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Abstract

This paper presents a model of human spatial
orientation, using a task that involves locating targets on
a map of the space. The model uses a hierarchical
solution process that was reported by many of the
participants in an empirical study. It encodes the location
of the target in the visual scene by identifying a cluster
of objects that contains the target and then encoding the
position of the target within that cluster. By applying this
description of the target’s location to the representation
on the map of the space, the model is able to correctly
identify the target. Using this general strategy, it
reproduces all of the major trends in the empirical data.

Introduction
The relative ease with which people are able to navigate
through familiar and unfamiliar environments is a
human ability that is not well understood. This process
requires the integration of multiple sources of
information, since immediate visual perception rarely
provides a complete representation of a space. To make
informed decisions, generally additional information is
necessary. When the space is familiar, this information
may be available in memory (e.g., a cognitive map). In
other cases, however, people often use external maps of
a space to facilitate their decision-making.

When external maps are used in conjunction with
visual perception to make spatial judgments, one source
of difficulty is the difference in how spatial information
is represented in the two views of the space. In visual
perception, spatial information is available in
egocentric terms (e.g., Klatzky, 1998). That is, the
locations of objects in the space are encoded in terms of
their distance from the viewer and their bearing relative
to the viewer. So, the viewer serves as the origin and
the direction the viewer is facing defines the
orientation. In contrast, external maps identify the
orientation and origin within an allocentric frame of
reference. These representations are commonly oriented
according to cardinal directions, with north at the top.

When the frames of reference in two representations
of a space are different, they must be brought into
correspondence before they can be used together to
facilitate decision-making (Levine, Jankovic, and Palij,
1982). This process requires the ability to identify a
common point in both views of the space, along with
another piece of information (a second point or a
reference direction) to align the orientations. Once this
is done, information can be shared between the two
views to provide more complete information about the
space. Orientation tasks require individuals to establish
correspondence between two views of a space. Often,
participants are shown a target in one view of a space
and are asked to locate it in the other view. Research
has shown that the difficulty of this kind of task
depends on a number of factors, including the location
of the target object and the difference in the orientations
(misalignment) between the two views of the space
(e.g., Easton and Sholl, 1995; Hintzman, O’Dell, and
Arndt, 1981; Rieser, 1989).

The cognitive model that is presented here illustrates
a perspective for understanding how the results
obtained in studies of orientation tasks arise. The model
was developed in the context of the ACT-R
architecture. The remainder of this paper presents a
brief description of the empirical work on which the
model is based, followed by a description of the model
and its performance.

Experiment
Participants were shown 2 views of a space containing
10 objects. On the left was a visual scene showing the
10 objects, one of which was highlighted to identify it
as the target. On the right side was a map of the space,
indicating the locations of the 10 objects as well as the
viewer’s position. Participants were asked to click on
the object on the map that corresponded to the target
that was indicated in the visual scene. Figure 1 shows a
sample trial.
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Figure 1: Sample trial for the orientation task.

Method
The spaces were created using the Unreal Tournament
game engine (2001), which allows users to create their
own 3-D worlds. The 10 objects in the space for each
trial were placed in clusters, which were centered
around one of 8 positions in the space. In each trial
there were four clusters, containing one, two, three, and
four objects. The positioning of the clusters was such
that on some trials, there were two clusters directly in
front of the viewer (one nearby and one farther away), a
cluster on the left, and a cluster on the right. In the other
trials, there were two clusters on each side of the space
relative to the viewer, one nearby and the other farther
away. The sample trial in Figure 1 shows the latter case.
The configurations and locations of the clusters (in
terms of the number of objects in each one) relative to
the viewer were counterbalanced. This design resulted
in spaces where the objects were not arranged in a well-
defined pattern, making it less likely that participants
would use strategies that have been described for
similar tasks in the past (Gunzelmann and Anderson,
2002).

This experiment varied several factors to closely
examine how they impact human performance on
orientation tasks. First, the target was located in one of
the clusters on each trial. As a result, the target could
have been positioned in any of eight general locations
relative to the viewer on a given trial. In addition, the
target was located in a cluster that contained from one
to four objects. So, the target was located in the vicinity
of zero to three nearby distractors. Finally, this
experiment involved a manipulation of the degree of
misalignment between the two views of the space. The
two perspectives were either aligned, misaligned by 90
degrees (clockwise or counterclockwise), or misaligned
by 180 degrees (maximally misaligned).

There were 20 participants in the experiment. Ten
participants completed one half of the possible trials in
the experiment, while the other ten completed the other
half. When they finished the experiment, participants
completed a version of the Vandenberg and Kuse
Mental Rotations Test, an assessment that measures
spatial ability (Vandenberg and Kuse, 1978).
Participants were ranked based upon their scores on this
task. Using these rankings, participants were matched

between the two conditions and their data were
combined to create “meta-participants”. The data from
these meta-subjects were used in the analyses described
here, although the general conclusions remain the same
if the data from the two conditions are analyzed
independently. Finally, the experiment utilized a drop-
out procedure, such that if a participant made an error,
the trial was repeated later in the experiment. More
complete details concerning the methodology are
available in Gunzelmann and Anderson (submitted).

Results
Response times and accuracy were recorded for each
trial in the experiment. Overall, accuracy was quite high
(96%), and the pattern of errors was quite similar to the
response time data (r=.83). This suggests that the
results were not due to a speed-accuracy trade-off. As a
result of the high degree of accuracy, the data presented
here consider the response times for correct responses
that participants produced as they performed the
experiment.

There are a number of important findings in this
experiment, which are summarized in Figures 2, 3, and
4 below. First, in terms of misalignment, the data
correspond well with previous research (Figures 2 and
4). As the misalignment between the two views
increases, response times increase as well,
F1(3,27)=38.62, p<.001. Next, the local distractors
placed around the target also had an impact on
performance (Figures 2 and 3). These data show that as
more local distractors were present, participants took
longer to identify the correct object on the map,
F1(3,27)=60.67, p<.001. The magnitude of this effect,
however, depended on the degree of misalignment
between the two views (Figure 2). Specifically, the
impact of the number of local distractors increased as
misalignment between the two views increased,
F1(9,81)=8.79, p<.001.
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Figure 2: Response times (sec) as a function of
misalignment and the number of distractors nearby to

the target.
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Figure 3: Response times (sec) as a function of the
target’s location relative to the viewer and the number

of distractors nearby to the target.
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Figure 4: Response times (sec) as a function of the
target’s location relative to the viewer and the

misalignment between the two views.

The impact of the target’s location relative to the
viewer is shown in Figures 3 and 4. The overall effect
was significant, F1(7,63)=11.39, p<.002. This result
contains two major components. Firstly, response times
were fastest when the target was located more directly
in front of the viewer (the first and last points on each
line in Figures 3 and 4). Secondly, difficulty tended to
increase as the target was located farther from the
viewer on one side of the visual scene or the other (the
remaining points in Figures 3 and 4). Importantly, these
trends were produced regardless of the number of
distractors that were located near to the target (Figure
3), and this interaction was not significant,
F1(21,189)=1.79, p>.15. In contrast the target’s
location did have an influence on the impact of
misalignment (Figure 4). This result shows that the
impact of misalignment was diminished when the target
was in line with the viewpoint (the first and last points
on each line in Figure 4). This interaction was
significant in these data, F1(21,189)=3.78, p<.02.

In addition to the response time data, retrospective
verbal reports from participants provided evidence
about how they did the task. In general, participants
indicated that they engaged in a two-step process to
find the answer. The first step involved identifying a
cluster of objects that contained the target so that the
cluster could be found on the map. Once the cluster was
identified, participants determined which of the objects
in the cluster was the correct response.

Discussion
The results of this experiment highlighted several
factors that contribute to difficulty in orientation tasks.
First, misalignment between the two views of the space
impacted difficulty similarly to the results of previous
studies (e.g., Gunzelmann and Anderson, 2002;
Hintzman, et al., 1981; Rieser, 1989; Shepard and
Hurwitz, 1984). Also, the findings show that the
location of the target relative to the viewer within a
space influences how difficult it will be to locate it on a
map. Unlike previous research, this result is
demonstrated without using a highly organized
configuration of objects in the space. As the target was
positioned farther from the viewer, and when the target
was less directly in front of the viewer, difficulty
increased. These findings suggest that participants were
using the viewer’s location in the space as a key
reference feature to help them determine the location of
the target. Response times were faster when the target
was in a location that could be encoded more easily
with respect to the viewer’s position in the space.

This experiment also showed that difficulty increased
as more objects were located in the vicinity of the
target, a factor that previous research has not addressed.
This result suggests that participants were considering
only a portion of the space when trying to locate the
target, since the total number of objects was the same
for all trials. In addition, this effect did not vary as a
function of the particular location of the target. This
outcome suggests that the location of the cluster does
not impact how the target’s location within that cluster
was encoded.

The hierarchical solution process reported by
participants illustrates how they were able to limit their
search to a subset of the items in the space and shows
why more local distractors would result in longer
response times. The presence of more objects near to
the target requires more, or more complex,
transformations to bring the information in the two
views into correspondence, which should take more
time (e.g., Bethell-Fox and Shepard, 1988). It appears
that one can view the process of solving these tasks as
developing a description of the target’s location, which
then has to be transformed to apply to the map. This
description could be verbal, or could involve the
creation of a mental image.
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ACT-R Model
ACT-R is a general theory of cognition that has been
implemented as a running simulation (Anderson and
Lebiere, 1998). It operates as a production system with
several core assumptions related to its operation. First,
there is a division between declarative and procedural
knowledge. Declarative memory contains information
in the form of chunks, while procedural knowledge is
composed of productions, which contain information
about transforming one state into another. The latest
version of ACT-R is composed of a set of modules for
perceptual, motor, and cognitive aspects of human
performance. Information is processed independently
within these modules, allowing them to operate in
parallel. There are buffers associated with each of the
modules that essentially represent working memory.
The contents of these buffers are what drive the
production system. Productions match against the
contents of the buffers, and it is only the contents of
those buffers that can be directly accessed. It is at the
level of production selection and execution that the
system operates in a serial manner.

Because ACT-R includes perceptual and motor
modules, it is able to interact with experimental
software under realistic constraints. Although the
perceptual module currently is not sophisticated enough
to parse the visual scene shown in Figure 1, it does
contribute important timing information to the model’s
performance. The motor module adds additional
constraints to the mouse movements and clicks that the
model executes. The parameters that control these
aspects of ACT-R’s behavior are based on largely on
the EPIC theory (Kieras and Meyer, 1997). At a general
level, the model was implemented within this
architecture to perform the task based on the two-step
process described by the participants in their verbal
reports. There are, however, a number of details that are
important to the model’s performance as it goes through
this general process. These are described next.

Model Design
The model begins each trial by locating the target in the
visual scene. Once this location has been identified, the
model finds other objects that are in the vicinity of the
target. It counts those objects, and encodes the overall
location of the cluster as being in the left, right, or
central portion of the visual scene. Then, to encode the
location of the target in the cluster, the model revisits
the items in the cluster, and encodes the target’s
position relative to the near-far and left-right axes. So,
the model develops a representation of the target’s
location in the visual scene that would be something
like “the leftmost object in the cluster of two on the
right of the visual scene.” This is the target’s position in
the sample trial in Figure 1.

With a representation of the target’s location in the
visual scene, the model shifts its attention to the map of
the space, beginning by locating the viewer’s position,
which is indicated. The next step is to find the correct
cluster. If the cluster was encoded as being in the
middle of the visual scene, the model searches straight
out from the viewer’s location to find it. However,
when the cluster was positioned to one side or the other,
spatial updating is required when the two views are
misaligned so that the correct portion of the map is
searched. This updating consists of a remapping of
“left” and “right” to the corresponding directions on the
map relative to the viewer’s orientation. For instance, in
the sample trial in Figure 1, the right portion of the
visual scene corresponds to the top half of the map.

The updating process is a source of difficulty which
requires extra time. In addition, when the two views of
space are maximally misaligned (the viewer is at the
top of the map), the updated values for the map directly
conflict with the egocentric values. This adds a second
source of difficulty to the updating process, which adds
additional time to its execution. Once the values are
updated, the model is able to search the appropriate
portion of the map for the correct cluster. To perform
this search, the model begins near to the viewer’s
location and searches outward until it finds an object
that is in a cluster of the appropriate size.

Once the first step of finding the appropriate cluster
is completed, the model needs to determine which of
the objects within the cluster on the map is the target.
Like the cluster location, the encoding of the target’s
position is based in the egocentric coordinate system
from the visual scene. So, when the two views are
misaligned, updates to this information are needed to
match the rotated coordinate system of the map. These
updates are similar to those described above.
Misalignment is one source of difficulty, while direct
conflict between the two reference frames is another.

One detail of this process requires some explanation.
In the model, the amount of updating done in the
second step depends on the number of objects in the
cluster. When there are no nearby distractors, this step
is skipped. In this case, when the “cluster of one” is
found, the model is immediately able to respond by
clicking on that object. In cases where there are 2 or 3
objects in the cluster, there is a simple encoding of the
target’s position within the cluster that requires only
one axis. With 2 objects, the target is always on the left
or on the right, and is also always the closest or farthest
object in the cluster. When the cluster has three objects,
the target can also be the one in the middle on each of
the axes. In the model, this possibility is represented by
having the model update only one of the axes in order
to locate the target within the cluster.

When the cluster has 4 objects, the encoding
necessarily becomes more complex. This is represented
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by having the model update both axes when the cluster
has four objects in it. Once again, there is the potential
for direct conflict between the two frames of reference
in these updates, which adds to the difficulty of this
operation. The basic idea is that the complexity of the
description needed to encode the target’s location
increases as the number of objects in the cluster
increases. As a result, the difficulty of transforming this
description so that it applies appropriately to the map
increases as well. This notion is supported by past
research, which has demonstrated that more complex
figures take longer for individuals to mentally rotate
(Bethell-Fox and Shepard, 1988).

The model’s performance is modulated by several
parameters. First, as noted above ACT-R’s perceptual
mechanisms are not currently sophisticated enough to
process a raw image like the one shown in Figure 1.
Thus, as a simplification, the model is presented with a
2-D, egocentrially-oriented representation of the visual
scene, which essentially is another map. So, the model
implicitly embodies the assumption that participants
extract a 2-D representation from the visual scene as
they encode the information from it. A constant of .25
seconds was added to the model on each trial to
represent the cost of extracting such information from
the visual scene.

The second parameter in the model was the retrieval
time, which was set to .11 seconds. As the model does
the task, it requires some declarative information
(mostly related to directional information). Each time a
chunk is retrieved from declarative memory, it takes .11
seconds. However, most of the model’s performance is
driven by the information on the screen, so this
parameter does not play a large role in determining the
model’s predictions.

The only other parameter that was manipulated in the
model controls how long it takes to perform the
operations needed to update the directions (left, right,
up, and down) that it uses to locate the target on the
map. The parameter was set so that each of the updates
requires .60 seconds. This value applies to each
operation that is necessary, and is also applied when
direct conflict arises between the allocentric frame of
reference and the original egocentric reference frame.
This means that if one axis needs to be updated, it will
take .60 seconds. If two axes need to be updated, it will
take 1.20 seconds. However, if in addition to the update
there is direct conflict between the two frames of
reference, these updates take 1.20 and 1.80 seconds
respectively. These costs apply to the updates needed to
locate the cluster and to identify the target within the
cluster. When an update is needed to identify the
portion of the map where the cluster is located, it
involves updating a single axis (left-right). When the
cluster has been located and the search begins for the
target, the update involves one axis when there are one

or two nearby distractors, and two axes when there are
three nearby distractors. Each of these updates may or
may not involve direct conflict that needs to be resolved
in addition to the update.  All of the other parameters in
the model were given their default ACT-R values.

Model Performance
The model captures all of the major trends in the data.
First, the model reproduces the misalignment effect
(Figures 2 and 4). As the misalignment between the two
views increases, the model takes longer to respond. In
the model, this effect comes from the costs of updating
the frame of reference to find the cluster on the map
and to find the target within the cluster. In addition, the
costs associated with the second update depend on the
size of the cluster, producing the interaction between
misalignment and the number of nearby distractors
shown in Figure 2. As the number of nearby distractors
increases, the impact of misalignment increases. This
illustrates the idea that it is more difficult to update the
descriptions of the target locations when those
descriptions are more complex. In the model, it is the
extra cost associated with the spatial updating process
as more nearby distractors are present that produces this
interaction. The mechanisms in the model capture the
effect of both misalignment and the number of
distractors well, with an overall correlation of .992 for
the data shown in Figure 2 (RMSD=.187 seconds).

The model makes predictions about the difficulty of
the task based upon the target’s location in the visual
scene as well. These data are shown in Figures 3 and 4,
along with the empirical results. The model produces a
good qualitative fit to the data, although the particular
values are a little off in some instances. The model’s
predictions arise because it begins its search for the
cluster on the map from the viewer’s position, moving
outward until it locates an object in the cluster. Thus,
when the target is farther from the viewer, it takes the
model longer to locate an object in the cluster. In
addition, the model produces an interaction between
target location and misalignment (Figure 4). The effect
of misalignment is smaller when the target is directly in
front of the viewer (bottom and top target locations)
because no spatial updating is necessary to find the
cluster. As noted above, the same effect appears in the
empirical data, and the model captures the effect well
(r=.954, RMSD=.325 seconds for the data in Figure 4).

Finally, there is no interaction in the model between
the number of nearby distractors and the location of the
target in the visual scene (Figure 3). This corresponds
to the empirical results as well (r=.910, RMSD=.351).
The result is because of the two-step process, reported
by participants, that the model uses to do the task. The
target’s location within the cluster is encoded without
regard to the location of the cluster. So, the impact of
the target’s location results from the search for the
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cluster. Similarly, the number of nearby distractors only
impacts the solution process after the cluster has been
located, when the correct target must be identified.

Conclusions
Overall, the model produces data that are in line with
the performance of the human participants, which lends
support to the conclusion that they were using the
strategy they reported to do the task. The model
produces all of the major trends, in most cases with data
that are very close to the data from the human
participants. In the model, misalignment impacts both
the search for the cluster and the search for the target
within the cluster. In contrast, the location of the target
only influences the search for the cluster, both in terms
of its distance from the viewer and whether or not it is
in line with the viewer’s position. The interaction of
target location with misalignment in the model arises
because no spatial updating is needed when the target is
directly in front of the viewer. Finally, the number of
nearby distractors only impacts the search for the target
within the cluster, interacting with misalignment
because of the different amounts of spatial updating
required based on the number of objects in the cluster.
Note that the location of the target does not interact
with the number of nearby distractors, suggesting that
they affect different aspects of the solution process. The
performance of the model supports the conclusion that
similar processes are being used by the participants.

In conclusion, this model provides a framework for
understanding human performance on spatial tasks. It’s
most important characteristics relate to the hierarchical
encoding of the target’s location in the visual scene.
This encoding allows the model to limit its search to a
portion of the map, ignoring many of the objects in the
space. In addition, the model’s performance assumes
that the two steps in the solution process are
independent. As a result spatial updating that is
performed for step 1 does not carry over to the
execution of step 2. This contributes to the large effect
of misalignment on the model’s performance. Finally,
the model also indicates that perceptual-motor aspects
of performance are important factors in this kind of
task. The time needed to execute shifts of visual
attention contribute to many of the effects described
here, especially the impact of the target’s location and
the impact of the number of local distractors. These
issues deserve careful attention in future research.
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