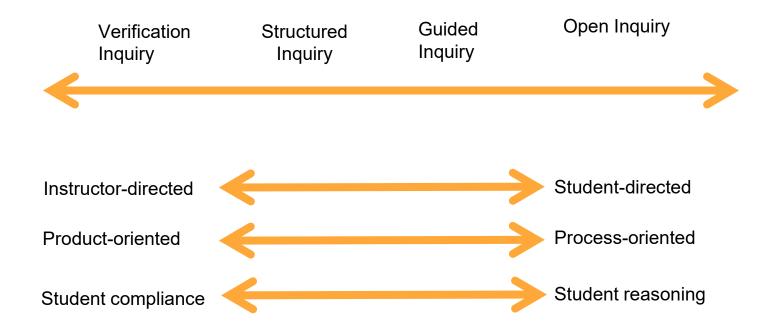
Development and Implementation of a Guided-Inquiry Laboratory Structure for an Introductory Chemistry Course

Dermot F. Donnelly-Hermosillo, Eric Person Fresno State <u>ddonnelly@csufresno.edu</u> CV-RISER July 22, 2022

Value of Verification and Inquiry Approaches

Value - Verification


- Established curriculum and assessments
- Reinforce lecture content
- Practice specific techniques
- All students complete the same work (within the laboratory)
- Little guidance needed for new teaching assistants

Value - Inquiry

- Mirrors the work of scientists
- Supports student problematizing, questioning and hypothesis generation to evaluating and communicating results
- Diversity in student work better aligned with their understanding

Akuma & Callaghan, 2019; Baran & Sozbilir, 2018; Barrie et al., 2015; Carmel et al., 2019; Chinn & Hmelo-Silver, 2002; Domin, 1999; Esparza et al., 2020; Furtak et al., 2012; Grooms et al., 2014; Hofstein & Lunetta, 2004; Kirschner et al., 2006; Liu et al., 2010; Minner et al., 2010; Mistry et al., 2016; Wheeler et al., 2019; Tsaparlis & Gorezi, 2007

Spectrum of Inquiry Scaffolding

See also: Blanchard et al., 2010; Brownell & Kloser, 2015; Buck et al., 2008; Schwab, 1962; Herron, 1971

Student Motivation for Inquiry Approaches

- Students can be resistant to active-based forms of instruction
- Difficulties in persuading students to reflect on their experiences and findings
- Different motivational profiles of students (values, self-efficacy, cost) in taking Introductory Chemistry courses
- Importance of avoiding deficit view of students' motivation issues may be inherent within the course structure ("Weeder courses")

Akuma & Callaghan, 2019; Cooper et al., 2017; Fong et al., 2021; Lee et al., 2022; White et al., 2021 4

Research Questions

1. What are **student conceptual outcomes** of a verification and a guided-inquiry Introductory Chemistry laboratory? (Spring/Fall 2018 Data)

2. What are student motivation outcomes of a verification and a guided-inquiry Introductory Chemistry laboratory?(Spring 2018 Data)

Method

 Mixed Method Study – Majority Quantitative with Nested Qualitative Design/Situationalist Perspective

(Creswell et al., 2004; Onwuegbuzie & Leech, 2005)

Pre/Post Comparison Study for Two Semesters (Spring/Fall 2018)

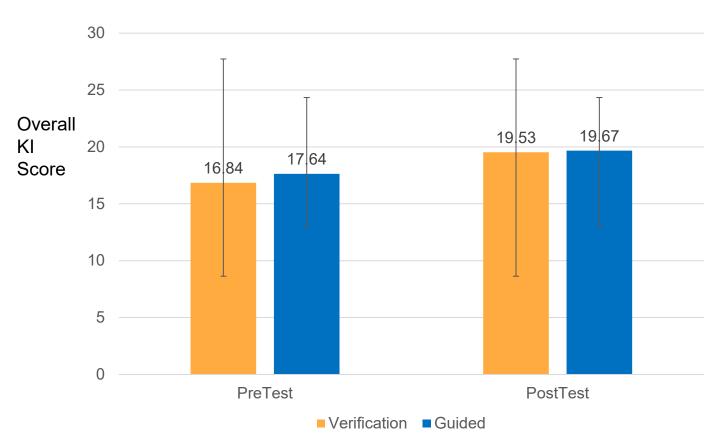
 Eight pre/post conceptual assessment items scored 1-5 with constructivist Knowledge Integration framework (Linn & Eylon, 2011; RQ1)
 Scored independently by two coders with disagreements then resolved
 General linear models with repeated measures. Significance at <.05

-Short post-course student survey (RQ2) – what students enjoyed about the lab, what they would change, and their role in the lab. Responses coded for five EVT features – Expectancy, Intrinsic, Attainment, Utility, and Cost

• Participants: 60% Female, 47% Hispanic or Latino/a, 70% Freshmen/Soph.

Two Laboratory Approaches

Verification Laboratory

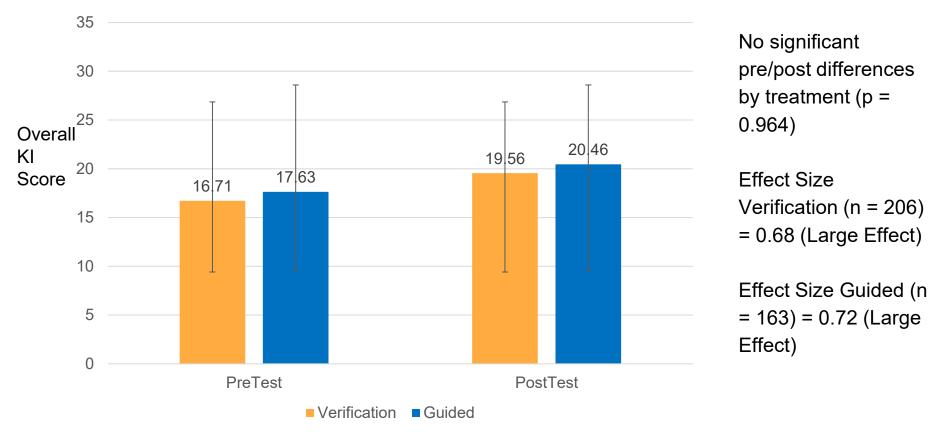

 14 laboratories (Two training laboratories, eight experiments and four study guides)

- Laboratory focus: Demonstrating common laboratory skills and procedures
- Laboratories are connected to lecture

Guided-Inquiry Laboratory

- 14 laboratories (Two training and orientation laboratories, and four three week investigations involving planning, experiment, and presentation days)
- Laboratory focus: Providing authentic experience in applying the scientific method
- Laboratories are connected via a zoo context and science practices

Overall Findings – RQ1 (Spring 2018; n = 293)


No significant pre/post differences between treatments (p = 0.295)

Effect Size* Verification (n = 162) = 0.59 (Medium Effect)

Effect Size* Guided (n = 131) = 0.56 (Medium Effect)

*Effect Size – Cohen's d (Uses mean, SD, and sample size) -<.029 (Low); 0.3-0.59 (Medium); >0.6 (Large)

Overall Findings – RQ1 (Fall 2018; n = 369)

Examples of Student Comments – RQ2

• Expectancy (Of instructor)

"give us guidance, but not the answers during the lab. As well as steer us towards where to find the answer and how to apply it to our questions." Male Hispanic Freshman Student, Guided-Inquiry

• Expectancy (Of ability)

"The quizzes are also very difficult. We are students who have zero background in chemistry and yet you except [sic] us to know how to remember how to name every formula."

Female Hispanic Freshman Student, Verification-Inquiry

• Expectancy (Of instructor and ability)

"I would change the amount of help that was provided by the instructor. I feel that these concepts were a little hard to grasp for non chemistry majors."

Male Hispanic Sophomore Student, Guided-Inquiry

Intrinsic (Interest/Enjoyment)

"i enjoyed the experiments, and how interesting they were i felt i could <u>*learn something new about chemicals everyday"* Female White Sophomore Student, Verification-Inquiry</u>

"I enjoyed <u>creating</u> my own laboratory experiments it cause me to really think what I was doing rather than go through the motions." Male Hispanic Freshman Student, Guided-Inquiry

"I did not like the fact that we had to <u>create</u> our own labs. I like using a lab manual more."

Male White Sophomore Student, Guided-Inquiry

Attainment value (Identity): Limited comments in the data

"i wish there were a little more guidelines to follow instead of just handing us a template and saying construct a lab from this; however <u>i have</u> <u>always been one</u> to like guidelines rather than basing everything off of creativity."

Female White Freshman Student, Guided-Inquiry

Utility Value (Useful to one's current or future plans):

"I enjoyed the different topics in lab and how this class pushed me from my comfort zone. I don't like chemistry but I feel like I learned important things <u>I will use in the future</u>."

Female Hispanic Sophomore Student, Guided-Inquiry

"Following rules and procedures, completing assignments on time" White Male Senior Student, Guided-Inquiry

"wear lab clothes at all time. Follow direction."

Asian Female Sophomore Student, Verification-Inquiry

Cost (Effort, opportunity, emotions)

"The writing essays didn't seem to relate to what we were doing in class" Male Hispanic Freshman, Verification-Inquiry

"NO MORE QUIZZES WE ALREADY HAVE ENOUGH FROM LECTURE!" Female Hispanic Sophomore, Verification-Inquiry

"More structure and help. A guessing game about experiments does not create a good learning environment, it fosters irritation and bitterness against an area of study."

White Freshman Student (Didn't Share Gender), Guided-Inquiry

Discussion

- Similar conceptual outcomes by laboratory type. Encouraging for a new laboratory structure with a new pedagogical approach.
- Valued features across both laboratory structures:
 -Getting to experiment "hands-on" and guidance from instructors
- Student frustration when perceiving insufficient instructor guidance
- Specific to guided inquiry laboratory: Agency to be creative in designing their own labs "minds-on" (Yannier et al., 2021)
- Zoo context is rarely discussed by students (Five student comments Spring 2018 data) – Context important, but not central to laboratory enjoyment

Implications for Laboratory Courses

- Questioning what the purpose of laboratory is and for who? Challenging with a diverse group of non-majors with diverse identities/interests – Teaching to the middle
- Questioning how we prepare laboratory instructors? The goal is obviously to challenge, but not frustrate students. Inquiry can be challenging, even for experienced instructors.
- Questioning the exact role of context within laboratories?
 Many efforts are heavily focused on engaging contexts, but they possibly take a backseat within the process of completing a laboratory.

Thank you!

Acknowledgements

- Research Team/Alumni: Dr. Eric Person, Dr. Ali Hansen, Tess Hernandez, Jordyn Kamitono, Ally Ryan, Gabriela Figueroa
- Department of Chemistry and Biochemistry
- Fresno Chaffee Zoo Scott Barton, Dean Watanabe, Renee Tindall
- CSUPERB, Grad Net Initiative, and Division of Graduate Studies.
- Students and Instructors from CHEM 3A

- Akuma, F. V., & Callaghan, R. (2019). A systematic review characterizing and clarifying intrinsic teaching challenges linked to inquiry-based practical work. *Journal of Research in Science Teaching*, *56*(5), 619–648. https://doi.org/https://doi.org/10.1002/tea.21516
- Baran, M., & Sozbilir, M. (2018). An application of context-and problem-based learning (C-PBL) into teaching thermodynamics. *Research in Science Education*, *48*(4), 663-689.
- Barrie, S. C., Bucat, R. B., Buntine, M. A., Burke da Silva, K., Crisp, G. T., George, A. V, … Yeung, A. (2015). Development, evaluation and use of a student experience survey in undergraduate science laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey. *International Journal of Science Education*, 37(11), 1795–1814.
- Blanchard, M., Southerland, S., Osborne, J., Sampson, V., Annetta, L., & Granger, E. (2010). Is inquiry possible in light of accountability?: A quantitative comparison of the relative effectiveness of guided inquiry and verification laboratory instruction. *Science Education*, 94(4), 577–616. Retrieved from http://dx.doi.org/10.1002/sce.20390
- Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3, 77–101.
- Brownell, S. E., & Kloser, M. J. (2015). Toward a conceptual framework for measuring the effectiveness of course-based undergraduate research experiences in undergraduate biology. *Studies in Higher Education*, *40*(3), 525–544. https://doi.org/10.1080/03075079.2015.1004234
- Buck, L. B., Bretz, S. L., & Towns, M. H. (2008). Characterizing the level of inquiry in the undergraduate laboratory. *Journal of College Science Teaching*, XXXVIII(1), 52-58.
- Carmel, J. H., Herrington, D. G., Posey, L. A., Ward, J. S., Pollock, A. M., & Cooper, M. M. (2019). Helping students to "Do Science": Characterizing scientific practices in general chemistry laboratory curricula. *Journal of Chemical Education*, *96*(3), 423–434. https://doi.org/10.1021/acs.jchemed.8b00912
- Chinn, C. A., & Hmelo-Silver, C. E. (2002). Authentic inquiry: Introduction to the special section. *Science Education*, *86*(2), 171–174. doi:<u>10.1002/sce.10000</u>

- Clarke, V., & Braun, V. (2013). Teaching thematic analysis: Overcoming challenges and developing strategies for effective learning. Psychologist, 26(2), 120-123
- Cooper, M., & Klymkowsky, M. (2013). Chemistry, Life, the Universe, and Everything: A New Approach to General Chemistry, and a Model for Curriculum Reform. *Journal of Chemical Education*, 90(9), 1116–1122. <u>https://doi.org/10.1021/ed300456y</u>
- Cooper, K. M., Ashley, M., & Brownell, S. E. (2017). Using expectancy value theory as a framework to reduce student resistance to active learning: A proof of concept. *Journal of Microbiology & Biology Education*, *18*(2), 18.2.20. https://doi.org/10.1128/jmbe.v18i2.1289
- Cooper, M. M., Stieff, M., & DeSutter, D. (2017). Sketching the Invisible to Predict the Visible: From Drawing to Modeling in Chemistry. *Topics in Cognitive Science*, 9(4), 902–920. https://doi.org/https://doi.org/10.1111/tops.12285
- Creswell, J. W., Fetters, M. D., & Ivankova, N. V. (2004). Designing a mixed methods study in primary care. *The Annals of Family Medicine*, 2(1), 7-12. https://doi.org/10.1370/afm.104
- Domin, D. S. (1999). A review of laboratory instruction styles. Journal of Chemical Education, 76(4), 543. doi:10.1021/ed076p543
- Eccles, J. S., & Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. *Contemporary Educational Psychology, 61,* Article 101859. https://doi.org/10.1016/j.cedpsych.2020.101859
- Esparza, D., Wagler, A. E., & Olimpo, J. T. (2020). Characterization of instructor and student behaviors in CURE and Non-CURE learning environments: Impacts on student motivation, science identity development, and perceptions of the laboratory experience. *CBE—Life Sciences Education*, *19*(1), ar10. https://doi.org/10.1187/cbe.19-04-0082
- Farley, E. R., Fringer, V., & Wainman, J. W. (2021). Simple approach to incorporating experimental design into a general chemistry lab. *Journal of Chemical Education*, 98(2), 350–356. <u>https://doi.org/10.1021/acs.jchemed.0c00921</u>
- Fong, C. J., Kremer, K. P., Hill-Troglin Cox, C., & Lawson, C. A. (2021). Expectancy-value profiles in math and science: A person-centered approach to cross-domain motivation with academic and STEM-related outcomes. *Contemporary Educational Psychology*, 65, 101962. https://doi.org/https://doi.org/10.1016/j.cedpsych.2021.101962
- Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. *Review of Educational Research*, *82*(3), 300–329. Retrieved from http://rer.sagepub.com/content/82/3/300.abstract 19

- Gao, R., & Lloyd, J. (2020). Precision and accuracy: Knowledge transformation through conceptual learning and inquiry-based practices in introductory and advanced chemistry laboratories. *Journal of Chemical Education*, 97(2), 368–373. https://doi.org/10.1021/acs.jchemed.9b00563
- George-Williams, S. R., Soo, J. T., Ziebell, A. L., Thompson, C. D., & Overton, T. L. (2018). Inquiry and industry inspired laboratories: the impact on students' perceptions of skill development and engagements. *Chemistry Education Research and Practice*, *19*(2), 583–596. https://doi.org/10.1039/C7RP00233E
- Gorman: Mistry, N., Fitzpatrick, C., & Gorman, S. (2016). Design your own workup: A guided-inquiry experiment for introductory organic laboratory courses. Journal of Chemical Education, 93(6), 1091-1095. doi:10.1021/acs.jchemed.5b00691
- Grooms, J., Sampson, V., & Golden, B. (2014). Comparing the effectiveness of verification and inquiry laboratories in supporting undergraduate science students in constructing arguments around socioscientific issues. *International Journal of Science Education*, 36(9), 1412–1433.
- Hernandez, T., Donnelly-Hermosillo, D. F., Person, E., & Hansen, A. K. (2021). "At least we could give our input": Underrepresented student narratives on conventional and guided inquiry-based laboratory approaches. *Integrative and Comparative Biology*, *61*(3), 992–1001. https://doi.org/10.1093/icb/icab014

Herron, M.D. (1971). The nature of scientific enquiry. School Review, 79, 171-212.

- Hofstein, A., & Lunetta, V. (2004). The Laboratory in Science Education: Foundations for the Twenty-First Century. Science Education, 88(1), 28–54. Retrieved from http://dx.doi.org/10.1002/sce.10106
- Kirschner, P., Sweller, J., & Clark, R. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. *Educational Psychologist*, 41, 75–86.
- Lee, S. Y., Friedman, S., Christiaans, E., & Robinson, K. A. (2022). Valuable but costly? University students' expectancy-value-cost profiles in introductory chemistry courses. *Contemporary Educational Psychology*, 69, 102056. https://doi.org/10.1016/j.cedpsych.2022.102056
- Linn, M., & Eylon, B.-S. (2011). Science learning and instruction: Taking advantage of technology to promote knowledge integration. New York: Routledge.
- Liu, O., Lee, H., & Linn, M. (2010). An investigation of teacher impact on student inquiry science performance using a hierarchical linear model. *Journal of Research in Science Teaching*, 47(7), 807–819. doi:10.1002/tea.20372
- Mattox, A. C., Reisner, B. A., & Rickey, D. (2006). What happens when chemical compounds are added to water? An introduction to the Model-Observe-Reflect-Explain (MORE) thinking frame. Journal of Chemical Education, 83(4), 622.
- Minner, D.D., Levy, A.J., & Century, J. (2010). Inquiry-based science instruction—what is it and does it matter? Results from a research synthesis years 1984–2002. Journal of Research in Science Teaching, 47(4), 474–496. doi:10.1002/tea.20347
- Nesra, Y., E., H. S., R., K. K., Kathy, H.-P., Michnick, G. R., Yuko, M., ... E., B. S. (2021). Active learning: "Hands-on" meets "minds-on." *Science*, 374(6563), 26–30. https://doi.org/10.1126/science.abj9957
- Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic analysis: Striving to meet the trustworthiness criteria. *International journal of qualitative methods*, 16(1), 1609406917733847.

- Onwuegbuzie, A. J., & Leech, N. L. (2005). On Becoming a Pragmatic Researcher: The Importance of Combining Quantitative and Qualitative Research Methodologies. *International Journal of Social Research Methodology*, *8*(5), 375–387. http://doi.org/10.1080/13645570500402447
- Schroeder, L., Bierdz, J., Wink, D. J., King, M., Daubenmire, P. L., & Clark, G. A. (2018). Relating Chemistry to Healthcare and MORE: Implementation of MORE in a Survey Organic and Biochemistry Course for Prehealth Students. *Journal of Chemical Education*, *95*(1), 37–46. https://doi.org/10.1021/acs.jchemed.7b00272
- Schwab, J.J. (1962). The teaching of science as enquiry. In The teaching of science, eds. J.J. Schwab and P.F. Brandwein, 3–103. Cambridge, MA: Harvard University Press.
- Talanquer, V., & Pollard, J. (2017). Reforming a large foundational course: Successes and challenges. *Journal of Chemical Education*, 94(12), 1844–1851.
- Tien, L. T., Teichert, M. A., & Rickey, D. (2007). Effectiveness of a MORE Laboratory Module in Prompting Students To Revise Their Molecular-Level Ideas about Solutions. *Journal of Chemical Education*, *84*(1), 175. <u>https://doi.org/10.1021/ed084p175</u>
- Teichert, M. A., Tien, L. T., Dysleski, L., & Rickey, D. (2017). Thinking Processes Associated with Undergraduate Chemistry Students' Success at Applying a Molecular-Level Model in a New Context. *Journal of Chemical Education*, 94(9), 1195–1208. <u>https://doi.org/10.1021/acs.jchemed.6b00762</u>
- Tsaparlis, G., & Gorezi, M. (2007). Addition of a project-based component to a conventional expository physical chemistry laboratory. Journal of Chemical Education, 84(4), 668-670. doi:10.1021/ed084p668
- Underwood, S. M., Kararo, A. T., & Gadia, G. (2021). Investigating the impact of three-dimensional learning interventions on student understanding of structure–property relationships. *Chemistry Education Research and Practice*, 1–16. <u>https://doi.org/10.1039/D0RP00216J</u>
- Wheeler, L. B., Chiu, J. L., Maeng, J. L., & Bell, R. L. (2019). An exploratory study of teaching assistants' motivation for inquiry-based teaching in an undergraduate laboratory context. *Chemistry Education Research and Practice*, 20(1), 53–67. https://doi.org/10.1039/C8RP00157J
- White, K. N., Vincent-Layton, K., & Villarreal, B. (2021). Equitable and inclusive practices designed to reduce equity gaps in undergraduate chemistry courses. *Journal of Chemical Education*, *98*(2), 330–339. <u>https://doi.org/10.1021/acs.jchemed.0c01094</u>