
UC San Diego
UC San Diego Previously Published Works

Title
P2KG: Declarative Construction and Quality Evaluation of Knowledge Graph from Polystores

Permalink
https://escholarship.org/uc/item/30h5c8jj

ISBN
9783031429408

Authors
Zheng, Xiuwen
Dasgupta, Subhasis
Gupta, Amarnath

Publication Date
2023

DOI
10.1007/978-3-031-42941-5_37

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/30h5c8jj
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


P2KG: Declarative Construction and Quality
Evaluation of Knowledge Graph from Polystores

Xiuwen Zheng[0000−0002−2617−1647], Subhasis Dasgupta[0000−0002−0754−0515],
and Amarnath Gupta[0000−0003−0897−120X]

University of California San Diego, La Jolla, USA
{xiz675,sudasgupta, a1gupta}@ucsd.edu

Abstract. Constructing knowledge graphs from heterogeneous data sources
and evaluating their quality and consistency are important research ques-
tions in the field of knowledge graph. We propose mapping rules to guide
users to translate data from relational and graph sources into a mean-
ingful knowledge graph, and design a user-friendly language to specify
the mapping rules. Given the mapping rules and constraints on source
data, equivalent constraints on the target graph can be inferred, which
is referred as data source constraints. Besides this type of constraints,
we design other two types: user-specified constraints and general rules
that a high-quality knowledge graph should adhere to. We translate the
three types of constraints into uniform expressions in the form of graph
functional dependencies and extended graph dependencies, which can be
used for consistency checking. Our approach provides a systematic way
to build and evaluate knowledge graphs from diverse data sources.

Keywords: Knowledge graph construction · Knowledge graph evalua-
tion · Graph functional dependency.

1 Introduction

Knowledge graphs (KGs) are increasingly used as complex data products derived
by integrating information from multiple sources [3]. Informally, an entity-centric
knowledge graph [5, 10] is a graph whose nodes represent real-world entities
together with their properties, and edges (predicates) represent relationships
between pairs of these entities. The edges may also have their own properties.

The broad topic of this paper is the issue of quality in knowledge graphs that
are constructed from more than one data source. We specifically focus on a sit-
uation where a KG is constructed from independent, heterogeneous sources like
relational databases and ontological graphs. An important metric of knowledge
graph quality is consistency, the property that asserts that the KG does not
have contradictions. In other words, if we assume that the data sources from
which the KG is constructed are already consistent (and accurate), the con-
struction process of the KG should not introduce any inconsistency in the KG.
In addition to consistency, we would like to ensure that the construction algo-
rithm maintains a set of structural properties of the target KG. For instance,
the KG should have no isolated nodes.



2 X. Zheng et al.

To achieve this goal, we adapt schema mapping techniques [1, 9, 2] that have
been extensively used in the information integration literature. However, we
note that a fundamental difference between information integration and KG-
construction, is that in the former, the source and the target schema both exist
and the role of the schema mapping is to establish the correspondence across the
source and target schemas, whereas in our case, an a priori target schema does
not exist. We show that with a slight abuse of intent, graph functional depen-
dencies (GFDs) can be effectively used to express KG construction constraints
even when the data sources have heterogeneous data models.

This paper makes the following contributions toward knowledge graph con-
struction and quality evaluation,

– It defines a new generic language to specify mapping rules between data
sources and the target knowledge graph. It is easily adaptable to different
data sources.

– We adapt the theory of graph functional dependencies (GFD) [7] to generate
equivalent GFDs on target KG from original constraints on data sources
given the mapping rules users applied to construct the KG.

– We extend GFDs to graph dependency (GD) expressions to specify user-
defined constraints and general-rule constraints.

– We translate these different constraints to uniform Graph Functional De-
pendencies and our extended graph dependencies for ease of evaluation.

2 Preliminaries

Definition 1 (Knowledge Graph). A knowledge graph G is a tuple (V,E, L,R,
AV , AE , UV , UE , λ, µ) where

– V is a set of vertices such that designate entites;
– E is the set of relationships between entity pairs;
– L is the set of entity categories such that λ : L 7→ V is a labeling function

that assigns a category to every entity v ∈ V ;
– R is the set of relationship categories such that µ : R 7→ E is a labeling

function that assigns a category to every entity e ∈ E;
– AV (resp. AE) is the set of node attributes (resp. edge attributes) such ui

a ∈
UA (resp. UE) is the domain of attribute ai ∈ AV , UE is similarly defined.

Definition 2 (Ontological Knowledge Graph). An ontological KG is a KG
such that the entity categories L map to the concepts C and the relationship
categories R belong to the relationships R of an existing ontology O.

Thus, if v is a vertex in the knowledge graph and l is its label, the l must
correspond to some concept c in ontology O. Similarly, if r(v1, v2) is an edge
in the knowledge graph then its predicate name r will correspond to the object
properties defined in O. In reality however, it is not always feasible that all KG
concepts and relationships can be mapped to the ontology. Hence we consider
that the mappings of L 7→ C and R 7→ R to the ontology are partial.



P2KG 3

Onotology
FoodProducts

id product-name manufacturer category ingredients

in-id ingredient-name

nid name daily-recommended-amount

pid nid nutrient-amount unit-of-measurement

Ingredients

Nutrients

NProduct

Relation

Proceduer
{name:"irrigation process"}

{name:"pest control process"}

Proceduer

{name:"production process"}
Proceduer

...
Proceduer

...
Proceduer

{name:"agricultural production"} {name:"construction process"}

{name:"allium"}

{name:"garlic"}

Plant

Sub
cla

ss
_o

f

...
Plant

{name:"onions"}

Plant IngredientClass
IngredientClass

...

IngredientClass
{name:"animal products"}

{name:"meat"}
{name:"seafood"} ...

Fig. 1. Source data for running example.

Ontology One of the data sources used in our knowledge graph is an on-
tology. For this paper, we assume that the ontology is expressed as a DL-Lite
(specifically, DL − LiteA,id) [4] that corresponds to OWL 2 QL, a tractable
profile of the OWL ontology. DL-Lite is less expressive than other ontologies
like OWL-Full (e.g., it cannot express subproperty relationships). However, as
[4] elegantly elaborates, ontological expressions in DL-Lite cleanly translate to
relational queries. In our setting, we translate a DL-Lite compatible OWL on-
tology into a faithfully encoded property graph. The translation process is out
of scope for this paper, but see [2] for a comparable approach. However, we will
present examples throughout this paper to illustrate the graph representation of
the DL− Lite ontology.

Graph Functional Dependency Graph functional dependency (GFD) [7,
8] is a concept in database theory that extends the idea of functional dependency
from traditional relational databases to graph databases. A GFD is a constraint
that describes a relationship between properties of nodes. GFDs are used to
ensure data integrity in graph databases and to help ensure that queries can be
executed efficiently.

A GFD is formally defined as a pair (Q[x̄], X → Y ) where Q defines a graph
pattern; X and Y are two sets of literals of x̄. The literal can be a constant
literal, e.g., x.A = c, or variable literal, e.g., x.A = y.A where x, y ∈ x̄.

3 Running Example
We use a food knowledge graph as our running example (Figure 1). We consider
a relational data source having tables modeled after the 2022 USDA Database
on Branded Food Products 1, and an ontology graph by extending the Food
Ontology (FOODON) [6]. Our target KG incorporates information regarding the
products, their ingredients, and their nutrient content from the relational source,
as well as relevant ontology information concerning the product ingredients and
procedures for producing the products.

The relational source (Figure 1) has four tables. The FoodProducts ta-
ble keeps the information for food products where id is the primary key and
[ingredients] is a list of ingredient names. The Ingredients table has in-
gredients information with their ids and names. There is a domain constraint

1 https://fdc.nal.usda.gov/



4 X. Zheng et al.

for the attribute [ingredients] of FoodProducts table and ingredient-name
attribute of Ingredients table: the domain for any item in the union list of
FoodProducts.ingredients must belong to Ingredients.ingredient-name,
which can be stated as:

∀p ∈ FoodProducts, dom(unnest(p.ingredients)) ⊂
dom(ingredients.ingredient-name)

(1)

The Nutrients table keeps the information of nutrients where nid is the primary
key. The NProduct table keeps the mapping information between products and
nutrients which satisfies the PK-FK constraints.
NProduct.pid = FoodProducts.id
NProduct.nid = Nutrients.nid.

The ontology graph models food production procedures, ingredients class and
plants. There are three node labels Procedure, IngredientClass and Plant and
a node property name and transitive edge Subclass_of. It models information
like “agricultural production” is a subclass of “production process”. Since the
ontology graph may contain information not relevant to food products(e.g., “pest
control process”), only a subset of the ontology dataset should be preserved in
the target knowledge graph.

4 The P2KG Mapping Language and Mapping Rules

The P2KG mapping language specifies how elements of the knowledge graph are
defined as views over one or more data sources. A mapping statement has the
following structure.
for row/node/edge/path <vars-1> in <source-query-1>

for row/node/edge/path <vars-2> in <source-query-2> ...
<knowledge-graph-construction-statement>

The mapping statement we employ uses multiple for constructs that may be
nested, followed by a <knowledge-graph-construction-statement>. The syntax
of the <knowledge-graph-construction-statement> is inspired by Cypher, which
is a standard language used for querying graph databases. To construct nodes
or edges, we use a subset of Cypher language that includes the Create, Merge,
Where, and Set clauses, among others.

In the following section, we present a series of examples that demonstrate
how P2KG mapping rules.

4.1 Mapping From Relations

There are several ways to map relations to a knowledge graph, and the choice of
mapping rules depends on the intended purpose of the knowledge graph. In this
section, we present different mapping rules, and then demonstrate how they can
be used to create different knowledge graphs using the running dataset.

Rule 1: Mapping Table Columns to KG Nodes. One way to create
nodes in the knowledge graph is by using columns from a table. The columns



P2KG 5

can be used to create nodes with a specific label in the KG, and the columns are
mapped to the node’s properties. For instance, if a user is interested in the man-
ufacturer of the products, they can create nodes with the label Manufacturer”
using the following statement:
for row r in (select manufacturer from FoodProducts)

Merge (n:Manufacturer {name:r.manufacturer})
The Manufacturer nodes have a name property that is derived from the manufacturer
column in the FoodProducts relation. The Merge clause is used to ensure that
the nodes created are distinct, i.e., there are no two Manufacturer nodes with
the same name. Nodes can also be created with multiple columns as properties.
For example, ProductName” nodes can be created from both the product-name
and manufacturer columns using the following statement:
for row r in (select product-name, manufacturer from FoodProducts)

Merge (n:ProductName {name:r.product-name, manufacturer:r.manufacturer})

Rule 2: Mapping Table Rows to KG Edges. The rows in the table can
be mapped to edges in the KG as both relational tuples and node edges depict
relationships. Each row will be mapped to an edge in the KG. For instance, one
can create Product nodes using certain columns, such as “id," as attributes and
create Manufacturer nodes using rule 1. Then, the Product nodes can be linked
to the Manufacturer nodes using the statement:
for row r in (select id, manufacturer from FoodProducts)

MATCH (p:Product {id: r.id})
MATCH (m:Manufacturer {name: r.manufacturer})

As the Product and Manufacturer nodes are pre-built, the Match clause is used
to match the corresponding nodes with the given property values. If the edge
does not exist before, it creates an edge between the two matched nodes.

Different mapping rules can be applied based on the user’s requirements.
Figure 2 shows various mappings from the same data. Different mapping rules
can generate KGs with different space costs and different source constraints,
which will be explained in detail in Section 5.

In the first example, Product, ProductName, Manufacturer and Category
nodes are created using columns id, productname, manufacturer and category
respectively using rule 1. Edges between nodes are created using rule 2. The total
number of nodes will be disc(id)+disc(product−name)+disc(manufacturer)+
disc(category) where disc(·) is the distinct count of values in the column ·. It
saves space compared to other mapping rules, however, it loses some source con-
straints which will be introduced in Section 5. A Product node can only link to
one node with a certain label, for example, it can only connect to one Product-
Name (or Manufacturer) node because idis the primary key of the relation. For
the other relationships, they are m to n mappings. For example, different Product
nodes can connect to the same ProductName node, and different ProductName
nodes can connect to the same Manufacturer node, and the same ProductName
may connect to different Manufacturer nodes. There are other ways to do the
mapping. As example 2 shows, the columns product-name and manufacturer
are used together to create the ProductName nodes. Since product-name and



6 X. Zheng et al.

{id}

{nutrient-amount, 
unit-of-measurement}

Product Product

{id, name, daily-recommended-amount}

Relation Mapping Example 1 Relation Mapping Example 2

{name, manufacturer}

{id}

{name}

Relation Mapping Example 3
Product

Nutrient

Has

Category

ProductName

Product

Category

ProductName

Product

Nutrient

ProductName
{name}

Product

Manufacturer

Product

Manufacturer

{id}

CategoryCategory

Manufacturer

Category
{name}

{name}

Fig. 2. Different mapping examples for the relational source in the running example.

manufacturer columns can determine a product, ProductName nodes have a
one-to-one mapping relationship with other types of nodes.

Rule 3: Mapping Multiple Table Columns to KG Nodes There may
be multiple columns, which could be from different tables, that refer to the same
entities and can be mapped to the same nodes. Such columns will be used to-
gether to create nodes with the same label, while nodes from different columns
can have their own associated labels. For instance, consider the ingredients
column in the FoodProdcuts table and the ingredient-name column in the
Ingredients table; these two columns can be mapped to the same nodes. The
two columns are used together to create the AllIngredient nodes, and the in-
gredients from the FoodProdcuts table have another label ProductIngredient,
and those from the Ingredients table have an Ingredient label.
for row r in (select unnest(ingredients) as in from FoodProdcuts)

MERGE (i:AllIngredient{name:r.in}) SET i:ProductIngredient
for row r in (select ingredient-name as in from Ingredients)

MERGE (i:AllIngredient{name:r.in}) SET i:Ingredient (1)

In this statement, the two for loops are used to traverse both tables and
create nodes for the ingredients. The first loop handles the ingredients column
in the FoodProdcuts table and creates nodes with the label ProductIngredient.
The second loop handles the ingredient-name column in the Ingredients table
and creates nodes with the label Ingredient. Both loops create nodes with the
label AllIngredient by using the MERGE clause to either match an existing node
with the same name or create a new one with the given name. The SET clause
sets the appropriate label for each node created by the two loops.

Mapping From Query Results More complex SQL queries including joins
between tables can be applied before applying any mapping rules introduced
above. The SQL queries is inside the <source-query> syntax, then any map-
ping rule introduced before can be applied on the query result. For example, in
Figure 2 Example 3, the Nutrient and Product nodes come from information
in the Nutrient and FoodProducts tables respectively, and the edges between
them are mapped from the NProduct table. To create the KG, one can write a
query to join the three tables and then apply the mapping rules:
for row r in (select p.id as pid, n.nid as nid, name as name,
daily-recommended-amount, nutrient-amount, unit-of-measurement
from Nutrient n, FoodProdcuts p, NProduct np



P2KG 7

IngredientClass

{name:"seafood"}

{name:"animal products"}

{name:"garlic"} ...

Subclass_of

Produced_by

Plant

Proceduer
{name:"agricultural production"}

{name:"allium"}

...
{name:"meat"}

...

Plant

Sub
cla

ss
_o

f

Plant
{name:"onions"}

Proceduer

Produced_by

IngredientClass

Animal Products Processing

Fig. 3. Mapping example for the graph source in the running example.

where n.nid = np.nid, p.id = np.pid)
MERGE (p:Product{id:r.pid})
MERGE (n:Nutrient{id:r.nid, name:r.name, daily-recommended-amount:

r.daily-recommended-amount})
MERGE (p) - [:Has{nutrient-amount:r.nutrient-amount,
unit-of-measurement:r.unit-of-measurement}] -> (n)

4.2 Mapping From Graph Source

When mapping from the graph source to the KG, the <source-query>, which
can also be written in Cypher, is used to match the part of the graph data that
the user wants to keep in the target KG. Users can also specify some customized
rules using Cypher SET clauses to create new edges. Figure 3 shows an example
of mapping the ontology graph to the target KG for the running dataset. As
stated in the dataset section, the production procedures ontology graph is large
and contains unrelated information about food production, and users are only
interested in the relevant information about "agricultural production" or "ani-
mal products processing." This can be achieved by the following statement:
for edge(n, r, m) in (MATCH (a:Procedure WHERE a.name in [’agricultural
production’, ’animal products processing’])-[:Subclass_of*]->(n),
(n)-[r:subClassOf]-(m) return (n, r, m))

MERGE (n)-[r]-(m)
Besides, each Plant node should be connected to the agricultural production
Procedure node, which can be achieved by the following statement:
for node n in (MATCH (n:Plant) return n)

MATCH (m:Procedure{name:’agricultural production’})
MERGE (n)-[:Produced_by]->m

4.3 Mapping From Multiple Sources

Data from different sources can be linked based on specific rules. For example, in
the running example (as shown in Figure 4), a product from the FoodProducts
table can be linked to a Plant node created from the ontology graph if the prod-
uct contains an ingredient from the plant. Similarly, an Ingredient node from



8 X. Zheng et al.

the relations can be linked to an IngredientClass node from the ingredient class
ontology using the subclass_of edge, if that ingredient is a sub-class of the in-
gredient class. To create the KG, mapping rules are applied to each single source
separately. Then, the cross-source relationships are established by executing a
Cypher query in the target KG as the <source-query>,
for nodes (n, m) in KG:(MATCH (n:Product)–>(x:Ingredient), (m:Plant)
where x.name=m.name return n, m)

MERGE n-[:Derived_from]->m
for nodes (n, m) in KG:(MATCH (n:Ingredient), (x:IngredientClass)
-[:Subclass_of]->(m:IngredientClass) return n, m)

MERGE n-[:Subclass_of]->m

{name:"sweetners"}{name:"cane sugar"}
Ingredient

{name:"garlic"}
Ingredient

{name:"garlic"}
IngredientClassSubclass_of 

Product

Plant

Derived_fromHa
s

Product

Ha
s

Fig. 4. Mapping examples for multiple source in the running example.

5 Constraints

Consistency checking is important to ensure that a knowledge graph is reliable
and accurate. To achieve this, we define three types of constraints. The first
type is source constraints, which refer to the constraints specified by the
data sources used to build the knowledge graph. The target KG must comply
with these constraints to ensure consistency. The second type is general rules,
rules that a good knowledge graph should follow. These rules ensure that the
knowledge graph is structured in a coherent and meaningful way. The third
type is user-specified constraints, which are constraints that are specified by
the user to ensure that the knowledge graph meets their specific requirements.
To check if a knowledge graph complies with these constraints, we translate
these different constraints to our extended graph dependencies which will be
used for consistency checking. By checking if the knowledge graph meets these
constraints, we can evaluate if it is consistent and of good quality.

5.1 Source Constraints.

Constraints from the data sources can be kept in the target KG based on what
mapping rules are applied. We mainly consider relational constraints and show
how to translate them on the source relation to the graph functional dependency
on the KG given the mapping rules applied.
Primary Key constraint In relational databases, a primary key constraint is
a constraint that ensures that each row in a table has a unique identifier or key
value. Figure 5(a)-(c) illustrates the primary key constraint on KG.



P2KG 9

ProductNameProduct

ProductName{name}Product{id}

(b) primary key constraint
pattern 2

(a) primary key constraint
pattern 1

Product Product

ProductIngredient

(e) domain constraint(d) functional constraint pattern

Category

(c) primary key constraint
pattern 3

ProductName Category

ProductName {productName, 
manufacturer}

Product

Product{id} Nutrient{id}Has {nutrient-amount, 
unit-of-measurement}

Has 

Fig. 5. Source constraints example.

For the FoodProducts table, the column id is a primary key. In Figure 5(a),
the Product nodes are created from the columns from this table including id
column, thus we have the following graph functional dependency

Qa[x, y], X1 → Y1

where Qa[x, y] is the structure shown in Figure 5(a), X1 is x.id = y.id and Y1

is x.A = y.A where A is any node property of Product. In Figure 5(b), Product
nodes are created from id column and the product-name column is used to
create ProductName nodes and the edges are created between them, then in the
KG, we have the GFD as

Qb[x, y], X2 → Y2

where Qb[x, y] is the structure shown in Figure 5(b), X2 is x.id = y.id and Y2 is
x1.name = y1.name. The primary key can be multiple columns, for example, in
the NProduct table, the pid, nid together serves as primary key, in Figure 5(c),
Product nodes and Nutrient nodes are created from these two columns respec-
tively and edges created between them by applying mapping rule 2 and the other
two columns serve as edge properties. For this KG, we have the following GFD
to express the primary key constraint:

Qc[x, x1, y, y1, r, r1], X3 → Y3

where Qc[x, x1, y, y1, r, r1] is the structure in (c), X3 is x.id = y.id, x1.id = y1.id
and Y3 is r.nutrient-amount = r1.nutrient-amount, r.unit-of -measurement =
r1.unit-of -measurement.
Functional Dependencies A functional dependency (FD) on relations states
that the value of a set of attributes determines the value of another set of
attributes. A FD of relation with schema R(U) is an expression of the form
R : X → Y where X ⊆ U and Y ⊆ U .

For example, in the FoodProducts table, the productname together with
manufacturer columns determine the category of the product. In Figure 5 (d),
the Product nodes are created from productname and manufacturer, and they



10 X. Zheng et al.

are connected to the Category nodes. We have the following GFD equivalent to
the relational FD:

Qd[x, x1, y, y1], X4 → Y4

where Qd is the topological structure in (d), X4 is x.productName = y.productName,
x.manufaturer = y.manufacturer and Y4 is x1.category = y1.category.
Inclusion Dependencies An inclusion dependency (IND) on pairs of relations
of schemas R(U) and S(V ) (with R and S not necessarily distinct) is an ex-
pression of the form R[X] ⊆ S[Y ] where X ⊆ U and Y ⊆ V . There is an
inclusion dependency between FoodProducts and Ingredients table as stated
in 1. Suppose that these two columns are mapped to the target KG using map-
ping statement (1), then we have the following GFD: Qe[x], X5 → Y5 where
Qe[x] is shown in Figure (e) which matches any node with ProductIngredient
label, X5 is ∅ and Y5 is x.label = Ingredient.

5.2 General Rule Constrains

To ensure a high-quality knowledge graph, there are several general constraints
that should be satisfied. These constraints are illustrated in Figure 6.

– The graph should not contain any isolated nodes, as shown in Figure 6 (a).
– All nodes created from the ontology data source, except for the root nodes,

should have a subClassOf parent, as shown in Figure 6 (b).
– The graph should display edge-label acyclicity i.e., if you just consider a sin-

gle edge label, the graph will be acyclic (symmetric edge labels are implicit),
as shown in Figure 6 (c).

To provide a uniform way to express different types of constraints, we propose
an extension to the graph functional dependency called graph dependency (GD).
In this extension, we support node/edge existence statements, allowing us to
express constraints on the existence of nodes and edges in the knowledge graph.
As stated in Section 2, in GFD, X and Y are two sets of literals of x̄, and a
literal of x̄ can either be a constant literal or variable literal. We extended the
form of X and Y . For X, it is extended to support the existence statement
which says that there exists a node/edge in the knowledge graph with certain
properties value or labels which can be constant or related to x̄. For example,
X can be ∃node n ∈ KG,n.label = L, n.A = c, n.A′ = x.A′ where x ∈ x̄. For
Y , it is extended to support connection between nodes defined in X and nodes
in x̄, for example, y can be n → x which states that there is an edge from n
(node defined in X) to x. With extended GDs, the general constraints can be
expressed as follows.

– Qa[x], X1 → Y1, X1 is ∃node y ∈ KG, Y1 is x -> y.
– Qb[x], X2 → Y2, X2 is ∃node y ∈ KG, y.label = x.label, Y2 is x-[:Subclass_of]->y.
– Qc[x], X3 → Y3 X3 = ∅, Y3 = false.

where Qa, Qb, Qc match the topological structure depicted in black color in Fig-
ure 6 (a) - (c) respectively.



P2KG 11

_ y.label=x.label
x.label in [Plant, IngredientClass, Proceduer]

(b) General constraint 2

x.label!=Root

Subclass_of

(c) General constraint 3(a) General constraint 1

...Subclass_of *

_

...Subclass_of *

Fig. 6. General constraints example.

5.3 Constraints from users

Users can specify constraints on the knowledge graph directly using graph depen-
dency expressions to check if the created graph satisfy their specific requirements.
We show some examples in Figure 7, and explain them as follows:
– Any Plant node should be connected to the Procedure node with name

“Agricultural Process”.
– A Product node which has “garlic” as ingredient should be connected with

the Plant node whose name is garlic by the Derived_from edge.
– If a product has ingredient which is a subclass of meat or seafood, then the

product should be non-vegetarian.

Users can specify these constraints in the extended GD expressions as follows:
– Qa[x, y], X1 → Y1, X1 is ∃edge r ∈ KG, r.label = Produced_by, Y1 is

(x)-[r]->(y);
– Qb[x, y], X2 → Y2, X2 is ∃edge r ∈ KG, r.label = Derived_from, Y2 is

(x)-[r]->(y);
– Qc[x], X3 → Y3, X3 = ∅, Y3 is x.type=‘non-vegetarian’.

where Qa, Qb, Qc match the topological structure depicted in black color in Fig-
ure 7 (a) - (c) respectively.

Derived_from

Has

(b) Example 2 pattern and consequence

Ingredient
{name:"garlic"}

(a) Example 1 pattern and consequence

Produced_by

Plant Procedure
{name:"Agricultural Process"} Product

Plant
{name:"garlic"} Has

(c) Example 3 pattern and consequence

Product

...
Ingredient IngredientClass

{name in ["meat", "seafood"]}

Subclass_of *

x.type = `non-vegetarian'

Fig. 7. User-specified constraints example.

5.4 Evaluation of constraints

There is prior work such as [8] which proposes algorithm to evaluate GFDs on
property graph, and the prior algorithm can be directly introduced to evaluate
the GFDs derived from the source constraints. However, we extended the original
GFDs to graph dependencies (GD) to support more user-specified constraints
and general rule constraints, and a new algorithm should be designed to evaluate
the extended GDs on property graph which we leave as future work.



12 X. Zheng et al.

6 Conclusion and Future Work

In this paper, we have presented mapping rules for efficiently mapping data
from different sources, namely relational and graph data, to a target knowledge
graph. We have also defined three types of constraints, derived from source data,
user specifications, and common rules of a good knowledge graph, and translated
them into unified expressions in the form of GFDs and extended GDs to evaluate
the quality, correctness, and consistency of an existing knowledge graph.

Future work includes developing an algorithm to efficiently evaluate the GDs
in large-scale knowledge graphs and automating the process of generating equiv-
alent GFDs based on the constraints on the data sources and mapping rules
used to create the KG. These contributions will facilitate the development and
maintenance of high-quality knowledge graphs.

References

1. Alexe, B., Hernández, M., Popa, L., Tan, W.C.: Mapmerge: correlating independent
schema mappings. The VLDB journal 21, 191–211 (2012)

2. Angles, R., Thakkar, H., Tomaszuk, D.: Mapping rdf databases to property graph
databases. IEEE Access 8, 86091–86110 (2020)

3. Asprino, L., Daga, E., Gangemi, A., Mulholland, P.: Knowledge graph construction
with a façade: a unified method to access heterogeneous data sources on the web.
ACM Transactions on Internet Technology 23(1), 1–31 (2023)

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R.: Ontologies and databases: The DL-Lite approach. Springer
(2009)

5. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In: Proceedings of the 20th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. pp. 601–610 (2014)

6. Dooley, D.M., Griffiths, E.J., Gosal, G.S., Buttigieg, P.L., Hoehndorf, R., Lange,
M.C., Schriml, L.M., Brinkman, F.S., Hsiao, W.W.: Foodon: a harmonized food
ontology to increase global food traceability, quality control and data integration.
npj Science of Food 2(1), 23 (2018)

7. Fan, W., Hu, C., Liu, X., Lu, P.: Discovering graph functional dependencies. ACM
Transactions on Database Systems (TODS) 45(3), 1–42 (2020)

8. Fan, W., Wu, Y., Xu, J.: Functional dependencies for graphs. In: Proceedings of
the 2016 international conference on management of data. pp. 1843–1857 (2016)

9. Mazilu, L., Paton, N.W., Fernandes, A.A., Koehler, M.: Dynamap: Schema map-
ping generation in the wild. In: Proceedings of the 31st International Conference
on Scientific and Statistical Database Management. pp. 37–48 (2019)

10. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014)




