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Systematic Investigation of Host-Pathogen Interactions Identifies Novel Pan-Viral Gene 

and Drug Targets for Influenza A Viruses and SARS-CoV-2 

Kelsey Haas 

 

ABSTRACT 

Influenza A Virus (IAV) is a recurring infectious respiratory virus that causes seasonal infections 

and global pandemics. With increasing antiviral drug resistance and limited yearly vaccine 

efficacy, there is a need for new therapeutic treatments. Host-directed therapies offer an 

alternative treatment strategy, however development of these therapies requires identifying host 

proteins and signaling pathways that are targeted and rewired by IAV and that are essential for 

infection. Here, we employed quantitative proteomics, functional genomics and pharmacological 

screening to systematically identify host factors for three clinical IAV strains (pH1N1, H3N2, 

H5N1) in three cell types relevant to infection (A549, NHBE, THP-1). We identified 332 IAV-

human protein-protein interactions (PPIs) between 214 human proteins and 12 IAV proteins, 

and 13 IAV-modulated kinase pathways including PRKDC and MAPK signaling. Exome 

sequencing data of patients with benign or severe influenza disease revealed that predicted 

loss-of-function genes associated with severe influenza disease are significantly changing in 

protein abundance (15 proteins) and phosphorylation status (25 proteins and 54 

phosphorylation sites) during IAV infection, and include variants mapping back to five PPI 

factors. This analysis highlighted interferon alpha/beta signaling and TLR signaling as potential 

molecular drivers of disease severity. Functional genomic screening of our identified PPI and 

signaling targets uncovered 54 human genes that regulate IAV infection. Given that IAV co-

circulates seasonally with severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative 

agent of the COVID-19 pandemic, we screened these 54 genes against SARS-CoV-2 infection 

and identified two human genes (COPB1, AHNAK) that act as pro-viral factors for both IAV and 

SARS-CoV-2 infection. To discover pan-IAV and pan-respiratory virus host-directed therapies, 
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we screened a total of 37 pre-clinical or FDA-approved compounds against pH1N1, H3N2 and 

H5N1 IAV infection. 16 compounds suppressed replication of at least one IAV strain, with seven 

compounds showing pan-IAV antiviral activity. Five compounds (Dinaciclib, MAPK13-IN-1, 

Gilteritinib, Pictilisib, MK-2206) targeting five kinase pathways (CDK2, MAPK13 (p38δ), 

FLT3/AXL, PI3KCA/PI3KCD, pan-AKT) showed antiviral activity against infection by multiple 

strains of IAV and SARS-CoV-2. These represent putative targets for pan-respiratory virus host-

directed therapies. 
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CHAPTER 1 

Introduction 
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Influenza A Virus (IAV) is an enveloped, negative-sense single-stranded RNA virus that causes 

mild to severe respiratory disease colloquially called “the flu”. While mild to moderate symptoms 

of IAV infection commonly include cough, runny nose, fatigue and fever, severe disease can 

result in hospitalization and death. IAV circulates as yearly seasonal infections, and is one of a 

number of pathogens with pandemic potential. Notable past flu pandemics include the 1918 

Spanish flu pandemic and the 2009 swine flu pandemic. These pandemic IAV strains infected 

on average >10% of the world population during circulation and resulted in mortality rates 

ranging 0.01% - 3% (Dawood et al., 2012; Johnson and Mueller, 2002; Kelly et al., 2011; 

Taubenberger and Morens, 2006). While generally associated with lower mortality rates, 

seasonal IAV strains still substantially impact the economy and public health. In the U.S., the 

economic burden from seasonal IAV is estimated at an average annual total of $11.2 billion 

(Putri et al., 2018), with 3-11% of the U.S. population experiencing flu symptoms each season 

depending on the circulating strains (Tokars et al., 2018). The annual burden and potential for 

future global pandemics highlight a continued need for developing new therapeutics that are 

effective against multiple IAV strains. 

 

IAV strains are subtyped based on two surface proteins embedded in the virus envelope that 

are also the primary antigens for immune recognition: hemagglutinin (HA) and neuraminidase 

(NA). Currently, 18 different HA subtypes (H1-H18) and 11 different NA subtypes (N1-N11) 

have been characterized, leading to diverse subtype combinations (Centers for Disease Control 

and Prevention, National Center for Immunization and Respiratory Diseases (NCIRD), 2021a). 

This diversity can be explained in part by antigenic drift due to IAV’s high basal mutation rate 

that leads to small genetic changes, and antigenic shift that leads to major genetic changes 

(Taubenberger and Kash, 2010). Antigenic shift is facilitated by IAV’s segmented genome that 

allows for the swapping of whole gene segments during co-infection, and IAV’s ability to infect 

multiple host reservoirs including humans, birds, waterfowl and pigs (Medina and García-Sastre, 
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2011; Taubenberger and Kash, 2010). Due to antigenic drift and shift and zoonotic 

transmission, distinct strains of IAV novel to the human population regularly emerge that have 

altered transmissibility, pathogenicity and pandemic potential (Medina and García-Sastre, 

2011). 

 

Given the genetic diversity of IAV, we focused our study on three different clinical IAV isolates 

that directly impact human health: Influenza A/California/04/2009 H1N1 (pH1N1); Influenza 

A/Wyoming/03/2003 H3N2 (H3N2); and Influenza A/Vietnam/1203/2004 H5N1 (H5N1). pH1N1 

is a pandemic swine-origin strain that is the causative agent of the 2009 swine flu pandemic. 

Although pH1N1 is highly transmissible, it has a low mortality rate. In the first year of pH1N1 

circulation, it is estimated that 11-21% of the world’s population was infected (Kelly et al., 2011) 

and over 200,000 deaths resulted world-wide (Dawood et al., 2012). H3N2 is a seasonal-

circulating, human-adapted strain from the 2003-2004 flu season that caused increased disease 

severity and has average transmissibility and mortality compared to previous flu seasons 

(Centers for Disease Control and Prevention (CDC), 2004). Together, pH1N1 and H3N2 

subtypes are the predominant IAV strains that circulate each flu season and cause hundreds of 

thousands of yearly infections, illnesses, hospitalizations and deaths. pH1N1 and H3N2 

subtypes are also targeted each year by vaccine. In comparison, H5N1 is an avian strain that 

predominantly infects poultry and infrequently infects humans (Tiensin et al., 2005). The largest 

known H5N1 outbreak in humans occurred during the 2003-2004 flu season among individuals 

with prolonged direct contact with infected birds (Webster et al., 2005). While human-to-human 

transmission of H5N1 is rare, H5N1 infection is associated with severe respiratory disease and 

a >50% mortality rate (Webster et al., 2005). Previous studies showed a handful of mutations in 

H5N1 impart airborne transmissibility in ferrets (Herfst et al., 2012; Imai et al., 2012), suggesting 

H5N1 could mutate to gain transmissibility between mammals and represent a future risk for 

pandemic influenza among humans. Accordingly, H5N1 is considered a potential pandemic 
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strain by the World Health Organization (WHO) global influenza pandemic preparedness plan. 

Collectively, these three IAV strains represent diverse virological properties of IAV, including 

different subtypes (i.e. H1N1, H3N2, and H5N1), recurrence (i.e. pandemic and seasonal), 

origin species (i.e. swine and avian), transmissibility and pathogenicity. 

 

The inherent genetic diversity in IAV also poses significant challenges to preventative care and 

antiviral treatments. Vaccines are developed and administered each year, but have limited and 

variable effectiveness (Centers for Disease Control and Prevention, National Center for 

Immunization and Respiratory Diseases (NCIRD), 2021b). Currently, there are three classes of 

approved antiviral therapeutics that target three IAV proteins: NA, ion channel matrix protein M2 

and polymerase subunit PA. However, increasing levels of drug resistant viral populations limit 

their efficacy, restricting use of M2-targeting and NA-targeting drug classes in antiviral treatment 

(Hussain et al., 2017). This is particularly observed for 2009 pH1N1 and pH1N1-like seasonal 

strains (Hussain et al., 2017). Recently developed PA-targeting drugs offer promising efficacy 

as next-generation antiviral treatments, however resistant viral populations are emerging and 

continued surveillance for changes in drug susceptibility will be required to determine long-term 

effectiveness (Goldhill et al., 2018; Gubareva et al., 2019; Omoto et al., 2018; Takashita et al., 

2019). Host-directed therapies (HDT) offer an alternative approach by targeting host factors 

essential to virus replication rather than directly engaging viral-encoded factors. Thus, HDT 

largely side-steps the challenge of developed drug resistance and has the potential for pan-viral 

efficacy, as many diverse viruses utilize the same host pathways (Kaufmann et al., 2018; Kumar 

et al., 2020; Zumla et al., 2016). Proteomic approaches that identify virus-host protein-protein 

interactions (PPIs) and virus-induced changes in host signaling pathways can pinpoint key 

protein linchpins essential to virus propagation (Batra et al., 2018; Bouhaddou et al., 2020; Diep 

et al., 2019; Eckhardt et al., 2020; Gordon et al., 2020a, 2020b; Heaton et al., 2016; Li et al., 

2019; Lin et al., 2013; Lum and Cristea, 2016; Ramage et al., 2015; Shah et al., 2018; Simon et 
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al., 2015; Tripathi et al., 2015; Wang et al., 2017; Watanabe et al., 2014). Global IAV-human 

PPI networks previously generated with lab-adapted IAV strains in immortalized cell lines and in 

yeast offer good foundations for identifying essential linchpins for IAV infection (Heaton et al., 

2016; Shapira et al., 2009; Tripathi et al., 2015; Wang et al., 2017; Watanabe et al., 2014), 

however, the overlap between these studies is limited, and most studies do not use 

physiological target cell types of IAV infection. In addition, combining proteomic approaches with 

other systems approaches such as functional genomics and chemoinformatics can yield 

actionable HDT targets (Eckhardt et al., 2020; Law et al., 2013). We and others have 

demonstrated the utility of a cross-discipline integrative approach for generating comprehensive 

models of host reprogramming by a variety of other viral pathogens, and have used these 

models to identify promising drug candidates (Batra et al., 2018; Bojkova et al., 2020; 

Bouhaddou et al., 2020; Diep et al., 2019; Gordon et al., 2020a, 2020b; Hekman et al., 2020). 

 

IAV co-circulates with other respiratory viruses, including severe acute respiratory coronavirus 2 

(SARS-CoV-2), the causative agent of the COVID-19 pandemic. At the time of this report, the 

COVID-19 pandemic continues to be a global human health emergency. Global vaccination 

against SARS-CoV-2 is lagging in a majority of countries, notably in but not exclusive to those 

that have fewer resources and infrastructure to obtain and deliver vaccines (Commissioners of 

the Lancet COVID-19 Commission., 2021; Mathieu et al., 2021). In addition, an increasing 

number of more pathogenic and transmissible SARS-CoV-2 variants of concern are becoming 

dominant and continue to surge (Cele et al., 2021; Davies et al., 2021; Mlcochova et al., 2021; 

Resende et al., 2021; Tegally et al., 2021). It is predicted that SARS-CoV-2 will be endemic, 

similar to IAV (Phillips, 2021). Yearly co-circulation of IAV with SARS-CoV-2 may present 

significant future healthcare challenges, as IAV and SARS-CoV-2 present similar respiratory 

disease symptoms. Currently, infection by either virus is treated separately by pharmacological 

or antibody-based antiviral therapeutics approved for clinical use against either SARS-CoV-2 or 
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IAV. Identifying and targeting human proteins essential for infection by both viruses could 

provide pan-respiratory virus host-directed treatments. 

 

Here, we employed a first-in-class integrative systems biology approach to identify human 

proteins essential for replication by two respiratory viruses: IAV and SARS-CoV-2 (Figure 1.1). 

We leveraged two orthogonal proteomics approaches, affinity purification-mass spectrometry 

(AP-MS) (Chapter 2) and global protein abundance and phosphorylation profiling (Chapter 3), 

to catalog IAV-human protein-protein interaction and signaling networks. We systematically 

identified 214 IAV-human PPIs of three clinical IAV strains in three cell types that represent 

primary and secondary targets of infection (Chapter 2). We also profiled 13 human kinases that 

are predicted to be modulated in activity during IAV infection (Chapter 3). Exome sequencing 

data of IAV-infected patients identified a number of gene variants in TRIF(TICAM1)-mediated 

TLR4, interferon alpha/beta, and ERK/MAPK signaling associated with severe influenza disease 

(Chapter 4). The intersection between severe influenza disease gene variants and our 

proteomics data revealed five PPIs with predicted loss-of-function variants correlated with 

severe influenza disease, and identified a statistically enriched set of host proteins that are 

downregulated in protein abundance and differentially regulated by phosphorylation during IAV 

infection. The combination of patient data with ex vivo proteomic data provided insight into 

potential genetic and molecular drivers of influenza disease severity. In addition, we performed 

functional genomic screening of the host targets identified in our proteomic data and identified 

54 human genes that regulate IAV infection in A549 cells (Chapter 5). These functionally 

important host factors were then tested against SARS-CoV-2 infection to identify human 

proteins that can disrupt infection by both respiratory viruses. We found two human genes, 

ANAHK and COPB1, that were essential for infection by both IAV and SARS-CoV-2. Lastly, we 

endeavored to identify host-directed therapies that could be repurposed for treatment against 

IAV and SARS-CoV-2 (Chapter 6). We identified unique compounds that target IAV proteomic 
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nodes and leveraged previously published SARS-CoV-2 phosphorylation data (Bouhaddou et 

al., 2020) to identify drugs with potential dual activity against both respiratory viruses. In total, 37 

unique compounds were screened against pH1N1, H3N2 and H5N1 IAV. Sixteen compounds 

suppressed replication of at least one strain of IAV, with seven compounds suppressing 

replication of all three strains. Five of these compounds show antiviral activity against multiple 

strains of IAV and SARS-CoV-2. Collectively, these represent potential gene targets and 

compounds for pan-respiratory virus HDT. 
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FIGURE AND LEGEND 

 

Figure 1.1 A systems biology platform functionally characterizes pan-IAV-human protein 
interactions and signaling networks. Using three clinical IAV strains with differing recurrence, 
origin species, transmissibility and mortality rate, and three human cell types from different 
tissues targeted during IAV infection, we employed a two-pronged global proteomics approach 
to characterize IAV-human interactions. First, in protein-protein interaction (PPI) mapping, 
affinity-tagged IAV proteins were expressed in human cells and subjected to affinity purification-
mass spectrometry (AP-MS) to generate an IAV-human interactome. Second, in global 
proteomics profiling, changes in global protein abundance (AB) and phosphorylation (PH) were 
quantified by mass spectrometry. Computational analyses identified human kinases with 
predicted increased or decreased activity during IAV infection. Exome sequencing data of 
patients with benign or severe influenza disease revealed predicted loss-of-function genes 
associated with severe influenza disease that significantly change in PPI, AB and PH data as 
potential molecular drivers of disease severity. Human proteins from PPI and PH approaches 
were functionally validated by siRNA knockdown to identify pro-viral and antiviral factors of IAV 
infection. These factors were then tested against SARS-CoV-2 infection to identify genes that 
regulate both IAV and SARS-CoV-2. Finally, pre-clinical, clinical and FDA-approved compounds 
were selected to target functional IAV PPI and PH factors, and screened against IAV infection. 
We also mined orthologous SARS-CoV-2 PH data to identify compounds that have antiviral 
activity against SARS-CoV-2 (Bouhaddou et al., 2020) and target pathways identified in IAV PH 
data (this study). These compounds were screened against IAV infection. Gene knockdowns 
and compounds that suppress both IAV and SARS-CoV-2 infection represent putative pan-
respiratory virus gene targets and compounds. 
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CHAPTER 2 

Generating a Multi-Dimensional IAV-Human Interactome 
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AP-MS Identifies pH1N1, H3N2, and H5N1 IAV-Human PPIs 

We employed a two-pronged, unbiased, proteomics-based systems biology approach to 

characterize pan-IAV-human PPIs and identify putative targets for functional genetic and 

pharmacological testing (Figure 1.1). First, we mapped PPI networks for pH1N1, H3N2 and 

H5N1, whereby affinity-tagged IAV proteins were expressed in human cells and subjected to 

unbiased affinity purification-mass spectrometry (AP-MS) to generate a high-confidence IAV-

human interactome. It is known that PPIs can be context-specific and dependent on the cellular 

environment (Swaney et al., 2021). To capture these cell-type specific interactions, we 

performed AP-MS in A549 lung epithelial cells and primary normal human bronchial epithelial 

(NHBE) cells which are primary targets of IAV infection, and THP-1 human monocyte cells 

differentiated into a macrophage-like state (Chanput et al., 2014; Daigneault et al., 2010) which 

are a secondary target of IAV infection (Figure 1.1). 

 

We codon optimized, cloned and Strep-tagged 13 virus proteins from the eight RNA segments 

of the IAV genome (Figure 2.1A). Collectively, these 13 proteins make up the consensus IAV 

proteome, and include: virus surface proteins (HA, NA) and a membrane-embedded ion channel 

(M2) involved in virus fusion and entry (HA, M2) and virus budding and release (M2, NA); an 

RNA-binding protein involved in viral genome trafficking (NP); proteins involved in viral genome 

transcription and replication (trimeric RNA-dependent RNA polymerase subunits PA, PB1 and 

PB2); proteins that facilitate viral RNA export from the nucleus (NEP, M1) and encapsidation of 

viral RNA during virus assembly (M1); proteins that modulate host immune response, host 

shutoff, virus pathogenicity and virulence (NS1, PA-X, PB1-F2); and a protein needed for 

efficient replication but whose cellular function is not well-characterized (N40) (Dou et al., 2018; 

Klemm et al., 2018; Wise et al., 2009). Nine of these 13 proteins are structural and packaged 

into virus particles, while the remaining four are predominantly involved in modulating host 

response (Figure S2.1A). All 13 proteins are expressed by all three IAV strains (i.e. pH1N1, 
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H3N2, and H5N1), except PB1-F2 which is not expressed by pH1N1 as it contains a premature 

stop codon in the pH1N1 viral genome (Garten et al., 2009; Wang and Palese, 2009). All strain-

specific IAV proteins were cloned into a doxycycline-inducible mammalian expression vector 

that contains a 2xStrep-tag fused to either the C-terminus or N-terminus, except for HA which 

contains an internal 2xStrep-tag (Figure 2.1A, Table S2.1). C-terminal 2xStrep-tagged GFP 

and empty vector constructs were cloned and included as experiment controls. 

 

Stable cell lines individually expressing Strep-tagged IAV proteins and controls were generated 

by lentiviral transduction in A549, NHBE and THP-1 cells (Figure 2.1B, Methods). THP-1 cells 

were subsequently treated with Phorbol-12-myristate-13-acetate (PMA) to induce differentiation 

into a macrophage-like state (Daigneault et al., 2010) (Methods). Following doxycycline-

induced expression of Strep-tagged IAV proteins and controls, cells were lysed, Strep-tagged 

proteins were affinity purified and digested, and the resulting peptides separated and analyzed 

by LC-MS/MS to identify co-purified human proteins (Figure 2.1B). Nine IAV proteins from all 

three strains were successfully expressed in all three cell types, and all 13 proteins were 

expressed for at least one strain in at least one cell type, totaling 677 AP-MS samples collected 

across three IAV strains from three cell types (Figure S2.1B, Figure S2.2). Raw files were 

searched with MaxQuant (Cox and Mann, 2008), and IAV-human PPIs were scored by the 

Mass Spectrometry Interaction Statistics (MiST) algorithm (Jäger et al., 2011) that assigns 

quantitative interaction confidence scores based on specificity, abundance and reproducibility 

(Table S2.1). Using stringent MiST scoring and replicate cutoffs (Methods), we identified 332 

total high-confidence PPIs across all strains and human cell types that mapped to 214 human 

prey proteins (Table S2.1). In comparison to previous studies that characterized IAV-human PPI 

networks (Heaton et al., 2016; Shapira et al., 2009; Tripathi et al., 2015; Wang et al., 2017; 

Watanabe et al., 2014), we observed higher similarity by odds ratio to studies that used AP-MS 

with exogenously expressed IAV proteins compared to yeast two-hybrid (Figure S2.1C). In 
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addition, this analysis indicates that there is a moderate degree of overlap between our dataset 

and others. For example, our study has the highest odds ratio with the Tripathi et al PPI network 

(Figure S2.1C), and 33 prey proteins are captured in both networks. In total, there are 44 

human prey proteins identified in our study that were not found by any of the previous studies. 

These previous studies characterized one IAV strain (e.g. WSN H1N1 or PR8 H1N1) in one 

workhorse cell line (e.g. HEK293 or A549) permissive to IAV infection. Our study uniquely 

presents a stringently scored, high-confidence dataset that provides strain-specific and pan-IAV 

PPIs from three clinical isolate strains in three cell types relevant for IAV infection. 

 

Collapsing across virus strains to identify unique PPIs by cell type, we observed that using 

multiple cell types substantially expanded the number of PPIs captured to give a comprehensive 

snapshot of IAV-human interactions (Figure 2.1C). 29/257 PPIs are shared in at least two of the 

three cell types. Collapsing across cell types to identify unique PPIs by virus strain, we identified 

77 PPIs with pH1N1 among 8 baits, 77 PPIs with H3N2 among 10 baits and 142 PPIs with 

H5N1 among 11 baits (Figure 2.1D). For all three virus strains, NA was expressed at low levels 

(Figure S2.2), and therefore has no protein interactions that passed the scoring thresholds. 

 

Comparing shared PPIs (expressed as Jaccard Index) against protein sequence similarity, we 

found a positive correlation (Figure 2.1E). We observed that homologous baits and some non-

homologous baits with high sequence similarity share PPIs, highlighting protein sequence as a 

driving factor in determining these interactions (Figure S2.1D-E). This trend was also observed 

when comparing homologous proteins of related coronavirus species (Gordon et al., 2020a). 

For example, among non-homologous IAV baits, PB1 and N40 have high sequence similarity 

and share four unique PPIs (36.4% of total unique PB1 PPIs and 50% of total unique N40 

PPIs). N40 is a N-terminal truncation product alternatively translated from the RNA segment 

encoding PB1, missing only 39 amino acids of PB1 (Wise et al., 2009). The functional 
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significance of overlapping PPIs with PB1 is unknown as N40’s function is less understood. 

Among homologous baits, IAV NP has the highest number of shared PPIs between the three 

strains (Figure S2.1F). pH1N1 NP shares 18 PPIs (85.7% of its total PPIs), H3N2 shares 19 

PPIs (95% of its total PPIs), and H5N1 shares 17 PPIs (56.6% of its total PPIs), potentially due 

to high sequence conservation of NP and NP’s conserved role across strains in viral RNA 

binding, transcription, trafficking and packaging (Kukol and Hughes, 2014; Xu et al., 2011). 

Interestingly, overlap between both homologous and non-homologous baits is increased when 

comparing biological pathways among the PPIs for each bait (Figure S2.1G). This suggests 

that while baits of the different virus strains may target different specific human proteins, they 

co-opt similar processes or pathways. To expand on this, we performed gene ontology (GO) 

enrichment analysis to identify enriched molecular functions among human protein interactors 

for each bait across all strains and cell types (Figure 2.1F, Table S2.1). PPI enrichments 

include terms consistent with known biology of IAV proteins. For example, NS1 interactors are 

enriched for double-stranded RNA (dsRNA) binding proteins, consistent with reports that NS1 

abrogates cellular dsRNA sensor signaling pathways through its ability to bind dsRNA (Lu et al., 

1995; Min and Krug, 2006). NEP interactors are enriched for actin filament binding, which may 

expand on NEP’s known role in nuclear export of viral RNA (O’Neill et al., 1998) and could 

indicate a novel function for NEP in post-export association with and trafficking of viral RNA 

along cytoskeleton filaments (Amorim et al., 2011). Enrichment terms also characterize IAV 

proteins of unknown function, such as heat shock protein binding and chaperone binding for 

N40, which may indicate a novel role for N40 in protein translation and/or stability. PB2 and HA 

have no significant enrichments that passed our thresholds, due to the small number of PPIs 

(Figure 2.1D, Table S2.1). However, M1, which also has a small number of PPIs, shows 

significant enrichment in PPIs with translational elongation factor activity. This is unexpected for 

M1, whose known functions include facilitating nuclear export and trafficking of viral RNA 
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(Huang et al., 2001; Martin and Helenius, 1991). It is unclear if these PPIs are involved in this 

activity or indicate an independent, novel activity of M1. 

 

IAV PPI Networks from Three Cell Types Identify Strain-Specific and Pan-IAV-Human 

Interactions 

In total, we identify 332 high-confidence PPIs across the three IAV strains in the three cell types 

collectively. These include PPIs between: 108 human proteins and nine IAV proteins in A549 

cells; 88 human proteins and eight IAV proteins in NHBE cells; and 56 human proteins and eight 

IAV proteins in THP-1 cells (Figure S2.3). A number of these interactions are shared across at 

least two cell types. These include members of the cleavage and polyadenylation factor (CPSF) 

complex that interact with IAV NS1 in all three cell types, spliceosome components that interact 

with NP in NHBE and THP-1 cells, and mitochondrial ribosome subunits that interact with NP in 

NHBE, THP-1 cells (Figure S2.3). These complexes are known to be involved in processes 

supporting IAV infection, most notably RNA export and processing. For example, NS1 is known 

to interact with the CPSF complex to post-transcriptionally dampen host mRNA expression and 

innate immune response (Nemeroff et al., 1998; Noah et al., 2003). While the majority of the 

IAV-human PPIs are cell type-specific, it should be noted that several viral protein baits did not 

express well in all cell types (Figure S2.1B, Figure S2.2), and a number of the high confidence 

PPIs identified in one cell type were also identified in other cell types but below our stringent 

scoring thresholds (Table S2.1). Noting the small overlap shared between cell types (Figure 

2.1C), we reasoned the three cell types collectively provide a snapshot of IAV-human 

interactions. Therefore, we collapsed PPIs across all cell types into one interactome to focus on 

visualizing strain-specific and pan-IAV interactions. This identified a total of 214 human proteins 

that interact with 12 IAV proteins (Figure 2.2). Every high-confidence interacting protein that 

passes our scoring thresholds in at least one cell type for at least one IAV strain is represented 

as a circular three-way pie chart in the network. The color intensity of each pie chart section is 
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proportional to the highest MiST score for each strain (Figure 2.2), which enables visualization 

of both high-confidence interactions that scored above our thresholds and interactions with 

additional IAV strain(s) detected in our AP-MS data that fell below our MiST score thresholds. 

We additionally mapped human-human PPIs reported in CORUM (Giurgiu et al., 2019) to 

identify human protein complexes and expanded upon the PPI molecular function enrichments 

(Figure 2.1F) to highlight biological processes identified across the PPIs (Figure 2.2). 

 

The interactome highlights PPIs shared across all three viruses and strain-specific PPIs. 

Examples of interactions shared across all three strains include proteins and protein complexes 

involved in: RNA processing and translation, including the spliceosome (NP, 11 interactors), 

CDC5L complex (M2, 3 interactors), mitochondrial ribosome (NP, 17 interactors) and 60S 

ribosome (PA, 3 interactors); nuclear transport (M2, 10 interactors); macroautophagy (M2 and 

PB1-F2, 2 interactors); and fatty acid metabolism (M2, 10 interactors) (Figure 2.2). Identifying 

these PPIs across all three strains indicates these specific proteins may be highly important for 

IAV infection. The biological processes of these interactors are consistent with known roles of 

the corresponding virus proteins in viral genome replication and translation (NP, PA) and viral 

assembly or budding (M2). The interactome also highlights strain-specific PPIs, which are most 

noticeable among protein interactions of NS1, PA-X and PB1-F2 (Figure 2.2). These viral 

proteins are largely involved in modulating host response, and may represent unique co-opting 

of host protein complexes by each strain. For example, PB1-F2 H3N2 interactions are largely 

involved in protein chaperone activity, while H5N1 interactions are part of the S100A10-Annexin 

2 protein complex that has roles in membrane trafficking, connecting cytoskeletal components 

to the cell membrane, and cell adhesion (Liu et al., 2015) (Figure 2.2). PB1-F2 has been 

described as a proapoptotic factor, modulator of innate immune response, and virulence factor 

that contributes to IAV pathogenicity (Chen et al., 2001; Varga et al., 2011; Vidy et al., 2016). It 

is unknown if the PB1-F2 interactions identified in our network contribute to its known activities, 



 16 

or identify potential novel cellular roles for PB1-F2. It is also noticeable that H5N1 has a higher 

number of total interactions compared to pH1N1 and H3N2, especially among IAV proteins PA-

X, M2, M1 and NEP. This may reflect true biological differences between the strains, or reflect 

differences in protein expression or stability of H5N1 proteins. This, for example, is evidenced 

by higher H5N1 PA-X protein expression in A549 cells (Figure S2.2). 

 

The interactome also includes PPIs that are shared between two IAV bait proteins. In those 

cases, the maximum MiST score from either bait is reported in the network for each IAV strain. 

For example, SQSTM1 interacts with PB1-F2 and M2. PB1-F2 interacts with SQSTM1 scored 

above thresholds only with H3N2, and scored below thresholds with H5N1 (Table S2.1). 

SQSTM1 interaction with M2 is identified above scoring thresholds with H5N1, and below 

scoring thresholds with pH1N1 and H3N2 (Table S2.1). Network shading thus represents darker 

shading for H3N2 and H5N1 (high-confidence interactions with PB1-F2 and M2, respectively) 

and lighter shading for pH1N1 (M2 interaction that fell below scoring thresholds), representative 

of the MiST confidence scores as described above (Figure 2.2).  

 

Some PPIs and their corresponding protein complexes or biological processes in our network 

have been previously reported (Figure S2.1C), which lends confidence to our network. For 

example, NS1 interacts with four PI3K signaling components (Figure 2.2). NS1 has been 

previously shown to activate PI3K signaling during infection to modulate host apoptotic 

response (Ehrhardt et al., 2007; Shin et al., 2007). In addition, NS1 interactions are 

predominantly identified with pH1N1 and H3N2, largely in part due to low expression of H5N1 

NS1 in A549 cells (Figure S2.2), and therefore interactions for this bait did not pass stringent 

scoring thresholds (Table S2.1). Only one H5N1 NS1 interaction with PIK3R2 passed scoring 

thresholds (Figure 2.2). However, the network also identifies PPIs that we consider novel 

interactions not described by previous PPI studies (Heaton et al., 2016; Shapira et al., 2009; 
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Tripathi et al., 2015; Wang et al., 2017; Watanabe et al., 2014). For example, while HA is 

reported to interact with CANX for proper HA folding and processing at the ER (Daniels et al., 

2003; Heaton et al., 2016), the additional three HA PPIs with ER protein quality control 

machinery are novel and may identify additional human proteins involved in HA folding and 

processing. These three additional PPIs (ERLEC1, SEL1L, P4HB) were identified only in A549 

cells and only with H3N2 HA (Figure S2.3, Table S2.1). HA from all three strains did not 

express in NHBE or THP-1 cells, and pH1N1 HA did not express in any cell type (Figure S2.2). 

To our knowledge, N40 is an under-characterized protein, with limited studies identifying human 

PPIs or a cellular mechanism of action. Here, we identify seven high-confidence human protein 

interactors of N40, including six that are involved in protein quality control machinery, thus 

indicating a potential cellular role for N40 in modulating human and/or viral protein expression. 

Collectively, the interactome highlights the rich biology of human proteins and pathways 

targeted by three strains of IAV. 
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Methods 

IAV strep-tagged plasmid and lentivirus construction. The coding sequences of 12 virus 

proteins for A/California/04/2009 H1N1 (does not express PB1-F2 (Garten et al., 2009; Wang 

and Palese, 2009)), 13 virus proteins for A/Wyoming/03/2003 H3N2 and 13 virus proteins for 

A/Vietnam/1203/2004 H5N1 were cloned into a pcDNA4/TO backbone vector, previously 

described in (Jäger et al., 2011). IAV proteins were cloned with either an N-terminal 2X-Strep 

tag (PB1-F2, NA, M1, M2, NS1, NEP), C-terminal 2X-Strep tag (PB2, PB1, N40, PA, PA-X, NP) 

or internal 2X-Strep tag (HA). Tag locations were selected as a best guess to maximize 

exposure of the tag epitope and minimize impact on protein structure (data not shown). DNA 

and amino acid sequences for all Strep-tagged IAV proteins, and Strep-tagged eGFP and 

empty-vector control proteins are reported in Table S2.1. 

 

Tagged gene sequences of all IAV proteins were first cloned from the pcDNA4/TO vector into a 

pLVX-TetOne-Puro doxycycline inducible backbone vector (Takara, 631847) via Gibson 

Assembly. Gene inserts derived from PCR amplifications of pcDNA4/TO clones were designed 

with 15-30 base pairs of overlap with the backbone vector. Seven IAV proteins (PB1, PB1-F2, 

N40, NA, NS1, NEP, HA) had insufficient expression for AP-MS by this method. To improve 

protein expression, for these seven IAV proteins from all three strains, gene blocks of tagged 

constructs were instead codon-optimized using an online codon-optimization tool (Integrated 

DNA Technologies [IDT]) and synthesized (IDT), and subsequently cloned via Gibson Assembly 

into the pLVX-TetOne-Puro backbone vector. Gibson Assembly was performed as previously 

described (Gibson et al., 2009). Briefly, a 5X ISO Buffer was prepared with 3mL 1M Tris-HCl pH 

7.5, 150µL 2M MgCl2, 240µL 100mM dNTP mix (25mM each of dGTP, dCTP, dATP, dTTP), 

300µL 1M DTT, 1.5g PEG-8000, 600µL 50mM NAD 3x (NEB, 9007S), and dH2O to 6mL final 

volume. 5X ISO Buffer was stored at -20ºC in 320µL aliquots. A Gibson Assembly master mix 

was prepared by combining 320µL of 5X ISO Buffer with 0.64µL 10U/µL T5 Exonuclease (NEB, 
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M0363S), 20µL 2U/µL Phusion Polymerase (NEB, M0530S), 160µL 40U/µL Taq DNA ligase 

(NEB, M0208L), and water to 1.2mL final volume. Gibson Assembly mastermix was stored at -

20ºC in 15µL aliquots. The pLVX-TetOne-Puro backbone was linearized with restriction 

enzymes BamHI-HF (NEB, R3136S) and EcoRI-HF (NEB, R3101S) in accordance with the 

manufacturer’s recommendations. Gibson Assembly reactions were then performed by 

combining 20ng of linearized backbone with the insert gene of interest in a 1:2 molar ratio in 

15µL of Gibson master mix plus water to a final volume of 20µL. Reaction mixtures were then 

incubated for 30 minutes at 50ºC.  

 

pLVX-TetOne-Puro PA-X-encoding constructs were additionally cloned to include a D108A point 

mutation in the catalytic RNA endonuclease domain of PA-X. Catalytic IAV PA-X caused cell 

toxicity; therefore, we cloned a D108A substitution previously shown to inactivate endonuclease 

activity (Hara et al., 2006; Jagger et al., 2012). Briefly, D108A mutagenesis was performed by 

QuikChange site-directed mutagenesis (Agilent, 200518) on pLVX-TetOne-Puro PA-X 

constructs following manufacturer’s protocol adapted with Velocity enzyme (BioLine, BIO-

21099) under the following conditions in a Bio-Rad C1000 Touch Thermal Cycler: 98ºC for 30 

seconds - 2 minutes, 18 cycles of 98ºC for 30 seconds followed by 55ºC for 1 minute and 72ºC 

for 5-10 minutes, and final extension at 72ºC for 3 minutes. pLVX pH1N1 PA-X D108A 2X-Strep 

and pLVX H5N1 PA-X D108A 2X-Strep were generated by QuikChange mutagenesis alone. 

H3N2 PA-X D108A 2X-Strep was subjected to mutagenesis as described above, amplified by 

PCR with Phusion enzyme (NEB, M0530L), and cloned into empty pLVX-TetOne-Puro vector by 

InFusion cloning (Takara, 638911) following manufacturer recommendations. 

 

Stable IAV protein-expressing cell line generation and culture. A549 (ATCC, CCL-185) 

cells were cultured in T175 flasks (Fisher, 12-556-011) at 37ºC and 5% CO2 in DMEM with L-

glutamine without sodium pyruvate (Fisher, MT 10-017-CV), 10% FBS (Life Technologies, 
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A3160502) and 1X Penicillin/Streptomycin (Pen/Strep) (Fisher, MT 30-002-CI). NHBE (Lonza, 

CC-2541) cells were cultured in collagen I-coated T175 flasks (Fisher, 356487) at 37ºC and 5% 

CO2 in Bronchial Epithelial Basal Medium (BEBM) (Lonza, CC-3171) with nine supplemental 

singlequots from the Bronchial Epithelial Cell Growth Medium (BEGM) kit (Lonza, CC-4175). 

THP-1 (ATCC, TIB-202) cells were cultured in T175 flasks at 37ºC and 5% CO2 in RPMI-1640 

with L-glutamine (Fisher, MT10040CV) supplemented with 10% FBS, 10mM HEPES (Fisher, 

SH3023701), 1mM sodium pyruvate (Fisher, MT 25-000-CI) and 1X Penicillin/Streptomycin 

(Pen/Strep). 

 

For transduction of A549 and NHBE, cells were seeded in appropriate growth media at 5x10^5 

cells per T75 flask (A549) or approximately 2 million cells per collagen I-coated T175 flask 

(NHBE), transduced with 250-500µL lentivirus containing the IAV transgene of interest, and 

returned to incubate at 37ºC for 48 hours. Media was subsequently removed and replaced with 

appropriate cell growth media supplemented with 1µg/mL puromycin (A549) or 0.5µg/mL 

puromycin (NHBE) for transgene selection. Cells were expanded in selection media as 

polyclonal pools for four days (A549) or 48 hours (NHBE), to nearly 100% confluence. Cells 

were then split 1:6 and seeded in six replicates in selection media, equating to about 2 million 

cells per 15cm dish (A549) (Fisher, 430599) or collagen I-coated 15cm dish (NHBE) (Fisher, 08-

774-9), and allowed to incubate for further expansion and transgene expression. Transgene 

expression was induced at three days (A549) and five days (NHBE) after seeding cells into 

15cm format. 

 

For transduction of THP-1, cells were seeded in 2mL appropriate growth media at 1 million cells 

per well in a 6-well plate (Fisher, 08-772-1B). Cells were transfected in 6-well plate format with 

25µL lentivirus containing the IAV transgene of interest and returned to incubate at 37ºC for 48 

hours. Cells containing the transgene were selected by incubation with growth media 
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supplemented with 0.75µg/mL puromycin for 72 hours. For subsequent monoclonal selection, 

cells were serially diluted to 150 cells/mL in growth media supplemented with 0.25µg/mL 

puromycin, diluted again 1:40 in selection media and plated into 96-well flat-bottom plates 

(Fisher, 08-772-2C). Cells were incubated at 37ºC for 3-4 weeks in selection media to allow 

single cell colony outgrowth. 12 colonies per transgene were selected, expanded for roughly 12 

days in selection media into 24-well plates, and screened for inducible, sufficient transgene 

expression by doxycycline treatment (below) followed by immunoblot. Four successful 

monoclonal isolates per transgene were expanded in selection media into T175 flasks to a 

density of 1x10^6 cells/mL in a final volume of 100mL. Following monoclonal expansion, cells 

were differentiated into a macrophage-like state with phorbol 12-myristate 13-acetate (PMA) 

(Fisher, BP685-1). Briefly, 25 million THP-1 cells from each of the four monoclonal pools were 

plated in growth media supplemented with 0.25µg/mL puromycin and 30nM PMA in four 15cm 

dishes, two dishes per replicate. THP-1 cells were PMA-differentiated for 48 hours before 

transgene expression was induced. Each monoclonal isolate serves as a replicate for THP-1. 

 

To induce transgene (IAV protein) expression in A549, NHBE and THP-1, cells were treated 

with doxycycline (Fisher, AAJ6057914) at final concentration 2µg/mL for a total of 24 hours. 12 

hours after doxycycline treatment, one set of replicates was treated with universal type I 

interferon (PBL Assay Science, 11200-2) at final concentration 1000U/mL for 12 hours to 

stimulate an antiviral-like state, and one set of replicates remained untreated. There were few 

discernible differences in observed protein-protein interactions between treated and untreated 

replicate sets, therefore replicate sets were collapsed as biological replicates totaling six 

replicates (A549 and NHBE) or eight replicates (THP-1) to increase statistical power. To 

achieve sufficiently high protein levels of PB1-F2 in all cell types, PB1-F2-expressing cells were 

treated with proteasome inhibitor MG-132 (Sigma-Aldrich, 474790) at final concentration 5µM at 

12 hours after doxycycline treatment for 12 hours before harvest and affinity purification. 
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PPI sample harvest and affinity purification. To harvest IAV protein- and control bait-

expressing A549 and NHBE cells, cells were washed in 10mL 1X phosphate buffered saline 

(PBS) (Fisher, MT 46-013-CM) and detached from plates by cell scraper (Fisher, 50-809-263) in 

10mL 1X PBS followed by a 4mL wash for a 14mL final cell suspension per replicate. THP-1 

cells were washed in 10mL 1X PBS and detached by cell scraper in 10mL 1X PBS, and two 

dishes per replicate were combined. Each dish was then washed with an additional 5mL per 

plate for a final combined 30mL cell suspension per replicate. Cells were pelleted at 2000rpm, 

4ºC for 5 minutes, supernatant was aspirated, and pellets were resuspended in 1ml cold lysis 

buffer (IP buffer pH 7.4 at 4ºC [50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA] 

supplemented with 0.5% Nonidet P40 substitute [NP40] (United States Biological, 9036-19-5), 

Complete mini EDTA-free protease inhibitor (Roche, 11836153001) and PhosSTOP 

phosphatase inhibitor (Roche, 04906837001). Samples were transferred to 1.5mL epitubes 

(Fisher, 05-408-129) and rotated at 4ºC for 30 minutes. Samples were subsequently frozen at -

80ºC for a minimum of 30 minutes, or until affinity purification. 

 

Affinity purification was performed against the Strep tag with 50% suspension Strep-Tactin 

Sepharose beads (IBA, 2-1201-010). 20µL bead volume (40µL 50% slurry) per sample was 

washed in IP buffer pH 7.4 at 4ºC, pelleted at 1000rpm for 5 minutes and resuspended in 640µL 

cold IP buffer per sample (total 660µL bead suspension). 660µL bead suspension was then 

transferred to one 2mL dolphin tube per sample (VWR, 53550-148). During this time, samples 

were thawed at room temperature for 20-30 minutes, and clarified by centrifugation at 3500 x g, 

4ºC for 20 minutes to pellet debris. 50μl lysate (input) was reserved for immunoblotting. 950µL 

remaining lysate per sample was transferred to the corresponding 2mL dolphin tube containing 

Strep-Tactin Sepharose beads and incubated for 4 hours at 4ºC with rotation. Beads were 

subsequently pelleted at 2000rpm, 4ºC for 4 minutes, and 50µL flow-through was reserved for 
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immunoblotting before flow-through was discarded. Beads were washed twice in 1mL cold wash 

buffer (IP buffer pH 7.4 at 4ºC with 0.05% NP40) and twice in 1mL cold IP buffer (no NP40) by 

inverting 15 times and pelleting again 2000rpm, 4ºC for 4 minutes. After the final wash, beads 

were resuspended in 450µL cold IP buffer, transferred to lo-bind 0.6mL epitubes (Axygen, MCT-

060-L-C) with wide-orifice tips (Rainin, 17007099) and pelleted at 2000rpm, 4ºC for 4 minutes. 

Supernatant was aspirated by 1mL syringe (BD Biosciences, 309628) and 27-G needle (BD 

Biosciences, 309659), and beads were immediately processed for on-bead digestion. 

 

Immunoblotting. To verify transgene expression in THP-1 monoclonal isolates, 500µL 

suspensions of doxycycline-induced cells from a 24-well plate were transferred to 1.5mL 

epitubes and pelleted at 8000rpm for 2 minutes. Supernatant was removed, and cells were 

washed with 500µL 1X PBS, pelleted again and resuspended in 100µL 2.5X reducing sample 

buffer (31.2mM Tris-HCl pH 6.8, 10% glycerol, 1% SDS, 0.83% beta-mercaptoethanol, 0.0126% 

bromophenol blue). Cell samples were vortexed, boiled at 98ºC for 30 minutes, vortexed again 

and cooled to room temperature before storage at -20ºC. Verification of transgene expression in 

A549 and NHBE cells was done at the time of affinity purification. To prepare affinity purification 

samples for immunoblot, 50µL input or 50µL flow-through was combined with 50µL 2.5X 

reducing sample buffer, vortexed, boiled at 98ºC for 30 minutes, vortexed again and cooled to 

room temperature before storage at -20ºC. 

 

For immunoblotting, samples were thawed at room temperature, and 10µL was loaded into each 

well of a 26-well 4–20% Criterion™ TGX™ Gel (Bio-Rad, 567-1094). Gels were run at 90 volts 

for 30 minutes followed by 150 volts for 50 minutes. The samples were then transferred at 0.25 

amps for 1 hour to a PVDF Membrane (Bio-Rad, 1620177). Following protein transfer, 

membranes were blocked in 4% milk in PBST for 1 hour at room temperature, and then 

incubated with 1:1000 mouse anti-STREP antibody (Qiagen, 34850) in blocking solution 
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overnight at 4ºC. Membranes were washed three times in PBST for 5 minutes each, and then 

incubated with 1:5000 goat anti-mouse IgG-HRP antibody (Bio-Rad, 170-6516) for 1 hour at 

room temperature. Membranes were washed three times and stained with Pierce ECL Western 

Blotting Substrate (ThermoFisher, 32106). Exposures of the blots were taken with 

autoradiography film (Thomas Scientific, XC59X), and developed with a medical film processor 

(Konica Minolta Medical & Graphic, SRX-101A). Film was scanned at 300 pixels/inch and stored 

as 8 bit grayscale TIFF files. 

 

On-bead digestion and peptide desalting. Bead-bound proteins were reduced and alkylated 

by incubation in one bead volume equivalent of reduction/alkylation buffer (2M urea, 50mM Tris 

pH 8.0, 1mM Dithiothreitol [DTT] (Sigma, D5545), 3mM iodoacetamide (Sigma, I1149) in HPLC-

grade water) for 45 minutes in the dark with gentle agitation to ensure bead suspension. 

Iodoacetamide was quenched with an additional 3mM DTT. Bead-bound proteins were then 

digested by incubation with 750ng sequencing-grade trypsin (Promega, V5111) per 10µL bead 

volume, and incubated overnight at 37ºC. Resulting in-solution peptides were extracted from 

beads by gel-loading tips (Fisher, 02-707-81) into a fresh 0.6mL lo-bind epitube for each sample 

and acidified by addition of HPLC-grade formic acid (Fisher Chemical, A117-50) to final 

concentration 1%.  

 

Acidified peptides were desalted for MS analysis using HPLC-grade reagents and OMIX C18 

10µL tips (Agilent Technologies, A5700310K) according to manufacturer’s protocol. Briefly, 

OMIX tips were conditioned with 50% acetonitrile, 0.1% formic acid and equilibrated with two 

washes of 0.1% formic acid. Peptides were bound to C18 zip-tip by repeated rinsing. Polymer-

bound peptides were washed three times with 0.1% formic acid and eluted in 50% acetonitrile, 

0.1% formic acid. A second elution in 90% acetonitrile, 0.1% formic acid was performed to 
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increase peptide recovery. Peptides were lyophilized by vacuum centrifugation (CentriVap Cold 

Trap, Labconco) and stored at -20ºC until MS analysis. 

 

PPI MS data acquisition and analysis. Digested, desalted and dried peptides were dissolved 

in 12µL 2% acetonitrile, 0.1% formic acid. 2µL of each sample were injected in technical singlet 

for LC-MS/MS analysis onto an Easy-nLC 1000 (Thermo Fisher Scientific) coupled to a Orbitrap 

Elite Hybrid Mass Spectrometer (Thermo Fisher Scientific). Briefly, peptides were separated on 

a 75μm x 25cm fused silica IntegraFrit capillary packed with 1.9μm Reprosil-Pur C18 AQ 

reversed-phase resin (Dr. Maisch GMBH, r119.aq) over a 120min gradient at a flow rate of 300 

nL/minute as described in Table S2.2. Buffer A consisted of 0.1% formic acid (FA) in water, and 

buffer B was 0.1% FA in acetonitrile. For each cycle, one full MS scan in the Orbitrap (150-1500 

m/z, at 120,000 resolution with an AGC target of 1×10^6 and maximum injection time of 100 

milliseconds) was followed by 20 data-dependent MS/MS scans acquired in the linear ion trap 

(AGC target 3x104, maximum injection time of 50 milliseconds, fragmented by normalized 

collision energy at 35%). Target ions already acquired in MS/MS scans were dynamically 

excluded for 20 seconds (tolerance of 10 ppm). Detailed MS acquisition parameters are 

reported in Table S2.2.  

 

Raw MS files from IAV proteins from all strains and control bait samples were grouped 

separately by cell line and searched simultaneously within each group using MaxQuant (version 

1.6.2.10) (Cox and Mann, 2008). MS/MS spectra were searched against the human proteome 

(SwissProt human canonical sequences, downloaded 09 October 2018), IAV protein sequences 

and the eGFP sequence. Trypsin (KR|P) was selected to allow up to two missed cleavages. 

Variable modifications were assigned for: methionine oxidation and N-terminal protein 

acetylation. One static modification was assigned for carbamidomethyl cysteine. Label free 

quantitation (LFQ) was enabled. All other MaxQuant settings were left at the default.  
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MaxQuant-analyzed data were then scored using the MiST algorithm (Jäger et al., 2011), 

following previous guidelines (Verschueren et al., 2015) using spectral counts as the quantifying 

feature. To enable robust scoring, we excluded samples with low spectral counts and low or no 

bait protein identification, and those with less than two replicates. Following these quality control 

filtering steps, 590 samples across 14 baits remained for analysis. We ran the MiST algorithm 

applying a weight set of specificity S=50%, reproducibility R=45% and abundance A=5%. To 

identify high-confidence PPIs, we applied a set of stringent scoring criteria: (1) MiST score >0.6; 

(2) the interaction is absent in eGFP and empty-vector control samples; and (3) at least 4/6 

replicates have a spectral count >0. IAV M2 protein in A549 cells and IAV NP protein in NHBE 

cells retained a disproportionately large number of interactions, therefore we applied more 

stringent scoring criteria to these two specific samples: (1) MiST score >0.75; (2) the interaction 

is absent in eGFP and empty-vector control samples; (3) at least 5/6 replicates have a spectral 

count >0; and (4) average spectral count >3. Interactions that fall above these cutoffs represent 

the final high-confidence PPI list, and contain a total of 126 interactions in A549 (top 4% of 

interactions), 130 interactions in NHBE (top 9% of interactions), and 76 interactions in THP-1 

(top 5% of interactions) (Table S2.1). This list was used for further bioinformatic analyses and 

validation. 

 

Computational analyses methods 

Data and Code Availability. At the time of dissertation submission, mass spectrometry 

metadata for PPI samples are in the process of being deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository (Perez-Riverol et al., 2019). R package source 

materials for MiST and Mass Spectrometry Statistics and Quantification (MSstats, version 3) are 

publicly available through the Krogan Lab GitHub: https://github.com/kroganlab. Further 
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information on MiST scoring can be found on the Krogan Lab GitHub: 

https://github.com/kroganlab/mist. 

 

Gene Ontology (GO) enrichments. For PPI GO enrichments, the human interacting proteins of 

each bait were collated across all strains and cell types, and tested for enrichment of GO 

Molecular Function terms. The over-representation analysis was performed using the enrichGO 

function of clusterProfiler package (version 3.18.0) in R with default parameters. GO terms were 

obtained from the R annotation package org.Hs.eg.db (version 3.12.0). Significant GO terms 

were defined as those with p-value < 0.002. Terms with overlapping genes in each set were 

compared and the most significant term (lowest p-value) with the largest gene set size was 

selected as the non-redundant term. PPI enrichments were subject to further manual curation, 

with a maximum of the top three significant non-redundant GO terms listed and visualized for 

each bait (Table S2.1). 

 

Network visualizations. All networks were generated and visualized in Cytoscape (version 

3.8.2) (Shannon et al., 2003). For the IAV-human PPI network, IAV-human PPIs were 

represented by strain and collated across all cell types. In cases where one human protein is 

shared between two IAV bait proteins, the maximum MiST score from either bait in any cell type 

was reported for each IAV strain. Human-human PPIs were annotated as reported in the 

comprehensive resource of mammalian protein complexes (CORUM) database (Giurgiu et al., 

2019). Manual annotations to the network include human-human PPI protein complex name and 

biological process. Briefly, human prey proteins for each bait were subjected to gene set 

enrichment analysis using either GO Biological Process terms or CORUM protein complex 

annotations. Genes that were members of enriched biological processes or protein complexes 

were labeled in the network using Adobe Illustrator software (v24.1). Labels were manually 

curated to simplify and generalize terms to facilitate interpretability. Genes mapped under a GO 
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Biological Process term were manually investigated to ensure the term represented each gene’s 

canonical function; genes that clearly possessed multiple functions, or genes that were 

otherwise difficult to classify, were excluded to reduce the appearance of misleading 

annotations. 
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Figure 2.1 AP-MS identifies pH1N1, H3N2 and H5N1 IAV-human PPIs. (A) Schematic of the 
13 IAV bait proteins with internal, N- or C-terminal 2xStrep-tag (left) and their known biological 
functions (right). IAV proteins are drawn to scale and grouped by genomic RNA segment, 
showing protein products from each segment of the viral genome. (B) AP-MS experiment design 
to identify human proteins co-purified with Strep-tagged bait proteins from pH1N1, H3N2 and 
H5N1 IAV in A549, NHBE and THP-1 cell types. 2xStrep-tagged proteins were individually 
transduced by lentivirus into A549, NHBE and THP-1 cells. A549 and NHBE cells were cultured 
as polyclonal pools. THP-1 cells were cultured as monoclonal isolates and subsequently treated 
with PMA to induce differentiation into a macrophage-like state. All cells were treated with 
doxycycline to induce IAV protein expression and lysed. IAV-human PPIs were purified and 
identified by AP-MS, and scored to assign interaction confidence. (C) Venn diagram of unique 
IAV-human PPIs identified in each cell type used in this study. PPI numbers reported are 
collapsed across virus strains. (D) Bar graph of the unique IAV-human PPIs identified for each 
IAV protein and strain. PPI numbers reported are collapsed across cell types. (E) Comparison of 
shared protein interactions (PPI similarity) by Jaccard index against IAV protein sequence 
similarity. PPIs reported are collapsed across cell types. (F) Heatmap of gene ontology (GO) 
molecular function enrichments among the human interacting proteins of indicated IAV proteins, 
collapsed across all strains and cell types and clustered by correlation of enrichment profiles. 
GO terms were curated from the top 3 non-redundant terms with at least 2 genes for at least 
one IAV protein. Increasing shading intensity reflects increasing significance of the enrichment 
term. Numbers of proteins per enriched cluster are shown in white if significant (p-value 
<0.002), and grey if not significant (p-value >0.002). 
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Figure 2.2 IAV PPI networks from three cell types identify strain-specific and pan-IAV-      
human interactions. High-confidence IAV-human PPIs between 12 IAV proteins (gray 
diamonds) and 214 human proteins (circular nodes) identified from three IAV strains collapsed 
across the three cell types. Human protein nodes are split into three sections and colored by the 
IAV strain for which the interaction was identified: pH1N1 (blue), H3N2 (green) and H5N1 
(purple). Color shading is proportional to MiST PPI confidence score (scale at bottom; not 
identified represented by white color). IAV-human PPIs are depicted (dark grey lines), and 
human-human PPIs are identified (light grey lines) as curated in the CORUM (Giurgiu et al., 
2019) database. Human protein complexes (yellow halo) are labeled as described in CORUM 
(Giurgiu et al., 2019), and biological processes (pink halo) are labeled as described by GO 
terms. 
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Figure S2.1 Summary of IAV AP-MS data, Related to Figure 2.1. (A) Infographic of IAV 
proteins depicted in an IAV particle, with the nine structural proteins and four non-packaged 
proteins included in this study. (B) AP-MS samples successfully collected and analyzed across 
the 13 IAV bait proteins from the three IAV strains and three cell types, marked by an “X”. 
pH1N1 does not express PB1-F2 (Garten et al., 2009), therefore no samples were generated. 
GFP and empty vector (EV) control bait samples were also collected in each cell type. Number 
of replicates for each bait in each cell type are listed. (C) ID correlation matrix comparing the 
human interacting proteins identified by AP-MS in this study with other published studies that 
used AP-MS with affinity-tagged IAV proteins exogenously expressed in cell lines (Tripathi et 
al., 2015; Watanabe et al., 2014), AP-MS in the context of virus infection (Heaton et al., 2016; 
Wang et al., 2017), and an orthologous yeast two-hybrid approach (Shapira et al., 2009). (D) 
Heatmap comparing percent amino acid sequence similarity across the total 38 IAV proteins (12 
from pH1N1 which excludes PB1-F2, 13 from H3N2 and 13 from H5N1). (E) Heatmap 
comparing PPI similarity expressed as Jaccard index for human proteins interacting with the 
total 38 IAV proteins. (F-G) Circos plots representing the human interacting proteins shared 
between IAV proteins of the three strains (F, purple lines) or biological pathways of the human 
interacting proteins shared between IAV proteins of the three strains (G, blue lines). Inner circle 
depicts the IAV bait proteins (bars for each IAV protein colored as in Figure 2.1A and scaled to 
the number of interactions). Outer circle depicts the IAV strain (pH1N1 blue, H3N2 green, H5N1 
purple; bar scaled to the number of interactions). 
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Figure S2.2 IAV protein expression, Related to Figures 2.1 and 2.2. Western blots probing 
against the 2xStrep-tag to assay IAV protein expression in A549 cells (shown). pH1N1 HA 
2xStrep clone did not express. While expression of IAV proteins in other cell types was tested 
concurrently with AP-MS and verified, access to the data from other contributing authors was 
unavailable for inclusion at the time of dissertation submission. Please refer to the published 
manuscript (Haas et al.) for the full figure. (Data not shown: IAV bait protein expression in NHBE 
cells. HA 2xStrep clones and NA 2xStrep clones from all three strains did not express. IAV bait 
protein expression in PMA-differentiated THP-1 cells. Baits that did not express include: HA 
2xStrep clones from all strains, NA 2xStrep clones from all strains, PB2 2xStrep clones from all 
strains, and H3N2 PB1 2xStrep.) 
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Figure S2.3 PPI networks specific to each cell type, Related to Figure 2.2. PPI networks 
specific to each cell type. 76 total high-confidence IAV-human PPIs across all strains in PMA-
differentiated THP-1 cells are mapped between eight IAV proteins and 56 human proteins (top, 
left). 130 total high-confidence IAV-human PPIs across all strains in NHBE cells are mapped 
between eight IAV proteins and 88 human proteins (top, right). 126 total high-confidence IAV-
human PPIs across all strains in A549 cells are mapped between nine IAV proteins and 108 
human proteins (bottom). IAV protein nodes and human protein nodes are colored as described 
in Figure 2.2. Human-human PPIs are identified as curated in CORUM (Giurgiu et al., 2019) 
and labeled as described in Figure 2.2. 
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SUPPLEMENTAL TABLES 

Table S2.1 AP-MS IAV protein sequences, scored IAV-human PPIs and PPI enrichments, 
Related to Figures 2.1, 2.2, S2.1, S2.2 and S2.3. Sequences of IAV and control proteins for 
AP-MS, including tag location, codon-optimization, sequence notes, and full protein and DNA 
sequences for proteins encoded by pH1N1, H3N2 and H5N1 (Protein_sequences_for_APMS 
tab). Full list of unfiltered MiST-scored PPIs (Full_PPI_List tab) and thresholded high-confidence 
scored PPIs (Filtered_PPI_List tab) between 13 proteins from three IAV strains and human 
proteins in three cell types. Scoring thresholds are described in Methods. Column descriptions 
for PPI lists are provided (PPI_List_Column_Descriptions tab). Finally, Gene Ontology (GO) 
molecular function (MF) enrichments for PPIs are reported for each IAV protein collapsed 
across all strains and cell types, with the full enrichment list (PPI_GO_MFfull tab) and with 
heatmap selection criteria of p-value < 0.002 and top 3 non-redundant terms with at least 2 
genes for at least one bait (see also Methods) (PPI_GO_MFselection tab). Column descriptions 
for GO MF lists are provided (GO_List_Column_Descriptions tab). Table is available online only 
as supplemental material. 
 
Table S2.2 PPI liquid chromatography (LC) and mass spectrometry (MS) acquisition 
parameters, Related to Methods. LC and MS acquisition parameters are reported for the 
instrument that acquired PPI data in our study. A table summary is included matching the 
instrument to their respective LC and MS parameters tabs and to the global proteomic data 
collected on the instrument, including data type, cell type and IAV strain. Table is available 
online only as supplemental material. 
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CHAPTER 3 

Global Proteomic Profiling Highlights Modulated Kinases in IAV Infection 
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In an orthogonal proteomic approach to mapping PPI networks, we performed global protein 

abundance (AB) and phosphorylation (PH) profiling of primary NHBE and differentiated THP-1 

cells infected with pH1N1, H3N2, or H5N1 IAV to identify host pathways and kinases that are 

modulated during IAV infection (Figure 3.1A). Cells were mock infected or infected with pH1N1, 

H3N2 or H5N1 at MOI 3, harvested at four time points post-infection (3hr, 6hr, 12hr, and 18hr) 

and processed for protein identification and quantification as well as phosphopeptide 

enrichment. Peptide samples were analyzed by MS, searched by MaxQuant, and protein 

abundance and site-specific phosphorylation quantified using MSStats (Table S3.1). We 

identified hundreds of significantly changing abundant proteins and phosphorylation events for 

each of the three strains in both cell types across the time points (Figure 3.1B-C, Table S3.1). 

We also detected increasing protein abundance of IAV proteins over the time course of 

infection, indicating productive infection across the collected time points (Figure 3.1D). 

However, viral protein abundance was variable between the IAV strains at some time points, 

especially at 12 hours in THP-1 cells (Figure 3.1D). We therefore chose a single time point with 

high viral protein abundance to compare the IAV strains at their peak infection in downstream 

analyses. Virus protein abundance was highest at 18 hours post-infection for pH1N1 and H3N2, 

and reached comparable levels at 12 hours post-infection for H5N1, therefore these time points 

were selected for all subsequent analyses (Figure 3.1D). While moderate overlap was observed 

between the three strains, the majority of phosphorylation events are strain-specific, which may 

indicate unique phosphorylation signatures and re-wiring of host pathways during infection 

(Figure S3.1A). Interestingly, the seasonal circulating IAV strains (pH1N1 and H3N2) share a 

larger overlap of changing phosphorylation events with each other than with avian-derived 

H5N1 (Figure S3.1A). Significantly changing phosphorylation events across all virus strains 

were observed in proteins enriched for RNA splicing and processing, cellular and nuclear 

membranes, regulation of gene silencing, and innate immune response (Figure S3.1B, Table 

S3.1). These statistically significant enrichments are consistent with IAV infection events for co-
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opting host RNA machinery to generate, splice and translate viral RNA transcripts and proteins, 

for virus entry, fusion and exit, for viral RNA export from the nucleus and blocking host mRNA 

export from the nucleus, and for cellular detection and response to virus (Dou et al., 2018; 

Klemm et al., 2018). 

 

Protein phosphorylation changes reflect changes in kinase activities and highlight pathways that 

are regulated by IAV. We next predicted changes in kinase activities during IAV infection from 

our phosphorylation data. First, to determine if phosphorylation changes were biased by 

changes in protein levels, we measured the correlation between protein and phosphosite 

abundance changes for all instances where both protein and phosphorylation could be 

measured. Each site is represented individually or as a combination of phosphorylated sites 

when multiple phosphorylations were observed within single peptides. We observed a weak 

correlation, suggesting that the observed phosphorylation changes were largely not driven by 

underlying changes in protein abundance (Figure 3.1E, Figure S3.1C). Next, we predicted 

changes in kinase activity based on substrate proteins with significantly changing 

phosphorylation sites in our study (Table S3.1). We used a comprehensive catalog to map 

kinase-substrate relationships (Türei et al., 2021) and set scoring criteria to increase confidence 

of kinase activity annotations (Methods). From this, we identified 13 kinases with significantly 

changing activity (Figure 3.1F). Kinases with activity changes during IAV infection include five 

mitogen-activated protein kinase (MAPK) family members (MAP2K3, MAP2K6, MAPKAPK2, 

MAPKAPK3, MAPKAPK5), two ribosomal protein S6 kinase (RPS6K) family members 

(RPS6KB1, RPS6KB2), and one member of the phosphatidylinositol 3-kinase-related kinase 

family (PRKDC). In NHBE and THP-1 cells, MAPK family members show decreased activity or 

no significant change during pH1N1 infection, compared to increased activity during H3N2 and 

H5N1 infection. Interestingly, this trend is also observed for RPS6K members, although the 

functional significance is unclear. In THP-1 cells, PRKDC shows increased activity during 
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pH1N1 and H3N2 infection, and no significant change during H5N1 infection. This may indicate 

a macrophage-specific response via PRKDC with the predominant human-infecting IAV strains. 

Collectively, these predictions identify differential kinase activity patterns during infection with 

the three IAV strains, and may be indicative of the different strain pathogenicities and host 

responses. 

 

Overlaying PPI and phosphoproteomics results identified 45 human proteins with significantly 

changing phosphorylation sites upon infection that also interact with 10 IAV proteins (Figure 

3.1G). For some interacting human proteins, the phosphoregulation pattern is consistent across 

all three strains. For example, CANX is an HA interactor that is phosphorylated at serine 583 

(S583). In both THP-1 and NHBE, CANX S583 is downregulated by all three IAV strains. 

SRSF2, a PA-X interactor, is universally upregulated at S208 by all three IAV strains. These 

examples may be representative of PPIs with pan-strain functionality in IAV infection and 

replication, and host response. For other IAV-interacting proteins, phosphorylation is 

differentially regulated by specific IAV strains. One example is the cleavage and polyadenylation 

specificity factor CPSF4, a well-known NS1 interactor that blocks nuclear export of host pre-

mRNA and post-transcriptionally inhibits the production of interferon-stimulated genes as part of 

NS1-mediated host cell shutoff (Hale et al., 2010; Kainov et al., 2011; Nemeroff et al., 1998; 

Noah et al., 2003). Here, we show that CPSF4 S200 phosphorylation is regulated in a strain-

specific manner, with decreased phosphorylation during pH1N1 and H3N2 infection and 

increased phosphorylation during H5N1 infection. Strain-specific differences in the functionality 

of CPSF4-NS1 interaction have been reported, namely pH1N1 NS1 is unable to block mRNA 

export and stimulate mRNA translation as efficiently as H5N1 subtype IAV (Hale et al., 2010; 

Kainov et al., 2011). The phosphorylation patterns observed may be a result of strain-specific 

regulation of virus-human interactions, human protein localization or function. 
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While we observe only one or two sites with increased or decreased phosphorylation for most 

human proteins in this data set, five IAV-interacting proteins have four or more sites regulated 

during infection. The highest number of sites with significantly changing phosphorylation include 

HSPB1 (PB1-F2), PRKDC (M2) and AHANK (NEP). PRKDC is a DNA-damage sensing protein 

kinase identified as an M2 PPI with five significantly changing phosphorylation sites during 

infection (Figure 3.1G). PRKDC is also identified in our study as a kinase with increased 

predicted activity upon pH1N1 and H3N2, but not H5N1, infection in THP-1 cells (Figure 3.1F). 

The five identified phosphorylation sites are almost all universally upregulated in 

phosphorylation with pH1N1, H3N2 and H5N1 infection (Figure 3.1G). AHNAK is a large (700 

kDa) scaffold protein involved in diverse cellular processes including calcium signaling, cell-cell 

contact formation, cytoskeletal and membrane architecture and T-cell function (Benaud et al., 

2004; Matza et al., 2008, 2009). It interacts with NEP, and among its 11 sites of phosphorylation 

changes, one site is universally upregulated across the three strains, four sites are universally 

downregulated across the three strains, and six sites show strain-specific patterns of 

phosphorylation changes (Figure 3.1G). The phosphoregulation of PRKDC and AHNAK PPIs 

may suggest these are highly regulated nodes in IAV infection. Collectively, the additional layer 

of phosphoregulation during IAV infection for these IAV-human PPIs may highlight increased 

functional importance of the interaction in IAV infection. 
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Methods 

Viruses. IAV isolates A/California/04/2009 H1N1, A/Wyoming/03/2003 H3N2 and 

A/Vietnam/1203/2004 H5N1 HALo were obtained through BEI Resources (NIAID, NIH). 

A/Vietnam/1203/2004 H5N1 HALo was engineered to contain a deletion in the HA polybasic 

cleavage site (Park et al., 2006) and allows its use in Biosafety Level 2+ facilities. All IAV 

viruses were propagated in embryonated chicken eggs (Charles River Laboratories) following 

methods previously described (Eisfeld et al., 2014). Virus stocks were titrated in Madin-Darby 

canine kidney (MDCK) cells (ATCC, CCL-34) by plaque assay. All infections with live IAV were 

performed in accordance with institutional Biosafety Level 2+ biosafety procedures at the Icahn 

School of Medicine at Mount Sinai and the J. David Gladstone Institutes. 

 

Cell infections for global proteomic analysis. NHBE cells were seeded at 1x10^7 cells per 

collagen I-coated 15cm dish and cultured in BEBM media with nine BEGM supplemental 

singlequots (described in Chapter 2 Methods). THP-1 cells were expanded in suspension in 

T75 flasks at a density of 2x10^5 - 8x10^5 cells/mL and cultured in RPMI-1640 with L-glutamine 

supplemented with 10% FBS, gentamicin (Thermo Scientific, 15750060) at final concentration 

50µg/mL and 1X Pen/Strep. For plating, THP-1 cells were pelleted at 500 x g for 5 minutes, 

resuspended in growth media supplemented with PMA (Fisher, BP685-1) at final concentration 

10ng/mL to induce differentiation, and subsequently seeded at 2x10^7 cells per 15cm dish. 

THP-1 cells were differentiated for 72 hours in PMA media, before media was exchanged with 

growth media (no PMA) for 24 hours to reduce PMA-activated pro-inflammatory response. For 

infection, cell growth media was removed, and cells were either mock infected or infected in 

biological duplicate with A/California/04/2009 H1N1 IAV, A/Wyoming/03/2003 H3N2 IAV or 

A/Vietnam/1203/2004 H5N1 IAV at MOI 2 in 0.5% BSA in 1X PBS with magnesium and 

calcium. Cells were incubated in virus inoculum at 37°C for 1 hour. After absorption, virus 

inoculum was aspirated and replaced with cell growth media supplemented with TPCK-trypsin 
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(Sigma-Aldrich, T8802). Cells were returned to incubate at 37ºC before cell harvest and global 

proteomics sample preparation and processing. 

 

Global proteomics sample preparation. IAV-infected cells were harvested and lysed at 3 

hours, 6 hours, 12 hours and 18 hours post-infection in biological duplicate with time point-

matched mocks for each IAV strain. At the indicated time point, cells were washed with 1X PBS 

and lysed in 2mL urea lysis buffer (8M urea, 100mM Tris pH 8.0, 150mM NaCl) supplemented 

with Complete mini EDTA-free protease inhibitor (Roche, 11836153001) and PhosSTOP 

phosphatase inhibitor (Roche, 04906837001). Cells were harvested in lysis buffer by cell 

scraper (Fisher 50-809-263), collected in 15mL Falcon tubes (Fisher, 14-959-53A) and 

incubated on ice for 30 minutes. Samples were subsequently snap-frozen in liquid nitrogen and 

stored at -80ºC until probe sonication. Samples were thawed on ice and subjected to three 

rounds of probe sonication (Fisherbrand™ Model 505 Sonic Dismembrator) at 20% amplitude 

for 20 seconds followed by 10 seconds of rest on ice. Protein concentration was then 

determined by Bradford assay (Sigma, B6916). Protein from clarified lysate was reduced with 

4mM tris(2-carboxyethyl)phosphine (Sigma, C4706) for 30 minutes at room temperature, and 

alkylated with iodoacetamide at final concentration 10mM for 30 minutes at room temperature in 

the dark. Iodoacetamide was quenched by addition of DTT at final concentration 10mM and 

incubation in the dark at room temperature for 30 minutes. For digestion, samples were then 

diluted with 0.1M ammonium bicarbonate pH 8.0 to a final concentration of 2M urea. 

Sequencing-grade trypsin (Promega, V5111) was added at a 1:100 (enzyme:protein w:w) ratio 

and incubated overnight at 37°C. Following digestion, 10% trifluoroacetic acid was added to 

acidify each sample to a final pH ~2. Samples were desalted by vacuum manifold (Thermo 

Fisher Scientific) using Sep Pak tC18 cartridges (Waters, WAT054955) and HPLC-grade 

reagents. Each cartridge was activated with 1mL 80% acetonitrile, 0.1% trifluoroacetic acid, and 

equilibrated three times with 1mL 0.1% trifluoroacetic acid. Samples were loaded onto C18 
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cartridges, and peptide-bound cartridges were washed four times with 1mL 0.1% trifluoroacetic 

acid. Samples were then eluted four times with 0.5mL 50% acetonitrile, 0.25% formic acid to 

maximize peptide recovery. 10μg of each sample was reserved for global protein abundance 

MS data acquisition, and the remainder (at least 1mg) was allocated to phosphopeptide 

enrichment. All samples were lyophilized by vacuum centrifugation (CentriVap Cold Trap, 

Labconco). 

 

Phosphopeptide enrichment. For phosphopeptide enrichment, iron nitriloacetic acid (NTA) 

agarose resin was prepared in-house from 50% nickel NTA (Ni-NTA) Superflow bead slurry 

(Qiagen, 30210). 30μL per sample of 50% Ni-NTA Superflow bead slurry was added to a 2mL 

bio-spin column (Bio-Rad, 732-6204). Beads were stripped of nickel ions by four 30-second 

incubations with 500μL 100mM EDTA. Beads were conditioned and loaded with iron by two 

washes with 500μL H2O, four 1-minute incubations with 500μL 100mM FeCl3, three washes 

with 500μL H2O, and one wash with 500μL 0.5% formic acid to remove residual iron. Beads 

were resuspended in 600μL H2O, and 60μL was aliquoted into a C18 NEST column (Fisher, 

NC0484000) that was equilibrated with 150μL of 80% acetonitrile, 0.1% trifluoroacetic acid. 1mg 

of digested, dried peptides were resuspended in 75% acetonitrile, 0.15% trifluoroacetic acid. 

Peptides were incubated with the beads for 2 minutes, mixed by pipetting and incubated again 

for 2 minutes. Beads were washed four times with 200μL 80% acetonitrile, 0.1% TFA, followed 

by three washes with 200μL 0.5% formic acid. Beads were then incubated twice with 200μL 

500mM potassium phosphate buffer pH 7 for 15 seconds, and twice with 200μL 0.5% formic 

acid for 15 seconds. Phosphopeptides were eluted twice to maximize recovery with 75μL 50% 

acetonitrile, 0.25% formic acid by centrifugation at 3000 rpm for 30 seconds, and lyophilized by 

vacuum centrifugation (CentriVap Cold Trap, Labconco). 
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Global phosphorylation and abundance MS data acquisition and analysis. Global 

abundance (AB) and phosphorylation (PH) MS samples were collected on three instruments 

following instrument-specific LC and MS acquisition parameters (Table S3.2). Samples 

acquired on an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific) include: 

(1) NHBE abundance data for pH1N1, H3N2 and H5N1; (2) NHBE phosphorylation data for 

pH1N1 and H3N2; and (3) THP-1 abundance data for pH1N1, H3N2 and H5N1. Samples 

acquired on an Orbitrap Elite Hybrid Mass Spectrometer (Thermo Fisher Scientific) include: 

NHBE phosphorylation data for H5N1. Samples acquired on an Orbitrap Fusion Lumos Tribrid 

mass spectrometer (Thermo Fisher Scientific) include: THP-1 phosphorylation data for pH1N1, 

H3N2 and H5N1. 

 

For samples acquired on the Orbitrap Fusion Tribrid, digested, desalted and dried peptides 

were resuspended in 10μL 0.1% TFA (AB samples) or 15μL of 0.1% TFA (PH samples). 2μL of 

each sample were injected in technical duplicate (samples from NHBE cells) or technical singlet 

(samples from THP-1 cells) on an Easy-nLC 1000 (Thermo Fisher Scientific) coupled to an 

Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific). Briefly, peptides were 

separated on a 75μm x 25cm fused silica IntegraFrit capillary packed with 1.9μm Reprosil-Pur 

C18 AQ reversed-phase resin (Dr. Maisch GMBH, r119.aq) over a 180min gradient at a flow 

rate of 300 nL/minute as described in Table S3.2. Buffer A consisted of 0.1% formic acid (FA) in 

water, and buffer B was 0.1% FA in acetonitrile. Spectra were continuously acquired in a data-

dependent manner. One full scan in the Orbitrap (400-1600 m/z at 120,000 resolution with an 

AGC target of 2×10^5 and maximum injection time of 100 milliseconds) was followed by as 

many MS/MS scans as could be acquired on the most abundant ions in 3 seconds in the dual 

linear ion trap (HCD collision energy of 30%, AGC target of 1x10^4, maximum injection time of 

35 milliseconds, and isolation window of 1.6 m/z). Singly and unassigned charge states were 

rejected. Dynamic exclusion was enabled after n=1 time, with an exclusion duration of 40 
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seconds (tolerance of ±10 ppm). Detailed MS acquisition parameters are reported in Table 

S3.2. 

 

For samples acquired on an Orbitrap Elite Hybrid Mass Spectrometer, digested, desalted and 

dried peptides were resuspended in 10μL 0.1% TFA (AB samples) or 15μL of 0.1% TFA (PH 

samples). 2μL of each sample were injected in technical duplicate on an Easy-nLC 1000 

(Thermo Fisher Scientific) coupled to a Orbitrap Elite Hybrid Mass Spectrometer (Thermo Fisher 

Scientific). Briefly, peptides were separated on a 75μm x 25cm fused silica IntegraFrit capillary 

packed with 1.9μm Reprosil-Pur C18 AQ reversed-phase resin (Dr. Maisch GMBH, r119.aq) 

over a 240min gradient at a flow rate of 300nL/minute as described in Table S3.2. Buffer A 

consisted of 0.1% formic acid (FA) in water, and buffer B was 0.1% FA in acetonitrile. Spectra 

were continuously acquired in a data-dependent manner. For each cycle, one full scan in the 

Orbitrap (200-2000 m/z, at 120,000 resolution with an AGC target of 1×10^6 and maximum 

injection time of 100 milliseconds) was followed by 20 MS/MS scans acquired in the linear ion 

trap (AGC target of 3x10^4, maximum injection time of 50ms, fragmented by normalized 

collision energy at 35%). Singly and unassigned charge states were rejected. Dynamic 

exclusion was enabled with a repeat count of 1, an exclusion duration of 20 seconds (tolerance 

of ±10 ppm). Detailed MS acquisition parameters are reported in Table S3.2. 

 

For samples acquired on the Orbitrap Fusion Lumos Tribrid, digested, desalted and dried 

peptides were resuspended in 15μL of 4% formic acid, 3% acetonitrile. 2μL of each sample 

were injected in technical singlet onto an Easy-nLC 1200 (Thermo Fisher Scientific) interfaced 

via a nanoelectrospray source (Nanospray Flex) coupled to an Orbitrap Fusion Lumos Tribrid 

mass spectrometer (Thermo Fisher Scientific). Briefly, peptides were separated on a C18 

reverse phase column (75μm x 25cm packed with 1.9μm Reprosil-Pur C18 AQ reversed-phase 

resin) over the course of a 180 minute data acquisition as described in Table S3.2. Buffer A 
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consisted of 0.1% formic acid (FA) in water, and buffer B was 0.1% FA in acetonitrile. Spectra 

were continuously acquired in a data-dependent manner. One full scan in the Orbitrap (at 

120,000 resolution in profile mode with an AGC target of 2×10^5 and maximum injection time of 

100 milliseconds) was followed by as many MS/MS scans as could be acquired on the most 

abundant ions in 3 seconds in the dual linear ion trap (rapid scan type with an intensity 

threshold of 5000, HCD collision energy of 30%, AGC target of 1x10^4, maximum injection time 

of 35 milliseconds, and isolation width of 1.6 m/z). Singly and unassigned charge states were 

rejected. Dynamic exclusion was enabled with a repeat count of 1, an exclusion duration of 30 

seconds, and an exclusion mass width of ±10 ppm. Detailed MS acquisition parameters are 

reported in Table S3.2. 

 

Raw MS files from IAV infection time course samples were grouped separately by cell line, 

enrichment (abundance vs phosphorylation), and instrument, and searched simultaneously 

within each group using MaxQuant (version 1.6.1.0) (Cox and Mann, 2008). MS/MS spectra 

were searched against the human proteome (SwissProt human canonical sequences, 

downloaded 09 October 2018) and IAV protein sequences. Trypsin (KR|P) was selected to 

allow up to two missed cleavages. Variable modifications were assigned for: N-terminal protein 

acetylation, N-terminal protein methionine oxidation, and phosphorylation of serine, threonine, 

and tyrosine (the latter for phosphorylation enrichment samples only). One static modification 

was assigned for carbamidomethyl cysteine. LFQ was enabled. Match between runs was 

enabled with a 1.5min matching time window and 20min alignment window. All other MaxQuant 

settings were left at the default. 

 

Peptide ion intensities from the output of MaxQuant were summarized to protein intensities 

using the R Bioconductor package MSstats (version 3.19.4) (Choi et al., 2014), specifically the 

function dataProcess, with default settings except that the noise-filtering (Tsai et al., 2020) was 
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turned on by setting featureSubset = “highQuality” and remove_uninformative_feature_outler = 

TRUE. For phosphopeptide data, the peptide ion intensities were similarly summarized to a 

single intensity per unique observed single-peptide combination of phosphorylated sites by 

relabeling the protein of each feature as the combination of protein name and observed 

phosphorylated sites. The Bioconductor package artMS (version 1.3.9) (doi: 

10.18129/B9.bioc.artMS) was used for this relabeling.  The differences in log2-transformed 

intensity between infected and mock samples were scored using the MSstats function 

groupComparison, which fits a single linear model for each protein with a single categorical 

variable for condition. From these models, MSstats reports pairwise differences in means 

between conditions as log2FC with a p-value based on a t-test assuming equal variance across 

all conditions, and reports adjusted p-values using the false discovery rate (FDR) estimated by 

the Benjamini-Hochberg procedure. One single time point per virus was selected for both cell 

types based on high viral protein abundance in the abundance data: at 18 hours post-infection 

for pH1N1 and H3N2, and 12 hours post-infection for H5N1. To determine significant changes in 

protein abundance and phosphorylation, selection criteria included: (1) adjusted p-value < 0.05; 

and (2) absolute(log2FC) > 1 (Table S3.1). 

 

Computational analyses methods 

Data and Code Availability. At the time of dissertation submission, mass spectrometry 

metadata for abundance and phosphorylation data are in the process of being deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository (Perez-Riverol et al., 2019). R 

package source materials for MiST and Mass Spectrometry Statistics and Quantification 

(MSstats, version 3) are publicly available through the Krogan Lab GitHub: 

https://github.com/kroganlab. Further information on MiST scoring can be found on the Krogan 

Lab GitHub: https://github.com/kroganlab/mist. 
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Gene Ontology (GO) enrichments. For PH GO enrichments, proteins with significantly up- and 

down-regulated phosphorylation events (defined as adjusted p-value < 0.05, absolute(log2FC) > 

1, and observed in infected and mock samples) of each virus strain were collated at 18 hours 

post-infection (pH1N1, H3N2) and at 12 hours post-infection (H5N1) across all cell types, and 

tested for enrichment of GO terms from among all three ontologies: Biological Process, 

Molecular Function and Cellular Component. The over-representation analysis was performed 

using the enricher function of clusterProfiler package (version 3.12.0) in R with default 

parameters. GO terms were obtained from the R annotation package org.Hs.eg.db (version 

3.12.0). Significant terms were defined as those with adjusted p-value < 0.05. We selected a set 

of non-redundant terms following an automated clustering procedure. We first constructed a 

term tree based on distances (1-Jaccard Similarity Coefficients of shared genes in KEGG or 

GO) between the significant terms. The term tree was cut at a specific level (h = 0.99) to identify 

clusters of non-redundant gene sets. For results with multiple significant terms belonging to the 

same cluster, we selected the most significant term (i.e. lowest adjusted p-value) (Table S3.1). 

 

Network visualizations. All networks were generated and visualized in Cytoscape (version 

3.8.2) (Shannon et al., 2003). For the PPI-phosphorylation overlay network, proteins were 

selected and visualized if they were identified in the PPI data above MiST scoring thresholds 

and in the phosphorylation data at the restricted time points (18 hours post-infection with pH1N1 

and H3N2; 12 hours post-infection with H5N1) with an absolute(log2FC) > 1 and adjusted p-

value < 0.05 in any cell type. If a site was detected across multiple cell lines, the maximum 

absolute value, non-infinite fold-change was used. 
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Figure 3.1 Global proteomic profiling highlights modulated kinases in IAV infection. (A) 
Strategy for ex vivo global proteomic profiling with IAV infection. NHBE and PMA-differentiated 
THP-1 cells were mock-infected or infected with pH1N1, H3N2 or H5N1 IAV. Samples were 
harvested at four time points post-infection with time-matched mocks, processed for global 
abundance (AB) and phosphorylation (PH), and analyzed by mass spectrometry (LC-MS/MS). 
Significant changes in AB and PH were quantified, and PH data was then used to predict 
kinases with modulated activity during infection. (B) Bar chart plotting the total number of 
proteins quantified in the AB dataset at each time point with pH1N1, H3N2 or H5N1 IAV 
infection in THP-1 and NHBE cells. Total includes proteins that significantly increase in 
abundance (red), significantly decrease in abundance (blue) and do not significantly change in 
abundance (grey). Proteins identified only in IAV-infected samples or mock-infected samples 
are also shown. Totals are not available (N/A) for pH1N1 and H3N2 IAV at the 12 hour time 
point in THP-1 cells, as these samples did not pass MS quality control. (C) Bar chart plotting the 
total number of phosphorylation sites quantified in the PH dataset at each time point with 
pH1N1, H3N2 or H5N1 IAV infection in THP-1 and NHBE cells. Total includes the number of 
sites that significantly increase in phosphorylation (red), significantly decrease in 
phosphorylation (blue) and do not significantly change in phosphorylation (grey). Phosphosites 
identified in only IAV-infected samples or mock-infected samples are also shown. (D) Log2 
intensity of virus protein abundance (Log2 Intensity) for IAV NP protein detected over a time 
course of pH1N1, H3N2 and H5N1 infection in NHBE and THP-1 cells. Data points are not 
shown for pH1N1 and H3N2 IAV at the 12 hour time point in THP-1 cells, as these samples did 
not pass MS quality control. (E) Correlation of the AB and PH data. Phosphorylation events that 
are significantly correlated (AB-PH match; green), significantly anti-correlated (AB-PH 
mismatch; yellow), or not correlated (AB not significant; grey) with changes in protein AB are 
shown. Data is taken at 18 hours (pH1N1, H3N2) and 12 hours (H5N1) post-infection, and 
represented as a total collective across all virus strains and cell types. (F) Heatmap of kinase 
activity predictions from the phosphorylation data with pH1N1, H3N2 and H5N1 infection in both 
cell types at 18 hours post-infection (pH1N1, H3N2) and 12 hours post-infection (H5N1) with 
FDR < 0.05 and at least two known phosphorylation sites detected in the global 
phosphoproteomics dataset per kinase. Increased kinase activity is shown in red, and 
decreased kinase activity is shown in blue (kinase Z score); kinases that were not detected are 
shown in grey. (G) Map of IAV-human PPIs including 45 human proteins (small white circles) 
that interact with 10 IAV proteins (grey diamonds) and possess significantly changing 
phosphorylation sites (adjusted p-value < 0.05) at 18 hours post-infection (pH1N1, H3N2) and 
12 hours post-infection (H5N1). Significantly changing phosphorylation sites on each human 
protein (emanating large circular nodes) are stratified by IAV strain (pie sections) and colored by 
the maximum log2 fold change in phosphorylation compared to mock-infected controls 
(increased phosphorylation in red; decreased phosphorylation in blue). If a site was detected 
across multiple cell lines, the maximum absolute value, non-infinite fold-change was used. Dark 
gray color indicates the site was not detected. Phosphorylation sites are labeled by amino acid 
abbreviation (Serine S, Threonine T, Tyrosine Y) and position. IAV-human PPIs are represented 
by dark grey lines, and edges to phosphorylation site nodes are represented by lighter grey 
lines. 
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Figure S3.1 Strain-specific and shared phosphorylation sites, phosphorylation GO   
enrichments and AB and PH dataset correlation, Related to Figure 3.1. (A) Venn diagram 
of the total number of significantly changing phosphorylation events at 18 hours post-infection 
with pH1N1 and H3N2, and 12 hours post-infection with H5N1, collapsed across both cell types. 
(B) Heatmap of GO enrichments of the phosphorylation data at 18 hours post-infection with 
pH1N1 and H3N2, and 12 hours post-infection with H5N1, collapsed across cell types. 
Increasing shading intensity reflects increasing significance of the enrichment term. Significant 
GO terms were defined as those with adjusted p-value < 0.05, and non-redundant terms were 
selected by automated clustering procedure (see also Methods). The number of proteins per 
enriched cluster are shown in white if significant (adjusted p-value <0.05), and grey if not 
significant (adjusted p-value >0.05). (C) Scatterplot of proteins with log2 fold changes in protein 
abundance (x-axis) and log2 fold changes in phosphorylation (y-axis), showing significant but 
weak correlation (R=0.18). Data points are colored as in Figure 3.1E, with changes in 
phosphorylation significantly correlated (AB-PH match; green), significantly anti-correlated (AB-
PH mismatch; yellow) or not correlated (AB not significant; grey) with changes in protein 
abundance. 
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SUPPLEMENTAL TABLES 

Table S3.1 Global protein abundance and phosphorylation data, phosphorylation GO 
enrichments and predicted kinase activities, Related to Figures 3.1 and S3.1. Full list of 
global protein abundance measurements (AB_Full tab), list of significant protein abundance 
measurements (AB_Sig tab), full list of phosphorylation site measurements (PH_Full tab), and 
list of significant phosphorylation site measurements (PH_Sig tab) with pH1N1, H3N2 and H5N1 
IAV infection in NHBE and THP-1 cells. All tabs report the log2 fold change in protein 
abundance and phosphorylation at the specified site, as well as adjusted p-value. Full lists 
report measurements from all time points (3hr, 6hr, 12hr, 18hr). Significant lists report 
measurements at 18 hours post-infection with pH1N1 and H3N2, and at 12 hours post-infection 
with H5N1, with selection criteria of: (1) adjusted p-value < 0.05; and (2) absolute(log2FC) > 1 
(see also Methods). Empty data cells represent no protein detected at the indicated time point, 
IAV strain or cell type. Column descriptions for all AB and PH tabs are reported 
(ABPH_Column_Descriptions). GO enrichments for significantly changing phosphorylation sites 
are reported at 18 hours post-infection with pH1N1 and H3N2, and at 12 hours post-infection 
with H5N1, in NHBE and THP-1 cells with the full enrichment list (PH_GO_full tab) and with 
heatmap selection criteria of adjusted p-value < 0.05 and automated clustering to select non-
redundant terms (see also Methods) (PH_GO_selection tab). Column descriptions for GO lists 
are provided (GO_List_Column_Descriptions tab). Finally, a full list of predicted kinase activities 
at each time point post-infection with pH1N1, H3N2 or H5N1 in NHBE and THP-1 cells is 
reported (Predicted_Kinase_Activity tab). Column descriptions for Kinase Activity are provided 
(KinaseActivity_Column_Description tab). Table is available online only as supplemental 
material. 
 
Table S3.2 AB and PH liquid chromatography (LC) and mass spectrometry (MS)  
acquisition parameters, Related to Methods. LC and MS acquisition parameters are reported 
for the three instruments that acquired AB and PH data in our study. A table summary is 
included matching each instrument to their respective LC and MS parameters tabs and to the 
global proteomic data collected on each instrument, including data type, cell type and IAV strain. 
Table is available online only as supplemental material. 
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CHAPTER 4 

Patient Exome Sequencing Identifies Gene Variants Encoding Proteins that are 

Regulated in Abundance and Phosphorylation during IAV Infection 
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To investigate the clinical relevance of our proteomics dataset, we next explored if proteins we 

found to be regulated ex vivo during infection were implicated in patient responses to IAV. We 

obtained de-identified human samples following informed consent from individuals at five 

eMERGE study sites and the St. Jude Children's Hospital. We identified 495 individuals of 

homogeneous European American ancestry inferred by using a clustering approach, of which 

161 were hospitalized with severe influenza infection and 334 served as outpatient controls 

(Figure 4.1A). We used ICD9 codes as the phenotypic trait for the analysis. We sequenced the 

whole exomes of the 495 participants, with 97% of targeted bases covered at a depth of 20x or 

greater. We identified a total of 3,621,267 variants in 22 million base pairs across the coding 

regions of 22,621 genes, of which 90% were rare variants (minor allele frequency (MAF) < 1%). 

There was no evidence of site-specific effects or other systematic biases in the analysis of the 

filtered data (Methods). 

 

We first analyzed predicted loss-of-function (pLOF) variants from the patient dataset to identify 

potential functional variation in proteins that we identified as IAV-human PPIs, that are regulated 

in protein abundance (AB) during IAV infection, or that are regulated in protein phosphorylation 

(PH) during IAV infection. We applied methods suitable to identify nonsynonymous exonic, 

frameshift substitution, and stop gain/loss exonic variants with MAF < 1% (Methods). Because 

the power to detect singletons is limited by their low frequency, we used a collapsing method by 

which rare de novo mutations that can likely impact protein levels are considered jointly for 

association analysis. With this approach, we identified five pLOF variants out of 214 PPI genes, 

24 pLOF variants out of 3656 AB genes, and 49 pLOF variants out of 3658 PH genes (FDR < 

0.05) (Table S4.1). From the list of phosphorylation sites identified in our ex vivo proteomic 

data, we then identified pLOF at specific phospho-serine, phospho-threonine, and phospho-

tyrosine positions reported in PhosphoSitePlus (Hornbeck et al., 2015) for each of the PPI, AB 

and PH factors (Table S4.1, Methods). We identified phospho-variants in six PPI genes, 75 AB 



 58 

genes and 146 PH genes (Table S4.1). One PPI gene highlighted by both analyses is AHNAK, 

which was found to contain phosphorylation disruption mutations at serine position 210 

(AHNAK_S210), and differed significantly between the hospitalized patients and the control 

groups (FDR < 0.05) (Figure 4.1B, Table S4.1). The rare variant discovery power for 

phosphorylation disrupting mutations was limited when not restricted to pLOF variants. 

 

Hypothesizing that disease outcome may correlate with variations in genes involved in the 

immune response, we next asked if patient genetic variants involved in immune response are 

regulated in protein abundance and phosphorylation during IAV infection. We focused on 302 

genes that were enriched in the severe disease cohort and involved in immune signaling 

pathways, specifically in TRIF(TICAM1)-mediated TLR4 signaling, interferon alpha/beta 

signaling, and ERK/MAPK signaling (Table S4.1). We identified an enrichment of rare variants 

with pLOF at 59 loci that underlie severe influenza disease and other life-threatening viral 

diseases in previously healthy patients (FDR < 0.05). These 59 loci were enriched for variants 

that have genetic defects, including pLOF or splice site disruptions (Table S4.1). To assess 

whether these 59 pLOF genes correspond to proteins that change in abundance or 

phosphorylation during IAV infection, we performed permutation tests (Methods). We detected 

17/59 and 27/59 genes in the protein abundance and phosphorylation datasets, respectively. 

15/17 have significant changes in protein abundance, and 25/27 have significant changes in 

protein phosphorylation during IAV infection (Figure 4.1C, Table S4.1). We found the sets of 

15/59 (AB) genes and 25/59 (PH) genes represent a statistically significant enrichment in 

identifying proteins with significant protein abundance and phosphorylation changes during IAV 

infection compared to randomized gene sets within the 302 inborn error genes (Figure 4.1C, 

see also Methods). This suggests that our global proteomics datasets highlight genes that may 

be implicated in regulating influenza disease severity. 
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Interestingly, the majority of the 15 abundance proteins, identified as pLOF variants in patients 

with severe disease, decrease in abundance with pH1N1, H3N2 and H5N1 IAV infection, 

particularly in THP-1 cells (Figure 4.1D). Nine of these proteins (PPP2CA, PPP2R1A, PTPN6, 

STAT1, UBA7, RIPK2, TAB1, PDE12 and CD14) are involved in cytokine signaling, interleukin 

signaling and Toll-like receptor (TLR2, TLR4, TLR7, TLR8, TLR9) signaling cascades. These 

pathways are commonly activated in host cells upon virus detection to restrict virus replication. 

IAV may downregulate these proteins to suppress host innate immune signaling or modulate 

host response, particularly in macrophage cells, and to establish infection. In support of this, 

PP2A, comprised of PPP2CA catalytic and PPP2R1A regulatory subunits, was shown to be 

required for efficient IAV replication, and acts not by altering immune signaling but rather by 

modulating cell survival pathways to prolong survival of cells infected with different H1N1-, 

H3N2- and H5N1-subtyped IAV (Gerlt et al., 2021). STAT1 inactivity due to a tyrosine point 

mutation that mimics non-phosphorylated state reduced early induction of interferon-stimulated 

genes (ISGs) during H1N1 IAV infection and resulted in high susceptibility to IAV infection in 

mouse models (Liu et al., 2021). pLOF variants of these genes in human patients may not allow 

effective restriction of virus replication and may not allow effective viral clearance, and thus 

increase disease severity. 

 

From the phosphorylation statistical enrichment, the 25 phosphorylated proteins include 54 

phosphorylation sites that significantly changed with pH1N1, H3N2 and H5N1 infection in NHBE 

and THP-1 cells (Figure 4.1E). Differential phosphoregulation patterns emerge between IAV 

strains and cell types. For example, H3N2 strongly upregulates phosphorylation sites on 

proteins (e.g. SNW1_224, PML at four sites, SP110_244, STAT1_727, TNFAIP3 at five sites 

and NCOR1 at two sites) that are involved in NOTCH3 intracellular, NOD-like receptor and JNK 

signaling in both NHBE and THP-1 cells. In contrast, pH1N1 and H5N1 upregulate 

phosphorylation on a smaller subset of these proteins, predominantly in THP-1 cells. This may 
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indicate that H3N2 is less effective at suppressing the innate immune response, making it 

potentially less severe than pH1N1 and H5N1. Similar phosphoregulation patterns emerge 

between the three IAV strains as well. For example, a number of phosphorylation sites on 

proteins were downregulated by at least two of the three strains in THP-1 cells (e.g. 

NCOR1_1750 and NCOR1_2396, MAP3K1_292 and MAP3K1_923, CREBBP_2063 and 

TRAF3_29) and could represent immune cell-specific targets of IAV dampening host response 

to infection. For pH1N1 and H3N2, these similarities converged on genes involved in 

DDX58/IFIH1-mediated induction of interferon alpha and beta. Collectively, these analyses 

identify severe influenza disease-associated genes whose protein abundance and 

phosphorylation are regulated by IAV during infection, and could be potential therapeutic protein 

targets to improve disease outcome. 
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Methods 

Research subjects. We obtained de-identified human samples following informed consent from 

individuals at five eMERGE study sites (Cincinnati Children's Hospital Medical Center 

(CCHMC), Marshfield, Mt Sinai, Northwestern University, and Vanderbilt) and the St. Jude 

Children's Hospital. We based the diagnosis of IAV infection on established clinical criteria. 

Approval for human subjects research was obtained from the institutions involved. 

 

Whole-exome capture and DNA sequencing. Exome enrichment was accomplished with the 

NimbleGen SeqCap EZ Exome+UTR (Roche NimbleGen, version 2) that targets 64 Mb of 

coding exons and miRNA regions plus 32 Mb untranslated regions (UTRs) for solution-based 

capture following the manufacturer's protocol. Library preparation was performed with 200ng of 

genomic DNA using KAPA HyperPlus library kit (Roche, KK8514) using adaptors compatible 

with Illumina sequencer on the Hamilton STAR automated platform. We performed 

amplification, pooling, hybridization, washing, and elution according to the manufacturer's 

instructions. We assessed the libraries for quality with a high sensitivity DNA ScreenTape assay 

on the 2,200 TapeStation System (Agilent) and quantity with KAPA Library Quantification Kits 

for Illumina platforms (Kapa Biosystems). The libraries were diluted to 2nM and clustered using 

an Illumina cBot with a HiSeq 3000/4000 paired-end cluster kit on a patterned flow cell and a 

HiSeq 3000/4000 SBS kit (300 cycles, Illumina v2.5 reagents) on the HiSeq 4000 sequencing 

platform. 

 

Data processing. Each individual's whole exome sequencing (WES) data were mapped to the 

human reference genome (build hg19) using the Burrows-Wheeler Aligner (v0.7) (Li and Durbin, 

2009). After marking duplicates using Picard (http://broadinstitute.github.io/picard/), the Genome 

Analysis Toolkit (GATK v3.1) was used to remove duplicates, perform local realignment, and 

map quality score recalibration to produce a BAM file (DOI:10.1101/201178). Single nucleotide 
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polymorphism (SNP) calls were made by the HaplotypeCaller v3.4, filtering poor calls by the 

Variant Quality Score Recalibration (VQSR) filter from GATK (DOI:10.1101/201178). We sorted 

the aligned reads based on genome position using Picard (http://broadinstitute.github.io/picard/) 

and recalibrated the base quality score using default parameters. Each sample's final gvcf files 

were streamed to Illumina DRAGEN Bio-IT Platform (v3.1, Illumina), applying the default 

parameters in the '--vc-enable-gatk-acceleration true' option to identify and remove low-quality 

variants. We identified 3,621,267 genetic variants from the exome sequencing data after quality 

control, of which 3,256,844 had minor allele frequency (MAF) < 0.1%. 

 

Gene-based association and phosphorylation site prediction. Using a gene-based 

association method with various filters applied, we binned together the predicted loss-of-function 

(pLOF) variants (nonsynonymous exonic, frameshift substitution, and splicing variants) to 

identify their contributions to disease with good power. Nonsynonymous exonic, frameshift 

substitution, and splicing variants with MAF < 1% were collected. Variant annotations and pLOF 

were predicted by ANNOVAR using dbNSFP (Wang et al., 2010). A variant was pLOF if the 

variant was predicted deleterious from any of the following annotation algorithms: SIFT and 

SIFT 4G (Vaser et al., 2016), PolyPhen-2 HDIV and PolyPhen-2 HVAR (Adzhubei et al., 2010), 

likelihood ratio test (LRT), and Mutation Taster (Schwarz et al., 2014). SKAT-O tests (Lee et al., 

2012) were applied, adjusting for hospital, age, sex, and top 10 principal components (PCs). 

False discovery rate (FDR) < 0.05 was applied to identify genes as significant (Table S4.1). 

Each base position was converted to codon coding using Ensembl Variant Effect Predictor 

(VEP) (McLaren et al., 2016) and RefSeq as reference data. Kinase-specific phosphorylation 

site prediction was performed on the tested variants from the sets of genes involved (FDR < 

0.05). Phospho-serine, phospho-threonine, and phospho-tyrosine sites were predicted using 

PhosphoSitePlus (Hornbeck et al., 2015). The prediction scores greater than and equal to 0.5 
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were considered predictive of a protein phosphorylation site. The rare variant discovery power 

for phosphorylation disrupting mutations was limited when not restricted to pLOF variants. 

 

Global abundance and phosphorylation permutation tests. We first defined the 

experimental gene set, and compared the overlap between the 59 rare-variant pLOF severe 

disease-associated genes and the IAV-infectivity global abundance (AB) and phosphorylation 

(PH) profiling data. 17/59 genes (AB) and 27/59 (PH) genes were detected in our datasets. 

15/17 (AB) and 25/27 (PH) showed significant changes in protein abundance or phosphorylation 

(Table S4.1), and were plotted (Figure 4.1C, black dots). Significant changes in protein 

abundance were defined as: (1) limited to one time point at 18 hours post-infection for pH1N1 

and H3N2, and at 12 hours post-infection for H5N1; and (2) adjusted p-value < 0.05. Significant 

changes in protein phosphorylation were defined as: (1) limited to one time point at 18 hours 

post-infection for pH1N1 and H3N2, and at 12 hours post-infection for H5N1; (2) requiring site 

detection in at least 3 IAV-infected replicates or 3 mock replicates; and (3) adjusted p-value < 

0.05. The additional analysis restriction for phosphorylation sites increases detection reliability 

and confidence. We next identified a background of "random samples'' for the permutation tests. 

The 59 severe disease pLOF genes were identified from a larger set of 302 inborn error genes. 

From the set of 302 inborn error genes, we detected 87 proteins in the AB data and 113 

proteins in the PH data. Background gene sets were size-matched to experimental gene sets 

and defined at 17 (AB) and 27 (PH). Randomized sets of 17/87 and 27/113 genes were used as 

background ("random samples") for AB and PH permutation tests, respectively. Permutation 

tests were then performed by comparing the experimental sets of significantly changing AB and 

PH proteins (Figure 4.1C, black dots) to 1000 iterations of randomly-selected, size-matched 

background gene sets (“random samples”), and plotting the number of corresponding proteins 

with significant changes in protein abundance or phosphorylation from each randomized 

iteration (Figure 4.1C, blue dots). This enabled the calculation of an empirical p-value, which 



 64 

was defined as the fraction of randomly sampled results that were greater than the true, 

experimentally-derived result. 
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FIGURE AND LEGEND 

 

Figure 4.1 Patient exome sequencing identifies gene variants encoding proteins that are 
regulated in abundance and phosphorylation during IAV infection. (A) Schematic 
representation of the sample collection and data analysis pipeline for identifying differential 
mutations in genes of patients associated with severe influenza disease. (B) Sequence LOGO 
display for phosphorylation disruption mutations found in AHNAK at serine position 210 
(AHNAK_S210), using motifs identified by pLOF analysis as likely to be loss of phosphorylation 
(see also Methods). The sequence LOGO visualizes the results of a multiple sequence 
alignment encompassing AHNAK_S210P/Q in the middle. The height of each letter stack 
indicates the sequence conservation at that position, and the height of symbols within the stack 
indicates the relative frequency of each amino acid at that position. Sequence LOGO was 
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created using WebLogo 2.8.2 (Crooks et al., 2004). (C) Permutation tests identifying genes 
associated with severe influenza disease that were significantly changing in global protein 
abundance (AB) and phosphorylation (PH) during IAV infection. From the set of 59 pLOF severe 
influenza disease genes, 15 proteins were identified as significantly changing in AB and 25 
proteins were identified as significantly changing in PH (black dots). Genes from the 59 pLOF 
severe influenza disease gene set are significantly enriched compared to 1000 iterations of 
randomly sampled background (blue dots). Background was determined by selecting size-
matched sets of randomized genes within the total set of inborn error genes and plotting the 
number of proteins from that randomized gene set that significantly changed during infection in 
AB and PH data (see also Methods). (D) Proteins from the AB dataset significantly enriched 
within the 59 pLOF severe influenza disease genes (black dot in (C), AB tab) in NHBE and 
THP-1 cells at 18 hours post-infection with pH1N1 and H3N2 IAV infection, and at 12 hours 
post-infection with H5N1 IAV infection. Log2 fold change in protein abundance (log2FC AB) is 
shown (increased AB in red, decreased AB in blue). Proteins not detected are shown in grey. 
(E) Proteins and corresponding phosphorylation sites (Protein_AminoAcidSite) from the PH 
dataset significantly enriched within the 59 pLOF severe influenza disease genes (black dot in 
(C), PH tab) in NHBE and THP-1 cells at 18 hours post-infection with pH1N1 and H3N2 IAV 
infection, and at 12 hours post-infection with H5N1 IAV infection. Log2 fold change in protein 
phosphorylation (log2FC PH) is shown (increased PH in red, decreased PH in blue). Grey 
boxes highlight proteins discussed in the text. 
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SUPPLEMENTAL TABLE 

Table S4.1 Identification of rare gene variants in patients with severe influenza disease 
and permutation tests with global proteomic profiling data, Related to Figure 4.1. 
Association test results between hospitalized and non-hospitalized influenza disease patients 
with pLOF variants in genes mapping back to PPI factors (PPIgenes_pLOF tab), AB proteins 
(ABgenes_pLOF tab) and PH proteins (PHgenes_pLOF tab). Genes with phosphorylation 
disruption mutations in identified pLOF variants that overlapped with phosphorylation sites with 
significant changes in IAV infection mapping back to PPI factors 
(PPIgenes_pLOF_and_PHsites_ovlpd tab), AB proteins (ABgenes_pLOF_and_PHsites_ovlped 
tab) and PH proteins (PHgenes_pLOF_and_PHsites_ovlped tab). Association test results 
between hospitalized patients and non-hospitalized patients identifying inborn error genes 
related to immunity with pLOF variants extracted (pLOF_in_Inborn_Error_Genes). A detailed 
mutation test report is included for identifying inborn errors in immune genes in hospitalized 
patients vs non-hospitalized patients with pLOF variants extracted (pLOF_variants_severe_flu 
tab). Finally, lists are included for the subsets of 59 pLOF genes in severe influenza disease 
with significant changes in protein abundance (n=15 proteins) (InbornErrorGenes_AB tab) and 
protein phosphorylation (n=25 proteins, 54 sites) (InbornErrorGenes_PH tab). Empty cells 
represent no protein detected at the indicated time point, virus strain or cell type. Table available 
online only as supplemental material. 
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CHAPTER 5 

siRNA Knockdown Identifies Pro-viral and Antiviral Factors of IAV and SARS-CoV-2 

Infection 
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To identify host proteins with antiviral and pro-viral activity, we adapted an arrayed siRNA 

screening approach (Dornfeld et al., 2018) in A549 cells to knock down select human proteins 

from the PPI and phosphorylation (PH) datasets (Figure 5.1A). A total of 290 genes were 

knocked down, and include: (1) 212/214 IAV interacting proteins that were targetable by siRNA; 

and (2) a panel of 64 kinases (including 12 kinases from Figure 3.1F) and 14 phosphorylated 

proteins (Table S5.1). A549 knockdown cells were assayed for cell viability, and infected with 

Influenza A/WSN/1933 H1N1. Percent infection was quantified by immunostaining for viral 

protein NP and measuring percent NP-positive (%NP+) cells by flow cytometry. Log2 fold 

changes in IAV infection were calculated by normalizing %NP+ cells for experimental siRNA 

against the mean of multiple non-targeting (NT) control siRNA per replicate. Cell viability 

staining shows siRNA knockdown cells were above 92% viable (Table S5.1). Since siRNA 

knockdown alone did not meaningfully reduce cell viability, we next asked if cell viability 

resulting from synthetic lethality of siRNA knockdown and IAV infection biased the log2 fold 

changes in IAV infection. Increased or decreased IAV infection was not correlated with 

increased or decreased viability of cells with siRNA knockdown and IAV infection (Figure 5.1B, 

Table S5.1), therefore no gene knockdowns were removed from analysis due to toxicity. We 

performed the assay in biological duplicate, with the two replicates showing a correlation R2 = 

0.78 for log2 fold change in IAV infection (Figure 5.1C). As expected, NT control siRNA did not 

affect IAV infection (black dots, Figure 5.1C), and IAV NP-targeting siRNA inhibited IAV 

infection (green dots, Figure 5.1C). 

 

We classified pro-viral and antiviral factors using a threshold log2 fold change of <-2 or >2, 

respectively, for the IAV PPI and PH screens (Figure 5.1D-E, Table S5.1). Using this cutoff, for 

the PPI screen, we classified 44 genes as regulators of IAV infection (Figure 5.1D). 37 were 

classified as pro-viral and seven were classified as antiviral factors (Figure 5.1D). These 44 

functional proteins interact with 12 IAV proteins, corresponding to at least one functional 
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interaction per IAV protein. In comparison to previous genome-wide siRNA knockdown studies 

(Brass et al., 2009; Karlas et al., 2010; König et al., 2010; Ward et al., 2012), we identify 37 

novel human proteins that functionally affect IAV infection. Whereas these studies achieve a 

<2% hit rate for identifying genes that functionally affect IAV infection, our AP-MS-based 

strategy achieves a 20.6% hit rate for identifying functional nodes and represents a notably 

higher hit rate. This is consistent with previous findings that genetic screens based on PPI data 

show ten-fold higher hit rates for identifying functional factors of infection by IAV and other 

viruses (Hiatt et al., manuscript accepted for publication in Nat. Commun.; Watanabe et al., 

2014). From the PH targets, 10 were classified as pro-viral factors, and no targets were 

classified as antiviral factors (Figure 5.1E). Collectively among both screens, 47 host factors 

that regulate IAV infection are pro-viral, highlighting the strength of proteomics-based 

technologies in identifying human protein nodes critical to infection. 

 

At the time of this report, SARS-CoV-2 variants of concern are continuing to surge, and it is 

predicted SARS-CoV-2 will circulate as an endemic virus during the typical flu season (Phillips, 

2021). It is important to understand the molecular differences between these two co-circulating 

endemic respiratory viruses, and to identify host factors essential for their replication. To identify 

human proteins essential for both viruses, we knocked down the 54 IAV PPI and PH pro-viral 

and antiviral factors in A549 cells, and challenged knockdown cells with SARS-CoV-2 infection 

(Figure S5.1A, Methods). A549 cells were reverse transfected in six or nine replicates with 

gene-targeting siRNA or control siRNA, including non-targeting siRNA and ACE-2-targeting 

siRNA. Cells were assessed for viability with siRNA knockdown by cytotox staining, and infected 

with SARS-CoV-2 at MOI 0.1 PFU/cell for 72 hours. SARS-CoV-2 infection was quantified by 

RT-qPCR against viral N protein. Cell viability staining shows siRNA knockdown cells were 

above 65% viable, with a median cell viability ranging 94.3-97.3% across all siRNA knockdown 

cells and replicates (Table S5.1). The log2 fold change in SARS-CoV-2 infection was calculated 
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for each experimental siRNA against a replicate-matched non-targeting control siRNA 

(Methods). We classified pro-viral and antiviral factors using a threshold of median log2 fold 

change <-2 or >2, respectively, and identified three IAV PPI factors that regulate SARS-CoV-2 

infection (Figure 5.1F, Figure S5.1B, Table S5.1). While no siRNA knockdowns from the PH 

dataset passed our log2 fold change thresholding criteria for SARS-CoV-2 (Figure S5.1B), 7/10 

PH targets mildly decreased SARS-CoV-2 infection with significance (p-value < 0.02) (Table 

S5.1). This may suggest an alternative perturbation method (e.g. drug inhibition) is needed to 

produce a robust effect on infection. To assess if there are similarities in kinase activities 

between IAV and SARS-CoV-2, we overlaid our phosphorylation data of IAV infection in human 

NHBE and THP-1 cells with phosphorylation data of SARS-CoV-2 infection in African green 

monkey Vero E6 cells (Bouhaddou et al., 2020) and human lung epithelial Calu-3 cells (Thorne 

et al., 2021). We identified eleven shared kinases (Figure S5.1C). Interestingly, these kinases 

share similar predicted kinase activity profiles upon infection with both viruses in their respective 

cell types (Figure S5.1D). Infection with IAV and SARS-CoV-2 resulted in increased activity of 

MAPK signaling members (MAP2K3, MAP2K6, MAPKAPK3, MAPKAPK5, MAPKAPK2, 

MAPK13) and RPS6K signaling members (RPS6KB1 and RPS6B2), and deceased activity of 

CDK2. These kinases provide examples of similar signaling signatures initiated by IAV and 

SARS-CoV-2, and may represent druggable pan-respiratory virus targets that modulate virus 

infection. 

 

Collectively from the IAV PPI screen, IAV PH screen, and SARS-CoV-2 targets screen, we 

classified a total of 54 unique genes as regulators of viral infection (Figure 5.1G). All 54 genes 

regulate IAV infection, and three of these 54 genes also regulate SARS-CoV-2 infection. Two 

gene hits from the IAV PPI screen, PRKDC and AHNAK, are notable as they are IAV-interacting 

proteins with multiple IAV-regulated phosphorylation sites. PRKDC interacts with pH1N1, H3N2 

and H5N1 M2 (Figure 2.2, Table S2.1), is predicted to increase in kinase activity during pH1N1 
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and H3N2 IAV infection (Figure 3.1F) and has six IAV-regulated phosphorylation sites itself 

(Figure 3.1G), PRKDC knockdown also increased IAV infection over 4-fold, identifying PRKDC 

as an antiviral factor (Figure 5.1G). AHNAK is a high confidence H5N1 NEP interactor in NHBE 

cells, and is identified in pH1N1 and H3N2 NEP pull-downs below our stringent scoring 

thresholds, indicating it might not be strain-specific (Figure 2.2, Table S2.1). AHNAK also has 

multiple phosphorylation events that are differentially regulated by the three IAV strains (Figure 

3.1G), and it acts as a pro-viral factor with siRNA knockdown decreasing IAV infection (Figure 

5.1G). Among the gene hits from the IAV PH screen, two IAV-regulated phosphoproteins and 

eight kinases were classified as pro-viral factors. These include two Aurora kinases (AURKA 

and AURKB), and four MAPK family members (MAPK12, MAPK3, MAPKAPK2, and 

MAPKAPK5). From the SARS-CoV-2 infection screen, siRNA knockdown of COPB1 (IAV M2 

interactor) and AHNAK (IAV NEP interactor) decreased both IAV and SARS-CoV-2 infection 

(Figure 5.1G). In contrast, siRNA knockdown of RUVBL2 (IAV PB1 interactor) decreased IAV 

infection but increased SARS-CoV-2 infection (Figure 5.1G). RUVBL2 phenotype is novel for 

both viruses, and it is unclear how RUVBL2 differentially modulates infection. While we report 

these three proteins as IAV PPIs, to our knowledge, none are previously reported as PPIs with 

SARS-CoV-2 proteins. However, AHNAK was profiled as an RNA binding protein whose RNA 

binding kinetics peak early in SARS-CoV-2 infection (Kamel et al., 2021). Collectively, the two 

pro-viral factors for IAV and SARS-CoV-2 infection (COPB1 and AHNAK) represent potential 

gene targets for antiviral therapies against both respiratory viruses. 
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Methods 

IAV siRNA screen  

siRNA reverse transfection. A549 cells were reverse transfected in 24-well format with 290 

gene-targeting siRNA (Dharmacon, siGENOME siRNA SMARTpool cherry picked pre-designed 

library, 0.1nmol/well), non-targeting control siRNA (Dharmacon, D-001206-14-05) or NP-

targeting control siRNA (Dharmacon, custom sequence 5’-GGAUCUUAUUUCUUCGGAGUU-

3’). In each well of a 24-well plate (Fisher, 08-772-1), siRNA was diluted to final concentration 

75nM gene-targeting siRNA, 75nM non-targeting siRNA, or 30nM NP-targeting siRNA in 100μL 

with OptiMem Reduced Serum Media (Thermo Fisher, 31985062). One NT and one NP siRNA 

per 24-well plate were included for each replicate. 2μL/well Lipofectamine RNAiMAX 

Transfection Reagent (Thermo Fisher, 13778075) and 98μL/well OptiMem media were mixed 

and incubated for 5 minutes. 100μL RNAiMAX mix and 100μL siRNA dilution were combined in 

each well, mixed and incubated for 20 minutes. During this incubation, A549 cells were 

trypsinized with 0.25% trypsin EDTA (Fisher, MT 25-053-CI), pelleted at 1200rpm for 5 minutes, 

and resuspended in DMEM with L-glutamine without sodium pyruvate and 20% FBS at a 

density of 3x10^5 cells/mL. After the 20-minute incubation, 200μL of 6x10^4 A549 cells were 

added to each well and returned to incubate at 37ºC and 5% CO2 for 48 hours. The experiment 

was performed in two sets for PPI and PH targets, each with two replicates per gene to assay 

IAV infectivity and one replicate per gene to assay cell viability. 

 

IAV infections. All IAV infections were performed in accordance with BSL2* biosafety 

procedures. A549 cells were infected in 24-well format 48 hours after reverse transfection. Cell 

media was aspirated and cells were washed with 400μL 1X PBS (Fisher, MT 21-030-CV). Cells 

were infected at MOI 0.1 with Influenza A/WSN/1933 H1N1 virus strain (kindly provided by S. 

Chanda lab) diluted in a total of 100μL 0.5% Bovine Serum Albumin (BSA) (GoldBio, A-420-

100) in 1X PBS per well. Plates were returned to incubate for 1 hour at 37ºC and 5% CO2, and 
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rocked by hand every 10 minutes during incubation. Following adsorption, virus inoculum was 

aspirated, and 400μL post-infection media (DMEM with L-glutamine without sodium pyruvate, 

0.1% FBS, 0.3% BSA, 0.5ug/mL TPCK-treated trypsin [Sigma-Aldrich, T8802-50MG], 1X P/S) 

was added to each well. Cells were returned to incubate at 37ºC and 5% CO2 for 24 hours. 24 

hours post-infection, cells were trypsinized with 0.25% trypsin, moved to a 96-well U-bottom 

plate (Fisher 08-772-17), pelleted at 800 x g for 3 minutes, and fixed in 150μL 1% formaldehyde 

(Sigma, F8775-500ML) in 1X PBS. Cells were stored at 4ºC until cell staining and flow 

cytometry. 

 

Cell staining and flow cytometry. Percent IAV infection of A549 cells was quantified by 

immunostaining for IAV nucleoprotein (NP) followed by flow cytometry. To remove and 

exchange buffers between incubations and washes, cells were pelleted in 96-well U-bottom 

plates at 800 x g for 3 minutes. Fixed A549 cells were pelleted and incubated in 100μL block 

and permeabilization buffer (1% BSA, 0.1% saponin [Sigma, 47036-50G-F] in 1X PBS) for 30 

minutes at room temperature. Cells were pelleted and incubated with 100μL 1:1000 dilution of 

anti-Influenza A nucleoprotein (NP) [HT103] antibody (Kerafast, EMS010) in block and 

permeabilization buffer for 1 hour at room temperature. Cells were pelleted, washed once with 

200μL wash buffer (1% BSA in 1X PBS) and incubated in 100μL 1:1000 goat anti-mouse IgG 

(H+L) secondary antibody Alexa Fluor Plus 488 (Fisher, A32723) in block and permeabilization 

buffer for 1 hour at room temperature in the dark. Cells were washed once with 200μL wash 

buffer and fixed in 150μL 1% formaldehyde in 1X PBS. Samples were run in 96-well format on 

an Attune NxT flow cytometer (Thermo Fisher). A549 cells were gated at forward side scatter 

voltage 80 and side scatter voltage 275 (R1, A549 singlet cells), and Alexa Fluor Plus 488 

signal quantified by blue laser 1 at voltage 205 (percent NP+). 100μL of cells were acquisitioned 

and all events recorded at 1000μL/min. 
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siRNA viability of A549 knockdown cells was quantified by live-cell amine-reactive viability 

staining to fluorescently label non-viable cells followed by flow cytometry. 48 hours after 

transfection, cells were trypsinized with 0.25% trypsin, neutralized with DMEM with L-glutamine 

without sodium pyruvate, 10% FBS and 1X P/S, and transferred from 24-well plates to 96-well U 

bottom plates. To remove and exchange buffers between incubations and washes, cells were 

pelleted in 96-well plates at 800 x g for 3 minutes. Cells were pelleted and incubated in 

100μL/well 1:500 Ghost Dye Red 710 (Tonbo Biosciences, 13-0871-T100) in 1X PBS for 20 

minutes at room temperature protected from light. Cells were pelleted and washed twice with 

100μL/well MACS buffer (PBS no calcium or magnesium [Fisher, MT-21031CV], 2mM EDTA 

[Fisher, MT-46034CI], 0.5% BSA; filtered through 500mL EMD Millipore Stericup™ Sterile 

Vacuum Filter Units .22 μM PVDF [Fisher, SCGVU05RE]). Cells were pelleted and 

resuspended in 150μL 1X PBS, and immediately analyzed in 96-well format on an Attune NxT 

flow cytometer (Thermo Fisher). A549 cells were gated at forward side scatter voltage 60 and 

side scatter voltage 280 (R1, A549 singlet cells), and Ghost Dye Red 710 signal quantified by 

red laser 2 at voltage 260 (dead cells). 100μL of cells were acquisitioned and all events 

recorded at 1000μL/min.  

 

Final cell gating and quantification for data analysis of %Ghost 710+ cells (percent dead cells) 

and %NP+ cells (percent IAV infectivity) was performed with FlowJo version 9.3.2 software. For 

cell viability, %Ghost710+ cells (percent dead cells) and %Ghost 710- cells (percent alive cells) 

for each siRNA knockdown are reported as calculated with FlowJo (Table S5.1). For IAV 

infectivity, singlet cell count and %NP+ cells for each experimental siRNA are reported as 

calculated with FlowJo (Table S5.1). Singlet cell count was used as a readout for cell viability of 

A549 cells with siRNA knockdown and IAV infection. Singlet cell count and %NP+ cells for each 

experimental siRNA was normalized to the mean cell count or %NP+ cells of non-targeting (NT) 

control siRNA corresponding to each set of 24-well plates transfected, infected, collected and 
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stained concurrently. Log2 fold changes in viability (singlet cell count experimental siRNA vs NT 

siRNA) and percent IAV infection (%NP+ cells experimental siRNA vs NT siRNA) were 

calculated from these values (Table S5.1). 

 

SARS-CoV-2 siRNA screen 

siRNA transfections. A549 cells stably expressing the ACE2 receptor (A549-ACE2) were 

kindly provided by O. Schwartz and were maintained at 37°C, 5% CO2 in DMEM supplemented 

with 10% FBS, Pen/Strep and 10 μg/mL blasticidin S (Sigma, SBR00022). An siRNA library 

(Dharmacon, OnTargetPlus siRNA SMARTpool cherry picked pre-designed library, 2nmol/well) 

of 54 target genes of interest, a non-targeting control and an ACE2-targeting control was used 

to transfect A549-ACE2 cells, previously seeded at a density of 6250 cells per well in a 384-well 

plate. Briefly, 0.1μL of Lipofectamine RNAiMAX reagent and 4pmoles of each siRNA pool were 

diluted in a final volume of 10μL of OptiMEM. Following 5 minutes of incubation, 10μL of the 

siRNA-lipid complexes were added to the cells, which were then incubated for 48 hours. Cells 

were then either infected with SARS-CoV-2 or left untreated for another 72 hours to determine 

cell viability using the CellTiter-Glo luminescent viability assay (Promega, G7570) according to 

the manufacturer’s protocol. Luminescence was measured in a Tecan Infinity 2000 plate reader, 

and the percentage of metabolically active cells was calculated by normalizing the values to 

those obtained in untreated (100% viability) and 4% formalin-treated (0% viability) conditions 

included in each experiment. Experiments were performed in technical triplicate, with two 

biological replicates for PPI targets (total n=6 per gene) and three biological replicates for PH 

targets (total n=9 per gene). 

 

Virus infections and qRT-PCR quantification. The SARS-CoV-2 

(BetaCoV/France/IDF0372/2020) strain was a kind gift from the National Reference Centre for 

Respiratory Viruses at Institut Pasteur Paris, and was propagated once in VeroE6 cells to 
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generate viral stock. 48 hours post-transfection, A549-ACE2 cells were infected with SARS-

CoV-2 at MOI 0.1 PFU per cell. Briefly, cell media was removed and 20μL of viral inoculum, 

prepared in serum-free media, was added to each well. After 1 hour adsorption at 37°C, the 

inoculum was removed and replaced by DMEM supplemented with 2% FBS and Pen/Strep. The 

supernatant was harvested 72 hours post-infection and heat-inactivated at 95°C for 5 minutes. 

The presence of viral genomes was subsequently quantified using the Luna Universal One-Step 

RT-qPCR kit (New England Biolabs, E3005S). Specific primers targeting the N gene (5′-

TAATCAGACAAGGAACTGATTA-3′ [forward] and 5′-CGAAGGTGTGACTTCCATG-3′ [reverse]) 

were used as previously described (Chu et al., 2020). RT-qPCR was performed under the 

following cycling conditions in an Applied Biosystems QuantStudio 6 thermocycler: 55°C for 10 

minutes, 95°C for 1 minute, 40 cycles of 95°C for 10 seconds, followed by 60°C for 1 min. The 

number of viral genomes in the supernatant was calculated by performing a standard curve with 

RNA derived from a viral stock with a known viral titer, and is expressed as PFU equivalents per 

mL. These data were then used to compute log2 fold changes for experimental siRNA 

normalized to replicate-matched non-targeting controls. The log2 fold changes were computed 

separately for each replicate, and the median and median absolute deviation (MAD) were then 

calculated for each sample across all its replicates in the screen set (six replicates for PPI and 

nine replicates for PH). The PPI and PH screen sets were analyzed separately, and the results 

are reported in Figure 5.1, Figure S5.1 and Table S5.1. P-values were calculated using two-

sided Wilcoxon signed-rank tests. 
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FIGURES AND LEGENDS 
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Figure 5.1 siRNA knockdown identifies pro-viral and antiviral factors of IAV infection. (A) 
An arrayed siRNA screening approach knocking down 212 PPI and 78 PH targets, including 64 
kinases and 14 phosphorylated proteins (PP). A549 cells were reverse transfected with pools of 
four gene-targeting siRNA, pools of four non-targeting siRNA or IAV NP-targeting siRNA. Cell 
viability was determined at 48 hours post-transfection by live-cell staining and quantification by 
flow cytometry. Cells were infected at 48 hours post-transfection with Influenza A/WSN/1933 
H1N1 virus at an MOI of 0.1. At 24 hours post-infection, cells were fixed and immunostained for 
IAV NP as a readout for percent IAV infection and quantified by flow cytometry. (B) Plot 
comparing the log2 fold change in cell viability with siRNA knockdown (x-axis) against the log2 
fold change in infection (y-axis) for each gene from each replicate. IAV NP-targeting siRNA 
(green dots), non-targeting control siRNA (black dots), and experimental gene-targeting siRNA 
(grey dots) are represented. (C) Replicate correlation plot comparing the mean log2 fold change 
in IAV infection between two replicates. Dots are colored as in (B). (D-E) Distribution of the 
mean log2 fold change in IAV infection of experimental siRNA normalized to non-targeting 
control siRNA for (D) 212 PPI targets and (E) 78 PH targets. Error bars represent standard 
deviation. siRNA with a log2 fold change <-2 were labeled pro-viral factors (blue dots) and 
siRNA with a log2 fold change >2 were labeled antiviral factors (red dots). siRNA in between 
these thresholds were labeled no/weak phenotype (grey dots). The mean log2 fold change in 
IAV infection of positive-control IAV NP-targeting siRNA (green dot) and non-targeting control 
siRNA (black dot) are represented. (F) Distribution of log2 fold changes of SARS-CoV-2 
infection for siRNA knockdown of 44 PPI targets compared to non-targeting control siRNA 
(black dot), plotted as the median of six replicates for each target. siRNA with median log2 fold 
change <-2 were labeled pro-viral factors (blue dots) and siRNA with median log2 fold change 
>2 were labeled antiviral factors (red dots). siRNA in between these thresholds were labeled 
no/weak phenotype (grey dots). The median log2 fold change of positive-control ACE2-targeting 
siRNA is represented (green dot). Error bars represent median absolute deviations (MAD). (G) 
Bar chart of pro-viral and antiviral factors for IAV and SARS-CoV-2 screens. The mean log2 fold 
change in IAV infection is plotted for 44 PPI factors (top), and for 10 PH factors (middle). Error 
bars represent standard deviation. The median log2 fold change in SARS-CoV-2 infection is 
plotted for three IAV PPI factors (bottom). Error bars represent median absolute deviations 
(MAD). PPI pro-viral and antiviral factors map back to 12 IAV proteins (top, labeled at left). PH 
pro-viral and antiviral factors map back to two phosphorylated proteins (PP) and eight kinases 
(middle, labeled at left). 
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Figure S5.1 Probing IAV targets against SARS-CoV-2 infection identifies factors that      
regulate both IAV and SARS-CoV-2, Related to Figure 5.1. (A) IAV and SARS-CoV-2 
comparison strategy. From the IAV PPI and PH proteomic datasets, 54 IAV targets 
encompassing 44 siRNA-validated PPIs and 10 siRNA-validated PH proteins (from Figure 
5.1D-E) were tested against SARS-CoV-2 infection by siRNA knockdown in A549 cells to 
identify genes that regulate both IAV and SARS-CoV-2 infection. (B) Distribution of log2 fold 
changes of SARS-CoV-2 infection for siRNA knockdown of 10 PH targets compared to non-
targeting control siRNA (black dot), plotted as the median of nine replicates for each target. 
siRNA with median log2 fold change <-2 were labeled pro-viral factors (blue dots) and siRNA 
with median log2 fold change >2 were labeled antiviral factors (red dots). siRNA in between 
these thresholds were labeled no/weak phenotype (grey dots). The median log2 fold change of 
positive-control ACE2-targeting siRNA is represented (green dot). Error bars represent median 
absolute deviations (MAD). (C) Comparison of kinases with significant activity changes during 
IAV infection (this study) and during SARS-CoV-2 infection (from (Bouhaddou et al., 2020), 
asterisk signifies data was derived from this publication). (D) Heatmap of kinase activity 
predictions from the phosphorylation data with IAV infection (at 18 hours post-infection with 
pH1N1 and H3N2, and at 12 hours post-infection with H5N1; in NHBE and THP-1 cells) and 
SARS-CoV-2 infection (at 24 hours post-infection; in Vero E6 and Calu-3 cells) from published 
studies (Bouhaddou et al., 2020; Thorne et al., 2021) and thresholded at p-value < 0.05. 
Asterisk signifies SARS-CoV-2 data is derived from (Bouhaddou et al., 2020; Thorne et al., 
2021). Kinase Z-score reflects predicted kinase activity, with increased kinase activity in red and 
decreased kinase activity in blue. 
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SUPPLEMENTAL TABLE 

Table S5.1 siRNA targets and log2FC against IAV and SARS-CoV-2 infection, Related to 
Figures 5.1 and S5.1. For the IAV screen, this table reports a list of siRNA target genes from 
the IAV PPI and PH datasets with corresponding cell viability (IAVsiRNA_CellViability tab) and 
the log2 fold change in IAV infection (IAVsiRNA_IAVinfectivity tab). For the SARS-CoV-2 
screen, this table reports a list of siRNA target genes with corresponding cell viability 
(SARS2siRNA_CellViability tab) and the log2 fold change in SARS-CoV-2 infection 
(SARS2siRNA_SARSCoV2infectivity tab). Table is available online only as supplemental 
material. 
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CHAPTER 6 

Host-Directed Compounds Targeting IAV and SARS-CoV-2 Factors Identify Inhibitors of 

pH1N1, H3N2 and H5N1 IAV Infection 
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While therapeutics that target IAV proteins are available and in clinical use for antiviral 

treatment, increasing levels of drug resistant viral populations limit their efficacy, particularly for 

2009 pH1N1 and pH1N1-like seasonal strains and H3N2 seasonal strains (Gubareva et al., 

2019; Hussain et al., 2017; Omoto et al., 2018; Takashita et al., 2019). Host-directed therapies 

offer an alternative treatment approach by targeting human proteins that regulate viral infection. 

To identify potential host-directed therapies against IAV infection, we identified and screened 

compounds targeting a subset of the 44 siRNA-validated pro-viral and antiviral PPI factors and 

13 kinases with IAV-modulated activity changes (Figure 6.1A). A total of 29 unique compounds 

targeting eight PPI factors and 12 kinases (Table S6.1) were manually curated by literature 

search and selected based on target specificity and drug availability. Due to similarities in 

kinase activity signatures between IAV and SARS-CoV-2 (Figure S5.1D), we also leveraged 

previously published SARS-CoV-2 PH data reporting kinase-targeting antiviral compounds 

(Bouhaddou et al., 2020) to mine our IAV PH data for new drugs with potential dual activity 

against both respiratory viruses. We identified and screened 8 compounds with antiviral activity 

against SARS-CoV-2 (Bouhaddou et al., 2020) that target 8 kinase pathways that were detected 

in our global IAV phosphorylation data (Figure 6.1A, Table S6.1). A total of 37 unique 

compounds were screened against pH1N1, H3N2 and H5N1 IAV infection in A549 cells (Figure 

S6.1, Table S6.1). Cell viability was determined by MTT assay in uninfected A549 cells and 

quantification of percent alive cells. Antiviral activity was measured by immunostaining for IAV 

NP protein followed by high throughput imaging and quantification of percent IAV-infected cells. 

Compounds with selectivity index (SI) > 2 were classified as having antiviral activity. We 

identified 16 compounds with antiviral activity against at least one IAV strain, and seven 

compounds with antiviral activity against all three IAV strains. The seven pan-IAV inhibitors 

target three IAV PPIs (both pro-viral and antiviral), two IAV-modulated kinases (both 

upregulated and downregulated) and two SARS-CoV-2 antiviral targets (Table S6.1). 
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We found inhibitors of four IAV PPI factors to possess antiviral activity against at least two IAV 

strains (Figure 6.1B-E). Three factors are IAV M2 interactors, and one factor is an IAV HA 

interactor. V1-ATPase subunit ATP6V1A interacts with M2 from all three IAV strains, and its 

targeting compound, Bafilomycin A1, shows potent broad spectrum activity (Figure 6.1B). 

Bafilomycin A1 has been reported to inhibit IAV infection with PR8 H1N1 strain in A549 cells 

(Yeganeh et al., 2015), consistent with its pan-IAV antiviral activity in our study. Alexidine, which 

also targets V1-ATPase/ATP6V1A, decreases infection of all three strains but shows higher 

cytotoxicity and a SI < 2 (Figure S6.1, Table S6.1). ATP-binding cassette transporter ABCC1 is 

a high-confidence interactor of H5N1 M2, and interacts below scoring thresholds with pH1N1 

and H3N2 M2. Interestingly, ABCC1-targeting compound daunorubicin shows antiviral activity 

against all three strains (Figure 6.1C), indicating the ABCC1-M2 interaction may not be strain-

specific. DNA-dependent protein kinase (DNA-PK) PRKDC is an M2 interactor in all three IAV 

strains and a kinase with IAV-modulated activity. Interestingly, DNA-PK inhibitor NU7441 

inhibits only pH1N1 and H3N2 infection (Figure 6.1D), which is consistent with our global PH 

data showing increased activity of PRKDC in only pH1N1 and H3N2 infection (Figure 3.1F). To 

our knowledge, daunorubicin (ABCC1), and NU7441 (PRKDC) are novel inhibitors of IAV 

infection. PACMA31, which targets IAV HA PPI factor protein disulfide-isomerase (PDI) P4HB 

that interacts with H3N2 HA, also shows antiviral activity against all three IAV strains (Figure 

6.1E). In total, for these PPI factors, the effect of drug treatment on IAV infection largely 

mirrored the effect of siRNA knockdown (Figure 5.1G), except for P4HB and PRKDC, where 

siRNA knockdown increased IAV infection but compound treatment inhibited IAV infection. 

 

In addition to the PRKDC kinase inhibitor, we found that inhibitors of seven additional kinases 

show antiviral activity against at least one strain of IAV (Figure S6.1, Table S6.1). Two of these 

seven compounds show pan-IAV antiviral activity. Dinaciclib, an inhibitor of cyclin-dependent 

kinase CDK2, shows potent broad spectrum activity against the three strains (Figure 6.1F). A 
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previous study reports Dinaciclib antiviral activity with H7N9 IAV (Perwitasari et al., 2015), 

further supporting broad spectrum potency. ULK1 inhibitor MRT68921 shows antiviral activity 

against H3N2 and H5N1 (SI > 2), and decreases pH1N1 infection (SI < 2)  (Figure 6.1G, Table 

S6.1). ULK1 in complex with other proteins has been shown to activate mTOR-dependent 

autophagy (Petherick et al., 2015), a pathway that is necessary for IAV infection (Wang et al., 

2019). To our knowledge, MRT68921 is a novel antiviral for IAV, likely acting through ULK1 

inhibition to downregulate autophagy and suppress infection. Additionally, three inhibitors of four 

members of the MAPK pathway show antiviral activity against at least one IAV strain (Figure 

6.1H). Lestaurtinib, which targets MAP2K3 and MAP2K6, shows antiviral activity against pH1N1 

and H5N1 (SI > 2), and decreases H3N2 infection (SI < 2) (Figure 6.1H). MAPK-13-IN-1, which 

targets MAPK13 (p38δ), shows broad spectrum activity with some differences in potency 

between the three IAV strains (Figure 6.1H). Although SI values for MAPK-13-IN-1 cannot be 

quantitatively calculated based on the concentrations we used (Table S6.1), the lack of toxicity 

at the tested concentrations indicates SI is likely to be above 2. PF-3644022, which targets 

MAPKAPK2, shows antiviral activity against H5N1 (Figure 6.1H). Due to virus stock issues, 

pH1N1 was unable to be screened with PF-3644022. However, our global PH data show 

changes in MAPKAPK2 activity during infection for all three strains (Figure 3.1F), and siRNA 

knockdown of MAPKAPK2 inhibits WSN H1N1 infection (Figure 5.1G), indicating MAPKAPK2 

may be a regulatory node for multiple IAV strains. Taken together, these three MAPK-targeting 

compounds suggest the MAPK signaling pathway may be essential for multiple strains of IAV 

infection and targetable for host-directed antiviral therapy. 

 

Of the eight SARS-CoV-2 antiviral compounds screened, three compounds show antiviral 

activity against at least two strains of IAV (Figure 6.1I-K). Gilteritinib shows broad spectrum 

antiviral activity against the three IAV strains (Figure 6.1I). Gilteritinib targets AXL kinase, which 

functions in the MAPK signaling pathway upstream of p38, MAP2K3 and MAP2K6. Although 
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inhibitors against MAP2K3 and MAP2K6 (Lestaurtinib) and MAPK13 (p38δ) (MAPK13-IN-1) 

showed antiviral activity against multiple IAV strains, other SARS-CoV-2 antiviral p38 inhibitors 

screened against IAV infection did not (Ralimetinib targeting MAPK14 (p38α) and MAPK11 

(p38β); ARRY-797 targeting MAPK14 (p38α)) (Figure S6.1, Table S6.1). This suggests that 

IAV and SARS-CoV-2 converge on upstream kinases in the MAPK pathway, and that their 

kinase signaling activity is essential for infection. Pictilisib, which targets PIK3CA and PIK3CD, 

also shows broad spectrum antiviral activity against the three IAV strains (Figure 6.1J). SI 

values for Pictilisib could not be quantitatively calculated based on the concentrations we used 

(Table S6.1), however the lack of toxicity indicates SI is likely to be above 2. Previous findings 

that other PIK3CA-targeting compounds inhibit infection by two different IAV strains further 

support PIK3CA as a targetable node for IAV host-directed therapy (Ehrhardt et al., 2006). 

PIK3CA has been shown to act through PR8 H1N1 IAV protein NS1 (Ehrhardt et al., 2007), and 

we identified PIK3CA as an interactor of pH1N1 NS1 (Figure 2.2), but how PIK3CA regulates 

H3N2 and H5N1 infection is unclear. MK-2206, which targets the AKT kinases (AKT1, AKT2, 

AKT3), shows strong antiviral activity against H5N1 and moderate antiviral activity against 

pH1N1 (Figure 6.1K). AKT signaling may be a unique host signaling pathway more heavily 

utilized by H5N1 avian-derived IAV strain. Collectively, these three compounds provide 

examples of orthologous SARS-CoV-2 PH data revealing new therapeutic targets for multiple 

strains of IAV. These three compounds could serve as potential antiviral treatments for both 

respiratory viruses. In addition, Dinaciclib (CDK2) and MAPK13-IN-1 (MAPK13), which show 

antiviral activity against pH1N1, H3N2 and H5N1 IAV in our study (Figure 6.1F,H), were also 

shown to have antiviral activity against SARS-CoV-2 (Bouhaddou et al., 2020). In total, these 

five compounds with antiviral activity against multiple strains of IAV and SARS-CoV-2 represent 

potential targets for potential host-directed pan-respiratory virus therapies. 
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Methods 

Compound treatment, cytotoxicity and IAV antiviral assays. PPI-targeting and kinase-

targeting compounds were manually curated by target-specific literature search performed by 

specialists within our group. IAV PB2-targeting compound Pimodivir (VX-787) was included as a 

positive control due to its antiviral activity against multiple H1N1-, H3N2- and H5N1-subtype IAV 

in human cell and mouse models and in patients (Byrn et al., 2015; Finberg et al., 2019; Trevejo 

et al., 2018). Compounds were purchased from vendors specified in Table S6.1. Drug antiviral 

assays were performed as compounds and IAV strains were received and available, and each 

set of compounds was performed alongside the Pimodivir control. For drug antiviral assays, 

A549 cells were seeded at 8,000 cells per well in DMEM growth media described above in 96-

well plates (Falcon, 353072) 24 hours before IAV infection. Cells were pretreated with 

compound 2 hours before infection, where cell growth media for the corresponding well was 

replaced with media containing 20μM, 6μM, 2μM, 700nM, 200nM or 80nM of each compound, 

or the equivalent volume of DMSO vehicle (control). The only exception is Pimodivir, which was 

added at 0.2μM, 0.06μM, 0.02μM, 7nM, 2nM or 0.8nM. Each compound or DMSO vehicle was 

tested in triplicate. Cells were mock infected for cell toxicity assay, or infected with IAV for 

antiviral assay. Drug-containing media was removed and replaced with A/California/04/2009 

H1N1 (MOI 0.5 PFU per cell), A/Wyoming/03/2003 H3N2 (MOI 0.5 PFU per cell), 

A/Vietnam/1203/2004 H5N1 HALo (MOI 0.05 PFU per cell), or no virus in 0.5% BSA in 1X PBS 

containing TPCK-trypsin (Sigma-Aldrich, T8802-50MG). Cells were incubated for 1 hour at 37ºC 

to allow virus adsorption. Virus inoculum was subsequently removed, and 100μl of drug- or 

vehicle-containing media was added. Uninfected A549 cells were assayed for cytotoxicity in 

parallel with the antiviral assay, matched for time and concentration. For cytotoxicity, 10μl of 

Cell Proliferation Kit I (MTT) labeling reagent (Roche, 11465007001) was added to each well to 

a final concentration 0.5mg/mL, and incubated for 3 hours at 37ºC. 100μl of solubilization 

solution (Roche, 11465007001) was then added to each well, and plates were incubated at 
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37ºC overnight. Spectrophotometrical absorbance of each well was measured using a 

microplate (ELISA) reader (BioTek Instruments, NEO2SM) to quantify cell viability. For IAV 

infection, cells were fixed to the 96-well plate in final concentration 4% formaldehyde for 20 

minutes and immunostained for IAV NP protein with a DAPI counterstain at room temperature. 

Briefly, cells were washed three times with 1X PBS for 5min, permeabilized with 0.1% Triton X-

100 (Fisher Scientific, 9002-93-1) in 1X PBS for 15min, blocked in 1% BSA in 1X PBS for 1hr 

and incubated in 1:1000 anti-IAV NP (an in-house monoclonal antibody HT103, provided by Dr. 

Thomas Moran, Thomas.Moran@mssm.edu) and DAPI (Thermo Scientific, 62248) for 1hr. Cells 

were washed again three times with 1X PBS for 5min, and incubated in 1:1000 goat anti-mouse 

AlexaFluor 488 (Invitrogen, A11029) in the dark for 1hr. Cells were washed twice in 1X PBS for 

5min, suspended in 1X PBS and subsequently analyzed by Celigo Image Cytometer 

(Nexcelom) using instrument cell counting software to count the total number of IAV-infected 

cells (green channel, 536nm). Infectivity was measured by the accumulation of viral NP protein 

(fluorescence accumulation). Percent infection was quantified as ((Infected cells/Total cells) - 

Background)*100, and the DMSO control was then set to 100% infection for analysis. Data 

analysis was performed in GraphPad Prism (version 9.3.0), using nonlinear regression fit and fit 

hill functions to identify IC50, IC90, CC10 and CC50 values (Table S6.1). Selectivity index (SI) 

for each compound was calculated as CC50/IC50 (Table S6.1), and compounds with a SI > 2 

were reported as antiviral. 
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FIGURES AND LEGENDS 

 

Figure 6.1 Host-directed compounds targeting IAV and SARS-CoV-2 factors identify     
inhibitors of pH1N1, H3N2 and H5N1 IAV infection. (A) Compounds were manually curated 
for targets from the 44 siRNA-validated PPI factors (16 compounds, 8 targets) and from the 13 
modulated kinases in the PH data (15 compounds, 12 targets), totaling 29 unique compounds 
across both data types. Compounds with antiviral activity against SARS-CoV-2 were mined from 
a SARS-CoV-2 global PH study (Bouhaddou et al., 2020) to identify and test new drugs with 
potential dual activity against IAV (8 compounds, 8 targets). In total across all three data types, 
37 unique compounds were screened for their effect on pH1N1, H3N2 and H5N1 infection by 
antiviral assay (see also Table S6.1). Compounds with a selectivity index (SI) > 2 were reported 
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as antiviral. 16/37 compounds showed antiviral activity against at least one strain of IAV, and 
7/37 compounds showed antiviral activity against all three IAV strains. For panels (B-K), A549 
cells were pre-treated with compound at the indicated doses and infected with pH1N1, H3N2 or 
H5N1 IAV for 48 hours. Percent IAV-infected cells was determined by immunostaining against 
IAV NP protein followed by high throughput imaging and quantification (pH1N1 blue line, H3N2 
green line, H5N1 purple line). Percent cell viability (black line) was quantified by MTT assay in 
uninfected A549 cells (see also Methods). To the left of each panel, schematics mark PPI or 
PH target and corresponding compound. Targets are annotated with PPI or predicted kinase 
activities from the PPI or PH data. Compounds are annotated with IC50 values for the IAV 
strains in which SI > 2. Error bars represent standard error of mean (SEM). (B-D) Dose-
response curves for M2 PPI-targeting compounds, including: ATP6V1A-targeting compound 
bafilomycin A1; ABCC1-targeting compound daunorubicin; and PRKDC-targeting compound 
NU7441. PRKDC is also a kinase identified in the IAV PH data. (E) Dose-response curve for HA 
PPI P4HB-targeting compound PACMA31. (F-G) Dose-response curves for PH kinase-targeting 
compounds, including: CDK2-targeting compound dinaciclib; and ULK1-targeting compound 
MRT68921. (H) Dose-response curves for members of the MAPK pathway (pathway schematic 
on the left), including MAP2K3, MAP2K6, MAPK13 and MAPKAPK2, each annotated with their 
corresponding compounds. Due to virus stock issues, pH1N1 was unable to be screened with 
PF-3644022. (I-K) Dose-response curves for SARS-CoV-2 mined antiviral compounds targeting 
three kinase pathways modulated in IAV and SARS-CoV-2 infection, including: FLT3 and AXL 
targeted by Gilteritinib; PI3KCA and PI3KCD targeted by Pictilisib; and AKT1, AKT2 and AKT3 
(pan-AKT) targeted by MK-2206. SARS-CoV-2 IC50 values are included as reported in 
(Bouhaddou et al., 2020), where SARS-CoV-2 infection was quantified by RT-qPCR of SARS-
CoV-2 N protein in compound-treated A549-ACE2 cells. 
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Figure S6.1 Host-directed compound dose-response curves for pH1N1, H3N2 and H5N1      
IAV and cell viability, Related to Figure 6.1. Dose-response curves for a total of 37 host-
directed compounds, including: 29 IAV PPI- and kinase-targeting drugs, and 8 kinase-targeting 
drugs mined from a published study with antiviral activity against SARS-CoV-2 (Bouhaddou et 
al., 2020). Due to virus stock issues, pH1N1 was unable to be screened with PF-3644022. 
Dose-response curves are also included for IAV PB2-targeting control compound Pimodivir (VX-
787), which was run in two sets. Assays were performed in A549 cells, with high throughput 
imaging and quantification of percent IAV-infected cells (%NP+ cells) for each of the three IAV 
strains (pH1N1 blue line, H3N2 green line, H5N1 purple line), and percent viable cells (black 
line). The mean of three biological replicates is shown. Error bars represent standard error of 
mean (SEM). 
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SUPPLEMENTAL TABLE 

Table S6.1 Compound screening against IAV infection, Related to Figures 6.1 and S6.1. 
Table listing the 37 host-directed compounds screened in this study (Compounds tab), 
including: 29 IAV PPI- and kinase-targeting compounds; and 8 kinase-targeting compounds 
mined from a published study with antiviral activity against SARS-CoV-2 (Bouhaddou et al., 
2020). Table reports the compound’s designated protein target and maps the protein target to 
the dataset in which it was identified, either from the functionally validated IAV PPI dataset 
(Figure 5.1G), IAV kinase analysis (Figure 3.1F), or from a SARS-CoV-2 global PH study that 
reports compounds with antiviral activity against SARS-CoV-2 (Bouhaddou et al., 2020). Also 
reported in the table are each compound’s U.S. approval status, supplier, catalog number, 
PubChem ID, IC50 and IC90 (IAV inhibition), CC10 and CC50 (cell viability), and selectivity 
index (SI). Compounds that were screened and do not have IAV inhibition (IC50 or IC90) or cell 
toxicity (CC10 or CC50) values as determined by nonlinear regression fit and fit hill functions 
are reported as >20uM. For compounds where CC50 is reported as >20uM, SI was calculated 
and reported as >(20uM/IC50). For compounds where CC50 and IC50 are reported as >20uM, 
SI is reported as N/A. Column descriptions are provided in the final tab. Table is available online 
only as supplemental material. 
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CHAPTER 7 

Discussion 
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This study represents a first-in-class, integrative systems biology approach that unifies ex vivo 

proteomic data with patient genomic data to generate a comprehensive network model of IAV 

infection. By studying circulating or potential-circulating IAV strains, we identify essential, 

druggable host targets that offer clinically relevant potential treatment alternatives to 

increasingly obsolete classes of IAV protein-targeting drugs. Using a two-pronged proteomic 

approach, we interrogated three different IAV strains (pH1N1, H3N2, and H5N1) in multiple cell 

types of infection (primary bronchial epithelial, lung epithelial and myeloid cell lines) to identify 

novel strain-specific and pan-IAV PPIs and IAV-modulated host kinase signaling pathways. 

Combining the cellular proteomic data with whole exome sequencing data from an influenza 

patient cohort pinpointed a number of potential molecular regulators of host response and 

determinants of disease outcome. By functional genetic screening, we found 54 human genes 

that map back to 44 PPI factors and 10 PH factors act as pro-viral and antiviral factors in IAV 

infection. Three of these functional PPI factors also regulate infection by SARS-CoV-2, and act 

as pro-viral (COPB1, AHNAK) and antiviral (RUVBL2) factors of SARS-CoV-2 infection. 

Screening compounds that target IAV-interacting and IAV-modulated proteins identified 16 

compounds that suppress replication by at least one strain of IAV, with seven compounds 

exhibiting pan-IAV activity and five compounds inhibiting multiple strains of IAV and SARS-CoV-

2. These findings provide novel gene targets and compounds that could help inform rational 

drug design or drug repurposing strategies for HDT to treat influenza and COVID-19. 

 

By AP-MS, we identified a total 332 IAV-human PPIs (Figure 2.1C-D, Table S2.1) mapped 

between 12 IAV proteins of pH1N1, H3N2 and H5N1 IAV and 214 human proteins in three 

different cell types (Figure 2.2). We identified both known and novel IAV-human PPIs, and pan-

IAV and strain-specific PPIs. PPIs shared across all three viruses include proteins involved in 

RNA processing, nuclear transport, macroautophagy and fatty acid metabolism (Figure 2.2), 

and may represent co-opted protein targets essential to multiple strains of IAV infection. 
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Consistent with this, human proteins that interact above scoring thresholds with IAV proteins 

from at least two strains represent 13/44 factors whose knockdown decreased IAV infection 

(Figure 5.1G, Table S5.1), and represent targets for two compounds with antiviral activity 

against at least two strains of IAV (Figure 6.1B,D). In comparison, strain-specific interactors are 

most noticeable among IAV proteins with known roles in modulating host response, including 

NS1, PA-X and PB1-F2 (Figure 2.2). This unique co-opting of host protein complexes may be 

reflective of unique virological characteristics for each strain, for example pandemic or potential-

pandemic vs seasonal (i.e. pH1N1 or H5N1 vs H3N2) or human-adapted vs avian (i.e. pH1N1 

or H3N2 vs H5N1) IAV. The lower overlap of PPIs between the three cell types in our study 

(Figure 2.1C) emphasizes the importance of studying IAV in multiple physiologically relevant 

cell types to fully recapitulate virus biology during replication in vivo. Notably, 44/212 PPI factors 

were functionally classified as pro-viral and antiviral factors, and correspond to a hit rate of 

~20.6% with at least one functional interaction for each of the 12 IAV bait proteins (Figure 

5.1G). In comparison to other OMICS-based approaches, the high functional hit rate that we 

observe here suggests that by focusing on virus-host PPIs, interactomes present a discrete, 

manageable dataset enriched for targetable, actionable host factors. 

 

By profiling global protein abundance and phosphorylation changes at peak IAV replication 

(Figure 3.1B-D), we computationally predicted changes in kinase activity for 13 kinases (Figure 

3.1F). Most kinases show similar activity profiles across the three IAV strains, indicating the 

different strains may share common targets to rewire host signaling and response. These 

common targets may represent host signaling node vulnerabilities of IAV. For example, two 

kinases, MAPKAPK2 and MAPKAPK5, that increased in activity during infection by two IAV 

strains (Figure 3.1F) were necessary for efficient IAV infection (Figure 5.1G). 11 of the 13 

kinases also show similar activity profiles during SARS-CoV-2 infection, including increased 

activity of MAPK signaling pathway members such as MAPK13 (p38δ), MAP2K3 and MAP2K6, 
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and decreased activity of CDK2 (Figure S5.1D), highlighting similar signaling signatures of IAV 

and SARS-CoV-2 infection. Downregulation of CDK2 activity is also observed with infection by 

SARS-CoV (Surjit et al., 2006) and herpesviruses including Kaposi sarcoma herpesvirus 

(Izumiya et al., 2003) and herpes simplex virus type 1 (Ehmann et al., 2000). While siRNA 

knockdown of MAPK13, MAP2K3, MAP2K6 and CDK2 did not affect IAV infection (Table S5.1), 

host-directed compounds MAPK13-IN-1 (targeting MAPK13), Lestaurtinib (targeting MAP2K3, 

MAP2K6) and Dinaciclib (targeting CDK2) show antiviral activity against at least two strains of 

IAV (Figure 6.1F,H). This highlights the strength of pairing genetic and pharmacological 

perturbation to investigate functionality. These compounds affect replication of other viruses as 

well. For example, Dinaciclib and MAPK13-IN-1 show antiviral activity against SARS-CoV-2 

infection (Bouhaddou et al., 2020), and Lestaurtinib shows antiviral activity against human 

adenovirus infection (Saha and Parks, 2021). Given the similar kinase activity profiles and 

antiviral activity of targeting compounds against multiple strains of IAV and other viruses, 

MAPK13, MAP2K3, MAP2K6 and CDK2 represent attractive potential candidates for pan-viral 

HDT. 

 

By merging our PPI and PTM data, we identified phosphoregulated interactions for 10 IAV 

proteins (Figure 3.1G), including 9 phosphoregulated PPI factors that functionally affect IAV 

infection (Figure 5.1G). For example, TOMM22, AHNAK, ZC3HAV1, and INF2 interact with M2, 

NEP, NP and PB1, respectively, which are structural IAV proteins with important roles in viral 

entry and budding (M2), nuclear export of viral RNA (NEP), viral RNA encapsidation and 

trafficking (NP), and viral RNA replication (PB1). TOM22 phosphorylation at position serine 15 is 

increased during pH1N1 and H3N2 infection and decreased during H5N1 infection (Figure 

3.1G). It has previously been shown that TOM22 is phosphorylated at serine 15 by casein 

kinase 2 (CSNK2), and this phosphorylation promotes mitophagy, a type of autophagy specific 

for degrading defective mitochondria (Kravic et al., 2018). Integrating H5N1 M2 interactors from 
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our study with transcriptomic (RNA-seq) and genome-wide siRNA screens of H3N2 and H5N1 

IAV infection in human macrophages revealed a number of additional host proteins involved in 

mitophagy and mitochondrial homeostasis as important for IAV infection (Martin-Sancho et al., 

2021). M2 interaction with serine 15-phosphorylated TOMM22 provides one potential molecular 

example of IAV co-opting mitophagy, a process likely essential for infection as TOM22 is 

identified in our study as a pro-viral factor of IAV (Figure 5.1G). It is also interesting to note that 

two of the phosphoregulated PPI factors that act as pro-viral factors of IAV infection are 

identified with pLOF phosphorylation variants in our whole exome sequencing data from an 

influenza patient cohort. We found that AHNAK serine 210 and INF2 serine 588 phosphorylation 

sites contain pLOF phosphorylation disruption mutations in patients with severe influenza 

disease (Figure 4.1B, Table S4.1), indicating they may also be involved in modulating host 

response to IAV infection and disease outcome. Further work that determines the mechanistic 

significance of specific phosphorylation sites on these interacting proteins could clarify how 

influenza exploits phosphorylation of host proteins and protein complexes to achieve essential 

processes for infection or modulation of host response. 

 

Exome sequencing data from an influenza patient cohort profiled pLOF gene variants 

associated with severe disease that were also regulated at the protein level by IAV infection. 

pLOF genetic variants were identified for five PPI factors, 24 AB factors and 49 PH factors 

(Table S4.1). Interestingly, three of these five PPI factors (IRS2, RNH1, SEL1L) interact with 

IAV proteins that have known roles in modulating host innate immune response, viral 

pathogenicity and antigen response (NS1, PA-X, HA, respectively) (Figure 2.2). Future studies 

are merited to determine the mechanistic role of these proteins in cellular IAV infection and the 

role of pLOF variants of these proteins in driving severe influenza disease. Three of the five PPI 

factors also suppress or support IAV infection, and include: AHNAK (NEP), MYH14 (PA) and 

SEL1L (HA) (Figure 5.1G). Mapping phosphorylation disruption mutations found in patients with 
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severe influenza disease against the phosphorylation sites identified in our ex vivo PH data 

identified pLOF phosphorylation sites for six PPI factors including AHNAK, 75 AB factors and 

146 PH factors (Table S4.1), and may indicate phosphorylation events important for triggering 

the cellular innate immune response. In patients with severe disease, 59 pLOF genes involved 

in immune signaling were statistically enriched in our proteomic data for changes in protein 

abundance (15 proteins) and phosphorylation (25 proteins with total 54 phosphorylation sites) 

during IAV infection (Figure 4.1C). Notably, nine pLOF genes involved in cytokine signaling, 

interleukin signaling and TLR signaling (including TLR3 signaling) decreased in protein 

abundance with pH1N1, H3N2 and H5N1 infection, highlighting these proteins as targets IAV 

modulates likely as an evasion strategy to favor infection. Inborn errors causing pLOF of TLR3 

are identified in patients with severe viral disease, viral pneumonia or other complications from 

infection by a number of viral pathogens, including IAV (Lim et al., 2019), SARS-CoV-2 (Zhang 

et al., 2020), enterovirus (Chen et al., 2021) and herpes simplex virus 1 (Zhang et al., 2007). 

This highlights TLR3 as a critical pan-viral target for disease outcome, likely due to its role as a 

dsRNA sensor that aids in viral recognition, activation of innate immunity and induction of 

interferon (Lester and Li, 2014). Our study pinpoints other downstream members of the TLR3 

signaling pathway that contain pLOF genetic variations in patients with severe influenza disease 

(Table S4.1), which could result in defective IAV restriction or clearance, and potentially 

represent a predisposition for increased disease severity. These factors may be targeted 

therapeutically to modulate the interferon response and improve disease outcome. Often, 

strategies to identify key disease-associated targets for biomarkers and drug therapies combine 

patient genetic association data with in vivo proteomic data from patient plasma samples, 

however, accessibility of plasma proteomic data has been limited by challenges in patient 

plasma sample processing, acquisition and analysis (Suhre et al., 2021). As new advances in 

plasma proteomics emerge to close this gap (Suhre et al., 2021), the combination of patient 

genetic data with ex vivo proteomic data presented here could also serve as a complementary 
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approach to identify potential clinically relevant molecular determinants of disease severity. 

Collectively, these data provide an exciting example of ex vivo proteomic data highlighting 

potential clinical molecular drivers of influenza disease severity. 

 

Interestingly, four human protein interactors of two IAV proteins targeted in antiviral drug 

development (M2, HA) show promising evidence as broad spectrum HDT targets. These four 

host proteins functionally affect IAV infection (Figure 5.1G), and compounds targeting these 

four host factors show pan-IAV antiviral activity: Bafilomycin A1 targeting ATP6V1A (M2 

interactor); Daunorubicin targeting ABCC1 (M2 interactor); NU7441 targeting PRKDC (M2 

interactor and IAV-modulated kinase); and PACMA31 targeting P4HB (HA interactor) (Figure 

6.1B-E). M2 is the IAV protein target of amantadine and rimantadine inhibitors, two classes of 

antivirals approved for clinical use that are now obsolete for IAV treatment due to virus 

resistance, particularly among 2009 pH1N1-like and H3N2 seasonal strains (Dong et al., 2015; 

Hayden and Hay, 1992). HA is one of the IAV proteins responsible for host cell entry by binding 

to sialic acid on epithelium cells, and is an attractive but challenging target for antiviral 

therapeutics due to high antigenic drift and shift (Koel et al., 2013; Lewis et al., 2016). There are 

no HA-targeting drugs currently available for clinical use. Recent antiviral strategies instead 

target human sialic acid to block HA binding and IAV entry. For example, sialic acid inhibitors 

were recently shown to target HA and have ex vivo antiviral efficacy (Chang et al., 2021). 

Antiviral compound Fludase (DAS181), a bacteria-derived sialidase fusion protein that cleaves 

sialic acid from epithelium cell surface to prevent IAV entry (Malakhov et al., 2006), enrolled its 

first patient in a Phase III clinical trial in 2019 and is moving towards FDA approval and clinical 

use. Fludase (DAS181) is a promising example of a host-directed strategy to successfully treat 

IAV infection. Here, we identified four host-directed pre-clinical and FDA-approved compounds 

that target three functional IAV M2 PPIs and one HA PPI, all of which have broad spectrum 

activity against pH1N1, H3N2 and H5N1 infection. None of these compounds are currently in 
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clinical trials or approved for use in treating influenza. Collectively, these four compounds 

represent potential alternative, host-directed targets for treating influenza disease. 

 

IAV co-circulates seasonally with SARS-CoV-2 and emerging variants of concern, which 

represents a significant current and future challenge for public health. Human clinical data on 

IAV and SARS-CoV-2 co-infection during the 2020-2021 influenza season is limited, as public 

health measures instigated to limit the transmission of SARS-CoV-2, including shelter-in-place, 

masking and social distancing, largely limited the transmission of IAV (Olsen et al., 2020). 

However, a retrospective analysis determined a 49.8% co-infection rate of SARS-CoV-2 and 

IAV among patients early in the COVID-19 pandemic in Wuhan (Yue et al., 2020). Another 

study of a small patient cohort identified a high prevalence of individuals co-infected with H1N1-

subtyped IAV and SARS-CoV-2, and a positive correlation between IAV co-infection and 

mortality rate (Alosaimi et al., 2021). In addition, in cell culture and in mice, IAV infection leads 

to increased susceptibility to SARS-CoV-2 co-infection and increased SARS-CoV-2 viral loads, 

and results in more severe lung damage, morbidity and mortality (Achdout et al., 2021; Bai et 

al., 2021a). This observation is specific to IAV in comparison to co-infection with other 

respiratory viruses (Bai et al., 2021a). IAV and SARS-CoV-2 present similar respiratory disease 

symptoms (Centers for Disease Control and Prevention, National Center for Immunization and 

Respiratory Diseases (NCIRD), 2022), and successful treatment currently relies on accurate 

detection and diagnosis, with pharmacological treatment specific to either virus. Identifying 

human proteins that are essential for both IAV and SARS-CoV-2 infection allows identification of 

common host targets for potential pan-respiratory virus HDT.  

 

Here, we have taken a novel approach that combines genetic and pharmacological screening to 

identify host node vulnerabilities of both IAV and SARS-CoV-2. We challenged the 54 functional 

IAV PPI and PH factors by siRNA knockdown against SARS-CoV-2 infection, and identified two 
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human genes, COPB1 and AHNAK, that act as pro-viral factors in both IAV and SARS-CoV-2 

infection (Figure 5.1G). A third gene, HNRNPUL2, acts as a pro-viral factor in IAV infection 

(Figure 5.1G) and falls just below our log2 fold change cutoffs as a pro-viral factor for SARS-

CoV-2 infection (Table S5.1). While we report these factors as IAV-human PPIs (M2-COPB1, 

NEP-AHNAK), to our knowledge, neither are reported as SARS-CoV-2-human PPIs. COPB1, a 

subunit of the coatomer complex I (COPI) that is associated with non-clathrin coated vesicles 

and involved in endosomal transport, was shown to be essential for IAV infection by other 

siRNA-based studies (Beyleveld et al., 2018; Brass et al., 2009; Karlas et al., 2010), although to 

our knowledge its interaction with IAV M2 is novel. COPB1 was also shown to be required for 

infection of other RNA viruses, including vesicular stomatitis virus (Panda et al., 2011), and the 

secretory pathway was shown to promote SARS-CoV viral RNA replication and synthesis 

(Knoops et al., 2010). COPB1, as part of the COPI complex, and its role in endosomal transport 

may facilitate essential steps in viral RNA synthesis and trafficking or viral assembly for IAV and 

SARS-CoV-2. HNRNPUL2 interacts with IAV NP in our study, and is reported to interact with 

SARS-CoV-2 nucleocapsid (N) protein (Cai et al., 2021). IAV NP and SARS-CoV-2 N proteins 

share functional similarities; both proteins are viral RNA (vRNA)-binding proteins involved in 

encapsidation of vRNA and formation of viral ribonucleoproteins (vRNPs), vRNP trafficking, and 

virus replication (Bai et al., 2021b; Dou et al., 2018). NP and N proteins are abundantly 

expressed during infection, and evolutionarily conserved among related influenza viruses and 

coronaviruses, respectively, which make them attractive broad spectrum drug or vaccine targets 

(Bai et al., 2021b; Heiny et al., 2007; Hu et al., 2017; McGee and Huang, 2022). HNRNPUL2, a 

predominantly nuclear protein with RNA binding activity whose cellular function is under-

characterized, likely facilitates NP and N in essential vRNA replication or vRNP trafficking 

functions. While we report these three genes as promising candidates for pan-viral HDT, future 

work is needed to determine the specific mechanisms by which these proteins affect IAV and 

SARS-CoV-2 infection. 
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Out of eight compounds that show antiviral activity against SARS-CoV-2 (Bouhaddou et al., 

2020) and that target kinase pathways detected in our IAV phosphorylation data, three 

compounds show antiviral activity against at least two IAV strains: Gilteritinib, Pictilisib and MK-

2206 (Figure 6.1I-K). As mentioned above, two additional compounds identified from our IAV 

PH data, Dinaciclib and MAPK13-IN-1, show antiviral activity against all three strains of IAV in 

our study (Figure 6.1F,H), and show antiviral activity against SARS-CoV-2 as reported in a 

previous study (Bouhaddou et al., 2020). In total, five compounds from our study show antiviral 

activity against multiple strains of IAV and SARS-CoV-2 infection. This highlights the power of 

leveraging and mining orthogonal phosphoproteomic analyses of infection by different 

respiratory viruses to identify novel pan-viral HDT. These five compounds target kinases of 

diverse pathways, and include FLT3/AXL (Gilteritinib), MAPK (MAPK13-IN-1), PI3K (Pictilisib), 

AKT (MK-2206) and CDK (Dinaciclib) signaling pathways (Table S6.1). None of these 

compounds are currently in clinical trials for influenza or COVID-19. While our results with 

Pictilisib (targeting PI3KCA, PI3KCD) and MK-2206 (targeting AKT1, AKT2, AKT3) are novel for 

IAV, other PI3K and AKT signaling inhibitors are in clinical trials for influenza (Planz, 2013). 

Collectively, these findings represent novel potential pan-respiratory antiviral HDT. 

 

Several protein targets and therapeutics are identified by multiple orthogonal data in this study 

and warrant further investigation. While we have functionally characterized PPI and kinase 

factors with IAV infection, future work is needed to elucidate molecular mechanisms by which 

these pro-viral and antiviral factors affect specific stages of the virus life cycle and host antiviral 

response. For example, DNA damage-sensing protein kinase PRKDC is identified as an IAV M2 

interactor (Figure 2.2, Table S2.1), and as a kinase with increased predicted activity during 

pH1N1 and H3N2, but not H5N1, infection in THP-1 cells (Figure 3.1F). PRKDC also has five 

sites that are almost all upregulated in phosphorylation with pH1N1, H3N2 and H5N1 infection 
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(Figure 3.1G). While siRNA knockdown of PRKDC increases IAV infection (Figure 5.1G), DNA-

PK inhibitor NU7441 shows antiviral activity against pH1N1 and H3N2 infection, but not H5N1 

infection (Figure 6.1D). It should be noted that while NU7441 is a potent and selective inhibitor 

for PRKDC, NU7441 also inhibits mTOR and PI3K in cell-free assays (NU7441 vendor 

information). Although NU7441 has not yet been tested in SARS-CoV-2 infection to our 

knowledge, a different PRKDC inhibitor did not affect SARS-CoV-2 infection (Bouhaddou et al., 

2020). This highlights PRKDC as a highly regulated, functional protein specific to IAV infection, 

although its mechanism of action is unclear. PRKDC acts as a pattern recognition receptor for 

DNA, inducing the interferon response via activation of STING and TBK1, leading to IRF3 

translocation and initiation of interferon production (Ferguson et al., 2012; Morchikh et al., 

2017). IAV and other RNA viruses modulate and block DNA sensing, for example through the 

cGAS-STING innate immune sensing pathway, to promote infection (Webb and Fernandez-

Sesma, 2022). IAV M2 has been shown to induce the release of mitochondrial DNA during 

infection and trigger the cGAS-dependent innate immune response, which is mitigated by IAV 

NS1 protein inhibiting DNA-mediated activation of interferon beta production (Moriyama et al., 

2019). M2 interaction with PRKDC may sequester PRKDC and provide a second mechanism for 

mitigating and dampening DNA-mediated activation of interferon production to favor infection. 

siRNA knockdown of PRKDC may rescue viral infection (Figure 5.1G) by diminishing 

downstream interferon production. In our study, PRKDC is phosphorylated (Figure 3.1G) and 

has increased predicted activity with IAV infection (Figure 3.1F). Another phosphoproteomic 

study similarly identified PRKDC as a kinase activated upon infection with H3N2-subtype IAV in 

primary human macrophage cells (Söderholm et al., 2016). PRKDC may be involved in other, 

interferon-independent processes essential for IAV infection, which may be suppressed with 

NU7441 treatment. For example, PRKDC interacts with and phosphorylates host proteins 

involved in cell survival signaling including several AKT proteins (Anisenko et al., 2020), and M2 

was shown to induce AKT-mTOR-dependent autophagy which promotes replication (Wang et 
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al., 2019). Further experiments are needed to determine if PRKDC can act as an upstream 

molecular regulator of autophagy with M2. 

 

Another protein target highlighted by multiple orthogonal data in this study is AHNAK, a large, 

~700kDa nuclear scaffold protein that interacts with IAV NEP and is highly phosphoregulated 

during IAV infection. AHNAK interacts with H5N1 IAV NEP above our PPI scoring thresholds, 

and with pH1N1 and H3N2 NEP below our thresholds (Figure 2.2, Table S2.1), indicating the 

interaction may not be strain-specific. The AHNAK-NEP interaction is specific to NHBE cells 

(Figure S2.3, Table S2.1). AHNAK has 11 sites that are differentially regulated in 

phosphorylation with pH1N1, H3N2 and H5N1 infection, with about half of the sites universally 

up- or downregulated and half of the sites regulated in strain-specific patterns (Figure 3.1G). 

Interestingly, AHNAK was identified with pLOF genetic variants in patients with severe influenza 

disease, and identified with pLOF phosphorylation mutations at site serine 210 in patients with 

severe influenza disease (Figure 4.1B), indicating AHNAK may play an important role in 

disease outcome. AHNAK is also a pan-respiratory virus gene target, as its knockdown 

decreases IAV infection and decreases SARS-CoV-2 infection (Figure 5.1G). AHNAK’s role in 

IAV and SARS-CoV-2 infection is unknown, but may be tied to viral RNA export and/or virus 

budding. AHNAK regulates calcium signaling and downstream immune functions in T-cells 

(Matza et al., 2008). Calcium-dependent cell-cell contact formation has been shown to trigger 

AHNAK’s phosphorylation by protein kinase B and relocalization outside the nucleus (Sussman 

et al., 2001), localization to the plasma membrane and complex formation with S100A10-

Annexin 2 complex (Benaud et al., 2004). AHNAK has been proposed to coordinate 

cytoskeleton and membrane architecture changes together with S100A10-Annexin 2 complex 

(Benaud et al., 2004; Han et al., 2012; Jolly et al., 2014). This function is important in pathogen 

infection with bacterium Salmonella, where AHNAK is recruited to membrane ruffles and is 

required for infection (Jolly et al., 2014). IAV NEP facilitates export of viral ribonucleoprotein 
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(vRNP) complexes from the nucleus to the cytoplasm (Neumann et al., 2000; O’Neill et al., 

1998), and facilitates virus formation and budding at the plasma membrane through its 

interaction with a membrane-embedded F-type proton-translocating ATPase (Gorai et al., 

2012). AHNAK and IAV NEP perhaps coordinate cellular cytoskeletal and membrane 

remodeling for vRNP export and trafficking or IAV assembly and budding at the membrane. We 

found five additional human proteins involved in cytoskeletal regulation interact with NEP 

(Figure 2.2), and NEP PPIs are enriched in actin binding (Figure 2.1F), which support this 

model. Interestingly, we found that S100A10-Annexin 2 complex members (S100A10, ANXA2) 

interact with H5N1 PB1-F2 (Figure 2.2), indicating that NEP and PB1-F2 may work together by 

targeting AHNAK and S100A10-Annexin 2, respectively, to coordinate cytoskeleton and 

membrane remodeling for vRNP trafficking and virus budding. This would be a novel cellular 

role for PB1-F2. To date, no published studies identify AHNAK as an interactor of SARS-CoV-2 

proteins, however AHNAK was profiled as an RNA binding protein whose RNA binding kinetics 

peak early in SARS-CoV-2 infection (Kamel et al., 2021). Our study uniquely identifies AHNAK 

as essential for SARS-CoV-2 infection, perhaps through AHNAK’s interaction with viral RNA 

that may play a critical role in viral RNA production, trafficking or assembly during infection. 

 

In summary, this study highlights the unique strength of an integrative systems biology 

approach to generate multi-dimensional data profiling IAV, and identify functional and druggable 

human proteins essential for IAV infection. By utilizing global proteomics, patient exome 

sequencing, functional genetics and pharmacological screening, we identify human gene targets 

and compounds that can be a starting point to develop pan-IAV host-directed antivirals and 

potential pan-respiratory virus host-directed antivirals (Figure 5.1G, Figure 6.1B-K). We hope 

the highly collaborative approach to data-driven target identification for host-directed therapies 

presented here can be employed to find additional pan-viral therapies and mechanisms beyond 

IAV and SARS-CoV-2 for other infectious diseases. 
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