that of switching 

between different types of m and n scenarios in order to make one generalization. This 

particular aspect of argumentation structure did not surface as a result of the Toulmin’s Model 

analysis. Thus, it is interesting that to develop ways of reasoning about the concepts involved in 
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a theorem about square matrices, reasoning about non-square matrices was important as well. 

Part of knowing what something is necessarily involves knowing what it is not. 

0:16:47.2 Instructor:  The original question I was talking about, the generalization 
#4...So I think Table 4, you guys were the ones who came up 
with this generalization, can you guys say a little bit more in 
general how this makes sense to you, not just in the R2 case? 

0:17:19.3 Justin: So if you start in any Rn, and you just start with one vector and 
keep adding more. So let's do R3, just for an example.  

Explanation begins within m > n (1-2 vectors in R3): 
  So we start with one vector. So either, we have two choices:  

The next vector we add can either be on the same line (F4), 
which means it's already linearly dependent (F), so we don't 
want that (**E), so we're going to put it off somewhere else 
(E5**). Now the span of that is a plane in three dimensions 
(H5).  

Explanation is now for m = n (3 vectors in R3): 
  So now we're going to add another vector in. Our third vector, 

now it can either be in that span or out of that span. And we 
want it to be linearly independent (**E), so we're going to put 
it out of that span (E7**). But now that we have that going off 
of that plane (G4), we just extended our span to all of R3 
(G).  

Explanation is finally for m < n (4 vectors in R3): 
0:18:09.9 Justin: So our 4th vector, when we put it in, no matter where we put it, 

it's going to get us back home (S10F9). Because just like in 
this case, we have to have the last one to get back home, we can 
get anywhere with those first three that we put in (G2), but we 
have to have to have that fourth one to come back (F9). And 
so it works like that in any dimension, because the more you, if 
you keep adding, eventually you're going to get the span of your 
dimensions (G1), and then you're going to have that extra one 
bringing you back (F9). Unless you have two vectors that are 
lying on the same line (F5), then you won't have the span of all 
of your dimension (H1), but it's negligible because those two 
will give you a linearly dependent set (F5F). Does that make 
sense? 

Figure 4.50. Transcript with adjacency matrix coding for Argument 6.8. 
 

4.2.2 Ontogenetic Analysis via Adjacency Matrices 
 

There is no pre-established methodology for documenting the development of 

mathematical meaning at the collective level using adjacency matrices as an analytical tool. 
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This is distinct from the previous Toulmin analysis section, in which existing methodology for 

documenting normative ways of reasoning at the collective level were utilized (Rasmussen & 

Stephan, 2008; Cole et al., 2011). The ontogenetic section here contains multiple references to 

that analysis and how it is complementary. Not only do the results here corroborate those from 

the previous section, but aspects of the methods here suggest points of compatibility with the 

three criteria from Toulmin methodology as well. Finally, the ontogenetic analysis via 

adjacency matrices documented aspects of the classroom’s ways of reasoning that were not 

apparent in the Toulmin analysis, such as concepts of high and low centrality.  

 For a digraph of order r, 

€ 

od vi( ) = id vi( )
i=1

r

∑
i=1

r

∑ = s . In other words, the sum of the out-

degrees in D is equal to the sum of the in-degrees in D, which is also the size (or number of 

edges) in D. In the associated adjacency matrix A(D) for digraph D, the out-degrees of the 

vertices vi are calculated by summing the entries of A(D) for every row vi, and the in-degrees are 

calculated by summing the entries for every column vi. The out-connection of a vertex (oc v) is 

the total number of edges that are incident from v to distinct vertices, and the in-connection (ic 

v) of vertex v is the number of arcs incident to v from distinct vertices. These calculations are 

fundamental to the analysis in this section. The notion of centrality “indicates a node’s degree 

of participation in the structure of the graph by measuring the relative connectivity of a node 

within a graph” (Strom et al, 2001, p. 752). It is a measure of how central a vertex is in a given 

digraph—does it serve as a sort of “hub,” adjacent to and adjacent from multiple vertices, or is 

it just adjacent to a relatively low number of vertices but with high edge frequency? For 

instance, for a given vertex B, suppose od B = 7. This could appear a variety of ways; two 

examples are given in Figure 4.51.   
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    Figure 4.51. Two examples of a digraph such that the out-degree of vertex B is 7. 
 

In the example of the left, vertex B is adjacent to four other vertices; thus oc B = 4. In the 

example on the right, vertex B is only adjacent to two vertices; thus oc B = 2. The participation 

of the vertex B in the overall graph is quite different in these two examples, and the centrality 

measure (Strom et al, 2001) is one such method of parsing out this distinction. It is given by, for 

any given vertex v in a digraph D, 

€ 

C(v) =
ic v + oc v

2r
, where r is the total number of nodes in 

the digraph. According to this measure, the graph on the left in Figure 4.51 would have a higher 

centrality score (C(B)=4/12) than the one on the right (C(B)=2/12).  

  Investigating how students reasoned about the concepts involved in the Invertible 

Matrix Theorem was facilitated by the centrality measure. In the following section, I present 

results from an adjacency matrix coding of the arguments involved in the first of the two 

classroom mathematics practices established in the previous section, as well as results from 

analyzing the entire data set of arguments.  

4.2.2.1 Adjacency Matrices for coded arguments involved in CMP 1. In the previous 

section of Chapter 4, Toulmin analysis was used to document a classroom mathematics practice 

referred to as “Reasoning with Span and Linear Dependence as Equivalent Ideas for Square 

Matrices” (CMP 1). In demonstrating that classroom mathematics practice and the four 

associated normative ways of reasoning, I referenced 18 different arguments: Arguments 5.1, 

6.1-6.8, 9.1-2, 10.1-4, 20.4, 20.16, and 31.8. For the present section, I used the transcript from 
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which these argumentation schemes originated and analyzed each of them according to the 

coding scheme (Figure 4.48) created for adjacency matrix analysis. As stated previously, the 

transcript was coded based on m < n, m = n, m > n, or any m, n. For CMP 1, the utterances 

were divided into the first three types, resulting in three sub-digraphs for CMP 1.  

The associated adjacency matrices for these three sub-digraphs are notated A(P1)m<n, 

A(P1)m=n, and A(P1)m>n, and the one for all of CMP 1 is notated A(P1)tot. These adjacency 

matrices can be found in Appendix 4.4, 4.5, 4.6, and 4.7, respectively. The sizes of the sub-

digraphs are A(P1)m<n = 38, A(P1)m=n = 46, A(P1)m>n = 3, making the size of the digraph for CMP 

1 A(P1)tot = 38 + 46 + 3 = 87. Furthermore, the order of the digraph was 33. Although not each 

of the three sub-digraphs utilized each of the 33 vertices, I used 33 as their order in my 

calculations of centrality for consistency purposes.   

  The out-degree, out-connection, in-degree, and in-connection, and centrality were 

calculated for each vertex for the aforementioned sub-digraphs and total digraph (see Figure 

4.52). The values for each of these cells derived from each graph’s adjacency matrix. The 

vertices in each adjacency matrix range from E to S12; for ease of presentation, only the 

calculations for vertices E-H6 are shown in Figure 4.52. The entire calculations are given with 

each respective adjacency matrix in the aforementioned appendices. The vertices below H6 

were minimally used in these particular digraphs, and thus are not central to the analysis 

presented here.  

  Across the four types, different nodes had the highest centrality. The highest for each is 

indicated with red framing, the second highest with orange framing, and the third highest with 

yellow framing. The most central vertex for A(P1)m<n was F9, was G for A(P1)m=n, was E for 

A(P1)m>n, and was G for A(P1)tot. Further examination of code G in A(P1)tot reveals that id G =14 

and od G = 15.  In other words, G was incident to and incident from nearly the same amount of 

arcs. The in-connections and out-connections for G in A(P1)tot were ic G = 9 and oc G = 6, 
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meaning that G was adjacent to 6 vertices and adjacent from 9 vertices. These totals represent 

the usage of code G in all types A(P1)m<n, A(P1)m=n, and A(P1)m>n. To better illustrate what these 

counts mean, examine the subset of G codes used in A(P1)m=n. 

 
Figure 4.52. Out-degree, out-connection, in-degree, in-connection, and centrality for A(P1)m<n, 

A(P1)m=n, A(P1)m>n, and A(P1)tot. 
 

4.2.2.1.1 The m = n sub-digraph of CMP 1. For A(P1)m=n, od G = 11, oc G = 4, id G = 

13, and ic G = 9 (see Figure 4.52). From investigating the G row and G column of A(P1)m=n 

(Appendix 4.5), a subgraph of A(P1)m=n of the vertices adjacent to and adjacent from G was 

created (Figure 4.53). In addition to displaying which vertices were adjacent to or adjacent from 

vertex G in A(P1)m=n, Figure 4.52 provides information regarding (a) the distribution of the 

utterances that were adjacent from or adjacent to concept statement G, and (b) the arguments 

from which these utterances derived over the course of the semester. For instance, regarding 

part (a), there was a high frequency of connections between concept statement G, “the columns 

of A span Rn” and concept statement E, “the columns of A are linearly independent.” These 8 

OD OC ID IC Centrality OD OC ID IC Centrality OD OC ID IC Centrality OD OC ID IC Centrality
E 1 1 0.015 E 7 4 12 5 0.1364 E 1 1 1 1 0.030 E 9 6 13 6 0.182
E1 E1 E1 E1
E2 E2 E2 E2
E3 E3 2 2 3 3 0.0758 E3 E3 2 2 3 3 0.076
E4 2 2 1 1 0.045 E4 3 3 0.0455 E4 E4 5 4 1 1 0.076
E5 E5 E5 1 1 0.015 E5 1 1 0.015
E6 E6 E6 E6
E7 E7 1 1 0.0152 E7 E7 1 1 0.015
E8 E8 1 1 0.0152 E8 E8 1 1 0.015
F 11 6 0.091 F 2 2 3 3 0.0758 F 1 1 0.015 F 2 2 15 10 0.182
F1 1 1 0.015 F1 F1 F1 1 1 0.015
F2 F2 F2 F2
F3 1 1 3 2 F3 1 1 0.0152 F3 F3 1 1 4 3 0.061
F4 2 2 2 2 0.061 F4 1 1 0.0152 F4 1 1 0.015 F4 4 3 2 2 0.076
F5 4 2 1 1 0.045 F5 F5 F5 4 2 1 1 0.045
F6 F6 F6 F6
F7 F7 1 1 0.0152 F7 F7 1 1 0.015
F8 F8 F8 F8
F9 3 3 11 6 0.136 F9 F9 F9 3 3 11 6 0.136
G 4 2 1 1 0.045 G 11 4 13 9 0.197 G G 15 6 14 9 0.227
G1 3 1 0.015 G1 G1 G1 3 1 0.015
G2 2 1 1 1 0.030 G2 1 1 1 1 0.0303 G2 G2 3 2 2 1 0.045
G3 1 1 0.015 G3 1 1 0.0152 G3 G3 2 2 0.030
G4 2 2 1 1 0.045 G4 1 1 1 1 0.0303 G4 G4 3 3 2 2 0.076
G5 G5 G5 G5
H H 1 1 1 1 0.0303 H H 1 1 1 1 0.030
H1 1 1 0.015 H1 H1 H1 1 1 0.015
H2 H2 H2 H2
H3 H3 H3 H3
H4 H4 H4 H4
H5 H5 H5 1 1 0.015 H5 1 1 0.015
H6 H6 H6 H6

CMP1 m > n CMP1 as combined togetherCMP1 m < n CMP1 m = n



  
147 

 

arcs are a subset of the 11 arcs accounted for in the “out degree” column and “G” row of Table 

2 in Figure 4.52 (the other three are the arcs (G, M), (G, O), and (G, E3)). Figure 4.52 shows 

that id G = 13 for this subgraph; 3 of those arcs are accounted for in the arrows from E to G in 

Figure 4.53. Regarding (b), by considering the color of the arrows that correspond to the 

particular argument in which the utterance occurred, we can see how concept statement G was 

reasoned about over time for this small subset of utterances.   

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.53. Sub-digraph of A(P1)m=n for vertices adjacent to and adjacent from vertex G. 
 
 

In Argument 5.4, Justin’s claim that “when we did our magic carpet-hoverboard, we 

had two [vectors in R2] that weren't parallel, and we said the span of any two that aren't parallel 

is all of R2” was captured with the grey arrow from E4 to G in Figure 4.53. Aziz, one of Justin’s 

small group members, repeated this sentiment in Argument 6.5 during the following class 

session: “if two vectors [in R2] aren’t [linearly dependent], then they span R2,” and this is 

represented with the yellow arrow from E to G in Figure 4.53. On Day 6, the adjacency (G, E) 

occurred three times (the yellow and green arrows). By examining the transcript, we see that 

these arguments were about either 2x2 or 3x3 matrices. This is distinct from the utterances in 

Argument 31.8, the pink arrows, when equivalence was stated between the two concept 

statements for any n x n matrix A. This transition is partly accounted for on Day 10, when the 

Gray arrow: Arg 5.1 
Yellow arrow: Arg 6.5 
Green arrow: Arg 6.7 
Dark green arrow: Arg 6.8 
Light blue arrow: Arg 10.1 
Blue arrow: Arg 10.2 
Dark blue arrow: Arg 10.3 
Purple arrow: Arg 10.4 
Brown arrow: Arg 20.16 
Pink arrow: Arg 31.8 
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task in the class was to adjust Theorem 4 (See Figure 4.21), which was for m x n matrices, to 

one appropriate for n x n matrices. In Figure 4.53, there are three more arrows from G to E; 

these utterances were part of three arguments that occurred on Day 10, when the class discussed 

and justified the claim, “for an n x n matrix A whose column vectors span Rn, the columns of A 

are linearly independent.” By the end of Day 10, the statement “the columns of A are linearly 

independent” was added to the adjusted theorem for n x n matrices, thus establishing the 

equivalence of these ideas. Finally (for CMP 1), this equivalence of G and E is used during 

class on Days 20 and 31 (pink and brown arrows in Figure 4.53). The transcript reveals that the 

argument from Day 20 made use of the equivalence (in the n x n case) between span and linear 

independence to reason about an equivalence between one-to-one and onto, and the argument 

on Day 31 discussed how a student made sense of the equivalence between span and linear 

independence for the column vectors of n x n matrices. Below is the transcript and coding for 

this Argument 31.8. 

Instructor:  So Nate's table over here had 'the columns of A span Rn,' and 'the columns are 
linear independent' as an obviously equivalent pair (GE, E  G). So if one 
of you guys could explain why you put that one as obvious to you all? 

Nate:  Because if the columns are linear independent (E), then it kind of goes, to me it 
goes with pivots points (I). And then, if it has n pivot points, it spans all of 
Rn (G), it goes [inaud] 

Instructor:  Okay, I think you can say it a little louder, can you say it one more time a little 
louder, please? 

Nate:  For me, my logic, I think if the columns of A are linear independent (E), then it 
has n amount of pivot points (I). Then if it has n amount of pivot points (I), 
and it’s an n x n matrix assuming that, then it spans all of Rn (G). 

 
First, Nate’s statement that those concepts were obviously equivalent was coded (EG, 

GE), and then his explanation, which he gave twice, was coded (EIG). After this, no 

member of the class pushed him for further clarification, nor did anyone show signs of 

disagreement. No one asked him to explain why the columns of A being linearly independent 

implied that A had n pivots, nor why A having n pivots implied the columns of A spanned Rn. 
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On Day 9, however, these implications were not so readily accepted—they had to be 

investigated, explored with examples, debated, and justified.  

 This change in how the classroom community discussed the concepts involved in the 

Invertible Matrix Theorem and how they related to each other is one of many results that can be 

deduced from the adjacency matrix for the m =n sub-digraph for CMP 1, A(P1)m=n. As described 

above, the adjacency (E4, G) was utilized in order to support a new claim; this same if-then 

statement was captured as a normative way of reasoning, NWR #2, “The span of two non-

parallel vectors in R2 is all of R2,” in the previous Toulmin analysis section of this chapter. 

Furthermore, the Toulmin analysis section provided evidence for CMP 1, which consisted of 

four normative ways of reasoning: For a given set of n vectors in Rm, if m < n, the set must be 

linearly dependent (1.1); For a given set of n vectors in Rm, if m > n, the set cannot span all of 

Rm (1.2); If A is n x n and the columns of A span Rn, then the columns of A are linearly 

independent (1.3); and if A is n x n and the columns of A are linearly independent, then the 

columns of A span Rn (1.4). While the explanation of A(P1)m=n just provided does corroborate 

with the Toulmin analysis for the second two normative ways of reasoning, which deal with 

square matrices, it did not provide details regarding any argumentation in the non-square cases.  

To parallel the analysis in the Toulmin section, I provide results concerning the adjacency 

matrix of the m < n sub-digraph for CMP 1.  

4.2.2.1.2 The m < n sub-digraph of CMP 1. The summary data for A(P1)m<n in Figure 

4.52 reveals a low usage level for concept statements E-E8 and high usage levels for vertices F-

F9. When considered collectively, the codes beginning with “E” are various interpretations of 

concept statement E, “the columns of A are linearly independent,” whereas the “F” codes regard 

“the columns of A are linearly dependent.” This is directly opposite of the trend in A(P1)m=n, 

which has a higher connection level of “E” codes than “F” codes. Furthermore, the vertex with 

the highest centrality for A(P1)m<n was “F9: Have an extra vector needed in order to return 
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home.” Code G did not have a high centrality, as was the case for A(P1)m=n; however, if the 

collection of G codes are considered together, they had a high centrality. Why this distinction of 

uses of G versus interpretations of G in the discourse for when m < n and m = n? And why, for 

m < n, was F9 so high, whereas it wasn’t used at all in the m = n sub-digraph?  

In order to see how the vertices in the sub-digraph of CMP 1 were connected and within 

which arguments the various connections occurred, consider the portion of the adjacency matrix 

A(P1)m<n in Figure 4.54, which includes the rows and columns for vertices E-G5. This portion of 

A(P1)m<n was chosen because it is the most dense section of the adjacency matrix; the entire 

adjacency matrix is found in Appendix 4.4. 

The connections represented in this portion of the adjacency matrix all occurred within 

the first six days of class, with one exception on Day 9 (the vertices (G, F) are adjacent once in 

Argument 9.15). First, consider the adjacency (F5, F): “If one vector is a scalar multiple of 

another, the vectors are linearly dependent.” This occurred within three different arguments: 

6.4, 6.5, and 6.8, and these are indicated with the orange, yellow, and green values of one, 

respectively, in the (F5, F) cell. In the previous Toulmin analysis section, it was mentioned that 

this was a generalization that became established in the class on Day 5. Here, on Day 6, 

members of the class used that if-then pair to reason about various claims. In Argument 6.4 

Lawson used it to support the claim that the vectors 
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 were linearly dependent. It 

was used in arguments 6.5 and 6.8 as well, the transcripts of which can be found in Appendix 

4.2. Those two arguments were of a similar structure, so only Argument 6.8 is considered here.   
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 Argument 6.8 was analyzed in detail in the previous microgenetic section of the 

adjacency matrix analysis because of its structure of utilizing reasoning about the types m < n, 

m = n, and m > n in order to support the claim that any set if vectors in Rn with more than n 

vectors must be linearly dependent (see Figure 4.50). The following piece of transcript is the 

section of Argument 6.8 relevant to m < n. Justin had just explained how it was possible to have 

a set of three vectors in R3 that were linearly independent, and here he stated that, with a fourth 

vector, the set would be forced to be linearly dependent.  

Justin:  So our 4th vector, when we put it in, no matter where we put it, it's going to get 
us back home (S10F9). Because just like in this case, we have to have the 
last one to get back home, we can get anywhere with those first three that we 
put in (G2), but we have to have to have that fourth one to come back (F9). 
And so it works like that in any dimension, because the more you, if you keep 
adding, eventually you're going to get the span of your dimensions (G1), and 
then you're going to have that extra one bringing you back (F9). Unless you 
have two vectors that are lying on the same line (F5), then you won't have the 
span of all of your dimension (H1), but it's negligible because those two will 
give you a linearly dependent set (F5F). Does that make sense? 

 
 In this section, Justin’s explanation is coded as S10F9, G2F9, G1F9, F5H1, 

and F5F. The last implication, F5F, is represented with the dark green “1” in the (F5, F) 

cell of A(P1)m<n in Figure 4.54. The other members of the class did not contest this aspect of his 

argument; furthermore, the pair of adjacent vertices (F5, F) did not occur again at all during the 

semester during whole class discussion (see Figure 4.56 in the subsequent section). Rather, the 

vertex F5 was adjacent to a variety of new claims for n x n matrices, such as J4 (“There is not a 

pivot in each column of A”), L (“A is not invertible”), N3 (“Not all values in the codomain get 

mapped to as outputs”), or P (“The transformation defined by A is not 1-1”). These vertices that 

were adjacent from F5 in whole class discussion were almost entirely also adjacent from F in 

whole class discussion during other arguments. Thus, the ideas of F5 and F were possibly 

functioning as equivalent ideas in the classroom. Results such as this, which involve 
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considering all coded arguments throughout the semester, are explored further in a subsequent 

section.  

  Another reason Argument 6.8 is noteworthy is the unexpected prevalence of the code 

F9 (“You have an extra vector needed in order to return home”). In Figure 4.52, in fact, we see 

F9 has the highest centrality of all codes used in A(P1)m<n. The in-degree of F9 was 11 for CMP 

1, and in Argument 6.8 alone, Justin made use of this way of reasoning three different times. 

The “travel” language that typifies the F9 code has it roots in the Magic Carpet Ride problem, 

during which students worked within an experientially real problems setting of travel in 2- and 

3-dimensions towards developing more formal ways of reasoning about properties of vectors 

and vector spaces (Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 2011). Within that task 

sequence, linear dependence was first explored as a property of a certain type of modes of 

transportation that allowed you to complete a journey that began and ended at home (find a 

nontrivial solution to the vector equation c1v1 + c2v2 = 0). Thus, in retrospect, it is not surprising 

that the code F3 (“You can get back home/back to a point with the column vectors of A”) served 

as an interpretation of linear dependence during the semester (it was referred to as NWR #3 in 

the previous Toulmin section).  

  This “travel language” was even more influential with the concept of span, as will be 

seen in the subsequent section. The code F9, however, was used to make very particular claims 

in the classroom: to reason about why, if a set of vectors in Rn contained more than n vectors 

(i.e., there were “more vectors than dimensions”), it had to be linearly dependent. This occurred 

in multiple arguments, all of which occurred on Day 5 or Day 6; thus, it did not have continuity 

throughout the semester. Nor did F9 occur in whole class discussion occur in any scenario 

except when m < n. Rather, F9 was used most often as students explained why, if you had n 

vectors that spanned Rn, you would need that extra vector in order to “return home.” It was as if 

they wanted a linearly dependent set that also spanned Rn, then a minimally spanning set was 



  
154 

 

insufficient and thus needed a vector to be added; in other words, if they could “get 

everywhere” but wanted to “be able to return home,” then they needed an extra vector to “ride 

back.” While the Toulmin analysis in the previous section did provide evidence that “if there are 

more vectors than dimensions, the set of vectors is linearly dependent” was a normative way of 

reasoning for the classroom, the adjacency matrix analysis provided a method by which to 

examine the specific phrases that were uttered within the development of this larger 

generalization, as well as information regarding how these smaller ways of reasoning, such as 

F9, dropped off during the semester and were only used in specific scenarios.   

4.2.2.1.3 Conclusion for adjacency matrix analysis for CMP 1. Many aspects of the 

classroom’s normative ways of reasoning that were established using Toulmin’s model are 

apparent through adjacency matrix analysis as well. By computing centrality for the various 

concept statements, those with a high degree of participation in the overall argumentation were 

revealed. In the case of A(P1)m=n, concept statement G (“the columns of A span Rn”) had the 

highest measure of centrality.  A digraph of these connections was constructed in order to 

investigate more specifically how the concept of “the columns of A span Rn” was used over the 

course of the arguments analyzed. This demonstrated within which arguments concept 

statement G was uttered in conjunction with other concept statements.  

4.2.2.2 Adjacency Matrices for the compilation of all coded arguments. From the 

109 coded arguments and the 100 possible vertices, 83 vertices were used at least once during 

whole class discussion during the ten days analyzed, and 452 total edges existed between the 

vertices. In other words, 83 various interpretations of the concept statements (or concept 

statements themselves) associated with the IMT were used during whole class discussion during 

the days analyzed, and 452 edges exists in such a way as to match the implication offered by the 

speaker(s). The digraph for all the vertices and edges is denoted T, with adjacency matrix 

A(T)tot. The sub-digraphs of m < n, m = n, m > n, and any m, n and their associated orders are 
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A(T)m<n = 89, A(T)m=n  = 262, A(T)m>n = 48, A(T)any, = 53; thus, A(T)tot = 89 + 262 + 48 + 53 = 

452.  

 The adjacency matrix A(T)tot is provided in Figures 4.56-4.59. Because of its size, the 

adjacency matrix was partitioned into four figures. Figure 4.56 is the upper-left quadrant of 

A(T)tot, displaying rows E-K3 and columns E-K3; Figure 4.57 is the lower-left quadrant, 

displaying rows K4-S12 and columns E-K3; Figure 4.58 is the upper-right quadrant of A(T)tot, 

displaying rows E-K3 and columns K4-S12; and Figure 4.59 is the lower-right quadrant, 

displaying rows K4-S12 and columns K4-S12. Because of the large number of arguments being 

analyzed, coding each argument in a different color, as was done for CMP 1, was not possible 

for A(T)tot or its sub-digraph adjacency matrices. Thus, a different color was used for each of the 

ten days coded (see Figure 4.55).  

         
Figure 4.55. Key of colors used for entries in adjacency matrix A(T)tot. 

 
These colors appear in the various cells in the adjacency matrix and correspond to the days in 

which that connection occurred. For instance, the adjacency (F, H), “if the columns of A are 

linearly dependent, then the columns do not span Rn,” occurred three times—twice on Day 17 

(indicated with a green “2”) and once on Day 20 (indicated with a dark blue “1”).

− Days 5 and 6: Light pink − Day 19: Light Blue 
− Day 9: Red − Day 20: Dark Blue 
− Day 10: Orange − Day 24: Purple 
− Day 17: Green − Day 31: Brown 
− Day 18: Dark Green 
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 As stated, the adjacency matrix given in Figures 4.56-4.59 is a compilation of the 

adjacency matrices for the sub-digraphs for the types m < n, m = n, m > n, and any m, n. These 

correspond to whether the speaker in a given argument was reasoning about m x n matrices (or 

n vectors in Rm, or a transformation from Rn to Rm) such that m was less than n, m and n were 

equal, m was greater than n, or no particular m, n type was specified. As such, care must be 

given regarding what conclusions can be made from A(T)tot. For instance, consider the 

implication, “the columns of span Rn then the columns are linearly independent.” It is a 

perfectly valid implication in the m = n type, but it is invalid in the m < n type (for instance, 

three vectors in R2 can span R2 but they cannot be linearly independent). My conclusions when 

considering A(T)tot, therefore, are limited to ones that pertain to global qualities such as density 

and continuity of ideas over the entire semester, as well as how this usage compares and 

contrasts across the four types. I present three categories of results: centrality measures and 

implications for all m, n; frequencies and implications for individual cells, and shifts in 

argumentation over the course of the semester.  

 4.2.2.2.1 Category One: Centrality measures and implications for all m, n types. Table 

4.3 provides a breakdown of how many total edges existed between vertices (i.e., the size) for 

each of the sub-digraphs for A(T)m<n, A(T)m=n, A(T)m>n, A(T)any and how these edges were 

distributed over the ten analyzed class days. The content covered on each day is as follows: 

Days 5/6: generalizations about linear independence, dependence, and span; Day 9: connections 

between pivots, linear independence, and span; Day 10: connecting ideas for square matrices; 

Days 17 and 18: generalizations about invertible matrices; Days and 20: investigations into one-

to-one and onto; Day 24: connections between determinants and other concepts; and Day 31: 

reflections on the Invertible Matrix Theorem. Given the content development, the distribution of 

edges across the various sub-digraphs for the types m < n, m = n, m > n, and any m, n are, are 

perhaps not surprising (see Table 4.3). For instance, only A(T)m=n had any vertices adjacent on 
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Days 18 and 24. This is not surprising because on these two days, the class reasoned about 

invertible matrices and determinants of matrices, which are concepts appropriate for square 

matrices. Thus, while the content discussed on a particular day did not alone dictate the size of 

particular sub-digraphs of the various types, it did influence which sub-digraphs were necessary. 

 
Table 4.3. Sizes of A(T)m<n, A(T)m=n, A(T)m>n, A(T)any, and A(T)tot by day. 

 m < n m = n m > n any m, n Total 
(by day) 

Days 5 & 6 28 14 3  45 
Day 9 39  5 7 51 

Day 10  29   29 
Day 17 4 61 4  69 
Day 18  14   14 
Day 19 3  18 12 33 
Day 20 15 52 18 34 119 
Day 24  57   57 
Day 31  35   35 

Total Size 
(by type) 89 262 48 53 452 

 
 The adjacency matrices for each of the four sub-digraphs are in Appendices 4.8-4.11. 

The in-degree, in-connection, out-degree, out-connection, and centrality were calculated for 

each vertex in all sub-digraphs, and those calculations are provided in entirety in the appropriate 

Appendix 4.8-4.11. The summary of these data (except centrality) is presented in Figures 4.60 

and 4.61. The out-degree and out-connection for each vertex in A(T)tot, A(T)m<n, A(T)m=n, 

A(T)m>n, and A(T)any is given in Figure 4.60, and the in-degree and in-connection for each vertex 

in the same matrices is given in 4.61. This information for A(T)tot, as well as each vertex’s 

centrality measure, is given in Figure 4.62. The style of this table was seen previously in Figure 

4.52, which summarized this same information but for arguments relevant to CMP 1. 
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Figure 4.60. Out-degree and out-connection for A(T)tot, A(T)m<n, A(T)m=n, A(T)m>n, and A(T)any. 
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Figure 4.61. In-degree and in-connection for A(T)tot, A(T)m<n, A(T)m=n, A(T)m>n, and A(T)any. 
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Figure 4.62. Summary information for adjacency matrix A(T)tot. 

OD OC ID IC centrality OD OC ID IC centrality

E 41 17 31 13 0.1807 K4 4 2 5 2 0.0241
E1 2 1 3 1 0.0120 K5 2 2 1 1 0.0181
E2 3 1 4 3 0.0241 K6

E3 2 2 3 3 0.0301 L 4 2 30 12 0.0843
E4 5 4 1 1 0.0301 L1 1 1 0.0060
E5 3 2 0.0120 L2 1 1 0.0060
E6 L3 3 3 0.0181
E7 1 1 0.0060 L4 1 1 4 2 0.0181
E8 1 1 0.0060 L5

F 35 13 39 18 0.1867 L6 4 3 4 2 0.0301
F1 2 2 1 1 0.0181 M 18 7 26 9 0.0964
F2 4 3 4 2 0.0301 M1 1 1 2 2 0.0181
F3 3 3 5 4 0.0422 M2 3 3 4 3 0.0361
F4 6 4 3 3 0.0422 M3 1 1 3 3 0.0241
F5 11 9 1 1 0.0602 N 4 3 16 9 0.0723
F6 1 1 0.0060 N1 1 1 0.0060
F7 1 1 0.0060 N2 2 2 0.0120
F8 17 10 1 1 0.0663 N3 6 4 12 9 0.0783
F9 4 4 11 6 0.0602 N4 7 3 6 4 0.0422
G 41 16 51 21 0.2229 N5 1 1 0.0060
G1 4 2 2 2 0.0241 O 14 6 19 9 0.0904
G2 6 5 10 6 0.0663 O1 2 2 1 1 0.0181
G3 7 6 3 3 0.0542 O2 1 1 0.0060
G4 7 4 5 4 0.0482 O3 1 1 0.0060
G5 5 5 3 3 0.0482 P 3 2 14 9 0.0663
H 7 3 11 7 0.0602 P1 1 1 0.0060
H1 4 3 3 2 0.0301 P2

H2 2 2 5 5 0.0422 P3 1 1 1 1 0.0120
H3 P4 1 1 2 2 0.0181
H4 1 1 6 4 0.0301 P5 1 1 0.0060
H5 9 6 4 3 0.0542 Q 3 2 2 2 0.0241
H6 Q1

I 6 2 3 2 0.0241 Q2

I1 3 2 1 1 0.0181 R 11 5 9 4 0.0542
I2 4 4 6 6 0.0602 R1 3 2 5 4 0.0361
I3 18 8 4 4 0.0723 R 2 2 1 1 0.0181
I4 1 1 1 1 0.0120 R3 1 1 3 1 0.0120
I5 3 2 3 3 0.0301 S

I6 3 3 0.0181 S1 7 4 3 2 0.0361
J 1 1 0.0060 S2 4 4 4 3 0.0422
J1 1 1 0.0060 S3

J2 1 1 1 1 0.0120 S4

J3 6 4 2 2 0.0361 S5

J4 4 2 2 2 0.0241 S6

J5 7 6 6 4 0.0602 S7

J6 4 3 3 3 0.0361 S8 10 4 1 1 0.0301
K 20 8 16 9 0.1024 S9 6 5 0.0301
K1 1 1 0.0060 S10 10 6 2 2 0.0482
K2 S11

K3 S12 1 1 1 1 0.0120

total total total total
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 Figure 4.62 summarizes multiple aspects of the information provided in Figures 4.60 

and 4.61. First, it summarizes information regarding how each vertex was used in the four sub-

digraphs. The grayed out table values indicate that a particular node was used in only one type. 

For instance, all the Q and R codes are grayed-out values because they appeared in A(T)m=n but 

not the others. It makes sense that these were used in m = n argumentation because they are 

codes related to the concept of determinant.  

 Some of the remaining cells, those that do not have gray table values, are shaded light 

blue. The light blue shaded squares in Figure 4.62 indicate non-mutually exclusive in-

connections or out-connections for a particular vertex. For instance, the cell for the in-

connection of vertex N4, “the transformation collapses everything to a point/line/plane,” is 

shaded blue and has a value of 4. By taking a closer look and examining the N4 row of the table 

in Figure 4.61 to order to determine the in-connections for that vertex across the four types, we 

see the in-connection of N4 for A(T)m<n is 4, for A(T)m=n is 2, for A(T)m>n is 4, and for A(T)any is 

0. If the in-connection of N4 for A(T)tot were 4+ 2 + 4 = 10, then the total vertices adjacent to N4 

would all be distinct. Because the number is less than 10 (it is 4), then across the three types for 

which the in-connection of N4 is nonzero, at least one vertex adjacent to N4 was repeated. In 

contrast, neither the in-connection nor out-connection for vertex J3, “There is not a pivot in 

each row,” is shaded light blue. This situation arises when the vertices that a given vertex is 

adjacent to (or adjacent from) are mutually exclusive.  

 Figure 4.62 shows that vertex G and vertex F had the highest and second highest 

centrality, respectively, in A(T)tot. Figure 4.62 further shows that, for both G and F, neither their 

in-connections nor out-connections were mutually exclusive across m, n types. Not only were 

their measure of centrality the highest, indicating their participation in the structure of 

argumentation over the course of the semester was central by being adjacent to or adjacent from 

the highest number of distinct nodes, codes F and G were adjacent to or adjacent from some of 
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the same vertices in more than one m, n type. Thus, across two measures, vertex F (“the 

columns of A are linearly dependent”) and vertex G (“the columns of A span Rn”) were central 

ways of reasoning for the collective during whole class discussion over the course of the 

semester. More regarding these specific vertices is addressed in the subsequent Category Two 

results section. 

 The use of adjacency matrices can also provide information on when the in-connection 

or out-connection of a vertex across types was mutually exclusive. One such cell whose out-

connection was mutually exclusive was G2, “Can use all the vectors to get to every point/to get 

everywhere.” This vertex was adjacent to five different vertices (see Table 4.4). 

 
Table 4.4. Out-connection details for vertex G2. 

 Total 
OD 

Total 
OC 

m < n  
OD 

m < n 
OC 

m = n 
OD 

m = n 
OC 

m > n 
OD 

m >n 
OC 

 6 5 2 1 2 2 2 2 
Specific 
instances 
of 
adjacency 

 

   (G2, F9) = 2 
(Days 5/6) 

 (G2, E8) = 1 
(Days 5/6) 

 
(G2, G) = 1 

(Day 31) 

 (G2, M) = 1 
(Day 20) 

 
(G2, M3) = 1 

(Day 19) 
 
The second row of Table 4.4 is extracted from Figure 4.60, and the specific vertices to which 

G2 was adjacent is extracted from the adjacency matrices for these sub-digraphs, found in 

Appendices 4.8- 4.10. In the “m < n OC” column of Table 4.4, the adjacency (G2, F9), “if you 

can get everywhere with the column vectors, then you have that extra vector needed to return 

home” occurred twice. This only makes sense in the m < n type: it would not be true in for m x 

n matrices where m = n, for instance. Also, these two adjacencies occurred in Day 5 or 6, when 

the class was developing a way to reason about linear dependence for when there were more 

than n vectors in Rn. Also on Day 5 or 6, the adjacency (G2, E8) occurred. The code E8, “you 

do not have an extra vector needed to return home,” could be considered the negation of F9. 

Although it seems that (G2, F9) and (G2, E8) could not both be sensible ways of reasoning, they 
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are not contradictory because the former occurred was reasoning about m x n matrices where m 

< n, and the latter when reasoning about matrices where m = n.  

 The language in both F9 and E8 coincide with the travel language of G2, all of which 

grew out of the class’s experience with the Magic Carpet Ride Problem. In that problem setting, 

the class first reasoned about span by considering “all the places you could get” with a linear 

combination of a set of given vectors. Keeping within the Magic Carpet Ride setting, they 

investigated journeys that began and ended at home and developed the formal definitions of 

linear independence and dependence out of this situational experience. Thus, it is reasonable 

that students would, early in the first few days of the semester, reason that a set of two vectors 

in R2 are linearly independent because they can get everywhere with the 2 vectors (G2) but 

don’t have an extra vector needed to get back home (E8). It is also reasonable that reasoning 

about span and linear independence, over the course of the semester, became less dependent on 

these situational ways of reasoning, moving more into general and formal activity (Gravemeijer, 

1999). This can be seen through the drop-off of the E8, F9, G2, and H2 codes and using the 

“parents codes” E, F, G, and H to make claims about new concepts such as invertibility or one-

to-one transformations. More regarding this transition is given in the third category of results 

given in a subsequent section. 

 The travel language of G2 did surface in argumentation concerning the concept of onto 

transformations. On Day 19, G2 was adjacent to M (“The transformation defined by A is onto”), 

and G was adjacent to M3 (“All values in the codomain get used/mapped to as outputs”) on Day 

20. These two days were ones in which the concept of onto was explored, so it is noteworthy to 

see the travel language was used to reason about transformations that were or were not onto the 

given codomain. In contrast, the class developed a notion of equivalence between the concepts 

of one-to-one and linear independence, yet there was no reference to F3, F9, E3, or E8 (the 
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codes referring to an ability or inability to travel “back home” with given vectors) when 

reasoning about one-to-one transformations.  

 Results about the ways in which the classroom community reasoned about the 

Invertible Matrix Theorem presented in Category One focused on the notions of centrality for 

given vertices across the total adjacency matrix A(T)tot, as well as within and across the various 

types of m, n scenarios. Vertices F and G had high centrality measures, indicating their integral 

participation in the argumentation structure by being adjacent to or adjacent from a high number 

of other vertices. Furthermore, vertices F and G were adjacent to or from other vertices in each 

of the m, n sub-digraphs, indicating their importance in the classroom argumentation in a variety 

of situations.  

The results presented in Category One correlate well with certain aspects of the 

methodology for documenting collective activity via Toulmin’s Model. For instance, a vertex 

with a high out-connection means that the vertex was adjacent to a variety of other vertices. 

Given that the adjacency (u, v) for vertices u and v could be read as “if u then v,” a vertex with a 

high out-connection means that the concept statement or interpretation represented by that 

vertex served as data for a variety of claims. This is precisely what was presented as Criterion 3 

for documenting normative ways of reasoning (Cole et al, in press). High diversity within a 

particular cell (such as the (G, E) cell), rather than over a particular row, indicates that the given 

implication (rather than a given concept) served a role in multiple arguments. How this relates 

to Toulmin analysis is investigated further in the Category Two results section.   

 As a final quantitative consideration of the centrality measure, Figure 4.63 tabulates the 

centrality of each concept statement and their associated subcodes as one measure.  
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Figure 4.63. Out-degree, out-connection, in-degree, in-connection, and centrality information 

for A(T)tot grouped by main code and subcodes. 
 

Figure 4.52 showed that as a single vertex, vertex G was the most central. Figure 4.53 shows 

that when considering a concept statement and its associated subcodes (now called a category) 

as a unit, category F was more central than category G. Thus, although concept statement G 

(“the columns of A span Rn”) was the most central way of reasoning throughout the semester, 

the concept statement and associated interpretations for “the columns of A are linearly 

dependent” were more central than that of span and its associated interpretations. One 

explanation for this could be that the notion of linear dependence had a wider variety of 

powerful interpretations for this particular classroom community than did span. 

 Finally, Figure 4.63 can be read as a comparison between categories and their 

negations. For instance, the E category involved the concept statement “the columns of A are 

linearly independent” and interpretations of that, whereas the F category was related to linear 

OD OC ID IC Centrality

Code E and subcodes: 57 28 43 22 0.3012

Code F and subcodes: 84 50 65 36 0.5181

Code G and subcodes: 70 38 74 39 0.4639

Code H and subcodes: 23 15 29 21 0.2169

Code I and subcodes: 35 19 21 20 0.2349

Code J and subcodes: 24 18 14 12 0.1807

Code K and subcodes: 26 12 23 13 0.1506

Code L and subcodes: 10 7 42 20 0.1627

Code M and subcodes: 23 12 35 17 0.1747

Code N and subcodes: 19 12 36 24 0.2169

Code O and subcodes: 17 9 21 11 0.1205

Code P and subcodes: 6 5 18 13 0.1084

Code Q and subcodes: 3 2 2 2 0.0241

Code R and subcodes: 17 10 18 10 0.1205

Code S and subcodes: 38 8 11 9 0.1024
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dependence. Upon comparing categories and their negations (E vs. F, G vs. H, I vs. J, K vs. L, 

M vs. N, O vs. P, and Q vs. R), we see the following:  

● Three categories as stated in the IMT are more central than their negations: “The 

columns of A span Rn” (category G); “The row-reduced echelon form of A has n 

pivots” (category I); and “The transformation defined by A is one-to-one” (category 

O).  

● Four categories as stated in the IMT were less central than their negations. The 

more central negations were: “The columns of A are linearly dependent” (category 

F); “The matrix A is not invertible” (category L); “The transformation defined by A 

is not onto Rn” (category N); and “The determinant of A is zero” (category R).  

Thus, for this classroom community, reasoning about the Invertible Matrix Theorem also 

involved reasoning about negations of the statements involved in the theorem. This could have 

occurred as the justifications for a given implication were given in the form of a contrapositive. 

Additionally, some concepts may lend themselves naturally to students reasoning about their 

negations. From this data, one such possibility could be with the idea of determinants. The 

centrality of “the determinant of A is zero” was drastically higher than “the determinant of A is 

nonzero.” A deeper examination of the particular arguments regarding determinants would 

reveal that the class developed ways of reasoning about determinant and how it was connected 

to other concepts by focusing more examples of matrices with determinants of zero rather than 

nonzero. In Chapter 5, I report that this t preference with determinants held true for Abraham as 

well. 

 4.2.2.2.2 Category Two: Frequencies and implications for individual cells. The 

adjacency matrix A(T)tot is also an informative tool regarding the participation of individual 

cells in the classroom discourse throughout the semester. By “participation of individual cells,” 

I mean specific pairs of adjacent vertices that occur during whole class discussion, and this 
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information is gleaned by examining specific cells of A(T)tot. To determine an area of focus for 

this results section, I examined the adjacency matrix of A(T)tot. For any two vertices x, y, the 

adjacent pairs that occurred in at least three different days were:  

1. (E, E1): 3 times over 3 different days 
2. (E, G): 7 times over 5 different days 
3. (G, E): 8 times over 4 different days 
4. (F, L): 13 times over 3 different days 
5. (G, G2): 3 times on 3 different days 
6. (I, G): 5 times over 3 different days 
7. (I3, G): 8 times over 4 different days 
8. (K, K4): 4 times over 3 different days 
9. (K, E): 6 times over 3 different days 

From this information, the adjacency that occurred with the most frequency was (F, L), “If the 

column vectors of A are linearly dependent, then A is not invertible,” which occurred 13 times. 

The adjacency that occurred on the highest number of days was (E, G), “If the columns of A are 

linearly independent, then the columns of A span Rn,” which occurred on five of the ten days 

analyzed.  

 First, consider the adjacency (F, L). Eight of the (F, L) adjacencies occurred on Day 17, 

the day in which the class worked to create generalizations regarding types of matrices that 

were or were not invertible. The first five arguments, students focused their presentations on 

why matrices with rows or columns of zeroes were not invertible. Aspects of these arguments 

surface in A(T)tot in the other cells of the F-F9/L-L5 block (see Figure 4.62). During Argument 

17.6, Randall first proposed this if-then pair as a valid claim. The teacher elaborated on this 

claim by discussing its validity in the m < n, m = n, and m > n cases. She then limited the 

notion of “invertibility” to one for square matrices, and Arguments 17.8-17.10 investigated why 

the 2x2 matrix 

€ 

A =
1 2
2 4
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  failed to be invertible. In these three arguments, however, the (F, L) 

adjacency does not appear. In Argument 17.8, vertices F and L were the “bookends” to Edgar’s 

explanation that the calculations in determining a matrix C such that AC = I yielded an 
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inconsistent system. In Arguments 17.9 and 17.10, Abraham’s explanation focused on the span 

of the columns of A being only a line, as well as if A, as a transformation, collapsed everything 

to the line y = 2x, then the column vectors of I could never be outputs for that transformation. 

The teacher then led the class in the first few steps of a very formal proof that the adjacency (F, 

L) was true in all n x n cases. This series of arguments contributed the eight edges incident from 

F to L seen in the F-L cell of A(T)tot. The adjacency (F, L) surfaced again on Day 24, during 

investigations into determinants. Edgar was the first to suggest that if the determinant equals A 

is zero then A is not invertible, and the connection (F, L) was used in his justification. This 

connection surfaced three more times on Day 24. In all instances on Day 24, the adjacency (F, 

L) was not under debate but rather was being used to justify a new claim (about determinants).  

 Second, consider the adjacency (E, G), “If the columns of A are linearly independent, 

then the columns of A span Rn,” which occurred on five of the ten days analyzed: Days 5/6, Day 

17, Day 20, Day 24, and Day 31. Notice that these five days are distributed from the first to the 

last day analyzed, and the main concept on the days varied from span and linear independence 

(Day 5/6), invertibility (Day 17), one-to-one and onto (Day 20), and determinants (Day 24). 

While this information may not show up in the out-degree and out-connection summary data 

(such a high frequency in one given cell does nothing to increase a vertex’s out-connection), it 

is fascinating to notice this if-then pair was used throughout the semester to reason about other 

concepts in the Invertible Matrix Theorem. Furthermore, on Day 31, Nate explained why, for 

him, these two concept statements were the most obviously equivalent (this argument was 

analyzed in the previous sections of Toulmin analysis).  

 A variation of considering a given individual cell’s frequency is considering a particular 

block of cells and their frequencies. For instance, consider the cells for rows I-I6 and columns 

G-G5. A dense block of cells was the I-I3 G block of cells (see Figure 4.56). Over five 

different days (Days 9, 10, 19, 20, and 31), there were 14 times the code I, I1, or I3 was 
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adjacent to G. During Days 9 and 10, the number of rows with a pivot was being connected to 

the dimension of the subspace that the column vectors would span. This same adjacent pair was 

used during Days 19 and 20 to support claims that specific transformations, or transformations 

in general, were onto the codomain. Again, as was the case with the first two examples (F, L) 

and (E, G), the data-claim pair represented in the adjacency shifted in its role in whole class 

argumentation. It, as an entity, transitioned from being discussed as a valid if-then connection to 

a new role in arguments, that of provided data or warrant in new arguments. 

 The analysis presented in Category #2 is compatible with the Toulmin analysis 

presented in the first half of this chapter. In the adjacency matrix analysis of this present section, 

by considering individual cells of high frequency across multiple days, I was able to analyze 

how particular adjacent vertices functioned as data-claim pairs over the course of the semester. 

The adjacency matrix A(T)tot provides information regarding which days certain vertices are 

adjacent to one another during whole class discussion. While the specifics of the argumentation 

that these adjacent pairs belong to is not provided in A(T)tot, knowing on which days the pairs 

occurred provides easily-accessible information regarding what concepts during the semester 

the pairs are used to reason about. This allows an analysis compatible with Criterion 2 

(Rasmussen & Stephan, 2008), developed and used in conjunction with Toulmin analysis, in 

order to determine what normative ways of reasoning develop in a classroom. Furthermore, the 

adjacency matrix analysis also provides information that is difficult to glean from only the 

Toulmin analysis. The sub-digraphs associated with A(T)tot, as well as the summary data in 

Figures 4.60-4.62, provide specific information regarding what type of m x n situation (m < n, 

etc.) the adjacent pairs were a part of, as well as quick quantitative data regarding on which 

days the data-claim pair (or pair of adjacent vertices) were utilized.  

 4.2.2.2.3 Category Three: shifts in argumentation over the course of the semester. 

The last category of results presented regarding how the classroom reasoned about the 
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Invertible Matrix Theorem focuses on shifts in argumentation patterns over the course of the 

semester. The primary information source for this analysis is A(T)tot (see Figures 4.56-4.59).  By 

considering where in the adjacency matrix entries appear, in conjunction with considering 

which days these adjacencies appeared, information regarding shifts in argumentation patterns, 

thus a sense of the “travel of ideas” (Saxe et al, 2009) throughout the semester is revealed.  

 Recall the order of the days in association with their representative color schemes in the 

adjacency matrix: Days 5 and 6: Pink; Day 9: Red; Day 10: Orange; Day 17: Green; Day 18: 

Dark Green; Day 19: Light Blue; Day 20: Dark Blue; Day 24: Purple; and Day 31: Brown. This 

order dictates the way in which the shifts in argumentation patterns are detectable in A(T)tot, as 

well as in A(T)m<n, A(T)m=n, A(T)m>n, and A(T)any. First, the colors alone in A(T)tot help 

illuminate the movement of argumentation throughout the semester. Through a very large grain 

size, there is a high concentration of pink and red in the upper left of the adjacency matrix 

(coinciding with days 5, 6, and 9); a concentration of orange within the I block (Day 10); a 

concentration of light and dark blue under the M, N, O, and P blocks (Days 19 and 20); purples 

occurred under the Q and R blocks (Day 24), and brown (Day 31) is scattered throughout the 

adjacency matrix.  

 Given the order of the development of mathematical meaning over the course of the 

semester and what the teacher posed as tasks for discussion on each day, the aforementioned 

concentrations are sensible. First, the high pink and red concentration in the upper left corner of 

A(T)tot indicates a high level of explanation within the F category. Early in the semester, the 

class had to develop ways of reasoning about linear dependence, but there was no need to 

explain or reinterpret different F codes later in the semester. Thus, the use of the various F 

codes moved away from being adjacent to or adjacent from other F codes towards making 

claims about other concepts in the IMT. Furthermore, when considering the sub-adjacency 

matrices, there is no pink or red in the upper left quadrant of the A(T)m=n adjacency matrix, but 
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rather these adjacencies appear in A(T)m<n. This coincides with the previous analyses of CMP 1 

(via both adjacency matrices and Toulmin’s model). Through this class mathematics practice, 

the collective’s way of reasoning about linear independence and span as equivalent ideas for 

square matrices took time to develop, first focusing on those two concepts individually and for 

non-square matrices. This reliance on explanations within the F category became less prominent 

as the semester progressed; rather, the class used vertices within the F category to reason about 

other concepts. This coincides with Criterion Two for documenting normative ways of 

reasoning: when claims that previously needed justification shift to becoming part of the 

justification for new claims.  

 Second, consider the concentration of light and dark blue under the M, N, O, and P 

blocks (Days 19 and 20); these categories correspond to reasoning about whether or not 

transformations are onto or one-to-one. In order to facilitate comparison with the analysis of 

CMP 2, “Determining whether or not a transformation T: Rn  Rm is onto Rm by considering 

the span of the column vectors of the associated matrix,” presented in the Ontogenetic Analysis 

via Toulmin’s Model section of this chapter, I focus the current analysis on a discussion of span 

and onto.  

 Within Days 19 and 20, there was a high concentration in the rows for the G and H 

categories and the columns for the M and N categories (14 and 13, respectively). This implies a 

high frequency of adjacencies from the interpretations of column vectors spanning or not 

spanning all of Rn leading to conclusions about whether transformations are onto or are not onto 

Rn. There are far fewer adjacencies from rows for the M and N categories to columns for the G 

and H categories (6 and 2, respectively). This means that the concept statement of “the 

transformation defined by A is not onto” was the claim more often than it was the data. 

Considered collectively, this is compatible with the second classroom mathematics practice of 

using span to reason about onto. This way of reasoning, rather than the reverse, is sensible 
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because of the structure of the course and what the class was investigating on those days. 

Furthermore, substantial portion of the adjacencies in the N category (the transformation is not 

onto) occurred while reasoning about transformations such that m > n (see Figures 4.61 and 

4.62). This corresponds to NWR 2.3 from the previous Toulmin analysis of CMP 2.  

 Finally, the adjacencies from Day 31 (the brown entries in A(T)tot) are somewhat 

scattered through the adjacency matrix. On this class day, students were given time to discuss in 

their small groups various aspects of the Invertible Matrix Theorem, such as the concepts and 

equivalencies with which they were most and least comfortable, how they understood certain 

equivalencies, etc. A small portion of time was given in whole class discussion to report back 

about this small group work. For instance, the concentration of brown adjacencies in the G 

category, along with connections to S2, correspond to two arguments by Justin and Abraham 

(Arguments 31.3 and 31.4) in which they explain how the statements “G: the columns of A span 

all of Rn,” “S2: the column space of A is all of Rn,” “G3: for every b in Rn, there's a way to 

write b as a linear combination of the columns of A,” and “'G5: For every b in Rn, there exists a 

solution x to Ax = b” are equivalent ideas for them. These explanations focus on how the 

involved concepts are “the same thing,” or are defined in terms of each other. This is distinct 

from, for instance, how Nate explains how he sees linear independence and span as equivalent 

ideas (through a connection to pivot positions). I revisit these notions of conceptual equivalency 

and logical equivalency, respectively, in Chapter 6.  

 

4.3 Conclusion 
 

 Within this chapter, I explored the ways in which the classroom community reasoned 

about the Invertible Matrix Theorem over the semester. I utilized two analytical tools, 

Toulmin’s Model of Argumentation and adjacency matrices, married with the microgenetic and 

ontogenetic strands of analysis. I considered the mathematical development of the classroom 



  
177 

 

through each analytical tool separately; in doing so, noteworthy aspects regarding the structure 

of argumentation were revealed.  

Through Toulmin analysis, investigating the mathematical development of the 

classroom community revealed the existence of at least two classroom mathematics practices: 

(a) CMP 1: Reasoning about span and linear independence as equivalent ideas for square 

matrices, and (b) CMP 2: Determining whether or not a transformation T: Rn  Rm is onto Rm 

by considering the span of the column vectors of the associated matrix A. The normative ways 

of reasoning associated with these two classroom mathematics practices involved: making use 

of the travel language derived from the Magic Carpet Ride problem in order to develop ways of 

reasoning about the formal notions of span and linear independence; exploring examples and 

generating conjectures about span, linear independence, one-to-one, and onto in both m > n and 

m < n scenarios in order to draw conclusions regarding those concepts when m = n; establishing 

the equivalence of “ the span is all Rn” and “the transformation is onto Rn”; and reasoning about 

implications from one concept statement to the other for square matrices. In addition, the 

argumentation log indicates that reasoning about one-to-one and onto transformations as 

equivalent when m = n relied heavily on associations between span and onto, one-to-one and 

linear independence, brought together with the equivalence of span and linear independence 

from CMP 1.  

Beyond the mathematical results determined through the use of Toulmin’s Model, I also 

defined four types of argumentation schemes that are an expanded version of Toulmin’s model. 

These expanded structures developed out of necessity when the original 6-part Toulmin’s 

scheme proved inadequate while analyzing argumentation of the classroom community. Aspects 

of these structures were adapted from and are compatible with those by Aberdein (2006, 2009).  

Analyzing the classroom community’s argumentation relevant to reasoning about the 

Invertible Matrix Theorem through adjacency matrices revealed a variety of results. Within the 
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microgenetic analysis via adjacency matrices section, I presented two categories of results 

regarding (a) where within a category an argumentation occurred, and (b) the type of sub-

digraph in which the argumentation occurred. For (a), I reported on two main structures that 

existed in the data. First, when the argumentation served towards developing a way of reasoning 

about a new concept or connection between two concepts, the argument involved multiple uses 

of the “interpretation” subcodes. Second, when the argumentation made use of relatively well-

established concepts or connections between concepts, the argument involved mainly the 

“concept statement” main codes. For (b), regarding reasoning within the various m, n sub-

digraphs, I provided an example from Day 9 in which Justin justified to the rest of the class, “if 

there are more vectors than dimensions, the set of vectors must be linearly dependent.” Within 

that one justification, Justin first reasoned about m > n matrices, then square matrices, and then 

reached the desired case of m > n matrices.  

The results of ontogenetic analysis via adjacency matrices were presented in two 

sections: those arguments involved in CMP 1 (from the ontogenetic Toulmin analysis), and the 

compilation of all coded arguments. Within the first section, analysis of the m < n and m = n 

sub-digraphs revealed high levels of compatibility with the Toulmin analysis for those same 

arguments. Concept statement G had the highest centrality for A(P1)m=n, and I constructed a 

digraph of these connections to investigate more specifically how the concept of “the columns 

of A span Rn” was used over the course of the arguments analyzed. This demonstrated within 

which arguments statement G was uttered in conjunction with other concept statements.  

The results from analyzing the adjacency matrices for the compilation of all coded 

arguments were presented according to three categories: (a) centrality measures and 

implications for all m, n types; (b) frequencies and implications for individual cells; and (c) 

shifts in argumentation over the course of the semester. For (a), I reported that vertex G (“the 

columns of A span Rn”) and vertex F (“the columns of A are linearly dependent”) had the 
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highest and second highest centrality, respectively, in A(T)tot. Furthermore, for both G and F, 

neither their in-connections nor out-connections were mutually exclusive across m, n types. Not 

only were their measure of centrality the highest, indicating their participation throughout the 

semester was central by being adjacent to or adjacent from the highest number of distinct nodes, 

codes F and G were adjacent to or from some of the same vertices in more than one m, n type.  

The second category revealed that the adjacency matrix A(T)tot was also an informative 

tool regarding the participation of individual cells in the classroom discourse. The adjacency 

that occurred most was (F, L), “If the column vectors of A are linearly dependent, then A is not 

invertible,” and the adjacency that occurred on the most days was (E, G), “If the columns of A 

are linearly independent, then the columns of A span Rn.” Finally, the third category of results 

focused on shifts in argumentation patterns over the course of the semester. The primary 

information source for this analysis was A(T)tot (see Figures 4.56-4.59).  By considering where 

in the adjacency matrix entries appear, in conjunction with which days these adjacencies 

appeared, information regarding shifts in argumentation patterns was revealed.  

Finally, Toulmin’s Model and adjacency matrix analysis were compatible across a 

variety of the reported result strands, as mentioned previously within the associated sections. 

For instance, a vertex with a high out-connection means that the concept statement or 

interpretation represented by that vertex served as data for a variety of claims. This is precisely 

what was presented as Criterion 3 for documenting normative ways of reasoning (Cole et al, 

2011). High diversity within a particular cell indicates that the given implication (rather than a 

given concept) served a role in multiple arguments. Furthermore, knowing on which days the 

implication occurred (read in the matrix as a (u, v) adjacency) provides information regarding 

what concepts during the semester the implication is used to reason about. This allows an 

analysis compatible with Criterion 2 (Rasmussen & Stephan, 2008) in the establishment of 

normative ways of reasoning.  
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CHAPTER FIVE: ANALYSIS AT THE INDIVIDUAL LEVEL 
 

 

This chapter presents results concerning the second research question: How did an 

individual student, Abraham, reason about the Invertible Matrix Theorem over time? To address 

this question, I utilized two different analytical tools, Toulmin’s model and adjacency matrices, 

on classroom discourse, small group discourse, interview data, and written work from 

throughout the semester relevant to how Abraham reasoned about the IMT. I also utilized the 

cultural change notions of microgenesis and ontogenesis as strands through which I coordinated 

the structure and content of discrete argumentations (microgenetic level) and how the forms and 

functions of these various arguments shifted over time (ontogenetic analysis).  

The layout of this chapter mirrors that of Chapter 4. In the first section, I detail results 

from both the microgenetic and ontogenetic analyses from using Toulmin’s model. The 

microgenetic analysis revealed, in addition to instances in which the four expanded Toulmin 

structures introduced in Chapter 4 served well to analyze the structure of Abraham’s individual 

argumentation, variations in the nature of equivalence between different pairs of concept 

statements from the IMT. Within the ontogenetic analysis, I focused on shifts in Abraham’s 

reasoning about span and linear independence in conjunction with each other, as well as his 

prevalent use of reasoning about solutions to the matrix equations Ax = 0 and Ax = b to make 

and support claims. In the second section, I detail both the microgenetic and ontogenetic 

analyses from utilizing adjacency matrices as an analytical tool to investigate Abraham’s 

reasoning. The microgenetic analysis revealed Abraham’s reasoning about the negation of 

statements regarding determinants and eigenvalues from the IMT, as well as how a difficulty 

with a particular generalization about linear dependence was revealed through analyzing the m 

< n sub-digraph. Within the ontogenetic analysis section, I report results concerning the 

centrality measure for the concept of span, the prevalence of codes within the theme of “getting 
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everywhere,” and a comparison of arguments from identical prompts. The chapter concludes 

with a summary of Abraham’s mathematical development, as well as a comparison of the two 

tools and a discussion of their affordances and limitations at the individual level.  

Although the structure of the two results chapters is parallel, the theoretical 

underpinning and resulting types of conclusions that are made at each of the two units of 

analysis differ. In the previous chapter, I was restricted regarding what conclusions I could 

make regarding the collective in the microgenetic analysis section, given the inability to make 

claims about mathematical ways of reasoning that function as-if shared from the analysis of 

single arguments. Here, however, through microgenetic analysis, I am able to make claims 

about Abraham’s mathematical understanding, as well as comment on aspects similar to those 

of the collective analysis, namely the structure of Abraham’s argumentation. On the ontogenetic 

level, I discuss Abraham’s ways of reasoning about the IMT over time—I consider how his 

ways of talking about how two or more concepts relate changes over time, analyze the 

prevalence of certain themes of mathematical concepts or metaphors, make analyses about 

which ideas seem most salient and most problematic for him, compare his responses to identical 

questions at different points in time, and discuss variations in argumentation structure with 

respect to the type of equivalency the concepts embody for him. 

 
5.1 Toulmin’s Model of Argumentation 

 
Per the methodology described in Chapter 3, the following were data sources from 

which I looked for arguments that could be attributed to only Abraham regarding the IMT: 

video from whole class and small group discussion from every class day, video and transcript 

from two, ninety-minute individual interviews, and written work in the form of reflections, 

portfolios, exams, and homework. Within the verbal data sources—transcript and video of 

whole class discussion (WCD), small group work (SG), interactions with Abraham after class 
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(AC), and the two interviews (Int 1 and Int 2)—there were 105 different argumentations coded 

with Toulmin schemes. The breakdown of when these occurred is given in Table 5.1. The 

written work was selectively coded as a secondary data source for the purpose of supporting 

results in the ontogenetic analysis section; thus, there is no quantitative summary or breakdown 

of the written argumentations. The entire argumentation log is provided in Appendix 5.1.  

 
Table 5.1. Summary of the days and circumstances in which Abraham provided argumentation 

regarding ideas involved in the IMT. 

 Day 
7 

Day 
9 

Day 
10 

Day 
17 

Day 
18 

Day 
19 

Day 
20 

Day 
24 

Day 
31 Int 1 Int 2 Total 

WCD 1 1  3  1 4  2   12 
SGW   4  1 2 7 1 7   22 
AC  5          5 
Int          22 44 66 

 105 
 

The ontogenetic section discusses Abraham’s mathematical development and shifts in 

ways of reasoning over time pertaining to particular mathematical ideas. In particular, I discuss 

how Abraham reasoned about span and linear independence of column vectors for both square 

and non-square matrices, as well as his prevalent use of reasoning about solutions to the matrix 

equations Ax = 0 and Ax = b. In the present microgenetic section, I focus on ways in which 

Abraham reasoned at various points throughout the semester, focusing on two themes: the 

nature of an argument’s structure, and the nature of equivalence.  

 
5.1.1 Microgenetic Analysis via Toulmin’s Model 

Within this section, I examine the nature of the structure of argumentation, and the 

nature of the equivalence for Abraham. One way to pursue the research question relevant to this 

chapter, how Abraham reasoned about the Invertible Matrix Theorem over time, via a 

microgenetic analysis is through considering the structure of his explanation, as captured by 

Toulmin’s model. Two results of this analysis are: (a) the standard 6-part Toulmin was often 
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insufficient in capturing the complexity of some of Abraham’s arguments (as also noticed in the 

collective chapter); and (b) through close examination of the data and warrants that he provided, 

I found that the nature of equivalence was not consistent across each pair of concept statements. 

Two types of equivalencies grounded in and resulting from an analysis of Abraham are those of 

conceptual equivalence and logical equivalence. The particular results presented here show that, 

at certain moments in the semester, Abraham (a) reasoned about the pair “the column space of A 

is all of Rn” and “the columns of A span all of Rn,” as well as about the pair “the columns of A 

span all of Rn” and “for every b there is a way to write b as a linear combination of the columns 

of A” as conceptually equivalent; and (b) reasoned about the pair “the columns of A span R3” 

and “the system Ax = b has no free variables” as logically equivalent concept statements. 

I first present Abraham’s response to a sorting task from the second interview, which 

occurred about three days after he took the final exam for the course. The interaction between 

Abraham, the interviewer, and the mathematical ideas in the IMT provides a rich source of 

investigation into the various ways Abraham interacted with the word “equivalent,” as well as 

various structures by which he formed his arguments. Investigating the development over time 

of Abraham’s ways of reasoning—how they shifted or remained constant in form or function—

is the topic of the subsequent section of Ontogenetic Analysis via Toulmin’s Model.  

For the sorting task, Abraham was asked to reflect on the Invertible Matrix Theorem. 

After being given a stack of 16 cards, each with a concept statement from the IMT, he was 

asked to sort the cards in different piles based on what concepts for him went together, and 

explain how he made his choices. The choice of words, “which concepts go together,” was 

purposefully vague in order to allow Abraham to choose the criterion by which he grouped 

them. Abraham sorted the concept statements into five different piles, which are recreated in 

Figure 5.1.  

 



  
184 

 

 

Pile 1  Pile 2  Pile 3  Pile 4  Pile 5 
         

A is row 
equivalent 
to the n x n 
identity 
matrix 

 
 

For every b in Rn, 
there exists a 
solution x to Ax = 
b 

 The only solution 
to Ax = 0 is the     
trivial solution 

 There exists 
an n x n 
matrix C 
such that     
CA = I 

 The number 
zero is not 
an 
eigenvalue 
of A 

 

         

The matrix 
A has n 
pivots 

 For every b in Rn, 
there is a way to 
write b as a linear 
combination of 
the columns of A 

 The transformation   
T: Rn  Rn 
defined by T(x) = 
Ax is      one-to-
one 

 There exists 
an n x n 
matrix D 
such that    
AD =I 

 The null 
space of A 
contains 
only the 
zero vector 

 

         

 

   The column space 
of A is all of Rn 

 The columns of A 
are linearly 
independent 

 A is 
invertible 

   

           

   The columns of A 
span all of Rn 

       

           

   The 
transformation   
T: Rn  Rn 
defined by T(x) = 
Ax maps Rn onto 
Rn 

       

           

   The determinant 
of A is not zero 

       

         

Figure 5.1. Abraham’s piles after sorting the 16 concept statements from the IMT into piles of 
cards that “go together.” 

 

 During the next fifteen minutes, Abraham explained his various piles to the interviewer. 

Three of them he explained rather quickly (Piles 1, 3, and 4), whereas his explanations for the 

other two were more involved. Here I briefly present his explanations for Piles 1 and 3; the 

argumentation scheme for Pile 4 is in Appendix 5.1. The interviewer began by asking Abraham 

how he decided to make his various piles.  

Interviewer: So you have, what is that, 1, 2, 3, 4, 5 piles going? So just overall, what were 
your criteria, how did you figure out how to make piles? 

Abraham: I tried to do these ones [circles Pile 3 in the air] to put as to linear independent. 
For me those are together on linear independence. These ones [Pile 1], the n x n 
identity matrix has n pivots, so it's just I always see those ones and I 
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automatically think, if it's row equivalent to that, it has n pivots. And I see those 
ones in my head, so I put those together. 

 
To support his claim that the three cards in Pile 3 went together (see Figure 5.2), Abraham 

provided the data that, “for me, those are together on linear independence.” Regarding Pile 1, 

Abraham stated, “I always see those ones and I automatically think, if it’s row equivalent to 

that, it has n pivots,” and added on, “I see those ones in my head” (see Figure 5.3). As Abraham 

spoke about Pile 1, the “ones” he was referring to were those on the diagonal of the identity 

matrix. Thus, Abraham related the cards “A is row equivalent to the identity matrix” and “A has 

n pivots” based on how the appearance of diagonal ones in the identity made him 

“automatically think” of pivot positions.  

 Interview 2 Q3 Argument 1 [39:22] 
Claim The three cards in Pile 3 were placed together. 
Data For me, those are together on linear independence. 

Figure 5.2. Abraham’s justification of Pile 3. 
 

 Interview 2 Q3 Argument 2 [39:22] 
Claim The three cards in Pile 4 go together 
Data I always see those ones and I automatically think, if it’s row equivalent to that, it 

has n pivots 
Warrant I see those ones in my head. 

Figure 5.3. Abraham’s justification of Pile 1. 
 

The interviewer did not ask Abraham for further explanation of Piles 1 and 3 at that 

moment but rather allowed him to continue his explanation of the other three piles. While 

Abraham’s argumentation regarding Piles 1 and 3 seem somewhat surface-level, his 

explanations of Piles 2 and 5 were more in depth and provide the data through which I introduce 

the notions of conceptual equivalency and logical equivalency. The mathematical concepts of 

linear independence and invertibility (the content involved in Piles 1 and 3) are revisited in the 
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subsequent Ontogenetic Analysis section in order to investigate how his reasoning about those 

concepts shifted over time.  

5.1.1.1 Abraham’s Types of Equivalence. Two statements are equivalent if there 

exists a logical chain of deductions from statement A to statement B and vice versa. This leads 

to the conclusion that if statement A is valid (true) then statement B must be valid (and vice 

versa), as well as if statement B is false then statement A must be false (and vice versa). By the 

very nature of the Invertible Matrix Theorem, which is a collection of equivalent statements for 

an n x n matrix A, then every pair of statements within the IMT must, by definition, be 

equivalent. While this is true from an external standpoint, what is of interest in the present study 

is how people—whether it is the classroom as a collective body or an individual student—

actually reason about the concepts in the IMT and the supposed equivalencies between them. 

Within this chapter that focuses on Abraham, I examine the nature of the ways in which he 

justifies the equivalence between two concept statements in the IMT. For instance, does he 

provide a multi-step chain of logical deductions from one statement to another, does he rely on 

notions of “sameness,” or some mix of both? By focusing on the nature of Abraham’s 

justification for a given equivalence, I gain more insight into how he understands the concepts 

whose equivalence he is justifying. It reveals aspects of his concept image (Tall & Vinner, 

1981) for the various concept statements. By considering such a rich case study at such an in-

depth level, it provides a valuable foundation for continued research into how students may 

utilize more than one notion of equivalence.  

Within this section, I define two ways in which Abraham was reasoning about various 

concept statements in the IMT: as conceptually equivalent and as logically equivalent. I define 

and provide examples of each of these are in their respective sections. 

5.1.1.1.1 Conceptual Equivalence. For the purposes of the present research, I define the 

term conceptual equivalence as the absence of differences in meaning between two or more 
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concept statements. The term conceptual equivalence also appears in the field of translation and 

linguistics, with my definition adapted from a set of guidelines for linguistic validation in 

translation that defined the term as “the absence of differences in the meaning and content 

between the ... source language and the translated version” (Mapi Research Institute, 2002). My 

purpose in utilizing the term in this study is to capture the various ways in which Abraham 

interacted with the notion of equivalence when reasoning about the concepts involved in the 

Invertible Matrix Theorem. While there is no “source language and translated version” per se in 

Abraham’s interactions with the IMT, he was often presented with the task of discussing how 

two concepts are related—this involved considering the language with which each was worded, 

discussing what each meant to him personally, and relating those interpretations to each other.  

Utilizing Toulmin’s Model of Argumentation at a microgenetic level was a useful in 

illuminating instances of conceptual equivalence in Abraham’s reasoning. In many cases, 

Abraham would claim that two or more concepts were equivalent, and within his data or 

warrant there would be an explicit indication that, for him, the concepts were indistinguishable, 

or “the same thing.” Note this is distinct from using concepts as if they are the same thing; 

rather, Abraham indicated in some way that the way in which he understands them is essentially 

“the same.” Second, for Abraham, the justifications for conceptually equivalent ideas tended to 

be less structurally complex than other justifications. This could possibly be attributed to “less 

work” having to be done in order to establish the concept statements as equivalent, or it may be 

that providing justification for “obvious” equivalencies proved difficult for him. The latter can 

also be determined through the use of qualifiers that indicated Abraham’s difficulty in providing 

a mathematically satisfying justification. Further detail about each of these is given within the 

context of the given examples.  

The notion of conceptual equivalent is, of course, subjective, as not each individual will 

find the same statements “absent of differences in meaning.” The present study focused on 



  
188 

 

Abraham and his ways of reasoning about the IMT, and there are multiple occasions during 

which he reasons about two or more ideas as conceptually equivalent. A particularly rich 

instance of this occurred during the second interview, when Abraham explained why he placed 

six different concept statement cards in the same pile when asked to group them according to 

ideas that “go together” for him (see Figure 5.1). After Abraham had discussed each of the other 

piles, the interviewer asked him, “What about the last pile, you have six cards, what was the 

common factor in those six cards?” For organizational reasons, I refer to each of the six cards 

within Abraham’s pile by labeling them as Cards 1-6: 

Card 1:  For every b in Rn, there exists a solution x to Ax = b 
Card 2:  For every b in Rn, there is a way to write b as a linear combination of the 

columns of A 
Card 3:  The column space of A is all of Rn 

Card 4:  The columns of A span all of Rn 

Card 5:  The transformation   T: Rn  Rn defined by T(x) = Ax maps Rn onto Rn 

Card 6:  The determinant of A is not zero 
 
In response to the interviewer’s question, Abraham smiled as he replied, “Span. So I think of all 

of these as span.” His initial response was a collection of partial phrases as he read the cards to 

himself, ending with the statement, “So then for every b, I can get to that. I think of that for a lot 

of them.” Within this ending phrase of “I think of that for a lot of them,” we see hints of the 

notion of conceptual equivalence existing for Abraham between at least some subset of the six 

concepts. The Toulmin scheme for this explanation, labeled “Interview 2 Q3 Argument 6,” is 

given in Figure 5.4.  

 Interview 2 Q3 Argument 6 [39:49]  
Claim The six cards in Pile 2 go together. 
Data I think of all of these as span. 
Warrant So there exists a solution. So for every output vector, I can find. I think of it as 

for every output vector, I can find an input vector. So for every vector in this 
space, I can find a solution. So then for every b, I can get to that. I think of that 
for a lot of them.  

Figure 5.4. Abraham’s initial explanation for why he placed the six different concept statement 
cards in Pile 2 together. 
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Next, without prompting, Abraham explained why each particular card was in the pile. 

He began by relating Card 1 (For every b in Rn, there exists a solution x to Ax = b) with Card 2 

(For every b in Rn, there is a way to write b as a linear combination of the columns of A). He 

stated that the ideas were the “same thing” except that one (Card 1) was more transformation-

oriented, whereas the other (Card 2) was vector-oriented.  

Abraham: This [points to Card 1 and Card 2] is the same thing except we're not...This first 
one [Card 1] is matrix-oriented. This [Card 2] is vector-oriented. So it's really 
saying the same thing but it is saying, there's different, definitely some different 
things going on. I like to put them all together. But this [Card 1] is matrix-
transformation-oriented. And this one [Card 2] is, let's think of the vectors 
within the matrix. So we know that these columns represent the vectors, so then 
if it's a linear combination of the columns, you get to everywhere. This one 
[Card 1] is dealing with a transformation. Can I send, can I find an input vector 
that sends to every output vector? So it's a little different, but they both concern 
spanning a space, whether it's through a transformation or by vectors being 
added together to get there. 

 
To support his claim that he saw the concept statements on these two cards as the same thing, 

Abraham explained each of the cards separately. This is presented in his argumentation 

structure as two linked sub-arguments within the data (see Figure 5.5). A more explicit 

discussion of the use of the expanded Toulmin’s Model to analyze the structure of Abraham’s 

arguments is the subject of the subsequent section. What is noteworthy in the present section, 

however, is the nature of the justification provided by Abraham for the equivalence between 

Cards 1 and 2. While he did say they were “the same,” he also said they were “a little different,” 

and was able to clearly articulate that the distinction was contextual. In the first sub-argument 

within the data, he provided a justification for why Card 2 was vector-oriented (it described “the 

linear combinations of the columns of A,” and the columns can be thought of as vectors). In the 

second sub-argument of the data he explained that, to him, the concept statement on Card 1, 

“For every b in Rn, there exists a solution x to Ax = b” dealt with sending input vectors to output 

vectors. Finally, he provided a warrant, “it’s a little different, but they both concern spanning a 

space,” which connected the data to the main claim. 
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 Abraham, despite his claim that the two concept statements were the same, provided an 

explanation in which he was able to distinguish notable differences between them. Thus, in this 

given argument, Abraham did not treat “for every b in Rn, there exists a solution x to Ax = b” as 

conceptually equivalent to “for every b in Rn, there is a way to write b as a linear combination 

of the columns of A.”  

 

Abraham’s explanation regarding the connection between Cards 3 and 4, however, is 

markedly different. As he discussed how Card 3 (The column space of A is all of Rn) and Card 4 

(The columns of A span all of Rn) were connected for him, there is a change in the way in which 

he discussed their equivalency.  

Abraham: Then this one [reads Card 3], ‘Column space of A is Rn.’ Which is, if all the 
columns of A span all of Rn [points to Card 4]. So this one [points to both Cards 
3 and 4] I don't know how to decipher, really. The column space. Because when 
I think of the column space, I really literally think of the space that the columns 
can get to. And this is talking about the columns of A spanning. So I can't really 

 

 
Data1: if it's a 
linear 
combination of 
the columns, you 
get to everywhere 
 

  

Claim1:  Card 2 is 
vector-oriented 
 

    

  Data: 
Card 1 is 
matrix-oriented. 
Card 2 is 
vector-oriented: 

 Warrant1: The columns of the 
matrix represent the vectors 

   

Claim: This 
[Card 1 and 
Card 2] are 
the same 
thing.  
 

      

  Data2: Can I 
send, can I find an 
input vector that 
sends to every 
output vector?  
 

 

Claim2: Card 1 is 
dealing with a 
transformation 
 

 

  
 

     
  

Warrant: It’s a little different, but they both concern spanning a space, whether 
it’s through a transformation or by vectors being added together to get there.  

  

Figure 5.5. Interview 2, Q3, Argument 7: Abraham explains how, for him, the concept 
statement on Card 1 is the same thing as the one on Card 2.  
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discern the difference of these ones [points to Cards 3 and 4]. Because like I 
said, this is to me where the columns can get to [points to Card 4] in this 
fashion. And this one [points to Card 3] is the space that the columns can get to. 
Which for me is like the same thing. I'm sure others might see that as two 
different totally. 

 
In this argument (see Figure 5.6), Abraham claimed that he was unable to “really 

discern the difference” between “the column space of A is all of Rn” and “the columns of A span 

all of Rn.” He also used the words, “can’t decipher,” but he did not verbally complete that 

thought. As the data for his claim, Abraham explained how he thought of the concept statement 

on each card individually. Finally, in his warrant, he summarized the way he understood each 

concept statement (his data) and used the phrase “where the columns can get to” in both 

explanations. He concluded by connecting the interpretations with the phrase, “Which for me is 

like the same thing.” This echoes a statement Abraham made on Day 31 in class, when he told 

the members of his small group, “To me, this is just what I think, the column space of A is all of 

Rn, and the column space of A spans all of Rn, to me are exactly the same. Like those two to me 

are the most equivalent, the same” (see Day 31 SG Arg 5 in Appendix 5.1). 

 

How does Toulmin’s Model aid in illuminating conceptual equivalence within this argument? 

Again, within the data or warrant (here, the warrant), Abraham indicated that, for him, there was 

 Data 
(linked): Data1: when I think of the column 

space [Card 3], I really literally think of 
the space that the columns can get to 

   

       

 Data2: And this [Card 4] is talking 
about the columns of A spanning 

   

Claim: I can't 
really discern the 
difference of these 
ones [concept 
statements on 
Cards 3 and 4] 
 

     
  

Warrant: Because like I said, this [Card 3] is to me where the columns can get 
to in this fashion. And this one [Card 4] is the space that the columns can get to. 
Which for me is like the same thing. 

  

Figure 5.6. Interview 2, Q3, Argument 8: Abraham explains how he cannot discern 
between the concept statements on Card 3 and Card 4. 
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no difference in meaning between the two statements. Interesting to this argument, even in the 

claim there is an indication of conceptual equivalence because his entire explanation is given to 

support his claim that he cannot “really discern the difference” between the concept statements.   

There is evidence of the six concept statements within this pile being conceptually 

equivalent for Abraham at other points during the semester as well. I conclude this section by 

reporting on one particularly interesting example, which occurred during the first individual 

interview. In a series of True/False questions, Abraham was asked to read the stem, “If A is a 3 

x 3 matrix whose columns span R3,” and decide if a series of subsequent statements were true or 

false based on assuming the stem. One of the prompts asked him to consider, “any vector b in 

R3 can be written as a linear combination of the columns of A” in conjunction with the stem. In 

other words, he was answering whether or not “Card 4 implies Card 1” (to use the language 

used alongside the previous arguments from Interview 2) was a true statement or not, particular 

to R3 rather than any Rn. In Figure 5.7, the Toulmin scheme for this explanation is given.  

This explanation is noteworthy because he states that when he reads the statement any 

vector b in R3 can be written as a linear combination of the columns of A,” he “automatically 

think[s] of the definition of span” (the data in his argument). Furthermore, in his warrant, he 

stated, “If I was linear algebra, if I created it, that would be my definition of span.” What 

creative language! In his warrant—which served to explain why the data is connected to the 

claim—Abraham creatively emphasized that he saw no difference between the two concept 

statements. He concluded by qualifying his explanation, stating he might be wrong but what he 

expressed was how he personally thought of the connection between the two concept 

statements. This qualifier is further evidence that Abraham saw the notions of Card 1 and Card 

4 as conceptually equivalent. Furthermore, utilizing Toulmin’s Model as an analytical tool 

helped to illuminate this equivalence. First, both his data and warrant served to confirm that, for 

Abraham, there was an absence of differences in meaning between the two written statements, 
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which satisfies the definition of conceptually equivalent provided at the start of this subsection. 

Second, his qualifier indicated that he was aware that some other person may see those ideas 

differently.  

 Interview 1 Q6b Argument 1 [59:42]  
Claim ‘If A is a 3x3 matrix whose columns span R3, then any vector b in R3 can be 

written as a linear combination of the columns of A’ is a true statement. 
Data When I read that, 'any vector b in R3 can be written as a linear combination of 

the columns of A,' I automatically think of the definition of span. 
Warrant And I think of the definition of span as any vector b being able to be written as a 

linear combination of the columns of A. If I was linear algebra, if I created it, 
that would be my definition of span. 

Qualifier I don’t know, I might be wrong, but that’s what I, what I think of, you know! 

Figure 5.7. Int 1 Q6b Arg 1: Abraham explains why “if A is a 3x3 matrix whose columns span 
R3, then any vector b in R3 can be written as a linear combination of the columns of A” is a true 

statement. 
 

In conclusion, within the data presented here, we find evidence that the pair of concept 

statements “The column space of A is all of Rn” and “The columns of A span Rn” and “For 

every b in Rn, there is a way to write b as a linear combination of the columns of A” and “The 

columns of A span Rn” were conceptually equivalent for Abraham. The majority of the data 

presented came from Interview 2, when Abraham explained a pile of six cards all related to 

span for him. Within those arguments, he used the phrase, “can get to” or “get everywhere” six 

different times. While this is not directly related to the notion of conceptual equivalency, it is 

noteworthy with respect to Abraham’s prevalent concept images of span, as well as the 

metaphorical saliency of the Magic Carpet Ride problem. Focusing on the “get everywhere” 

phrasing that occurred here, as well as other times during the semester, occurs in Ontogenetic 

Analysis via Adjacency Matrices section.  

Justifications that Abraham provided concerning other pairs of concept statements from 

the IMT indicated that, for him, those pairs did not function as conceptually equivalent. 

Abraham, a relatively sophisticated mathematics student, knew that two given concept 
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statements were in fact equivalent (if, for no other reason, because of their inclusion in the 

IMT), but he sometimes had to “work harder” to justify the equivalence, compared to his ways 

of reasoning for conceptually equivalent statements. The second category of ways of reasoning 

about equivalence that I highlight is referred to as logical equivalence.  

5.1.1.1.2 Logical equivalence. For the purpose of the present research, I define logical 

equivalence as the existence of logical deductions between two or more concept statements. As 

was true for conceptual equivalence, this categorization is unique to each individual and the 

ways in which he or she structures a justification for the equivalence of two or more concepts. 

My purpose in utilizing the term logical equivalence in this study is towards the end of 

capturing various ways in which Abraham interacted with the notion of equivalence when 

reasoning about the concepts involved in the IMT.  

Utilizing Toulmin’s Model of Argumentation lends both specificity and an operational 

ability to this definition of logical equivalence. In Abraham’s argumentation, I say that two 

concepts statements are logically equivalent for Abraham if, for a given claim of the form 

“concept statement A is equivalent to concept statement B,” his data or warrant involved at least 

one other concept statement via logical deductions. As ubiquitous as this version of justification 

may seem, consider the examples of conceptual equivalence from the previous section and the 

absence of logical deductions involving a third concept statement. For Abraham, it was as if the 

conceptually equivalent ideas, loosely speaking, they were “defined” in nearly indistinguishable 

ways. To clarify, if the concept statements are airports, then logically equivalent concept 

statements, for Abraham, would be if there existed no “direct flight” between the two airports, 

but rather relied on at least one layover to arrive from the originating to the target destination. 

For this section I present two examples. In both examples, Abraham only explained one 

direction of an implication (i.e., he only explains either ‘p implies q’ or ‘q implies p,’ although 

both are required to justify equivalence). Furthermore, these examples were chosen because 
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they also help to exemplify the results in the subsequent section regarding for the expanded 

Toulmin’s structure in Abraham’s argumentation, and other examples in that section also 

complement the lend credence to this notion of logical equivalence.  

 The two examples come from the first interview, from the same set of true/false 

questions that was encountered in the previous section (see Figure 5.7). Here, consider 

Abraham’s response to the prompt: “True or False: If A is a 3x3 matrix whose columns span R3, 

then the system Ax = b has no free variables.” Abraham began by referencing a result he 

discovered in homework, namely that “# of free variables = # of unknowns - # pivots” (see Int 1 

Q6e Arg 1 in Appendix 5.1). Abraham then lamented, “Now that's something I know, but why?” 

Abraham spent the next seven minutes working through why the stated implication in the 

True/False question was true, unsatisfied in using the “fact” as his sole justification. Here, I pick 

up on the fourth and fifth argumentation schemes from Abraham’s work on that interview 

question, the first three of which involved him considering the interaction between free 

variables, infinitely many solutions, and pivots (see Int 1 Q63 Arguments 1-3 in Appendix 5.1).  

Abraham:  Basically I just, when I think of it as, if there is a free variable, then it can't have 
a pivot position; if it doesn't have a pivot position, it doesn't span. But we're 
assuming it does span, so the fact that it has no free variables, or the fact that it 
doesn’t have a pivot position and doesn't span, then it's counter-example. I 
guess that would be a counter-example, if it's free. Let's assume, if I wrote out a 
proof, if it's free, then there's infinitely many solutions; if there's infinitely 
many solutions, then the bottom row is this.  If the bottom row is this, then you 
know it only has two pivot positions. And if it only has two pivot positions, you 
keep going with proof, then it doesn't span all of R3.  Then you write a symbol 
like this and you go, 'contradiction,' and your proof is done. Something like 
that. 

 
This monologue is comprised of two arguments, the second of which begins with the phrase, 

“let’s assume, if I wrote out a proof.” In the first argument (its Toulmin scheme is given in 

Figure 5. 8), Abraham presented a sort of “proof by contrapositive” that if a system did have 

free variables, then the three columns could not span R3. Within his justification, he stated two 
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explicit deductions: “if there is a free variable, then it can't have a pivot position;” and, “if it 

doesn't have a pivot position, it doesn't span.”  

 
 

  

Data1:  If there is a 
free variable  

Claim1:  Then it can’t 
have a pivot position  

 

   
 

 
Data2=Claim1:  If it 
doesn’t have a pivot 
position 

 
Claim2:  It doesn’t 
span. 

Data: 

  

 
 

 

Claim: If A is a 
3x3 matrix 
whose columns 
span R3, then 
the system Ax = 
b has no free 
variables.” 
 

 

Warrant: The fact that it doesn’t have a pivot position and doesn’t span, that’s a 
counterexample 

 

  
 Backing: We’re assuming it does span.  
 

Figure 5.8. Example of logical equivalence, Int 1 Q6e Arg 4: Abraham explains why 
“if the columns of a 3x3 matrix A span R3,” then “there are no free variables.” 

 

While Abraham’s first explanation seemed deliberate and thoughtful, during the 

subsequent one, which began, “let’s assume, if I wrote out a proof,” he spoke quickly and 

confidently, summarizing the major points of his four previous argumentation schemes. This 

argument, diagrammed in Figure 5.9, seemed to function like the culmination of the four 

previous ways of reasoning about how the concept statements regarding span and free variables 

were connected. Within his justification, the data was comprised of a sequence of four 

deductive statements. Abbreviating the chain of reasoning for this justification yields, “free 

variables  infinitely many solutions  less than n pivots  A does not span.” Abraham 

concluded with the statement, “But that would be a contradiction to what you're assuming in the 

very first sentence, so you write a symbol like this and you go, 'contradiction,' and your proof is 

done.” 
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Data1: if it's free 
 

Claim1: then there's 
infinitely many solutions  

 

   
 

 
Data2=Claim1: if there's 
infinitely many solutions,  

Claim2: then the bottom 
row is this [0 0 0 | 0]. 

   

Data3=Claim2: If the 
bottom row is this, 

 Claim3: then you know it 
only has 2 pivot 
positions. 

Claim: If A is a 
3x3 matrix 
whose columns 
span R3, then 
the system Ax = 
b has no free 
variables.” 
 
 
 
 
 

 
   

 

Data4=Claim3: And if it 
only has 2 pivot 
positions, you keep going 
with proof, 

 Claim4: then it doesn't 
span all of R3.  

Data: 

 

 

 

 

 

 

Warrant: But that would be a contradiction to what you're assuming in the very first 
sentence, so you write a symbol like this and you go, 'contradiction,' and your proof is done. 

 

 

Figure 5.9. Example of logical equivalence, Int 1 Q6e Arg 5: Abraham explains why if 
the columns of a 3x3 matrix A span R3, then there are no free variables. 

 

The two arguments (Figures 5.8 and 5.9) that exemplify logical equivalence 

demonstrate that Abraham was able to provide an explanation as to why, for a 3x3 matrix A 

whose columns span R3, any related system of equations would have no free variables. His 

justifications linked those two concept statements through a chain of logical deductions that 

involved more than one other concept statement from the IMT, and this was illuminated through 

Toulmin analysis via the use of these additional concept statements within the data or warrant. 

Finally, one may notice that the structure of the Toulmin scheme for both of the arguments is a 

Sequential structure, which was one of the expanded Toulmin schemes introduced in Chapter 4. 

While this coincidence is not surprising per se, it is not required. Nor is it repetitive to note that 

a student, through the Sequential structure of his justification, related two concepts together via 

a notion of logical equivalence. The former emphasis the structure of the argumentation, 

whereas the latter focuses on the mathematical content. To that end I now turn. 
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5.1.1.2 Expanded Toulmin Structures. In Chapter 4, I discussed the need to expand 

the Toulmin’s model beyond the 6-part scheme in order to adequately and sufficiently capture 

the structure of the argumentation being presented during whole class discussion. Instances of 

the necessity of the expanded structures (embedded, linked, or sequential) also occurred when 

analyzing how Abraham reasoned about the IMT throughout the semester. Two of the twelve 

arguments he presented in whole class discussion were best captured with the expanded 

structure (Arg 20.16 WCD and Arg 20.26 WCD), as well as three of his 22 arguments from 

small group work (Day 20 SG Arg 7, Day 24 SG Arg 1, and Day 31 SG Arg 7). Finally, 21 of 

the 58 arguments from the two interviews were best captured with one of the expanded 

structures. One possible explanation for this distinction could be the nature of an individual 

interview: one student is given undivided attention for over ninety minutes and is asked to share 

his ways of reasoning. This is different than in, say, small group discussion, during which 

Abraham spoke so interactively with his group members that it was rare to have him speak 

without interruption for a long enough period of time (i.e., to be able to contribute an entire 

argument to only him) that the resulting argument necessitated the expanded Toulmin’s model.  

In this section I present two examples each of the Linked and the Sequential structures. 

I do not discuss the other two types, Embedded and Proof by Cases, in the present section. The 

Proof by Cases structure, in fact, did not surface as useful when analyzing Abraham’s 

arguments. The Embedded structure, which I defined as a Toulmin scheme within which one or 

more of the data, warrant, or backing is itself composed of a Toulmin scheme, for the sake of 

brevity, does not gets its own treatment. Recall that the Linked and Sequential structures are 

specific versions of the Embedded structure, so by discussing the former two, the latter is 

evidenced as well. Finally, although the previous section on conceptual and logical 

equivalencies discussed arguments for which each of the expanded Toulmin structures had been 

utilized, the structures were not explicitly discussed, nor were they the focus point of those 
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analyses; whereas previously the analysis focused on various instantiations of “equivalent,” here 

the analysis focuses on the various structures of argumentation within which equivalency was 

discussed. 

5.1.1.2.1 Linked Structure. Recall, from Chapter 4, I define a linked structure as a 

Toulmin scheme within which the data and/or warrant for the claim are composed of more than 

one embedded sub-argument that are linked by words such as “and” or “also.” The first example 

of the Linked structure within Abraham’s argumentation comes from small group work on Day 

20, when the class investigated one-to-one and onto and how they related to other concepts from 

the semester, such as linear independence and span. During whole class discussion, Abraham 

and Mitchell had commented on various circumstances in which linear transformations were or 

were not one-to-one, and they mentioned linear independence. The instructor focused the 

classroom discussion around this suggestion.  

Instructor:  What in the world does linear dependency have to do with being one-to-one or 
not one-to-one? So I'll say that again, he said—actually, Abraham, can you say 
it, what did you say about connecting those two ideas? 

Abraham: I just said that if it's one-to-one, the columns of A have to be linear independent. 
... 

Instructor: So take a minute in your groups, this is not a trivial thing, so take a minute to 
know why linear independence even has to do even has to do with being one-
to-one, please. 

 
Within his small group, Abraham shared how he saw the two concepts as related.  

Abraham: So T(x) = 0 to have only the trivial solution, right? And then because, one-to-
one is unique solution or none at all, so it would have to, T(x) = b, I wrote it 
down, it would have to have unique solution or not at all. So if you simplify it 
down to T(x) = 0, then we can see T of 0,0,0 must have the unique solution. 
Because it's not possible for it to have none at all. It has to have at least one, 
because it's 0,0,0.  

 
First, Abraham stated the definition of linear independence (Data 1). He also provided, 

in Data 2, the definition of one-to-one by stating, “one-to-one is unique solution or none at all.” 

Based on Data 2, he claimed that, in order for T to be one-to-one, the specific equation T(x) = b 

would have to have a unique solution or none at all. His warrant started with, “So” (indicating 
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that he was basing his conclusion on both Data 1 and the Data 2-Claim 2 pair), and he 

concluded that T(x) = 0 must have x = 0 as its unique solution. Here his data was comprised of 

the definitions of both linear independence and one-to-one. These two subparts of the data were 

not dependent on each other, yet both were necessary in Abraham’s warrant in order to justify 

his main claim. It was through the warrant that Abraham linked the two data and stated why 

they were relevant to his main claim.  

  

 Data1: [Per the definition of linear 
independence], T(x)=0 has to have only 
the trivial solution 

 

 

 

 
 

Claim: If a 
transformation is 
1-1, the columns 
vectors are 
linearly 
independent.  Data2: one-

to-one is 
unique 
solution or 
none at all 

 

Claim2: T(x) = b, I 
wrote it down, it 
would have to have 
unique solution or 
not at all 

Data 
(linked): 

 

 

 

 
   

 Warrant: So if you simplify it down to T(x) = 0, then we can see T of 
0,0,0 must have the unique solution. Because it's not possible for it to 
have none at all. It has to have at least one, because it's 0,0,0.  

 

   

Figure 5.10. Example of the Linked Structure, Day 20 SG Arg 7: Abraham 
explains how linear independence and 1-1 are connected. 

 

  

 Data1: Definition of 1-1 is 
for every b there’s at most 
one x such that Ax = b. 

 

 

 

 

Claim: One-to-one and onto 
together is “for every b there is 
exactly one solution x such 
that Ax = b.” 

 Data2: Definition of onto is 
for every b there’s at least 
one x such that Ax = b. 

Data 
(linked): 

 

 

 

 
  

 Warrant: There’s at least one and there’s at most one, then 
there’s exactly one. 

  

 

Figure 5.11. Example of the Linked Structure, Int 1 Q3b Arg 1a: Abraham explains 
how ‘1-1 and onto’ together imply the existence of a unique solution. 
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 The other example of the linked structure comes from Abraham’s second interview. 

After he had explained his five piles of concept statements from the IMT that “went together” 

(see Figure 5.1), the interviewer asked him: “I was wondering if you can pull off [to the side] 

‘one-to-one,’ ‘onto’ and ‘A is invertible.’ And can you talk about, do you have any way to 

connect these three ideas together?” His initial response is given in Figure 5.11 (see Int 2 Q3b 

Arguments 1-9 in Appendix 5.1 for the entirety of his response to the interviewer’s question). 

He began connecting the three cards by discussing the implication for transformations 

that are both one-to-one and onto, and he concluded that, in that case, for every b there would 

be exactly one solution x such that Ax = b. Within his data, he referenced both the definition of 

one-to-one and the definition of onto. The warrant brought together why, given both aspects of 

the data considered together, they had anything to do with the claim. Abraham argued for the 

claim twice and justified it in two slightly different ways. The first data (see Figure 5.11) linked 

the sub-data of “at most one” and “at least one” from the definitions of onto and one-to-one to 

conclude that any function with both properties must have “exactly one” solution. In the second 

argument, the data linked the subdata of “one or more” and “zero or one” to conclude that the 

intersection of those two “sets” is exactly one solution.  

 

 Data1: ‘At most one’ [from 
the definition of one-to-one] 
is maybe 0 or 1 

 

 

 

 

Claim: One-to-one and onto together is 
“for every b there is exactly one solution 
x such that Ax = b.” 

 Data2: 'At least' [from the 
definition of onto] is really... 
at least 1, 1 or more 

Data 
(linked): 

 

 

 

 
  

Warrant: So then the intersection of 1 or more...is just one  
 

 

Figure 5.12. Example of the Linked Structure, Int 1 Q3b Arg 1b: Abraham explains how ‘1-
1 and onto’ together imply the existence of a unique solution. 
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 5.1.1.2.2 Sequential Structure. Recall from Chapter 4 that I define a sequential 

structure as a Toulmin scheme within which the data for a specific claim contains an embedded 

string of data-claim pairs, such that claim Ck is data Dk+1 for the next claim Ck+1. The first 

example of Abraham’s argumentation being best captured via the Sequential structure is 

Argument 5 from Interview 1, Question 6e. This argument was presented in the previous section 

as an example of logical equivalence (see Figure 5.9, repeated here as Figure 5.13). In this 

argument, Abraham reasoned that if a 3x3 matrix has columns that span R3, then Ax = b has no 

free variables through a chain of logical deductions that included reasoning about the concept 

statements regarding infinitely many solutions, a row of zeroes in the RREF(A), and pivots. 

This same argument is considered here because of how well the Sequential structure of an 

expanded Toulmin scheme captured the essence of the argument’s composition.  

 
 

  

Data1: if it's free 

 

Claim1: then there's 
infinitely many 
solutions  

 

   
 

 
Data2=Claim1: if 
there's infinitely many 
solutions, 

 
Claim2: then the 
bottom row is this [0 0 
0 | 0]. 

   
Data3=Claim2: If the 
bottom row is this, 

 Claim3: then you know 
it only has 2 pivot 
positions. 

Claim: If A is a 
3x3 matrix whose 
columns span R3, 
then the system 
Ax = b has no 
free variables.” 
 
 
 
 
 

 

   

 

Data4=Claim3: And if 
it only has 2 pivot 
positions, you keep 
going with proof, 

 Claim4: then it doesn't 
span all of R3.  

Data: 

 

 

 

 

 

 
Warrant: But that would be a contradiction to what you're assuming 
in the very first sentence, so you write a symbol like this and you go, 
'contradiction,' and your proof is done. 

 

 

Figure 5.13. Example of Sequential Structure, Int 1 Q6e Arg 5: Abraham explains why if 
the columns of a 3x3 matrix A span R3, then there are no free variables. 
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Given the definition of a sequential structure, it is hard to imagine a cleaner example 

than that in Figure 5.13. As Abraham reflected on and summarized his immediately previous 

ways of reasoning about how span was connected to free variables, he very succinctly created a 

chain of data-claim pairs, starting with the data “assume there are free variables,” in which each 

claim functioned as the data for the next data-claim pair. His warrant brought the proof to a 

close by explaining how the final sub-claim within the data contradicted the assumption in the 

original proof, thus leading to the conclusion that the system did not have free variables. 

The last example of the Sequential structure comes from the second interview, as 

Abraham explained why he placed the cards “the number zero is not an eigenvalue of A” and 

“the null space of A contains only the zero vector” into a pile together (this was part of the card 

sorting task previously described, see Figure 5.1). The majority of his rather complex 

explanation is provided below.  

Abraham: ... I'm thinking of an eigenvalue’s definition something's, those are nonzero, x 
such that Ax = λx. And so if the number zero, I always like to think, this [points 
to the ‘zero is not an eigenvalue of A’ card] says ‘not.’ But I always like to 
think of if it is [meaning ‘zero is an eigenvalue of A’]. So then if it is, if λ = 0, 
then Ax = 0. And then by the definition of an eigenvector, we can find a 
nonzero solution. Because if it's zero, it's not very interesting...But by the 
definition, we're trying to find a non-zero vector such that this eigenvalue 
stretches it. So then if λ = 0, then we can find a non-, this is saying by the 
definition, we can find a nonzero solution, such that Ax = 0...Therefore, I like 
that symbol [draws the three dots often used for “therefore”], if we can find a 
nonzero solution, therefore then it's, I'm going out of context. But this is, it's 
linear dependent, by definition, because it's a nontrivial or the only solutions 
aren’t the trivial solution. There's a nonzero solution, so it's linear dependent if 
it's [the eigenvalue] zero. And how does this relate to null space for me? 
Because this is saying the number zero. Then if. Then I think of this because if 
there's a nonzero solution here, then the null space doesn't contain only the zero 
vector. So I think I think of them together, if I put a negation in front of them. 
Because then if the number zero is [an] eigenvalue, then the null space of A 
does not contain only the zero vector, the null space contains, the null space is 
part of the domain, so it contains all solutions to Ax= 0. 
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Data:    

Data1: If 0 is an 
eigenvalue  

Claim1: Ax = 0 
 

   
 Data2=Claim1: Ax = 0 

 
Claim2: We can find a 
nonzero solution 

 

 
  

 
 Warrant2: By definition 

of an eigenvector 
  

 

Claim: The 2 
cards in Pile 5 
go together 

 

   

  

 Data3=Claim2 There exists 
a nonzero solution    

Claim3: That would 
make it linearly 
dependent 

  
  

   
 Warrant3: By definition 

of linear dependence  
   

    

 

 Data4=Claim2: If there’s a 
nonzero solution here        
[Ax = 0] 

  
Claim4: The null space 
doesn’t contain only the 0 
vector 

  
Warrant4: The null space is 
part of the domain, so it 
contains all the solutions to 
Ax = 0 

 

  

  
 

 

 

Warrant: I think of them together if I put a negation in front of them 
  
 Backing (implicit): if the negation of two statements ‘go together,’ the two 

statements ‘go together.’ 
 

 

Figure 5.14. Example of the Sequential Structure, Int 2 Q3 Arg 3: Abraham explains why “if 
0 is an eigenvalue, then the null space does not contain only the zero vector.” 

 

When asked to connect the cards, “zero is not an eigenvalue of A” and “the null space 

of A is only the zero vector,” Abraham first stated he like to think of “zero is not an eigenvalue 

of A” instead. The remainder of his argument regarded him explaining what zero as an 

eigenvalue meant to him (the existence of nontrivial solutions to Ax = 0) and how that implies 

the null space of A was not only the zero vector. This main data for this argument consisted of 
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four embedded data-claim pairs, for the later three of which he included a warrant. The sub-

arguments, except for the first one, each used a claim from a previous argument explicitly as the 

data for a subsequent argument. Data 4, however, was identical to Claim 2 rather than Claim 3; 

Claim 3, which he never mentioned again, concluded that the columns of A were also linearly 

dependent. In sum, Abraham’s argument analyzed in Figure 5.14 is a paradigmatic, albeit 

complex, example that demonstrated how the expanded Toulmin’s model of argumentation is a 

worthwhile adaptation of the original 6-part Toulmin scheme when aiming to capture the 

complexity of mathematical justification. 

 5.1.1.3 Conclusion. Within this section of microgenetic analysis through the use of 

Toulmin’s Model, I presented results concerning both content and structure for various discrete 

arguments from Abraham’s ways of reasoning about the IMT throughout the semester. I first 

presented the distinctions of conceptual equivalence and logical equivalence as distinctions for 

Abraham’s interaction with the mathematical content and the notion of equivalence. I then 

presented examples of how the expanded Toulmin scheme was necessary in order to capture the 

complex structure of Abraham’s arguments. The expanded structures presented—embedded, 

linked, and sequential—were consistent with how they were used to capture argumentation at 

the collective level in Chapter 4.  

 

5.1.2 Ontogenetic Analysis via Toulmin’s Model 
 

“Linear algebra connects with so many different points. I mean, just every concept is related 
somehow to the other. It's kind of interesting” 

—Abraham, Interview 1 
 

As both a teacher and researcher of linear algebra, I appreciate Abraham’s sentiment 

and see both strengths and limitations in this statement. Indeed, linear algebra, as indicated by 

Abraham, is an interesting content area because of the many connections between ideas. As a 
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researcher, it is a fascinating content area within which to investigate both learning and 

teaching. It is fascinating to investigate the ways of reasoning, logical structure of 

argumentation, and metaphorical problem settings that resonate with students—both at the 

collective and the individual level. On the other hand, however, Abraham’s statement raises 

pragmatic limitations for research. There are 16 statements within what became formalized as 

the IMT for this particular class, producing numerous paths through which one could investigate 

how Abraham reasoned about the concepts within the IMT. For instance, one could take a pair 

of concepts statements and trace how Abraham discussed those in tandem; one could choose 

one concept and follow what other concept statements it is discussed in conjunction with over 

time; one could look for instances of the same claim being made multiple times at different 

points in time and compare the arguments that support them; and many more. Such complexity 

and intricacy, however captivating, requires narrowing. As such, this section of the present 

chapter carves out a portion of the possible results with the aim of telling a rich story of the 

ways in which Abraham reasoned about the IMT over time that highlights some of the 

aforementioned possibilities.  

In particular, I focus on the development of Abraham’s ways of reasoning about span 

and linear independence in conjunction with each other, as well as his prevalent use of 

reasoning about solutions to the matrix equations Ax = 0 and Ax = b to make and support 

claims. Within the first broad strand of taking a pair of ideas and tracing how they are discussed 

in tandem, I present the analysis in two sections: (a) shifts in composition of arguments and 

placement of concepts within the arguments; and (b) comparison of arguments related to 

identical prompts at two different points in time during the semester. Regarding the second, I 

highlight his prevalence of reasoning about solutions by reporting on noteworthy examples from 

throughout the second half of the semester.  
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 Recall that ontogenesis is defined as the shifts in patterns of thinking over the 

development of individuals and “is marked both by continuity in the individual’s ways of 

understanding the experienced world and discontinuity as the individual structures new systems 

of understanding out of prior ones” (Saxe et al, 2009, p. 208). Furthermore, Roth and Ercikan 

(1996) contended that within genetic explanations, “a certain fact is not derived from antecedent 

conditions and laws (deduction) or observations and antecedents (induction) but rather is shown 

to be the endpoint of a longer development, the individual stages (phases) of which can be 

followed” (p. 19). My investigation into Abraham’s ways of reasoning about the IMT 

throughout the semester is a compatible investigation. Considering the shifts in Abraham’s 

reasoning as they occur throughout the semester is an integral part of genetic analysis; simply 

presenting conclusions in a manner such as, “Abraham used to think X but now he thinks Y,” 

then, would be disingenuous with respect to the spirit of the aforementioned theoretical 

influences. Finally, even within the present ontogenetic section are aspects of microgenetic 

analyses because each data point within an ontogenetic progression constitutes a microgenetic 

construction (Saxe et al, 2009). Thus, although the present results focus on Abraham’s ways of 

reasoning over time—an ontogenetic analysis which cannot be gained from discrete 

microgenetic analyses alone—additional information regarding the microgenetic development is 

necessarily gained within this section as well.  

5.1.2.1 The development of ways of reasoning about span and linear independence 

in conjunction with each other. There are multiple reasons to pick this particular thread as one 

on which to focus. First, span and linear independence were two of the first ideas formalized 

within this class, so I have a wider window from which to draw data to analyze for shifts in 

ways of reasoning. Furthermore, many questions within a variety of data sources—interviews, 

written work, class conversation, etc.—specifically asked Abraham to discuss those two 

concepts in conjunction with each other. A third reason to follow this path is because of the 
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classroom mathematics practices documented in Chapter 4. Recall that CMP 1 was entitled, 

“Reasoning and span and linear independence as equivalent ideas for square matrices.” To best 

set up a comparison for future research, it is useful to consider Abraham’s individual trajectory 

along a path with those same concepts in mind. 

From the 105 Toulmin schemes created for Abraham’s verbal argumentation, over 30 

of them explicitly mention both span and linear independence or dependence within the same 

argument. Some of these occurred within Abraham’s response to the same question, so 

removing for “repeats,” he discussed span and linear independence in conjunction with each 

other in 16 different instances. As already noted, span and linear independence were two of the 

first ideas formalized within this class, so it is not surprising to see their density and depth. This 

is only one reason to focus on span and linear independence. A second reason is to demonstrate 

the depth of argumentation from which to draw upon as I track the ways in which Abraham 

reasoned about these ideas in conjunction with each other over time.  

5.1.2.1.1 Descriptive Overview. I first present a short chronological overview of 

Abraham’s reasoning about span and linear independence in conjunction with each other 

throughout the semester. I do so in order to allow the reader to establish some familiarity with 

the “terrain” of Abraham’s journey regarding these two ideas prior to analysis of this terrain. 

Substantive commentary on the data excerpts is not provided in the descriptive overview. In the 

section that follows the overview, however, I analysis in depth a selection of results from within 

the description. The Toulmin schemes that explicitly discuss span and linear independence in 

conjunction with each other are notated “(sp/LI)” in Appendix 5.1. 

First, consider two occurrences from Day 7 of the semester. By that day, the class had 

developed the definitions of span and linear independence and was transitioning away from 

problems only couched in R2. The day’s reflection asked them to consider a particular 
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augmented matrix in R3 and its row-reduced echelon form in order to answer questions about 

span. Abraham’s response is given in Figure 5.15. 

 
Figure 5.15. Abraham’s written response to the reflection on Day 7.  

 

After class, Justin and Abraham stayed after class (on their own accord) to discuss a 

few mathematical questions with the instructor. Abraham’s questions focused on trying to 

establish a way to determine the span of a set of vectors, as well as on trying to think of span 

and linear independence in a general way for the same set of vectors.  

Abraham:   I have a different question. My thing is like when I can't figure out this span 
stuff, because when say there's just three vectors in three dimensions, I don't 
know what I'm supposed to do to figure out the span of it. If it's, I'm assuming 
there's no multiples in it. Is it always going to span R3? I'm assuming. 

Instructor: So the no-multiples thing is one, and then the other is you can write one as a 
combination of the other two.  

Abraham: Right, you can write one, when it's a combo, it's linear dependent, right?  
Instructor:   Right, so then if you have three independent vectors in R3, then the span is all 

of R3. 
Abraham:   Right, okay, so if it's linearly independent, does it always span, or is there?  
Instructor:   If you have as many vectors, yes. 
Abraham:   I was trying to get a generalization going, but it wasn't happening.  
Instructor:   So let's just say we have these two [writes <1, 2, 0>, <2, 4, 1>], those are 

linearly independent. But I only have two, so I don't have enough.  
Abraham:   Oh, there's a case, when there's less entries than vectors, less vectors.   
Instructor:   But if these were all independent, yeah.   
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Abraham:   Then if they're all independent, then they span all of. See, that's what I was 
thinking! I don't know why...Maybe it's just like in two dimensions, then. 
Because when they're linearly independent in two dimensions then it spans all 
of R2.   

Justin:   Then you have the same number of vectors as dimensions.  
Abraham:   Yeah, so that case generalizes all the way to what, same entries same 

dimensions.  
Instructor:   Yeah, and this Gaussian elimination that we have will help us actually prove 

that...So the reflection that's a little hard right now, we will be doing next 
relates to how can I get augmented matrix and see what the span is, just off the 
top of my head. That's what we do next. 

Abraham:   So then if it's linearly dependent, does that mean, is the opposite true, that it can 
never span? 

Instructor:   It depends on how many vectors you have. 
Abraham:   Because it could span, right, if it’s linear dependent somehow, it could still span 

R2 even though it's. 
Instructor:   Like if you have more vectors than you need, if I throw some away, you still, 

you don't need them, but they're there. 
Abraham:   Like way more. Got you. 
Justin:   But if you have three vectors in R3 that are linearly dependent, it doesn't span of 

R3. 
Abraham:   Yeah, it can't, because it would make a plane, because two would be a linear 

combination, and then the other one would be able to go back, so that whole 
thing would create a plane.  

 
On Day 9 (two class days later), the class had dedicated most of the class to investigate 

how pivots in the row-reduced echelon form of augmented matrices provide information 

regarding both linear independence and span. Abraham and Justin again stayed after class and 

approached the instructor to discuss issues from class. The below transcript begins with them 

examining matrices A and B. The exchange is significant because it was the first instance in 

which anyone from class expressed the beginnings of a generalization concerning both linear 

independence and span for n x n matrices.   
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Abraham:  So that one [matrix A] doesn’t span.  
Instructor:  Well what does it span then? 
Justin:   It spans a two-dimensional— 
Abraham:  It spans a 2-dimensional space in R5. 
Instructor:  Yeah. 
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Abraham: And it seems like when you have it like that, that the only time that it doesn't 
span the whole dimension when you have free variables. 

Abraham: If you, if you have more, if it's the other way around, uh, if it's 5x3 [sic, 3x5], 
then you would, then it would definitely span, right? I mean, so I'm just trying 
to think about it as a generalization. 

Instructor:  [Makes up the example B on the board]... 
Abraham:  [There are] two free variables. And so now it's spanning. So you see what I’m 

saying? Like...[pauses, Justin and Gabe leave, Abraham remains, looking at the 
board in silence.] 

Abraham: Yeah, and another thing that I think about is like when m is, uh, say m is n, I 
mean, then I start to think about if it like, to me, if it's linearly independent then, 
um, then it, then it spans all of the whole dimension. [Instructor: Hmmm.] 
That's another one. So I mean, when it's, when m and n are the same, then I 
think of it that way, and then if it's not, I start thinking about the free variable, 
does it matter, and then if it's more then free variable plays a role.  

Instructor:  Yeah, [inaud] we didn’t do this case, right [writes “m = n” the board]. That’s 
one thing that hasn’t come out yet.  

Abraham:  I don't know...it just seems like it would span. 
 
 Also on Day 9, the class developed a theorem about four equivalent statements for any 

m x n matrix (see Figure 4.21), and on Day 10 they spent time considering how that theorem 

would change if m = n. Within their group, Justin suggested that the set of vectors would not be 

linearly dependent, and Abraham commented on why he agreed.  

Justin:  Okay. So I would say the set of vectors in n are not linear dependent. 
Giovanni: The set of vectors in n? Are what? 
Justin:    If this is n [points to where he wrote “rows” in the empty matrix]. 
Giovanni:   Are not linear dependent? 
Justin:    Are not required to be linearly— 
Giovanni:   Dependent? 
Justin:    Dependent. 
Giovanni:   Yeah, they can be, but they don't have to be. 
Justin:    They don't have to be. I feel like that's kind of a pointless thing to say.  
Abraham:   Well, I mean, um...if it has the same amount of vectors as entries, though... no 

matter, I mean it has to be linearly independent, right, for it to span? 
 
On Day 12, the students took their first exam. Abraham’s response to a true/false exam question 

regarding span and linear independence of four vectors in R4. The question and his response is 

given in Figure 5.16. 
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Figure 5.16. Abraham’s response to a true/false exam question regarding linear independence 
and span for four general vectors in R4. 

 

Also on Day 12, students turned in portfolios, comprised of three problems from the 

course that documented their progress in understanding concepts and methods for solving 

problems. For each selected problem, they developed a rationale statement that explained why 

they chose that problem and what mathematics they learned through their work. For one of his 

portfolio responses, Abraham chose to discuss the reflection from Day 7 (see Figure 5.15). 

Although the portfolio response itself does not mention linear independence or dependence, it 

does provide a rare glimpse into a student himself reflecting on how his own ways of reasoning 

regarding span changed throughout the semester (see Figure 5.17). 
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Figure 5.17. Abraham’s portfolio entry concerning the reflection from Day 7. 
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The next set of arguments regarding Abraham reasoning about linear independence and 

span in conjunction with each other occurred during the first individual interview, which took 

place between the Day 17 and Day 18 of the semester. Within a set of true/false questions that 

began with the stem: “Suppose you have a 3 by 3 matrix A and you know that the columns of A 

span R3. Decide if the following statement is true or false, and explain your answer,” Abraham 

answered it was false that (a) the columns of A were linearly dependent, and (b) there was a 

nontrivial solution x to the equation Ax = 0 (questions 6a and 6d, respectively). Question 8 

asked him to consider both concepts for non-square matrices, and he discussed why a set of 

vectors could both span Rn and be linearly independent only if there were n vectors in Rn.  

 On Day 20, the class investigated ways of reasoning about one-to-one and onto 

transformations, and Abraham offered ways to think about how only transformations from Rn to 

Rn could be both one-to-one and onto, and he did so by reasoning about how those concepts 

were related to span and linear independence. On Day 31, when reflecting on the IMT, 

Abraham discussed the equivalence of the two concepts via both considering pivots, as well as 

the existence of unique solutions for matrix equations. Finally, during the second interview, 

Abraham was asked to respond to three questions that paralleled those from the first interview, 

as mentioned above. He also referenced span and linear independence when explaining why a 

one-to-one and onto transformation implied that the associated matrix was invertible (Question 

3b), as well as explaining the equivalence between “the RREF(A) has n pivots” and “A is 

invertible” (Question 4a) and between “the null space of A contains only the zero vector” and 

“the only solution to Ax = 0 is the trivial solution” (Question 4c). 

 Whereas the previous description served to give a brief overview of what occurred, the 

present section offers selected results concerning what Toulmin analysis illuminated concerning 

how Abraham’s ways of reasoning about span and linear independence in combination shifted 

throughout the semester. I organize the results into two sections:  
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1. Shifts in composition of arguments and placement of concepts within the arguments 
2. Comparison of arguments related to identical prompts at two different points in 

time during the semester 

5.1.2.1.2 Shifts in composition of arguments and placement of concepts within the 

arguments. The subsequent analysis illuminates not only shifts in the composition of 

Abraham’s arguments (e.g., when were qualifiers utilized) but also in the placement of concepts 

within the arguments (e.g., when claims later served as data or warrants for new claims). I begin 

by considering the after-class conversation between Abraham, Justin, and the instructor that 

occurred on Day 7. This particular exchange was not coded with Toulmin scheme because both 

the instructor and Justin had too prominent a role to be able to confidently assign any one 

argument as “Abraham’s argument” alone. Furthermore, his utterances were intertwined with 

the instructor’s, who supplied confirmation or clarification in response to Abraham’s inquiries. 

Thus, although the after class data from Day 7 was not analyzed with Toulmin’s Model, it 

serves to provide a rich background of Abraham’s initial ways of reasoning about span and 

linear independence. A few highlights of this after-class transcript, given in the previous 

section, are the following questions and conjectures from Abraham:  

 Asked if having no multiples in the columns implied they are always going to span 
 Asked “if it’s linearly independent, does it always span?” 
 Claimed when “they’re linearly independent in two dimensions then it spans all of 

R2.” Justin responded, “then you have the same number of vectors as dimensions.”  
 Asked “if it’s linearly dependent, does that mean...that it can never span?” 
 Hypothesized that you can have a case that spans and is linearly dependent. 

These questions and conjectures provide some evidence that Abraham is developing ways of 

reasoning about span and linear (in)dependence as a pair of related ideas. Specifically, we see 

him offer conjectures about if linearly independent vectors (in R3) necessarily span R3 and vice 

versa. He also began to wonder about how the number of vectors compared to the number of 

dimensions makes a difference.  
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 In contrast to the after-class discussion on Day 7, the ways of reasoning in the after-

class discussion on Day 9 were more readily attributed to Abraham, hence I was able code the 

discussion via a series of five Toulmin schemes. In these five arguments, there were two for 

which Abraham provided data, two that were only claim-qualifier, and one that was only a 

claim. The lack of support for his claims, coupled with his expressions of uncertainty, provided 

evidence that his reasoning about span and linear independence in conjunction with each other 

was still in its early stages. 

 Day 9 AC Arg 1 

Claim Matrix A does not span R5. 
Data It spans a 2-D space in R5 
  

 Day 9 AC Arg 2 

Claim The only time it doesn’t span the whole dimension is when there are free 
variables. 

  

 Day 9 AC Arg 3 

Claim A 5x3 matrix [sic, he pointed to a 3 x 5 matrix] definitely spans, right? 
Qualifier I'm just trying to think about it as a generalization. 
  

 Day 9 AC Arg 4 

Claim Now it’s [matrix B] spanning 
Data It has 2 free variables 
  

 Day 9 AC Arg 5 

Claim When m=n, if it’s linearly independent, then it spans the whole dimension 
Qualifier I don’t know...it just seems like it would span. 

Figure 5.18. Toulmin schemes for Arguments 1-5 from Day 9 after class. 
 

 Furthermore, his claims were not entirely mathematically correct: the columns of a 3 x 

5 matrix do not always span R3 (Argument 3), and the existence of free variables does not 

always imply that the column vectors do not span (Argument 2). Also noteworthy is Argument 

5, when Abraham stated that if m = n and the columns are linearly independent, “it just seems 

like it would span.” This was the first time a student had offered this conjecture to the 



  
217 

 

instructor. It is interesting that Abraham thought it was true but was unable to provide a reason 

as of yet—it just seemed like it would be so.  

 Day 12, Exam 1 Question 

Claim If {v1, v2, v3, v4} is a linearly independent set of 4 vectors in R4, then the span of 
{v1, v2, v3, v4} is all of R4. 

Data The RREF of the augmented matrix is the identity matrix 
Warrant The identity matrix has four pivots (one in each column and one in each row) 
Backing Having four pivots means the span is all of R4 

Figure 5.19. Toulmin scheme for Abraham’s exam question about linear independence and 
span. 

 

Between Day 9 and Day 12, there was a clear shift in Abraham’s certainty and ability to 

reason about linear independence and span when m = n. The concepts of pivots and row-

reduced echelon form continued to be developed and connected to linear independence and span 

on Day 10, which likely influenced his response on the exam that occurred on Day 12. In the 

Toulmin scheme for Abraham’s exam response, the true/false question is symbolized in terms 

of general vectors {v1, v2, v3, v4} in R4, and he was asked to prove whether linear independence 

implies the vectors span R4. He first stated,” if we have an n x n matrix that is a linearly 

independent set, then the RREF of the augmented matrix is the identity matrix” (see Figure 

5.17). From his sketch, however, it is unclear where the fifth vector for his augmented matrix 

came from, and he stated, “We can see that the identity matrix has four pivots,” but the matrix 

in his sketch was not the identity matrix. Indeed, his sketch is a valid reduced echelon form for a 

matrix with linearly independent columns, but it is not identically consistent with his written 

explanation. Thus, although the claims from Abraham’s after-class conversation on Day 9 (see 

Day 9 AC Arg 5 in Figure 5.18) and from the exam question on Day 12 are quite similar, the 

surrounding justification had developed substantially. 

Next I consider Interview 1. Question 6a is the focus of the subsequent section on 

comparative results, so here I focus on Abraham’s responses to Question 8, within which he 
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discussed why a set of vectors could both span Rn and be linearly independent only if there were 

n vectors in Rn. Question 8a asked Abraham to construct, if possible, an example of a 3 x 5 

matrix such that the columns spanned R3 and were linearly independent. His response was 

coded via a series of five argumentation schemes (see Int 1 Q8a Arg 1-5 in Appendix 5.1). 

Within the first two arguments, he supported his claim that he could create such an example that 

spanned all of R3, sketched the generic matrix in Figure 5.20, and stated,  

I believe those asterisks that I put there could be any numbers...these numbers don't 
really matter, you still have three pivot positions...If I have three pivot positions, then 
I'm spanning all of R3. These two vectors [points to the last two columns comprised of 
asterisks] don't even need to be used to span that, the R3. 

 
Figure 5.20. A 3x5 matrix whose columns spanned R3 but are linearly dependent.  
 

Considering the possibility of linear independence, however, was more problematic for 

Abraham. After the statement above, he said, “You know what, though? If you have, hmm. This 

is a tricky question, I just actually thought of something...if you have more vectors than 

dimensions, that automatically makes it linearly dependent” (see Int 1 Q8a Arg 3). He 

thoughtfully re-read the prompt for a few seconds, crossed through his example matrix and 

wrote, “not possible” (see Figure 5.21). After a few more seconds of silence, he stated:  

Abraham: I'm right to say they do span all of R3. If I just use these, right? [Covers the last 
two vectors in the matrix shown in Figure 5.21.] They do in fact span all of R3. 
But now we're talking about linearly independent. I can only construct one that 
spans all of R3 and is linearly dependent. Which goes against my intuition, 
because I like to think of square matrices, and if they span all of R3, it's linearly 
independent.    

 
Figure 5.21. Abraham’s indication that it was not possible to create an example of a 3 x 5 

matrix with linearly dependent column vectors.  
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Finally, the next two subsequent arguments concluded Abraham attempting to 

formulate a justification for his claim that “if you have more vectors than dimensions, that 

automatically makes it linearly dependent” (see Figure 5.22). In his data and warrant in both 

arguments, he used phrases such as, “get to any point,” “get back to the origin,” etc. These 

phrases stem from (a) the class’s work with the Magic Carpet Ride problem, and (b) Justin’s 

explanation (on Day 6) in class to support that very same claim’s truth. Abraham made use of 

the travel analogy for the definition of linear dependence, but he was unable to convince himself 

why there was a way to “get back home” from any point in R3 with a set of five vectors. 

 Interview 1 Q8a, Argument 4 

Claim If you have more vectors than dimensions, that automatically makes it linearly 
dependent. 

Data I get to any point I want in R3. [draws an empty x,y,z coordinate axis] Let's just 
say I was here [puts a point in Quadrant 1]. Now I have two, that was after 
using three vectors, now I have two more I could use. 

Warrant So I should be able to make one that is linearly dependent and get back there, 
because I can get anywhere, so I can get, if I'm using the origin yet, I can get 
back to the origin 

Qualifier But how could I make it so that I don't get back to the origin? I don't think it's 
possible. 

  

 Interview 1, Q8a Argument 5 

Claim If you have more vectors than dimensions, that automatically makes it linearly 
dependent. 

Qualifier This is weird to explain. 
Data I got here with three vectors, now since I can span all of R3, then we know I can 

get to this point, because this spans all of R3, so I know I can get to this point. 
Warrant If I can get there, then I can go back this way. So if I can get three vectors there, 

then I'm going to be able to get back there, using one of the other two vectors 
that are here. 

Qualifier But I'm still kind of, I want to be convinced that that's true, but at the same time, 
I don't know if I thought about it enough, 

Rebuttal But it seems like I should be able to make two vectors that don't get back here, 
but see, that's a problem. But I know by the definition that if they have more 
vectors than entries, it has to be dependent, so that convinces me. But it almost 
seems like maybe I should work on a computer program to try to make it so that I 
don't, I can't get back to here, and I probably would fail. But in my mind, it 
seems like you should be able to. 

Figure 5.22. Toulmin schemes for Interview 1, Question 8a, Arguments 4-5. 
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 These two arguments are noteworthy because Abraham expressed his intuitive disbelief 

in his claim in conjunction with his conviction of its truth. In his rebuttal in Argument 5, he 

stated, “but I know by the definition...so that convinces me.” It is unclear how Abraham 

understood the claim under debate as a definition. One explanation is because of its previous 

discussion in class. Recall from Chapter 4 that it was first conjectured as a generalization on 

Day 5 and then debated on Day 6. The reflection from Day 5 asked, “What one generalization 

from class today are you least confident about? Why?” Abraham wrote:  

If you have a set of vectors where you have more vectors than dimensions, then the set 
has to be linear dependent. I’ve only seen a couple of examples and examples cannot be 
used to prove anything. Therefore, it seems like it might be right but it has not been 
completely justified. I’m not completely sold on this generalization. 

Thus, although Abraham’s reflection response occurred on Day 5 and his interview after Day 

17, and despite him being an active participant in a classroom that was using that generalization 

and him using it himself, he still questioned its validity.  

 

For the final data from Interview 1, I consider Question 8b, which asked Abraham to 

create an example, if possible, of a 5 x 3 matrix C such that the column vectors of C span all of 

 Data:  It’s 
not 
possible 
(linked): 

Data1:  First, like I said I'm stronger 
on the pivot positions, this only has 
three. There would have to be five, or 
fve pivot positions for it to go to span 
all of R5. 

   

   
 Data2:  And also, you can never span, I 

can never, if I have less vectors than 
dimensions, then I can never span that. 

   

Claim:  There’s 
no way you can 
span that [R5] 
with three vectors 
in R5. 
 

     
  

Warrant:  I really can't as I say go in all the directions of the dimension, all the 
pivots, and so I can't span it, because I don't have enough vectors to go to fill up 
the space, to be able to go in all places of it.   

  

Figure 5.23. Interview 1, Q8b, Argument 1: Abraham explains why it is not possible to 
span R5 with three vectors in R5. 
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R5 and are linearly independent. Within his response, he immediately said he was “stronger on 

the pivot positions,” and explained that he needed five pivot positions to be able to span all of 

R5 because otherwise he would not “be able to go in all places of it” (see the Toulmin scheme 

for this argument in Figure 5.23). 

Abraham was then asked how he would change the prompt so that he could create an 

example, and he replied he would change it to a 5 x 5 matrix, “just another square matrix.” The 

Toulmin scheme for his justification is given in Figure 5.24.  

 

In this argument, Abraham claimed that a matrix must be square for its column vectors 

to hold both desired properties. His data was composed of two linked aspects: if he had less than 

five columns, it wouldn’t span; and the columns of a 5 x 6 would “span everything, but now it’s 

linearly dependent.” He concluded with the qualifier, “I understand the concept...but explaining 

the 5 x 6 is probably the hardest for me, I think.”  

 The time in the semester between the first and second individual interviews, rather than 

being dedicated to developing the ideas of linear independence and span, used those ideas as 

ways to reason about new concepts in the course. As such, Abraham’s arguments that explicitly 

 Qualifier: I understand the concept, but the, of that, but 
explaining the 5 by 6 is probably the hardest for me, I think. 

 

 
 Data 

(linked): Data1: If I ever had less than this, it's 
going to be not possible to span. 

   

       
 Data2: A 5 by 6 though, now I can still 

span everything, but now it's linearly 
dependent 
 

   

Claim:   I would 
change the matrix 
to 5x5 to create 
an example [that 
does span and is 
LI] 
 
 

     
  

Warrant: If I had the same amount, then I have the identity matrix, 5 by 5, it can 
span everything, and it's linearly independent, yes. 

  

Figure 5.24. Interview 1, Q8b, Argument 2: Abraham explains why a 5x5 example could 
possibly have linearly independent vectors that span R5. 
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related linear independence and span within the same argument occurred less frequently, and 

most often for the purpose of supporting a new conjecture. In particular, Abraham reasoned 

that: If a matrix is square, being linearly independent is the same as being onto (Arg 20.16 

WCD); if the column vectors both span and are linearly independent, then the matrix would be 

invertible (Arg 20.24 WCD); having column vectors both span and be linearly independent is 

equivalent to “for every b in Rn, there exists a unique solution to Ax = b (Arg 31.5-31.6 WCD).  

During the second interview, rather than only talking about them as explicit points of 

conversation (which with I conclude this section), he used them in conjunction with each other 

to reason about one-to-one and onto transformations, invertible matrices, and basis. In each of 

these cases, the ideas of linear independence and span were within the data and/or warrant of 

the given claims. This is significant because this was a criterion used within Chapter 4 in order 

to document when mathematical ways of reasoning were functioning as-if shared for the 

collective. While the change in unit of analysis has methodological implications, it is worth 

noting, for the purposes of future work within the realm of coordination between individual and 

collective analyses, when possible instances of analytical compatibility arise. For instance, as 

part of an argument within which he attempted to explain why a transformation that was both 

one-to-one and onto would imply the associated matrix was invertible, Abraham had a sub-

argument regarding unique solutions (See Figure 5.25).  

Figure 5.25. Int 2 Q3b Arg 3: Abraham reasons that the column vectors of a matrix for a given 
one-to-one and onto transformation span and are linearly independent. 

 

 Interview 2, Q3b Argument 3 

Claim It's spanning everywhere, and it's a unique solution. 
Data1 This [points to his written definition for ‘onto’] is span 
Data2 This [points to his written definition for ‘1-1’] is linear independence 
Warrant If this is span, and I want to add linear independence to it, then I would say this 

definition of span [points to that same card again], but just adding the word 
'unique. '. 
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 His claim in this argument dealt with unique solutions, and his 2-part data to support it 

referenced how onto was equivalent to span and one-to-one was equivalent to linear 

independence, and then his warrant connected the two data to the claim. Here he was no longer 

justifying, for instance, why onto and span were related, why one-to-one and onto were related, 

or why linear independence and span implied a unique solution. Rather, he was using these 

ideas as part of a proof that eventually led him to a conclusion regarding invertibility (see Int 2 

Q3b Arg 1-10 in Appendix 5.1 for the entire response). 

As the last item to consider in this section regarding shifts in composition and content 

of arguments, I consider the following question regarding the role of m = n. In interview 2, 

Abraham was asked about the importance of the phrase, “Let A be an n x n matrix.” He 

responded that “they [the concept statements] wouldn’t, they’d be, they wouldn’t go both ways, 

if the matrix wasn’t n x n...if it can go both ways then they’re equivalent. But if it can only go 

one way then they’re not equivalent” (see Int 2 Q2c Arg 1 in Appendix 5.1). Here, “go one 

way” referred to logical implications of p  q; if it only “went one way,” then either p  q or q 

 p, but not both. When asked to create an example using specific concept statements from the 

IMT, Abraham chose, on his own accord, to discuss span and linear independence. He created 

two non-square examples, 

€ 

1 0 0 75
0 1 0 99
0 0 1 85

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 and 

€ 

1 0
0 1
0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

, and stated that the former spanned R3 but 

was linearly dependent, and that the latter was linearly independent but did not span R3. His 

justifications were brief (see Int 2 Q2c Arg 2-5); twice he supported his claims about span by 

mentioning pivots, but he never supported his claims about linear independence.  

From just this transcript, it is unclear whether he was unsure of how to provide 

justification, or if he thought is was unnecessary to do so. It is likely that it was the latter, given 

that in the immediately previous question during the interview, he explained why the column 
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vectors of 

€ 

1 2 3
2 4 6
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  created a linearly dependent set. He did so by offering two justifications: 

(a) by showing two different solutions that “get to the same point”:

€ 

1
1
2
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ +1

2
4
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

3
6
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥  and 

€ 

1
3
6
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

3
6
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ; 

and (b), by showing there was a solution that wasn’t the trivial solution to the equation Ax = 0—

namely, 

€ 

1
1
2
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ +1

2
4
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ −

3
6
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

0
0
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥  (see Int 2 Q1b Arg 2-3 in Appendix 5.1). From his thorough and 

sophisticated response to Question 2b and his omission of an explanation in Question 8a in 

Interview 2, Abraham seemed more comfortable with the conjecture “if there are more vectors 

than dimensions, the vectors are linearly dependent” than he was during Interview 1.  

5.1.2.1.3 Comparison of arguments related to identical prompts at two different points 

in time during the semester. In this section, I compare and contrast the Toulmin schemes for 

arguments in which Abraham was reasoning about the same question at two different points 

during the semester. In particular, I report on two specific comparisons: (a) Abraham’s 

reflection and portfolio response concerning his reflection from Day 7; and (b) His responses to 

the interview prompt, “True or False: If the columns of a 3x3 matrix A span R3, then the 

columns vectors of A are linearly dependent.”  

 The first comparison comes from a unique data source: a student reflecting on his own 

mathematical development. From the previous section, I demonstrated that Abraham’s way of 

reasoning about span shifted throughout the semester. Analyzing his own reflection upon his 

growth, however, provides insight into how exactly his reasoning changed and what affected it. 

As discussed in the above description, the reflection from Day 7 asked students to consider 

€ 

1 2 −1
1 3 −3
0 3 −6

   1
−1
−6

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

~
1 0 3
0 1 −2
0 0 0

 5
−2
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 and respond to questions about the span of the three column 

vectors (see Figure 5.16). Here I focus on his answer to the second question, in which he said, 
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“I’m having trouble with the span of vectors.” The Toulmin scheme for his initial response is 

given in Figure 5.26.  

Figure 5.26. Toulmin scheme for Abraham’s original response to Day 7 Reflection, Question 2. 
 

From what was written on his paper, it is not possible to know more details about how 

he was “having trouble with the span of vectors,” but we do see that he was unable at the time 

to make a definite claim about span. This is in contrast to his portfolio response from Day 12, 

which he turned in nearly three weeks after his original reflection response (see Figure 5.16). In 

that response, Abraham reflected that although he had a solid grasp on the definition of span (as 

well as a translation of it into terms compatible with the Magic Carpet Ride problem) on Day 7, 

he was not certain at that moment how to conclude anything about the span of A. He made an 

insightful remark considering the inefficiency of attempting to find a linear combination of the 

column vectors for every possible vector b in order to determine the span of the column vectors.  

  Data: If we have an m x n matrix and 
there are m pivots. 

Claim: The columns of A 
span Rm. 

 
  

 
 

 
Warrant:  
 Data1: If there is a pivot 

in every row   
Claim1: Corresponds to being 
able to go in every direction the 
dimension offers.  

   
  Data2=Claim1: If we can 

go in every direction  
Claim2: We can reach any point 
in the plane 

 

 
 

 

Figure 5.27. Toulmin scheme for Abraham’s rationale for including a portfolio 
entry about Day 7, Reflection, Question 2.  

 

He then transitioned out of his past ways of reasoning with the sentence, “When we introduced 

the concept of pivot points, it all began to make sense.” The remainder of his response, in which 

 Day 7 Reflection, Question 2 

Claim 
Not sure what the span of 

€ 

1
1
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

,
2
3
3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

,
−1
−3
−6

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

 is.  

Qualifier I’m having trouble with the span of vectors. 
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he justified why having m pivots in the row-reduced form of an m x n matrix implies the span is 

all of Rm, is coded via Toulmin’s model (see Figure 5.27). 

 Portfolio 1, description of his original response to Day 7 Reflection, Question 2 

Claim 

I had no clue how one could know the span of 

€ 

1
1
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

,
2
3
3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

,
−1
−3
−6

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

.  

Data It would be inefficient to determine if every x, y, z vector combination in the set 
of real numbers can be written as a linear combination of the three vectors 

Qualifier Since this process is closely related to the definition of span, it seemed logical at 
first. 

Figure 5.28. Toulmin scheme for Abraham’s description of his original response to Day 7 
Reflection, Question 2, included in Portfolio 1. 

 

The guidelines for a portfolio entry dictate that students should include their original 

response, as well as the re-worked problem, when applicable. The next page in his portfolio 

included that information (see Figure 5.16). Within that page, he explained how he had been 

thinking as he answered the original reflection question and then re-worked the problem by 

reasoning about pivots. The Toulmin schemes for those two portions are given in Figures 5.28 

and 5.29, respectively. 

 Data: If you row-reduce the matrix stated above, it 

becomes 

€ 

1 0 3
0 1 −2
0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

and you can see that there is a 

pivot point in the first two rows but not the third. 

Claim: The span of 

€ 

1
1
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

,
2
3
3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

,
−1
−3
−6

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

is a two-

dimensional space in R3. 

 

  

 
 

 
Warrant:  
 Data1: The bottom row is all zeroes  

 
Claim1: We cannot 
move in the z direction 

   
  Data2=Claim1: We cannot move in 

the z direction  
Claim2: We cannot get 
to every point in R3. 

 

 
  
Backing: By the theorem, the columns of A do not span all of Rm, or R3.  
 

 

Figure 5.29. Toulmin scheme for Abraham’s new solution to Day 7 Reflection, 
Question 2, included in Portfolio 1. 
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It is a rare opportunity to analyze when a student so clearly reflects upon his or her own 

thinking. Here Abraham, although he had only written, “I am having trouble with the span of 

vectors” in his original response, shared further information regarding what he recalled having 

thought at that moment. Twice (in his rationale statement and in his restatement of his original 

response), he shared, because of the inefficiency of trying to determine if there is a linear 

combination of the columns of a matrix for every possible output vectors, his preference for 

reasoning about pivots in order to make claims regarding span. He then, in his updated 

response, used as data that the RREF(A) only had two pivots and explained in the warrant why 

having two pivots had anything to do with the claim that the span was only a 2-dimensional 

space in R3. Overall, Abraham transitioned from not being able to really even formulate a claim 

about the span of the three given vectors to being able to, quite articulately, not only determine 

what the span was but also explain how pivots helped him to reason about span. Thus, we see a 

shift in Abraham’s way of reasoning about the span of these particular vectors. We know from 

looking at all the arguments involved in the aforementioned section that Abraham’s way of 

reasoning about span in general shifted over the course of the semester. By considering this 

portfolio and reflection response, however, we were able to gain a sharper glimpse at how 

exactly his reasoning changed and what affected it.  

For the second example of direct comparison, I examine Abraham’s responses to the 

interview prompt, “True or False: If the columns of a 3 x 3 matrix A span R3, then the columns 

vectors of A are linearly dependent,” which he was asked during both individual interviews. 

During both interviews, he immediately replied ‘false’ to the prompt. For ease of comparison 

between the two responses, Table 5.2 has, in the leftmost column, the Toulmin schemes of his 

response from the first interview, and the rightmost column has the Toulmin schemes of his 

response from the second interview. In Table 5.2 I include only Abraham’s initial responses to 

the question (barring small clarification questions from the interviewer). This is done to better 
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align the responses for comparison. The Toulmin schemes for the full responses to the prompts 

are given in Appendix 5.1.  

 
Table 5.2. Toulmin schemes for Abraham’s two interview responses to the prompt regarding an 

implication between span and linear dependence. 

Suppose you have a 3 by 3 matrix A and you know that the columns of A span R3.  
Decide if the following statement is true or false, and explain your answer: 

 The column vectors of A are linearly dependent. 

Interview One (March 19) Interview Two (May 19) 

Int 1 Q6a Arg 1 

Claim: If the columns of a 3 x 3 matrix A span 
R3, then it is FALSE that the columns vectors of 
A are linearly dependent. 
Data: The column vectors of A would have to be 
linearly independent  
Qualifier (to the Data): This is hard to explain 
Warrant: The only solution is the trivial solution  
(Interviewer asks for clarification of the warrant) 
Backing: And so if that holds for zero then that 
means that it should hold for, um, every point. So 
that every, um, every point would have a unique 
solution. 
 
(Abraham reads “explain your answer” prompt 
and responds again) 
 
Int 1 Q6a Arg 2 

Claim: If the columns of a 3 x 3 matrix A span 
R3, then it is FALSE that the columns vectors of 
A are linearly dependent. 
Data:  I know it’s linearly independent 
Qualifier: It's so weird, it’s like sometimes 
something makes like sense to you, and then you 
just know it's right, but sometimes you don’t 
know how to really, like expl—you know what I 
mean? Like really explain, explain why, why it is 
true though. 
Warrant: like automatically my mind just jumps 
to, 'they're linearly independent, they can, they 
span everywhere.'  
 

Int 2 Q1a Arg 1 

Claim: If the columns of a 3 x 3 matrix A span 
R3, then it is FALSE that the columns vectors 
of A are linearly dependent.  
Data: Matrices whose columns span R3 have 
three pivot positions  
Warrant: And for like a square matrix, I just 
think like if this is three pivots in each row, then 
it's also going to be, automatically going to be 
three pivots in each column. 
Backing: And that way you're always going to 
have a linearly independent set of...of, um, like 
x equals something, y equals something, z 
equals something, because of that.  
Backing2: And then that’s, so that's going to 
be, basically a unique solution for every 
output...There's a unique <x ,y, z> vector such 
that Ax = b in the output, so that'd be linearly 
independent, but not dependent. 
 
 

 
 Although Abraham correctly answered “false” in both cases, the Toulmin schemes for 

his two responses reveal significant differences between them. In the first interview, to support 
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his claim that it was false that the columns vectors in the described matrix were linearly 

dependent, Abraham’s data were “the column vectors of A would have to be linearly 

independent” and “I know it’s linearly independent,” respectively. He also qualified his data in 

both arguments. In the first, he stated it was hard to explain, and in the second, he commented 

on how “weird” it is to know something is true but not know how to explain why. In his 

response during the second interviewer, however, he uttered no qualifiers regarding the 

difficulty in explaining his claim. Furthermore, his data for the claim was that “matrices whose 

columns span R3 have three pivots positions,” and he continued to explain (through a warrant 

and two backings) why having three pivot positions had anything to do with linear 

independence. He did provide warrants (in both) and backing (in the first) explanations from 

Interview 1; however, they are less developed than that of Interview 2. First, the prompt asked 

him to reason about “if span, then linear independence,” but his justifications from Interview 1 

both were more consistent with an “if linear independence, then span” form. Whether this was 

an oversight or a confusion with the logical order of a viable justification is unclear from the 

video and transcript data. In any case, this was not an issue in Interview 2. 

  Regarding the mathematical content of Abraham’s justifications in Interview 1, he 

made use of the definition of linear independence and tried to conclude that if Ax = 0 had only 

the trivial solution, then there would be a unique solution to Ax = b for every b. Again, without 

a bit more work why this would possibly be true, the converse would have been more readily 

acceptable. In Interview 2, he articulated a justification that first concluded that A had three 

pivots, which implied there was a pivot in each column. From that, he stated, “so that's going to 

be, basically a unique solution for every output...so that'd be linearly independent, but not 

dependent.” In the latter portion, there appeared to be an implicit assumption that a unique 

solution for Ax = b for every b implies linear independence (this would be valid, for the zero 

vector would be such a vector b and A0 = 0 for any matrix A because it defines a linear 
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transformation). Elsewhere in Abraham’s argumentation schemes (he was able to reason in a 

manner compatible with this. An alternative explanation is that Abraham was reasoning about, 

“there exists a unique solution to Ax = b for every b,” as an alternative definition of linear 

independence. In any case, the overall structure of his response from Interview 2 was more 

confident, cohesive, and mathematically correct than his response from Interview 1. 

5.1.2.2 The development of ways of reasoning about solutions to Ax = 0 and Ax = b. 

The second aspect of Abraham’s ways of reasoning about the Invertible Matrix Theorem over 

time that I report on revolves around the common theme of solutions. When I first coded 

Abraham’s argumentation with Toulmin’s Model, I noticed that reasoning about solutions to 

either Ax = 0 or Ax = b was prominent in what he said throughout the semester. Indeed, a search 

through the compilation of all Toulmin schemes of his argumentation (given in Appendix 5.1) 

revealed that the word “solution” appeared 103 times within the Toulmin schemes. 

Furthermore, these occurrences were distributed across the claim, data, warrant, and backing of 

the different schemes within which it appeared.  

There are two statements within the IMT that explicitly use the word “solution” in their 

phrasing: (a) The only solution to Ax = 0 is the trivial solution, and (b) For every b in Rn, there 

exists a solution x to Ax = b. To an expert, the most obvious equivalence between these two 

concept statements and other aspects of the IMT are (c) The columns of A are linearly 

independent, and (d) The columns of A span Rn, respectively. What is noteworthy with 

Abraham was his effort to reason about how (c) and (d) are related based on how (a) and (b) are 

related. During Interview 1, he inquired into what characteristics of Ax = 0 were applicable to 

Ax = b. For instance, he reasoned about what the zero vector being the only solution to Ax = 0 

implied when reasoning about the solutions to Ax = b for all possible b. Furthermore, this line 

of inquiry also led to Abraham reasoning about unique solutions to matrix equations. Given that 

this line of inquiry was not one that surfaced cleanly during whole class discussion, it is 
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intriguing to have the opportunity to analyze it here. Thus, first section of analysis below is 

dedicated to this argumentation thread. 

Additionally, Abraham reasoned about the notion of solution in another capacity, 

namely, to make claims about nearly every other concept captured within the IMT: one-to-one 

and onto transformations, invertibility, determinants, null space, and eigenvalues. I provide a 

short treatment of this category, listing a few arguments within which this occurs and present an 

example relating one-to-one and linear independence. 

5.1.2.2.1 Reasoning about solutions to Ax = 0 and Ax = b to form connections 

between span and linear independence. The first episode I present occurred during Interview 1, 

which took place approximately halfway through the semester. Abraham was asked to respond 

to the prompt, “True or False: If the columns of a 3x3 matrix span R3, then the column vectors 

are linearly dependent,” to which he replied false. The first portion of Abraham’s response to 

this prompt was analyzed in detail in the previous section (see Table 5.2). What was not 

presented in Table 5.2 was the remainder of his conversation with the interviewer, whose 

follow-up questions resulted in Abraham explaining why having a unique solution to Ax = 0 

would imply there is a unique solution for every b to Ax = b (see Int 1 Q61 Arg 3 in Appendix 

5.1). In Figure 5.30 I present this particular argument because it is the first time he clearly 

articulated that he was thinking about a relationship between solutions to Ax = 0 and Ax = b.  

In his claim, Abraham stated “a lot of the same characteristics” apply to both Ax =0 and 

Ax = b. While this claim is somewhat vague, his data and warrant serve to provide support for 

the claim by arguing that one similar characteristic is that of unique solutions. Within his data, 

he stated that when both systems are converted to augmented matrices, the coefficient matrix is 

identical in both. Thus, if you follow the same row-reducing steps, the final row-reduced 

echelon form of A in Ax = b will be the same as that in Ax =0. Within his warrant, he stated a 

unique solution to Ax =0 would imply that “most of the time, there should be a unique solution 
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for any b” in his Ax = b system. The only elaboration provided for that somewhat unclear 

warrant was his qualifier, wherein he stated he remembered that when the bottom row of a row-

reduced augmented matrix looks like [0 0 0 | 1], that there would be no solution to the system 

Ax = b.  

 Interview 1, Question 6a, Argument 3 

Claim I started to think about this, like when you have Ax =0, that a lot of the 
characteristics apply to Ax = some vector b. 
Because, like, I have all these points here, and I have this augmented matrix here, 
and the 0's [draws augmented matrix shown in (a)]. And then let's say I was, um, I 
had some other points [draws augmented matrix shown in (b)].  
(a) 

 

(b) 

 

Data 

Whatever I do over here with row reducing this [points to augmented matrix in 
(a)], it's really only going to affect this [partitions off coefficient matrix in both (a) 
and (b) with his hands]. 
If there's a unique solution, c1 = 0, c2 = 0 and c3 = 0 for 0 [points to the zero vector 
in (a)] then whatever, since, I mean, this [points back and forth between 
coefficient matrices, shown in (e)] when you row reduce it, it ends up being like 
the same thing on this side, then... then most of the time, there should be a unique 
solution for any b over here [points to the <1,2,3> vector] 

Warrant 

(e) 

 
Qualifier But there are cases where it doesn't, and I remember thinking of one, where it 

doesn't work like that. And it's actually when the bottom row ends up being like 
that [writes “0 0 0 | 1”]. That's when there's no solution. 

Figure 5.30. Int 1 Q6a Arg 3: Abraham reasons that some characteristics of Ax=0 apply to 
Ax=b. 

 
 The previous example of Abraham reasoning about Ax =0 and Ax =b together stemmed 

from a question which asked him to reason about if a spanning set of three vectors in R3 implied 

the vectors were linearly dependent. While he knew that this implication was false (as seen in 
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his initial response to the prompt, see Table 5.2), how to reason about that implication by 

reasoning about solutions, or even unique solutions, was a developing idea for him.  

 The next argument under consideration occurred during whole class discussion on Day 

31, when Abraham again mentioned unique solutions. The class was presenting work about 

which concept statements were “most obviously equivalent” for their small group, and Justin 

had just presented an explanation for why his group thought the three statements are most 

readily seen as equivalent: (a) The columns of A span all of Rn, (b) The column space of A is all 

of Rn, and (c) For every b in Rn, there's a way to write b as a linear combination of the columns 

of A. Abraham was preparing to explain why a fourth card, “'For every b in Rn, there exists a 

solution x to Ax = b,” could join that pile when Justin tried to add in a fifth, “the only solution 

to Ax = 0 is the trivial solution.” Abraham, however, was quick to respond that, for him, that 

fifth card did not automatically belong in the pile with the other four. The Toulmin scheme for 

his response is given in Figure 5.31.  

 Argument 31.6, from Whole Class Discussion 

Claim If we added a word ‘unique,’ then I would put it [the fifth card] in there 
Data Because 'unique' makes it linear independence 
Qualifier But without the word, I just think of we can get to every b. 

Figure 5.31. Abraham explains why the ‘trivial solution’ card does not belong a pile with four 
other cards. 

 

Abraham claimed that, for him, the fifth card only belonged in the pile if he were to add 

the word “unique” to the statement, “'For every b in Rn, there exists a solution x to Ax = b.” His 

data was that with he added the word “unique” so that it read, “For every b in Rn, there exists a 

unique solution x to Ax = b,” then the column vectors of A would be linearly independent. He 

finished by saying, “but without the word [unique], I just think of ‘we can get to every b.” He 

did not provide a rationale for why adding the word “unique” to the statement would imply the 

column vectors were linearly independent, and he was not asked for justification. Thus, 
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although no claims can be made regarding how Abraham was reasoning about this distinction 

between linear independence, existence and uniqueness of solutions, and “getting to every b,” 

Argument 31.6 demonstrates a shift in Abraham’s comfort level and confidence in reasoning 

about these concepts in conjunction with one another. 

Along the same lines as the above argument from Day 31, consider the following 

explanation from Interview 2, which occurred about a week after Day 31. This explanation 

occurred immediately after those presented in Figure 5.11 and 5.12, in which Abraham was 

responding to the interviewer’s prompt to discuss connections between the concepts statements 

regarding one-to-one, onto, and invertibility. His response to this prompt was also discussed in 

section 5.1.2.1 regarding the shift in Abraham’s reasoning about span and linear independence 

in combination (see Figure 5.25). I present the entire argument’s Toulmin scheme in Figure 

5.32 but only comment here on the warrant.  

 Interview 2, Question 3b, Argument 3 

Claim It's spanning everywhere, and it's a unique solution. 
Data1 This [points to his definition for ‘onto’] is span 
Data2 This [points to his definition for ‘1-1’] is linear independence 
Warrant If this is span, and I want to add linear independence to it, then I would say this 

definition of span [points to the “for every b there exists a solution x to Ax = b” 
card], but just adding the word 'unique.' 

Figure 5.32. Int 2 Q3b Arg 3: Abraham’s warrant explains that span and linear independence 
are equivalent if there is a unique solution to Ax = b for every b. 

 

While the specifics of the surrounding argument are not relevant to the present analysis, 

the warrant in Figure 5.23 cleanly states that Abraham thinks of, “for every b there exists a 

solution x to Ax = b,” as a definition of span, and that if you wanted a set of vectors that both 

spanned a given space and were linearly independent, then you only need to require that the 

solution mentioned in this aforementioned definition be unique. Again, he did not explain why 

adding the word ‘unique’ would imply linear independence, but this example does affirm a shift 

in his ability to confidently reason about the notions of span, linear independence, and existence 
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and uniqueness of solutions for every b. 

The final example of Abraham reasoning about solutions to Ax = 0 and Ax = b to form 

connections between span and linear independence is Argument 1 from Interview 2, Question 

1a. This argument was considered in the previous section to compare Abraham’s response to the 

prompt, “True or False: If the columns of a 3x3 matrix span R3, then the column vectors are 

linearly dependent” from both interviews (see Table 5.2). The Toulmin scheme for Abraham’s 

response from Interview 2 is shown in Figure 5.33.  

 Interview 2, Question 1a, Argument 1 

Claim If the columns of a 3x3 matrix A span R3, then it is FALSE that the columns 
vectors of A are linearly dependent. 

Data Matrices whose columns span R3 have three pivot positions 
Warrant And for like a square matrix, I just think like if this is 3 pivots in each row, then 

it's also going to be, automatically going to be 3 pivots in each column. 
Backing  And that way you're always going to have a linearly independent set of...of, um, 

like x =something, y = something, z = something, because of that 
Backing 2: And then that’s, so that's going to be, basically a unique solution for every 

output...There's a unique x,y,z vector such that Ax = b in the output, so that'd be 
linearly independent, but not dependent. 

Figure 5.33. Int 2 Q1a Arg 1: Abraham’s explanation that a spanning set of three vectors in R3 
is linearly independent 

 

Here I draw attention to the two levels of backing within this argument. Recall from 

Table 5.2 that, during Interview 1, Abraham had difficulty explaining why the correct answer to 

the prompt’s question was “false,” with his first two arguments basically conveying that he “just 

knew” it was so. His third argument within that Interview 1 response, as discussed previously in 

the present section, indicated that Abraham beginning to think in terms of unique solutions (see 

Figure 5.30). In Figure 5.33, however, he used this very thing that he was struggling with in 

Interview 1 as backing for the original claim. In other words, he justified the claim that a 

spanning set of vectors were linearly independent by reasoning about unique solutions to Ax = 

b. By comparing his work in Interview 1 to that of Interview 2, a shift in Abraham’s ways of 

reasoning is illuminated.  
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5.1.2.2.2 Reasoning about solutions to support claims about other concepts. Abraham 

also used solutions to reason about other concept statements within the IMT. Examples for each 

relevant concept are: free variables (Int 1 Q63 Arg 2, 3, and 5); one-to-one (Argument 20.5, Int 

2 Q3b Arg 1); onto (Int 2 Q3 Args 1 and 9); determinants (Int 2 Q4b Arg 2); null space (Day 31 

SG Args 2, 6, and 7]; and eigenvalues (Int 2 Q3 Arg 3). The Toulmin schemes for each of these 

arguments are provided in Appendix 5.1.  

I conclude with an example. In Interview 2, Abraham was asked to explain how one-to-

one and linear independence were related for him. Within this one Toulmin scheme, he said the 

word “solution” 12 times (see Figure 5.34). Looking closer at the details of how he uses 

solution is also revealing. 

  

 
Data1:  there's at 
most one solution 

  

Claim1: I said there 
could be 0 solutions 
or one to Ax = b. 

  
 Warrant1:  This is the definition of 1-1  
 

 

 Data2:  And then I can reduce 
this, if Ax = 0, what do we know 
about Ax = 0? We know that it 
always has at least one 
solution, namely the trivial 
solution, it always has at least 
that. 
 

  

Claim2:   
There's one 
solution to  
Ax = 0. 

 Claim: 1-1 
and linear 
independence 
are related 

  
 Warrant2: So the definition of linear 

independence, right here, the only solution 
to Ax = 0 is the trivial solution 

 

Data 
(linked): 
 

 

 

 
 

 

Warrant:  So there's 1 solution to Ax = 0. Then that solution must be 
the trivial solution. If there's one solution, it must be the trivial solution. 

 

Figure 5.34. Int 2 Q3b Arg 10: Abraham explains how one-to-one and linear independence 
are related by reasoning about solutions to Ax = 0 and Ax = b. 

 

The first sub-argument stated that based on the definition of one-to-one, there could be 

“zero solutions or one to Ax = b.” Within the second sub-argument, Abraham explained Ax = 0 
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always had to have at least one solution, and if there were only one (the trivial solution), the 

column vectors of A would be linearly independent. The warrant for the entire argumentation 

then concluded that if the only choices were one or zero solutions, that the only conclusion was 

that there was one solution to Ax = 0. In essence, Abraham’s entire justification relied on 

reasoning about solutions to the matrix equation Ax = 0. He presented the definitions of both 

one-to-one and linear independence, as well as the zero property of linear transformations, to 

reason that if a given transformation is one-to-one, the column vectors of the associated matrix 

are linearly independent.  

One may contend that Abraham’s way of reasoning about the equivalence of one-to-one 

and linear independence is not surprising, given the definitions of those two terms; however, 

this does not rule out that other prevalent imageries could have been possible instead. For 

instance, within Chapter 4 we saw another student, Edgar, present an argument related to span 

and onto (which also have definitions that are solution-oriented). In Argument 20.19, Edgar 

claimed it was not possible to have a transformation from Rn Rm, where m > n, be onto. The 

data he provided was, “There's only two vectors, so you can't possibly span R3. You simply 

don't have enough vectors to get anywhere you have in R3” (see Figure 4.36). Edgar’s 

justification relied more on the imagery of “getting everywhere” with linear combinations of 

column vectors than on solutions to a given matrix equation. Thus, it is noteworthy that 

Abraham has such a sophisticated ways of reasoning about solutions to Ax = 0 or Ax = b in a 

variety of situations. 

Abraham’s repeated use of reasoning about solutions to either Ax = 0 or Ax = b to 

support various new claims is also noteworthy because of its similarity to Criterion 3 from 

Chapter 4 regarding documenting normative ways of reasoning: When a particular idea is 

repeatedly used as either data or warrant for different claims across multiple days. Although a 

rigorous analysis of a possible adaptation of that criterion is beyond the scope of the present 
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study, it provides a fruitful avenue of pursuit for future work in the coordination of individual 

and collective analyses. 

5.1.3 Conclusion. Within the previous two sections, Microgenetic Analysis and 

Ontogenetic Analysis via Toulmin’s Model, I presented results about how an individual student, 

Abraham, reasoned about the Invertible Matrix Theorem over the course of the semester. The 

results were achieved through the use of Toulmin’s Model, coordinated with the microgenetic 

and ontogenetic strands of genetic analysis. In the microgenetic analysis section, I provided 

examples of how the expanded Toulmin structures were used to best capture the structure of 

Abraham’s argumentation. In particular, I demonstrated the linked structure with an argument 

regarding how linear independence and one-to-one are connected, as well as through Abraham’s 

explanation how ‘one-to-one and onto’ together imply the existence of a unique solution. I 

demonstrate the sequential structure through an argument regarding Abraham explains why if 

the columns of a 3x3 matrix A span R3, then there are no free variables, as well as through 

Abraham’s explanation why “if 0 is an eigenvalue, then the null space does not contain only the 

zero vector.” 

I also presented results concerning the various ways in which Abraham interacted with 

the notion of equivalence when reasoning about the concepts involved in the IMT. I presented 

two categorizations to describe the nature of equivalence between different pairs of concept 

statements from the IMT that occurred within Abraham’s argumentation. I defined the term 

conceptual equivalence and provided two examples of concept statement pairs about which 

Abraham reasoned as they were conceptually equivalent: (a) “The columns of A span Rn,” and 

“The column space of A is all of Rn,” and (b) “For every b in Rn, there is a way to write b as a 

linear combination of the columns of A” and “The columns of A span Rn.” Second, I found that 

Abraham also reasoned about concept statements as logically equivalent. I provided two 
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examples of this, both of which regarded Abraham’s reasoning about “the columns of A span 

R3” and “the system Ax = b has no free variables.” 

In the ontogenetic analysis section, I first provided a descriptive overview of 

Abraham’s ways of reasoning about span and linear independence in combination. I then 

presented selected analyses regarding these two ideas that focused on (a) shifts in composition 

of arguments and placement of concepts within the arguments, and (b) comparison of arguments 

that stemmed from identical prompts at two different points in time during the semester. I 

concluded by presenting results concerning the analysis of Abraham’s prevalent use of 

reasoning about solutions to the matrix equations Ax = 0 and Ax = b to make and support 

claims.  
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5.2 Adjacency Matrix Analysis 

The remainder of this chapter continues to address results concerning the second 

research question: How did an individual student, Abraham, reason about the Invertible Matrix 

Theorem (IMT) over time? Whereas the first half of this chapter presented results utilizing 

Toulmin’s Model to investigate Abraham’s ways of reasoning, the remainder of the chapter 

presents results utilizing adjacency matrices as an analytical tool to address the same 

overarching research question. The microgenetic analysis revealed Abraham’s tendency to 

reason about the negation of statements regarding determinants and eigenvalues from the IMT, 

as well as, through analyzing the m < n sub-digraph, Abraham’s difficulty with a particular 

generalization about linear dependence. Within the ontogenetic analysis section, I report results 

concerning the centrality measure for the concept of span, the prevalence of codes within the 

theme of “getting everywhere,” and a comparison of arguments from identical prompts. I 

conclude the chapter with a discussion of the results and a reflection on and comparison of the 

separate analytical methods.  

I first present the summary information regarding the adjacency matrix coding, as well 

as the associated total adjacency matrix A(B)tot, for Abraham’s ways of reasoning across the 

entire semester. I do so in order to frame the subsequent microgenetic and ontogenetic analysis, 

as it provides data that inform and drive the analyses on both levels. Furthermore, as stated in 

Chapter 4, conducting an ontogenetic analysis necessarily involves analysis at the microgenetic 

level. Per the methods described in Chapter 3, I conducted analysis over the same data set using 

both Toulmin’s model and adjacency matrices as analytic tools. The analyzed portions of video 

and associated transcript come from portions of whole class discussion, small group work, and 

individual interviews. From this reduced data set, 105 arguments were analyzed using 

Toulmin’s model. A selected portion of these results was presented in the first half of this 

chapter. The video and transcript from this same data set was also analyzed using adjacency 
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matrices, and 98 of the 105 arguments were coded; the content of the other seven was 

inappropriate for the codes developed for the present adjacency matrix analysis. The complete 

list of adjacency matrix codes for each argument, as well as which arguments were not 

analyzed, can be found in Appendix 5.2.  

 
Figure 5.35. The 100 codes used as the rows and columns for the adjacency matrices. 

 
 
 
 
 

E.   Column vectors of A are linearly independent K4. Inverse matrix: Exists a  C s.t. AC=I and/or CA=I
E1. Trivial: Only solution to Ax = 0 is trivial solution K5. Transform: Exists sequence of elementary row ops that turns A into I
E2. Unique: There is a unique soln to matrix eqn/system of eqns K6. Necessary output: Something gets sent to e 1, e 2, ...
E3. Travel: Can't get back (home)/get to origin with column vectors of A L.  A is not invertible
E4. Geometric: Vectors are not parallel/on the same line or plane L1. Augment with the identity:  [A  | I ]~ [ I | A -1 ] is not possible 
E5. Proportional: No vector is a scalar multiple of another L2. Formula: Can’t calculate, get “divide by 0 errors”
E6. Linear combination: No vector is a linear combo of another L3. Undo transformation: Can’t undo/get back from the transformation
E7. Placement: No vector is in the span of the other vectors L4. Inverse matrix: Does not exist a  C s.t. AC=I and/or CA=I
E8. Extra : Do not have an extra vector needed in order to return home L5. Transform: Does not exist sequence of elem row ops to turn A  into I

F.    Column vectors of A are linearly dependent L6. Necessary output: Nothing gets sent to e1, e 2, ...
F1. Trivial: Is more than one solution to Ax = 0. M.   The transformation defined by A is onto
F2. Unique: No unique/multiple/infinitely many solns to system/matrix eqn M1. Definition: For every b  there is at least one x s.t. T(x)=b
F3. Travel:  Can get back home/back to a point with column vectors of A M2. Range: Range is all of the codomain
F4. Geometric: Vectors are parallel/on the same line or plane M3. Images: All values in codomain get used/mapped to as outputs/images
F5. Proportional: One vector is a scalar multiple of another N.   The transformation defined by A is not onto
F6. Linear combination: One vector is a linear combo of others N1. Definition: For every b  there is not at least one x s.t. T(x)=b
F7. Placement–A vector is in the span of the other vectors N2. Range: Range is not all of the codomain
F8. Zeroes : the matrix A  has a row or column of zeroes N3. Images : Not all values in codomain get used/mapped to as outputs/images
F9. Extra: Have an extra vector needed in order to return home N4. Collapse: Transformation collapses everything to a point/line/plane

G.   Column vectors of A span Rn N5. Transform: The transformation goes up/adds a dimension
G1. Size: Are enough vectors to span the entire space O.   The transformation defined by A is 1-1
G2. Geometric: Can use vectors to get to every pt/go everywhere O1. Definition: For every b there is at most one x s.t. T(x)=b 
G3. Algebraic: Is a linear combination of vectors for all pts in Rn O2. Input/Output: Each output has at most one input
G4. Direction: Can use each vector to go in a certain direction O3. Reachable:  There is only one way to “get to” the output/vector
G5. Solution : There is a solution to Ax=b  for every b P.   The transformation defined by A is not 1-1

H.  Column vectors of A do not span Rn P1. Definition: For every b there is more than one x s.t. T(x)=b 
H1. Size: Are not enough vectors to span the entire space P2. Input/Output: Each output has more than one input
H2. Geometric: Can’t use vectors to get to every pt/go everywhere in dim P3. Reachable:  There is more than one way to “get to” the output/vector 
H3.  Direction: Cannot go in all directions with the vectors P4. Multiplicity: At least 2 inputs give the same output
H4. Clarify: The vectors of A span a k-dim subspace of Rn P5: Transform: The transformation goes down/exludes a dimension
H5. Partial: Span is only a point/line/plane Q.    det(A) ! 0: Determinant of A is nonzero
H6: Solution: There is not a solution to Ax=b  for every b Q1. Area: Unit square/cube has area/volume ! 0 after transformation

I.    Row-reduced echelon form of A has n pivots Q2. Calculation:  formula to calculate determinant yields nonzero result 
I1. Diagonal : RREF(A) has all ones on the main diagonal R.   det(A) = 0: Determinant of A is equal to 0
I2. Identity: Can row-reduce / is row equivalent to the identity R1. Area: Unit square/cube has area/volume = 0 after transformation
I3. Pivot-R: Is a pivot in each row R2. Calculation:  formula to calculate determinant yields zero
I4. Pivot-C: Is a pivot  in each column R3. Measure: No area/volume to a line/plane
I5. Free Variable: Each variable is defined in system/matrix eqn S.   Miscellaneous
I6. Zeroes:  RREF(A) has no rows of zeroes S1. Calculation: get inconsistent solutions (e.g.,  0x + 0y = 1)

J.    Row-reduced echelon form of A has less than n pivots S2. Column Space: The Col A is all of R n

J1. Diagonal:  RREF(A) does not have all ones on the main diagonal S3. Column Space: The Col A is all not of R n

J2. Identity: Cannot row-reduce /not row equivalent to the identity S4. Null Space: The Nul A contains only the zero vector
J3. Pivot-R: Is not a pivot in each row S5. Null Space: The Nul A contains more than the zero vector
J4. Pivot-C: Is not a pivot in each column S6. Eigen Value: The number zero is not an eigenvalue of A
J5. Free Variable: Not every variable is defined in system/matrix equation S7. Eigen Value: The number zero is an eigenvalue of A
J6. Zeroes:  RREF(A) has at least one row of zeroes S8: m < n: A has more vectors than dimensions

K.  A is invertible S9: m = n: A has less vectors than dimensions
K1. Augment with the identity:  [A  | I ]~ [ I | A -1 ] is possible S10: m = n: A has the same number of rows/columns
K2. Formula: Can calculat, no “divide by 0 errors” S11: m ! n: A does not have the same number of rows/columns
K3. Undo transformation: Can undo/get back from the transformation S12: Miscellaneous
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Furthermore, the 100 codes used as the rows and columns of the adjacency matrix are 

the same as those used in Chapter 4 (see Figure 4.48). They are repeated here (see Figure 5.35). 

Within Abraham’s coding, however, there were two uses for the “S12: Miscellaneous” code. 

The concept statement “Only the zero vector gets sent to the zero vector” is labeled S12a, and 

“The columns of A form a basis for Rn” is labeled S12b. Consistent with the methods explained 

in Chapter 4, the transcript from Abraham’s argumentation was coded based on whether he was 

reasoning about the case of m < n, m = n, m > n, or any m, n. The associated adjacency 

matrices for these four sub-digraphs are notated A(B)m<n, A(B)m=n, and A(B)m>n, and A(B)any. The 

sizes of the sub-digraphs, where size is the total number of arc between vertices, are A(B)m<n = 

33, A(B)m=n = 318, A(B)m>n = 17 A(B)any = 20, making the size of the digraph A(B)tot = 33 + 318 

+ 17 + 20 = 388. Furthermore, the order of the digraph was 71. In other words, 71 various 

interpretations of the concept statements (or concept statements themselves) associated with the 

IMT were used within the analyzed data set, and 388 edges exists in such a way as to match the 

implication offered by Abraham. Although not each of the three sub-digraphs utilized each of 

the 71 vertices, I used 71 as their order in my calculations of centrality for consistency purposes. 

This is consistent with my approach in Chapter 4.  

 The adjacency matrix A(B)tot, which was partitioned into four figures because of its 

size,  is provided in Figures 5.37-5.40. Figure 5.37 is the upper-left quadrant of A(B)tot, 

displaying rows E-K3 and columns E-K3; Figure 5.38 is the lower-left quadrant, displaying 

rows K4-S12 and columns E-K3; Figure 5.39 is the upper-right quadrant of A(B)tot, displaying 

rows E-K3 and columns K4-S12; and Figure 5.40 is the lower-right quadrant, displaying rows 

K4-S12 and columns K4-S12.  

 Because of the large number of arguments being analyzed, coding each argument in a 

different color was not possible for A(B)tot or its sub-digraph adjacency matrices. Thus, a 

different color was used for each of the class days and interview days coded. Furthermore, the 
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colors used in A(B)tot correspond to those used for A(T)tot from Chapter 4 (see Figure 4.55), with 

an additional two colors (see Figure 5.36), light green and grey, to correspond to the two 

individual interviews in which Abraham participated (but were not data sources for the 

collective analysis of Chapter 4).  

 

 

 

Figure 5.36. Key of colors used for entries in adjacency matrix A(B)tot.

− Day 7: Pink − Day 19: Light Blue 
− Day 9: Red − Day 20: Dark Blue 
− Day 10: Orange − Day 24: Purple 
− Interview 1: Light Green − Day 31: Brown 
− Day 17: Green − Interview 2: Grey  
− Day 18: Dark Green 
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Examination of A(B)tot, reveals that the majority of argumentation occurred during the 

two interviews (noted with the light green and grey entries in Figures 5.37-5.40); this is not 

surprising given that the two interviews were designed to specifically reveal Abraham regarding 

his ways of reasoning about the IMT. This is not seen as a limitation, but rather an advantage in 

that the two interviews provided a more focused, personalized, and in-depth window of 

Abraham’s ways of reasoning than could be gleaned from classroom data alone. As was done in 

Chapter 4, the measures of out-degree, out-connection, in-degree, and in-connection (see Figure 

4.47 for the definitions of these terms), and centrality were computed for A(B)tot; this 

information is given in Figure 5.41.  

Both the adjacency matrix in Figures 5.37-40 and the summary information in 5.41 

informed how I chose to conduct the microgenetic and ontogenetic analyses within the 

remainder of the chapter. I was also influenced by what analyses I conducted via adjacency 

matrices at the collective level in Chapter 4, as well as those conducted via Toulmin’s model in 

the first half of this chapter. With those under consideration, the results I present at the 

microgenetic level involve (a) instances of reasoning about the IMT via the negation of 

statements; and (b) the structure of argumentation by considering the type of sub-digraph in 

which the argumentation occurs. At the ontogenetic level, my results concern (a) the centrality 

measure and various implications (b) the prevalence of codes within a common theme; and (c) 

comparison of arguments related to identical prompts at two different points in time during the 

semester. 
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Figure 5.41. Out-degree, out-connection, in-degree, in-connection, and centrality information 

for adjacency matrix A(B)tot. 
 

total total
OD OC ID IC centrality OD OC ID IC centrality

E 28 11 46 13 0.1690 K4 6 2 6 4 0.0423
E1 14 6 24 8 0.0986 K5 1 1 1 1 0.0141
E2 13 6 14 10 0.1127 K6

E3 1 1 0.0070 L 2 1 0.0070
E4 L1

E5 1 1 0.0070 L2

E6 L3

E7 L4

E8 L5

F 7 5 27 11 0.1127 L6 3 2 3 2 0.0282
F1 5 4 3 2 0.0423 M 13 9 15 10 0.1338
F2 4 4 4 2 0.0423 M1 9 6 6 4 0.0704
F3 6 3 4 3 0.0423 M2 2 2 1 1 0.0211
F4 M3 2 2 1 1 0.0211
F5 5 4 0.0282 N 3 3 0.0211
F6 1 1 1 1 0.0141 N1

F7 N2

F8 1 1 0.0070 N3 1 1 0.0070
F9 1 1 2 2 0.0211 N4 1 1 1 1 0.0141
G 59 17 47 19 0.2535 N5

G1 3 2 2 1 0.0211 O 15 6 11 6 0.0845
G2 7 6 13 7 0.0915 O1 8 6 6 3 0.0634
G3 7 2 6 3 0.0352 O2

G4 1 1 4 2 0.0211 O3

G5 15 9 13 6 0.1056 P 1 1 3 2 0.0211
H 2 2 16 7 0.0634 P1 2 2 2 2 0.0282
H1 2 2 1 1 0.0211 P2

H2 1 1 3 3 0.0282 P3 3 1 1 1 0.0141
H3 3 3 4 2 0.0352 P4 2 2 0.0141
H4 1 1 2 1 0.0141 P5

H5 3 2 2 2 0.0282 Q 2 2 0.0141
H6 1 1 0.0070 Q1

I 16 9 12 5 0.0986 Q2

I1 7 4 2 2 0.0423 R 6 5 2 2 0.0493
I2 4 2 3 3 0.0352 R1 1 1 2 1 0.0141
I3 2 2 2 2 0.0282 R

I4 5 4 2 2 0.0423 R3 1 1 0.0070
I5 6 2 0.0141 S

I6 2 2 1 1 0.0211 S1

J 12 4 8 6 0.0704 S2 7 3 6 3 0.0423
J1 S3 1 1 1 1 0.0141
J2 S4 12 4 9 4 0.0563
J3 1 1 0.0070 S5 1 1 2 2 0.0211
J4 2 2 0.0141 S6 1 1 1 1 0.0141
J5 7 5 0.0352 S7 4 3 0.0211
J6 5 3 4 3 0.0423 S8 8 2 0.0141
K 7 3 10 6 0.0634 S9 7 3 0.0211
K1 S10

K2 1 1 0.0070 S11

K3 S12 14 7 6 4 0.0775

total total
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5.2.1 Microgenetic Analysis via Adjacency Matrices 
 

Within this section I present two categories of results: (a) instances of Abraham 

reasoning about the IMT via the negation of concept statements; and (b) Reasoning about the 

concepts within the IMT through various sub-digraphs. Within the first category, the examples I 

discuss concern Abraham reasoning about “the number zero is not an eigenvalue of A” and “the 

determinant of A is nonzero.” The second category of results was influenced by those presented 

in the parallel section in Chapter 4, where I discussed ways in which investigating the various 

sub-digraphs of m < n, m = n, m > n, and any m, n illuminating rich aspects of the collective’s 

ways of reasoning about the IMT. I focus on an argument within the m < n sub-digraph that 

illuminates a mathematical difficulty within Abraham’s reasoning.  

5.2.1.1 Reasoning about the Invertible Matrix Theorem via the negation of 

statements. I present two examples, both from the m = n sub-digraph, of Abraham reasoning 

about the negations of concept statements from the IMT, rather than as they appear in the IMT. 

Namely, he was much more likely to reason about “the number zero is an eigenvalue of A” and 

“the determinant of A is zero” than their respective negations. Adjacency matrix coding was 

crucial in determining this aspect of Abraham’s ways of reasoning in that adjacency matrix 

A(B)tot and the summary data in Figure 5.41 allowed me to compare the rows/columns of any 

given statement and its negation and consider the relative frequencies with which Abraham 

verbalized them in his reasoning.  

 5.2.1.1.1 The number zero is not an eigenvalue of A. The rows and columns relevant 

to the concept statement “the number zero is not an eigenvalue of A” corresponds to vertex S6, 

and its negation, “the number zero is an eigenvalue of A” corresponds to vertex S7. As stated 

above, this pair was chosen for analysis based on the low occurrence with which vertex S6 was 

needed to capture Abraham’s reasoning, with a comparatively higher frequency of vertex S7’s 

use (see Figure 5.42).   
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Figure 5.42. The out-degree, out-connection, in-degree, and in-connection for vertices 

S6 and S7. 
 
 All of the adjacencies that appear within Figure 5.42 occurred as Abraham was 

responding to one particular question prompt during Interview 2. As mentioned in the previous 

Toulmin analysis section, Abraham was asked to place cards that had the 16 different concept 

statements from the IMT written on them into piles based on, for him, which ones went 

together. One of his piles (labeled Pile 5 in Figure 5.1) contained two cards: “The number zero 

is not an eigenvalue of A” and “The null space of A contains only the zero vector.” Part of this 

explanation was seen in the previous section on Microgenetic Analysis via Toulmin’s Model as 

an example of the expanded Toulmin’s scheme (see Figure 5.14). In the present section I 

highlight how, within this argument, he reasons about the equivalence of these two concepts 

statements through their negations and how he was also very aware of this tendency.  

The majority of Abraham’s explanation for placing the two cards “The number zero is 

not an eigenvalue of A” and “The null space of A contains only the zero vector” together is 

below. The adjacency matrix coding is given within the transcript as well.  

Abraham:  These [the two cards in Pile 5] (S4S6, S6S4), I'd have to write, it's only 
because I'm thinking of an eigenvalue’s definition something's, those are 
nonzero, x such that Ax = λx. And so if the number zero, I always like to think, 
this [points to card] says “not.” But I always like to think of if it is [meaning 
‘is’ an eigenvalue instead of ‘is not’]. So then if it is, if λ = 0, then Ax = 0. And 
then by the definition of an eigenvector, we can find a nonzero solution 
(S7F1). Because if it's zero, it's not very interesting. 

Interviewer: What is the ‘it,’ if x is zero or? You said ‘if it's zero, it's not very interesting,’ 
what's the ‘it’? 

Abraham: Oh, sorry, it's the vector x, because then A times zero is always going to be 
zero. So that would make it linear independent. (E1E) But by the definition, 
we're trying to find a nonzero vector such that this eigenvalue stretches it. So 
then if λ = 0, then we can find a non-, this is saying by the definition, we can 
find a nonzero solution, such that Ax = 0 (S7F1). A non-0 solution. 
Therefore, I like that symbol, if we can find a nonzero solution, therefore then 

 OD OC  ID IC 

S6. The number zero is not an eigenvalue of A 1 1  1 1 
S7. The number zero is an eigenvalue of A 4 3    
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it's, I'm going out of context. But this is, it's linearly dependent, (F1F) by 
definition, because it's a non-trivial or the only solutions are the trivial solution. 
There's a nonzero solution, so it's linearly dependent if it's zero (S7F).  

 
First, note Abraham’s reflection on his own reasoning practice. He stated early in his 

response, “I always like to think, this [points to the eigenvalue card] says ‘not.’ But I always 

like to think of if it is [meaning ‘is’ an eigenvalue instead of ‘is not’].” He, in essence, told the 

interviewer, in the language of the adjacency matrix coding, that he preferred to reason about S7 

more than about S6. The code S6, which corresponds to the way the concept statement actually 

appears in the IMT, only appeared implicitly in Abraham’s argumentation, by way of the fact 

that he put “the number zero is not an eigenvalue of A” and “the null space of A contains only 

the zero vector” in a pile together (coded S6S4, S4 S6). It does not appear again within 

Abraham’s argumentation.  

He then stated if zero was an eigenvalue for A, then the matrix equation Ax = 0 would 

have nonzero solutions: this adjacency, (S7, F1), appeared twice. Having nonzero solutions to 

Ax = 0 led him to conclude that the columns of A were linearly dependent (F1F), and finally 

that if zero was an eigenvalue of A then its columns had to be linearly dependent, shown in the 

(S7, F) adjacency above. Next in his explanation, Abraham shared how what he had just said 

connected to null space for him.  

Abraham: And how does this relate to null space for me? Because this is saying the 
number zero. Then I think of this because if there's a nonzero solution here, 
then the null space doesn't contain only the zero vector (F1S5). So I think I 
think of them together, if I put a negation in front of them. Because then if the 
number zero is eigenvalue, then the null space of A does not contain only the 
zero vector, (S7S5) the null space contains, the null space is part of the 
domain, so it contains all the solutions sent to zero (S12a)...In terms of x, 
usually, right? In terms of the x vector, not, yeah, in terms of x, I don't know if 
that's enough, if that makes? 

Interviewer: ...What is it that you mean by 'in terms of x?' 
Abraham: Just when you write it out, you're really thinking of all the vectors sent to zero. 

So that's what I'm saying in terms of x, the vectors that are sent to zero. 
Because the null space is really the collection of vectors that are sent to zero. 
And if it's only the zero vector, then only the zero vector, the x only, x bar 
equals zero is sent to zero (S4S12a, S12aS4). 
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In this second portion of transcript, Abraham connected “the null space of A contains 

only the zero vector” concept statement from the IMT to his previous explanation by discussing 

its negation. He began, “And how does this relate to null space for me? Because if there's a 

nonzero solution here, then the null space doesn't contain only the zero vector.” This was coded 

(F1, S5). Next, note Abraham’s reflective statement, “So I think I think of them together, if I put 

a negation in front of them.” He was explicit and aware that he was explaining the two 

concepts’ equivalence in terms of their negations; in other words, by discussing S7S5 rather 

than S6S4. Finally, Abraham concluded his explanation by interpreting the concept of null 

space in terms of the vectors that get sent to zero. He explained that if the null space of A only 

contained the zero vector, that was the same thing as saying only the x vector got sent to zero; 

this was coded (S4S12a, S12a, S4). Thus, Abraham reasoned about the negation of “the 

number zero is not an eigenvalue of A” and “the null space contains only the zero vector” in 

order to justify their equivalence.  

5.2.1.1.2 The determinant of A is nonzero. The second example of Abraham preferring 

to reason about the negation of a concept statement rather than the way it is stated in the IMT 

regards determinants. Within the adjacency matrix A(B)tot, one can see there are relatively few 

statements about determinants (see Figures 5.38, 5.40, amd 5.41). As was true with eigenvalues, 

determinants were developed late in the semester. Furthermore, Interview 1 did not contain any 

questions about determinants (it had not been discussed in class yet), and Interview 2 only had 

one main question dedicated to it. Thus, I am not claiming that because reasoning about 

determinants had a low frequency, it wasn’t powerful to Abraham. The nature of the course (it 

being nearly the last concept developed) and the pre-determined interview questions do not lend 

themselves to such claims being made. Rather, what is noteworthy is Abraham’s preference for 

reasoning about “the determinant of A is zero,” rather than the way the concept statement is 
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wording in the Invertible Matrix Theorem, which is “the determinant of A is nonzero.” The 

former is labeled vertex R, and the latter is labeled vertex Q. Looking at A(B)tot, we see the 

following information for vertices Q and R and their subcodes: 

 Figure 5.43. The out-degree, out-connection, in-degree, and in-connection for vertices Q-Q2 
and R-R3. 

 

Note that nearly all statements related to the concept of determinant fall within the R 

category: “the determinant of A is zero” and its interpretations. On Day 24, vertex R was 

adjacent from three different vertices: “F5: One vector is a scalar multiple of another,” “F8: the 

matrix A has a row or column of zeroes,” and “F: the columns of A are linearly dependent.” 

These occurred during small group work during which Abraham and his group members 

discussed what they had done for homework to investigate what how the column vectors of a 

transformation matrix being linearly dependent would affect the determinant of the matrix. 

While the question prompt on Day 24 set up the students for discussing “det A = 0” 

rather than “det A ≠ 0,” the question prompt during Interview 2 left that choice up to Abraham. 

The prompt was, “For the following pairs of statements from the Invertible Matrix Theorem, 

please explain how you understand how they are equivalent: det A ≠ 0,” and “The columns of A 

are linearly independent.” The transcript, written work, and adjacency matrix coding for 

 OD OC  ID IC 

Q.   det(A) ≠ 0: Determinant of A is nonzero 2 2    
Q1. Area: Unit square/cube has area/volume not equal to zero 

after the transformation      

Q2. Calculation:  formula to calculate the determinant yields a 
nonzero result       

R.   det(A) = 0: Determinant of A is equal to 0 6 5  2 2 
R1. Area: Unit square/cube has area/volume equal to zero after 

the transformation 1 1  2 1 

R2. Calculation:  formula to calculate the determinant yields a 
result of zero      

R3. Measure: No area/volume to a line/plane    1 1 
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Abraham’s response is given below (these are the arguments coded Int 2 Q4b Arguments 1-4 in 

Appendix 5.1). 

Abraham: Oh, I think I know how to do this one, or how I think about it, I should say. 
Determinant of A. I think of the determinant as. Uh-oh, I want to think of the 
negation again...This is an equivalent statement with this [the ‘linear 
independence’ card]. So since it is, I'll use my negations. Negation of the 
determinant of A does not equal zero, then the determinant of A is zero [wrote 
“~ det A ≠ 0  det A = 0” on his paper]. Now if the determinant of A is zero, 
then the area, I think of it as the area of the transformation (RR1). So I'm 
going to try to make some kind of drawing...let's just say that's some object, 
right, in R2. It's a door in R2, here's a little knob [draws the leftmost image seen 
in Figure 5.44]. No, but I think of the determinant as when you transform this 
by A, then the determinant [sic, object] after the transformation will have zero 
area (RR1). So the door is unfortunately not a door any more, it has, it’s just 
a line [draws the rightmost image in Figure 5.44] (N4). So the area, but if I 
extend it to more dimensions, it's not always going to be a line, just something 
with zero area. It could be, if I think of some plane with area or volume or 
however you think of it, depending on dimension, I'll say volume or something, 
right? Then it could be smushed together or something and have zero volume 
(RR3), or something like that, you know. 

 

 
Figure 5.44. Abraham’s written work while explaining the equivalence of “the determinant of A 

is zero” and “the columns of A are linearly dependent.” 
 

First, note his comment, “Uh-oh, I want to think of the negation again.” As was true in 

the previous eigenvalue response, Abraham explicitly stated that he was aware he preferred to 

reason about the negation of the given concept statement. He stated he was permitted to do so 

because the statements, as said in the prompt, were equivalent. There may be a bit of circularity 

here, in that he is adopting a certain justification style based on his knowledge that the 

statements are in fact equivalent. Abraham’s overall explanation is summarized with the codes: 

RR1, RR1N4, and RR3. Both the R1 and the R3 code relate to notions of area or 
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volume, the former notating the area/volume of the unit square/cube after the transformation, 

and the latter noting a measurement-oriented idea in that lines/planes have no area/volume. 

Recall that the N4 code is “The transformation collapses everything to a point/line/plane.” Thus, 

Abraham’s explanation thus far focused on how he understood determinants in terms of 

geometric objects and area or volume (such as the door having area before the transformation 

but none after), but he had not yet related that to linear independence, as was requested in the 

prompt. The interviewer asked him to clarify whether his explanation was about a zero or 

nonzero determinant, which also led him to talk about linear dependence:  

Interviewer:  Is that what, having zero area, relates to which one of these, the equal to zero 
or not equal to zero? 

Abraham: The determinant of A equals zero. So then the determinant of A equals zero, 
what am I try to say? Then [points to the prompt on the paper] the columns of A 
are linearly dependent (RF). Because, if, or 'show how they are equivalent,' I 
don't have to get to. I just know that from experience that if I plug in different 
points on this door or whatever, that I'm going to have multiple solutions to a 
given point. (RP1) Let's think of vectors, to a given vector. Say that's <1, 1> 
or something; I might have two points on this door that transform to <1, 1> 
(P4). And if it was linearly independent, I would only have one point on this 
door that would go to one point over here. (EO1) I guess that's one-to-one, 
so that'd be linearly independent. (OE) So if I start with determinant A 
equals zero, I'm going to have multiple points over here that are sent to the 
same point, so therefore it's linearly dependent (RP3F). So then if the 
determinant of A does not equal zero, then the determinant, it's linearly 
independent, for the opposite reason. (QE) 

 
Within this last section of transcript, Abraham first stated the implication (R, F): “if the 

determinant of A equals zero, then the columns of A are linearly dependent.” This is consistent 

with his comment that he wanted “want to think of the negation again.” However, his next 

statement stepped away from the notion and linear dependence in favor of revisiting his “door” 

explanation. This is noted through the coding R P1P4, where P1 is the definition of one-to-

one, “For every b there is more than one x such that T(x) = b, “ and P4 is “At least two input 

vectors give the same output.” He transitioned to connecting one-to-one and linear 

independence with the statement, “I might have two points on this door that transform to <1, 1>. 
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And if it was linearly independent, I would only have one point on this door that would go to 

one point over here. I guess that's one-to-one, so that'd be linearly independent,” the second 

sentence of which is captured by the string of codes EO1OE. Finally, Abraham 

summarized his explanation, stating that a determinant of zero (code R) sends multiple points to 

the same point (code P3), which means the column vectors of the transformation matrix are 

linearly dependent (code F). He added on, “So then if the determinant of A does not equal 

zero...it's linearly independent, for the opposite reason.” He was not asked to explain what he 

meant by “for the opposite reason,” so it was not coded any further beyond (Q, E) as to avoid 

unnecessary inference.  

 5.2.1.1.3 Conclusion. Within this section, I presented two examples of concept 

statements for which Abraham was more prone to reason about the negation of the concept 

statement than how it is stated in the Invertible Matrix Theorem. Due to the lateness within the 

semester of when both ideas—determinants and eigenvalues—were presented, the frequency for 

all vertices within those two categories was low; however, what does exist demonstrates 

Abraham’s preference for reasoning about the negations of the statements. Through this 

analysis, aspects of both structure and content of Abraham’s ways of reasoning were 

investigated. That is, the adjacency matrix analysis aided me in determining which particular 

concepts Abraham reasoned about through the use of their negations. It then allowed me to 

locate those arguments and, through microgenetic analysis, determine the exact ways in which 

Abraham made use of negation within that argumentation. Furthermore, it simultaneously shed 

light on Abraham’s understanding of the mathematical ideas about which he was reasoning. For 

instance, after Abraham concluded his explanation about determinants and linear independence 

(described above), the interviewer asked him if thinking of determinant in terms of area was the 

most salient for him, to which he replied yes.  

Interviewer: Can you explain the way the determinant, do you always think about it in terms 
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of area, is that what you said? 
Abraham: I do, actually. Have I thought about it for anything else? I might have at one 

point, I don't think so though, I think I've always thought of it as the area after 
the transformation, like what is the area? If I start with some area, what's the 
area after I transform that? 

 
As a final note, by examining adjacency matrix A(B)tot in Figures 5.37-40, one could 

determine how the use of other concept statements compared to that of their negations as well. 

In some instances, the opposite was true: Abraham reasoned about the concept statement’s 

category more than that of the negation (e.g., there were more K codes than L, more I than J, 

and more M and N, which relate to invertibility, pivots, and onto transformations, respectively). 

One could also compare particular interpretations of concept statements. For instance, Abraham 

reasoned with “F3: Can get back home/back to a point with column vectors of A,” and “G2: Can 

use vectors to get to every pt/go everywhere” much more frequently than their respective 

negations. I return to these two particular interpretations, F3 and G2, in greater detail in a 

subsequent section of the ontogenetic analysis regarding their commonality in phrasing in “get 

back home” and “get everywhere.”  

5.2.1.2 Reasoning about the concepts within the IMT through various sub-

digraphs. Within the data set of the present study regarding Abraham’s ways of reasoning 

about the IMT over the course of the semester, very few data points exist for the sub-digraphs of 

when m < n, m > n, or any m, n. (Recall the sizes of the sub-digraphs were A(B)m<n = 33, 

A(B)m=n = 318, A(B)m>n = 17 A(B)any = 20, out of 388 total arcs.) In Figure 5.45, I present a 

condensed version of A(B)m<n. Upon inspection of A(B)tot, I noticed only a few of his utterances 

were coded F9, “Have an extra vector needed in order to return home,” an interpretation of 

linear independence that was rather prominent within whole class discussion (see the CMP 1 

results section in Chapter 4). Furthermore, one such adjacency was (F9, E3), which is not 

mathematically correct. In other words, the adjacency matrix coding helped to illuminate not 



  
259 

 

only concept statements or interpretations that Abraham reasoned with infrequently, but it also 

helped to illuminate mathematically imprecise implications that he made.   

  
Figure 5.45. A condensed version of adjacency matrix A(B)m<n. 

 

 The green “1” within the (F9, E3) cell of A(B)m<n in Figure 5.45 corresponds to an 

argument from Interview 1. Upon inspection of the transcript, this occurred during Interview 1, 

Q8a Arg 5. In question 8a, Abraham was asked to create, if possible, a 3x5 matrix whose 

columns spanned R3 but were linearly independent. This particular question was investigated 

previously, in the section dedicated to exploring Abraham’s ways of reasoning about span and 

linear independence in combination (see Figures 5.20-5.22). Below is the relevant portion of 

Abraham’s explanation of his claim that “if you have more vectors than dimensions, that 

automatically makes it linearly dependent.” 

Abraham:   This is weird to explain. I got here with three vectors, now since I can span all 
of R3, then we know I can get to this point, (GG2) because this spans all of 
R3, so I know I can get to this point. (GG2) So what makes me say I can't go 
from here to there and go back that way...So if I can get three vectors there, 
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then I'm going to be able to get back there, using one of the other two vectors 
that are here (G2F9). But I'm still kind of, I want to be convinced that that's 
true, but at the same time, I don't know if I thought about it enough, because for 
some reason it just seems that you'd be able to, it's probably because I can't 
picture 3-D so well, but it seems like I should be able to make two vectors that 
don't get back here,  (F9E3) but see, that's a problem. But I know by the 
definition that if they have more vectors than entries, it has to be dependent, 
(S8F) so that convinces me. ...But in my mind, it seems like you should be 
able to.  

 
 Within this argumentation, the adjacency (F9, E3) occurred as Abraham was explaining 

to the interviewer that he was uncertain about the validity of the aforementioned claim. He 

referenced Justin’s way of explaining it (that, if there were more vectors than dimensions and 

the first n spanned Rn, then there would always exist a linear combination of those first n that 

would “let you return home” from the location of the remaining vectors, thus making the set 

linearly dependent). Here, however, Abraham stated that he thought it seemed like you should 

be able to have a vector for which this “getting back” was not possible. He concluded by stating 

he knew that a set with “more vectors than entries” had to be linearly dependent, coded (S8, F), 

but that it seemed like, to him, that it should not be true.  

 While the point of this microgenetic analysis is to investigate both Abraham’s 

mathematical reasoning about the IMT at this point in time, as well as how the analytical tool of 

adjacency matrices aided in illuminating this, it is worth mentioning that, in general, reasoning 

about the notion of linear independence as an inability to “get back home” with the vectors 

within a given set seemed to not be a very powerful metaphor in general for Abraham. The 

adjacency matrix codes that describe this way of reasoning or its negation—E3, E8, F3, and 

F9—had a relatively low frequency for Abraham when considering the semester as a whole (see 

Figure 5.41). This is in stark opposition to Abraham’s way of reasoning about span as the places 

you can get with a given set of vectors, both of which originated from the Magic Carpet Ride 

problem within the first two weeks of class. The prevalence of “getting everywhere” within 
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Abraham’s ways of reasoning is the subject of a subsequent analysis within the forthcoming 

section on Ontogenetic Analysis.  

 
5.2.2 Ontogenetic Analysis via Adjacency Matrices 

 In this final major section of the chapter, I present results regarding Abraham’s ways of 

reasoning about the IMT throughout the semester in three main categories: (a) the centrality 

measure and various implications, (b) prevalence of codes within a common theme; and (c) 

comparison of arguments related to identical prompts at two different points in time during the 

semester. Rather than repeat the parallel results at the individual level that were presented in 

Chapter 4 at the collective level, the three results I present here shed a new layer of insight into 

the utility of adjacency matrices as an analytic tool.  

5.2.2.1 The centrality measure and various implications. While the previous section 

discussed ways of reasoning that were not prevalent within Abraham’s argumentation, the 

present section presents results for those ways of reasoning that were most prevalent within 

Abraham’s argumentation. In Figure 5.41, I provided the summary data regarding the out-

degree/connection, in-degree/connection, and centrality for every vertex. The most central 

vertex, highlighted with a red frame, was G; the second highest, indicated with an orange frame, 

was E; the third (shown with yellow) was M, and the fourth most central (shown with green) 

were E2 and F.  

Taking a closer look, the most noticeable aspect was the overwhelming frequency of 

code G: the columns of A span Rn. It by far had the highest measure of centrality, and (od G) = 

59, (oc G) = 17, i(d G) = 47, and (ic G) = 19. This means that “the columns of A span Rn” was 

adjacent to seventeen different vertices with 59 different arcs, which is approximately 15% of 

the total arcs. So one vertex, vertex G, out of 100 different possible vertices, was the “if” in the 

“if-then” structure of 15% of all such pairs. To be fair, some of the questions were worded 
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“suppose the column vectors of matrix A span. T or F....” Questions like this undoubtedly boost 

the score in span’s favor. In addition to having many questions specifically asked about span, it 

also was a concept developed early in the semester, thus providing a lengthy time frame within 

which to reason about the concept statement as well as use it to reason about new concepts. 

Despite these aspects, the overall prevalence of the notion of span within Abraham’s 

argumentation is still noteworthy. Tiberghien and Malkoun (2009) discussed the notions of 

density (the number of key words or utterances in relation to the duration of a theme or 

sequence) and continuity (the distribution of key words or utterances that are most reused over 

the duration of a theme or sequence) as ways to investigate mathematical development. The 

adjacency matrix coding, coupled with the centrality measure, brought to light that reasoning 

about and with span was both a dense and continuous theme for Abraham throughout the 

semester.  

5.2.2.2 Prevalence of codes within a common theme. The codes G2, G4, H2, H3, O3, 

and P3 (listed in Figure 5.46) are each worded with language consistent with the travelling 

metaphor introduced in the Magic Carpet Ride problem in that they each highlight some aspect 

of “getting to” a certain location. Whereas the previous section (regarding Abraham’s reasoning 

in situations such that m < n) revealed that the linear (in)dependence thread of that travel 

metaphor was not prominent throughout Abraham’s reasoning, the current section concludes 

that for the concept of span, the travel metaphor of the places you can get to with a given set of 

vectors did resonate with Abraham.  

 For the six codes listed in Figure 5.46, He used at least one of them throughout the 

semester, on Days 9, 10, 17, and 31, as well as during both Interview 1 and Interview 2. They 

also occurred within the m < n, m = n, and the m > n sub-digraphs. Both of these results can be 

determined through examining the adjacency matrix A(B)tot and the adjacency matrices for the 

various sub-digraphs. This continuity (Tiberghien & Malkoun, 2009) is somewhat distinct from 
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other prominent concept themes (such as reasoning about solutions, as discussed in the previous 

Toulmin analysis section) because none of the codes in Figure 5.46 are actually the way any of 

the concept statements are worded in the IMT. In other words, it speaks to the prominence of 

the given theme of interpretations—that of “getting places”—within Abraham’s ways of 

reasoning throughout the semester and throughout the various m, n scenarios. Furthermore, the 

G2 code, which is itself not a concept statement within the IMT, had a rather high centrality 

score: the second highest for span (behind G5) and within the top ten percent of the most central 

vertices overall (see Figure 5.41).  

 OD OC ID IC 

G2. Geometric: Can use vectors to get to every point/go 
everywhere 

7 6 13 7 

G4. Direction: Can use each vector to go in a certain direction 1 1 4 2 
H2. Geometric: Can’t use vectors to get to every point/go 

everywhere in dim 1 1 2 2 

H3. Direction: Cannot go in all directions with the vectors 3 3 4 2 

O3. Reachable: There is only one way to “get to” the 
output/vector 0 0 0 0 

P3. Reachable: There is more than one way to “get to” the 
output/vector 3 1 1 1 

 

 

 

Figure 5.46. Out-degree, out-connection, in-degree, and in-connection information for the 
“getting places” themed codes. 

 
The in-degree for code G2 alone was 13, meaning it was adjacent from another vertex 

13 times; furthermore, the in-connection of G2 in Figure 5.46 shows it was adjacent from seven 

different vertices. For instance, within Question 3 of Interview 2, Abraham relied on travel 

language as he explained his inability to discern the different between “the columns of A span 

Rn” and “the column space of A is all of Rn”: 

Abraham:  Then this one, column space of A is Rn. Which is, if all the columns of A span 
all of Rn. (S2G, GS2) So this one I don't know how to decipher, really. 
Because when I think of the column space, I really literally think of the space 
that the columns can get to (S2G2, G2S2). And this is talking about the 
columns of A spanning. So I can't really discern the difference of these ones 
(S2G, GS2). Because like I said, this is to me where the columns can get 
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Red: Interview 1, Q61, Argument 1-2                Blue: Interview 2, Q1a Argument 
1 

to [points to the ‘span’ card] in this fashion. (G2G, GG2) And this one 
[points to the ‘column space’ card] is the space that the columns can get to. 
Which for me is like the same thing.  

 
5.2.2.3 Comparison of arguments related to identical prompts at two different 

points in time during the semester. In the previous Ontogenetic Analysis via Toulmin’s 

Model section, I reported on an interview questions that Abraham was asked at two different 

points in the semester, one midway through and one after the semester ended. The question 

prompt was: “True or False: If the columns of a 3x3 matrix A span R3, then the columns vectors 

of A are linearly dependent.” 

 
 

Figure 5.47. Adjacency matrix coding for Abraham’s two responses to the interview question: 
“True or False: If the columns of a 3x3 matrix A span R3, then the columns vectors of A are 

linearly dependent.” 

 
In Figure 5.47, the red entries mark Abraham’s response during Interview 1. The 

adjacency (G, E) occurred three times, presumably once when he stated the statement was false 

(a set of vectors not being linearly dependent was coded as them being linearly independent). 

The only other vertex adjacent from G was vertex I: the row-reduced echelon form of A has n 

pivots. However, he did not continue that chain of implication, which can be seen by noting that 

the out-degree of row I is zero. Abraham’s response also included (E, E1) twice and (E1, E2) 

E E1 E2 E3 E4 E5 E6 E7 E8
E.   Column vectors of A are linearly independent 2
E1. Trivial: Only solution to Ax = 0 is trivial solution 1
E2. Unique: There is a unique soln to matrix eqn/system of eqns 2
E3. Travel: Can't get back (home)/get to origin with column vectors of A

E4. Geometric: Vectors are not parallel/on the same line or plane

E5. Proportional: No vector is a scalar multiple of another

E6. Linear combination: No vector is a linear combo of another

E7. Placement: No vector is in the span of the other vectors

E8. Extra: Do not have an extra vector needed in order to return home

G G1 G2 G3 G4 G5 I I1 I2 I3 I4 I5 I6

G.   Column vectors of A span Rn 31
G1. Size: Are enough vectors to span the entire space

G2. Geometric: Can use vectors to get to every pt/go everywhere

G3. Algebraic: Is a linear combination of vectors for all pts in Rn

G4. Direction: Can use each vector to go in a certain direction

G5. Solution: There is a solution to Ax=b for every b

11

I.    Row-reduced echelon form of A has n pivots
I1. Diagonal: RREF(A) has all ones on the main diagonal

I2. Identity: Can row-reduce / is row equivalent to the identity 

I3. Pivot-R: Is a pivot in each row

I4. Pivot-C: Is a pivot  in each column 1
I5. Free Variable: Each variable is defined in system/matrix eqn

I6. Zeroes:  RREF(A) has no rows of zeroes

1

1
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once. Thus, the red entries in Figure 5.47 illustrate that Abraham’s explanation for span  

linearly independence (a) repeated the claim three times, said one implication (G to I) but did 

not continue from I to other vertices, and never completed a discernible chain of reasoning from 

the given concept statement G to the implied (concept statement E).  

In the second interview, however, his explanation was structured differently. The blue 

entries in Figure 5.45 mark his response during Interview 2. He stated the implication (G, E) 

only once, presumably as he stated the question prompt was a false statement. Next, examining 

the other entry in the G row, one sees it is adjacent to I. Indeed, an entire chain of reasoning can 

be followed by tracing that string of blue entries within Figure 5.45, namely: 

GII3I4E2E. From only reading the concept statements or interpretations associated 

with this codes, this chain would read: “the columns of A span all of Rnthe RREF(A) has n 

pivotsthere is a pivot in each rowthere is a pivot in each columnthere is a unique solution 

to Ax = b for every the columns of A are linearly independent.” If one considers the transcript 

of this argument, provided in the Toulmin analysis of this argument (see Table 5.2 or Figure 

5.33), it can be seen that the above translation from this chain of adjacency matrix codes very 

nearly matches Abraham’s given explanation.  

 The results from investigating and comparing the adjacency matrix codes for these two 

arguments are twofold. First, it revealed a marked shift in Abraham’s ways of reasoning about 

why three spanning vectors in R3 must also be linearly independent. Within the first interview, 

he had no discernible chain of reasoning between the two concept statements, but rather 

repeated the claim a few times. He also only stated one other concept statement, which he did 

not pursue. Within the second argument, Abraham provided a mathematically valid chain of 

reasoning that utilized the concept of pivot in a relatively sophisticated way in order to justify 

the claim. Second, comparing the adjacency matrix coding of these two arguments demonstrates 

the power and validity of adjacency matrices as an analytical tool for investigating ways in 
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which students reason about various mathematical concepts and relationships over time. Finally, 

a comparison of the strengths and affordances of the two analytical tools (Toulmin’s Model and 

adjacency matrices) to analyze this particular pair of arguments is presented in the chapter’s 

conclusion.  

 

5.3 Conclusion 
 
 Utilizing adjacency matrices as an analytic tool on Abraham’s ways of reasoning 

throughout the semester revealed a variety of noteworthy results. Within the microgenetic 

analysis section, I reported on Abraham’s tendency to reason about the negation of concept 

statements from the IMT in order to justify their equivalence. I determined this result by 

examining the out-degree/connection and in-degree/connection information for every vertex in 

the adjacency matrix associated with his set of argumentations. The concept statements of “the 

determinant of A is zero” and “the number zero is an eigenvalue of A,” which are the negation 

of how the ideas are stated in the IMT, each scored higher in the four aforementioned measures 

then their respective counterpoints. I also presented one example of how the adjacency matrix 

for the m < n sub-digraph, by revealing a mathematically incorrect adjacent pair of vertices, 

indicated a noteworthy argument within which Abraham struggled to develop a way of 

reasoning about a generalization he knew to be true but that “went against his intuition.”  

 When compared to a potential Toulmin analysis, reasoning about the negations would 

not appear so cleanly. However, Abraham’s reflective statements regarding his own ways of 

understanding the equivalence is lost when using adjacency matrix analysis alone. For instance, 

there was no way to code that something “went against his intuition” within the adjacency 

matrix analysis.  

 For ontogenetic analysis, I focused on three themes. First, the centrality measure 

showed that code G: the columns of A span Rn,” was by far the most central concept statement 
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within Abraham’s ways of reasoning. Despite having many questions specifically asked about 

span and also being a concept developed early in the semester, the overall prevalence of the 

notion of span within Abraham’s argumentation is still noteworthy. Tiberghien and Malkoun 

(2009) discussed the notions of density and continuity as ways to investigate mathematical 

development. The adjacency matrix coding, coupled with the centrality measure, brought to 

light that reasoning about and with span was both a dense and continuous theme for Abraham 

throughout the semester.  

Second, I utilized the total adjacency matrix A(B)tot to investigate vertices bound 

together by a common theme. In particular, I took note of all concept statements or 

interpretations worded with language consistent with “getting to” a certain location. This 

revealed that the interpretation of span as the places you can get to resonated with Abraham. In 

particular, code G2 (“you can get everywhere with the columns of A”) was in the top ten 

percent of the most central vertices overall. This is noteworthy because this was not actually a 

concept statement within the IMT, yet it was very prominent within Abraham’s ways of 

reasoning.  

Finally, I compared the adjacency matrix coding for two arguments from an identical 

interview question. This revealed a marked shift in Abraham’s ways of reasoning about why 

three spanning vectors in R3 must also be linearly independent. Within the first interview, he 

had no discernible chain of reasoning between the two concept statements, whereas within the 

second he was able to provide a mathematically valid chain of reasoning to justify the claim. 

This comparison added support to the power and validity of adjacency matrices as an analytical 

tool for investigating ways in which students reason about various mathematical concepts and 

relationships over time.  

This chapter presented a variety of results concerning Abraham’s ways of reasoning 

throughout the semester about the Invertible Matrix Theorem. Each analytical tool contributed a 
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glimpse into understanding Abraham that the other did not. For instance, Toulmin’s model 

allowed me a way to capture Abraham’s reflection on his own learning in a way that adjacency 

matrices did not. The example captured in Figures 5.28, when within his portfolio response he 

explained how he had thought about span in the past and what he had learned (e.g., “I had no 

clue,” “it seemed logical,” etc.), had no way of being coded within adjacency matrix analysis. 

On the other hand, adjacency matrix analysis had powerful implication by providing easy to 

find holistic, macrogenetic information regarding with ideas were the most central and for 

Abraham throughout the entire semester.  
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CHAPTER SIX: CONCLUSION 
 
 

In this study, I considered the development of mathematical meaning for both the 

classroom community and an individual by analyzing student reasoning about the Invertible 

Matrix Theorem over the course of the semester. To do so, I coordinated results from two tools 

in discourse analysis, Toulmin’s model and adjacency matrices, and utilized the cultural change 

notions of microgenesis and ontogenesis as strands through which to analyze change over time 

at both the individual and collective levels. This work addressed the following two overarching 

research questions:  

1. How did the collective classroom community reason about the Invertible Matrix 

Theorem over time?  

2. How did an individual student, Abraham, reason about the Invertible Matrix 

Theorem over time?  

This work drew on the perspective that mathematics is a human activity (Freudenthal, 

1991) and was undergirded theoretically by the emergent perspective (Cobb & Yackel, 1996). 

This perspective on learning coordinates psychological constructivism and interactionism. From 

the position that learning is both an individual and a social process, within neither given 

primacy over the other, investigating mathematical development involves considering the 

individual’s development as well as the collective activity and progression of the community in 

which the individual learner participates. The data for this study came from the third iteration of 

a classroom teaching experiment (Cobb, 2000) in an inquiry-oriented introductory linear algebra 

class (Rasmussen & Kwon, 2007).  

 My work was influenced methodologically by other research that investigates the 

emergence, development, and spread of ideas in a classroom community over time (e.g., Cobb, 

Stephan, McClain, & Gravemeijer, 2001; Cole et al., 2011; Rasmussen & Stephan, 2008; Saxe, 
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2002; Saxe et al., 2009; Tiberghien & Malkoun, 2009). The emergence and development of 

ways of reasoning about the Invertible Matrix Theorem occurred not only for the classroom as a 

collective entity but also for each individual student. These two forms of knowledge genesis—

on an individual and on a collective level—are inextricably bound together in their respective 

development. This dissertation lays a substantial foundation towards building theory and 

understanding that individual and collective-level development with respect to the Invertible 

Matrix Theorem, as well as towards laying a foundation methodologically for the coordination 

of those developments.  

In Chapter 3, I described a 6-Phase analysis through which I pursued my research 

questions. Table 6.1 illustrates how Phases 2-6 were actualized within Chapters 4, 5, and 6. 

After the first phase of data reduction, during Phases 2 and 3 I conducted microgenetic analysis 

through Toulmin’s Model and adjacency matrices, respectively. Phases 4 and 5 compiled the 

results of that microgenetic analysis for analysis at the ontogenetic level though Toulmin’s 

Model and adjacency matrices, respectively. The focus of the present chapter is Phase 6, a 

comparison of the results from the two analytical tools across both levels of analysis.  

 
Table 6.1. Coordination between phases of analysis and organization of Chapters 4-6. 

 Chapter Four: 
Collective  

Chapter Five: 
 Individual  

Chapter Six:  
Conclusion 

Phase 2: Microgenetic Analysis 
via Toulmin’s Model Section 4.1.1 Section 5.1.1  

Phase 4: Ontogenetic Analysis 
via Toulmin’s Model Section 4.1.2 Section 5.1.2  

Phase 3: Microgenetic Analysis 
via Adjacency Matrices Section 4.2.1 Section 5.2.1  

Phase 5: Ontogenetic Analysis 
via Adjacency Matrices Section 4.2.2 Section 5.2.2  

Phase 6: Comparison of results from the two 
analytical tools across both levels of analysis Section 4.3 Section 5.3 Section 6.2 

 
After presenting a summary of the results from Chapters 4 and 5, I compare results across the 
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two analytical tools and discuss various aspects of their strengths and limitations. The chapter 

concludes with implications for teaching and potential avenues for future research.   

 

6.1 Summary of Results 
 
6.1.1  Chapter Four: Analysis at the Classroom Level 
 
 Within Chapter 4, I presented results concerning the classroom community’s ways of 

reasoning about the Invertible Matrix Theorem over the course of the semester. Insights into 

both mathematical development via normative ways of reasoning and structure of 

argumentation that were revealed from both analytical tools are subsequently summarized. 

6.1.1.1 Results from Toulmin’s Model of Argumentation. I defined four types of 

argumentation schemes that are an expanded version of Toulmin’s model. These expanded 

structures—Embedded, Proof by Cases, Linked, and Sequential (see Figure 6.1)—developed 

out of necessity when the original 6-part Toulmin’s scheme proved inadequate while analyzing 

argumentation of the classroom community. Aspects of these four expanded structures were 

adapted from and are compatible with those presented by Aberdein (2006, 2009).  

Figure 6.1. Definitions of the expanded Toulmin scheme structures developed in Chapter 4. 
 

In the ontogenetic analysis via Toulmin’s Model section, I presented two classroom 

mathematics practices: (a) Reasoning about span and linear independence as equivalent ideas 

for square matrices, and (b) Determining whether or not a transformation T: Rn  Rm is onto Rm 

Expanded Toulmin Scheme Structures 
1. Embedded structure: When data or warrants for a specific claim so complex, they had 

minor embedded arguments within them 
2. Proof by Cases structure: When claims were justified using cases within the data and/or 

warrants 
3. Linked structure: When data or warrants for a specific claim had more than one aspect 

that were linked by words such as “and” or “also” 
4. Sequential structure: When data for a specific claim contained an embedded string of if-

then statements, where a claim became data for the next claim 
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by considering the span of the column vectors of the associated matrix (see Figure 6.2). The 

first was a collection of four normative ways of reasoning that focused on span and linear 

independence for non-square cases (normative ways of reasoning 1.1 and 1.2), as well as, in the 

m = n case, reasoning about linear independence implying span and vice versa (1.3 and 1.4). 

The second classroom mathematics practice was constituted by a collection of three normative 

ways of reasoning that made use of the travel language to consider onto as “getting everywhere” 

(2.1), established the equivalence of “ the span is all Rn” and “the transformation is onto Rn” 

(2.2), and reasoned about onto transformations when m < n (2.3).  

 
Figure 6.2. The two classroom mathematics practices and associate normative ways of 

reasoning presented in Chapter 4. 
 

  6.1.1.2 Results from Adjacency Matrix Analysis. Within the microgenetic analysis 

via adjacency matrices section, I presented two categories of results regarding (a) where within 

a category an argumentation occurred, and (b) the type of sub-digraph in which the 

argumentation occurred. For (a), I reported on two main structures that existed in the data. First, 

Classroom Mathematics Practice #1:  
Reasoning about Span and Linear Independence as Equivalent Ideas for Square Matrices 
 
Associated Normative Ways of Reasoning: 
1.5 For a given set of n vectors in Rm, if m < n, the set must be linearly dependent.  
1.6 For a given set of n vectors in Rm, if m > n, the set cannot span all of Rm. 
1.7 If A is n x n and the columns of A span Rn, then the columns of A are linearly independent.  
1.8 If A is n x n and the columns of A are linearly independent, then the columns of A span Rn. 

Classroom Mathematics Practice #2:  
Determining whether or not a transformation T: Rn  Rm is onto Rm by considering the span of the 
column vectors of the associated matrix A.  
 
Associated Normative Ways of Reasoning: 
2.1 A transformation T: Rn  Rm is onto Rm when you can “get everything” or “get everywhere” 

and not onto Rm when you cannot.  
2.2 “A transformation T: Rn  Rm is onto Rm” is interchangeable with “the column vectors of the 

associated matrix A span all of Rm.” 
2.3 For a given transformation T: Rn  Rm, if m > n, the transformation is not onto Rm. 
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when the argumentation served towards developing a way of reasoning about a new concept or 

connection between two concepts, the argument involved multiple uses of the “interpretation” 

subcodes; and (b) when the argumentation made use of relatively well-established concepts or 

connections between concepts, the argument involved mainly the concept statement codes.  

The results of ontogenetic analysis via adjacency matrices were presented in two 

sections: those arguments involved in documenting the first classroom mathematics practice, 

and the compilation of all coded arguments. In the first section, analysis of the m < n and m = n 

sub-digraphs revealed high levels of compatibility with the Toulmin analysis for CMP 1. The 

results from analyzing the adjacency matrices for the compilation of all coded arguments were 

presented according to three categories: (a) centrality measures and implications for all m, n 

types; (b) frequencies and implications for individual cells; and (c) shifts in argumentation over 

the course of the semester. For (a), I reported that vertex G and vertex F had the highest and 

second highest centrality, respectively, in A(T)tot. Furthermore, for both G and F, neither their 

in-connections nor out-connections were mutually exclusive across m, n types. These two 

analyses indicate that a high level of participation across numerous adjacent vertices and across 

the different m, n sub-digraphs.  

The second category revealed that the adjacency matrix A(T)tot was also an informative 

tool regarding the participation of individual cells in the classroom discourse. It revealed which 

adjacency pair occurred the most often throughout the semester and which occurred on the 

highest number of days. These two analyses lend themselves to alignment with the notions of 

density and continuity of ideas, respectively (Tiberghien & Malkoun, 2009). Finally, the third 

category of results focused on shifts in argumentation patterns over the course of the semester. 

By considering the entries in the total adjacency matrix according to the color that corresponds 

to the day during the semester from which the entries originated, a summary of the emergence 

and shift of the collective’s mathematical ways of reasoning were revealed. 
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6.1.2 Chapter Five: Analysis at the Individual Level 
 
 In Chapter 5, I presented results concerning Abraham’s ways of reasoning about the 

Invertible Matrix Theorem over the course of the semester. Insights into both Abraham’s 

mathematical development and broader aspects regarding structure of argumentation and 

methodological results are summarized here.  

6.1.2.1 Results from Toulmin’s Model of Argumentation. In the microgenetic 

analysis section, I reported that, as was the case in the collective-level analysis, the expanded 

Toulmin schemes introduced in Chapter 4 were sometimes necessary to best capture the 

structure of Abraham’s argumentation. I provided examples of how three of the expanded 

structures—Embedded, Linked, and Sequential—were used to analyze Abraham’s ways of 

reasoning. Within the second half of the microgenetic section, I presented results concerning 

how Abraham interacted with the notion of equivalence when reasoning about the IMT. I 

defined two terms, conceptual equivalence and logical equivalence, to describe the nature by 

which Abraham’s argumentation described the equivalence between different pairs of concept 

statements from the IMT. I defined conceptual equivalence as the absence of differences in 

meaning between two or more concept statements and logical equivalence as the existence of 

logical deductions between two or more concept statements; I provided examples of both.  

In the ontogenetic analysis section, I chose to focus on the shifts in form and function 

regarding Abraham’s ways of reasoning about (a) span and linear independence in combination, 

and (b) solutions to matrix equations Ax = 0 and Ax = b. Regarding (a), I provided a descriptive 

overview of Abraham’s ways of reasoning and two categories of selected analyses. First, I 

reported on shifts in composition of arguments and placement of concepts within the arguments. 

Specifically, the composition of Abraham’s arguments shifted as he first made claims with little 

justification (shown through a low frequency of data and warrants) and/or expressed sentiments 

of uncertainty (shown in his particular qualifiers). He eventually presented well-developed 
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justifications for these original claims. Additionally, concept placement with the arguments 

shifted throughout the semester, as those that Abraham first had trouble justifying later 

functioned as the mathematical ideas through which he justified new claims. The second 

category of analysis involved comparing Abraham’s responses to identical question prompts at 

different instances during the semester in order to determine shifts in form and function. 

Regarding (b), I concluded the ontogenetic analysis section by presenting results concerning 

Abraham’s prevalent use of reasoning about solutions to the matrix equations Ax = 0 as well as 

Ax = b to make and support claims.  

6.1.2.2 Results from Adjacency Matrix Analysis. Within the microgenetic analysis 

section, I reported on Abraham’s tendency to reason about the negation of some concept 

statements from the IMT in order to justify their equivalence. I determined this result by 

examining the out-degree/connection and in-degree/connection information for every vertex in 

the adjacency matrix associated with his set of argumentations. The concept statements of “the 

determinant of A is zero” and “the number zero is an eigenvalue of A,” which are the negation 

of how the ideas are stated in the IMT, each scored higher in the four aforementioned measures 

then their respective counterpoints. I also presented one example of how the adjacency matrix 

for the m < n sub-digraph, by revealing a mathematically incorrect adjacent pair of vertices, 

indicated a noteworthy argument within which Abraham struggled to develop a way of 

reasoning about a generalization he knew to be true but that “went against his intuition.”  

 Within the strand of ontogenetic analysis, I chose to focus on three themes. First, the 

centrality measure showed that code G: “the columns of A span Rn,” was by far the most central 

concept statement within Abraham’s ways of reasoning. Despite having many questions 

specifically asked about span and also being a concept developed early in the semester, the 

overall prevalence of the notion of span within Abraham’s argumentation is still noteworthy. 

Tiberghien and Malkoun (2009) discussed the notions of density (the number of key words or 
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utterances in relation to the duration of a theme or sequence) and continuity (the distribution of 

key words or utterances that are most reused over the duration of a theme or sequence) as ways 

to investigate mathematical development. The adjacency matrix coding, coupled with the 

centrality measure, brought to light that reasoning about and with span was both a dense and 

continuous theme for Abraham throughout the semester.  

Second, I utilized the total adjacency matrix A(B)tot to investigate vertices bound 

together by a common theme. In particular, I took note of all concept statements or 

interpretations worded with language consistent with “getting to” a certain location; this 

language grew out of the class’s work with the Magic Carpet Ride problem and its underlying 

travel metaphor. The analysis revealed that the interpretation of span as the places you can get 

to resonated with Abraham. In particular, code G2 (“you can get everywhere with the columns 

of A”) was in the top ten percent of the most central vertices overall. This is noteworthy because 

this was not actually a concept statement within the IMT, yet it was very prominent within 

Abraham’s ways of reasoning. Finally, I compared the adjacency matrix coding for two 

arguments from an identical interview question. This revealed a marked shift in Abraham’s 

ways of reasoning about why three spanning vectors in R3 must also be linearly independent. 

Within the first interview, he had no discernible chain of reasoning between the two concept 

statements, whereas within the second he was able to provide a mathematically valid chain of 

reasoning to justify the claim. This comparison added support to the power and validity of 

adjacency matrices as an analytical tool for investigating ways in which students reason about 

various mathematical concepts and relationships over time. 

 
6.1.3 Summary of Methodological Contribution and Significance 
 
 Through completing the analysis in pursuit of my two research questions, three main 

methodological contributions for the field of mathematics education came to the fore. First, the 
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introduction and use of the expanded Toulmin scheme is a significant contribution to the field in 

that it advances the way Toulmin’s Model of Argumentation is used in mathematics education 

research. While Toulmin’s Model has been used in this field since Krummheuer (1995), the 

majority of research has only utilized the “core” of the argument—data, claim, and warrant. The 

work of Inglis, Mejia-Ramos, and Simpson (2007) argued for the use of the full 6-part Toulmin 

scheme, placing special emphasis on modal qualifiers, and Weber, Maher, Powell, and Lee 

(2008) made use of the 6-part scheme to analyze classroom-level debate. The need for the 

expanded Toulmin scheme in the present study may have been a function of the nature of the 

mathematical content at hand—that of linear algebra. An introductory linear algebra course 

often serves as a transitional point for students as they progress from more computationally 

based courses to more abstract courses that feature reasoning with formal definitions and proof 

construction. Thus, the complexity of proof-oriented argumentation involving formal, abstract 

concepts may have played a large role in why the expanded structures were needed. How may 

the expanded Toulmin scheme be helpful or necessary in analyzing other linear algebra data 

sets, or even other content domains? As such, the expanded structures may prove to be a 

powerful tool in developing theory and analyzing student development with regards to the 

discipline-specific practice of proving.  

 Second, the further adaptation and refinement of adjacency matrices as an analytic tool 

is a worthwhile pursuit for the field of mathematics education research. The work of Selinski, 

Rasmussen, Zandieh, and Wawro (2011) laid a strong foundation for the methodological 

guidelines in analyzing student thinking with this tool. That work differed from the present 

study in two main ways. First, Selinski et al. refined their methodology through an in-depth 

analysis of post-semester individual interviews with nine students. My research adapted and 

extended that work by using adjacency matrices on a data set that spanned the entire semester, 

rather than at one moment in time. Second, my current study also used adjacency matrices on 
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the collective level of analysis. As such, it opens a door towards the possibility of gaining new 

insight into collective ways of reasoning and refining a new tool for this work.  

  Finally, the present study lays a strong foundation for a 2-fold analytical coordination. 

The first, coordinating results from adjacency matrix analysis with those from Toulmin’s Model 

demonstrates that the results from both tools were often compatible, however the tools vary in 

their respective strengths and limitations; this coordination is discussed further in the 

subsequent section. Second, as is elaborated within the Avenues for Future Research section in 

this chapter, the results of the present study lay a foundation towards coordination between the 

individual and collective levels.  

 

6.2 Discussion of the Two Analytical Tools 
 

 Within this section I summarize some of the points of compatibility and points of 

distinction that were revealed through using both Toulmin’s model and adjacency matrices on 

the same data set. In what ways was adjacency matrix analysis compatible with the 

methodology for documenting normative ways of reasoning and classroom mathematics 

practices (Cole et al., 2011; Rasmussen & Stephan, 2008)? What was illuminated through 

Toulmin analysis but not in adjacency matrices, and vice versa? I conclude with an extended 

treatment regarding limitations of the adjacency matrix coding. 

 
6.2.1 Points of compatibility 

Within Chapter 4, I first documented a classroom mathematics practice for reasoning 

about span and linear independence as equivalent ideas in square matrices by using Toulmin 

scheme. I then analyzed the same set of arguments with adjacency matrices to investigate what 

similar and distinct results were revealed. Many aspects of the classroom’s normative ways of 

reasoning that were established using Toulmin’s model were also apparent through adjacency 
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matrix analysis. By computing centrality for the various concept statements, those with a high 

degree of participation in the overall argumentation were revealed. In the case of A(P1)m=n, 

concept statement G (“the columns of A span Rn”) had the highest measure of centrality. I then 

constructed a digraph of these connections in order to investigate how the use of “the columns 

of A span Rn” shifted over the time. Second, within the m =n sub-digraph for CMP 1, the 

adjacency (E4, G) was utilized in order to support a new claim. The vertex E4 was “vectors are 

not parallel/on the same line,” thus this use of (E4, G) coincides with the second normative way 

of reasoning from Toulmin analysis, “The span of two non-parallel vectors in R2 is all of R2.”  

On a more general note, other aspects between the two analyses have potential to be 

complimentary as well. For instance, a vertex with a high out-connection means that the vertex 

was adjacent to a variety of other vertices. Given that the adjacency (u, v) for vertices u and v 

could be read as “if u then v,” a vertex with a high out-connection means that the concept 

statement or interpretation represented by that vertex served as data for a variety of claims. This 

is precisely what was presented as Criterion 3 for documenting normative ways of reasoning 

(Cole et al., 2011). High diversity within a particular cell (such as the (G, E) cell), rather than 

over a particular row, indicates that the given implication (rather than a given concept) served a 

role in multiple arguments. While the specifics of the argumentation that these adjacent pairs 

belong to is not provided in the adjacency matrix, knowing on which days the pairs occurred 

provides easily accessible information regarding what concepts during the semester the pairs are 

used to reason about. This allows an analysis compatible with Criterion 2 (Rasmussen & 

Stephan, 2008).  

 
6.2.2 Points of distinction 

Each analytical tool often provides information that is difficult to glean from the other. 

For instance, by separating the argumentation into sub-digraphs according to whether students 
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were reasoning about m < n, m = n, m > n, or any m, n pair for adjacency matrix analysis 

illuminated aspects of student reasoning that were not so readily apparent within Toulmin’s 

model. Even though the Invertible Matrix Theorem is a set of equivalent statements of square 

matrices, this analysis helped to illuminate the role that reasoning about non-square matrices 

played in argumentation throughout the semester. Adjacency matrix analysis also provides a 

different sense of the entire data set at a glance than is possible with Toulmin’s model. It 

provides an efficient, quantitative-oriented way to see, for instance, that Abraham hardly 

reasoned about “the determinant of A is nonzero” but rather preferred its negation. Toulmin’s 

model has no readily efficient way to determine results such as this at a broad ontogenetic level.  

 Toulmin’s model also revealed characteristics of argumentation that adjacency matrices 

did not. For instance, adjacency matrices—as created for the study reported here—had no way 

to code for aspects of uncertainty. That loosely correlates to losing the ability to code for 

qualifying statements, such as, “it seems like,” or, “I just know it’s true.” Furthermore, Toulmin 

analysis was not restricted by the set of 100 codes that were used to code argumentation within 

adjacency matrices. Thus, Toulmin’s model allowed me to stay closer to the data by using 

actual quotes from the transcript as the constituent parts of any given Toulmin scheme. 

 
6.2.3 Limitations of adjacency matrices 

Given that using adjacency matrices as analytic tools is a rather novel approach within 

mathematics education research, I conclude this section with a few limitations of this novel 

approach. First, the structure of an adjacency matrix can be limiting in two ways: (a) even 

though the various vertices are developed through grounded theory, there is still an inferential 

risk when coding utterances with those codes; and (b) the “if-then” structure is restricting on 

explanations that do not follow that in a clean way. Regarding (a), for instance, if Abraham 

reasoned about a specific 3x3 matrix or a general n x n matrix, there is no way to distinguish 
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that within the adjacency matrix coding. Thus, one loses some degree of specificity when 

developing one set of codes that work for all data. Regarding (b), there was no clean way to 

code statements of the form “ (p and q)  r” without straying too far from sense of the original 

utterance.  

Second, as mentioned in the previous comparison with Toulmin’s model, adjacency 

matrix coding does not account for “qualitative” aspects such as a student’s inability to explain, 

as well as any reflective utterances. For instance, Abraham said more than once that he liked to 

reason about negations; that information is not captured with this coding scheme. Finally, I 

made the choice to try to keep the set of vertices as close as possible to only be about concept 

statements within the IMT or interpretations of those statements. Thus, reasoning about other 

notions, such as what translating between matrix equation and vector equation notation implies 

for what it means to be a solution, were not captured in the present study.  

 
 

6.3 Implications for Teaching 
 

 What is learned through investigating the learning and teaching of linear algebra via 

design research inevitably has important implications for teaching. Indeed, the “intimate 

relationship between the development of theory and the improvement of instructional design for 

bringing about new forms of learning” (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) is a 

significant benefit of conducting a study that was part of a semester-long classroom teaching 

experiment (Cobb, 2000). In this section I present three implications for teaching that arise from 

the results of my research into students’ ways of reasoning about the IMT over time.  

 
6.3.1 Implications of the Magic Carpet Ride Problem on students’ reasoning about the 
Invertible Matrix Theorem 
 

In the Magic Carpet Ride problem students worked with an experientially real problem 

setting of travel in two and three dimensions as they developed more formal ways of reasoning 
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about properties of vectors and vector spaces (Wawro, Rasmussen, Zandieh, Sweeney, & 

Larson, 2011). Within that task sequence, the class first reasoned about span by considering “all 

the places you could get” with a linear combination of a set of given vectors. Furthermore, 

linear dependence was first explored as a property of a certain type of modes of transportation 

that allowed you to complete a journey that began and ended at home (find a nontrivial solution 

to the vector equation c1v1 + c2v2 = 0). Implications for teaching that arise from the current 

study of students’ ways of reasoning about the IMT are (a) to further investigate how this 

problem setting aided students in developing sophisticated ways of reasoning about formal 

definitions, and (b) to adjust the instructional sequence when necessary.  

As illustrated in the following excerpt from Interview 1 with a student, Jerry, the Magic 

Carpet Ride scenario offered students rich imagery to make sense of formal definitions.  

Interviewer: Different people think about concepts in mathematics differently. I want to 
know, how you think about linear independence? 

Jerry:   Linear independence. Really, it goes way back to the first Magic Carpet 
problem. I think it's actually the first thing that enabled me to grasp it. Because 
I did take the class once before, and it was just definitions. I never would have 
thought of it as being, you have a set of vectors, can you get back to the same 
point? That never occurred. It's all abstract if you don't have that analogy. 

 
While Jerry’s statement provides evidence that the Magic Carpet Ride problem instructional 

sequence was beneficial for him, this dissertation contributes data that adds additional support 

of this benefit at both the collective and the individual level. One example from the collective 

level is the establishment of the first normative way of reasoning within the second classroom 

mathematics practice. This normative way of reasoning was, “A transformation T: Rn  Rm is 

onto Rm when you can ‘get everything’ or ‘get everywhere’ and not onto Rm when you cannot.” 

This idea that functioned as-if shared within the classroom was integral within the classroom 

mathematics practice of determining whether transformations were onto by reasoning about the 

span of a set of vectors. The Magic Carpet Ride instructional sequence provided a situational 

activity through which students developed a way of reasoning about span that they leveraged 



  
283 

 

later in the semester to reason about new mathematical concepts. The fact that the language of 

“getting everywhere” was prominent throughout the semester provides evidence that the travel 

metaphor, instantiated through the Magic Carpet Ride sequence, not only offered students rich 

imagery to make sense of formal definitions, but also served to support their ways of reasoning 

about new mathematical concepts.  

 At the individual level of analysis, Chapter 5 discussed the prominence of the “getting 

everywhere” within Abraham’s ways of reasoning, even within the last interview after the 

semester ended. Recall his explanation for why “the column space of A is all of Rn” and “the 

columns of A span Rn” are equivalent statements:  

Abraham:  So this one I don't know how to decipher, really. Because when I think of the 
column space, I really literally think of the space that the columns can get to. 
And this is talking about the columns of A spanning. So I can't really discern 
the difference of these ones. Because like I said, this is to me where the 
columns can get to [points to the ‘span’ card] in this fashion. And this one 
[points to the ‘column space’ card] is the space that the columns can get to. 
Which for me is like the same thing (emphasis added). 

 
For Abraham, the travel language that the class developed regarding the mathematical concepts 

related to span was extremely salient. The travel language associated with linear independence, 

however, was less so. The adjacency matrix analysis presented in Chapter 5 revealed that, for 

Abraham, the vertices associated with the ability (or inability) to “get back home” had a low 

frequency of use within his argumentation throughout the semester. Just because Abraham did 

not make extensive use of travel imagery is not necessarily a deficiency. On the contrary, it is 

possible that it shows a true sophistication on Abraham’s part in that he moved away from 

situational activity towards more general and formal activities, which, by definition, do not rely 

on the original problem setting (Gravemeijer, 1999). The issue, however, is whether the 

situational activity was pivotal for Abraham as he developed more formal ways of reasoning 

with and about linear independence.  
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 How does this inform teaching? In broad terms, it shows that the Magic Carpet Ride 

sequence is fruitful for assisting students in developing sophisticated ways of reasoning about 

formal mathematical definitions, and it is worth refining and implementing in future instruction. 

Although we see that the span travel language was ubiquitous at both the individual and the 

collective level in the present study, Jerry’s quote above and the evidence from analyzing 

Abraham are somewhat contradictory regarding the power of the task sequence in grounding 

students’ ways of reasoning about linear (in)dependence. The implication is two-fold: First, 

further investigation, accomplished through analyzing more individual students’ ways of 

reasoning, is necessary in order to see how, if it all, the travel language from the Magic Carpet 

Ride problem was prevalent or powerful for other individuals. Second, continue to refine the 

instructional sequence according to the implications of this further research. It could be the case 

that a different situational activity related to linear (in)dependence would provide a more 

fruitful starting point for students. For instance, reasoning about unique solutions to any 

equation Ax = b was very powerful for Abraham. Possibly shifting the original situational 

activity towards something that would lend itself to reasoning about unique solutions may prove 

to be more powerful for more students than the original setting of “trying to get back home.” 

Additional research is needed to address this open question. 

 
6.3.2 Weaknesses in the ways of reasoning about the transformation-oriented concept 
statements in the Invertible Matrix Theorem 
 

Recall from Chapter 4 that the classroom mathematics practice analysis revealed a 

distinction, if not a weakness, in the ways of reasoning about some of the transformation-

oriented concept statements within the IMT. The first classroom mathematics practice focused 

on ways of reasoning about span and linear independence as equivalent ideas for square 

matrices; I was surprised that I was unable to find data to support the existence of an analogous 

classroom mathematics practice regarding one-to-one and onto transformations. Rather, I found 
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a collection of normative ways of reasoning around the notion of determining if a 

transformation is onto by reasoning about span. What is a possible explanation for the 

distinction between the two classroom mathematics practices? Why did the second not develop 

the same as the first? Within the collective argumentation analyzed in Chapter 4, I found that 

the justification of the equivalence of one-to-one and onto was firmly tied to the equivalence of 

span and linear independence in the case of m equals n (see Figure 4.46). Other arguments 

within the collective-level data set, although not included within a particular classroom 

mathematics practice presented here, indicated a similar lack of transformational reasoning 

(e.g., concluding that matrices are invertible because of calculational issues regarding finding a 

C such that AC = I rather than because of inability to “undo” a transformation).  

Similar issues seemed to exist for Abraham as well. Abraham, as reported in Chapter 5, 

developed consistent and accurate ways of reasoning about one-to-one and onto. For instance, 

he reasoned about transformations that were not one-to-one in order to establish equivalence 

between matrices with determinant of zero and linearly dependent column vectors. He was not 

as strong, however, when reasoning about invertibility. During the second interview, he 

struggled to explain a connection between one-to-one, onto, and invertibility. One possible 

explanation for this may be the phrasing of the concept statements in the Invertible Matrix 

Theorem itself. The statements about invertibility were matrix-oriented: “matrix A is 

invertible,” and “there exists a matrix C such that AC = I and CA = I.” Consider the equivalent 

concepts worded in terms of linear transformations: “linear transformation T is invertible,” and 

“there exists a linear transformation S such that T(S(x)) = x and T(S(x)) = x.” Although the 

matrix-oriented version may be helpful in some scenarios (such as relating why a matrix A is 

not invertible if its determinant is zero through exploring the row-reduced echelon form of A 

and seeing that [ A | I ] ~ [ I | A-1 ] is not possible), it was not helpful, at least for Abraham, when 

trying to see that a one-to-one and onto function is an invertible function, and vice versa.  
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This “context shift” between matrix-oriented and transformation-oriented concept 

statements in the IMT is not unlike switching between various modes of representation (Hillel, 

2000). Teachers are often not aware when they ask students to move between orientations, and, 

as Hillel stated, this is one aspect that makes linear algebra a difficult content area to learn and 

to teach. The fact that the IMT is a collective of equivalent statements that all “say the same 

thing but in different ways” is not a hindrance but a strength. Making this explicit with students 

may help them see the power of the IMT. It may also illuminate subtleties that help students see 

when it is the right situation to use the various concept statements (i.e., linear independence is a 

property of a set of vectors and to caution against saying “the matrix is linearly independent”).  

 
6.3.3 Varieties of Equivalence within the Invertible Matrix Theorem 

 
 In Chapter 5, I reported that Abraham had two main ways of explaining why concept 

statements were equivalent: they were indistinguishable and/or defined in terms of each other 

(conceptual equivalence), or they could be shown to be connected through a sequence of if-then 

deductions (logical equivalence). These two types of equivalency might have arisen because the 

notion of equivalence is not consistent within the IMT. For instance, consider the concept 

statements “the columns of A are linearly independent” and “the only solution to Ax = 0 is the 

trivial solution.” These are equivalent by definition. That is different than, say, “the columns of 

A span Rn” and “the number zero is not an eigenvalue of A,” which would take most anyone a 

substantial effort to demonstrate their equivalence. The notion of equivalence in general is most 

likely new for many students, and, given their limited experience in proof, students would 

benefit from conversations that explicitly bring this distinction to light. 

 
6.4 Avenues for Future Research 

 
 The first avenue for future research involves conducting in-depth analyses of the other 

four students who were in Abraham’s small group during the linear algebra course. How did 
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those individual students reason about the Invertible Matrix Theorem during the semester? The 

in-depth individual case study I conducted with Abraham provides a solid foundation from 

which to begin investigating how a wider range of individuals reasoned. I have shown the 

usefulness of the two analytical tools in illuminating how one individual reasoned, and I made 

some comparisons about how that reasoning is similar to or different from the collective growth 

of the classroom. For a future study, I want to look at variation in individual reasoning. That 

question would investigate major milestones and characteristics of similarity and diversity of 

individuals reasoning about the IMT. Of course this one case study of Abraham does not 

provide that breadth, but it does provide a depth from which to build a strong foundation for that 

future study.  

 A natural next step from researching other individual students’ ways of reasoning about 

the Invertible Matrix Theorem would be to consider Abraham’s small group as a unit of 

analysis—as a “mini-collective.” Students in this inquiry-oriented linear algebra class spent a 

sizable portion of the semester working in small groups solving problems, developing and 

proving conjectures, and explaining their thinking to one another. The group members would 

often finish each other’s sentences or communicate nonverbally, and through doing so, they 

often developed creative and sophisticated ways of reasoning. I think Abraham captured this 

sentiment well. During the last day of class, while working with his group members on a task 

about the Invertible Matrix Theorem (without the instructor nearby), he said to them: “It’s crazy 

how we all think so differently. But then when we work as a group, is seems that we think a lot 

the same.” Thus, conducting a analysis much like that of Chapter 4 on Abraham’s small group 

as the collective unit of analysis would not only be a fascinating study but would also contribute 

to what is known about Abraham’s ways of reasoning about the IMT.  

 The most immediate plan for future research is to coordinate the results concerning that 

mathematical development from both the individual and the collective units of analysis. Within 
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the first chapter I discussed two of my theoretical and methodological influences as the 

emergent perspective and Saxe’s view of genetic analysis. Both of these perspectives uphold the 

importance of documenting the mathematical growth of the individual and the collective and 

their mutual constitution. Consider quotes from the aforementioned influences, respectively:  

A basic assumption of the emergent perspective is, therefore, that neither 
individual students’ activities nor classroom mathematical practices can be 
accounted for adequately except in relation to the other. (Cobb, 2000, p. 310) 
 
In collective practices, joint tasks are accomplished...through the interrelated 
activities of individuals. In such joint accomplishments, individual and 
collective activities are reciprocally related. Individual activities are constitutive 
of collective practices. At the same time, the joint activity of the collective 
gives shape and purpose to individuals’ goal-directed activities. (Saxe, 2002, 
pp. 276-277) 

 
As the above quotes imply, knowledge genesis on individual and collective levels are 

inextricably bound together in their development. Therefore, in order to gain the most fully 

developed understanding of the emergence, development, and spread of ideas in a particular 

classroom, analysis along both levels is warranted. However, the coordination of these analyses 

is still a relevant and open question in mathematics education research.  

 Works towards the coordination between individual and collective levels could take on 

various forms. Within this dissertation, I made use of the same analytical tools at both the 

individual and the collective levels in anticipation of a subsequent coordination. Thus, the most 

natural place to begin will be to coordinate the mathematical development of Abraham with that 

of the classroom community. For instance, a “double timeline” would map out and allow me to 

compare when certain ways of reasoning occurred for Abraham against when they occurred in 

whole class discussion. Comparing the development of ways of reasoning for both levels may 

be revealing. Were there ways of reasoning that were normative in the classroom but seemingly 

not meaningful to Abraham? Furthermore, how did the use of Toulmin’s Model and adjacency 

matrices at both levels of analysis help or hinder this coordination?  
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Finally, an avenue of interest for future research would be ways in which to adopt the 

three criteria for documenting normative ways of reasoning at the classroom level in order to 

draw conclusions about an individual students’ mathematical development. For example, 

consider the results concerning Abraham’s ways of reasoning about span and linear 

independence in Section 5.1.2.1.2. That section highlighted shifts in the composition of 

Abraham’s arguments as well as in the placement of concepts within the arguments. Early in the 

semester, he made claims with little justification (shown through a low frequency of data and 

warrants initially) and/or expressed sentiments of uncertainty (shown in his particular 

qualifiers). He eventually presented well-developed justifications for these original claims. 

Furthermore, the concepts that Abraham first had trouble justifying then became ways in which 

he justified new claims. That is reminiscent of the second criterion from Chapter 4 in that a way 

of reasoning was functioning as-if shared when any of the four parts of an argument (data, 

claim, warrant, or backing) shift position within subsequent arguments. Inquiring into possible 

points of compatibility such as this is a fruitful and complex domain for future work.
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APPENDICES 
 
 

 
Appendix 3.1. Interview questions and planned follow-ups from both Interview 1 and Interview 
2 that were analyzed for this study. 
 
Interview 1 Question 6 

“For this next set of questions, suppose you have a 3 x 3 matrix A, and you know that the 
columns of A span R3. One at a time, decide if each of the following statements is true or 
false, and explain your answer.”  
Interview 1 Question 6a 

a. The column vectors of A are linearly dependent.  
Follow-ups. Skip if redundant: 
o “How do you think about what it means for vectors to be linearly 

dependent? 
o “Do you have a way of thinking about this geometrically?” 
o  “How do you know that is the case?” 
o  “Do you want to give an example?” 
o  “How does linear dependence relate to span?” 

 
Interview 1 Question 6b 

b. Any vector b in R3 can be written as a linear combination of the columns of A.  
Follow-ups. Skip if redundant: 
o  “How do you think about what it means to be a linear combination? 
o “Do you have a way of thinking about this geometrically?” 
o  “How do you know that is the case?” 
o  “Do you want to give an example?” 
o  “How does linear combinations relate to span?” 

 
Interview 1 Question 6c 

c. The row-reduced echelon form of A has three pivots.  
Follow-ups. Skip if redundant: 
o “How do you think about what a pivot is? 
o “Do you have a way of thinking about this geometrically?” 
o  “How do you know that is the case?” 
o  “Do you want to give an example?” 
o “How do pivots relate to span?” 

 
Interview 1 Question 6d 

d. There is a nontrivial solution to the equation Ax=0.  
Follow-ups. Skip if redundant: 
o “What does it mean to be a solution to the equation Ax=0?  
o  “What is meant by ‘the trivial solution’?” 
o “Do you have a way of thinking about this geometrically?” 
o “How do you know that is the case?” 
o  “Do you want to give an example?” 
o  “How does this relate to span?” 

 



  
291 

 

Interview 1 Question 6e 
e. The system Ax=b has no free variables (make sure they attend to the equals b) 

Follow-ups. Skip if redundant: 
o “How do you think about what it means to be a free variable?” 
o “Do you have a way of thinking about this geometrically?” 
o “How do you know that is the case?” 
o “Do you want to give an example?” 
o “How do free variables relate to span?” 

 
Example generation for non-square matrices 

“Not all matrices in linear algebra are square. I am curious about how you think about some 
of the previous concepts when dealing with non-square matrices. Please read the following 
prompt and think out loud as you think through this problem.” 
Interview 1 Question 8a 

Create an example of a 3 x 5 matrix B such that the column vectors of B span R3 and 
are linearly independent. If it is not possible, explain your reasoning why. 

Follow-ups. Skip if redundant: 
o If they have an example: “What were you thinking as you created your 

example?  
o If they have an example: “Is that the only example that will work? (If so, 

why? If not, what else would work as an example?)” 
o If they have an example: “You stated how this example works for (span). 

How is it working for (linear independence)?” 
o If they say not possible: “How did you know this wasn’t possible? 
o If they say not possible: “Which part of the prompt is failing, to make 

creating an example impossible?” 
o What would you change in the example requirements so that it is possible 

to create an example?  
 

Interview 1 Question 8b 
Create an example of a 5 x 3 matrix C such that the column vectors of C span R5 and are 
linearly independent. If it is not possible, explain your reasoning why. 

Follow-ups. Skip if redundant: 
o If they have an example: “What were you thinking as you created your 

example?  
o If they have an example: “Is that the only example that will work? (If so, 

why? If not, what else would work as an example?)” 
o If they have an example: “You stated how this example works for (span). 

How is it working for (linear independence)?” 
o If they say not possible: “How did you know this wasn’t possible? 
o If they say not possible: “Which part of the prompt is failing, to make 

creating an example impossible?” 
o What would you change in the example requirements so that it is possible 

to create an example?  
 
Interview 2 Question 1 

“Suppose you have a 3 x 3 matrix A, and you know that the columns of A span R3. Decide if 
the following statements are true or false, and explain your answer:”  
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Interview 2 Question 1a 
The column vectors of A are linearly dependent. 

 Follow-ups. Skip if redundant: 
o “How do you think about span?” 
o “How do you think about what it means for vectors to be linearly dependent? 
o  “How does linear dependence relate to span of a set of vectors? 

 
Interview 2 Question 1b 

The row-reduced echelon form of A has three pivots.  
Follow-ups. Skip if redundant: 

o “How do you think about what a pivot is? 
o “How do pivots of a matrix relate to span of a set of vectors?” 

 
Interview 2 Question 2 

General Questions about the IMT: “On this sheet of paper is what we developed in class 
over the course of the semester known as the Invertible Matrix Theorem.” 
 
Interview 2 Question 2a 

What do you understand it to mean to even be a theorem? What is another example 
of a theorem from another math course? Why is that an example of a theorem?” 
 

Interview 2 Question 2b 
This phrase here in the theorem statement says ‘the following are equivalent.’ What 
does it mean, to you, to have equivalent statements? 
 

Interview 2 Question 2c 
What is the importance of the phrase, ‘A is n x n’? [Skip if redundant]: What if A is 
not n x n? [If it makes sense from what they say]: “Name two statements that are 
not equivalent if A is not n x n.” (What about the “if” and “then” of their example?)  

 
Interview 2 Question 3 

Here is a set of 16 cards, and each card has written on it one of the statements from the 
IMT. Please sort these into different piles based on which concepts, for you, ‘go together’ 
and explain your choices out loud as you go. 

o Follow-ups dependent on student’s pile choices. Skip if redundant: 
o What were your criteria for how you chose what ‘goes together? 
o [Pick two ideas from the same pile]: Why did you put all of these cards in 

the same pile? What makes them ‘go together’ for you?  
o [Skip if redundant]: I’m curious, why are these cards (see possible 

choices below) in the same pile? 
1. [span] —and— [Col A = Rn] 
2. [n pivots] —and— [row equivalent to the identity] 
3. [T is 1-1] —and— [T is onto] 

o  [Pick two ideas from two different piles]: “So you put these two cards 
(pick two) in different piles. I’m curious: do you have any way that 
these two ideas connect? Explain. 

1. [A is invertible] —and— {[T is 1-1] –with- [T is onto]} 
2.  [The det of A is nonzero] —and— [row equiv. to I] 
3.  [Zero is not an eigenvalue] —and— [anything!] 
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Interview 2 Question 4 
For the following pairs of statements from the Invertible Matrix Theorem, please explain 
how you understand how they are equivalent. 
 
Interview 2 Question 4a 

 A has n pivots // A is invertible 
o  [If they do one direction]: “What about the other direction of “if-then”? 
o [Skip if redundant]: “How do you think about what it means to be 

invertible? 
 

Interview 2 Question 4b 
det A ≠ 0  //  The columns of A are linearly independent 

o [If they do one direction]: “What about the other direction of “if-then”? 
o [Skip if redundant]: “How do you think about determinants?”  

 
Interview 2 Question 4c 

a. Nul A={0} //  The only solution to Ax=0 is the trivial solution 
o [If they do one direction]: “How do you think about null space?” 
o [Skip if redundant]: “How do you think about Ax = 0?”  
o [Skip if redundant]: “How do you think about what it means to have only 

the trivial solution?”  
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Appendix 4.1. Argumentation Logs of Toulmin schemes from Whole Class Discussion 

 

Day 5 Argumentation Log 

Arg 5.1 
C- D(C1-D1-W1 U C2-D2-W2-B2)-W proof by cases 
Claim: When looking for an example of 3 vectors in R2 that form a linearly independent set, 
there is no solution 
Data: Let's just start with any random vector, let's call it that one. Now after we have 1 vector 
down, there's only basically 2 situations we could have. 
Claim1:  they're dependent 
Data1: if we have 2 vectors that are parallel 
Warrant1: we already said [it] 
Claim2:  no matter where we throw in our 3rd vector, we can get there with a combo of these 2 
and make it back on that 3rd one 
Data2: If we had 2 that weren't parallel 
Warrant2:  the span of any 2 that aren't parallel is all of r2 
Backing2: We did this when we did our magic carpet hoverboard 
Warrant: So [D1∨D2] there can't be any solution, so there's no, as long as we have 3 vectors in 
r2, it has to be linearly dependent. 

 
 

Day 6 Argumentation Log 
 

Arg 6.1 
C-D 
Claim: Generalization #4 in my own words is if you have more vectors than dimensions, you’ll 
always be able to return to your original position [Justin, 04:54] 
Data: There’s no other way of putting it ... I don’t know any other way to say it [Nate, 05:26] 
 
Arg 6.2 
C-D-Q 
Claim: If you have more vectors than dimensions, the set of vectors is linearly dependent 
[Instructor, 05:37] 
Data: None  
Qualifier [to the lack of warrant]: We were confused on how to prove it, we didn’t know 
where to start, where to go with a proof [Saul, 06:04] 
 
Arg 6.3 
C-D-W 
Claim: I should always be able to get back home [Instructor, 6:46, Lawson, 8:46] 
Data: If we had 3 nonparallel vectors in R2 [Instructor, 6:46, Lawson, 8:46] 
Warrant [given after SGW]:  Graphically think about it. You say you have a vector over here, 
and then plus a vector that's not parallel to it [draws on board]. And we have just any other 
random vector, say it goes this way. If you add any 2 nonparallel vectors that at some point 
these vectors are going to come across this other vector, and hit it at a point. So if that happens, 
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then you can just take the last vector and multiply it by some scalar to get you back to the 
origin. That's how graphically we got it. [Lawson, 08:58] 
 
Arg 6.4 
C-D-W-**-B 
Claim: It’s linearly dependent [Lawson, 09:57, prompted by the instructor] 
Data: If you have the set of vectors <1,2>, <2,4>, <-9, 7> (which has two ‘parallel’ vectors in 
it) [Lawson, prompted by the instructor at 09:44] 
Warrant: You can just ignore this last vector, take 1, like <1,2>, which would be, and just take 
the 2,4 back, it's a multiple of 1,2, and you can just not use this one. So it's linear dependent. 
[Lawson, 09:57] 
**Instructor asks if it makes sense 
Backing: It makes sense that pretty much if you have 3 vectors in r2, even in the 1st example, 
you could technically ignore the last one, because if you take 1,2 out, then you can still use any 
combination of the 1,2 and the 3,5 to get back [Cayla, 10:28]  
 
Arg 6.5 
C-**-D (C1-D1 U C2-D2) proof by cases 
Claim1: If a vector is contained in the span of 2 other vectors, then you should be able to reach 
the origin, get back to the origin. [Aziz, 11:40]  
**Instructor asks for explanation 
Data: 2 vectors span r2 or they don't 
Data1: if they're linearly dependent already, 
Claim1:  then it makes the set linearly dependent. 
Data2:  If 2 aren't, then they span r2, 
Claim2: the 3rd one has to be contained in [inaud] to be able to reach back to the origin. 
[Aziz, 11:50]  
 
 Arg 6.6 
C-D-W 
Claim: The set with three vectors is linearly dependent [Matthew, 15:10] 
Data: It should be, if they're all existing within the x,y plane, they're all in the same plane. So 
once you have 3 of them, that is, you don't have 2 of them that lie along the same vector, on the 
same line, 
Warrant: then we should be able to get back to the origin and it should be dependent. 
[Matthew, 15:10] 
 
Arg 6.7 
C-D-R-W-B 
Claim: The set with two vectors is linearly independent [Juan, 15:47] 
Data: Because it spans R2 [Juan, 15:51] 
Rebuttal: That’s not a good reason [Nate, 16:01] 
Warrant: You can go anywhere with the 1st 2 vectors in r2, but your way home, if you took 
away -9,7, there's no way back. So it's independent because you can go anywhere, but there's no 
home. [Randall, 16:30]  
Backing: Yeah, we took away that 3rd vector, so that way home that we had no longer exists 
there. [Instructor, 16:47] 
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Arg 6.8 
C-D-W-B-Q 
Claim: A set of vectors (in Rn) is linearly dependent [Justin, 17:19] 
Data: You have more vectors than dimensions [Justin, 17:19] 
Warrant: So if you start in any Rn, and you just start with 1 vector and keep more. So let's do 
R3, just for an example. So we start with 1 vector. So either, we have 2 choices:  The next vector 
we add can either be on the same line, which means it's already linearly dependent, so we don't 
want that, sowe're going to put it off somewhere else. Now the span of that is a plane in 3 
dimensions. So now we're going to add another vector in. Our 3rd vector, now it can either be 
in that span or out of that span. And we want it to be linearly independent, so we're going to put 
it out of that span. But now that we have that going off of that plane, we just extended our span 
to all of r3. So our 4th vector, when we put it in, no matter where we put it, it's going to get us 
back home. Because just like in this case, we have to have the last one to get back home, we can 
get anywhere with those 1st 3 that we put in, but we have to have to have that 4th one to come 
back. [Justin, 17:19] 
Backing:  And so it works like that in any dimension, because the more you, if you keep adding, 
eventually you're going to get the span of your dimensions, and then you're going to have that 
extra one bringing you back. [Justin, 17:19] 
Qualifier: Unless you have 2 vectors that are lying on the same line, then you won't have the 
span of all of your dimension, but it's negligible because those 2 will give you a linearly 
dependent set. Does that make sense? [Justin, 17:19] 
Backing 2: [think he’s trying to support Justin’s explanation] I'd like to add on to this, 
if you're going from the plane to the volume of space, that's with 3 vectors in 3 
dimensions. With the 4th one, you can cross all those dimensions back to the origin, 
that's what makes the 4th dimension, the 4th vector, it makes you able to go back to the 
beginning. Because each vector takes up a different point in space. You're going from 
the plane to the volume, gives you those 3 dimensions but you can't get back to origin, 
unless you have a 4th one that can cross all 3. [Aziz, 19:46] 
 
 

Day 9 Argumentation Log 
 

Arg 9.1 
C-D-W 

Claim: The set 
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 is linearly dependent. [Aziz, 28:50] 

Data: If there are more vectors than there are columns, then it’s linearly dependent. [Aziz, 
28:50] 
Warrant: So Aziz is reminding us of the thing we decided a while back, if we have more vectors 
than dimensions, it has to be linearly dependent [Instructor, 28:56] 
 
Arg 9.2 
C-D-Q-W-B1-B2 

Claim: The set 
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 is linearly dependent. [Instr, 29:07] 
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Data: Do the row reduction and see, we get the identity matrix, I guess, c x=0, y=0. Actually 
it's on 2, so x=0, y=0 as well. [Abe, 29:26] 
Qualifier: Yeah, so it’s kind of weird out here, we have 3 vectors [Instr, 28:56] 
Warrant: So the definition of linear independence, we've got, does there exist a non-0 solution 
to c1 of the 1st vector plus c2 of the 2nd plus c3 of the 3rd equals 0,0 [Instr, Justin, Abe, 29:50, 
30:15] 
Backing1: Because that’s what the definition said [Justin, 30:20] 
Baacking2: Yeah, pretty much by definition, exactly. So set up to say, If this has a non-0 
solution, then it's a linear dependent set. [Instr, 30:24] 
 
Arg 9.3 
C-D-W-B 

Claim: The set 
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 is linearly dependent. [Instr, 34:21] 

Data: c1-60c3 is 0 and c2 + 35c3 is 0. [Instr, 33:51] 
Warrant: We don't have any way to define or nail down what c3 has to be. [board]  So c3 here 
would be our free variable [Instructor, 34:21] 
Backing: I can pick anything for that third one, then the first two depend on that third one, and 
there’s more than one solution. [Instr, 34:21] 
 
Arg 9.4 
C-D-W 

Claim: The set 
  

€ 

1
4
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ,

2
7
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ,

10
5

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 is linearly dependent. [Instr, 34:53] 

Data: So if we look at the columns, if has the c1 in it. We've got a leading 1 here for the c1. If 
we look at the c2 column, we've got a leading 1 for the c2. If we look at c3, we don't have any 
leading 1...it has no pivot in its column [Instr, 34:53] 
Warrant: c3 is a free variable [Instr, 34:53] 
 
Arg 9.5 
C-D-W 

Claim: The set 
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 is linearly dependent. [Instr, 35:38] 

Data: As a system, it is row-equivalent to 
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1 0 −60
0 1 35

0
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⎥ [In, 35:38] 

Warrant: Row equivalent systems have the same solution set and the same type of linear 
dependence relationships [Instr, 34:53] 
 
Arg 9.6 
C-**-D-W-B 

Claim: The span of 
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 is all of R2 [Justin, 36:32] 

**Teacher calls for data 
Data: There’s so many vectors, and they’re not multiples of each other [Justin, 36:38] 
Warrant: Yeah, so we only have 2 dimensions, they’re not multiplies of each other, so we see 
that it span all of R2 [Instr, 36:43] 
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Backing: Because there’s multiple solutions Justin, 36:49] 
 
Arg 9.7 
C-D-W 

Claim: The span of 
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Data: From the row-reduced echelon form,
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1 0 −60
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Warrant: With the 1st 2 solutions, systems, it just stayed the set equals 0, and since the 3rd 
variable is free, it will just won't move [Jorge, 38:32] 
 
Arg 9.8 
C-D-W-**-B1-B2 

Claim: The span of 
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Data: From the row-reduced echelon form,
  

€ 

1 0 −60
0 1 35
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⎥  [Instr, 38:03] 

Warrant: We said that because the 1st 2, because if you've got, in 2 dimensions it can span 
everywhere, the 3rd one is a free variable, it would cause it to go wherever, in spanning. 
[Giovanni, 38:49] 
**Instr calls for backing 
Backing1: 1,0 and 0,1 tell you that it spans because they are perpendicular [Justin, 39:13] 
Backing2: it's easy to see that these are going in 2 different directions. If you row reduce it, we 
know since they have the same solution set, that if it spans a 2-dimensional space, the row 
reduce also spans a 2-dim space, etc. That this is really easy to see that we're going everywhere 
in r2. This gives us 1 way, this gives us another way, Justin's saying perpendicular. [I, 39:14] 
 
Arg 9.9 
C-D-W-B 

Claim: The span of 
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 is all of R2 [Instructor, 38:03] 

Data: From the row-reduced echelon form,
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1 0 −60
0 1 35
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⎦ 
⎥  [Instr, 38:03] 

Warrant: I have 2 pivots in these 2 rows [Inst, 39:51] 
Backing: it's almost like this 0 and that 1, that tells us to go in x direction. Now I can see that 
this 1 takes us up the y direction, if you want to think in our standard x-y plane. So if I look at 
the pivot here and the pivot here, and the row that can tell us the columns span 2-dim space 
[Instr, 39:51] 
 
Arg 9.10 
C-**-D-**-W 
Claim: If you have 1 pivot position, is it a line, 2 pivot positions a plane, 3 volume and 4, I 
don't even know what to call it, like that [Justin, 40:26] 
**Instr calls for data 
Data: That’s the way it’s been looking this whole time [40:49] 
**Inst calls for warrant  
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Warrant: Because so right now we're in r2, and if we have 2 pivot positions, I don't even really 
know what pivot position means, but just the way it seems to work is, if you have 1 pivot 
position, that's 1 position where you have a solution set? I don't know if that's right. And then 
you have 2, and then, I don't know, it just seems to go like that. [Justin, 40:56] 
 
Arg 9.11 
C-D1-D2-W 
Claim: The vectors [1,2,0,3,1; 2,4,0,6,2; 3,6,0,9,3] are linearly dependent [Instr, 44:22] 
Data1: The way we picked them [Instructor, 44:22] 
Data2: the c1 has a pivot, you would say that these other 2 that don't have pivots, are the free 
variables. [Instr, 45:25] 
Warrant: So as soon as we have 1 linear dependence relationship, i.e. a free variable, then we 
know it's a dependent set, so check that we've got linear dependence. [Instr, 45:50] 
 
Arg 9.12 
C-D-W-Q 
Claim: The span of  [1,2,0,3,1; 2,4,0,6,2; 3,6,0,9,3] is a one-dim space in R5 [Instr, 47:33] 
Data: Once we start off on this 1,2,3,0,1, however that may travel in r5, the 2,0,4,0, blah is just 
twice that, in the same direction, but twice the magnitude. This one is in the same direction, but 
3 times the magnitude. We can’t get anywhere off that into other aspects of R5 [Instructor, 
47:33] 
Warrant: We have one pivot position, so they span is a 1-dim space in R5. [Instructor, 47:33] 
then we know it's a dependent set, so check that we've got linear dependence. [Instr, 45:50] 
Qualifier: I know it's hard to talk about directions and magnitudes and the dimensions higher 
than 3, but we need to be able to start to train our brains to think that way as well. And I think 
the imagery that we've built up so far allows us to do that. We can still try to generalize what it 
would mean to talk about traveling in a direction. It just might not make sense to try to picture 
that. [Instructor, 48:26] 
 
Arg 9.13 
C-Q-D 
Claim: The most you could span with 3 vectors in R5 is R3 [Abraham, 52:13] 
Qualifier: A 3-dimensional part in R5, yeah, so we have a 3D space in R5 [Instructor, 52:15] 
Data: if I have 5 dimensions in r5, I'm trying to figure out if there's any place that is a nook or 
cranny I can hide out in. If I have 3 vectors, we don't even want to say necessarily what they 
are. if I take 1 vector, it gets me 1 place. And the 2nd one gets me another place. And the 3rd 
one gets me another place. [Instructor, 52:15] 
 
Arg 9.14 
C-D1-D2-**-W 
Claim: [1,0,0,0,0; 0,1,0,0,0; 0,0,1,0,0] spans 3 dimensions in R5 [Jerry, 59:59] 
Data1: We got one vector going in each of the 3 directions. [Jerry, 59:59] 
**Randall wanted to add 
Data2: I want to say the amount of rows with values after reduction / pivots [Randall, 1:00:28] 
**Inst asks for warrant 
Warrant: We were thinking about it, let's start with the 1st vector by itself. I know I'm still 
thinking x,y,z's and whatnot. So we have a number that's not 0 that we can multiply our x 
component by. So that gives us an infinite line like that. And so that's the 1st dimension. And 
then the next one, the leading 1 is in the 2nd row, so it's the y component, and we can multiply 



  
300 

 

that one by infinity, and that gives us the 2nd dimension. And then 3 is z and gives us the 3rd 
dimension. And I don't know what the next variables are supposed to be, but that gives us the 
next one and the next one, however far we go. [Justin, 1:00:57] 
 
Arg 9.15 
C-D-W-B 
Claim: if m is less than n, the columns are linearly dependent [Randall, 1:10:14] 
Data: If n is greater than m, that means there's going to be, say, 3 vectors in 2 space, and 2 of 
those are going to span, the last one makes it dependent. [Randall, 1:10:25] 
Warrant: Yeah, so we could do that example from before, if we had 3 vectors in R2, we try to 
row reduce it, we could have a pivot here, a pivot here, and can we get a 3rd pivot? [Randall: 
No.] [1:10:37] 
Backing: So this guy [the third column] has no pivot, so it has to be a linearly dependent set. 
[Instr, 1:10:37] 
 
Arg 9.16 
C-Q-D-W-B 
Claim: If m > n, you won’t be able to span the entire dimension [Abraham and Justin, 1:11:42] 
Qualifier: I don’t know, it just makes sense [Abraham, 1:11:58] 
Data: You don’t have enough vectors for the dimensions. [Abraham, 1:11:58] 
Warrant: So it seems you wouldn’t be able to go to all the directions in those dimensions. 
[Abraham, 1:11:58] 
Backing: So you get one that's not enough vectors to get me to all the dimensions. Someone else 
would give an argument, I can't get enough pivots. [Instructor, 1:12:15] 
 
Arg 9.17 
C-**-D (D1-C1 U D2-C2-W2)-Q1-Q2 
Claim: You could always have a linearly dependent set, in any dimension [Gabe, 1:12:38] 
**Instructor calls for data 
Data: (cases) 
D1: If you have anything from 1 or greater vectors, if 1 of those vectors happens to be 0, 
C1: it’s dependent 
D2: If you have 2 or more vectors, if 2 of those are the same vector, it doesn’t matter what the 
other vectors are,  
W2: so you can use one vector to go out and one vector to come back, 
C2: so linearly dependent that way [Gabe, 1:12:51]  
Qualifier1: So by ‘same’ we mean along the same path or they have the same span [Instructor, 
1:13:50] 
Qualifier2: same vector, different magnitude or scalar [Gabe, 1:14:07] 
 
 

Day 10 Argumentation Log 
 
Arg 10.1 
C-**-D-W 
Claim: If we have an nxn matrix that spans Rn, then the set of vectors in A is linear independent 
[Justin 21:28]  
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Qualifier: that's required, [copying #1-4] because if we don't require there to be a pivot in 
every row, this doesn't have to be true [Justin, 22:09] 
Data: we have as many pivots as we have dimensions [Justin, 22:09] 
Warrant: The simplest form...1's along that diagonal, which gives us the span. [Justin, 22:09] 
 
Arg 10.2 
C-D-W 
Claim: We got the same thing [as Justin’s claim] [Nigel, 22:55]]  
Data: you're under the assumption that there's a pivot in every row, you can only use 1 vector 
once [Nigel, 22:55] 
Warrant: you use each vector to go in a certain dimension, but you can never get back. [Nigel, 
22:55] 
 
Arg 10.3 
C-D 
Claim: Any system that spans Rn would be linear independent [Matthew, 24:50] (**must mean 
‘square system’ b/c of data in #4 and esp in #5) 
Data: the number of variables correspond to the number of rows, so it also corresponds to the 
number of dimensions. [Matthew, 24:50] 
 
Arg 10.4 
C-D-W-B 
Claim: A system that spans all of Rn would be linear independent [Matthew, 25:15] 
Data: it has the same number of rows and columns [Matthew, 25:15] 
Warrant: the number of variables corresponds to the number of rows, and also corresponds to 
the number of dimensions in the system [Matthew, 25:15] 
Backing: this n here is the number of equations. If you want to think of it and this as the # of 
variables, that sort of thing [Instructor, 25:29] 
 
Arg 10.5 
C-*-D-*-W-R 
Claim: If we have an nxn matrix that spans Rn, then we took Rule 4 from the original one, but 
added that it'd be a unique solution. [Mitchell, 26:04] 
Data: you have a pivot in every row, and it's square, then you have no free variables. [Mitchell, 
26:43] 
**Instructor asks for warrant** 
Warrant: row reduced echelon form...which you can achieve if you have a pivot in every row... 
if you make it into augmented matrix...for any b you put in there, there's only 1 solution because 
pivot 1x whatever equals this y, equals this z, equals this and so forth. [Mitchell, 26:54] 
Rebuttal: It seems like there's more solutions to me [Justin, 27:55] 
 
Arg 10.6 
C-R 
Claim: If we span all of R2, I can have all of these solutions [the different paths he drew] 
[Justin, 29:05] 
Rebuttal: But you're only given 2 vectors in R2 because you have a square matrix [Nate, 29:31] 
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Arg 10.7 
C-D-W  
Claim: You don’t go this way around [Nigel, 29:44] 
Data: Because you only have 2 vectors [Nigel, 29:44] 
Warrant:  Those are more than 6 vectors you drew [Nigel, 29:44] 
 
Arg 10.8 
C-D-W-Q 
Claim: Another one to add on is that none of the rows can be all zeros [Cayla, 34:57] 
Data: There is a pivot in every row [Cayla, 34:57] 
Warrant: There are no free variables [Cayla, 34:57]  
Qualifier: we can say that the row reduced echelon form of A can't have a row of 0's 
[Instructor, 35:44]  
 
Arg 10.9 
C-D-Q-W 
Claim: if a matrix can be in row reduced echelon form, then it's independent Lawson, 37:39] 
Data: The only solution is the trivial solution [Lawson, 37:39] 
Qualifier: It depends on what system you're talking about. So for here, we say the only solution 
to the system Ax=0, is one way we care about the answer, is the trivial solution [Instructor, 
37:48] 
Warrant: It’s actually by definition that 2 and 9 have to be the same...how we define what a 
linearly independent set was [Instructor, 38:27] 
 
 

Day 17 Argumentation Log 
 
Arg 17.1 
D-C-W 
Claim: If you’re [a matrix] completely full of zeroes [it is not invertible]  [Gabe, 30:49] 
Data: if you transform them using this matrix, you cannot see the original matrix back [Gabe, 
30:49] 
Warrant: there's no going back to that, it's over, because you'll end up with a matrix full of 0's, 
and then you can't multiply 0 by anything to get any another number [Gabe, 30:49] 
 
Arg 17.2  
D-C-W 
Claim: having rows of 0's in your matrix actually accomplishes the same thing [is not 
invertible] [Gabe, 30:49] 
Data: because if you multiply a certain row by 0, then again you can't get back to that [Gabe, 
30:49] 
Warrant: if you took out one of your rows, that's going to eliminate one of the dimensions that 
you’re traveling [Gabe, 32:32] 
  
Arg 17.3 
D-C-R-D-W-B 
Claim: if you can't span everything, there's no way it can have an inverse [Kaleb, 33:40, 
attributed to Gabe] 
Data: You can still use the 0's to transverse it if you take out a column. But if you take out a 
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row, you can't move in one direction, so you’re done. [Gabe, 33:44] 
Rebuttal: I'm not convinced. The span thing, I don't get. I agree if there's a row of 0's, it doesn't 
work [the matrix isn’t invertible]. But I don't know, I don't see how it relates to span, just 
because. So if I have a different matrix, that doesn't have a row of 0's but doesn't span, does that 
mean that there's no inverse for it? [Justin, 34:03] 
Data: So the rows of 0's, if you have a row of 0's anywhere, right here for example, when we 
try to multiply it by anything, by this row, we can never get this 1 over here [Nate, 35:16] 
Warrant: So we can't get the identity matrix. So if you have any row of 0, it messes that pivot 
point up (his gestures imply any general row of zeroes will mess up the pivot in that associated 
row) [Nate, 35:33] 
Backing: if you had 0's = 0 = 0 f equals 1, so there's no way to figure out how to make that 
true. So I think at least for these square matrices we've looked at, we can see that this one 
[having a row of zeroes makes the matrix not invertible], algebraically we can see it actually 
true [Instructor, 36:07] 
 
Arg 17.4 
D-C 
Claim: we just said that if the matrix is dependent, then it doesn't have an inverse [Randall, 
36:44] 
Data: We basically just opened it up, instead of just saying, “yeah, the rows of 0's thing doesn't 
work, the column of 0's doesn't work,” we also found that when vectors are multiples of each 
other, it doesn't work [Randall, 36:44] 
 
Arg 17.5 
D-C-W 
Claim: the matrix with a column of 0's is not invertible  [Randall at 36:44, Instructor at 37:05] 
Data: if you multiply it out, there's going to be someplace that there's a 1 in multiplication, 
addition doesn't work out [Instructor, 37:05] 
Warrant: if you went through the algebra, it would be a similar argument to the one before 
[Instructor, 37:05 
 
Arg 17.6 
D-C-W-R-Q 
Claim: dependent matrices are not invertible  [Randall, 37:30] 
Data: We did multiples of each other, so we had 1,2;2,4 as a matrix...And we found that one of 
the rows just simplifies to a free variable [Randall, 37:30] 
Warrant: that would make it 0's in a row, which you can't have [Randall, 37:30] 
Rebuttal (to claim): But what if you have like 4 vectors in r3 that, those will span and they're 
dependent, what happens then? [Justin, 38:03] 
Qualifier (to claim): Randall only talked about square matrices in his claim [Instructor, 
Randall, 38:24]  
  
Arg 17.7 
D-C-Q 
Claim: A has to be square in order to have a chance to be invertible  [Instructor, 48:13, 
wrapping up from Lawson] 
Data: Lawson showed it for one direction of the multiplication, the other will be in homework 
[Instructor, 48:54] 
Qualifier: it's not exactly saying that all square matrices are invertible, because we've already 
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seen a couple that aren't. So not necessarily all square. But if you even want to have a chance of 
being right and left invertible, that CA and AC would have to be square. [Instructor, 49:13] 

 
Arg 17.8 
D-C-**-D 
Claim: The matrix [1,2; 2,4] is not invertible  [Instructor and Edgar] 
Data: We pretty much just got inequivalencies [Edgar, 50:15] 
**Instructor pushes for explanation  
Data: Solve for a and then put that back in...Yeah, we solved for a, plugged it back in and then 
it just didn't match up...2=0. [Edgar, Randall, and Lawson, 50:55-7]  
 
Arg 17.9 
D-C-W 
Claim: The matrix [1,2; 2,4] is not invertible  [Abraham, 51:23] 
Data: that span is only the line, the y=2x [Abraham, 51:23] 
Warrant: And so it never even hits 1,0 or 0,1, because it has to go over 1, up 2, over 1, up 2. 
[Abraham, 51:23] 
 
Arg 17.10 
C-Q-D1-D2-W-B1-B2 
Claim: The matrix [1,2; 2,4] is not invertible  [Abraham, 51:51] 
Qualifier:  It doesn’t seem like the matrix would be invertible [Abraham, 51:51] 
Data1: We’re trying to get 1,2 to be 1,0 and 2,4 to be 0,1 and these 2 [1,0 and 0,1] don’t really 
fall on that line [where 1,2 and 2,4 are] [Abraham, 51:51] 
**Instructor asks if she can help out, Abraham says yes 
Data2: if we do 1,2;2,4 is one on the outside and the a,b,c,d is the thing on the inside...think 
about this as a transformation, and let's just see what happens to some vector, what happens if 
you plug in 1,1 or whatever? ... it's actually going to 3,6. So if I had an input here, it's getting 
mapped to 3,6. What would happen to 0,1? That would get mapped to 1,2, which is along that 
line...So this is actually collapsing everything to that line [Instructor, 52:38] 
Warrant: if it all collapses to a line, how it could, um, how it could be 1,0;0,1. It seems like it 
would have to be able to span to 1,0. It seems like it would have to be able to reach that point. 
[Abraham, 54:03] 
Backing1: If this is sending everything to that line, then what in the world would be sent to 1,0? 
Nothing is getting sent to 1,0. What would be getting sent to 0,1? Nothing is getting sent to 0,1. 
So there's no way for values of the matrix to be able to get sent to the 1,0;0,1 in order to even try 
to get back. [Instructor, 54:28] 
Backing 2: So we can only transform to multiples of 1,2. If any vectors are multiples of 1,2, you 
can transform to them, nothing else, though. [Abraham, 54:51] 
  
Arg 17.11 
D-C 
Claim: “If A is invertible, then the columns of A have to be linear independent” is logically 
equivalent to “If the columns of A are linearly dependent, then A is not invertible.” [Abraham, 
55:31] 
Data: So if you think about this as the p statement, and we're saying now this is q. Then a 
logically equivalent statement would be to say not q to not p. [Abraham, 55:31] 
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Arguments 12-17 are considered one proof in count 
Arg 17.12 
Claim: To prove “If A is invertible, then the columns of A have to be linear independent,” 
we're trying to show that the only solution to Ax=0 is the trivial solution. [Instructor, 56:06] 
Data: Assuming A is invertible that would mean there exists some C such that CA is I and AC 
is I and we're trying to prove that the columns of A are linear independent [Instructor, 56:06] 
Warrant: what does it mean to be linear independent? That would mean the only solution, it's 
been a while, to Ax=0 is if x is 0 [Instructor, 56:06] 
Arg 17.13 
Claim: To get to x=0, we should consider CAx=C(Ax) [Instructor, 57:25] 
Data: We know CA=I by assumption [Instructor, 57:25] 
Arg 17.14 
Claim: CAx=0 [Instructor, 58:06] 
Data: Ax=0 by assumption and we actually can say that C of 0 has to be 0 [M, 57:25] 
Warrant: because C is a linear transformation [Instructor, 57:25 
Arg 17.15 
Claim: we have i of x is equal to 0 [Instructor, 58:06] 
Data: We know CA=I so CAx=Ix, and CAx=0 from before [Instructor, 57:25] 
Arg 17.16 
Claim: The vector x is the trivial solution  [Abraham, 58:56] 
Data: We can see that x1=0, x2=0, x3=0 [Abraham, 59:00] 
Warrant: Yeah, you can see it, we know that the identity matrix is linear independent. We can 
see that the only answer is the trivial solution. So x has to be 0. [Instructor, 59:04] 
Arg 17.17 
Claim: A is a matrix with linear independent column vectors. [Instructor, 59:04] 
Data: x has to be 0 [Instructor, 59:04] 
Warrant: if x has to be 0, then the only solution to A of x equaling 0 is if x=0. [Instructor, 
59:04] 
Arg 17.18 
C-D-W 
Claim: It [the matrix A] has to span [Abraham, 1:00:45] 
Data: it has to be a square matrix, and you're also saying it has to be linear independent 
[Abraham, 1:00:45] 
Warrant: based on our n by n theorem [it says they relate] [Abraham, 1:00:45] 
 
Arg 17.19 
C-D-*-C-*-C-Q 
Claim: It has to span [Abraham, 1:01:01] 
Data: based on having those 2, if those 2 are true [A is square and the columns are LI] 
[Abraham, 1:01:01] 
**Instructor asks for clarification of the claim [1:01:15] 
Claim: In order for A to be invertible, then A has to span Rn [Abraham, 1:01:24] 
**Instructor asks for assistance [1:01:39] 
Claim: If A is invertible, then the vectors within A span all or Rn, I guess. [Kyle, 1:01:56 and 
Abraham, 1:02:15] 
Qualifier: Let’s go ahead and say A is n x n. [Instructor, 1:02:38] 
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Arg 17.20 
C-Q1-D-Q2-**-W-R 
Claim: The matrix you have will row reduce to the identity [Justin, 1:02:50] 
Qualifier1: I feel like it’s kind of redundant [Justin, 1:02:50] 
Data: Any square matrix you have, that is independent is going to be reducible to the identity 
matrix [Justin, 1:03:06] 
Qualifier2: I feel that’s a waste, really, it’s redundant [Justin, 1:03:06] 
**Instructor calls for a warrant [1:03:24] 
Warrant: If all of these things we came up with to say these have to be true for it to be 
invertible. So if we have, because what I do when I get a matrix, I put it in my calculator and I 
row-reduce it, since it's a hell of a lot easier to look at. [Justin, 1:03:32] 
Rebuttal: I think there's a fine little line here with the implications between if then, which is 
what I was trying to get people to say well, that connects to what you guys are all saying. So 
let's think about this for a second, we've got one of them that starts off saying, If A is linearly 
dependent, then I can say it's not invertible. Then the other 2, the other one I added on here was 
If A is invertible, then the columns are linearly independent. If A is invertible, then the column 
vectors span. If A is invertible, it's reducible to the identity matrix. Great. What about if we 
wanted to go back this way, is it also true? Switching ifs and then? [Instructor, 1:04:27-1:05:17] 
 
Arg 17.21 
C-D-W 
Claim: knowing that if A is invertible then the columns of A are linear independent is not the 
same as saying If A is linear independent, then A is invertible. [Instructor, 1:05:55] 
Data: there is a subtle yet really major difference between those two statements [Instructor, 
1:05:46] 
Warrant: So if we think about the ifs and then of what we can assume, because we're trying to 
really delve into this theorem we have, the New Theorem we called it from before, which is 
great, but we have to make sure we jump into it the right way [Instructor, 1:06:07] 
 
Arg 17.22 
C-D-W-Q 
Claim: If A is linearly independent, we’re going to try to get that A has to be invertible 
[Instructor, 1:06:31] 
Data: A can be row-reduced down to the identity matrix [Instructor, 1:06:31, attributes to 
Abraham] 
Warrant: We know this [the DATA] from the New Theorem [Instructor, 1:06:31, attributed to 
Abraham] 
Qualifier: A is row-equivalent to the identity. To me that does not speak anything about A being 
invertible yet [Instructor, 1:06:54] 
 
 

Day 18 Argumentation Log 
 
BIG ARG #1 
Claim: If A is square and has linearly independent column vectors, then A is invertible.  
Arg 18.1 
Claim: A is row-equivalent to the identity 
Data: A is square and has linearly independent column vectors [49:10] 
Warrant: The New Theorem (as an authority) [Instructor, 49:10] 
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Arg 18.2 
Claim: there exists a sequence of elementary row operations that turns A into i and vice versa 
[Nate, attributed by the Instructor, 49:34] 
Data: That’s what it means to row-reduce to the identity [Nate, attributed by the instructor, 
49:34] 
Arg 18.3 
Claim: there's something acting on A and changing it [Instructor, 50:24] 
Data: There are elementary row operations that turn A into I [Instructor, 50:24] 
Arg 18.4 
Claim: each elementary row operation can be thought of as a linear transformation [Instructor, 
50:24] 
Data: there's something that's acting on A and changing it [Instructor, 50:24] 
Arg 18.5 
Claim: eventually there's some last step, once I act on A by e1 and then e2, all the way down to 
Ek, then I end up getting the identity [Ek...E2E1A=I] [Instructor, 55:09] 
Data: We started with A, and we transformed it with some matrix that stood for an elementary 
row operation, so we started with A, and we transformed it with E1. A second elem matrix 
would change that a little bit, and so on. [Instructor, 55:09-55:44] 
Arg 18.6 
Claim: The product of elementary matrices is a matrix, which can be called C. [Instr, 56:23] 
Data: They [elementary matrices] were matrices that are square and the same size [Instructor, 
56:23].  
Arg 18.7 
Claim: CA=I. [Instructor, 57:06] 
Data: Ek...E2E1A=I and (Ek...E2E1)=C [Instructor, 57:06] 
Arg 18.8 
Claim: Each elementary matrix is invertible [Instructor, 57:26] 
Data: Each of the elementary row operations that takes A towards I is reversible [Instr, 57:26] 
Arg 18.9 
Claim: C is invertible [Instructor, 58:19] 
Data: The product of invertible matrices is invertible [Instructor, 57:06] 
Warrant: We saw it through Pat and Jamie  
Qualifier: It wasn’t a super formal  
Arg 18.10 
Claim: AC=I and CA=I [Instructor, 58:19] 
Data: C is invertible [Instructor, 58:19] 
Arg 18.11 
Claim: A is C’s inverse [Instructor, 58:52] 
Data: C is invertible and CA=I [Instructor, 58:52] 
Arg 18.12 
Claim: A is invertible [Instructor, 59:08] 
Data: if you have the inverse of something, it better be true that you're invertible [Instr, 59:08] 
End of big proof 
 
Arg 18.13 
C-D-W 
Claim: The columns of A are linearly independent [Instructor, 59:53] 
Data: A is invertible [Instructor, 59:53] 
Warrant: From that paper that’s still up there, we had it before [Instructor, 59:53] 
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Arg 18.14 
C-D-W 
Claim: A is invertible [Instructor, 1:00:09] 
Data: The columns of A are linearly independent [Instructor, 1:00:09] 
Warrant: we now have [from the previous long chain of arguments [Instructor, 1:00:09] 
 
Arg 18.15 
C-D-W 
Claim: We can add that [A is invertible] to the theorem [the New Theorem] [Instr, 1:00:28] 
Data: now that we have this thing here, and we actually have 2 arrows, we know that this 
direction is true, and we actually now have that this direction is true [Instructor, 1:00:28] 
Warrant: in order to be a part of that [the New Theorem], you have to have double equivalent. 
[1:00:09] 
 
Arg 18.16 
C-D-W 
Claim: We can add there exists a C that's n x n such that AC=I. And we can also say there 
exists a C that's n x n such that CA = I to the theorem [Instructor, 1:01:17] 
Data: 11 and 12 [those two statements] are the definition of 10 [A is invertible] [Instr, 1:01:17] 
Warrant: they were equivalent because that's what the definition is.   
Backing: And we said that if one is true, the other one has to be true for 11 and 12, what we 
had up here that Anthony’s question was [Instructor, 1:02:09] 
ta: for all your x values, you're going to have y values, but you're not going to have these y 
values at all [Nigel, 16:35] 
Warrant: For instance, the y-value of -5 is impossible because there's no x value that would get 
you to that. [Nigel & Instructor, 17:03-17:11] 
Backing: from the graph you can see, the graphical representation of the function never crosses 
at y equals -5 [Instructor, 17:14] 
 
 

Day 19 Argumentation Log 
 

Arg 19.1 
C-D-W-B 
Claim: the function y=x2 is not onto [Nigel, 16:35] 
Data: for all your x values, you're going to have y values, but you're not going to have these y 
values at all [Nigel, 16:35] 
Warrant: For instance, the y-value of -5 is impossible because there's no x value that would get 
you to that. [Nigel & Instructor, 17:03-17:11] 
Backing: from the graph you can see, the graphical representation of the function never crosses 
at y equals -5 [Instructor, 17:14] 
 
Arg 19.2 
C-D-W 
Claim: the function y=sqrt x is not onto [Nate, 17:40] 
Data: [draws graph] you cannot, there's not, any point on this side [Nigel,] 
Warrant: Yeah, so altitude up and down, the y values, there's no way to put in something, take 
the square root of it and get a negative number, that would be a real value solution, right?. 
[Instructor, 18:22] 
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Arg 19.3  
C-D-W 
Claim: The transformation T: R2 R3 given by [4,0,0; 0,0,2] can’t be onto [all of R3] [Justin, 
22:32] 
Data: you have a row of 0's, so it's going to give you a column of 0's. And so you will have 2 
vectors with numbers in it, or 2 columns with numbers in it, and a column with zeroes in it 
[Justin, 22:32] 
Warrant: And that breaks it spanning all of r3 [Justin, 22:32] 
 
Arg 19.4 
C-D-W-Q 
Claim: the span of [4,0,0; 0,0,2] is not R3  (says you're not spanning, no matter what, you're 
not going to span) [Justin, 23:17] 
Data: put in just a 2 by 3 full of whatever.  And the output would give you a 3 by 3 square 
matrix. And the middle row, the middle column, excuse me, will always be 0's [Justin, 23:17] 
Warrant: I saw the algebra. Since it's 4,0;0,0;0,2, there's no values in the middle, so you're 
really convinced you're not spanning that dimension where the x's and y's are can't span where 
the 0's are, that dimension. [Nigel, 24:08] 
Qualifier: There are some good ideas, and they all involve a little more thought [Instr, 24:39] 
 
Arg 19.5 
C-D-W-Q-**-B1-B2 
Claim: The range of the transformation T: R2 R3 given by [4,0,0; 0,0,2] is the x,z point. 
[Kaleb, 27:31]  
Data: the 2nd row that vector is all 0's, [Cayla, 27:40] 
Warrant: essentially you can't get to any y value. [Cayla, 27:40] 
Qualifier: You can’t get any y-value other than 0, because 0 is a value [Instructor, 27:57] 
***Instructor asks for a reinterpretation (I’ll call a backing) 
Backing: No matter where your input vector is, when you multiply it out with that 
transformation function is going to give you the middle row of the 3 by 3 as 0's. [Male, 28:33] 
Backing2: So let's actually multiply by this input vector.  So we said no matter what your input 
vector is, if we do x times 4,0,0 + y times 0,0,2.  If we add it together, we get 4x + 0,0x + 0y, 0x 
+ 2y.  So that I could probably make any number if I want.  If I want it to be a million, I could 
figure out what x would be.  If I wanted this to be 47, I could figure out what y would be.  But is 
there any way to get that to not be 0?  Not really [Instructor, 28:41] 
 
Arg 19.6 
C-D-Q 
Claim: The transformation T[x1,x2,x3]=[x1,x2] is given by the matrix [0,1,0; 0,0,1]  [Saul, 
40:35] 
Data: We knew that this t want to get x2, x3, those 2 rows.  So you multiply this out, you have 1 
for the x2, and another 1 for the x3. [Saul, 40:02] 
Qualifier: Made sense in my head [Saul, 40:35] 
 
Arg 19.7 
C-D-W 
Claim: The transformation T[x1,x2,x3]=[x1,x2] is onto R2 [Giovanni, 41:45] 
Data: it has 2 separate vectors, the 2 pivot points right there. Minus, you don't even necessarily 
need that 1st vector. [Giovanni, 41:45] 
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Warrant: So with those 2 pivot points, that's how it  [the vectors in the matrix] can span all of 
R2. [Giovanni, 41:45, 42:05] 
 
Arg 19.8 
C-D-W1-**-D2-**-W2 
Claim: Since the columns vectors span R2, the transformation is onto. [Giovanni, restated by 
Instructor 42:37] 
Data1: If you can't choose any value, you're not going to be able to get output. [For instance] If 
those were 0's, you're dictated what your values, your output is going to be. [Justin, 42:52] 
Warrant1: But since you can go anywhere, you can use anywhere as an, do you know what I'm 
trying to say? [Justin, 42:52] 
**Instructor asks for help [43:17] 
Data2: Having the required amount of pivot points in the correct positions can span that 
number of dimension. [Josh, 43:25] 
**Instructor asks for a warrant [43:34] 
Warrant2: Because it has 2 pivots, and it can span r2.  And then since those 2 pivots are 
located in the y and z column, you're trying to have it in the y and z, it just, it works out. [Josh, 
43:40] 
 
Arg 19.9 
C-D-Q-R-Q 
Claim: We can use span and onto interchangeably [Jerry, Abraham, Justin, 44:44-45:23] 
Data: If it spans, the range equals the codomain [Abraham, 45:01] 
Qualifier: If you’re spanning all of your dimensions, then you can [use span & onto 
interchangeably] [Justin, 45:09] 
Rebuttal: The span of that one [an example] is a line, but it’s not onto [Justin, 45:15] 
Qualifier: We use span to describe a set of vectors, and now we’re saying onto describes a 
transformation [Instructor, 45:27-48] 
 
Arg 19.10 
C-D-W 
Claim: the function y = sine x is not 1-1 [Nigel, 59:56] 
Data: The same way that we know that x2 is not 1 to 1. The horizontal line test, I guess [Nigel 
1:00:10] 
Warrant: If you draw as Suzanna did, for any given input...you had the same output... sign of pi 
over 2 is 1...the sign of 5 pi over 2 is also 1. And that would happen infinitely many times, every 
multiple of 2pi. [Instructor, 1:00:16] 
     
Arg 19.11 
C-D-W 
Claim: This matrix here, 1,1; 2,2, it's not 1 to 1 [Kaleb, 1:12:08] 
Data: you multiply it out by 2 different things (<0,1> and <2,0>) to be 2,2 [Kaleb, 1:12:08-
1:12:33] 
Warrant: you have 2 inputs giving you that same output, so it's not 1 to 1 [1:12:33] 
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Day 20 Argumentation Log 
 
Arg 20.1 
C-D 
Claim: Onto is the same as saying the range is the same as the entire codomain [Instr, 02:48] 
Data: We established [it] last Wednesday [Instructor, 02:48] 
 
Arg 20.2 
C-D 
Claim: Onto is the same as saying the column vectors of the matrix span all of Rm [Instr, 02:48] 
Data: A lot of you had also said [it] [Instructor, 02:48] 
 Arg 20.3 
C-D-W-**-D-Q-W2-B2 
Claim: The transformation defined by the matrix [1, 0; 0, 1] is 1-1 [Kaleb, 34:40] 
Data1: identity is perfect, it transfers from a 2-dimension to a 2-dimension matrix, and it's 
going to cover each dimension. [Kaleb, 34:52] 
Warrant1: If it’s 1-1, then you’ll looking for a 1 dimensional going each way, it doesn’t cover 
everything [Kaleb, 34:52] 
**Teacher calls for more explanation [35:06] 
Data2: If you try to transform any matrix with the identity, it’s going to be its own matrix [Jerry, 
35:12] 
Qualifier (to Data2): I'm going to change 1 word he's been saying...I'm going to say 'vector' 
instead. [Instructor, 35:38] 
Warrant2: you have the identity and then 2,5, well 2,5 gets sent to 2,5; 7,9 gets sent to 7,9; 14,-
7 gets sent to 14,-7, etc. [Instructor, 35:38] 
Backing2: each unique input is only going to itself, so it has 1 output, and there's only 1 of 
those, so it's only going to map to it once. [Instructor, 35:38] 
 
Arg 20.4 
C-D1-**-D2-W 
Claim: You can’t be more than 1-1 if m < n [Mitchell, 36:25] 
Data1: It’s just not possible [Mitchell, 36:25] 
**Call for another data 
Data2: having more vectors than dimensions means it has to be linear dependent [Abraham, 
36:42] 
Warrant: In order for it to be 1-1, it has to be linear independent [Abraham, 36:42] 
 
Arg 20.5 
C-D-W-B 
Claim: if it's 1 to 1, the columns of A have to be linear independent. [Abraham, 37:34] 
**Call for data [37:34] 
Data: 1 to 1 is at most 1 solution [Abraham, 37:43] 
Warrant: But we know the trivial, or the Tx=0 always has to have 1 solution. So then it has to 
have the trivial solution. But if their columns are linear dependent, then T of x is 0 has more 
than 1 solution. So there would be 1 going to 2 different things [Abraham, 37:43] 
Backing (implicit): logical equivalence of proof by contrapositive. 
 
Arg 20.6 
C-D-W-B 
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Claim: The columns of A are linearly independent is another way to say that the transformation 
T is 1-1 [Instructor, 41:26] 
Data: When you reduce matrices linear dependent, you're going to have a free variable [Brad, 
40:48] 
Warrant: When you have that free variable, it has to be more than 1 input to get the same 
output [Brad, 40:48] 
Backing:  A free variable gives you some leniency in how you put down a solution for what’s in 
the span on the vectors, and that variability is giving you more than one way to get a certain 
output [Instructor, 40:59] 
 
Arg 20.7 
C-D-W-B 
Claim: The transformation defined by the matrix [1,0,5; 0,1,7] is 1-1 [Instructor, 43:08, 
attributed to Donna’s table] 
Data: Those two column vectors are linearly independent [Instructor, 43:08] 
Warrant: That fits our qualification [Instructor, 43:08] 
Backing: So if you are in the span, there’s only one way to get there [Instructor, 43:08] 

 
Arg 20.8 
C-D1-D2 
Claim: The transformation defined by the matrix [1,2; 1,2]] is not 1-1 [Jerry, 44:13] 
Data1: I just saw it as row reducing gets you 0’s on the bottom [Jerry, 44:13]  
Data2: And it is linearly dependent because it’s a multiple [Jerry, 44:13] 
 
Arg 20.9 
C-D-W 
Claim: The transformation defined by the matrix [1,2;1,2;e,f] is not 1-1 [Jerry, 44:13] 
Data: You have the 1,2,1,2 on the left side of that, and e and f can be whatever it wants [Jerry, 
44:54]  
Warrant: Because you have 2 multiples of each other [Jerry, 44:54] 
 
Arg 20.10 
C-D-**-W 
Claim: For any values a-f, the transformation defined by the matrix [a,c;b,d;e,f] is not 1-1 
[Donna, 45:35] 
Data: you could use any number, because it'll still [inaud], no matter what matrix you try to 
transform it by. [Donna, 45:35] 
**Call for warrant [Instructor, 45:48] 
Warrant: it could be any number [the entries in the matrix], that means that, it meant that it 
could have the possibility of having more than 1 solution. [Donna, 45:53] 
 
Arg 20.11 
C-D 
Claim: if we have more column vectors than we have dimensions, this right here always has to 
be linear dependent [Instructor, 46:19] 
Data: We heard a long time ago...That was one of the first things we had about linear 
dependency [Instructor, 46:19] 
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Arg 20.12 
C-C 
Claim1: It's not going to be 1 to 1 if they are linear dependent, [Giovanni, 47:36] 
Claim2: and it is 1 to 1 if they are linear independent [Giovanni, 47:36] 
 
Arg 20.13 
C-D-W-B 
Claim: The transformation defined by the matrix [3,4; 5,6] is onto [Cayla, 48:21] 
Data: columns are linear independent. [Cayla 48:21] 
Warrant: if you row reduce it, you would be able to get a pivot position in every row  
Backing: so it would span all of r2. [Cayla, 48:21] 
 
Arg 20.14 
C-D-W-B-R 
Claim: a transformation being onto and the column vectors spanning all of Rn, they're actually 
similar ideas [Instructor, 49:15, Matthew, 50:10] 
Data: If you're excluding a dimension, you're excluding all the possible answers that would 
lead to that dimension [Matthew, 50:10] 
** Instructor calls for warrant [50:16] 
Warrant: I have an example up there. It's linear dependent vector in r2 times a vector input x 
in r2. It cannot equal its input. Xy represents a valid b in r2, and the combination of the 
transformation and input cannot equal that [Lawson, 50:43] 
Backing: because it's not linear independent. [Lawson, 50:43] 
Rebuttal: Is there some other way you could have gotten <[x,y>? [Instructor, 50:43]  
 
Arg 20.15 
C-D-W-B 
Claim: If the span of a set of vectors is a plane in R3, that transformation can’t be onto 
[Instructor, 51:28, attributed to Matthew] 
Data: All the things that aren’t on that plane we’re excluding as outputs [Instructor 51:28] 
Warrant: Those aren’t the image of anything [Instructor, 51:28] 
Backing: The transformation can’t be onto [Instructor, 51:28]  
 
Arg 20.16 
C-**-Q-D (D1-C1- C2/D2)-W (W1 U W2) iff, chain 
Claim: If the matrix is square, being linearly independent is the same as being onto [Abraham, 
52:21] 
**Instructor calls for data [52:26] 
Qualifier: I just remember 
Data: if it’s square, we had the nxn theorem [Abraham, 52:52] 
Data1: If a square matrix is linear independent, 
Claim1: it also spans [Abraham, 52:52] 
Claim2/Data2: And vice versa. 
Warrant: As so that means (union of those two D-C) 
Warrant1: if it's 1 to 1, it has to be onto 
Warrant2: if it's onto, it has to be 1 to 1 
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Arg 20.17 
C-D-W1-W2-B 
Claim: If a set of vectors is linearly dependent, we cannot automatically conclude that the 
transformation is not onto [Instructor & Male, 54:27] 
Data: The 3 vectors [1,0; 0,1; 0,0] are linearly dependent but the transformation is onto 
[Instructor & Male, 54:27] 
Warrant1: There’s 2 pivot positions [Male, 45:53] 
Warrant 2: It spans R2 [Kaleb, 54:53] 
Backing: So the matrix has 2 pivot points, so the vectors span all of r2. And since those span all 
of r2, we can get anywhere in r2. So we say that T is onto [Instructor, 55:05] 
 
Arg 20.18 
C-D-W-B1-B2 
Claim: It is not possible to have a transformation from Rn Rm, m > n, be onto [Nate, 55:45]  
Data: you'll always go up a dimension  [Nate, 55:45] 
Warrant: that means we're going to have, more or less the way I think of it as dots in a 
diagram, we have more dots in our results in our codomain than in our domain  [Nate, 55:45] 
Backing: so there's no way for every dot in R3 to be mapped to. [Nate, 55:45] 
Backing: I think that was really cool ... He's saying if you start out in r2 but we have more 
outputs vectors in r3 in a certain way, well, they can't all get mapped to. [Instructor, 56:13] 
 
Arg 20.19 
C-D-W-B 
Claim: It is not possible to have a transformation from Rn Rm, m > n, be onto [Edgar, 56:48]  
Data: There's only 2 vectors, so you can't possibly span r3. You simply don't have enough 
vectors to get anywhere you have in r3. [Edgar, 56:48] 
Warrant: If we only have 2 vectors then all combinations of those 2 vectors are only going to 
give us a plane in r3. [Instructor, 57:02] 
Backing: You don't have any way to get to all of r3. So there's no way it could be onto. 
[Instructor, 57:02] 
 
Arg 20.20 
C-D 
Claim: It is possible to have a transformation that is both 1 to 1 and onto [Jerry, 58:59,   
Instructor, 59:11] 
Data: [from example] I think if we look at the board, we have m = n, we have a 1 to 1 and onto. 
[Instructor, 59:11] 
 
Arg 20.21 
C-D-W-B 
Claim: It is possible to have a transformation that is both 1 to 1 and onto [Cayla, 59:40] 
Data: It has to be square, and the columns have to be independent in order to get pivot points in 
each row to make it span all of the dimension. [Cayla, 59:40] 
Warrant: we need the column vectors are linear independent, and we need the column vectors 
to be able to span Rn. [Instructor, 1:00:05] 
Backing: it's 1 to 1 if the column vectors are linear independent, and it spans if the column 
vectors span Rm, so we need both of those to be true. [Instructor, 1:00:05] 
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Arg 20.22 
C-D (D1-C1 U D2-C2)-W  
Claim: the only time that we have them both being true [1-1 and onto] is if they're square 
[Instructor, 1:00:44, attr to Cayla] 
Data1: Because if it's wider than tall,  
Claim1: then 1-1 isn't possible.  
Data2: And if it's taller than wide,  
Claim2: then onto isn't possible. [Instructor, 1:00:44] 
Warrant: we can look at the boards around the room. If we go down the columns, it seems to 
be the case that the only time that we have them both being true is when m = n [Instr, 1:00:44] 
  
Arg 20.23 
C-D 
Claim: we said then if it's row reducible to the identity matrix then it's both 1 to 1 and onto?  
[Jerry, 1:01:22] 
**Instructor calls for data 
Data: None.  
Qualifer: I don’t know [Jerry, 1:01:50] 

 
Arg 20.24 
C-Q-**-D-W 
Claim: It [a matrix] would be invertible if all those things are true [Abraham, 1:02:33] 
Qualifier: It seems like it [Abraham, 1:02:33] 
**Teacher calls for data 
Data: I remember linear independent, span and row reduces to identity matrix and square all 
being in the invertible matrix theorem. [Abraham, 1:02:54]  
Warrant: those are all the same things we had up there [Abraham, 1:02:54]  
 
Arg 20.25 
C-D (D1 U D2) W (W1 (C3-D3-W3, C4-D4) hard one 
Claim: if it's square, if it's 1-1, it is always also onto [Edgar, 1:05:18, Abraham/Kaleb, 1:05:23] 
Data is D1 U D2 
Data1: If it's, to be 1 to 1, it seems like it's really into the dependence and independence of the 
vectors involved [Gabe, 1:06:18]  
Data2: onto seems to be related to span [Gabe, 1:06:18]  
Warrant:  So [the union of D1 and D2] (now we have cases)  
Warrant1:  
D3: If it’s both independent and spanning 
C3: That means it’s both onto and 1-1.  
W3: It has to be able to reduce to the identity matrix 
D4: If it’s both dependent and non-spanning 
C4: That means it’s neither 1-1 or onto.  
 
Arg 20.26 
C-D-W  
Claim: if it's either 1 to 1 or onto but not both, then it has to be non-square  [Abraham, 1:09:55]  
Data: Because of the chart [Abraham, 1:09:55] 
Warrant: if you're one and not the other, then you can't be square. 
Data1: If you're square 
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Claim1: you're either both or neither. 
Data2: And if you're one but not the other, meaning 1 to 1 or onto 
Claim2: then you must be either wider or taller but you can't be square. 
 

Day 24 Argumentation Log 
 
Arg 24.1 
C-D-W-B-Q 
Claim: For the transformation matrix [1,1; 2,2] the area would be 0 [Cayla, attrib to Brad or 
Jerry, 09:59] 
Data: Basically that's a line, and there is no way to transform that into a parallelogram Cayla, 
attributed to Brad or Jerry, 09:59] 
Warrant: So if we try to transform the first unit vector for the unit square that goes to 1,1. And 
if we try to transform the other one, 0,1, that goes to 2,2. [Instructor, 10:26] 
Backing: So that’s a line, and there’s basically no area to it. [Cayla, 10:52] 
Qualifier:  We didn’t know if there was no area to the line [Suzanna, 11:11] 
 
Arg 24.2 
C-D-W 
Claim: Linearly dependent matrices have determinant zero [David, attributed to Donna, 12:23] 
Data: if you a linear dependent matrix you multiple all the vectors by, it'll just put them on a 
line [David, attributed to Donna, 12:23] 
Warrant: The line doesn’t have any area [David, attributed to Donna, 12:23] 
 
Arg 24.3 
C-D (D1U D2)-Wim 
Claim: In the 2D case, if the column vectors are linear dependent, then the determinant of that 
matrix is 0 [Instructor, 13:02]  
Data: D1 U D2 (linked) 
Data1: we can use this area argument. [in arg #1 and #2] [Instructor, 13:28] 
Data2: If we would try to compute the determinant of this thing, see if it would actually get, 1 
times 2 minus 2 times 1, so it would get to be 0 anyway. [Instructor, 13:28] 
Warrant (implicit):  D1 U D2 is valid data 
 
Arg 24.4 
C-D1-Q-D2**-**W-Q-D3-W 
Claim: If the determinant is 0, then the column vectors have to be linear dependent [Abraham, 
13:55, after Instructor asked if it was true]  
Data1: I have no idea [Abraham, 13:55] 
Qualifier: It just seems [Abraham, 13:58] 
Data2: it's a square matrix, and it's independent so it's going to span. [Randall, 14:10] 
**Instructor calls for a warrant [14:16] 
Warrant: Well, if it spans, then it's invertible... [Randall, 14:19] 
Qualifier: I don’t really know where to go with that. [Randall, 14:19] 
Data3: Even with this geometric approach, it seems pretty true [Instructor, 14:28], we would 
say it [the claim] is true [Instructor, 15:09] 
Warrant: You will go through it in homework [Instructor, 14:54]  
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Arg 24.5 
C-D (C1-D1-W1 U D2) –W (em1 U D2) 
Claim: For the 2x2 case... A is invertible, the columns of A are linear independent, and the 
determinant of A is not 0 are equivalent statements [Instructor, 16:43] 
Embedded1: 
Claim1: Since it’s linearly dependent, it’s not invertible, just the opposite [Edgar, 16:02 
Data1: if it was linear independent, it's invertible. [Edgar, 15:43] 
Warrant1: That’s one of those from your exams, so it’s what we had before, so for the 2x2 
case, we can say this [claim1] [Instructor, 16:10] 
Data 2: We just had up here if the columns are linear dependent then the determinant is 0. 
[Instructor, 16:10] 
Warrant: (implicit Em1 U D2]So we can add that one down here as well, add it to the mix of, 
at least for 2 by 2 cases, equivalent statements. [Instructor, 16:10] 
 
Arg 24.6 
C-D-Wim-Q 
Claim: if A is not invertible, that happens when the columns are dependent, and we can say 
that's connected to when the determinant is 0 [Instructor, 17:00] 
Data: We can say the opposite of all these [the claim from Arg #5] [Instructor, 17:00] 
Warrant1: (implicit) p  q  r  not p  not q  not r is logically valid 
Qualifier (for both Arg #5 and Arg #6): we've only been talking about 2-dimensional space, 
so we have 2-vector matrices. And linear dependence is kind of the odd case in 2 by 2's, because 
the only way you could have it is with scalar multiples. So let's see if this holds true in r3. 
[Instructor, 17:29] 
 
Arg 24.7 
C-D-W-B 
Claim: The determinant of [a, c, 0; b, d, 0; 0, 0, k] is (ad-bc)*k [Adam, 30:47] 
Data:  the original ad - bc and multiply it by k to get the volume. [Adam, 30:47] 
Warrant: Since we had area of parallelogram [points board], we thought that you take the 
volume, you multiply it by k, because it's just the 3 sides. [Adam, 30:47] 
Backing: the ad - bc is the base, and we learned in high school that volume is based times 
height for certain prisms, then we get this k as the height [Instructor, 31:42] 
 
Arg 24.8 
C-D 
Claim: The determinant of [a, c, 0; b, d, 0; 0, 0, k] is (ad-bc)*k [Justin, 31:32] 
Data:  I just remembered it from a previous class [Justin, 31:32] 
 
Arg 24.9 
C-**-D-W-B 
Claim: The volume is zero when all the columns of the transformations are dependent, all the 
different equations of that [Gabe, 32:18] 
**Call for data (what are the possible ways?) 
Data:  If k is zero, we’re down to a plane or if column 1 and column 2 are scalar multiples of 
each other [Instructor, 32:59] 
Warrant: Does a plane have any volume? Not really [Instructor, 32:59] 
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Backing: So [there are] a couple different ways that scrunches down to a point or a line or a 
plane, there are a couple different ways that could come in [Instructor, 33:38] 
 
Arg 24.10 
C-D (C1-D1-R-D2=C1-C2-Q(chain) (or is the Q a W) 
Claim: It makes sense to add det A not equal to 0 to the IMT [Instructor, 35:06] 
Data (Chain): 
Data1: If the determinant is zero [Lawson, 37:17] 
Claim1: Then A is linearly independent [Lawson, 37:17] 
Rebuttal (to claim1): Dependent [Student, 37:30] 
Data2=Claim1 (implicit): If A is linearly dependent [Lawson, 37:17] 
Claim2: Therefore not invertible [Lawson, 37:17] 
Qualifier: I’m letting Lawson just say that without reasons why for right now, that sort of thing 
you can do on your homework this week [37:44] 
 
Arg 24.11 
C-D (C1-D1)-W 
Claim: If ad-bc is 0, you can’t row-reduce to I. [Instructor, 39:59] 
Data: (embedded): When row-reducing A, ad-bc shows up at the bottom left corner.  
Claim1:It’s linearly dependent [Student, 39:55]] 
Data1: If that [the bottom right corner] is zero [Instructor, 39:31] 
Warrant: that was one of the exam questions we had, it's some matrix that had a row of 0's on 
the bottom, it was a 2 by 2. We know that's not invertible, it can't be row reduced to the identity. 
[Instructor, 39:59] 
 
Arg 24.12 
C-D 
Claim: The inverse of a 2x2 matrix A is [d/(ad-bc), -c/(ad-bc); -b/(ad-bc), a/(ad-bc)] [Instructor, 

42:56] 
Data: That is the matrix that shows up on the left [sic, right] side of the row reduced form [of 
[A|I]~[I|A-1] [Instructor, 42:56] 
 
Arg 24.13 
C-D-W 
Claim: If det A = 0, A is not invertible [Instructor, 42:56] 
Data: Inverse is undefined is you had 1 over 0 [Gabe, 44:00] 
Warrant: Yeah, that one doesn’t make sense, right? [to divide by zero] [Instructor, 44:01] 
 
Arg 24.14 
C-D-W-B 
Claim: It makes sense that the determinant of C = [0,0,0; 2,5,1; 3,1,-2] is 0 [Nate, 49:54] 
Data: There’s a whole column full of zeroes [Nate, 49:54] 
Warrant: That shows the matrix is dependent [Nate, 49:54] 
Backing: We learned before, if it’s linearly dependent, it collapses the volume, so you can’t 
have volume, it’s collapsing [Nate, 49:54] 
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Day 31 Argumentation Log 
 
Arg 31.1 
C-D-W 
Claim: We had an arrow between 'Invertible matrix' or 'matrix B such that AB=I.' And 'there 
exists an invertible matrix C such that CA=I. [Randall, 30:56] 
Data: These three concepts are almost exactly the same thing [Randall, 30:56] 
Warrant: It shows commutativity, they can be multiplied either way, and you're supposed to get 
I, but they're both the same.[Randall, 30:56] 
 
Arg 31.2 
C-D-W-B 
Claim: We put det A not being zero at the top of our board [i.e, it’s an idea we are most 
comfortable with] [Nila’s group, 35:32] 
Data: We think of determinant as area or matrices, when a transformation...[Nila, 35:44] 
Warrant: The determinant as the area of the transformation, so if it's 0, then it's not changing 
it, so it can't be 0 [Carter, 36:05] 
Backing: If the determinant is a way to measure area, then if it does equal 0, then there’s no 
area in between and we see that those 2 lines are linearly dependent, it can’t be invertible. 
[Instructor, 36:19] 
 
Arg 31.3 
C-D (C1-D1 and C2-D2-W2)-Q (linked data) 
Claim: The most obviously equivalent set for us is 'the columns of A span all of Rn, the column 
space of A is all of Rn, and for every b in Rn, there's a way to write b as a linear combination of 
the columns of A [Justin, 45:37] 
Data: we think they go together very well because: 
Claim1: It’s [span and column space] like the same thing 
Data1: because, if your columns of A do span all of Rn, then your column space is going to be 
all of Rn 
AND (linked data) 
Claim 2: The “for every b” card is also connected (implicit claim) 
Data2: When we're trying to get to Gauss' cabin or whatever, you know, we had to be able to 
make a linear combination 
Warrant2: our columns can make a linear combo for everywhere and span everywhere 
Qualifier; I think I’m rambling 
 
Arg 31.4 
C-D-W 
Claim: you'll be able to make a linear combination of them to get to where you want. [Jorge, 
46:41] 
Data: using Gauss' cabin, since you can go anywhere because of the 1st 2, [Jorge, 46:41] 
Warrant: since b would be a linear combination of all the vectors there [Jorge, 46:41] 
 
Arg 31.5 
C-D-W-B 
Claim: “'For every b in Rn, there exists a solution x to Ax=b “ is also equiv to the previous 3  
(span, column space, lin combo [Abraham, 47:03] 
Data: There's solution to every b,. [Abraham, 47:11] 
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Warrant: so we can get to that output vector, and that's span [Abraham, 47:11] 
Backing: So they're kind of equivalent ideas for you, because they by definition are the same 
[Instructor, 47:42, Abraham, 48:26] 
 
Arg 31.6 
C-D-Q 
Claim: If we added a word ‘unique,’ then I would put it [the columns are linearly independent] 
in there [Abraham, 47:11] 
Data: Because 'unique' makes it linear independence. [Abraham, 47:11] 
Qualifier: but without the word, I just think of we can get to every b. [Abraham, 47:11] 
 
Arg 31.7 
C-D 
Claim: the only solution to Ax=0 being the trivial solution and being linear independent are 
obviously equivalent [Edgar’s table’s board, stated by Instructor, 48:32] 
Data: By definition [they] have to be the same, that’s how we define both of them [Instructor, 
48:32] 
 
Arg 31.8 
C-D (D1-C1=D2-C2) chained data 
Claim: 'the columns of A span Rn,' and 'the columns are linear independent' are an obviously 
equivalent pair. [Nate’s table’s board, stated by Instructor, 48:57] 
Data:  
Claim1: It has n amount of pivot points 
Data1: If the columns of A are linearly independent, 
Data 2-Claim1: If it has n amount of pivot points 
Qual: And it’s an nxn matrix, assuming that 
Claim2: Then it spans all of Rn.  
 
Arg 31.9 
C-D-W-B 
Claim: The main ‘hub’ for our table was A is invertible [Randall, 1:08:30] 
Data: because all of these, they're all pointing to that, that's the reason we have these. 
Warrant: I just felt that each one of these was a different way of saying that. 
Backing: we didn't have 'A is invertible' on the list, these would all be equivalent to each other, 
but not really get anywhere [Randall, 1:08:05] 
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Appendix 4.2. Transcript for the section of Day 6 that was analyzed 

 

(0:01:53.7) Instructor:  And upon reading your Reflections, the last one was the one that a lot of 
you said you weren't sure about. Sorry, I don't have your Reflections today. I had asked you, 
'What generalization are you confident about and why, and which one are you not confident 
about and why?' And I caught quite a few people saying, 'I'm not really sure about #4 yet.'  So 
let's go ahead and start off class by thinking about #4 together. So just take a couple minutes in 
your group to think about #4. Let's take about 3 minutes and let's talk about why #4 might be 
true and how you'd be convinced of that. We'll reconvene and talk about it for a couple more 
minutes. 

—SMALL GROUP WORK: (0:02:31.4-0:04:26)— 

(0:04:26.9) Instructor:  As I was walking around, I saw a little more puzzled faces than I 
expected, it is Monday and I actually heard someone said, 'How are we supposed to know how 
to make a generalization if we don't know what it's about, or we don't understand what it's 
about?'  I think that's a great question. So how about, can I have someone who understands #4 
restate #4 in their own words, what do we mean by this generalization? 
(0:04:54.3) Justin:  If you have more vectors than dimensions, you'll always be able to return to 
your original position. 
(0:05:03.9) Instructor:  Could you say that louder? If you have more vectors than dimensions? 
(0:05:10.2) Justin:  Then you can always return to your original position. 
(0:05:17.5) Instructor:  [writes board] Does that resonate with anyone else's way of thinking 
about this problem? Nate, can you say anything about the way you understand what #4 is about? 
(0:05:26.2) Nate:  It's saying if you have, there's no other way of putting it, if there's more 
vectors than. I don't know another way to say it. 
(0:05:37.8) Instructor:  That's fine. So that's the problem statement, now the question would be, 
how can we explain why that is true? Jerry, did your table get to talk about a reason why #4 is 
going to make sense to your table? 
(0:05:51.8) Jerry:  Not really. 
(0:05:56.8) Instructor:  Not really. Saul, how did your table talk about #4? 
(0:06:04.0)Saul:  We were confused on how to prove it, we didn't know where to start, where to 
go with a proof. [inaud] 
(0:06:12.4) Instructor:  Okay, why don't we start with an example? I think we had some from 
last class that, where let's just say we have 3 vectors in r2. So we're just going to have any 3 
vectors in r2. Part of the generalization says, it doesn't matter what the vectors are, since I have 
more than I have dimensions, I should be able to get back home or return back to my starting 
point. [pause] 
(0:06:46.7) Instructor:  So why don't you take another minute in your group to think about this 
particular example that I just made up. If you don't like my numbers, you can change them, 
that's fine, too. Let's think about why if we had 3 vectors in r2, that would mean I should always 
be able to get back home? 
(0:07:00.1) Instructor:  Edgar, can you tell me again what I'm asking you to work on in your 
groups? I want to make sure everyone, when you go in your groups, I want to make sure you 
know what I'm asking you to work on. I don't want to give you 5 minutes of dead time, that's 
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not the point. 
(0:07:12.7)Edgar:  You want us to basically find a way to prove whether or not it's true. 
(0:07:18.0) Instructor:  Okay, take 1 more minute, please. 

—SMALL GROUP WORK: (0:07:23.9-0:08:33.9)— 

Instructor:  Okay, Lawson is going to come up and share his explanation for #4 with us, please? 
I'm sorry, are you guys okay? I don't want to cut off. 
(0:08:46.0) Justin:  No, go ahead, it's alright. 
(0:08:58.9)Lawson:  If you have 3 nonparallel vectors, if you graphically think about it. You say 
you have a vector over here, and then plus a vector that's not parallel to it. And we have just any 
other random vector, say it goes this way. If you add any 2 nonparallel vectors that at some 
point these vectors are going to come across this other vector, and hit it at a point. So if that 
happens, then you can just take the last vector and multiply it by some scalar to get you back to 
the origin. That's how graphically we got it. 
(0:09:44.4) Instructor:  I totally agree basically. I heard him say something that I'm curious 
about. What if the set of vectors were 1,2; 2,4; -9,7? 
(0:09:57.9)Lawson:  You can just ignore this last vector, take 1, like 1,2 which would be, and 
just take the 2,4 back, it's a multiple of 1,2, and you can just not use this one. So it's linear 
dependent. 
(0:10:21.7) Instructor:  Cayla, I see you nodding, can you explain how this makes sense to how 
you're thinking? 
(0:10:28.7)Cayla:  I was nodding because it makes sense that pretty much if you have 3 vectors 
in r2, even in the 1st example, you could technically ignore the last one, because if you take 1,2 
out, then you can still use any combination of the 1,2 and the 3,5 to get back. 
(0:11:20.5) Instructor: So Aziz, I may come back to you. I heard her say something about taking 
this vector out, right? [-9,7]  And still getting everywhere. Aziz, tell me what you want to say? 
(0:11:40.0)Aziz:  If a vector is contained in the span of 2 other vectors, then you should be able 
to reach the origin, get back to the origin. 
Instructor:  Say more about that? 
(0:11:50.8)Aziz:  2 vectors span r2 or they don't, if they're linearly dependent already, then it 
makes the set linearly dependent. If 2 aren't, then they span r2, and the 3rd one has to be 
contained in R2 to be able to reach back to the origin. 
(0:12:09.3) Instructor:  David, did you hear what Aziz said? 
(0:12:13.7) David:  I didn't really hear what he said, no. 
(0:12:15.7) Instructor:  Could you say it again? I want everyone to listen, because I think he said 
quite a few generalizations in there, and some important things I want to hit on. 
(0:12:22.4)Aziz:  If 2 vectors span r2, if the 3rd one is contained in r2, then you should be able 
to reach the origin back. But if the 2 vectors are multiples of each other, then it already makes 
the set linearly dependent. Them 2 making the span makes the 3rd one be able to reach back to 
the origin. 
(0:12:46.3) Instructor:  Yeah, so what I heard was, we're debating whether linear dependence or 
not, he had 2 cases, he had the case of if this and this are multiples of each other. Then it sounds 
like this set is already linearly dependent, so the 3rd one [inaud]. Now the other case, where 
none of them are multiples of each other, I know that if the 1st 2 are linearly independent, that 
their span is all of r2, so the 3rd one, if it's in r2, has to be able to take you back to the origin. I 
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hope the notetaker is getting some of these down, I know we're not writing them all down, but 
these are the kind of things you should be trying to write down, please, as you're taking notes. 
(0:13:54.1) Instructor:  So I want to go back to something else that she said in here about taking 
a vector out. If you think about the definitions on your page, you have linear independence and 
you have span. They're slightly different but they're definitely related. If we look at this set, the 
span of this set is all of r2. Now Cayla was saying that actually if we took out 1 of those vectors, 
the span is still all of r2. Now the question would be, how does this relate to linear 
independence or dependence, are they both linearly independent, are they both linearly 
dependent, one of each? 
(0:14:59.7) Instructor:  Matthew, your table back there, can you tell me about the 1st one up 
here, how are you thinking about linear independence or dependence? 
(0:15:10.0) Matthew:  It should be, if they're all existing within the x,y plane, they're all in the 
same plane. So once you have 3 of them, that is, you don't have 2 of them that lie along the 
same vector, on the Same line, then we should be able to get back to the origin and it should be 
dependent. 
(0:15:32.1) Instructor:  So you're saying dependent for this 1st one? Okay. And Juan, what 
about the 2nd set? 
(0:15:47.9) Juan:  Linear independent. 
(0:15:49.7) Instructor:  Can you gve us a reason? 
(0:15:51.3) Juan:  Because it spans r2. 
(0:15:55.0) Instructor:  He says the 2nd set is linearly independent because it spans r2. What do 
you guys say? 
(0:16:01.4) Nate:  That's not a good reason.  
(0:16:07.4) Instructor:  I would say we need a little bit more. Caleb, can you add on some more? 
Are you the one that whispered something under your breath?   Student:  [inaud] 
(0:16:18.0) Instructor:  Okay, yeah, it is a linearly independent set, and it does span r2, but so 
does this one, right? So what's the difference?   Randall:  [inaud] 
(0:16:28.8) Instructor:  The x [inaud], say more? 
(0:16:30.3)Randall:  I was just saying you can go anywhere with the 1st 2 vectors in r2, but your 
way home, if you took away -9,7, there's no way back. So it's independent because you can go 
anywhere, but there's no home. 
(0:16:47.2) Instructor:  Yeah, we took away that 3rd vector, so that way home that we had no 
longer exists there. The original question I was talking about, the generalization #4. So I don't 
want to beat this thing to death, but let's go back to this. We did a case of 3 vectors in r2, but 
what about 4 vectors in r3?  I think that was also in the chart. So I think table 4, you guys were 
the ones who came up with this generalization, can you guys say a little bit more in general how 
this makes sense to you, not just in the r2 case? 
(0:17:19.3) Justin:  So if you start in any Rn, and you just start with 1 vector and keep adding 
more. So let's do R3, just for an example. So we start with 1 vector. So either, we have 2 
choices:  The next vector we add can either be on the Same line, which means it's already 
linearly dependent, so we don't want that, so we're going to put it off somewhere else. Now the 
span of that is a plane in 3 dimensions. So now we're going to add another vector in. Our 3rd 
vector, now it can either be in that span or out of that span. And we want it to be linearly 
independent, so we're going to put it out of that span. But now that we have that going off of 
that plane, we just extended our span to all of r3.  
(0:18:09.9) Justin:  So our 4th vector, when we put it in, no matter where we put it, it's going to 



  
324 

 

get us back home. Because just like in this case, we have to have the last one to get back home, 
we can get anywhere with those 1st 3 that we put in, but we have to have to have that 4th one to 
come back. And so it works like that in any dimension, because the more you, if you keep 
adding, eventually you're going to get the span of your dimensions, and then you're going to 
have that extra one bringing you back. Unless you have 2 vectors that are lying on the Same 
line, then you won't have the span of all of your dimension, but it's negligible because those 2 
will give you a linearly dependent set. Does that make sense? 
(0:19:00.3) Instructor:  I think Nate has a question for you? 
(0:19:02.2) Nate:  The only, the big question that I have is, how can you make generalization 
about let's say 10th dimension, if you don't know what it really is? 
(0:19:10.0) Instructor:  That a good question. A lot of the ways we've been trying to think of 
this is in r2 and r3 because we can visualize it physically, right? But after a while we don't know 
what r10 means. [Said under his breath, C2: (0:19:24.1)Greg: Why should we care?] But could 
we still have something along those lines that makes sense? I think as we keep going in the 
semester, even today, we're going to start some more like computational techniques, but lose a 
little bit of this context, and it will maybe help us see how we could get to r10. Any other ways 
that you can think about this stuff, for you guys, can we reach all of r2 and r3 
(0:19:46.7)Aziz:  I'd like to add on to this, if you're going from the plane to the volume of space, 
that's with 3 vectors in 3 dimensions. With the 4th one, you can cross all those dimensions back 
to the origin, that's what makes the 4th dimension, the 4th vector, it makes you able to go back 
to the beginning. Because each vector takes up a different point in space. You're going from the 
plane to the volume, gives you those 3 dimensions but you can't get back to origin, unless you 
have a 4th one that can cross all 3. 
(0:20:24.9) Instructor:  I think Ali and Justin said a lot and it's all accurate, but I think it might 
have been a lot to take in, so take a minute with the person next to you, and try to restate what 
you heard from them, try to solidify it while you're thinking of it, then we'll move on to old 
Reflection. 

—SMALL GROUP WORK: (0:20:45.2-0:21:52.8)— 

(Instructor:  Allen, can you tell me what you and your table talked about, a short summary? 
(0:22:00.0)Allen:  We were just summarizing what he was saying, whatever dimensions we 
have, like say r3, whatever, more vectors that we have more than 3, like 4 or 5, all those vectors 
are always going to come back to the origin. Whenever it's the same amount, it's just going to 
span. 
(0:22:22.1) Instructor:  Same amount is going to span. Any more comments?  
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Appendix 4.3. Compilation of Adjacency Matrix codes for Whole Class Discussion 
 

Argument Used for m < n 
in general or a 
specific example  

Used for m = n 
in general or a 
specific example  

Used for m > n 
in general or a 
specific example  

Used for all m, 
n or was vague 

Arg 5.1: CMP 1 
 

 
 
 
G3F9 
S8F 

F4F 
E4G 
E4G2 
 

  

Arg 6.1: CMP 1 
 

S8F3 
S8F3 

   

Arg 6.2 Content not appropriate for coding scheme 
Arg 6.3: CMP 1 
 

E4G2F9 
 

   

Arg 6.4: CMP 1 
 

F4F3 
F5F 
S8G4F4 

   

Arg 6.5: CMP 1 
 

 
 
 
GF9 
GF9 
F5F 
GF9 
F5F 
GF9 

 
FF 
EG 
 

 F7F3 
 

Arg 6.6:CMP 1 F4E4 
F9F 

   

Arg 6.7: CMP 1 
 

 G**E 
G**E 
G2E8 
GE3**E 

  

Arg 6.8: CMP 1 
 

 
 
 
 
S10F9 
G2F9 
G1F9 
F5H1 
F5F 
G1F9 
G4G1 
F9F4 

 
 
E7**E 
G4G 

F4F 
E5**EH5 
 

 

Arg 9.1: CMP 1 
 

S10F 
S10F 

   

Arg 9.2 EE1    
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 F1F 
Arg 9.3  J5F2**F    
Arg 9.4 J1J4**J5    
Arg 9.5 Content not appropriate for coding scheme 
Arg 9.6 
 

E5G 
E5G 
F3G 

   

Arg 9.7 J4J5**G    
Arg 9.8 
 

I3GJ5 
G1**G 
I3G4G 
IGG2 

   

Arg 9.9    I3G4G 
Arg 9.10 Content not appropriate for coding scheme 
Arg 9.11 
 

J4J5 
J5F 

   

Arg 9.12 
 

J3H4 
F4H2 
J3H4 

   

Arg 9.13 H1H 
H1H4  

   

Arg 9.14 JH4 
G4H4 
J3H4, I3G 
IG4G 

   

Arg 9.15 S10F 
S10 GF 
S10J4F 

   

Arg 9.16   S9H 
H1H2 
S9H1 
S9J3H 

 

Arg 9.17    F8F 
F5F4F 
F5F3F 

Arg 10.1: CMP 1 
 

 I3**GE 
J3F 
I3I1G 
E4E 

  

Arg 10.2: CMP 1 
 

 I3I4E3**
GE 

  

Arg 10.3: CMP 1  S10**GE   
Arg 10.4: CMP 1  S10**GE   
Arg 10.5  G3 E3 

I3 I5 
I3I1E2 
GF2 

  

Arg 10.6  GF2   
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Arg 10.6  GF2 
S10E2 

  

Arg 10.7 Content not appropriate for coding scheme 
Arg 10.8  I3I5I6 

GI5I6 
  

Arg 10.9  I1E2**E 
EE2, E2E 

  

Arg 17.1  F8**S1L3   
Arg 17.2  F8L3 

F8H2 
  

Arg 17.3  HL 
F9L 
F8L4 
F8S1**L4 
S1L4 
F8J3 
S1L 
S1L 
F8L 

  

Arg 17.4  F5L 
FL 

  

Arg 17.5  S1**F8L   
Arg 17.6  

 
 
GF 
 

F5J5 
J6L 
FLFH 
 
FH 

  

Arg 17.7 FL 
GFL 
 

 
 
KS10 
 

 
 
 
EL 
FL 
KK4S10  

 

Arg 17.8  FS1 
L4L 

  

Arg 17.9  FH5 
L6L 

  

Arg 17.10  H5L6L 
H5N4 
N4L6H2 
N4L6L3 
F5N3  

  

Arg 17.11:  FL 
KE 

  

Arg 17.12-17  KK4 
EE1 
E1E 
FL 
KE 
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Arg 17.18  E  G 
KG 

  

Arg 17.19  EG 
EG2 
KG 
KG 

  

Arg 17.20  E  I2 
KI2 
FL 
KE 
KG 
KI2 

  

Arg 17.21 Content not appropriate for coding scheme 
Arg 17.22  EI2   
Arg 18.1-12:  EI2 

I2K5, 
K5I2 
K5K4K 
EK 
I2K 

  

Arg 18.13  KE   
Arg 18.14  EK    
Arg 18.15  EK, KE   
Arg 18.16  I5K 

KK4 
K4K 

  

Arg 19.1    N3N 
N1N 

Arg 19.2 Content not appropriate for coding scheme 
Arg 19.3: CMP 2 
 

  F8N 
F8H 

 

Arg 19.4: CMP 2 
 

  F8N3 
**HN 
F8HN3  

 

Arg 19.5: CMP 2 
 

  F8N3** 
N2 
F8N3 
F8N3  

 

Arg 19.6 Content not appropriate for coding scheme 
Arg 19.7: CMP 2   I3**M 

I3G 
 

 

Arg 19.8: CMP 2 
 

 
 
 
 
 
H5N4 

 
 
 

GM 
J3N3 
G2M3 
IG 
IG 
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HN3 
H5N4 

Arg 19.9: CMP 2 
 

   GM2 
GM, MG 
H5N 
HN 
GM 

Arg 19.10    P4P 
Arg 19.11    P4P  
Arg 20.1: CMP 2    MM1M3 

MM2, 
M2M 

Arg 20.2: CMP 2    MG, GM 
Arg 20.3  S10M2O 

O2O 
  

Arg 20.4: CMP 1 
 

S8 P 
S8F, 
E**O 

   

Arg 20.5    S8F 
OE 
O1O, 
OO1**E1 
FF1P4 

Arg 20.6    F2P 
FJ5P4 
J5F2P3
P1 
EO, OE 
GM, MG 
EO, OM 

Arg 20.7   EN2 
EO3 

 

Arg 20.8-9  
F5P 

F5J6P 
 

  

Arg 20.10 P5P 
F2**P 

   

Arg 20.11 S8F 
S8F 
FP 

   

Arg 20.12 FP 
EO 

   

Arg 20.13: CMP 
2 
 

  
 
EI3G**
M 

 MM2 
MM1 
 

Arg 20.14: CMP 
2 

  
FN3 

 H4N3 
 

Arg 20.15:    H5N3N  
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CMP 2 
Arg 20.16: CMP 
1&2 
 

 EM, ME 
GM 
EG 
GEO 
M, M O 
OG 
GO 
FH 
HN  

  

Arg 20.17:  
CMP 2 
 

  I3G 
I3G 
G2M  

 

Arg 20.18:  
CMP 2 

  N5S121 
N3 N 

 

Arg 20.19:  
CMP 2 
 

  S9**H1H 
S9H5H2
N 

 

Arg 20.20:  
CMP 2 

Content not appropriate for coding scheme 

Arg 20.21:  
CMP 2 
 

 EI3G 
EG 
EO, GM 
OM, MO 

  

Arg 20.22:  
CMP 2 
 

 MO, OM 
S8P 
S9N 
OM, MO 

  

Arg 20.23:  
CMP 2 

 I2O, I2M   

Arg 20.24:  
CMP 2 

 OK, MK   

Arg 20.25:  
CMP 2 
 

  
OE, EO, 
MG, GM 
EI3O 
GI3M 
FP 
HN 

 O M 
 

Arg 20.26:  
CMP 2 

 

MP, PM 
 
 
 
 
MP, PM 

 
 
MO, 
OM, NP 
PN 

 
NO, ON 
 
 
 
 
NO, ON 

 

Arg 24.1  FH5R1   
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Arg 24.1 
 

 FH5R1 
N4R3 
N4R3R1 

  

Arg 24.2  EN4R3   
Arg 24.3  R1**FR 

FR2R 
  

Arg 24.4 
 

 RF 
EG 
GK 
FR 
RF 
FR, RF 

  

Arg 24.5-6  EK 
FL 
FL 
FR 
LR, RL 
KE, EK 
EQ, QE 
KQ, QK 
FL, LF 
FR, RF 

  

Arg 24.7-8 Content not appropriate for coding scheme 
Arg 24.9 

 
 FR 

F6N4R1 
  

Arg 24.10  RFK 
QEK 
REL 
RFL 

  

Arg 24.11  J6F 
J2L 
R2J2 
RL 

  

Arg 24.12  KK1   
Arg 24.13  RL2 

L1J6L 
KI6 

  

Arg 24.14  F8FN4
R1R 

  

Arg 31.1  KK4, 
K4K 

  

Arg 31.2  RR1FL   
Arg 31.3  GS2, S2G 

GG3, 
G3G 
S2G3, 
G3S2 
GS2 
G3G2G 
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Arg 31.4  GG2, 
S2G2 
G3G2 

  

Arg 31.5-31.6  G5G 
G G5 
G5S2 
S2 G5 
G5G3 
G3 G5 
E2E 
G5G2 
G5M3G 

  

Arg 31.7  EE1, E1E   
Arg 31.8  G E, EG 

EIG 
EI 
IG 

  

Arg 31.9 Content not appropriate for coding scheme 
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Appendix 4.4. The adjacency matrix A(P1)m<n, condensed to show only used rows and columns. 
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Appendix 4.5. Upper left quadrant of the adjacency matrix A(P1)m=n  
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Appendix 4.5. Lower right quadrant of the adjacency matrix A(P1)m=n 
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Appendix 4.6. The adjacency matrix A(P1)m>n, condensed to show only used rows and columns. 
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Appendix 4.8. The upper left quadrant for the adjacency matrix A(T)m<n 
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Appendix 4.8. The lower right quadrant for the adjacency matrix A(T)m<n 
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Appendix 4.9. The upper left quadrant of the adjacency matrix A(T)m=n 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
(T

) m
=n

 U
L

E
E1

E2
E3

E4
E5

E6
E7

E8
F

F1
F2

F3
F4

F5
F6

F7
F8

F9
G

G
1

G
2

G
3

G
4

G
5

H
H

1
H

2
H

3
H

4
H

5
H

6
I

I1
I2

I3
I4

I5
I6

J
J1

J2
J3

J4
J5

J6
K

K
1

K
2

K
3

E.
   

C
ol

um
n 

ve
ct

or
s 

of
 A

 a
re

 li
ne

ar
ly

 in
de

pe
nd

en
t

1
1
1

1
2
2
1
1

1
1

2
2
1
3

3
3

E1
. T

ri
vi

al
: O

nl
y 

so
lu

tio
n 

to
 A

x 
= 

0 
is

 tr
iv

ia
l s

ol
ut

io
n

1
1

E2
. U

ni
qu

e:
 T

he
re

 is
 a

 u
ni

qu
e 

so
ln

 to
 m

at
rix

 e
qn

/s
ys

te
m

 o
f e

qn
s 

2
1

E3
. T

ra
ve

l: 
C

an
't 

ge
t b

ac
k 

(h
om

e)
/g

et
 to

 o
rig

in
 w

ith
 co

lu
m

n 
ve

ct
or

s o
f A

1
1

E4
. G

eo
m

et
ri

c:
 V

ec
to

rs
 a

re
 n

ot
 p

ar
al

le
l/

on
 th

e 
sa

m
e 

lin
e 

or
 p

la
ne

1
1

1
E5

. P
ro

po
rt

io
na

l: 
N

o 
ve

ct
or

 is
 a

 sc
al

ar
 m

ul
tip

le
 o

f a
no

th
er

E6
. L

in
ea

r 
co

m
bi

na
tio

n:
 N

o 
ve

ct
or

 is
 a

 li
ne

ar
 co

m
bo

 o
f a

no
th

er
E7

. P
la

ce
m

en
t: 

N
o 

ve
ct

or
 is

 in
 th

e 
sp

an
 o

f t
he

 o
th

er
 v

ec
to

rs
1

E8
. E

xt
ra

: D
o 

no
t h

av
e 

an
 e

xt
ra

 v
ec

to
r n

ee
de

d 
in

 o
rd

er
 to

 re
tu

rn
 h

om
e

F.
   

 C
ol

um
n 

ve
ct

or
s 

of
 A

 a
re

 li
ne

ar
ly

 d
ep

en
de

nt
1

2
1

1
1

1
F1

. T
ri

vi
al

: I
s m

or
e 

th
an

 o
ne

 so
lu

tio
n 

to
 A

x 
= 

0.
 

F2
. U

ni
qu

e:
 N

o 
un

iq
ue

/m
ul

tip
le

/i
nfi

ni
te

ly
 m

an
y 

so
ln

s t
o 

sy
st

em
/m

at
rix

 e
qn

F3
. T

ra
ve

l: 
C

an
 g

et
 b

ac
k 

ho
m

e/
ba

ck
 to

 a
 p

oi
nt

 w
ith

 co
lu

m
n 

ve
ct

or
s o

f A
F4

. G
eo

m
et

ri
c:

 V
ec

to
rs

 a
re

 p
ar

al
le

l/
on

 th
e 

sa
m

e 
lin

e 
or

 p
la

ne
1

F5
. P

ro
po

rt
io

na
l: 

O
ne

 v
ec

to
r i

s a
 sc

al
ar

 m
ul

tip
le

 o
f a

no
th

er
1
1

F6
. L

in
ea

r 
co

m
bi

na
tio

n:
 O

ne
 v

ec
to

r i
s a

 li
ne

ar
 co

m
bo

 o
f o

th
er

s
F7

. P
la

ce
m

en
t–

A
 v

ec
to

r i
s i

n 
th

e 
sp

an
 o

f t
he

 o
th

er
 v

ec
to

rs
1

F8
. Z

er
oe

s: 
th

e 
m

at
rix

 A
 h

as
 a

 ro
w

 o
r c

ol
um

n 
of

 z
er

oe
s

1
1

1
F9

. E
xt

ra
: H

av
e 

an
 e

xt
ra

 v
ec

to
r n

ee
de

d 
in

 o
rd

er
 to

 re
tu

rn
 h

om
e

G
.  

 C
ol

um
n 

ve
ct

or
s 

of
 A

 s
pa

n 
R

n
2
4
1
1

1
2

1
1

1
1

1
1

G
1.

 S
iz

e:
 A

re
 e

no
ug

h 
ve

ct
or

s t
o 

sp
an

 th
e 

en
tir

e 
sp

ac
e

G
2.

 G
eo

m
et

ri
c:

 C
an

 u
se

 v
ec

to
rs

 to
 g

et
 to

 e
ve

ry
 p

t/
go

 e
ve

ry
w

he
re

1
1

G
3.

 A
lg

eb
ra

ic
: I

s a
 li

ne
ar

 co
m

bi
na

tio
n 

of
 v

ec
to

rs
 fo

r a
ll 

pt
s i

n 
R

n
1

1
2

1
G

4.
 D

ir
ec

tio
n:

 C
an

 u
se

 e
ac

h 
ve

ct
or

 to
 g

o 
in

 a
 ce

rt
ai

n 
di

re
ct

io
n

1
G

5.
 S

ol
ut

io
n:

 T
he

re
 is

 a
 so

lu
tio

n 
to

 A
x=

b
 fo

r e
ve

ry
 b

1
1
1

H
.  

C
ol

um
n 

ve
ct

or
s 

of
 A

 d
o 

no
t s

pa
n 

R
n

H
1.

 S
iz

e:
 A

re
 n

ot
 e

no
ug

h 
ve

ct
or

s t
o 

sp
an

 th
e 

en
tir

e 
sp

ac
e

H
2.

 G
eo

m
et

ri
c:

 C
an

’t 
us

e 
ve

ct
or

s t
o 

ge
t t

o 
ev

er
y 

pt
/g

o 
ev

er
yw

he
re

 in
 d

im
H

3.
  D

ir
ec

tio
n:

 C
an

no
t g

o 
in

 a
ll 

di
re

ct
io

ns
 w

ith
 th

e 
ve

ct
or

s
H

4.
 C

la
ri

fy
: T

he
 v

ec
to

rs
 o

f A
 sp

an
 a

 k
-d

im
 su

bs
pa

ce
 o

f R
n

H
5.

 P
ar

tia
l: 

Sp
an

 is
 o

nl
y 

a 
po

in
t/

lin
e/

pl
an

e
H

6:
 S

ol
ut

io
n:

 T
he

re
 is

 n
ot

 a
 so

lu
tio

n 
to

 A
x=

b 
fo

r e
ve

ry
 b

I.
   

 R
ow

-r
ed

uc
ed

 e
ch

el
on

 fo
rm

 o
f 

A 
ha

s 
n 

pi
vo

ts
2

I1
. D

ia
go

na
l: 

RR
EF

(A
) h

as
 a

ll 
on

es
 o

n 
th

e 
m

ai
n 

di
ag

on
al

2
1

I2
. I

de
nt

ity
: C

an
 ro

w
-r

ed
uc

e 
/ 

is
 ro

w
 e

qu
iv

al
en

t t
o 

th
e 

id
en

tit
y 

1
I3

. P
iv

ot
-R

: I
s a

 p
iv

ot
 in

 e
ac

h 
ro

w
1
2

1
1

1
2

I4
. P

iv
ot

-C
: I

s a
 p

iv
ot

 in
 e

ac
h 

co
lu

m
n

1
I5

. F
re

e 
V

ar
ia

bl
e:

 E
ac

h 
va

ria
bl

e 
is

 d
efi

ne
d 

in
 sy

st
em

/m
at

rix
 e

qn
2

1
I6

. Z
er

oe
s:

 R
RE

F(
A

) h
as

 n
o 

ro
w

s o
f z

er
oe

s
J.

   
 R

ow
-r

ed
uc

ed
 e

ch
el

on
 fo

rm
 o

f 
A 

ha
s 

le
ss

 th
an

 n
 p

iv
ot

s

J1
. D

ia
go

na
l: 

RR
EF

(A
) d

oe
s n

ot
 h

av
e 

al
l o

ne
s o

n 
th

e 
m

ai
n 

di
ag

on
al

J2
. I

de
nt

ity
: C

an
no

t r
ow

-r
ed

uc
e 

/n
ot

 ro
w

 e
qu

iv
al

en
t t

o 
th

e 
id

en
tit

y
J3

. P
iv

ot
-R

: I
s n

ot
 a

 p
iv

ot
 in

 e
ac

h 
ro

w
1

J4
. P

iv
ot

-C
: I

s n
ot

 a
 p

iv
ot

 in
 e

ac
h 

co
lu

m
n

J5
. F

re
e 

V
ar

ia
bl

e:
 N

ot
 e

ve
ry

 v
ar

ia
bl

e 
is

 d
efi

ne
d 

in
 sy

st
em

/m
at

rix
 e

qu
at

io
n

1
J6

. Z
er

oe
s:

 R
RE

F(
A

) h
as

 a
t l

ea
st

 o
ne

 ro
w

 o
f z

er
oe

s
1

K
.  

A
 is

 in
ve

rt
ib

le
3
2
1

4
2

1
1

K
1.

 A
ug

m
en

t w
ith

 th
e 

id
en

tit
y:

  [
A

 |
 I 

]~
 [ 

I |
 A

-1
 ] i

s p
os

si
bl

e 
K

2.
 F

or
m

ul
a:

 C
an

 ca
lc

ul
at

, n
o 

“d
iv

id
e 

by
 0

 e
rr

or
s”

K
3.

 U
nd

o 
tr

an
sf

or
m

at
io

n:
 C

an
 u

nd
o/

ge
t b

ac
k 

fr
om

 th
e 

tr
an

sf
or

m
at

io
n



  
348 

 

Appendix 4.9. The upper right quadrant of the adjacency matrix A(T)m=n 
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Appendix 4.9. The lower right quadrant of the adjacency matrix A(T)m=n 
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Appendix 4.10. The adjacency matrix A(T)m>n, condensed for used rows and columns 
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Appendix 4.11. The adjacency matrix A(T)m>n, condensed for used rows and columns 
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Appendix 5.1. Compiled list of Toulmin schemes for Abraham 
 
 

Day 7 Argumentation Log 
 
Arg 7.2 WCD 
Claim: The set of vectors (??) is linearly dependent 
Data: Because they're multiples of each other.  
Warrant: I can take one in 1 direction and the opposite in the other, you get back home.   
** Instructor asks him to repeat 
Data: because it's essentially the same vector to the origin. 
Warrant: You can go on 1 vector and I can come back in the opposite direction 
 
 

Day 9 Argumentation Log 
 
Arg 9.16 WCD 
Claim: If m > n, you won’t be able to span the entire dimension [Abraham and Justin, 1:11:42] 
Qualifier: I don’t know, it just makes sense [Abraham, 1:11:58] 
Data: You don’t have enough vectors for the dimensions. [Abraham, 1:11:58] 
Warrant: So it seems you wouldn’t be able to go to all the directions in those dimensions. 
[Abraham, 1:11:58] 
 
Day 9 AC Arg 1 (sp/LI) 
Claim: Matrix A does not span R5. [Abe, 1:29:24] 
Data: It spans a 2-D space in R5 [Abe] 
 
Day 9 AC Arg 2 (sp/LI) 
Claim: The only time it doesn’t span the whole dimension is when there are free variables. 
[Abe] 
 
Day 9 AC Arg 3 (sp/LI) 
Claim: A 5x3 matrix definitely spans, right?  [Abe]  
Qualifier (to C): I'm just trying to think about it as a generalization. 
 
Day 9 AC Arg 4 (sp/LI) 
Claim: Now it’s [matrix B] spanning [Abe, 01:30:10] 
Data: It has 2 free variables [Abe] 
Day 9 AC Arg 5 (sp/LI) 
Claim: When m=n, if it’s linearly independent, then it spans the whole dimension [Abe, 
1:31:15] 
Qualifier: I don't know...it just seems like it would span. 
 

Day 10 Argumentation Log 
 
Day 10 SG Arg 1 [12:47] 
Claim: You have a solution for everything 
Data: It sill spans, the columns still span  
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Day 10 SG Arg 2 [14:02] (sp/LI) 
Claim: It has to be linearly independent 
Data1: it has the same amount of vectors as entries 
Data2: It spans  
 
Day 10 SG Arg 3 [16:20] 
Qualifier: I might be thinking about this wrong 
Claim: If the columns of an nxn span Rn, the solution can’t be unique 
**Justin calls for data 
Data: It spans everywhere, then you have a lot of different b’s 
Warrant: It couldn’t be the same weights on them 
Backing: The weights are really what the solution is. 
 
Day 10 SG Arg 4 [19:45] 
Claim: you can still go in all the paths 
Data: If the span is everywhere, you can go everywhere to get anywhere 
Qualifier: That was not really in linear algebra terms, though. 
 
 

Interview 1 Argumentation Log 
 
Int 1 Q6a Arg 1 (sp/LI) 
Claim: If the columns of a 3x3 matrix A span R3, then it is FALSE that the columns vectors of 
A are linearly dependent. [Abe, 0:45:59] 
Data: The column vectors of A would have to be linearly independent [Abe, 0:46:09] 
Qualifier (to the Data): this is hard to explain 
Warrant: The only solution [to Ax=0] is the trivial solution  
**Int calls for clarification of the warrant 
Backing: And so if that holds for 0 then that means that it should hold for, um, every point. So 
that every, um, every point would have a unique solution. 
 
Int 1 Q6a Arg 2 (sp/LI) 
Claim: If the columns of a 3x3 matrix A span R3, then it is FALSE that the columns vectors of 
A are linearly dependent 
Data:  I know it’s linearly independent 
Qualifier: It's so weird, it’s like sometimes something makes like sense to you, and then you just 
know it's right, but sometimes you don’t know how to really, like expl—you know what I mean? 
Like really explain, explain, you know, why, why it is true though. 
Warrant: like automatically my mind just jumps to, 'they're linearly independent, they can, they 
span everywhere.'  
 
Int 1 Q6a Arg 3 (sp/LI) 
Claim: I started to think about this, like when you have [      

€ 

A x = 0], this is Ax=0, that a lot of the 
characteristics apply to Ax = some vector b 
Data: because, like, I have all these points here [draws dots in an augmented matrix], and I 
have this augmented matrix here, and the 0's [in [A|0]], And then let's say I was, um, I had some 
other points [draws an empty augmented matrix with last column <1,2,3>]. whatever I do over 
here with row reducing this [original augmented matrix], it's really only going to affect this [the 
coefficient matrix]. 
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Warrant: if there's a unique solution, c1=0, c2=0 and c3=0 for 0 [points to the <0,0,0> in the 
first augmented matrix] then whatever, since, I mean, this [points back and forth between the 
two coefficient matrices] when you row reduce it, it ends up being like the same thing on this 
side, then...then most of the time, there should be a unique solution for any b over here [points 
to the <1,2,3> in the second augmented matrix] 
Qualifier: but there are cases where it doesn't, and I remember thinking of 1, where it doesn't 
work like that. And it's actually when the bottom row ends up being like that. [writes “0 0 0 | 
1”]  That's when there's no solution. 
 
Int 1 Q6b Arg 1  
Claim: ‘If A is a 3x3 matrix whose columns span R3, then any vector b in R3 can be written as 
a linear combination of the columns of A’ is a TRUE statement. 
Data1: When I read that, 'any vector b in r3 can be written as a linear combination of the 
columns of A,' I automatically think of the definition of span. 
Data2: And I think of the definition of span as any vector b being able to be written as a linear 
combination of the columns of A. 
Warrant: if I was linear algebra, if I created it, that would be my definition of span. 
Qualifier: I don’t know, I might be wrong, but that’s what I, what I think of, you know!  
 
Int 1 Q6b Arg 2 
Claim: ‘If A is a 3x3 matrix whose columns span R3, then any vector b in R3 can be written as 
a linear combination of the columns of A’ is a TRUE statement. 
Data1: The column vectors span 
Claim1: I can figure out the scalar multiples that would make these [column] vectors get to 
here [b] 
Warrant: You could get anywhere, which just seems like the definition of span. 
 
Int 1 Q6c Arg 1 
Claim: If the columns of a 3 by 3 matrix A span r3, then A has 3 pivots is a true statement 
Data: Let’s assume it doesn’t have 3 pivots [writes [1,0,0; 0,1,0; 0,0,0] ] 
Qualifier: I guess it would be a hard way to prove something actually, because them you would 
have to think about all the different things.  
(embedded D1-C1) 
Data1: pivot, you know, you pivot and you go a different position...when you kind of, you go in 
one, like I'm a basketball person, I pivot [turns his body] you know! And then I go somewhere 
else. So I'm able to go a different direction. 
Claim1: I think that’s why they call it ‘pivot positions.’ 
Warrant: And so if I can't pivot [makes smaller version of basketball move], go in this 
direction, pivot [repeats basketball pivot], go in this direction, pivot and go in all 3 directions, I 
can’t span everywhere, I can’t span. 
Backing: Since it does say that I can span, then I must be able to pivot in all 3 of these positions 
[implicit proof by contrapositive] 
 
Int 1 Q6c Arg 2 
Claim: I won’t be able to span with the columns of [1,0,0; 0,1,0; 0,0,0] 
Data: this is a 1 vector [1st column] say I can go in x direction; this [2nd column] is another 
vector say I can go in y direction. But how [3rdcolumn] do I go in the z direction? 
Warrant: I'm only able to pivot in 2 positions, I'm only able to go in 2 directions. 
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Int 1 Q6d Arg 1 [1:06:46] (sp/LI) 
Claim: If the columns of a 3 by 3 matrix A span r3, then there is a non-trivial solution to the 
equation Ax=0’ is a false statement 
Data: (embedded) 
Qualifier: Assuming that my answer to A was correct [that span  LD was false] 
Claim1: I know they’re linearly independent 
Data1: the definition of linear independence says that there is only a trivial solution to the 
equation Ax=0 
Warrant: (embedded) 
Claim1: The only solution [to Ax=0] would have to be 0,0,0 
Data1: that would also be a unique solution within the plane [*I think he means the origin 
would have a unique solution to get there] 
Warrant1: And like I was talking about before, that trivial solution, there has to be a trivial 
solution because you're spanning everywhere, and I covered that whatever point you get to has 
a unique solution 
 
Int 1 Q6d Arg 2 
Claim: If the columns of a 3x3 matrix span R3, x=0 y=0 z=0 is the only solution to Ax=0 
Data: Ax=0 is [A | 0] in the augmented matrix, and we’re trying to find the x, x is pretty much 
what I think of as the solution. 
Warrant:  From [A | 0], the solution is x=0, y=0, z=0, there is no other solution. 
 
Int 1 Q6d Arg 3 
Claim: If the columns of a 3x3 matrix span R3, x=0 y=0 z=0 is the only solution that you’re 
going to get 
Data: We also proved there is 3 pivots 
 
Int 1 Q6e Arg 1 [1:10:31] 
Claim: If the columns of a 3 by 3 matrix A span r3, then the system Ax=b has no free variables’ 
is a true statement 
Qualifier (to C): I’m trying to think of a counterexample. I think, I’m pretty sure it’s true. 
Data: # of free variables = # of unknowns - # of pivot positions 
Qualifier (to D): I don't know if we talked about this in class but I'm pretty sure the homework, 
everybody figured it out from doing the homework 
Warrant: I’m still thinking of this as a vector equations, so it’s basically the number of 
unknowns corresponds to the number of columns. 
Backing: So we have 3 columns, we have 3 pivot positions, so there’s 0 free variables [writes ‘3 
– 3 = 0’] 
 
Int 1 Q63 Arg 2 
Claim: If there are free variables, then there infinitely many solutions to Ax=b 
Data: In x1=5-x2, x2=7+x3, x3 is free, it’s called free because it can be anything it wants. 
Warrant: So if I plug anything I want in here, then x1 depends on x3, x2 depends on x3. And so 
x3 could be whatever it wants, and x1 and x2 can still be found, a solution back to Ax=b. 
Backing:  And now I end up with infinitely many solutions [to Ax-b] 
 
Int 1 Q63 Arg 3 
Claim: If there are infinitely many solutions, there are not n pivot positions 
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Data: infinitely many solutions to Ax=b relates back to this bottom thing [0 0 0 | 0] I was 
talking about  
Warrant: that 0 in the third column means that it can't be a pivot position 
 
Int 1 Q63 Arg 4 
Claim: If it spans, there are no free variables 
Data1: If there is a free variable 
Claim1: Then it can’t have a pivot position 
Data2=Claim1: If it doesn’t have a pivot position 
Claim2: It doesn’t span. 
Data3=Claim1=Claim2: The fact that it doesn’t have a pivot position and doesn’t span 
Claim3: that’s a counterexample 
Warrant: We’re assuming it does span. 
 
Int 1 Q63 Arg 5 
BIG CLAIM: If the columns of a 3x3 matrix A span R3, then there are no free variables. 
Sequential Data: 
Data1: [assume] if it's free 
Claim1: then there's infinitely many solutions;  
Data2=Claim1: if there's infinitely many solutions, 
Claim2: then the bottom row is this [0 0 0 | 0]. 
Data3=Claim2: If the bottom row is this,  
Claim3: then you know it only has 2 pivot positions. 
Data4=Claim3: And if it only has 2 pivot positions, you keep going with proof,  
Claim4: then it doesn't span all of r3.   
Warrant: but that would be a contradiction to what you're assuming in the very first sentence, 
so you write a symbol like this and you go, 'contradiction,' and your proof is done.   
 
Int 1 Q8a Arg 1 
Claim: Those asterisks could be any numbers.  
Data: I saw this notation (with the asterisks) in the book and it makes sense 
Warrant: When you’re trying to row-reduce, you’re trying to get zeroes under the pivot 
positions. You stop once that happens.  
Backing: So everything else, the other numbers, don’t really matter. 
 
Int 1 Q8a Arg 2 (sp/LI) 
Claim: I can create a 3x5 matrix that spans all of R3 
Data: I have 3 pivot positions, these 2 vectors don't even need to be used to span that, the r3 
Warrant: I can span r3 still, which is those 3 [covers 1st 3 columns].  So there's extra vectors 
in the problem it seems like, it's still 3 dimensions, but you have 5 vectors. 
 
Int 1 Q8a Arg 3 (sp/LI) 
Claim: if you have more vectors than dimensions, that automatically makes it [the columns of 
B] linearly dependent.    
Qualifier: I just actually thought of something. This, if, I was talking about earlier 
Data: the first 3 vectors [in his example] do span all of R3 
Warrant: But now we're talking about linearly independent. I can only construct one that 
spans all of r3 and is linearly dependent. 
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Int 1 Q8a Arg 4 (sp/LI) 
Claim: if you have more vectors than dimensions, that automatically makes it [the columns of 
B] linearly dependent. 
Data: I get to any point I want in r3. [draws an empty x,y,z coordinate axis] Let's just say I was 
here [puts a point in Q1]. Now I have 2, that was after using 3 vectors, now I have 2 more I 
could use. 
Warrant: So I should be able to make 1 that is linearly dependent and get back there, because I 
can get anywhere, so I can get, if I'm using the origin yet, I can get back to the origin. 
Qualifier: But how could I make it so that I don't get back to the origin? I don't think it's 
possible. 
 
Int 1 Q8a Arg 5u (sp/LI) 
Claim: if you have more vectors than dimensions, that automatically makes it linearly 
dependent. 
Qualifier: This is weird to explain. 
Data: I got here with 3 vectors, now since I can span all of r3, then we know I can get to this 
point, because this spans all of r3, so I know I can get to this point. 
Warrant: If I can get there, then I can go back this way. So if I can get 3 vectors there, then I'm 
going to be able to get back there, using one of the other 2 vectors that are here 
Qualifier: But I'm still kind of, I want to be convinced that that's true, but at the same time, I 
don't know if I thought about it enough, 
Rebuttal: but it seems like I should be able to make 2 vectors that don't get back here, but see, 
that's a problem. But I know by the definition that if they have more vectors than entries, it has 
to be dependent, so that convinces me. But it almost seems like maybe I should work on a 
computer program to try to make it so that I don't, I can't get back to here, and I probably 
would fail. But in my mind, it seems like you should be able to 
 
Int 1 Q8b Arg 1 (sp/LI) 
Claim: There’s no way you can span that [R5] with 3 vectors in R5 
Data: It’s not possible. (linked) 
Data1: First, like I said I'm stronger on the pivot positions, this only has 3. There would have to 
be 5, or 5 pivot positions for it to go to span all of r5. 
Data2: And also, you can never span, I can never, if I have less vectors than dimensions, then I 
can never span that. 
Warrant: I really can't as I say go in all the directions of the dimension, all the pivots, and so I 
can't span it, because I don't have enough vectors to go to fill up the space, to be able to go in 
all places of it.   
 
Int 1 Q8b Arg 2 (sp/LI) 
Claim: I would change the matrix to 5x5 to create an example [that does span and is LI] 
Data1: If I ever had less than this, it's going to be not possible to span. 
Data2: A 5 by 6 though, now I can still span everything, but now it's linearly dependent 
Warrant: If I had the same amount, then I have the identity matrix, 5 by 5, it can span 
everything, and it's linearly independent, yes. 
Qualifier: I understand the concept, but the, of that, but explaining the 5 by 6 is probably the 
hardest for me, I think.  
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Day 17 Argumentation Log 
 
Arg 17.9 
Claim: The matrix [1,2; 2,4] is not invertible  [Abraham, 51:23] 
Data: that span is only the line, the y=2x [Abraham, 51:23] 
Warrant: And so it never even hits 1,0 or 0,1, because it has to go over 1, up 2, over 1, up 2. 
[Abraham, 51:23] 
 
Arg 17.10 (partial) 
Claim: The matrix [1,2; 2,4] is not invertible  [Abraham, 51:51] 
Qualifier:  It doesn’t seem like the matrix would be invertible [Abraham, 51:51] 
Data1: We’re trying to get 1,2 to be 1,0 and 2,4 to be 0,1 and these 2 [1,0 and 0,1] don’t really 
fall on that line [where 1,2 and 2,4 are] [Abraham, 51:51] 
Warrant: if it all collapses to a line, how it could, um, how it could be 1,0;0,1. It seems like it 
would have to be able to span to 1,0. It seems like it would have to be able to reach that point. 
[Abraham, 54:03] 
Backing 2: So we can only transform to multiples of 1,2. If any vectors are multiples of 1,2, you 
can transform to them, nothing else, though. [Abraham, 54:51] 
 
Arg 17.19 WCD (partial) 
Claim: It has to span [Abraham, 1:01:01] 
Data: based on having those 2, if those 2 are true [A is square and the columns are LI] 
[Abraham, 1:01:01] 
**Instructor asks for clarification of the claim [1:01:15] 
Claim: In order for A to be invertible, then A has to span Rn [Abraham, 1:01:24] 
**Instructor asks for assistance [1:01:39] 
 

Day 18 Argumentation Log 
 
Day 18 SG Arg 1 
Claim: A matrix is invertible 
Data: I just look at it and go, “man that looks linearly independent, it’s got to be invertible” 
 
 

Day 19 Argumentation Log 
 
Day 19 SG Arg 1 [15:32] 
Claim: y = x2 is not onto 
Data: It hits 2 points 
Warrant: it doesn’t pass the horizontal line test 
 
Day 19 SG Arg 2 [16:10] 
Claim: If it’s unique, then it’s bijective 
Data1: at least one is the definition of 1-1 
Warrant: At most one is the definition of onto 
 
Arg 19.9 (partial) 
Claim: We can use span and onto interchangeably [asked by Jerry, answered by Abe, 44:44] 
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Data: If it spans, the range equals the codomain [Abraham, 45:01] 
 
 

Day 20 Argumentation Log 
 
Day 20 SG Arg 1 
Claim: [1,0; 0,1] is onto R2 
Data: [the columns] span all of R2, spans the whole codomain 
 
Day 20 SG Arg 2 
Claim: [1,0; 1,0] is not onto R2 
Data: That one doesn’t span 
 
Day 20 SG Arg 3 [11:29, 12:39] 
Claim: It’s not possible for it to be 1-1 and be a 2x3 matrix 
Data: 1-1, really the columns have to be linearly independent 
Warrant: If it has more vectors, it’s linearly dependent 
 
Day 20 SG Arg 4 [13:50] 
Claim: [11; 2,3; 3,3] is not onto R2 
Data1: That doesn’t span R2 
Data2: It just actually is a line. 
 
Day 20 SG Arg 5 [24:22] 
Claim: If m<n, it’s not possible for the columns of A to be linearly independent 
Data1: Since we have more vectors than dimensions, then it has to be linearly dependent. 
 
Day 20 SG Arg 6 [28:09] 
Claim: If there are less vectors than dimensions, it’s not possible for the transformation to be 
onto 
Data: If we have less, not enough pivot positions because there aren’t enough vectors 
 
Arg 20.5 
Claim: if it's 1 to 1, the columns of A have to be linear independent. [Abraham, 37:34] 
**Call for data [37:34] 
Data: 1 to 1 is at most 1 solution [Abraham, 37:43] 
Warrant: But we know the trivial, or the Tx=0 always has to have 1 solution. So then it has to 
have the trivial solution. But if their columns are linear dependent, then T of x is 0 has more 
than 1 solution. So there would be 1 going to 2 different things [Abraham, 37:43] 
Backing (implicit): logical equivalence of proof by contrapositive. 
 
Day 20 SG Arg 7 [38:38] 
Claim: Linear independence and 1-1 are connected 
Data1: T(x)=0 has to have only the trivial solution 
(AND) 
Data2: 1-1 is unique solution or none at all 
Claim2: Tx=b would have to have unique solution or none at all  
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Warrant: So if you simplify it down to T of x = 0, then we can see T of 0,0 must have the unique 
solution. Because it's not possible for it to have none at all. It has to have at least 1, because it's 
0,0,0.  
 
Arg 20.16 (sp/LI) 
Claim: If the matrix is square, being linearly independent is the same as being onto [Abraham, 
52:21] 
**Instructor calls for data [52:26] 
Qualifier: I just remember 
Data: if it’s square, we had the nxn theorem [Abraham, 52:52] 
Data1: If a square matrix is linear independent, 
Claim1: it also spans [Abraham, 52:52] 
Claim2/Data2: And vice versa. 
Warrant: As so that means (union of those two D-C) 
Warrant1: if it's 1 to 1, it has to be onto 
Warrant2: if it's onto, it has to be 1 to 1 
 
Arg 20.24 (sp/LI) 
Claim: It [a matrix] would be invertible if all those things are true [Abraham, 1:02:33] 
Qualifier: It seems like it [Abraham, 1:02:33] 
**Teacher calls for data 
Data: I remember linear independent, span and row reduces to identity matrix and square all 
being in the invertible matrix theorem. [Abraham, 1:02:54]  
Warrant: those are all the same things we had up there [Abraham, 1:02:54]  
 
Arg 20.26 
Claim: if it's either 1 to 1 or onto but not both, then it has to be non-square  [Abraham, 1:09:55]  
Data: Because of the chart [Abraham, 1:09:55] 
Warrant: if you're one and not the other, then you can't be square. 
Data1: If you're square 
Claim1: you're either both or neither. 
Data2: And if you're one but not the other, meaning 1 to 1 or onto 
Claim2: then you must be either wider or taller but you can't be square. 
 
 

Day 24 Argumentation Log 
 
Day 24 SG Arg 1 [02:07] 
Claim: If the column vectors are linearly dependent, the determinant is 0 
Data: I just made like all the different examples of 2x2 matrices that would be linearly 
dependent, just to be sure 
Data1: 1 with multiples 
Data2: 1 with the same vector 
Data3: 1 with 0 as a column vector 
Data4: 1 with 0 as rows  
Warrant: Every time, the determinant was zero. 
 
 
 



  
362 

 

Day 31 Argumentation Log 
 
Day 31 SG Arg 1 [23:19] (span/LI) 
Claim: the ‘n pivots’ card goes with the ‘span’ and ‘linear independence’ cards 
Data: It has to be square, and it has to have n pivots, that means it's linear independent and 
spans. That's the first thing I think of, as far as n pivots 
 
Day 31 SG Arg 2 [26:54] 
Claim: ‘null space is only 0’ and ‘linear independence’ go together 
Data: That's just the vector of x = 0, so that's just a solution. That's just a solution to the Ax=0, 
the null space 
Warrant: I never thought about it like that, though 
 
Day 31 SG Arg 3 [27:06] 
Claim: ‘the number 0 is not an eigenvalue’ also goes with ‘null space is only 0’ and ‘linear 
independence’  
Data: if the Eigen value was 0, I'd just reduce down to Ax=0. 
 
Day 31 SG Arg 4 [33:40] 
Claim: If there exists a C s.t. AC=I, then A is invertible  
Data: these [points to C] are the row reducing functions that take this from A to the identity 
matrix, which makes it invertible 
Qualifier: That’s the only way I see it, I don’t see it both ways.  
 
Day 31 SG Arg 5 [43:15] 
Claim: the column space of A is all of Rn, and the columns of A spans all of Rn are exactly the 
same 
Data: Like those 2 to me are the most equivalent, the same 
 
Arg 31.5 WCD (sp/LI) 
Claim: “'For every b in Rn, there exists a solution x to Ax=b “ is also equiv to the previous 3  
(span, column space, lin combo [Abraham, 47:03] 
Data: There's solution to every b,. [Abraham, 47:11] 
Warrant: so we can get to that output vector, and that's span [Abraham, 47:11] 
 
Arg 31.6 WCD (sp/LI) 
Claim: If we added a word ‘unique,’ then I would put it [the columns are linearly independent] 
in there [Abraham, 47:11] 
Data: Because 'unique' makes it linear independence. [Abraham, 47:11] 
Qualifier: but without the word, I just think of we can get to every b. [Abraham, 47:11] 
 
Day 31 SG Arg 6 [1:02:45] 
Claim: To me, the null space contains only the 0 vector, that goes with linear independence 
really well. 
Data: Because that [null space] means that the only solution is 0 
 
Day 31 SG Arg 7 [1:04:11] 
Claim: ‘The null space contains only the zero vector’ is the same as ‘the only solution to Ax=0 
is the trivial solution’ 
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Data: The null space is like, we talk about it as part of the domain.  
Data1: If this is only the 0 vector 
Claim1: then this is the same thing to me as ‘the only solution to Ax=0 is the trivial solution’ 
Warrant: this [null space] is the domain and this is the input vector of the domain 
**Giovanni asked for clarification of the warrant 
Claim: If ‘The null space contains only the zero vector’ the ‘the only solution to Ax=0 is the 
trivial solution’ 
Data: The null space is part of the domain 
Warrant: The only solution to Ax=0 is the vector x=0 
 
 

Interview 2 Argumentation Log 
 
Int 2 Q1a Arg 1 (sp/LI) 
Claim: If the columns of a 3x3 matrix A span R3, then it is FALSE that the columns vectors of 
A are linearly dependent. [Abraham, 00:53] 
Data: Matrices whose columns span R3 have three pivot positions [Abraham, 00:53] 
Warrant: And for like a square matrix, I just think like if this is 3 pivots in each row, then it's 
also going to be, automatically going to be 3 pivots in each column. 
Backing: And that way you're always going to have a linearly independent set of...of, um, like x 
=something, y = something, z = something, because of that.  
Backing L2**: And then that’s, so that's going to be, basically a unique solution for every 
output...There's a unique x,y,z vector such that Ax = b in the output, so that'd be linearly 
independent, but not dependent. 
 
Int 2 Q1a Arg 2 (sp/LI)  
Claim: 3 vectors that span R3 relates to a 3x3 matrix with ones on the diagonal 
Data: To span R3 the vectors need to go in every direction, and pivot positions allow it to do 
that. 
 
Int 2 Q1a Arg 3 (sp/LI) 
Claim: Having 3 pivot positions allow you to go in three directions [Interviewer after Abraham, 
0:03:43] **In response to Abe’s previous explanation] 
Data: so I mean I go in this direction and then I can kind of pivot up, you know to go to this 
direction. And then I have another value in here, so I can come back and go, so I can kind of go 
any direction  
Warrant: based on these 3 pivots, like pivoting in each direction, to get to any point. 
 
Int 2 Q1a Arg 1 (sp/LI) 
Claim: Square & span  RREF(A) has 3 pivots is TRUE  
Data (embedded cases) 
Data1: Whenever I have that [one vector can be written as a linear combination of the other 
vectors],  
Claim1: it doesn’t row-reduce to 3 pivots.  
Warrant1: Whenever it’s a linearly dependent set, it row reduces to some kind of row of zeroes 
Qualifier1 [to the W]: Usually, yeah, usually a row of zeroes I believe  
Data2: But since I don't have these multiples, and I can't use these 2 vectors to get to there. 
Claim2: it's going to row-reduce down to 3 pivot positions 
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Warrant: just imagine I went here, and I somehow arrived at, you know, 3,3,3. Let's say I got 
to that point and then I could take that point back to get, to get back to home. Which is still how 
I kind of think of it. Then that would make that linearly dependent because I can, I can kind of 
get there and take that vector back. And um, but if I don't have that, then it's going to row 
reduce down, without this. 
Backing (implicit): there are only two choices: it does or it does not row-reduce to 3 pivots. 
Qualifier: So...hmm, I don't know if that makes. 
 
Int 2 Q2b Arg 2 [09:14] (sp/LI) 
Claim: [1, 2; 2, 4; 3, 6] is linearly dependent 

Data: 

€ 

1
1
2
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ +1

2
4
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

3
6
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥  and 

€ 

1
3
6
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

3
6
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 
 

Warrant: So now I have 2 solutions, getting to the same point 
Backing: So that makes it, in a square[sic, nonsquare] matrix, linearly dependent, because I’m 
getting there 2 different ways.  
 
Int 2 Q2b Arg 3 [11:16] (sp/LI) 
Claim: [1, 2; 2, 4; 3, 6] is linearly dependent 
Data: I can also get to that point, and then I can subtract,

 
multiply by negative vector, I can get 

back to 0,0 
 

€ 

1
1
2
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ +1

2
4
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ −

3
6
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

0
0
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 
 

Warrant: But you want the only solution to be the 0,0, for it to be linearly independent 
Backing: But this is, you see that this [points to his new equation] is a solution is 0,0 
 
Int 2 Q2b Arg 4 [15:05] (sp/LI) 
Claim: If it doesn’t have 3 pivots, this isn’t going to span. 

Data1: There’s only one pivot position here (RREF(A)) 
 

€ 

1 2 3
0 0 0
0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥  

Data2: It kind of relates to column space, which would be anything times this vector for A 
[writes a<1,1,1> in set notation] 
Warrant: Yeah, so then it’s just, it’s only spanning this 1-dimensional subset. 
Backing: I still think of column space as being span 
 
Int 2 Q2c Arg 1 (sp/LI) 
Claim: “Let A be n x n” is an important statement in the Invertible Matrix Theorem [Int, Abe, 
0:21:49] 
Data: They wouldn't, they’d be, they wouldn’t go both ways, if the matrix wasn't n by n. [Abe, 
0:22:01] 
Warrant: if it can go both ways then they're equivalent. But if it can only go 1 way then they're 
not equivalent 
 
Int 2 Q2c Arg 2 (sp/LI) 
Claim: If m > n, then ‘linear independence’ and ‘span’ are not equivalent statements [implicit 
from before, and 0:22:36] 
Data: The example matrix A (3x4: [1,0,0; 0,1,0; 0,0,1; 75, 99, 85]) spans but is not linearly 
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independent [Abe, 0:23:01] 
Warrant: But if this one spans here [points to the IMT statement sheet], so if it spans, then to 
say it's linear independent, that's false. Let's see, if it's linear independent it spans? Not true 
either. 
 
Int 2 Q2c Arg 3 (sp/LI) 
Claim: If m > n, then ‘linear independence’ and ‘span’ are not equivalent statements [implicit 
from before, and 0:24:34] 
Data: If it has less vectors than dimensions it won’t span but could be linearly independent 
[Abe, 0:24:34] 
 
Int 2 Q2c Arg 4 (sp/LI) 
Claim: If m > n, span and linearly independent are not equivalent 
Data: Example B: [1,0,0; 0,1,0] 
Data1: (embedded): 
Data1a: So this only has the two pivot positions 
Claim1a: it spans 2-dimensional subset of r3 
Warrant1a: you can't go in all the different directions 
Data2: it is linearly independent 
Warrant: (D1 and D2) This is, 1 is false, and 6 is true 
 
Int 2 Q3 Arg 1 [29:43] 
Claim: The 3 cards in Pile 3 go together 
Data: For me those are together on linear independence 
 
Int 2 Q3 Arg 2 [29:43] 
Claim: The 2 cards in Pile 1 go together 
Data: I always see those ones and I automatically think, if it’s row equivalent to that, it has n 
pivots.  
Warrant: And I see those ones in my head. 
 
Int 2 Q3 Arg 3 [29:43] 
Claim: The 2 cards in Pile 5 go together 
Data: (sequential of 4 args) 
Claim1: Ax=0 
Data1: If 0 is an eigenvalue 
Claim2: We can find a nonzero solution  
Data2=Claim1: Ax=0 
Warrant2: By definition of an Eigen vector 
Qualifier: The zero solution is not very interesting 
**Teacher asks for small clarification of “it” 
Claim3: That would make it linearly dependent 
Data3=Claim2 There exists a nonzero solution  
Warrant3: By definition of linear dependence  
Claim4: The null space doesn’t contain only the 0 vector 
Data4=Claim2: If there’s a nonzero solution here [Ax=0] 
Warrant4: The null space is part of the domain, so it contains all the solutions to Ax=0. 
Backing: I think of them together if I put a negation in front of them (implicit: if the negation of 
two statements ‘go together,’ the two statements ‘go together.’) 
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Int 2 Q3 Arg 4 
Claim: If the null space contains only the 0 vector, then zero is not an eigenvalue of A 
Qualifier: That’s a hard one to explain, that’s why I don’t like to think of it this way. 
Data: Only this [x=0] is being sent to zero 
Warrant: A<0,0,0>=0=λx= λ0 
Rebuttal: But then that also tells me that any lambda will satisfy this equation. But my only 
problem with this isn't a very good proof, because also 0 satisfies this. So I'm sorry about that. 
Backing: it's not [true] in all cases, but I know it is in this case, because we're talking about 
equivalent statements. An equivalent statements I say are like this [writes ‘’]. With an 
equivalent statement, I don't remember when I learned this but, the negation of the statement 
will also go both ways, if it's an equivalent statement. So since I have an equivalent statement, I 
can prove these 2 by using the opposites of it. And it's way, maybe this is probably simple too, 
but I see this as a way of being way simpler. 
 
Int 2 Q3 Arg 5 [39:22] 
Claim: The three cards in Pile 4 go together 
Data: “AD=I” and “CA=I” are the definition of invertibility...the core definition. 
 
Int 2 Q3 Arg 6 [39:49] 
Claim: The six cards in Pile 2 go together 
Data: I think of all of these as span. [39:55] 
Warrant: So there exists a solution. So for every output vector, I can find. I think of it as for 
every output vector, I can find an input vector. So for every vector in this space, I can find a 
solution. So then for every b, I can get to that. I think of that for a lot of them.  
 
Int 2 Q3 Arg 7 
Claim: the cards ‘exists a solution for every b’ and ‘a way to write b as a linear combo are the 
same thing.  
Data (linked/embedded): Card 1 is matrix-oriented. Card 2 is vector-oriented:  
Claim1: Card 2 is vector-oriented 
Data1: The card talks about it’s the linear combination of the columns to get everywhere 
Warrant1: The columns of the matrix represent the vectors.  
Claim2: Card 1 is dealing with a transformation 
Data2: Can I send, can I find an input vector that send to every output vector?  
Warrant: It’s a little different, but they both concern spanning a space, whether it’s through a 
transformation or by vectors being added together to get there.  
 
Int 2 Q3 Arg 8 [41:50] 
Claim: I can't really discern the difference of these ones [‘column space of A is Rn’ and ‘the 
vectors span Rn’] 
Data (linked):  
Data1: when I think of the column space, I really literally think of the space that the columns 
can get to 
Data2: And this [span card] is talking about the columns of A spanning 
Warrant: Because like I said, this [Col A] is to me where the columns can get to in this 
fashion. And this one [span] is the space that the columns can get to. Which for me is like the 
same thing 
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Int 2 Q3 Arg 9 [0:42:27] 
Claim: ‘Onto’ and ‘determinant’ are connected [to the ‘span’ pile], but not as connected 
Data: when I think of onto, I think of span automatically. But not as fast as I think of span if I'm 
looking at this [points to (2)]. 
Warrant [embedded]: 
Claim1: This one [‘onto’] is just very related to span 
Data1: For it to be onto, for every b there's at least 1 solution. 
Warrant1: this doesn't say 'at least.’ [points to a card in the span pile]  But it says a solution. 
There exists a solution 
Backing1: If there exists a solution, then there exists at least a solution, so that goes back to 
this one [card 1]. 
 
BIG CLAIM: 1-1, onto, and invertible connect 
His proof: Sequential. Does a “1-1/onto together”Invertible (Arg 1-7 in total.) 
 
Int 2 Q3b Arg1: 
Claim1: 1-1/onto together is “for every b there is exactly one solution x s.t. Ax=b.” 
Data1 (linked by “and”): 
D1a: Definition of 1-1 is for every b there’s at most 1 x s.t. Ax=b. 
Data1b: Definition of onto is  for every b there is at least one x s.t. Ax=b] 
Warrant1: There’s at least one and there’s at most 1, then there’s exactly one. 
Data2 (linked by “and”): 
D2a: 'At least' is really... at least 1, 1 or more 
Data2b: At most 1 is maybe 0 or 1 
Warrant2: So then the intersection of 1 or more...is just one. 
 
Int 2 Q3b Arg2 
Claim: There is a unique solution to Ax=b for every b 
Data=Claim1: There is exactly 1 [solution to Ax=b] 
Warrant: ‘Exactly one solution’ is also a ‘unique’ solution. 
 
Int 2 Q3b Arg3 (sp/LI) 
Claim: it's spanning everywhere, and it's an unique solution. 
Data3a; this [onto] is span 
Data3b: this [1-1] is linear independence 
Warrant: if this is span, and I want to add linear independence to it, then I would say this 
definition of span [points to that same card again], but just adding the word 'unique. '. 
Backing (implicit)=Claim from Arg 2 [there is a unique solution] 
 
Int 2 Q3b Arg4 (sp/LI) 
Claim: I can think about the basis vectors, which are always 1’s and 0’s, 0’s and 1’s  
Data(=Claim from 3): it's spanning everywhere, and it's an unique solution. 
Warrant: that’s the definition of a basis: one that spans the subspace and is a linearly 
independent set.  
 
Int 2 Q3b Arg5 
Claim: There exists a C s.t. CA=I  
Data: because you have C, the definition of invertibility is such that C times the basis vectors =I 
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Int 2 Q3b Arg 6 
Claim: No matter what C is, C is equal to the inverse 
Data(=Claim from 5): There exists a C s.t. CA=I  
  
Int 2 Q3b Arg7 
Claim: A is invertible  
Data: An inverse C can be found 
 
Int 2 Q3b Arg 8 (sp/LI) 
Claim: It’s an invertible [matrix] 
Data: Combining the definitions of span and linear independence 
Warrant: what else combines the 2 definitions of span and linear independence? Kind of a 
basis does. But then what arises from basis is our basis vectors. And then if it's the basis 
vectors, we see that the inverse c is always, itself, or however you want to think of it 
 
Int 2 Q3b Arg 9 
Claim: Span and onto are related but a little bit different 
Data: “at least one solution” [wording in onto definition] is really close to this definition [card 
of “there is a solution for every b...”] 
Warrant: And that’s [that card] is the definition of span to me. 
Backing: If there’s a solution x for Ax=b, then there’s at least a solution. this “at least” holds. 
But then it also means that things can repeat. 
 
Int 2 Q3b Arg10 
Claim: 1-1 and linear independence are related 
Data: (linked) 
Data1: (embedded) 
Data1a: there's at most 1 solution 
Claim1a: I said there could be 0 solutions or 1 to Ax=b 
Warrant1: This is the definition of 1-1 
Data2: (embedded) 
Data2a: And then I can reduce this, if Ax=0, what do we know about Ax=0? We know that it 
always has at least 1 solution, namely the trivial solution, it always has at least that. 
Claim2a: , there's 1 solution to Ax=0 
Warrant2: So the definition of linear independence, right here, the only solution to Ax=0 is the 
trivial solution 
Big Warrant: So there's 1 solution to Ax=0. Then that solution must be the trivial solution. If 
there's 1 solution, it must be the trivial solution 
 
Int 2 Q4a Arg 1 
Claim: If A has n pivots, then A is invertible 
Data1: A has n pivots 
Claim1: It has n x n. 
Data2(=Claim1): We always see that it goes to anything time that [the 3x3 identity] AC=I 
Claim2: it would be invertible  
Warrant2: You multiply, you can find the inverse easily if it has n pivots. 
 
Int 2 Q4a Arg 2 (sp/LI) 
Data3: It has n pivots 
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Claim3: it spans and is linearly independent. 
Data4(=Claim3) We connect these ideas of span, LI [to] onto and 1-1 
Claim4: A would be invertible 
Warrant4: [We] said that then you would get to this [the 3x3 identity] 
Backing4: Then we used those to show the A invertible by using the basis vectors 
 
Int 2 Q4a Arg 3 
Claim: If A is invertible, A has n pivots 
Data: I know it’s true 
Qualifier: I don’t know why it is, I have never thought about it. 
 
Int 2 Q4a Arg 4 (sp/LI) 
Claim: If A is invertible, A has n pivots 
Data:  
Data1: When I have A is invertible 
Claim1: The columns of A are linearly independent 
Qualifier: I don’t remember how I used to think of that, but that’s the connection I think about 
right away. 
Data2=Claim1: The columns of A are linearly independent 
Claim2: I’m going to have a pivot position here, here, here. 
Data3=Claim2: I have a pivot position in these columns 
Claim2: I have pivots in the rows as well 
Dat4-Claim3: It follows naturally that those pivots there [rows] 
Claim4: Then it spans 
 
Int 2 Q4a Arg 5 (sp/LI) 
Claim: If A is invertible, A has n pivots 
Data:  
Data1: When I have A is invertible 
Claim1: The columns of A are linearly independent 
Warrant: There is a pivot in every column [inferred b/c he didn’t cover up the column arrows] 
Qualifier1: you don't need to talk about this [covers up his arrows over the rows], it's already 
has n pivots. 
Qualifier2; But we could have talked about span as being the first connection to invertibility. 
But that's [LI as first connection] just what we chose to do in class! 
 
Int 2 Q4b Arg 1 
Claim: if the determinant of A is 0 then the area after the transformation is zero 
Data: I think of it [determinant] as the area of the transformation. 
Warrant: For some reason, let's just say that's some object, right, in r2. It's a door in r2, here's 
a little [knob]. No, but I think of the determinant as when you transform this by A, then the 
determinant after the transformation will have 0 area. So the door is unfortunately not a door 
any more, it has just the line 
Backing: So the area, but if I extend it to more dimensions, it's not always going to be a line, 
just something with 0 area. It could be, if I think of some plane with area or volume or however 
you think of it, depending on dimension, I'll say volume or something, right? Then it could be 
smushed together or something and have 0 volume, or something like that. 
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Int 2 Q4b Arg2 
Claim: if the determinant of A is zero then the columns are LD 
Data: if I plug in different points on this door or whatever, that I'm going to have multiple 
solutions to a given point. Let's think of vectors, to a given vector. Say that's 1,1 or something; I 
might have 2 points on this door that transform to 1,1. 
Warrant: And if it was linear independent, I would only have 1 point on this door that would 
go to 1 point over here 
Backing: That’s 1-1, so that’d be linearly independent. 
 
Int 2 Q4b Arg 3  
Claim: if the determinant of A is zero then the columns are LD 
Data: if I start with determinant A equals 0, I'm going to have multiple points over here that are 
sent to the same point 
 
Int 2 Q4b Arg3  
Claim: if the determinant of A does not equal zero then the columns are LD 
Data: For opposite reasons 
 
Int 2 Q4c Arg1 
Claim: 'Null of A equal to 0,' 'The only solution to Ax=0 is the trivial solution’ are the same 
thing.  
Data [embedded] 
Data1: the definition of null space [is] the solutions to Ax = 0. 
Claim1: that means right away to me that the 0 vector is being sent to the 0 vector. Or the only 
thing being sent to the 0 vector is the 0 vector. 
Warrant: Which is the only solution to Ax=0 is the trivial solution 
Qualifier: That’s hard for me to explain 
 
Int 2 Q4c Arg2 
Claim: 'Null of A equal to 0,' 'The only solution to Ax=0 is the trivial solution’ are the same 
thing.  
Data: Because I automatically think if the null space is 0, then the set of vectors that satisfy 
Ax=0 is some form of all the multiples of A,0,0, 
Qualifier: which is silly because there are no multiples  
Warrant: so the only thing that is a solution to Ax=0 is the 0 vector, which is the trivial 
solution to this, to this last statement. 
 
Int 2 Q4c Arg3 (sp/LI) 
Claim: Nul A = {a<0,0,0>} = 0 vector 
Data: I want to figure out what the null space is, I solve for the x vector in this matrix equation  
(Ix=0) 
Qualifier (to D): The matrix in the equation could be anything, let’s just say it’s linear 
independent and it spans.  
Warrant: I can solve for the x in the matrix equation by setting up an augmented matrix 
Qualifier (to W): It’s a simple case, but let’s just say this is some matrix that’s linear 
independent and spans.  
Backing: From row-reduction of the augmented matrix, the solutions to Ax=- are x1=0, x2=0 
and x3=0 
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Int 2 Q4c Arg4 
Claim: Nul A = {a<0,0,0>} = 0 vector 
Data: That's kind of where I got it [the set notation] from, is just going about solving for the 
vector in the domain. 
Qualifier (to D): it doesn't really need the ‘a’ 
Warrant: I went row reducing some matrix over here, and I can find out which vectors satisfy 
the equation Ax=0 
Backing: And if it equals 0, then that's the null space. 
 
INT 2 Q4c Arg5 
Claim: The only solution is the trivial solution 
Data: The null space is 0, only the zero vector 
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Appendix 5.2. Compilation of Adjacency Matrix codes for Abraham 
 

Argument Used for m < n 
in general or a 
specific example  

Used for m = n 
in general or a 
specific example  

Used for m > n 
in general or a 
specific example  

Used for all m, 
n or was vague 

Arg 7.2 WCD  F5F 
F3F 
F3F 

  

Arg 9.16 WCD   S9H 
H1H2 

 

Day 9 AC Arg 1 
(sp/LI) 

  H4H  

Day 9 AC Arg 2 
(sp/LI) 

  J5H  

Day 9 AC Arg 3 
(sp/LI) 

S8G    

Day 9 AC Arg 4 
(sp/LI) 

J5G    

Day 9 AC Arg 5 
(sp/LI) 

 EG   

Day 10 SG Arg 1   GG5   
Day 10 SG Arg 2  
(sp/LI) 

 EG   

Day 10 SG Arg 3   GG5P1   
Day 10 SG Arg 4   GG1 

GG1G2 
G1G2 

  

Int 1 Q6a Arg 1 
(sp/LI) 

 GE 
GEE1 
EE1 
E1E2 

  

Int 1 Q6a Arg 2 
(sp/LI) 

 GIE   

Int 1 Q6a Arg 3 
(sp/LI) 

 IE1E2 
I1G 
E1E 
I1E2 
I1E2GE 
E2E 
E1E2 
J6H6 

  

Int 1 Q6b Arg 1 
[59:42]  

  G3G 
GG3 
G3G, GG3 

  

Int 1 Q6b Arg 2  G3GG2 
G**G2 

  

Int 1 Q6c Arg 1  GI 
JH3 
JH3H1H 
GI 

  
 

Int 1 Q6c Arg 2  JH3 
JH 
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Int 1 Q6d Arg 1 
(sp/LI) 

 GE 
EE1  
GE1G2E
2 
E2**E1 
GE1 

  

Int 1 Q6d Arg 2  E1I1E2E
1 

  

Int 1 Q6d Arg 3  IE1   
Int 1 Q6e Arg 1   GI5 

I4II5 
  

Int 1 Q6e Arg 2  J5F2   
Int 1 Q6e Arg 3  F2I6 

I6F2 
I6  J 
F2J 
J6J4 
F2J4 
G I5 
J5F2 
J5J6JH 
GII5 

  

Int 1 Q6e Arg 4  J5J 
JH 
GI5 

  

Int 1 Q6e Arg 5  J5F2 
F2J6 
J6J 
JH 
GI5 

  

Int 1 Q8a Arg 1 Content not appropriate for coding scheme 
Int 1 Q8a Arg 2 
(sp/LI) 

IG 
G1G 
 
S8F 

 
 
EG 
 

  

Int 1 Q8a Arg 3 
(sp/LI) 

S8F 
GF 
 

 
 
GE 

  

Int 1 Q8a Arg 4 
(sp/LI) 

 
GF 
G2F3F9 

GE 
 

  

Int 1 Q8a Arg 5 
(sp/LI) 

GG2 
GG2 
G2F9 
F9E3 
S8F 

   

Int 1 Q8b Arg 1 
(sp/LI) 

  S9H  
JH 
 
S9H 
H7H 

 
 
IG 
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H2H 
Int 1 Q8b Arg 2 
(sp/LI) 

S8F 
 
 
GF 

 
 
GE, EG 
 

 
S9H 
 

 

Arg 17.9 WCD  FH5L6L   
Arg 17.10 WCD  H5L6L

  
N4L6H2 
F5N3 

  

Arg 17.19 WCD   EG 
EG2 
KG 

  

Day 18 SG Arg 1    EK 
Day 19 SG Arg 1  Content not appropriate for coding scheme 
Day 19 SG Arg 2     M1O 

O1M 
E2M, E2O 

Arg 19.9 WCD     GM2GM 
MG 

Day 20 SG Arg 1  GM 
M2M 

  

Day 20 SG Arg 2  HN   
Day 20 SG Arg 3   

S8FP 
  OE 

 
Day 20 SG Arg 4  HH5N    
Day 20 SG Arg 5  FP 

S8F 
   

Day 20 SG Arg 6    S9J 
S9N 

 

Arg 20.5 WCD    OE 
O1O 
OO1**E1 
FF1P4 

Day 20 SG Arg 7     EE1 
OO1 
E2E1 

Arg 20.16 WCD 
(sp/LI) 

 EM, ME 
EG 
GEOM 
MO 

  

Arg 20.24 WCD 
(sp/LI) 

 OK, MK   

Arg 20.26 MP, PM    
Day 24 SG Arg 1   F5F, F8F 

F5R 
F8R 
FR 

  

Day 31 SG Arg 1 
(span/LI) 

 IE 
IG 

  

Day 31 SG Arg 2   S4E, ES4 
S4E1, E1S4 

  

Day 31 SG Arg 3 Too vague to code reliably 



  
375 

 

Day 31 SG Arg 4   K4K5K   
Day 31 SG Arg 5   S2G, GS2   
Arg 31.5&6 WCD 
(sp/LI) 

 G5G, G G5 
G5S2, S2 
G5 
G5G3, G3 
G5 
E2E 
G5G2 
G5M3G 

  

Day 31 SG Arg 6   S4E, ES4 
S4E1 
S4E, ES4 

  

Day 31 SG Arg 7   S12aE1, 
E1S12aS4   
S4E1 

  

Int 2 Q1a Arg 1 
(sp/LI) 

 GE 
GII3I4
E2E 
E2E 

  

Int 2 Q1a Arg 2 
(sp/LI)  

 GG4 
S12bGG4 
IG4 

  

Int 2 Q1a Arg 3 
(sp/LI) 

 IG4G2   

Int 2 Q1b Arg 1 
(sp/LI) 

 GI 
F5F3F6 
F6JFJ6 
J 
E5H2 
G2F3F 
GF3F 
EI 
GE 

  

Int 2 Q1b Arg 2 
(sp/LI) 

P1F 
P3F 

   

Int 2 Q1b Arg 3 
(sp/LI) 

E1E 
F1F 
P3F 
F1F 

   

Int 2 Q1b Arg 4 
(sp/LI) 

 JF 
FJ6

 JH 
S2G, GS2 
JS3H4 

  

Int 2 Q2c Arg 1 
(sp/LI) 

Content not appropriate for coding scheme 

Int 2 Q2c Arg 2 
(sp/LI) 

I1G 
S8F 

   

Int 2 Q2c Arg 3 
(sp/LI) 

  S9H 
I4E 

 

Int 2 Q2c Arg 4 
(sp/LI) 

  J3H7H4 
I4E 
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Int 2 Q3 Arg 1   OE, EO 
EE1, E1E 

  

Int 2 Q3 Arg 2   I2I 
I2I, I2I 

  

Int 2 Q3 Arg 3   S4S6, S6S4 
S7F1 
E1E 
S7F1 
F1F 
S7F 
F1S5 
S7S5S12a 
S4S12a, 
S12aS4 

  

Int 2 Q3 Arg 4 Content not appropriate for coding scheme 
Int 2 Q3 Arg 5  K4K, KK4    
Int 2 Q3 Arg 6   S2G 

G5G 
G3G 
MG 
QG 
M1G5G2 

  

Int 2 Q3 Arg 7  G3G5, 
G5G3 
G2G3 
M3G5 

  

Int 2 Q3 Arg 8   S2G, GS2 
S2G2, 
G2S2 
S2G, GS2 
G2G, GG2 

  

Int 2 Q3 Arg 9   MG 
G3G, GG3 
MM1 
M1M, 
M1M 
M1G5 
G5M1 
MG5, G5M 

  

Int 2 Q3b Arg 1  OO1 
MM1 
M1O1, 
O1M1 
O1E2, 
M1E2  
MOE2, 
OME2 

  

Int 2 Q3b Arg 2 Content not appropriate for coding scheme 
Int 2 Q3b Arg 3 
(sp/LI) 

 G5G, GG5 
G5GM 
OE 
GG5E2E 
GE2, E2G 
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Int 2 Q3b Arg 4 
(sp/LI) 

 GE2S12b 
S12bG 
S12bE 

  

Int 2 Q3b Arg 5  S12bK4   
Int 2 Q3b Arg 6  KK4, K4K   
Int 2 Q3b Arg 7  S12bO 

S12bMK4
K 

  

Int 2 Q3b Arg 8 
(sp/LI) 

 S12bG 
S12bE 
S12bK4K 

  

Int 2 Q3b Arg 9  M1G, GM1 
M1G5, 
G5M1 

  

Int 2 Q3b Arg10  OE 
OO1, O1O 
O1E1E 
EE1, E1E 

  

Int 2 Q4a Arg 1  IK4K 
IK2 

  

Int 2 Q4a Arg 2 
(sp/LI) 

 IG, IE 
GM 
EOI1K 

  

Int 2 Q4a Arg 3 Content not appropriate for coding scheme 
Int 2 Q4a Arg 4 
(sp/LI) 

 KE 
EI1I4 
I4I3 
I3GEG 

  

Int 2 Q4a Arg 5 
(sp/LI) 

 KEI 
KE 
KG 

  

Int 2 Q4b Arg 1  RR1 
RR1N4 
RR3 

  

Int 2 Q4b Arg 2  RF 
RP1P4  
EO1OE 

  

Int 2 Q4b Arg 3   RP3F   
Int 2 Q4b Arg 4  QE   
Int 2 Q4c Arg 1  S4S12aE1 

S4E1, E1S4 
  

Int 2 Q4c Arg 2  S4S12aE1   
Int 2 Q4c Arg 3 
(sp/LI) 

 EG, GE 
EI2 
GI2E1 

  

Int 2 Q4c Arg 4  I2E1S4   
Int 2 Q4c Arg 5  S4E1   
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