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Abstract

This work introduces a 4D flow magnetic resonance imaging (MRI) pressure reconstruction 

method which employs weighted least-squares (WLS) for pressure integration. Pressure gradients 

are calculated from the velocity fields, and velocity errors are estimated from the velocity 

divergence for incompressible flow. Pressure gradient errors are estimated by propagating 

the velocity errors through Navier-Stokes momentum equation. A weight matrix is generated 

based on the pressure gradient errors, then employed for pressure reconstruction. The pressure 

reconstruction method was demonstrated and analyzed using synthetic velocity fields as well 

as Poiseuille flow measured using in vitro 4D flow MRI. Performance of the proposed WLS 

method was compared to the method of solving the pressure Poisson equation which has been the 
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primary method used in the previous studies. Error analysis indicated that the proposed method 

is more robust to velocity measurement errors. Improvement on pressure results was found to 

be more significant for the cases with spatially-varying velocity error level, with reductions in 

error ranging from 50% to over 200%. Finally, the method was applied to flow in patient-specific 

cerebral aneurysms. Validation was performed with in vitro flow data collected using Particle 

Tracking Velocimetry (PTV) and in vivo flow measurement obtained using 4D flow MRI. Pressure 

calculated by WLS, as opposed to the Poisson equation, was more consistent with the flow 

structures and showed better agreement between the in vivo and in vitro data. These results 

suggest the utility of WLS method to obtain reliable pressure field from clinical flow measurement 

data.

Keywords

Magnetic resonance imaging (MRI); pressure reconstruction; velocity error estimation; weighted 
least-squares

I. INTRODUCTION

Pressure measured from the cardiovascular system is widely used to diagnose disease. 

Many pressure-based clinical biomarkers, such as pulmonary wedge pressure [1], are single 

point measurements typically acquired by placing a pressure catheter in the region of 

interest [2]. However, this approach is invasive and still only provides a point measurement. 

Conversely, a spatial pressure distribution can provide a more complete view of the 

hemodynamics in the cardiovascular system. For example, the pressure distribution in the 

posterior communicating artery bifurcation has been explored and its correlation with the 

locations of the rupture of infundibulae or progression to aneurysms was established [3]. 

Further, such pressure distributions can be obtained noninvasively. One such noninvasive 

approach includes estimating the pressure difference from Doppler echocardiography and 

is typically employed for evaluating intra-ventricular pressure difference [4], [5]. However, 

conventional Doppler Ultrasound only measures one component of the velocity which limits 

the accuracy of the estimated pressure difference. Pressure fields can also be obtained using 

computational fluid dynamics (CFD) simulations, but fidelity of the simulation depends on 

the accuracy of segmentation and flow boundary conditions prescribed to the solver. These 

assumptions, as well as solver parameters have been shown to have a significant effect 

on the resulting flow field [6], [7]. In [8], the flow fields and flow-derived metrics were 

compared across cerebral aneurysm flow data obtained with in vivo 4D flow, in vitro PTV, 

and CFD. Minor flow field variations were found between modalities due to differences in 

the modeling assumptions and resolution limitations. High-resolution CFD simulations are 

also computationally expensive. Pressure reconstruction methods have become increasingly 

of interest with the development of flow measurement techniques such as 4D flow magnetic 

resonance imaging (MRI) which measures time-resolved velocity fields. However, several 

error sources and limitations inherent to in vivo 4D flow MRI result in unreliable pressure 

fields. The setting of velocity encoding (venc) parameter for a 4D flow acquisition is 

determined by the maximum velocity expected in the region of interest. Velocity greater than 

the venc leads to velocity aliasing, while higher venc settings lead to increased noise which 
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affects 4D flow measurements in low velocity regions [9]. Artifacts such as concomitant 

gradient fields and eddy currents affect the accuracy of measured phase differences [10]. 

The partial volume effect and intravoxel dephasing are also common sources of systematic 

errors, especially for voxels near lumen boundaries [11]. For in vivo measurements, the 

limited scan time results in decreased spatiotemporal resolution and increased image 

artifacts [10]. Thus, a robust algorithm is needed to accurately reconstruct the pressure 

field from 4D flow MRI.

Several algorithms have been proposed to evaluate the pressure field from measured 

flow data. Most algorithms contain two major steps. The pressure gradient fields are 

first calculated from the velocity fields, which are then spatially integrated to obtain the 

instantaneous pressure fields.

For blood flow, the pressure gradient can be calculated using the incompressible Navier-

Stokes momentum equation in the following form [12]-[16]:

∇p = − ρ ∂u
∂t + (u ⋅ ∇)u + μ∇2u, (1)

where p is pressure (Pa), ∇ is the spatial gradient operator such that ∇p is the pressure 

gradient (Pa/m), ρ and μ are the density (kg/m3) and dynamic viscosity (Pa·s) of the fluid, 

respectively, u is the velocity (m/s), and t is time (s). μ∇2u represents viscous diffusion. Du
Dt

and (u ⋅ ∇)u represent the local and convective accelerations (m/s2), respectively. The body 

force term has been ignored in (1) and in the following equations but it could be included.

With pressure gradients calculated from velocity data using (1), the pressure field can 

be reconstructed by spatially integrating the pressure gradient field. One approach to this 

reconstruction calculates the pressure at each point in the flow field by integrating the 

pressure gradient along one path or multiple paths [12], [17]. Path integration methods are 

rarely employed for 3D flow data due to the high computational cost. The most common 

approach for reconstructing pressure fields from 3D velocity data is by solving the pressure 

Poisson equation (PPE) in the following form [13]-[15], [18], [19]:

∇2p = ∇ ⋅ pgrad, u = − ρ∇ ⋅ (u ⋅ ∇u), (2)

where pgrad, u is the pressure gradient field evaluated from the velocity field and (∇ ⋅ ) is 

the divergence operator which evaluates the divergences from a vector field. This approach 

has been successfully applied to both engineering applications [13]-[15], [18], [19] and 

cardiovascular velocity measurements from phase-contrast MRI [20–24]. For incompressible 

flow, equation (2) is valid for both steady and unsteady conditions. Boundary conditions 

are required for solving (2), which can be Dirichlet boundary conditions with prescribed 

pressure values, Neumann boundary conditions with prescribed pressure gradient values, 

or a mix of the two types. As discussed in [25], both the path integration method and the 

method of solving the pressure Poisson equation can be regarded as global optimization 

formulations of the pressure-gradient spatial integration. Another method that falls into this 

category is a least-squares reconstruction method referred to as ordinary least-squares (OLS) 
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reconstruction in this study [26]. For OLS, the pressure integration is performed by solving 

the following linear system:

Gp = pgrad, u, (3)

where G is the discrete gradient matrix, and p is the unknown pressure field written as a 

column vector. Equation (3) is an over-determined linear system for 2D and 3D flow data. 

The OLS method solves the pressure field by minimizing the pressure gradient residuals in a 

least-squares sense as:

pOLS ≡ argmin
p

∇p − pgrad, u , (4)

where    is the L2 norm. In matrix form, equation (4) becomes:

GTGp = GT pgrad, u . (5)

As stated in [27], OLS reconstruction and Poisson share the same theoretical foundation, and 

solving the pressure Poisson equation with Neumann boundary conditions is mathematically 

equivalent to the solving the OLS formulation.

Due to the measurement inaccuracies in the in vivo 4D flow MRI, the calculated 

pressure gradient fields contain propagated errors. However, the above-mentioned pressure 

reconstruction methods do not have any way to account for or reduce the effect of such 

erroneous pressure gradient values. In order to improve the accuracy of reconstructed 

pressure fields, a weighted least-squares (WLS) reconstruction method for spatial integration 

of pressure gradients is introduced in this work. In this method, pressure fields are solved by 

minimizing the WLS of the pressure gradient residuals. The weights are determined based 

on estimated pressure gradient errors. To estimate such pressure gradient errors, velocity 

errors are calculated from the velocity divergence for incompressible flow and propagated 

through (1). Smaller weights are assigned to inaccurate pressure gradient values such that 

their effects are reduced during spatial integration. The performance of WLS was tested 

using synthetic velocity fields and in vitro Poiseuille flow measured using 4D flow MRI. 

The method was then applied to in vivo 4D flow MRI velocity data acquired for two 

aneurysms and in vitro PTV velocity data collected in patient-specific aneurysm models.

II. METHODOLOGY

A. Pressure reconstruction using weighted least-squares

Pressure gradient fields were calculated from velocity fields using (1). Velocity data 

employed in this study were on Cartesian grids with velocity values located on grid nodes. 

A second order central (SOC) difference scheme was employed to evaluate the temporal 

and spatial derivatives of the velocity fields. Pressure gradient values were calculated on 

grid nodes, then linearly interpolated to the face centers of each grid cell. The SOC scheme 

and grid arrangement are demonstrated in Fig. 1. SOC computes the gradient at each point 

from its neighboring points, e.g., ∂p
∂x (i, j) = p(i + 1, j) − p(i − 1, j)

2Δx , where Δx is the grid size. The 

reconstructed pressure values are on grid nodes.
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The pressure field is obtained by solving

GTW Gp = GTW pgrad, u, (6)

which gives the pressure result that minimizes the least-squares of pressure gradient 

residuals as

pWLS ≡ W ∇p − pgrad, u , (7)

where W  is the weight matrix. W  is a diagonal matrix containing positive elements as 

weights for pressure gradient values pgrad, u. Greater weights are assigned to pressure gradient 

values anticipated to be more accurate. Unlike the Poisson equation, WLS reconstruction 

does not require boundary conditions to be explicitly assigned as the Poisson equation does. 

A minimum of one pressure reference point is needed. Pressure at the reference point can 

be obtained from direct measurement or a far-field pressure condition. If only the pressure 

differences between points in the flow field are of interest, the selection of reference point 

and reference pressure is arbitrary, e.g., zero pressure can be assigned at one point along the 

boundary.

B. Velocity error estimation from spurious divergence

For incompressible flow, the divergence of the true velocity field should be zero, expressed 

mathematically as:

∇ ⋅ uT = 0, (8)

where uT is the true velocity field. Because measured velocity data inevitably contain errors, 

the divergence of the measured velocity field is typically nonzero. The spurious divergence 

equals the divergence of the velocity error field as

∇ ⋅ uM = ∇ ⋅ ϵu, (9)

where uM is the measured velocity field, ϵu is the velocity error field, and ϵu = uM − uT. 

Equation (9) forms an underdetermined linear system as there are less rows than columns in 

the discretized divergence operator (∇ ⋅ ). Thus, ϵu cannot be uniquely determined from (9). 

We estimate ϵu by finding the least-squares solution to (9) as

ϵu = (∇ ⋅ )T ∇2 −1 ∇ ⋅ uM ≡ ∇ ⋅ ϵu − ∇ ⋅ uM , (10)

where ϵu is the estimated velocity error field. Previous studies have similarly employed the 

spurious velocity divergences to estimate the uncertainty of velocity data measured using 

tomographic particle image velocimetry (PIV) [28].

C. Generation of weight matrix

The pressure gradient error field is estimated by propagating ϵu through (1) as
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ϵ∇p = f∇p uM − f∇p uM − ϵu , (11)

where ϵ∇p is the estimated pressure gradient error field and f∇p( ⋅ ) denotes evaluating (1) 

using the given velocity field.

Accuracy of the pgrad, u at each point from each time frame is determined from the weighted 

standard deviation (WSTD) of the estimated pressure gradient errors from neighboring 

points given as

σ∇p =
∑i = 0

n wi ϵ∇p i
2

∑i = 0
n wi

, (12)

where σ∇p is an estimation of the pressure gradient uncertainty and n is the number of 

points that are employed in the WSTD calculation. Weights wi for WSTD calculations are 

determined using a bivariate Gaussian function:

wi = exp − 1
2

rt

δt

2
− 1

2
rs

δs

2
, (13)

where rt and rs are the spatial and temporal separations from the neighboring points to 

the point of interest, respectively. δt and δs are the correlation lengths along the temporal 

and spatial dimensions which are determined by the numerical difference scheme. Based 

on the SOC scheme employed for pgrad, u calculation, neighboring pgrad, u values should not be 

correlated farther than 2Δx spatially and Δt temporally. Thus, the correlation lengths were 

chosen to be δt = Δt and δs = 2Δx. In addition, only points within the rt ≤ Δt and rx ≤ 2Δx
neighborhood were employed in the WSTD calculation.

The weight matrix for WLS reconstruction is given by

W = diag 1
σ∇p2 , (14)

where diag( ⋅ ) is the diagonal matrix generated from given diagonal elements. To avoid 

singularities due to zero weights, a lower bound of weights is given as 10−9 multiplied by the 

average of all weight elements.

D. Implementation of pressure reconstruction methods

The method of solving the PPE (denoted as ‘Poisson’ herein) was employed in this study 

to compare to the WLS method for evaluating its performance. The same formulation of 

PPE was employed in the present study as in [20–24] which considered both inertial and 

viscous effects of the blood flow. For the Poisson algorithm, pressure gradient fields were 

calculated from (1) by SOC and the grid arrangement described in section II-A. Divergence 

of the pressure gradients were calculated using SOC and employed as the source term for the 

pressure Poisson equation. At least one grid point along the boundary was prescribed with 

zero pressure as the Dirichlet boundary condition for both methods. Pressure gradients at all 
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the other boundary points were employed as the Neumann boundary condition for solving 

the pressure Poisson equation. SuperLU, a general-purpose library for the direct solution of 

large, sparse, nonsymmetric systems of linear equations [29], was employed to solve (2) and 

(6) for the reconstructed pressure fields.

E. Synthetic flow fields

Two flow fields were used for validating and analyzing the pressure reconstruction methods. 

The first is a 2D Lamb-Oseen vortex ring flow field which consists of two counter-rotating 

vortices. Velocity of each vortex can be described by

uθ = uθmax 1 + 1
2α

rmax

r 1 − e1 − α r
rmax

2
, (15)

where uθ is the angular velocity, r is the distance from the center of the vortex, rmax is the 

distance where the maximum angular velocity uθmax = 0.5m/s is reached, and rmax = α × rc

with rc = 0.01m. The constant α was set to be 1.25643 according to [30]. The center points 

of vortices were separated by 2r0 with r0 = 0.01m. A free stream velocity component ufs was 

added to make the flow steady as

ufs = uθmax 1 + 1
2α

rmax

2r0
1 − e1 − α r

rmax

2
. (16)

The exact velocity fields were generated on a uniform Cartesian grid with 652 grid 

points. The size of the domain was 0.1m × 0.1m. The exact pressure field was obtained by 

numerically integrating the pressure gradients on a denser Cartesian grid with 1292 points. 

Fluid density was 1kg/m3 and the flow was inviscid. Fig. 2 (a) and (b) present the exact 

velocity and pressure field, respectively.

The second is 2D pulsatile flow between two parallel infinite plates driven by the unsteady 

pressure gradient given as

dP
dx = ρK + γρKcosωt, (17)

where the × direction is streamwise, γ is the ratio between the magnitude of the 

steady pressure gradient component and the amplitude of the oscillating pressure gradient 

component, K is the constant controlling the overall strength of the pressure gradient, and ω
is the angular speed of the oscillating component. The velocity profile can be expressed as

u = umax 1 − y2

ℎ2 + γK
iω 1 − cosh(y/ℎ iλ)

cosh( iλ) exp(iωt), (18)

with λ = ℎ ρ
μω , where y is the spanwise direction, ℎ is the channel half-width, and umax is 

the centerline velocity of the steady flow component. In this paper the flow field contains a 

20 mm long channel with a ℎ of 4 mm. Blood-mimicking fluid properties were employed 

with ρ of 1110 kg/m3 and μ of 0.0033 Pa·s. ω was set to be 2π rad−1 and the Womersley 
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number of the flow was 5.75. umax was set to be 1m/s, and the other parameters were given as 

K = 0.38m/s2, γ = 8.28, and λ = 5.75. Fig. 2 (c) shows the waveforms of pressure gradient and 

centerline streamwise velocity component within one cycle. Fig. 2 (d) shows the streamwise 

velocity profile at 4 phases in a cycle. The flow fields were generated on a uniform Cartesian 

grid with a spatial resolution of 0.4×0.4 mm2, yielding 21×51 grid points in the field. This 

type of flow was employed in [16] to assess the performances of pressure reconstruction 

methods.

In order to test the robustness of the pressure reconstruction methods to errors in the velocity 

data, noise was added to the velocity fields in a manner similar to that done in [16], [31], 

which is designed to mimic experimental noise. Noise was added as a vector with a normally 

distributed magnitude and random direction at each point. The error magnitude can be 

expressed by

ϵu
i = N 0, λ ui , (19)

where λ is the error percentage level. For the vortex ring flow, two types of velocity 

noise distributions were considered which are referred to as ‘Uniform Noise Distribution 

(UND)’ and ‘Spatially Varying Noise Distribution (SVND)’ in this study. For UND, the 

measurement quality was uniform across the field, and λ was set to be consistent across 

the field. 26 UND test cases were generated with λ varying linearly from 1 to 51%. For 

SVND, the flow field was divided into a “top half” and “bottom half” with different values 

of λ applied to each half. A total of 7 cases were generated with λtop varying exponentially 

from 8% to 64%, and λbottom set to 8% for all cases. For each test case with UND or SVND, 

100 time frames were created with a sampling frequency of 50 Hz (Δt = 0.02s). 0 Pa was 

assigned at the left end of the dashed horizontal line in Fig. 2(a) as the reference pressure. 

For the pulsatile flow, 26 UND test cases were generated with λ varying linearly from 1 to 

51%. 1000 frames were created for a time span of 50 cycles, yielding 20 frames per cycle 

and a temporal resolution of 0.05 s. Dirichlet boundary condition with zero pressure was 

applied to the inlet of the 2D channel as the reference pressure.

F. In vitro 4D Poiseuille flow

Experimental measurements of steady, laminar Poiseuille flow in a circular pipe were 

acquired using 4D-flow MRI. The Poiseuille flow allowed the usage of an analytical 

pressure field as the benchmark to assess the accuracy of the reconstructed pressure. A 

blood mimicking water-glycerol solution with a density and viscosity of 1110 kg/m3 and 

0.00372 Pa·s, respectively, was used as the working fluid. The volume ratio between water 

and glycerol was 60:40. A small amount (0.66 mg/mL) Gadolinium contrast was added 

to enhance the signalto-noise ratio (SNR) of the 4D flow MRI scan without altering the 

rheology of the fluid. A computer-controlled gear pump drove the working fluid at a steady 

flow rate of 7.6 mL/s. The diameter of the pipe was 12.7 mm and the length was sufficiently 

long prior to entering the MRI field of view to ensure a fully developed velocity profile. The 

4D flow MRI scan was performed on a Siemens 3T PRISMA scanner at a spatial resolution 

of 0.85 × 0.85 × 0.8 mm3. A total of 12 time frames were collected. The venc of this 

4D flow MRI scan (prospectively triggered time-resolved 3D PC MRI with 3-directional 
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velocity encoding) was set to 16 cm/s, which is sufficiently high to avoid velocity wrapping. 

The echo time (TE) and repetition time (TR) were 5.87 ms and 8.60 ms, respectively. The 

yielded temporal resolution was 120.4 ms. The bandwidth was 455 kHz and flip angle was 

15°. The 4D-flow MRI images were pre-processed (phase offset correction, noise filtering) 

using a customized Matlab-based software package, Velomap-Tool, developed at University 

Medical Center Freiburg [32].

The analytical velocity field of the Poiseuille flow is given by:

W = − 1
4μ

dP
dz R2 − r2 , (20)

where W  is the axial (along z-axis) velocity component (m/s), r is the radial distance from 

the pipe centerline (m) which equals to x2 + y2 and dP
dz  is the axial pressure gradient (Pa/m). 

The velocity components along other axes (U and V ) are 0. The axial pressure gradient is 

defined by:

dP
dz = − 8μQ

πR4 , (21)

where Q is the volumetric flow rate (m3/s). This yields a linear analytical pressure drop 

along the pipe. The analytical velocity and pressure fields were considered as the ground 

truth for error analysis.

G. In vivo and in vitro flow in cerebral aneurysms

In vivo flow data in a basilar tip aneurysm were acquired at San Francisco VA Medical 

Center and an internal carotid artery (ICA) aneurysm was imaged at Northwestern Memorial 

Hospital (NMH). Both aneurysms were acquired with 4D flow MRI on a 3T MRI scanner 

(Skyra, Siemens Healthcare, Erlangen, Germany). An ECG-gated RF spoiled 4D-flow MRI 

sequence (Siemens WIP sequence) was used with gadolinium contrast for imaging the 

basilar tip aneurysm, while no contrast was used for the ICA aneurysm. Aliasing, phase 

offsets, and noise were corrected. Velocity data from the in vivo measurements were 

obtained on Cartesian grids. The spatial resolution was 1.25×1.25×1.33 mm3 for the basilar 

tip aneurysm and 1.09×1.09×1.30 mm3 for the ICA aneurysm. The temporal resolutions 

were 40.5 ms (20 frames per cycle) and 44.8 ms (13 frames per cycle) for the basilar tip 

aneurysm and the ICA aneurysm, respectively.

In vitro PTV velocity data was obtained using a 1:1 scale models of the patient-specific 

aneurysms. To reproduce the in vivo flow field, the inflow was driven by a computer-

controlled gear pump with the inlet flow based on the in vivo data. DaVis 10.0 (LaVision 

Inc.) was used to process the particle images. Shake the Box (STB), a particle tracking 

method, was used to compute the velocity fields. The unstructured STB velocity fields were 

interpolated to Cartesian grids. For the basilar tip aneurysm, the grid size was 0.3 mm and 

the temporal resolution was 2.5 ms. For the ICA aneurysm, the grid size was 0.4 mm and the 

temporal resolution was 1.5 ms. Blood mimicking fluids composed of water-glycerol-urea 

were employed with the details provided in Table I [33]. More details on the in vivo and in 
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vitro measurements can be found in [8]. To mimic the in vivo 4D flow data, another dataset 

was created for each aneurysm by virtual spatial voxel averaging the in vitro PTV data, then 

temporally downsampling to the same frequency as the 4D flow measurement. Thus, the 

voxel-averaged and subsampled dataset (referred to as ‘PTV-voxavg’ herein) had the same 

spatial and temporal resolution as the corresponding in vivo 4D flow MRI dataset.

III. RESULTS

A. Lamb-Oseen vortex ring

1) Velocity and pressure gradient error estimation: To validate the error 

estimation algorithm employed in this study, the estimated velocity and pressure gradient 

errors were compared with the exact errors from all the Lamb-Oseen vortex cases. As 

a demonstration, the distributions of estimated and exact errors from the case with λbottom

and λtop being 8 and 32%, respectively, are shown in Fig. 3. Fig. 3(a) and (b) present 

the comparisons on velocity error magnitudes ϵu  versus ϵu  and pressure gradient error 

magnitudes ϵ∇p  versus ϵ∇p  respectively. Fig. 3(c) compares σ∇p with the pressure gradient 

uncertainty σ∇p  evaluated as the root-mean-square (RMS) of ϵ∇p from all time frames. For 

both estimated and exact errors, the magnitudes were greater in the top half of the field than 

in the bottom half, and greater in the vortices than in the ambient regions, as suggested by 

the spatial distributions. The estimated magnitudes were lower than the corresponding exact 

magnitudes as suggested by the medians from the histograms in Fig. 3. The median of ϵu

was 5.5% while it was 6.0% for ϵu . The medians of ϵ∇p  and ϵ∇p  were 4.5% and 6.3%, 

respectively. The median of σ∇p was 6.6% while it was 8.6% for σ∇p. The error estimation 

algorithm performed consistently for all the cases.

2) Pressure error analysis: The errors in the pressure fields reconstructed using 

Poisson and WLS were analyzed and compared. Pressure errors (ϵp) were quantified as 

the deviation between the reconstructed pressure and the exact pressure. ϵp and ϵu were 

normalized by the RMS of the exact pressure field and velocity field, respectively. The 

distributions of velocity and pressure error magnitudes are shown in Fig. 4 for three cases 

with λbottom being 8% while λtop being 8%, 32%, and 64%. The spatial distributions in Fig. 

4 presents the RMS of normalized errors from all time frames. As suggested by both the 

spatial distributions and the histograms, the pressure error magnitudes for WLS ϵp, W LS  were 

lower than those for Poisson ϵp, Poisson . The medians of ϵp, W LS  and ϵp, Poisson  were 0.8% and 

1.2%, respectively, with λtop being 8%, 1.6% and 3.6% with λtop being 32%, and 2.4% and 

8.3% with λtop being 64%.

The performances of the pressure reconstruction methods are compared in Fig. 5(a) using 

results from all test cases with UND. The velocity error level for each case was determined 

as the median of the normalized velocity error magnitudes. As λ changed from 1 to 51%, 

the velocity error ranged from 0.39 to 19.9%. Similarly, the pressure error levels were 

determined as the median of the normalized pressure error magnitudes. For the noise 

level range used here, the pressure error for WLS increased from 0.10 to 6.0%, while it 

increased from 0.15 to 9.9% for Poisson. Thus, WLS maintained a 50% improvement on 
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median pressure error over Poisson. Additionally, the lower and upper limits of the pressure 

errors were given as the 15.75th and 84.25th percentiles of the absolute error distribution, 

respectively. The upper limit for WLS increased from 0.28 to 17.3%, while it increased from 

0.40 to 27.3% for Poisson. The lower limit for WLS increased from 0.025 to 1.44%, while it 

increased from 0.037 to 2.39% for Poisson.

Fig. 5(b) compares the error levels for the two methods from all cases with SVND. As λtop

changed from 8 to 64% and λbottom stayed at 8%, the overall velocity error level increased 

from 3.1 to 7.9%. The pressure error for WLS increased from 0.8 to 2.4%, while the it 

increased from 1.2 to 8.3% for Poisson. The lower error limit ranged from 0.2 to 0.6% 

for WLS and from 0.3 to 2.1% for Poisson. The upper limit ranged from 2.4 to 9.7% for 

WLS and from 3.4 to 23.0% for Poisson. In addition to the overall pressure error level, the 

pressure error level within each half of the field was quantified and presented in Fig. 5(c) 

and 5(d), respectively. The pressure error level in the top half ranged from 0.8 to 4.9% for 

WLS and from 1.2 to 11.4% for Poisson, while that in the bottom half ranged from 0.8 to 

1.4% for WLS and from 1.2% to 6.4% for Poisson.

B. 2D Pulsatile flow

The pressure fields were calculated from velocity fields for all cases using Poisson and 

WLS. Velocity and pressure errors were quantified by comparing to the analytical solutions. 

Fig. 6 (a) shows the pressure error levels as a function of the velocity error levels for results 

at 4 temporal phases. The velocity error level was evaluated as the median of the absolute 

velocity errors at all grid points normalized by umax. The pressure error level was the median 

of the absolute pressure errors at all grid points, and the pressure error limits were 15.75th 

and 84.25th percentiles. The pressure scale employed for the normalization was given as 
1
2ρumax

2  which was the dynamic pressure based on umax. As λ changed from 1 to 51%, the 

velocity error level increased from 0.3 to 15.3%. The ranges of pressure error levels were 

different at different phases. At peak systole (t/T=0.25), the pressure error level for Poisson 

increased from 0.6 to 40.6% and it increased from 0.7 to 20.1% for WLS. WLS reduced the 

pressure error level by around 100% for cases with velocity errors greater than 10%. At peak 

diastole, both methods accurately estimated the pressure fields as the pressure error levels 

were less than 3% for all cases.

Fig 6 (b) shows the pressure and velocity error distributions as a function of Y (spanwise 

direction) for the case of λ = 33% with a velocity error level of 9.9%. WLS improved the 

pressure accuracy significantly in regions with lower velocity error level (near the walls). 

Fig 6 (c) compares the statistical distributions of the pressure error magnitudes by the 

two methods for the same case. The medians of ϵp, W LS  and ϵp, Poisson  were 4.2% and 6.8%, 

respectively.

C. In vivo 4D Poiseuille flow

The analytical velocity field is shown in Fig. 7(a) together with a time frame from 

the measured velocity data. Fig. 7(b) compares the velocity errors (ϵu) evaluated as the 

deviations between the analytical velocity and measured velocity with the velocity errors 
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estimated based on velocity divergence (ϵu). The error magnitudes were normalized by the 

centreline velocity of the analytical field. For both ϵu and ϵu, the magnitudes were greater near 

the wall or close to the ends of the pipe.

Instantaneous pressure fields were reconstructed using Poisson and WLS from the measured 

velocity fields. The origin (r=0 mm, z=0 mm) was selected as the reference point with 

zero pressure. The pressure errors were evaluated as the deviation between analytical 

pressure and reconstructed pressure, then normalized by the analytical pressure drop across 

the measurement region (Δpanalytical). Spatial distributions of the normalized pressure error 

magnitudes are presented as functions of r and z in Fig. 7(c). The pressure in the middle 

region of the pipe had significantly lower error when using WLS. To confirm this notion, the 

histograms of the relative pressure error magnitudes are shown in Fig. 7(d). The median of 

pressure error magnitude was 24.6 % for WLS and 35.6% for Poisson. The lower error limit 

was 7.8 % for WLS and 11.2% for Poisson. The upper error limit was 53.1% for WLS and 

64.5% for Poisson.

D. Patient specific aneurysmal flow

The velocity fields at peak systole are presented using 3D pathlines in Fig. 8(a) and 2D 

contours with arrows in Fig. 8(b) for the in vivo4D flow and in vitro PTV data. The pressure 

fields reconstructed from the PTV data at peak systole using WLS are given in Fig. 8(c). 

Suggested by the 3D pathlines, the flow structures of the 4D flow and the PTV datasets 

are consistent for each aneurysm. For the basilar tip aneurysm, the inflow comes from the 

basilar artery and forms a vortical structure in the aneurysmal sac. For ICA aneurysm, the 

inflow comes from the curving ICA. Some of the flow enters the aneurysmal sac and forms 

the vortical flow structure inside before exiting through the distal ICA. The comparisons for 

the inflow rate and waveform were made across all modalities of the two aneurysms [8]. 

The flow rate values, and general waveform trends showed reasonable agreement. However, 

the PTV data was obtained with higher spatiotemporal resolution and was contaminated 

with less noise for both aneurysms. For the basilar tip aneurysm, the average flow rate error 

(difference between inflow and outflow flow rates normalized by the maximum flow rate 

for each modality) was 24.0% for the 4D flow data, and 6.9% for the PTV data. For the 

ICA aneurysm, the average flow rate errors were 17.3 and 3.6% for 4D flow and PTV, 

respectively. The lower average flow rate errors suggest better accuracy for PTV. The limited 

spatial resolution of the 4D flow MRI acquisition resulted in under-resolved velocity profiles 

and a lack of pathlines in the basilar and ICA aneurysms (Fig. 8a). As demonstrated in 

[34], at least 5–6 voxels across vessel diameter are required for accurate flow quantification. 

There were less than 4 image voxels across the basilar artery (Fig. 8b), which reduced 

the accuracy of velocity measurements and the subsequently computed flow metrics. In 

addition, a low MR signal region was identified in the ICA upstream of the aneurysmal sac, 

which also contributed to the discontinuity of the pathlines in Fig. 8(a) and the low velocity 

region in Fig. 8(b). These factors would cause greater errors in velocity fields as well as 

reconstructed pressure fields in those regions of 4D flow data.

As the flow structures are consistent, similar pressure fields are anticipated for the in vivo 
data and in vitro data. Thus, even given the noisy and under-resolved in vivo 4D-flow data, a 
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robust pressure reconstruction method should be capable of obtaining similar pressure fields 

to those reconstructed from the in vitro PTV data. Pressure fields were reconstructed from 

each dataset using WLS and Poisson for each aneurysm. Fig. 9 compares the time series 

of pressure differences between several pairs of spatial points within the flow field. The 

locations of the points were labeled in Fig. 8(c). The discrepancies between the pressure 

differences of the three modalities were quantified for each pair of points and for each 

method. The RMS of the discrepancies was calculated and presented in Table II. WLS 

reduced the RMS discrepancies for most locations, with some reductions being more than 

100%. The lower RMS discrepancies suggested better consistency between the pressure 

results from different modalities for WLS. The reduced signal in the 4D flow measurements 

of the ICA affected the calculated pressure difference between the inlet and sac shown in 

Fig. 9(b). Poisson overpredicted the pressure difference greatly, while WLS underestimated 

the pressure difference due to the low velocity caused by reduced signal in the ICA. WLS 

reduced the RMS discrepancy by 135% for this pair of locations. In general, WLS was more 

robust to velocity errors and the calculated pressure fields were more consistent with the 

measured flow field.

Fig. 10 compares the spatial distributions of pressure within the aneurysmal sacs from 

the in vivo 4D flow data and in vitro PTV and PTV-voxavg data. For 4D flow data, the 

pressure near the wall was not calculated due to the low signal intensity in near-wall 

voxels such that those measurements were less reliable. In addition, the pressure in the 

small branches were not calculated due to the insufficient number of voxels to perform 

the numerical differences. Thus, the pressure in these regions was not included in the 

following comparisons with pressure calculated from in vitro data. The spatial distributions 

were shown on the 2D planes whose locations were given in Fig 8(c). The pressure fields 

were normalized by the maximum pressure difference within the aneurysmal sac (Δpmax) 

from each modality. Additionally, the probability density function (PDF) histograms of the 

reconstructed pressure values in the aneurysmal sac from the entire cardiac cycle are shown 

in Fig. 10. For the basilar tip aneurysm given in Fig. 10(a), WLS showed better agreement 

across all datasets than Poisson in both the spatial distributions as well as the histograms. 

The median pressure values by Poisson were −0.4 Pa for 4D flow, −8.9 Pa for voxavg, and 

−7.1 Pa from PTV. The median values obtained using WLS were −4.1 Pa for 4D flow, −4.7 

Pa for PTV-voxavg, and −5.5 Pa for PTV. The standard deviation of the medians was 3.7 

Pa for Poisson and 0.6 Pa for WLS. This indicates that WLS maintained a tighter spread 

of the pressure values and more similarity across modalities, suggesting it is more robust 

to low-resolutions and high-noise velocity fields. To quantify the amount of change made 

by WLS compared to Poisson on the reconstructed pressure fields from each modality, 

the deviations between the pressure fields reconstructed by WLS and the pressure fields 

reconstructed by Poisson were quantified and normalized by Δpmax. The total RMS of the 

normalized deviations was defined as the “effectiveness” of WLS on improving pressure 

reconstruction for each modality. The effectiveness was 28.7% for 4D flow, 17.9% for 

PTV-voxavg, and 8.7 % for PTV. For the ICA aneurysm given in Fig. 10(b), the median 

pressure value by Poisson was 0.06 Pa for 4D flow, 0.24 Pa for PTV-voxavg, and 0.52 Pa 

for PTV. The median by WLS was −0.07 Pa for 4D flow, 0.47 Pa for PTV-voxavg, and 0.25 

Pa for PTV. The standard deviation of the medians was 0.19 Pa for Poisson and 0.22 Pa for 
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WLS. The effectiveness of WLS was 34.2% for 4D flow, 6.8% for PTV-voxavg, and 11.9% 

for PTV.

IV. DISCUSSION AND CONCLUSIONS

In this study we introduced a method which uses weighted least-squares for pressure 

integration. By assigning lower weights to less accurate velocity measurements and thus 

pressure gradient values, the WLS method reduces the effects of noisy measurements 

during the spatial integration, and improves the accuracy of the reconstructed pressure. 

Poisson and OLS can be seen as particular cases of WLS with uniform weights assigned 

to the pressure gradients. Compared to Poisson, the improvement made by WLS was a 

combination of the noise mitigation and the differences in the basic equations. However, 

the exact contribution of each aspect was not well understood, which is a limitation of 

this study. The accuracy of WLS relies on proper weight assignment. In this study, the 

weights were informed by the estimated velocity errors based on velocity divergence. 

Comparisons between exact velocity error and estimated velocity error demonstrated that 

the velocity error estimation algorithm used here was capable of recognizing high-error 

regions such that lower weights were assigned to the less accurate pressure gradients in 

these regions. Although the velocity and pressure gradient error magnitudes were found to 

be slightly underestimated by this algorithm, this is not expected to affect the performance 

of WLS. This is because underestimating the error magnitudes would have a similar effect as 

normalizing the weights by a constant greater than 1. Further, the weight matrix W appears 

on both sides of (6), therefore the weights can be normalized by any arbitrary nonzero, real 

constant while the pressure results remain the same. Thus, the spatial distribution of the 

estimated error is primarily what effects the accuracy of WLS as opposed to the error values 

themselves. It should also be noted that the weights can be informed by the pressure gradient 

reliabilities estimated using other algorithms. For velocity fields measured using PIV, there 

are algorithms to estimate the spatial distributions of velocity uncertainties [35],[36] and 

the pressure gradient uncertainties [37]. However, a corresponding algorithm for 4D-flow 

data has not been developed. The divergence-based algorithm employed in this study can be 

applied to velocity data measured from incompressible flows regardless of the measurement 

modality.

The WLS method reduces the spatial propagation of errors during pressure integration. From 

the spatial distributions of pressure errors for the synthetic Lamb-Oseen vortex flow in Fig. 

4, it can be observed that WLS reduced pressure errors in the ambient regions as the greater 

errors were more confined to the vortices. In addition, ϵp, W LS  in the bottom half of SVND 

cases was significantly less affected by the increase of λtop as compared with ϵp, Poisson . As 

observed in Fig. 5(d), as λtop increased from 8% to 64% and λbottom stayed at 8%, the increase 

of the pressure error in the bottom half was 433% for Poison while only 75% for WLS. 

From the spanwise distributions of pressure errors for the 2D pulsatile flow in Fig. 6(b), 

WLS reduced pressure errors in the near-wall regions significantly as the greater errors were 

more confined around the centerline. This is also suggested by the spatial distributions of 

pressure errors from in vitro Poiseuille flow in Fig. 7(b) and (c). WLS confined the pressure 

errors to the regions with greater velocity errors (near the ends of the pipe) compared 
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with Poisson. In previous studies, the spatial error propagation was reduced by segmenting 

the flow field into subdomains based on local velocity reliability, then reconstructing the 

pressure field in each subdomain sequentially in a descending order of reliability [26]. 

However, such an algorithm requires that the different levels of measurement reliability are 

spatially separable in the flow field such that the subdomains can be properly segmented. 

The WLS method proposed here does not require any segmentation, making it more usable 

across a larger variety of flow fields.

Improvement on pressure accuracy by WLS was more significant for velocity data with a 

greater range of errors. Results from synthetic Lamb-Oseen vortex flow fields demonstrated 

that the improvement by WLS was more significant for SVND cases with greater λtop. Given 

in Fig. 5(b), the pressure error level for Poisson was 240% larger than that for WLS with 

λtop of 64%, and 50% when λtop was 8%. This was also reflected by the results from the 

aneurysmal flows. Among the three datasets of the basilar tip aneurysm, the in vivo 4D flow 

data contained the widest range of velocity errors. The pressure fields reconstructed from 

4D flow data using WLS were more consistent with the observed flow structure compared 

with Poisson as suggested by Fig. 10(a). Specifically, the center of the aneurysmal sac 

was expected to be a low-pressure region given the vortical flow in that region, and the 

highpressure regions were expected to be near the inlet and the tip of the aneurysmal sac 

based on the flow deceleration. These anticipated distributions were observed using WLS, 

but not using Poisson. However, the pressure fields reconstructed from the in vitro datasets 

using the two methods were all consistent with the expected pressure distribution. The 

corresponding effectiveness of WLS was highest (28.7%) for 4D flow data compared with 

other datasets (17.9% for PTV-voxavg and 8.7% for PTV). For the ICA aneurysmal flow, the 

effectiveness of WLS was also higher (34.2%) for 4D flow data compared to other datasets 

(6.8% for PTV-voxavg and 11.9% for PTV). Overall, the analyses here suggest that WLS 

improved the pressure reconstruction from less accurate velocity data as compared to the 

Poisson method.

The improvement by WLS was more significant at time points with greater flow rates for 

pulsatile flows. Given in Fig. 6(a), WLS reduced the pressure error levels at peak systole 

by around 100% for 2D pulsatile flow cases with velocity errors greater than 10%, and the 

error reduction by WLS was not as significant at other phases. At peak diastole with the 

lowest flow rate, both methods were able to calculate the pressure accurately. This was also 

suggested by the results from the aneurysmal flows given in Fig. 9. WLS improved the 

pressure differences of 4D flow effectively at time points around peak systole (0.45 s for 

basilar tip aneurysm, 0.25 s for ICA aneurysm) reflected by the reduction in the discrepancy 

between the results across modalities.

A limitation of this study is that no benchmark pressure was available for the comparison 

between the pressure fields reconstructed from the aneurysm flow data and, therefore, the 

errors in the reconstructed pressure fields could not be quantified. A comparison of the 

reconstructed pressure to a direct pressure measurement would improve the WLS pressure 

accuracy assessment and will be explored in future work. Instead, we could only compare 

the pressure fields calculated from in vivo data and in vitro data based on the notion that 

the pressure fields should be similar as the flow structures are consistent. Although the in 
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vivo and in vitro flow data were found to be in good agreement [8], they were not exactly 

the same and thus the pressure fields could maintain inherent differences. As given in Fig. 

10 (b), the spatial distributions of pressure within the aneurysmal sac of the ICA aneurysm 

suggested a clear discrepancy between 4D flow and PTV.

There are also several limitations of the WLS pressure reconstruction method. The error 

estimation algorithm employed in this study can only be applied to incompressible flows as 

the divergence-free assumption is invalid for compressible flows. In addition, the algorithms 

for error estimation and pressure gradient calculation are only applicable to velocity data 

which fully resolves the gradients along all dimensions. For 3D flows, volumetric data with 

all 3 velocity components are required. 2D planar velocity data or 3 velocity components 

captured on a 2D plane measured from 3D flow would not be sufficient because the velocity 

gradient perpendicular to the measurement plane is not resolvable. However, this algorithm 

can be applied to 2D planar data if the flow is uniform along the perpendicular dimension, 

such as the 2D synthetic flows employed in this study. Another limitation of WLS is 

that the velocity data need to be temporally and spatially resolved to ensure accurate 

derivative evaluation. The pressure in small vessel branches (less than 3 voxels across the 

lumen diameter) cannot be estimated due to the insufficient number of voxels for numerical 

difference. However, this is a limitation for most pressure reconstruction methods.
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Fig. 1. 
Grid arrangement and SOC scheme demonstrated using a 2D Cartesian grid. The grid nodes 

are labeled by dots. A grid cell is drawn using dashed lines. Cell face centers are labeled by 

“X” marks.
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Fig. 2. 
(a) Exact velocity field of the 2D Lamb-Oseen vortex ring. The vectors indicate the flow 

direction and color scale of the contours corresponds to velocity magnitude. The flow field is 

divided by the black dashed line into top and bottom halves. (b) Exact pressure field of the 

2D vortex ring flow. (c) Waveforms of pressure gradient and centerline streamwise velocity 

within one cycle of the 2D pulsatile flow. (d) Streamwise velocity profiles at 4 time points in 

a cycle of the 2D pulsatile flow.
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Fig. 3. 
Examples of the estimated error distributions compared with the exact error distributions 

from the SVND case with λtop being 32% and λbottom being 8% for the 2D vortex 

ring flow. The first two columns are the spatial distributions. The last column shows 

histograms of error magnitudes. The dashed vertical lines represent the medians of the 

distributions. (a) Comparison between exact velocity error magnitudes and estimated 

velocity error magnitudes. (b) Comparison between exact pressure gradient error magnitudes 

and estimated pressure gradient error magnitudes. (c) Comparison between the pressure 

gradient uncertainties and the WSTD of the estimated pressure gradient errors.
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Fig. 4. 
The spatial distributions of normalized velocity error magnitudes (1st column), normalized 

pressure error magnitudes (2nd and 3rd columns), and the histograms of normalized pressure 

error magnitudes (last column) for three test cases of the 2D vortex ring flow. The errors 

were normalized by the RMS of the exact fields. The vertical dashed lines in the histograms 

are medians of the distributions. The vertical dotted lines are the lower and upper limits of 

pressure error magnitudes. (a) λtop = 8%, λbottom = 8%. (b) λtop = 32%, λbottom = 8%. (c) λtop = 64%, 

λbottom = 8%.
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Fig. 5. 
The pressure error level versus velocity error level from the test cases of the 2D vortex 

ring flow. The error levels were determined as the medians of error magnitudes. The shaded 

areas are bounded by the upper and lower limits of pressure error magnitudes. (a) Results 

from UND cases with λ changing from 1% to 51%. (b) Results from SVND cases with λtop

changing from 8% to 64% and λbottom being 8%. (c) Pressure error levels in the top half of the 

flow fields shown as a function of velocity error levels for SVND cases. (d) Pressure error 

levels in the bottom half of the flow fields for SVND cases.
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Fig. 6. 
(a) The pressure error level versus velocity error level from the test cases of 2D pulsatile 

flow at four time phases. The error levels were determined as the medians of normalized 

error magnitudes. The shaded areas are bounded by the upper and lower limits of pressure 

error magnitudes. (b) The normalized error distributions of velocity and reconstructed 

pressure fields as a function of y (spanwise) for the case of λ = 33% (velocity error level 

at 9.9%). (c) Histograms of the pressure error magnitudes for the two methods from the case 

of λ = 33%. The vertical dashed lines represent the medians and the vertical dotted lines are 

the error limits.
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Fig. 7. 
(a) The velocity profiles of laminar pipe flow from analytical solution (left) and 

measurement (right). The velocity profiles are shown on x-y plane at z=0 mm and on 

x-z plane at y=0 mm. (b) The spatial distributions of normalized velocity errors shown 

as functions of r and z. (c) The spatial distributions of normalized pressure errors for 

Poisson and WLS. (d) Histograms of the pressure error magnitudes from the pressure fields 

reconstructed using Poisson and WLS.
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Fig. 8. 
(a) Velocity fields at peak systole represented using 3D pathlines from in vivo 4D flow 

MRI and in vitro PTV measurements for the basilar tip aneurysm and the ICA aneurysm. 

Shaded regions represent the geometries of the aneurysms. (b) Velocity fields on orthogonal 

slices represented using 2D contours with arrows. One arrow was drawn for each voxel from 

4D flow data, while each arrow represents the velocity of 9 voxels for PTV data. (c) The 

pressure fields reconstructed using WLS method from PTV data. The planes correspond to 

the locations of the slices in (b).
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Fig. 9. 
The time series of pressure differences between several points within the flow field. The 

pressure fields were reconstructed using the two methods from the datasets of basilar tip 

aneurysm (a) and ICA aneurysm (b). The locations of the points are given in Fig. 8(c).
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Fig. 10. 
Spatial and probability density distributions of pressure fields within the aneurysm sacs 

reconstructed using Poisson and WLS from each modality of the basilar tip aneurysm (a) 

and the ICA aneurysm (b). The spatial distributions are presented by the normalized pressure 

values on a x-y plane and a y-z plane cutting through the aneurysm sac at peak systole. 

Locations of the planes are given in Fig. 8(c). Shaded regions correspond to the geometry of 

the aneurysm. The probability distributions are evaluated using the values on all grid points 

at all cardiac phases within the aneurysm sac.
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TABLE I

COMPOSITION AND PROPERTIES OF BLOOD MIMICKING FLUIDS USED FOR in vitro measurements

Geometry Composition (%wt) Density (kg/m3) Kinematic Viscosity (m2/s)

Water Glycerol Urea

Basilar tip 44.8 32.8 22.4 1103 3.04×10−6

ICA 45.3 29.7 25.0 1132 3.50×10−6
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Zhang et al. Page 30

TABLE II

RMS DISCREPANCIES OF PRESSURE DIFFERENCES (PA)

Basilar tip

Locations Inlet - tip Inlet - center Tip - center

Poisson 9.1 13.3 6.3

WLS 3.8 7.6 6.5

ICA

Locations Inlet - sac Sac - outletl Sac - outlet2

Poisson 16.7 13.2 18.3

WLS 7.1 11.0 9.9
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