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Basic Theory and Equations Used In The Two-Phase
Multidimensional Geothermal Reservoir Simulator, SHAFT79
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ABSTRACT

The algorithm of SHAFT79 is based on mass and
energy balance equations for two-phase flow in a
porous medium.- These basic equations are formu-
lated as Integrated Finite Difference equations.
The latter formulation allows both regular and
irregular discrete grid approximations of reser-
voir geometry. The present version of SHAFT79
solves the non-linear mass and energy equations
simultaneously using an efficient linear algebra
package.

The computer program is being applied to a variety
of problems to study both real reservoir behavior
and to better understand the physiecs of two-phase
systems. The types of applications include ideal-
ized one-and two-phase reservoir depletion, two-
phase reservoir behavior with distributed liquid,
simulation of real reservoirs, matching production
data, and estimating material parameters from well
test data.

BASIC THEORY AND EQUATIONS

The computer program SHAFT79 was developed to
compute two-phase flow phenomena in geothermal
reservoirs. The program solves transient initial-
value problems with prescribed boundary-conditionms.
The solution method is an explicit-implicit (IFD)
(Narasimhan and Witherspoon, 1976) approach which
does not distinguish between 1, 2, or 3-D
coordinate systems and allows a flexible choice

of the shape of the discrete grid elements. The
mass-and-energy equations are formulated in con-
servative form. The stability and convergence

of the algorithm can be controlled by an auto-
matic choice of time steps or can be chosen by the
user. Since the equation of state is a tabular
array, fluids other than pure water can be used .
in the calculations. However, the pressure
difference between the wetting and non-wetting
phases 1s neglected. The relative permeabilities
for the wetting and non-wetting phases are
avajlable as analytical approximations, or in
tabular form and can be specified for any fluid.

The solution algorithm is based upon statements
of mass and energy conservation in both the rock
and two-phase fluid. (Bird et al., 1960) The
porous medium is assumed to have sufficiently
small pores so that the thermal equilibration
between rock and fluid 1s instantaneous. For
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most geothermal reservoir problems where the time
scale 1s days or more and reservoir dimensions
are often several kilometers, this approximation
is acceptable.

SHAFT79 offers a choice of several methods for
solving the coupled non-linear equations for
mass and energy flow. Also, different algorithms
are available for solving the set of linear
equations which arises at each iteration step.
This flexibility allows an optimal balance
between accuracy and efficiency of simulations,
depending upon problem size (number of elements),
occurrence of phase transitions, relative magni-
tude of energy-and-mass flows, and other
characteristics of the problem. The preferred
solution method is fully implicit, employs a
Newton/Raphson (Blair and Weinaug, 1969)
iteration for simultaneous solution of the non-
linear mass-and-energy transport equations,

and uses an efficient sparse solver (Duff, 1977).
SHAFT79 has been applied to problems with up to
250 elements in three dimensions. Throughputs
of up to 65 per time step have been achieved
with good accuracy.*

The microscopic structure of porous rock is
highly heterogeneous. The channels through
which the fluids move are tortuous and have (in
general) non-regular shapes. In addition, the
porous rock in a geological setting generally
has many structural variations, and fractures
of widely varying aperture and extent. The
fluids, in general, move through the fractures
more rapidly than through the microscopic
pores, but heterogeneous rock can usually be
approximated by using macroscopic rock and fluid
parameters. When the flow rates are large, or
if the fracture velocities are very large
relative to the microscopic pore velocities,
the relationship between fluid flow-rate and
macroscopic pressure gradient becomes non-
linear. 1In the case of two phases - one wetting
and the other non-wetting - the relationship
between flow rate and pressure gradient can

be specified in terms of a function of wetting
or non-wetting volumetric saturation.

*Throughput 1s defined as the ratio of fluid
mass flowing across an element, divided by
the fluid mass initially in place in that element.
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contractors, sub. , or their empl , makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.
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Macroscopic equations can be derived using
statistical averaging which have exactly

the same form as the point equations
(differential or integral equations obtained
assuming a macroscopic representative ele-
mentary volume) (Whittaker, 1969; Bear, 1975)
The same equations are obtained when the
differential laws are integrated as when the
differential-integral forms are derived
directly (when the same assumptions are made).
The choice of presenting the equations in one
form or another is primarily a matter of style
and preference. We prefer to write the
macroscopic (point) differential equationms,
integrate them over a volume which will have
special significance for discretization, and
then define the particular numerical solution
procedure incorporated in the algorithm
called SHAFT79.

There is more than one possible choice of
intensive thermodynamic variable pairs from
which all other thermodynamic information can
be derived. Internal energy and specific
density are two such variables. When the
equation of state (EOS) is known in terms of
energy and density the EOS gives pressure,
temperature, and fluid saturation. This
completely specifies the thermodynamic state
in terms of macroscopic quantities we can
measure. It is also possible to use triplets
of variables such as temperature, pressure,
and steam saturation. Of these three
variables only two are independent, namely,
temperature and pressure in the one-phase
region, and temperature and saturation in the
two-phase region. Therefore, using such
combinations becomes somewhat awkward for
problems involving phase transitions. The
SHAFT79 equations will be presented in terms
of intermal energy and density.

The partial differential equations which model
the flow of steam and water mixtures in porous
rock are forms of the conservation laws for
mass, energy, and force (Newton's law)., For
porous media it was shown empirically that

the fluid flux is proportional to pressure
drop (Darcy's law) (Scheidegger, 1974).
These equations are summarized in (1) to (3).
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where the symbols are defined by

P, = density (mass per volume) of phase a
¢ = porosity (Vp/V)

V = volume element of rock/fluid mixture
V = pore volume in V

$ = vapor saturation (vv/vp)

V. = vapor volume in V

t = time

F = mass flux vector

q. = external sources (mass rate/volume,
negative source corresponds to mass
being withdrawn)

u = gpecific internal energy of the fluid
u_ = gpecific internal energy of the solid

p_ = specific density of the solid

G = energy flux

k = abgsolute permeability

k= relative permeability of phase a
v = fluid viscosity of phase a

P = pressure

g = gravitational acceleration vector

These equations are integrated over a poly-
hedral partition of the calculation space as
shown in Figure 1 and fluxes and sources are
averaged over the polygonal areas and poly-
hedral volumes respectively. The general
equations used in the SHAFT79 algorithm are
summarized in Table 1.

Figure 1.

A three-dimensional polyhedron with

8 polygonal face of area An, and flux
- through that area Fam from an ad-

Joining polyhedral volume.
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Table 1. A summary of the basic equations used
in the SHAFT?79 model for two-phase flow
in porous media.

CURRENT APPLICATIONS OF SHAFT79

The current version of the LBL simulator
SHAFT79 1s being implemented at several
industrial and government laboratories.

Since the newest version is the most efficient
version, no applications outside LBL have been
completed to date. We have verified the
accuracy of the calculations and have been
using the program for both idealized problems
and real applications. In Table 2 the problems
that have been completed and are currently under-
way are described briefly.

‘Puture applications and new developments include
studying the evolution of geothermal systems,
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estimation of reserves from depletion studies,
detailed studies of the effects of injection on
energy recovery, and the effects of gases on
reservoir depletion behavior. The formulation
of the gas équations and the method of incorpor-
ation into SHAFT79 has been completed, and only
the implementation into the program is required.

Table 2. A Review of Problems Using SHAFT79

Completed problems (some were calculated using
SHAFT78)

e A study of the propagation of phase fronts
near a producing well (Pruess et al, 1978)

e A study of the propagation of phase fronts
through a depleting reservoir (Pruess et al, 1979)

e Reservoir simulation of the Krafla, Iceland
geothermal zone (V. Jonsson, 1979)

Current Calculations (SHAFT79)

* A study of phenomena occurring during in-
jection or influx in a depleting reservoir

* A study of production and injection fronts
in a 5-spot pattern

« A history match of the production data from
the Serrazzano Zone at Larderello, Italy
(Part of the Italian-U.S. Cooperative
Research Agreement) (Bodvarsson et al, 1979)

* Determination of the material parameters
ugsing well test data from the Cerro Prieto
Field (Part of the Mexican-U.S. Cooperative
Research Agreement) (Benson and Schroeder, 1979)

+ Additional reservoir simulation of the Krafla
Reservoir, Iceland (V. Jomsson, 1979)
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